

De novo* cobalamin biosynthesis, transport and assimilation and cobalamin-mediated regulation of methionine biosynthesis in *Mycobacterium smegmatis

Running Title: Regulation of methionine biosynthesis in *M. smegmatis*

Terry Kipkorir¹, Gabriel T. Mashabela^{1#}, Timothy J. De Wet^{1,2}, Anastasia Koch¹, Lubbe Wiesner³, Valerie Mizrahi^{1,4}, Digby F. Warner^{1,4*}

¹SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.

²Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.

³Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.

⁴Wellcome Centre for Infectious Diseases Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.

[#]Current address: DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, SOUTH AFRICA

*Corresponding author. Email: digby.warner@uct.ac.za; Tel. +27 21 406 6556

1 ABSTRACT

2 Cobalamin is an essential co-factor in all domains of life, yet its biosynthesis is
3 restricted to some bacteria and archaea. *Mycobacterium smegmatis*, an
4 environmental saprophyte frequently used as surrogate for the obligate human
5 pathogen, *M. tuberculosis*, carries approximately 30 genes predicted to be involved
6 in *de novo* cobalamin biosynthesis. *M. smegmatis* also encodes multiple cobalamin-
7 dependent enzymes, including MetH, a methionine synthase which catalyses the
8 final reaction in methionine biosynthesis. In addition to *metH*, *M. smegmatis*
9 possesses a cobalamin-independent methionine synthase, *metE*, suggesting that
10 enzyme selection – MetH or MetE – is regulated by cobalamin availability.
11 Consistent with this notion, we previously described a cobalamin-sensing riboswitch
12 controlling *metE* expression in *M. tuberculosis*. Here, we apply a targeted mass
13 spectrometry-based approach to confirm *de novo* cobalamin biosynthesis in *M.*
14 *smegmatis* during aerobic growth *in vitro*. We also demonstrate that *M. smegmatis*
15 transports and assimilates exogenous cyanocobalamin (CNCbl; a.k.a. vitamin B₁₂)
16 and its precursor, dicyanocobinamide ((CN)₂Cbi). Interestingly, the uptake of CNCbl
17 and (CN)₂Cbi appears restricted in *M. smegmatis* and dependent on the conditional
18 essentiality of the cobalamin-dependent methionine synthase. Using gene and
19 protein expression analyses combined with single-cell growth kinetics and live-cell
20 time-lapse microscopy, we show that transcription and translation of *metE* are
21 strongly attenuated by endogenous cobalamin. These results support the inference
22 that *metH* essentiality in *M. smegmatis* results from riboswitch-mediated repression
23 of MetE expression. Moreover, differences observed in cobalamin-dependent
24 metabolism between *M. smegmatis* and *M. tuberculosis* provide some insight into

25 the selective pressures which might have shaped mycobacterial metabolism for
26 pathogenicity.

27 **Keywords:** vitamin B₁₂, riboswitch, *cobK*, tuberculosis

28 **IMPORTANCE**

29 Accumulating evidence suggests that alterations in cobalamin-dependent
30 metabolism marked the evolution of *Mycobacterium tuberculosis* from an
31 environmental ancestor to an obligate human pathogen. However, the roles of
32 cobalamin in mycobacterial physiology and pathogenicity remain poorly understood.
33 We used the non-pathogenic saprophyte, *M. smegmatis*, to investigate the
34 production of cobalamin, transport and assimilation of cobalamin precursors, and the
35 potential role of cobalamin in regulating methionine biosynthesis. We provide
36 biochemical and genetic evidence confirming constitutive *de novo* cobalamin
37 biosynthesis in *M. smegmatis* under standard laboratory conditions, in contrast with
38 *M. tuberculosis*, which appears to lack *de novo* cobalamin biosynthetic capacity. We
39 also demonstrate that the uptake of cyanocobalamin (vitamin B₁₂) and its precursors
40 is restricted in *M. smegmatis*, apparently depending on the need to service the co-
41 factor requirements of the cobalamin-dependent methionine synthase. These
42 observations support the utility of *M. smegmatis* as a model to elucidate key
43 metabolic adaptations enabling mycobacterial pathogenicity.

44

45 **INTRODUCTION**

46 Several mycobacterial species have been identified among the subset of prokaryotes
47 which possess the genetic capacity for *de novo* cobalamin biosynthesis (1–5).

