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Machine reading is essential for unlocking valuable knowledge contained in the
millions of existing biomedical documents. Over the last two decades *?, the most
dramatic advances in machine-reading have followed in the wake of critical
corpus development®. Large, well-annotated corpora have been associated with
punctuated advances in machine reading methodology and automated
knowledge extraction systems in the same way that ImageNet * was fundamental
for developing machine vision techniques. This study contributes six
components to an advanced, named-entity analysis tool for biomedicine: (a) a
new, Named-Entity Recognition Ontology (NERO) developed specifically for
describing entities in biomedical texts, which accounts for diverse levels of
ambiguity, bridging the scientific sublanguages of molecular biology, genetics,
biochemistry, and medicine; (b) detailed guidelines for human experts annotating
hundreds of named-entity classes; (c) pictographs for all named entities, to
simplify the burden of annotation for curators; (d) an original, annotated corpus
comprising 35,865 sentences, which encapsulate 190,679 named entities and
43,438 events connecting two or more entities; (e) validated, off-the-shelf, named-
entity recognition automated extraction, and; (f) embedding models that
demonstrate the promise of biomedical associations embedded within this
corpus.

Even the relatively specialized subfields of present-day biology and medicine are facing
a deluge of accumulating research articles, patents, and white papers. It is increasingly
difficult to stay up-to-date with contemporary biomedicine without the use of
sophisticated machine reading (MR) tools. MR tool development, in turn, has been
limited by the availability of biomedical corpora carefully annotated by experts. This is
especially true with respect to information extraction, such as named entity recognition
and relation or event extraction. Although several corpora have been developed for
specialized biomedical subdomains, the need for a corpus that can bridge biological,
general scientific, environmental, and clinical scientific sub-languages is greater than
ever before.

Unfortunately, the annotation of natural science texts is more challenging than in
other domains. Biomedical language is replete with ambiguity distinct from that
observed in news articles or informal text online. When a word or phrase’s semantic
meaning is clearly separated (the east bank of the Danube versus Deutsche Bank), we
can implement automated sense disambiguation using machine learning tools. In
biomedical texts, however, alternative meanings are not always clearly separated. The
problem is not that a phrase can refer to several distinct, real-world entities in different
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92  contexts, but that the scientists writing articles typically do not separate competing,
93 close meanings. For example, in some biomedical contexts, a named entity may refer to
94  agene or a protein with nearly equal probability; for example, “a mutant hemoglobin a,”
95 can refer to either a gene or a protein. If the author meant gene-or-protein A, and we
96 force an annotator to choose either interpretation gene A or protein A, the resulting
97 annotation is of limited utility because the choice between gene and protein is random if
98 the meanings are equally likely based on context. Ideally, a specialized ontology of text
99 entities would allow an annotator to choose the proper level of annotation granularity
100 (gene-or-protein, in this example), minimizing the need for forced, random decisions. To
101 the best of our knowledge, there is no biomedical ontology that meets the requirements
102  for capturing semantic ambiguity. We aimed to fill this gap by developing a specialized,
103  variable-level meaning resolution ontology, a carefully curated corpus, along with
104  corpus annotation tools, and a collection of text embedding analyses to evaluate our
105 annotated corpus.
106 Our new ontology, called NERO, short for Named-entity Recognition Ontology,
107  attempts to minimize unwarranted, arbitrary annotative semantic label assignments in
108 text entities, see Figure 1. NERO captures named entities, starting with most broad and
109 vague concepts close to the taxonomy’s root, finishing with the most narrow and
110 concrete concepts at the taxonomy’s leaves. Hence, DomainEntity—and all ambiguous
111 semantic classes—correspond to NERO’s taxonomy root. The basic division thereafter is
112  between TextEntity and AbstractEntity, where TextEntity further splits into NamedEntity,
113  NamedEntityGroup, Relationship, and Pronoun. After NamedEntity, the hierarchy
114 reflects that which is written in biological entity descriptions, rather than in those entities’
115 lexical representation. NERO defines ambiguous concepts, such as GeneOrProtein,
116  which subsumes both Gene and Protein using the following axiom: EquivalentTo:
117  ‘Gene’ or ‘Protein.’ There are no biological entities that are either a gene or a protein,
118 but there are lexical entities that can belong to either named entity class. NERO uses
119 this pattern to express appropriate ambiguity regarding text entities, preserving
120 uncertainty from the text. In this way, NERO classes represent textual instances and not
121 the actual biological entities to which these instances refer. It is, therefore, straight-
122  forward to link between the lexical and biological entity through a relationship such as ‘is
123 about’. So, the NERO class Protein ‘is about’ some specific concept ‘protein’in an
124  ontology pointing to real biological entities, such as the Protein Ontology °.
125 Striving to make the ontology practically useful, we designed guidelines for
126  annotators making decisions in annotating text entities, available in the Supplementary
127 Data. Furthermore, by recruiting a team of postdoctoral-level experts, we annotated a
128 large biomedical corpus to enable a broad range of natural language processing and
129 biomedical machine learning tasks. Our annotations span 35,865 unigue sentences,
130 8,650 of which were annotated by multiple annotators with remarkably high inter-
131 annotator agreement (see Table 1). In our annotated corpus, we aimed to encompass
132 all entity types that might occur in biomedical literature. In addition to named entities,
133  our ontology captures events which represent relationships between biomedical
134  concepts. The frequencies of all diverse entity types in our corpus are shown in Figure
135 2A; Figure 2B shows the frequencies of relations represented in the taxonomy. The
136  most frequent entity type is GeneOrProtein, which accounts for 14.7 percent of all
137 named entities in the corpus (see Figure 2A). The second most populous category is
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138  Process, with nine percent tagged. Process has six sub-concepts and almost half of
139  Process instances (49.7 percent) are annotated as more specific sub-concepts; the
140 BiologicalProcess and the MolecularProcess are the fifth and seventh most frequent
141 entity types (see Figure 2). Entity type frequencies follow a heavy-tail distribution, with
142  the least frequent types being Journal, Unit, and Citation (see Figure 2). In addition to
143 190,679 named entities, we annotated 43,438 action terms, events connecting two or
144  more entities. The most annotated action term is bind, accounting for 28.4% of all

