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Machine reading is essential for unlocking valuable knowledge contained in the 55 
millions of existing biomedical documents. Over the last two decades 1,2, the most 56 
dramatic advances in machine-reading have followed in the wake of critical 57 
corpus development3. Large, well-annotated corpora have been associated with 58 
punctuated advances in machine reading methodology and automated 59 
knowledge extraction systems in the same way that ImageNet 4 was fundamental 60 
for developing machine vision techniques. This study contributes six 61 
components to an advanced, named-entity analysis tool for biomedicine: (a) a 62 
new, Named-Entity Recognition Ontology (NERO) developed specifically for 63 
describing entities in biomedical texts, which accounts for diverse levels of 64 
ambiguity, bridging the scientific sublanguages of molecular biology, genetics, 65 
biochemistry, and medicine; (b) detailed guidelines for human experts annotating 66 
hundreds of named-entity classes; (c) pictographs for all named entities, to 67 
simplify the burden of annotation for curators; (d) an original, annotated corpus 68 
comprising 35,865 sentences, which encapsulate 190,679 named entities and 69 
43,438 events connecting two or more entities; (e) validated, off-the-shelf, named-70 
entity recognition automated extraction, and; (f) embedding models that 71 
demonstrate the promise of biomedical associations embedded within this 72 
corpus.   73 
 74 
Even the relatively specialized subfields of present-day biology and medicine are facing 75 
a deluge of accumulating research articles, patents, and white papers. It is increasingly 76 
difficult to stay up-to-date with contemporary biomedicine without the use of 77 
sophisticated machine reading (MR) tools. MR tool development, in turn, has been 78 
limited by the availability of biomedical corpora carefully annotated by experts. This is 79 
especially true with respect to information extraction, such as named entity recognition 80 
and relation or event extraction. Although several corpora have been developed for 81 
specialized biomedical subdomains, the need for a corpus that can bridge biological, 82 
general scientific, environmental, and clinical scientific sub-languages is greater than 83 
ever before.  84 

Unfortunately, the annotation of natural science texts is more challenging than in 85 
other domains. Biomedical language is replete with ambiguity distinct from that 86 
observed in news articles or informal text online. When a word or phrase‘s semantic 87 
meaning is clearly separated (the east bank of the Danube versus Deutsche Bank), we 88 
can implement automated sense disambiguation using machine learning tools. In 89 
biomedical texts, however, alternative meanings are not always clearly separated. The 90 
problem is not that a phrase can refer to several distinct, real-world entities in different 91 
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contexts, but that the scientists writing articles typically do not separate competing, 92 
close meanings. For example, in some biomedical contexts, a named entity may refer to 93 
a gene or a protein with nearly equal probability; for example, ―a mutant hemoglobin   ‖ 94 
can refer to either a gene or a protein. If the author meant gene-or-protein A, and we 95 
force an annotator to choose either interpretation gene A or protein A, the resulting 96 
annotation is of limited utility because the choice between gene and protein is random if 97 
the meanings are equally likely based on context. Ideally, a specialized ontology of text 98 
entities would allow an annotator to choose the proper level of annotation granularity 99 
(gene-or-protein, in this example), minimizing the need for forced, random decisions. To 100 
the best of our knowledge, there is no biomedical ontology that meets the requirements 101 
for capturing semantic ambiguity. We aimed to fill this gap by developing a specialized, 102 
variable-level meaning resolution ontology, a carefully curated corpus, along with 103 
corpus annotation tools, and a collection of text embedding analyses to evaluate our 104 
annotated corpus.   105 