48 Included in this list of potential cobalamin producers is *Mycobacterium smegmatis*,
49 the saprophytic mycobacterium commonly used as a surrogate for *Mycobacterium*
50 *tuberculosis*, which causes tuberculosis (TB), a deadly respiratory disease claiming
51 over 1 million lives globally every year (6–8). Cobalamin has one of the most
52 complex structures of any of the biological cofactors, comprising a tetrapyrrole
53 framework with a centrally chelated cobalt ion, a lower axial base (α ligand) which is
54 typically dimethylbenzimidazole (DMB), and an upper axial ligand (R-group; β ligand)
55 (Figure 1A). The nomenclature and catalytic activity of cobalamin depends on the β
56 ligand. For example, in adenosylcobalamin (AdoCbl; a.k.a. coenzyme B₁₂), the β
57 ligand is a deoxyadenosyl group utilised by isomerases such as the methylmalonyl-
58 CoA mutase and class II ribonucleotide reductases. In methylcobalamin (MeCbl),
59 which is used by methyltransferases such as methionine synthase, the β ligand is a
60 methyl group (Figure 1A) (9, 10).

61 Cobalamin biosynthesis is a complex multi-step process requiring nearly thirty
62 enzyme-catalysed biotransformations including eight SAM-dependent methylations,
63 ring contraction, six amidations, decarboxylation, cobalt insertion, aminopropanol
64 attachment and the assembly and attachment of the α ligand (11). Owing to the
65 heavy energetic investment necessary to support the *de novo* pathway, this process
66 is typically augmented in many organisms by the capacity for uptake and salvage
67 (1). Interestingly, cobalamin-producing bacteria encode a much larger complement
68 of genes involved in biosynthesis and salvage than the number of cobalamin-
69 dependent metabolic pathways in those organisms. The preservation of *de novo*
70 biosynthetic capacity therefore suggests the contribution of cobalamin to adaptation

71 to specific lifestyles – an interpretation which is especially intriguing in the context of
72 pathogenic, parasitic and symbiotic bacteria (4).

73 Like most mycobacteria, *M. smegmatis* encodes several cobalamin-
74 dependent enzymes (Table 1) (12), some of which appear redundant given the
75 existence of isoenzymes or alternative mechanisms for the same metabolic pathway
76 (13). Among these are the methionine synthases, MetH (5-methyltetrahydrofolate-
77 homocysteine methyltransferase, EC: 2.1.1.14) and MetE (5-
78 methyltetrahydropteroylglutamate-homocysteine methyltransferase, EC: 2.1.1.13),
79 which catalyse the non-reversible transfer of a methyl group from 5-
80 methyltetrahydrofolate to homocysteine in the final step in the biosynthesis of
81 methionine, an essential amino acid required for translation initiation, DNA
82 methylation and cysteine biosynthesis (14, 15). MetH requires cobalamin for activity
83 while MetE is a cobalamin-independent methionine synthase (Figure 1B) (9, 16, 17).
84 We previously demonstrated that a cobalamin-sensing riboswitch located in the 5'
85 untranslated region (5' UTR) of the *metE* gene in *M. tuberculosis* attenuated *metE*
86 transcript levels in the presence of exogenous cyanocobalamin (CNCbl; a.k.a.
87 vitamin B₁₂) (18). We also showed that *M. tuberculosis* CDC1551, a well-
88 characterised strain isolated during a TB outbreak in the US (19), contains a natural
89 truncation of the *metH* gene which renders the strain sensitive to exogenous CNCbl.
90 This phenotype, which was recapitulated in an engineered *M. tuberculosis* H37Rv
91 mutant containing an analogous *metH* truncation, suggested that the observed
92 growth inhibition was due to methionine depletion resulting from the effective
93 elimination of all methionine synthase activity in the CNCbl-replete environments
94 (18).

95 We postulated that *metE* would similarly be subject to riboswitch-mediated
96 repression in *M. smegmatis*, given the inferred genetic capacity for *de novo*
97 cobalamin biosynthesis in this organism (5). Moreover, the cobalamin-mediated
98 repression of *metE* would render *metH* essential for growth of *M. smegmatis* *in vitro*.
99 In this study, we provide direct biochemical confirmation that *M. smegmatis*
100 constitutively produces cobalamin *in vitro*. We further show that *M. smegmatis*
101 utilises exogenous CNCbl and dicyanocobinamide ((CN)₂Cbi) as precursors for the
102 biosynthesis of the physiologically relevant cobalamin co-factor. However, our results
103 indicate that the uptake of these corrinoid precursors by *M. smegmatis* is restricted.
104 Finally, we demonstrate that the expression of *metE* in *M. smegmatis* is under
105 constitutive repression by a cobalamin riboswitch, a finding which explains the
106 essentiality of *metH* in this non-pathogenic mycobacterium under standard culture
107 conditions.