145 actions, see Supplementary Figure 1. When we normalize the action terms and

146  combine actions such as bind, binds, and binding, the normalized action bind accounts
147  for 31.8% of all actions, as shown in Supplementary Figure 1. We deployed a package
148 called NERO-nlp for researchers interested in diving deeper into our annotated corpus;
149 the installation guides and scripts are available online at https://pypi.org/project/NERO-
150  nlp and https://github.com/Bohdan-Khomtchouk/NERO-nlp respectively.

151 Below, we present two practical applications of our ontology and text annotations:
152 1) Machine learning experiments, which automatically identify named entities, and; (2)
153  Word embedding experiments, which leverage the automated discovery of semantic
154  relationships among real-world concepts referenced by a text’'s named entities.

155 Machine learning experiments: Using NERsuite °, we conducted a ten-fold cross-
156 validation, dividing the corpus into training and test subsets. The classification results
157 are presented in Supplemental Table 1. The overall automated named entity recognition
158 performance is moderate, with 54.9% precision, 37.3% recall and a 43.4% F,; score.
159  The best performance class, GeneOrProtein, had baseline results of 67.0% precision,
160 65.3% recall, and a 66.2% F, score. In addition to the default baseline implementation
161 of NERsuite, we added additional features in the training process to improve its

162  performance ’. These are dictionary features derived from lookups in technical term
163  dictionaries. The classifier with dictionary features manifests 54.7% precision, 37.9%
164 recall and a 43.8% F; score. We observed a scant 0.35% increase in F, score from
165 adding dictionary features. We then implemented an ensemble method called stacking,
166  where we trained a higher-level model to learn how to best combine contributions from
167 each base model. The base model in this case is the baseline model from NERsuite.
168  Stacking yielded a 0.27% increase in F; score compared to baseline results. While

169 ensemble methods are commonly used to boost model accuracy by combining the

170  predictions of multiple machine learning models, choices of second-level and base

171  models can influence the amount of improvement in model accuracy. The overall

172  performance statistics are shown in Supplementary Table 2. As our corpus is made
173  public with this study’s publication, we hope that other researchers will use this training
174  data to achieve core MR task performance that surpasses our initial experiments.