Our new ontology, called NERO, short for Named-entity Recognition Ontology, 106 
attempts to minimize unwarranted, arbitrary annotative semantic label assignments in 107 
text entities, see Figure 1. NERO captures named entities, starting with most broad and 108 
vague concepts close to the taxonomy‘s root, finishing with the most narrow and 109 
concrete concepts at the taxonomy‘s leaves. Hence, DomainEntity–and all ambiguous 110 
semantic classes–correspond to NERO‘s taxonomy root. The basic division thereafter is 111 
between TextEntity and AbstractEntity, where TextEntity further splits into NamedEntity, 112 
NamedEntityGroup, Relationship, and Pronoun. After NamedEntity, the hierarchy 113 
reflects that which is written in biological entity descriptions, rather than in those entities‘ 114 
lexical representation. NERO defines ambiguous concepts, such as GeneOrProtein, 115 
which subsumes both Gene and Protein using the following axiom: EquivalentTo: 116 
‘Gene’ or ‘Protein.’ There are no biological entities that are either a gene or a protein, 117 
but there are lexical entities that can belong to either named entity class. NERO uses 118 
this pattern to express appropriate ambiguity regarding text entities, preserving 119 
uncertainty from the text. In this way, NERO classes represent textual instances and not 120 
the actual biological entities to which these instances refer. It is, therefore, straight-121 
forward to link between the lexical and biological entity through a relationship such as ‘is 122 
about’. So, the NERO class Protein ‘is about’ some specific concept ‘protein’ in an 123 
ontology pointing to real biological entities, such as the Protein Ontology 5. 124 

Striving to make the ontology practically useful, we designed guidelines for 125 
annotators making decisions in annotating text entities, available in the Supplementary 126 
Data. Furthermore, by recruiting a team of postdoctoral-level experts, we annotated a 127 
large biomedical corpus to enable a broad range of natural language processing and 128 
biomedical machine learning tasks. Our annotations span 35,865 unique sentences, 129 
8,650 of which were annotated by multiple annotators with remarkably high inter-130 
annotator agreement (see Table 1). In our annotated corpus, we aimed to encompass 131 
all entity types that might occur in biomedical literature. In addition to named entities, 132 
our ontology captures events which represent relationships between biomedical 133 
concepts. The frequencies of all diverse entity types in our corpus are shown in Figure 134 
2A; Figure 2B shows the frequencies of relations represented in the taxonomy. The 135 
most frequent entity type is GeneOrProtein, which accounts for 14.7 percent of all 136 
named entities in the corpus (see Figure 2A). The second most populous category is 137 
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Process, with nine percent tagged. Process has six sub-concepts and almost half of 138 
Process instances (49.7 percent) are annotated as more specific sub-concepts; the 139 
BiologicalProcess and the MolecularProcess are the fifth and seventh most frequent 140 
entity types (see Figure 2). Entity type frequencies follow a heavy-tail distribution, with 141 
the least frequent types being Journal, Unit, and Citation (see Figure 2). In addition to 142 
190,679 named entities, we annotated 43,438 action terms, events connecting two or 143 
more entities. The most annotated action term is bind, accounting for 28.4% of all 144 
actions, see Supplementary Figure 1. When we normalize the action terms and 145 
combine actions such as bind, binds, and binding, the normalized action bind accounts 146 
for 31.8% of all actions, as shown in Supplementary Figure 1.  We deployed a package 147 
called NERO-nlp for researchers interested in diving deeper into our annotated corpus; 148 
the installation guides and scripts are available online at https://pypi.org/project/NERO-149 
nlp and https://github.com/Bohdan-Khomtchouk/NERO-nlp respectively. 150 

Below, we present two practical applications of our ontology and text annotations: 151 
1) Machine learning experiments, which automatically identify named entities, and; (2) 152 
Word embedding experiments, which leverage the automated discovery of semantic 153 
relationships among real-world concepts referenced by a text‘s named entities. 154 