108 RESULTS

109 ***The de novo* cobalamin biosynthesis pathway is functional in *M. smegmatis***
110 Genomic analyses indicate that *M. smegmatis* encodes the complete pathway for *de*
111 *novo* cobalamin biosynthesis (5). To investigate the ability of *M. smegmatis* to
112 synthesise cobalamin using the *de novo* pathway, we developed a liquid
113 chromatography tandem mass spectrometry (LC-MS/MS) method based on the
114 derivatisation of cobalamin to CNCbl by potassium cyanide (KCN). Then, utilizing
115 multiple reaction monitoring (MRM) of two co-eluting transitions corresponding to α -
116 ribazole 5'-phosphate and DMB (Figure 1A), we identified cobalamin in the cell
117 extracts as derivatised CNCbl, validated by two transitions co-eluting at 2.79 min
118 (Figure 1C). Using this method, high intensity CNCbl peaks were identified in cell

119 extracts of wild type *M. smegmatis* mc²155 grown aerobically to stationary phase in
120 standard Middlebrook 7H9-OADC medium (Figure 1D). To confirm *de novo*
121 cobalamin production in *M. smegmatis*, we generated an unmarked, in-frame
122 deletion of *cobK* (Figure S1A, C-E), which encodes a putative precorrin-6x reductase
123 required for corrin ring synthesis. To ensure that all phenotypes reflected the
124 consequences of the specific gene deletions and/or disruptions, and were not
125 confounded by off-site mutations, the parental strain and derivative mutants were
126 subjected to whole-genome sequencing. Single nucleotide mutations (SNMs) in six
127 genes were uniquely identified in the Δ *cobK* strain but not in the parental wild type
128 strain but none of the SNMs could be linked to cobalamin or methionine metabolic
129 pathways (Table 2).

130 In contrast to wild type cell extracts, the Δ *cobK* extracts lacked the dual co-
131 eluting peaks characteristic of CNCbl (Figure 1E). This observation indicated the
132 indispensability of CobK for cobalamin biosynthesis and provided further evidence
133 that the cobalamin signal detected in the wild type strain (Figure 1D) resulted from
134 *de novo* biosynthesis. We also confirmed the absence of cobalamin production in a
135 double Δ *metE* *cobK::hyg* knock-out (KO) strain during growth in L-methionine-
136 supplemented medium (Figure 1F). This strain, in which the entire *metE* open
137 reading frame (ORF) is deleted and *cobK* is disrupted by the insertion of a
138 hygromycin (*hyg*) resistance marker (Figure S1B, S1F), is a methionine auxotroph
139 that can only be propagated in media supplemented with methionine or CNCbl
140 (Figure 1G).