175 To examine how NERsuite performs in comparison to other popular open-source
176  Named-Entity recognition tools, we trained a custom NER model on our annotated

177  corpus using spaCy . We evaluated the trained model on the test subset, which

178  consists of a random 10% sample from the corpus. Classification results are presented
179 in Table 3. Overall automated named entity recognition performance is low, with 30.9%
180  precision, 8.6% recall and a 13.4% F, score. The best performance class,

181 GeneOrProtein, had results of 45.1% precision, 36.4% recall, and a 40.3% F; score.
182  These statistics indicate a much poorer performance of spaCy compared to that of

183  NERsuite.
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184 To help explain the huge difference in performance between NERsuite and

185 spaCy, we considered the set of input features used by each tool for insight. NERsuite’s
186 baseline implementation uses an extra set of input features including the lemma, POS-
187 feature and chunk-feature, whereas our custom spaCy NER model only relies on

188 character offsets and entity labels. There is potential for further customizing spaCy’s
189  processing pipelines by adding more components such as tagger and parser °, but no
190 established approaches in this regard have been made available partly because

191 spaCy’s model architecture is different from those of other popular NER tools. We also
192  observed that some entities classes, such as Gene and Protein, have zero values for
193  precisions, recalls and F; scores, which likely translate to no correct classifications

194 made for those entities. The zero values occur partly due to the relatively smaller

195 number of tokens for those entity classes in the training set, and as a result, the trained
196 NER model generalized poorly on the minority class entities in the test subset.

197 Due to spaCy’s computational demands, we did not conduct 10-fold cross-

198 validation. NERsuite provides a well-integrated pipelined system where training a new
199 model consists of a few lines of code. In addition, NERsuite has a demonstrated record
200  ° on two biomedical tasks, the BioCreative2 gene mention recognition task and the

201 NLPBA 2004 named entity recognition task. Therefore, one could argue that it offers an
202 advantage over spaCy for NLP tasks in specialized domains such as biomedicine.

203 We've also identified another package called scispaCy ° that contains spaCy
204 models for processing biomedical, scientific or clinical text. SciSpaCy acts as an
205 extension to spaCy and provides a set of practical tools for text processing in the
206  biomedical domain °. In particular, scispaCy includes a set of spaCy NER models
207  trained on popular biomedical corpora, which covers entity types such as chemicals,
208 diseases, cell types, proteins and genes. As an extension to spaCy, it also has the
209 flexibility for users to train a custom NER model from scratch or update the existing
210 NER models with users’ own training data. Since our NER ontology adopts a more
211 diverse and detailed annotation methodology for named entity types, it will be

212  challenging to update scispaCy’s pretrained named entity recognizer with our annotated
213  corpora.
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P r f

Cell 16.88 |5.10 |7.83

CellComponent 35.71 |4.44 |7.91

GeneOrProtein 45.11 | 36.44 | 40.31

Organism 16.99 |5.53 (8.34
Disease 11.79(8.12 |9.61
Drug 11.111.20 |2.17

SmallMolecule 0.00 |0.00 |0.00

BiologicalProcess |8.02 |1.88 |3.05

MolecularProcess | 12.67 |2.45 (4.10

Gene 0.00 |0.00 |(0.00
Protein 0.00 |0.00 (0.00
BodyPart 15.17 |5.54 |8.12
AminoAcid 12.50|0.88 |1.64
214
215
216 Table 3: Experimental results using spaCy for NER evaluated on 10% of the corpus
217
218 Word embedding experiments: Semantic associations, automatically extracted

219 from text using neural network embedding operations, can function as a kind of “digital
220 double” of real-world phenomena embedded in text, facilitating inferences that were
221  previously imagined only possible from the original experimental data. For example,
222 word embeddings built from chemical and material science texts predict much of the
223  subsequent decades’ material discoveries?, just as the corpus of molecules can recover
224  the periodic table®, and texts are able to recover the subtle, psychological and

225  sociological biases of cultures that produced them >, We used word embedding

226  models to evaluate the biomedical veracity of NERO and its text annotation. Embedding
227  models like Google’s word2vec *** initially received substantial attention based on
228 their capacity to solve analogy problems and automatically capture deep semantic

229 relationships among concepts. Building on these capacities *>***°, we proposed a

230 general method for constructing meaningful dimensions by taking the arithmetic mean
231 of word vectors representing antonyms along a dimension and using them to diagnose
232 their meanings. This approach has been widely validated ***°, and we employed it here
233  to construct and compare the meanings embedded in NERO and our annotated corpus
234 with ground truth data about drugs and diseases. In order to evaluate word embeddings
235 based on NERO, we identified two disease properties —(1) severity and (2) gender

236  specificity—and likewise two therapeutic drug properties —(1) toxicity and (2)

237  expense—not directly present in text, but highly relevant to diagnosis and treatment,
238 and on which text-independent ground truth data exists.
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239 We embedded named entities associated with diseases and drugs into a high-
240 dimensional space in which every NERO term was assigned a 300-dimensional vector,
241  (see Figure 3 for a three-dimensional projection of this embedding), along with a