Machine learning experiments: Using NERsuite 6, we conducted a ten-fold cross-155 
validation, dividing the corpus into training and test subsets. The classification results 156 
are presented in Supplemental Table 1. The overall automated named entity recognition 157 
performance is moderate, with 54.9% precision, 37.3% recall and a 43.4%    score. 158 
The best performance class, GeneOrProtein, had baseline results of 67.0% precision, 159 
65.3% recall, and a 66.2%    score. In addition to the default baseline implementation 160 
of NERsuite, we added additional features in the training process to improve its 161 
performance 7. These are dictionary features derived from lookups in technical term 162 
dictionaries. The classifier with dictionary features manifests 54.7% precision, 37.9% 163 
recall and a 43.8%    score. We observed a scant 0.35% increase in    score from 164 
adding dictionary features. We then implemented an ensemble method called stacking, 165 
where we trained a higher-level model to learn how to best combine contributions from 166 
each base model. The base model in this case is the baseline model from NERsuite. 167 
Stacking yielded a 0.27% increase in    score compared to baseline results. While 168 
ensemble methods are commonly used to boost model accuracy by combining the 169 
predictions of multiple machine learning models, choices of second-level and base 170 
models can influence the amount of improvement in model accuracy. The overall 171 
performance statistics are shown in Supplementary Table 2. As our corpus is made 172 
public with this study‘s publication, we hope that other researchers will use this training 173 
data to achieve core MR task performance that surpasses our initial experiments. 174 

To examine how NERsuite performs in comparison to other popular open-source 175 
Named-Entity recognition tools, we trained a custom NER model on our annotated 176 
corpus using spaCy 8. We evaluated the trained model on the test subset, which 177 
consists of a random 10% sample from the corpus. Classification results are presented 178 
in Table 3. Overall automated named entity recognition performance is low, with 30.9% 179 
precision, 8.6% recall and a 13.4%    score. The best performance class, 180 
GeneOrProtein, had results of 45.1% precision, 36.4% recall, and a 40.3%    score. 181 
These statistics indicate a much poorer performance of spaCy compared to that of 182 
NERsuite.  183 
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To help explain the huge difference in performance between NERsuite and 184 
spaCy, we considered the set of input features used by each tool for insight. NERsuite‘s 185 
baseline implementation uses an extra set of input features including the lemma, POS-186 
feature and chunk-feature, whereas our custom spaCy NER model only relies on 187 
character offsets and entity labels. There is potential for further customizing spaCy‘s 188 
processing pipelines by adding more components such as tagger and parser 8, but no 189 
established approaches in this regard have been made available partly because 190 
spaCy‘s model architecture is different from those of other popular NER tools. We also 191 
observed that some entities classes, such as Gene and Protein, have zero values for 192 
precisions, recalls and    scores, which likely translate to no correct classifications 193 
made for those entities. The zero values occur partly due to the relatively smaller 194 
number of tokens for those entity classes in the training set, and as a result, the trained 195 
NER model generalized poorly on the minority class entities in the test subset.  196 

Due to spaCy‘s computational demands, we did not conduct 10-fold cross-197 
validation. NERsuite provides a well-integrated pipelined system where training a new 198 
model consists of a few lines of code. In addition, NERsuite has a demonstrated record 199 
5 on two biomedical tasks, the BioCreative2 gene mention recognition task and the 200 
NLPBA 2004 named entity recognition task. Therefore, one could argue that it offers an 201 
advantage over spaCy for NLP tasks in specialized domains such as biomedicine. 202 

We‘ve also identified another package called scispaCy 9 that contains spaCy 203 
models for processing biomedical, scientific or clinical text. SciSpaCy acts as an 204 
extension to spaCy and provides a set of practical tools for text processing in the 205 
biomedical domain 9. In particular, scispaCy includes a set of spaCy NER models 206 
trained on popular biomedical corpora, which covers entity types such as chemicals, 207 
diseases, cell types, proteins and genes. As an extension to spaCy, it also has the 208 
flexibility for users to train a custom NER model from scratch or update the existing 209 
NER models with users‘ own training data. Since our NER ontology adopts a more 210 
diverse and detailed annotation methodology for named entity types, it will be 211 
challenging to update scispaCy‘s pretrained named entity recognizer with our annotated 212 
corpora. 213 
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 214 
 215 