141 ***M. smegmatis* assimilates exogenous CNCbl and (CN)₂Cbi *in vitro***

142 The ability to propagate the $\Delta metE$ $cobK::hyg$ mutant in media containing methionine
143 or CNCbl indicated that *M. smegmatis* can utilise exogenous methionine and CNCbl
144 in the absence of an intact *de novo* cobalamin biosynthesis pathway, pointing to
145 functional transport and assimilation pathways. We previously showed that *M.*
146 *tuberculosis* could utilise dicyanocobinamide ((CN)₂Cbi) during growth *in vitro* (12).
147 To determine whether *M. smegmatis* could also assimilate this cobalamin precursor,
148 we tested the ability of the $\Delta metE$ $cobK::hyg$ double mutant to grow in media
149 supplemented with (CN)₂Cbi. First, the strain was grown to exponential phase with
150 excess methionine (1mM), after which 10-fold serial dilutions were spotted onto
151 Middlebrook 7H10-OADC agar containing 10 μ M (CN)₂Cbi. After 3 days' incubation at
152 37°C, (CN)₂Cbi uptake was qualitatively assessed by examining colony sizes (Figure
153 2A). For comparison, serial dilutions were also spotted on agar supplemented with
154 10 μ M CNCbl. Interestingly, the growth of $\Delta metE$ $cobK::hyg$ strain was very limited on
155 agar supplemented with (CN)₂Cbi (Figure 2A). In fact, growth was observed only in
156 the most concentrated (undiluted) bacterial spots (Figure 2A). While this might have
157 been as a consequence of methionine carryover, the fact that similar growth was not
158 observed in the unsupplemented 7H10 plate (Figure 2A) suggested that was not the
159 case. Instead, these observations implied the ability of *M. smegmatis* to utilise
160 (CN)₂Cbi, albeit to a much lesser extent than CNCbl (Figure 2A). To test the
161 potential for (CN)₂Cbi to support growth in liquid culture, an “MIC-type” Alamar Blue
162 assay (20) was performed in which growth from an inoculum of $\sim 5 \times 10^3$
163 $\Delta metE$ $cobK::hyg$ cells was determined in media containing 2-fold serial dilutions of
164 (CN)₂Cbi (Figure 2B). The $\Delta metE$ $cobK::hyg$ strain was viable at (CN)₂Cbi

165 concentrations higher than 7.5 μ M (Figure 2B), consistent with the ability to convert
166 the corrinoid precursor to cobalamin.

167 To confirm the assimilation of (CN)₂Cbi in *M. smegmatis*, we used LC-MS/MS
168 to analyse cell extracts of wild type, Δ *cobK* and Δ *metE cobK::hyg* strains grown to
169 stationary-phase in 7H9-OADC medium with or without excess (30 μ M) (CN)₂Cbi
170 (Figure 3A-F). As a positive control for *de novo* cobalamin biosynthesis, we analysed
171 the wild type strain grown in parallel without supplementation (Figure 3B). For the
172 Δ *metE cobK::hyg* mutant, methionine supplementation was used to enable
173 propagation in the absence of (CN)₂Cbi (Figure 3C). We observed that all the
174 (CN)₂Cbi-supplemented strains reached stationary phase simultaneously. However,
175 the dual co-eluting peaks characteristic of CNCbl were detected only in the
176 (CN)₂Cbi-supplemented Δ *metE cobK::hyg* strain (Figure 3C, D), strongly suggesting
177 uptake and conversion of (CN)₂Cbi to cobalamin. Interestingly, cobalamin was not
178 detectable in the (CN)₂Cbi-supplemented Δ *cobK* strain (Figure 3E, F), which did not
179 require supplementation for growth. The assimilation of (CN)₂Cbi in the
180 Δ *metE cobK::hyg* strain was also accompanied by a distinct change in the colour of
181 the spent media from purple to pale yellow (Figure 3C, inset). By comparison, the
182 colour of the spent media in the (CN)₂Cbi-supplemented wild type and Δ *cobK*
183 cultures changed only slightly to a rusty hue (Figure 3B (inset) & Figure 3F (inset)),
184 consistent with limited uptake in these strains.

185 **MetE expression in *M. smegmatis* is regulated by a cobalamin-sensing
186 riboswitch**

187 We previously reported that the cobalamin-sensing riboswitch located in the 5' UTR
188 of *metE* strongly attenuated the transcription of this gene in *M. tuberculosis* in the

189 presence of exogenous CNCbl (18). To investigate whether the corresponding
190 riboswitch in *M. smegmatis* operated similarly, we analysed relative *metE* transcript
191 levels in wild type and Δ cobK strains grown in the presence or absence of CNCbl
192 using droplet digital (dd)PCR. We found low but detectable levels of *metE* transcripts
193 in the wild type strain (Figure 4A). By comparison, *metE* transcripts were 19 \times more
194 abundant in the Δ cobK strain (Figure 4A), supporting the notion that the abrogation
195 of *de novo* cobalamin biosynthesis in the mutant released *metE* transcription from
196 riboswitch-mediated repression. There was no significant difference in *metE*
197 transcript levels between the CNCbl-supplemented and unsupplemented wild type
198 strain (Figure 4A). In contrast, a small but statistically significant reduction (0.86 \times) in
199 *metE* transcript levels was observed in the Δ cobK strain in the presence of
200 exogenous CNCbl (Figure 4A). The absent to modest change in *metE* levels in these
201 strains following CNCbl supplementation suggested that the uptake/assimilation of
202 exogenous CNCbl might be restricted in *M. smegmatis*, consistent with the LC-
203 MS/MS results. Alternatively, these results could indicate selective repression of
204 cobalamin uptake/assimilation systems in strains which do not require the co-factor
205 for viability or growth.