242  selection of diseases and medications used to treat them. We then compared drug and
243  disease projections into the embedding dimensions for severity, gender, toxicity, and
244  expense with ground truth about these qualities. We constructed the severe-mild axis
245  with the following contrasting term pairs: (harmful, beneficial), (serious, benign), (life-
246  altering, common), (disruptive, undisruptive), (dying, recovering), (dangerous, safe),
247  (threatening, low-priority), (high mortality, harmless), (costly, cheap), (hospitalized, self-
248 administered ), (hospital, work), (debt, savings), (low quality of life, undisruptive), and
249  (hazard, routine). Then we compared disease projection in this dimension with World
250 Health Organization data on the burden of living with each of those diseases (DALYs
251 and found a correlation of 0.329 (p=0.0614, n=33). We then constructed a gender
252  dimension with similarly contrasting pairs: (male, female), (prostate, ovary), (penile,
253 uterine), (penis, uterus), (man, woman), (men, women), (masculine, feminine), (he,
254  she), (him, her), (his, hers), (boy, girl), and (boys, girls). We compared the disease
255  projection in this gender dimension with the prevalence of those diseases for men and
256  women from a substantial sample of doctor-patient insurance records capturing

257  approximately 47% of all of U.S. doctor-patient visits between 2003 and 2011 and found
258 a correlation of 0.436 (p=1.46 x 103, n=261).

259 Together, these patterns suggest that not only does NERO facilitate efficient and
260 accurate concept-by-concept annotation, but that the distribution of biomedical

261  properties underlying NERO-annotated texts have emergent validity and predict data
262  patterns not explicitly present in biomedical articles. Following the same pattern, we

263  projected medications onto a toxicity axis composed from: (harmful, beneficial), (toxic,
264  nontoxic), and (noxious, benign) and an expense dimension anchored by: (expensive,
265 inexpensive), (costly, cheap), (brand, generic), and (patented, off-patent). The

266  correlation of drug projections onto the toxicity dimension correlates at 0.32 (p=1.1 x 10
267  *) with the median lethal dose, or dose required to kill 50% of subjects as documented
268 in the LD50 database . Finally, the correlation of drug projections into an expense

269 dimension and the price of each drug as listed in the IBM MarketScan database %* was
270  0.42 (p=1.5 x 10™) (see Figure 4). When a disease projects low in the male — female
271 dimension, it is much more likely to afflict women than men, such as ornithosis and

272  related infectious diseases. When a disease projects high in the serious — benign

273  dimension like leprosy, it is likely to incur substantial suffering. When a medication

274  projects high in the toxic — nontoxic dimension, such as Riluzole, a treatment for

275  amyotrophic lateral sclerosis with potential severe side effects ranging from unusual
276  bleeding to nausea and vomiting. Drug projections high in the expensive — inexpensive
277  dimension suggest a stiff medical bill, as in the case of Simvastatin, which is used to
278  reduce the risk of heart attack and stroke, and which, before it went off-patent, cost

279  hundreds of dollars per bottle. The robust accuracy of these associations suggest that
280 for qualities on which we do not have relevant or inexpensive data outside text,

281 associations from text represent a significant signal for biomedical research and can be
282  considered robust hypotheses meriting empirical study.

283 This study’s main limitation is that, even though our NERO ontology aimed to
284  cover all entities contained in the biomedical research literature, we did not cover all

20)
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285 levels of granularity in classifying entities. Moreover, while the major concepts are well-
286  annotated, several concept types were not well-represented because of the heavy-tail
287  distribution of ontological class frequencies. In addition, we note that satisfactory results
288 of Named-entity Recognition (NER) rely heavily on a large quantity of hand-annotated
289 data, which is often costly in terms of time and resources spent. Therefore, adoption of
290 semi-supervised learning methods, which incorporates unlabeled data to improve

291 learning accuracy, could reduce the need for manual annotation %.

292 While there is popular belief that pretraining on general-domain text can be

293 helpful for developing domain-specific language models, a recent study has shown that
294  for specialized domains, such as biomedicine, pretraining on in-domain text from

295 scratch offers noticeable improvements in model accuracy compared to continual

296 pretraining of general-domain language models ?*. Therefore, we trained on our

297  annotated corpus from scratch using in our machine learning experiments .