Table 3: Experimental results using spaCy for NER evaluated on 10% of the corpus 216 

 217 

Word embedding experiments: Semantic associations, automatically extracted 218 
from text using neural network embedding operations, can function as a kind of ―digital 219 
double‖ of real-world phenomena embedded in text, facilitating inferences that were 220 
previously imagined only possible from the original experimental data. For example, 221 
word embeddings built from chemical and material science texts predict much of the 222 
subsequent decades‘ material discoveries8, just as the corpus of molecules can recover 223 
the periodic table9, and texts are able to recover the subtle, psychological and 224 
sociological biases of cultures that produced them 10,11. We used word embedding 225 
models to evaluate the biomedical veracity of NERO and its text annotation. Embedding 226 
models like Google‘s word2vec 12,13 initially received substantial attention based on 227 
their capacity to solve analogy problems and automatically capture deep semantic 228 
relationships among concepts. Building on these capacities 10,14,15, we proposed a 229 
general method for constructing meaningful dimensions by taking the arithmetic mean 230 
of word vectors representing antonyms along a dimension and using them to diagnose 231 
their meanings. This approach has been widely validated 15-19, and we employed it here 232 
to construct and compare the meanings embedded in NERO and our annotated corpus 233 
with ground truth data about drugs and diseases. In order to evaluate word embeddings 234 
based on NERO, we identified two disease properties —(1) severity and (2) gender 235 
specificity—and likewise two therapeutic drug properties —(1) toxicity and (2) 236 
expense—not directly present in text, but highly relevant to diagnosis and treatment, 237 
and on which text-independent ground truth data exists. 238 
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We embedded named entities associated with diseases and drugs into a high-239 
dimensional space in which every NERO term was assigned a 300-dimensional vector, 240 
(see Figure 3 for a three-dimensional projection of this embedding), along with a 241 
selection of diseases and medications used to treat them. We then compared drug and 242 
disease projections into the embedding dimensions for severity, gender, toxicity, and 243 
expense with ground truth about these qualities. We constructed the severe-mild axis 244 
with the following contrasting term pairs: (harmful, beneficial), (serious, benign), (life-245 
altering, common), (disruptive, undisruptive), (dying, recovering), (dangerous, safe), 246 
(threatening, low-priority), (high mortality, harmless), (costly, cheap), (hospitalized, self-247 
administered ), (hospital, work), (debt, savings), (low quality of life, undisruptive), and 248 
(hazard, routine). Then we compared disease projection in this dimension with World 249 
Health Organization data on the burden of living with each of those diseases (DALYs 20) 250 
and found a correlation of 0.329 (p=0.0614, n=33). We then constructed a gender 251 
dimension with similarly contrasting pairs: (male, female), (prostate, ovary), (penile, 252 
uterine), (penis, uterus), (man, woman), (men, women), (masculine, feminine), (he, 253 
she), (him, her), (his, hers), (boy, girl), and (boys, girls). We compared the disease 254 
projection in this gender dimension with the prevalence of those diseases for men and 255 
women from a substantial sample of doctor-patient insurance records capturing 256 
approximately 47% of all of U.S. doctor-patient visits between 2003 and 2011 and found 257 
a correlation of 0.436 (p=1.46  10-13, n=261).  258 