206 To examine how cobalamin availability in *M. smegmatis* affected MetE protein
207 content, we adapted a targeted MS method (21) to measure MetE peptide levels in
208 wild type and Δ cobK strains grown in the presence or absence of exogenous CNCbl.
209 This analysis indicated that MetE protein levels were 3 \times more abundant in the Δ cobK
210 mutant than in the parental wild type strain (Figure 4B). In the presence of
211 exogenous CNCbl, the Δ cobK mutant exhibited a 2 \times decrease in MetE protein levels
212 (Figure 4B). Unexpectedly, exposure of the wild type strain to exogenous CNCbl

213 caused a 48x reduction in MetE protein levels (Figure 4B). This result contrasted
214 with the modest impact of CNCbl on *metE* transcript levels (Figure 4A) and
215 suggested that MetE expression was likely primarily controlled at the translational
216 level by this riboswitch.

217 ***metH* is essential in *M. smegmatis***

218 The inferred cobalamin-mediated repression of *metE* in turn implied that MetH
219 function would be indispensable for the growth of wild type *M. smegmatis*. To test
220 this prediction, we attempted to generate an in-frame *metH* deletion mutant (Figure
221 S1A) by two-step allelic exchange mutagenesis (22). The Δ *metH* construct was
222 designed to mimic a naturally-occurring *metH* truncation which partially disrupts the
223 cobalamin-binding domain and eliminates the S-adenosyl-L-methionine (SAM)-
224 binding domain of MetH in *M. tuberculosis* CDC1551 (18). Another *metH* KO
225 construct containing a *hyg* marker (Figure S1A) was also designed to enable the
226 recovery of *metH* double crossover (DCO) mutants by “forced” selection on Hyg.
227 Anticipating the loss of viability owing to *metH* essentiality, all media were
228 supplemented with 1mM L-methionine. Of 154 putative *metH* DCO recombinants
229 screened by PCR, none (0/154) carried the Δ *metH* allele; instead, all 154 colonies
230 were wild type revertants. Similarly, 60 putative *hyg*-marked DCOs were screened by
231 PCR, none of which bore the Δ *metH* allele. These results strongly suggested that
232 *metH* was essential in *M. smegmatis*, consistent with recent genetic screens which
233 identified *metH* among the subset of essential genes in *M. smegmatis* (23, 24).

234 **Conditional depletion by CRISPRi confirms *metH* essentiality**

235 Since our attempts to delete *metH* in *M. smegmatis* were unsuccessful, we instead
236 opted to generate a *metH* conditional knock-down (cKD). For this purpose, we

237 employed the anhydrotetracycline (ATc)-inducible mycobacterial CRISPRi system
238 (25), utilizing a panel of 13 short guide (sg)RNAs targeting different regions of the
239 *metH* ORF and with different target complementarity scores (Table S3). An sgRNA
240 targeting *mmpL3*, an essential gene involved in mycolic acid biosynthesis (26), was
241 used as a positive control. Gene silencing in transformed cells was assessed by
242 growth inhibition on ATc-containing selection media. The induction of *metH* silencing
243 by ATc inhibited colony formation in wild type *M. smegmatis*, confirming the
244 essentiality of *metH* under the conditions tested (Figure 5A). Consistent with
245 previous work (24, 25), sgRNAs with higher complementarity scores displayed
246 stronger gene silencing, leading to more robust growth inhibition than sgRNAs with
247 lower scores (Figure S2). ATc-dependent growth inhibition was rescued by
248 supplementation with exogenous methionine (Figure 5A), indicating that the lack of
249 growth in the *metH* cKD strains resulted from methionine starvation.