298 The resources offered in our study can be applied to a wide range of scientific
299 problems. First, the proposed NERO ontology can facilitate more robust and accurate
300 large-scale text mining of biomedical literature. As discussed above, NERO is the first
301 knowledge graph in this field, accounting for context-relevant levels of ambiguity. Graph
302 neural networks  can leverage such prior knowledge from human experts for learning
303 embedding of biomedical entities, which is likely to preserve both semantic meaning in
304 the original literature and domain knowledge from human experts. Second, researchers
305 can combine the curated corpus from this study with self-supervised learning ?’. Such a
306 learning scenario can utilize the unlabeled data in a supervised way by predicting part of
307 the sentence using the rest of the sentence. The annotated corpus from this study can
308 be used to fine-tune language models, orienting them for critical biomedical tasks.
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397 Figure Legends

398

399 Figure 1. Named Entity Recognition Ontology (NERO). The Ontology is shown here as
400 a multifurcating tree, with taxonomy nodes corresponding to ontology classes. Class
401 name and class mentions count in the corpus are shown in parentheses next to each
402 named entity class. Each taxonomy class is provided with a unique pictogram (black
403 and red shapes on yellow background) intended to simplify expert manual annotation of
404  the corpora. In total, we annotated 35,865 sentences. These sentences encapsulated
405 190,679 named entities and 43,438 events connecting two or more entities. In addition
406 to the almost two dozen, more sparsely-used branches (such as ExperimentalFactor
407 and GeographicalLocation) under the NamedEntity cluster, there are three heavily-
408 represented branches in our corpus: AnatomicalPart, Chemical, and Process. Slightly
409 more than half (51.6 percent) of all entities are from these three classes, with 26.6

410 percent of all entities originating from Process alone. We designed our ontology and its
411 annotations to capture the named entities associated with research activities and

412  facilities; these types of entities can be important for encoding methods used in


https://chem.nlm.nih.gov/chemidplus/jsp/chemidheavy/help.jsp
https://doi.org/10.1101/2020.11.05.368969
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.05.368969; this version posted November 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

413  scientific experiments or patient treatment. The semantic classes ResearchActivity and
414  MedicalProcedures turn out to be the ninth and the tenth most frequent, respectively.
415  Other top concepts related to research include Measurement, IntellectualProducts,

416  PublishedSourceOfInformation, Facility, and MentalProcess.

417

418  Figure 2. The relative abundance of annotated named entity classes in our

419 corpus. As is typically the case with human languages, semantic classes are

420 represented unevenly in free texts, following a heavy-tail (Zipf’'s) distribution. (A) In

421  biomedical corpora, unsurprisingly, named entities associated with genes and proteins
422  are the most prevalent (15 percent), followed by processes (9 percent), medical findings
423 (8.8 percent), and chemicals (6.7 percent). At the low-frequency end of the named entity
424  spectrum, we find journal names, units, citations, and languages. (B) Events connecting
425  two or more entities are also approximately Zipf-law distributed. Event frequencies are
426  closely tracking corresponding named entity classes. For example, the most frequent
427  event, bind, is associated with the most frequently named entity, GeneOrProtein. We
428 tried fitting the rank-ordered frequency distribution of annotated named entities with a
429  Discrete Generalized Beta Distribution (DGBD). The result showed a significant

430 deviation from Zipf's law ?®: The observed distribution’s tail was not heavy enough to
431  match Zipf's distribution, most likely due to the relatively small number of classes in our
432  ontology. % In other words, we expect that frequencies of semantic classes in a very
433 large corpus, annotated with classes from a hypothetical perfect named entity ontology,
434  would follow a Zipfian (discrete Pareto) distribution of named entity classes. Our action
435 annotations have moved beyond interactions between proteins and genes (e.g., bind,
436  inhibit, phosphorylate, encode), into interactions involving genetic variants and

437  environmental factors (e.g., associated with, occur in presence of, trigger, lack).

438  Ambiguity levels varied broadly across the named entities captured in our corpus. For
439  example, in the class AnatomicalPart, almost all (99.3 percent) are annotated at the
440 most specific levels, with the majority of entities belonging to BodyPart,

441  CellularComponent, and Cell. In contrast, the general (most vague) concept, Chemical,
442  turns out to be the most annotated within its cluster, although more specific subclasses,
443  such as Protein, NucleicAcid, and Drug are also well represented in the corpus. In the
444  Process concept cluster, about a third of all concept instances are annotated at a more
445  general Process level, and the rest of them are specific concepts, such as

446  MedicalProcedure, MolecularProcess, ResearchActivity, and BiologicalProcess. In

447  addition to these major clusters of concepts, several individual concepts are well