Together, these patterns suggest that not only does NERO facilitate efficient and 259 
accurate concept-by-concept annotation, but that the distribution of biomedical 260 
properties underlying NERO-annotated texts have emergent validity and predict data 261 
patterns not explicitly present in biomedical articles. Following the same pattern, we 262 
projected medications onto a toxicity axis composed from: (harmful, beneficial), (toxic, 263 
nontoxic), and (noxious, benign) and an expense dimension anchored by: (expensive, 264 
inexpensive), (costly, cheap), (brand, generic), and (patented, off-patent). The 265 
correlation of drug projections onto the toxicity dimension correlates at 0.32 (p=1.1  10-266 
4) with the median lethal dose, or dose required to kill 50% of subjects as documented 267 
in the LD50 database 21. Finally, the correlation of drug projections into an expense 268 
dimension and the price of each drug as listed in the IBM MarketScan database 22 was 269 
0.42 (p=1.5  10-15) (see Figure 4). When a disease projects low in the male – female 270 
dimension, it is much more likely to afflict women than men, such as ornithosis and 271 
related infectious diseases. When a disease projects high in the serious – benign 272 
dimension like leprosy, it is likely to incur substantial suffering. When a medication 273 
projects high in the toxic – nontoxic dimension, such as Riluzole, a treatment for 274 
amyotrophic lateral sclerosis with potential severe side effects ranging from unusual 275 
bleeding to nausea and vomiting. Drug projections high in the expensive – inexpensive 276 
dimension suggest a stiff medical bill, as in the case of Simvastatin, which is used to 277 
reduce the risk of heart attack and stroke, and which, before it went off-patent, cost 278 
hundreds of dollars per bottle. The robust accuracy of these associations suggest that 279 
for qualities on which we do not have relevant or inexpensive data outside text, 280 
associations from text represent a significant signal for biomedical research and can be 281 
considered robust hypotheses meriting empirical study. 282 

This study‘s main limitation is that, even though our NERO ontology aimed to 283 
cover all entities contained in the biomedical research literature, we did not cover all 284 
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levels of granularity in classifying entities. Moreover, while the major concepts are well-285 
annotated, several concept types were not well-represented because of the heavy-tail 286 
distribution of ontological class frequencies. In addition, we note that satisfactory results 287 
of Named-entity Recognition (NER) rely heavily on a large quantity of hand-annotated 288 
data, which is often costly in terms of time and resources spent. Therefore, adoption of 289 
semi-supervised learning methods, which incorporates unlabeled data to improve 290 
learning accuracy, could reduce the need for manual annotation 23. 291 

While there is popular belief that pretraining on general-domain text can be 292 
helpful for developing domain-specific language models, a recent study has shown that 293 
for specialized domains, such as biomedicine, pretraining on in-domain text from 294 
scratch offers noticeable improvements in model accuracy compared to continual 295 
pretraining of general-domain language models 24.  Therefore, we trained on our 296 
annotated corpus from scratch using in our machine learning experiments 25. 297 