250 To investigate this phenotype further, we traced the growth of the *metH* cKD
251 strain at the single-cell level using microfluidics and time-lapse microscopy. A log-
252 phase culture of cells carrying the *metH* cKD construct was pre-incubated with ATc
253 for 6 h at 37°C and then loaded into the CellASIC® ONIX2 microfluidic device and
254 imaged in real time over the course of 43 h with constant perfusion with 7H9-OADC
255 media containing ATc. In parallel, an uninduced (No ATc) control was perfused with
256 7H9-OADC media only. Analysis of the time-lapse images showed that the induced
257 *metH* cKD strain shared similar morphological features of shape and size with the No
258 ATc control (Figure 5B). Moreover, in both the *metH* cKD strain and the No ATc
259 control, cells divided by v-snapping (Supplementary Movies 1-5), which is typical of
260 mycobacterial cell division (27, 28). However, the growth rates of the *metH* cKD
261 strain and the No ATc control were markedly different (Figure 5C). In the No ATc

262 control, microcolonies displayed an exponential-phase doubling time of 2.94 ± 0.3 h
263 (Figure 5C). In this control, tracing of distinct cells was feasible only for the first 18 h
264 of the experiment; by 24 h, microcolonies had attained confluence, occupying the
265 entire field of view (Figure 5B; Supplementary Movies 1-5). Consistent with
266 methionine depletion in the *metH* cKD strain, this mutant exhibited a much slower
267 replication rate, doubling every 5.23 ± 0.4 h until the 18-h time-point when the growth
268 rate flat-lined (Figure 5C) and the expansion of microcolonies slowed and appeared
269 to halt by 24 h (Figure 5B; Supplementary Movies 1-5).

270 **Abrogation of cobalamin biosynthetic capacity alleviates *metH* essentiality in**
271 ***M. smegmatis***

272 The time-lapse microscopy data suggested that the essentiality of the *metH* gene
273 might depend on both the presence of endogenous cobalamin and a functional *metE*
274 riboswitch in *M. smegmatis*. Therefore, we reasoned that it would be possible to
275 create a *metH* deletion in the cobalamin-deficient Δ cobK strain. To test this
276 hypothesis, we generated an unmarked in-frame *metH* deletion in the Δ cobK
277 background and screened the resultant DCOs by PCR. As expected, PCR screening
278 identified 9 out of 34 putative DCOs as Δ cobK Δ metH double KO mutants (Figure
279 S1C-E), linking the essentiality of *metH* to endogenous cobalamin availability. We
280 found that silencing of *metH* had no effect on the viability of the cobalamin-deficient
281 Δ cobK mutant (Figure 6A), confirming that endogenous cobalamin was required to
282 block methionine biosynthesis via riboswitch-mediated repression of *metE*.
283 Moreover, consistent with the limited impact of exogenous CNCbl on MetE protein
284 levels (Figure 4B), CNCbl supplementation had a negligible effect during the growth
285 of the Δ cobK strain on solid media following ATc-induced *metH* silencing (Figure 6A).

286 Next, we investigated the impact of exogenous CNCbl during growth of the
287 $\Delta cobK \Delta metH$ strain on solid *versus* in liquid media. To this end, a late log-phase
288 (OD₆₀₀ ~ 1) culture was 10-fold serially diluted and spotted on 7H10-OADC agar
289 supplemented with or without 10 μ M CNCbl (Figure 6B). There was no impairment of
290 growth of the CNCbl-supplemented $\Delta cobK \Delta metH$ mutant on solid media (Figure
291 6B). To determine if this phenotype were also true in liquid media, we seeded an
292 inoculum of 2.5×10^3 $\Delta cobK \Delta metH$ cells and analysed cell proliferation after an
293 overnight incubation at 37°C with or without 10 μ M CNCbl using the Alamar blue
294 assay (20) (Figure 6C). Interestingly, CNCbl supplementation led to approximately
295 80% inhibition of the growth of the $\Delta cobK \Delta metH$ strain (Figure 6C). This result
296 confirmed the ability of *M. smegmatis* to assimilate exogenous CNCbl, although the
297 uptake of the corrinoid was seemingly better in liquid than on solid media.