448 represented in the corpus. For example, MedicalFinding represents 7.3 percent of all
449  entities. Other well-represented concepts include Duration, IntellectualProduct,

450 Measurement, Organism, PersonGroup, PublishedSource Ofinformation, and Quantity.
451 Intotal, about 70.4 percent of all entities are annotated at the most specific ontology
452  level. There are five concepts in the NERO ontology that allow the semantic flexibility
453  needed to avoid arbitrary concept assignment. Entities annotated as

454  AminaoAcidOrPeptide, QuantityOrMeasurement, PublicationOrCitation

455  MedicalProcedureOrDevice, and GeneOrProtein account for 17.8 percent of all entities,
456  while less than a quarter (23 percent) of entities representing either genes or proteins
457  are cleanly annotated with class Gene or class Protein. The remainder are annotated
458  with class GeneOrProtein. In addition to the action bind, actions indicating entities’
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459  attributes are the next most frequent. Other biological relationships are also well-

460 represented in this annotation, such as inhibit, activate, mediate, interact, contain, and
461 regulate. The top 30 action categories account for 64.4 percent of all actions annotated
462  with the top ten action categories accounting for 52.2 percent. Interestingly, negations of
463  actions were also quite abundant in our annotated corpus. For example, do not bind
464  was the sixth most frequent normalized action. Other well-represented negations of
465 actions include do not affect and do not inhibit (see Supplementary Figure 1).

466

467  Figure 3. Properties of diseases and drugs visible in the first three principal

468 components of our multi-dimensional text embedding. The figure shows a projection of
469 text embedding into three-dimensional space, with named entities corresponding to
470 diseases and drugs shown with prisms and spheres, respectively. The figure represents
471  several projections of the same embedding, preserving spatial layout and projection,
472  with distinct elements of the embedding indicated by shape color. The central image
473  shows all disease systems and their corresponding medications together. More

474  specifically, the additional projections show: (A) Zollinger-Ellison syndrome and

475  associated medications; (B) cancers and associated therapies; (C) central nervous
476  system diseases and corresponding medications, and; (D) and (E) Viral and bacterial
477  infectious diseases, respectively, together with corresponding antiviral and antibiotic
478 agents. Another view of the same dataset is presented in Figure 4.

479

480 Figure 4. Two-dimensional projections of diseases and medications. (A) We

481 projected diseases into two dimensions: female-male (X-axis) and severe-mild (Y-
482  axis). We defined the “male-female” axis using the following pairs of terms: (‘male,’
483  ‘female’), (‘prostate,” ‘ovary’), (‘penile,” ‘uterine’), (‘penis,’ 'uterus’), (‘man,” ‘woman’),
484  (‘men,” ‘women’), (‘masculine,’ ‘feminine’), (‘he,” ‘she’), (‘him,” ‘her’), (‘his,” ‘hers’), (‘boy,’
485  ‘girl’), and (‘boys,’ ‘girls’). We defined the severe-mild axis with the following term pairs:
486  (‘harmful,’ ‘beneficial’), (‘serious,” ‘benign’), (‘life-altering,” ‘common’), (‘disruptive,’

487  ‘undisruptive’), (‘dying,’” ‘recovering’), (‘dangerous,’ ‘safe’), (‘threatening,’ ‘low-priority’),
488  (‘high mortality,” ‘harmless’), (‘costly,” ‘cheap’), (‘hospitalized,’” ‘self-administered’),

489  (‘hospital,” ‘work’), (‘debt,” ‘savings’), (‘low quality of life,” ‘undisruptive’), and (‘hazard,’
490 ‘routine’). (B) We projected medications into “benign-toxic” (X-axis) and “cheap-costly”
491  (Y-axis). For the “benign-toxic” axis, we used the following pairs of antonym words:
492  (‘harmful,’ ‘beneficial’), (‘toxic,” ‘nontoxic’), and (‘noxious,’ ‘benign’). We defined the

493  “expensive—inexpensive” dimension using the following pairs of terms: (‘expensive,’
494  ‘inexpensive’), (‘costly,” ‘cheap’), (‘brand,” ‘generic’), and (‘patented,’ ‘off-patent’).

495

496 Table 1. Inter-annotator Agreement Statistics.

497
Agreement Type 1AA (%)
Exact Match 86.49
Relaxed Match 93.66
Exact Match 86.56
Parent Match 87.66

Superclass Match 86.72
Ambiguity Match  97.58
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