The resources offered in our study can be applied to a wide range of scientific 298 
problems. First, the proposed NERO ontology can facilitate more robust and accurate 299 
large-scale text mining of biomedical literature. As discussed above, NERO is the first 300 
knowledge graph in this field, accounting for context-relevant levels of ambiguity. Graph 301 
neural networks 26 can leverage such prior knowledge from human experts for learning 302 
embedding of biomedical entities, which is likely to preserve both semantic meaning in 303 
the original literature and domain knowledge from human experts. Second, researchers 304 
can combine the curated corpus from this study with self-supervised learning 27. Such a 305 
learning scenario can utilize the unlabeled data in a supervised way by predicting part of 306 
the sentence using the rest of the sentence. The annotated corpus from this study can 307 
be used to fine-tune language models, orienting them for critical biomedical tasks. 308 
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 396 
Figure Legends 397 
 398 
Figure 1. Named Entity Recognition Ontology (NERO). The Ontology is shown here as 399 
a multifurcating tree, with taxonomy nodes corresponding to ontology classes. Class 400 
name and class mentions count in the corpus are shown in parentheses next to each 401 
named entity class. Each taxonomy class is provided with a unique pictogram (black 402 
and red shapes on yellow background) intended to simplify expert manual annotation of 403 
the corpora. In total, we annotated 35,865 sentences. These sentences encapsulated 404 
190,679 named entities and 43,438 events connecting two or more entities. In addition 405 
to the almost two dozen, more sparsely-used branches (such as ExperimentalFactor 406 
and GeographicalLocation) under the NamedEntity cluster, there are three heavily-407 
represented branches in our corpus: AnatomicalPart, Chemical, and Process. Slightly 408 
more than half (51.6 percent) of all entities are from these three classes, with 26.6 409 
percent of all entities originating from Process alone. We designed our ontology and its 410 
annotations to capture the named entities associated with research activities and 411 
facilities; these types of entities can be important for encoding methods used in 412 
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scientific experiments or patient treatment. The semantic classes ResearchActivity and 413 
MedicalProcedures turn out to be the ninth and the tenth most frequent, respectively. 414 
Other top concepts related to research include Measurement, IntellectualProducts, 415 
PublishedSourceOfInformation, Facility, and MentalProcess. 416 
 417 
Figure 2. The relative abundance of annotated named entity classes in our 418 
corpus. As is typically the case with human languages, semantic classes are 419 
represented unevenly in free texts, following a heavy-tail (Zipf‘s) distribution. (A) In 420 
biomedical corpora, unsurprisingly, named entities associated with genes and proteins 421 
are the most prevalent (15 percent), followed by processes (9 percent), medical findings 422 
(8.8 percent), and chemicals (6.7 percent). At the low-frequency end of the named entity 423 
spectrum, we find journal names, units, citations, and languages. (B) Events connecting 424 
two or more entities are also approximately Zipf-law distributed. Event frequencies are 425 
closely tracking corresponding named entity classes. For example, the most frequent 426 
event, bind, is associated with the most frequently named entity, GeneOrProtein. We 427 
tried fitting the rank-ordered frequency distribution of annotated named entities with a 428 
Discrete Generalized Beta Distribution (DGBD). The result showed a significant 429 
deviation from Zipf‘s law 28: The observed distribution‘s tail was not heavy enough to 430 
match Zipf‘s distribution, most likely due to the relatively small number of classes in our 431 
ontology. 29 In other words, we expect that frequencies of semantic classes in a very 432 
large corpus, annotated with classes from a hypothetical perfect named entity ontology, 433 
would follow a Zipfian (discrete Pareto) distribution of named entity classes. Our action 434 
annotations have moved beyond interactions between proteins and genes (e.g., bind, 435 
inhibit, phosphorylate, encode), into interactions involving genetic variants and 436 
environmental factors (e.g., associated with, occur in presence of, trigger, lack). 437 
Ambiguity levels varied broadly across the named entities captured in our corpus. For 438 
example, in the class AnatomicalPart, almost all (99.3 percent) are annotated at the 439 
most specific levels, with the majority of entities belonging to BodyPart, 440 
CellularComponent, and Cell. In contrast, the general (most vague) concept, Chemical, 441 
turns out to be the most annotated within its cluster, although more specific subclasses, 442 
such as Protein, NucleicAcid, and Drug are also well represented in the corpus. In the 443 
Process concept cluster, about a third of all concept instances are annotated at a more 444 
general Process level, and the rest of them are specific concepts, such as 445 
MedicalProcedure, MolecularProcess, ResearchActivity, and BiologicalProcess. In 446 
addition to these major clusters of concepts, several individual concepts are well 447 
represented in the corpus. For example, MedicalFinding represents 7.3 percent of all 448 
entities. Other well-represented concepts include Duration, IntellectualProduct, 449 
Measurement, Organism, PersonGroup, PublishedSource OfInformation, and Quantity. 450 
In total, about 70.4 percent of all entities are annotated at the most specific ontology 451 
level. There are five concepts in the NERO ontology that allow the semantic flexibility 452 
needed to avoid arbitrary concept assignment. Entities annotated as 453 
AminaoAcidOrPeptide, QuantityOrMeasurement, PublicationOrCitation 454 
MedicalProcedureOrDevice, and GeneOrProtein account for 17.8 percent of all entities, 455 
while less than a quarter (23 percent) of entities representing either genes or proteins 456 
are cleanly annotated with class Gene or class Protein. The remainder are annotated 457 
with class GeneOrProtein. In addition to the action bind, actions indicating entities‘ 458 
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attributes are the next most frequent. Other biological relationships are also well-459 
represented in this annotation, such as inhibit, activate, mediate, interact, contain, and 460 
regulate. The top 30 action categories account for 64.4 percent of all actions annotated 461 
with the top ten action categories accounting for 52.2 percent. Interestingly, negations of 462 
actions were also quite abundant in our annotated corpus. For example, do not bind 463 
was the sixth most frequent normalized action. Other well-represented negations of 464 
actions include do not affect and do not inhibit (see Supplementary Figure 1).  465 
 466 
Figure 3. Properties of diseases and drugs visible in the first three principal 467 
components of our multi-dimensional text embedding. The figure shows a projection of 468 
text embedding into three-dimensional space, with named entities corresponding to 469 
diseases and drugs shown with prisms and spheres, respectively. The figure represents 470 
several projections of the same embedding, preserving spatial layout and projection, 471 
with distinct elements of the embedding indicated by shape color. The central image 472 
shows all disease systems and their corresponding medications together. More 473 
specifically, the additional projections show: (A) Zollinger-Ellison syndrome and 474 
associated medications; (B) cancers and associated therapies; (C) central nervous 475 
system diseases and corresponding medications, and; (D) and (E) Viral and bacterial 476 
infectious diseases, respectively, together with corresponding antiviral and antibiotic 477 
agents. Another view of the same dataset is presented in Figure 4.  478 
 479 
Figure 4. Two-dimensional projections of diseases and medications. (A) We 480 
projected diseases into two dimensions: female-male (X-axis) and severe-mild (Y-481 
axis). We defined the ―male-female‖ axis using the following pairs of terms: (‗male,‘ 482 
‗female‘), (‗prostate,‘ ‗ovary‘), (‗penile,‘ ‗uterine‘), (‗penis,‘ ‘uterus‘), (‗man,‘ ‗woman‘), 483 
(‗men,‘ ‗women‘), (‗masculine,‘ ‗feminine‘), (‗he,‘ ‗she‘), (‗him,‘ ‗her‘), (‗his,‘ ‗hers‘), (‗boy,‘ 484 
‗girl‘), and (‗boys,‘ ‗girls‘). We defined the severe-mild axis with the following term pairs: 485 
(‗harmful,‘ ‗beneficial‘), (‗serious,‘ ‗benign‘), (‗life-altering,‘ ‗common‘), (‗disruptive,‘  486 
‗undisruptive‘), (‗dying,‘ ‘recovering‘), (‗dangerous,‘ ‗safe‘), (‗threatening,‘ ‗low-priority‘), 487 
(‗high mortality,‘ ‗harmless‘), (‗costly,‘ ‗cheap‘), (‗hospitalized,‘ ‗self-administered‘), 488 
(‗hospital,‘ ‗work‘), (‗debt,‘ ‗savings‘), (‗low quality of life,‘ ‗undisruptive‘), and (‗hazard,‘ 489 
‗routine‘). (B) We projected medications into ―benign-toxic‖ (X-axis) and ―cheap-costly‖ 490 
(Y-axis). For the ―benign-toxic‖ axis, we used the following pairs of antonym words: 491 
(‗harmful,‘ ‗beneficial‘), (‗toxic,‘ ‗nontoxic‘), and (‗noxious,‘ ‗benign‘). We defined the 492 
―expensive–inexpensive‖ dimension using the following pairs of terms: (‗expensive,‘ 493 
‗inexpensive‘), (‗costly,‘ ‗cheap‘), (‗brand,‘ ‗generic‘), and (‗patented,‘ ‗off-patent‘). 494 
 495 
Table 1. Inter-annotator Agreement Statistics. 496 
 497 

 Agreement Type IAA (%) 
 Exact Match 86.49 
 Relaxed Match 93.66 
 Exact Match 86.56 
 Parent Match 87.66 
 Superclass Match 86.72 
 Ambiguity Match 97.58 
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