298 **DISCUSSION**

299 The production of cobalamin by *M. smegmatis* was previously inferred indirectly from
300 microbiological assays (29–31). Using targeted LC-MS/MS approach, we provide
301 direct proof of constitutive *de novo* cobalamin biosynthesis in *M. smegmatis* under
302 aerobic conditions. The LC-MS/MS method optimised in this work utilised MRM of
303 two mass spectra corresponding to DMB, the lower base in physiologically relevant
304 cobalamin. Hence, we infer that *M. smegmatis* is able to synthesise and use DMB.
305 Unconventional cobamides known as “pseudo-coenzyme B₁₂” comprising an α -axial
306 ligand other than DMB, but with the adenine group retained, have been found in
307 other bacteria (32). *M. smegmatis* encodes a CobT protein, which is closely
308 homologous to those of *S. meliloti* and *S. enterica*, both of which incorporate a range
309 of α -ligands in their cobamide structures (33). While there has been no evidence that

310 mycobacteria produce pseudo-coenzyme B₁₂, it is possible that our DMB-dependent
311 detection method did not capture the full range of cobamides present in *M.*
312 *smegmatis*. Nonetheless, these results indicated substantial cobalamin production in
313 *M. smegmatis*, consistent with an early study which detected low-level cobalamin
314 production in *M. smegmatis* using the *L. leichmannii* tube assay (29). The disruption
315 of *cobK*, encoding a predicted precorrin-6x reductase, abrogated cobalamin
316 production, confirming that a single genetic lesion can cripple the entire pathway. It is
317 noteworthy, therefore, that the loss of *cobF*, encoding a putative precorrin-6a
318 synthase occurring immediately upstream of CobK in the pathway, has been
319 identified as one of the defining molecular events in the evolution of pathogenic
320 mycobacteria (34–36).

321 Both CNCbl and (CN)₂Cbi supported the growth of the Δ *metE* *cobK::hyg* strain
322 by enabling MetH-dependent production of methionine. These results demonstrate
323 that *M. smegmatis* is capable of corrinoid transport and assimilation. Since CNCbl
324 and (CN)₂Cbi must undergo decyanation and adenosylation to produce cobalamin,
325 *M. smegmatis* also encodes as yet uncharacterised enzymes for these reactions.
326 Interestingly, our data showed a seemingly enhanced capacity for (CN)₂Cbi
327 assimilation in the Δ *metE* *cobK::hyg* strain compared to wild type and Δ *cobK* strains.
328 Since both these strains are able to grow without cobalamin owing to the presence of
329 MetE as alternative methionine synthase, the reduced (CN)₂Cbi uptake might
330 suggest the potential for selective assimilation/transport as a function of methionine
331 biosynthetic capacity. The peak intensity of the recovered cobalamin in the (CN)₂Cbi-
332 supplemented Δ *metE* *cobK::hyg* strain was significantly lower than that of *de novo*-
333 synthesised cobalamin in the wild type (Figure 3B, D), possibly indicating that much
334 lower amounts of co-factor are necessary to support growth.

335 In *M. tuberculosis*, the nonspecific ABC-type transporter, BacA (Rv1819c) has
336 been identified as the sole cobalamin and corrinoid transporter (12). Until recently,
337 the mechanistic details of cobalamin transport by Rv1819c had remained elusive.
338 However, the resolution of the crystal structure of Rv1819c (37) has provided key
339 insights into its function in the uptake of hydrophilic molecules, suggesting that this
340 protein passes a cargo slowly along its cavity via facilitated diffusion. Facilitated
341 diffusion is a very low-efficiency process and, if the *M. smegmatis* homologue
342 functions similarly in corrinoid uptake, it might explain the poor uptake of CNCbl and
343 (CN)₂Cbi. *M. smegmatis* also contains two predicted Rv1819c homologues, encoded
344 by paralogous genes located at different genomic loci (MSMEG_3655 & MSMEG
345 4380). In addition, *M. smegmatis* encodes an operon containing putative
346 homologues of BtuF (MSMEG_4560), BtuC (MSMEG_4559) and BtuD
347 (MSMEG_4558), all components of the classic TonB-ExBD-BtuFCD cobalamin
348 transport system in Gram-negative bacteria (38). Whether these genes encode
349 functional transporters is still unknown and further research is needed to determine
350 which proteins are involved in ferrying corrinoids and their precursors across the
351 notoriously complex mycobacterial cell wall (39).

352 We previously reported that a cobalamin-sensing riboswitch controlled *metE*
353 transcription in *M. tuberculosis* (18). In that work, the level of *metE* transcript was
354 decreased in the presence of exogenous CNCbl, leading to the conclusion that this
355 riboswitch functioned as a transcriptional “off” switch. In the current study, we found
356 that the levels of *metE* transcript were much lower in the cobalamin-replete wild type
357 *M. smegmatis* strain compared to the Δ cobK mutant. Since riboswitches sense
358 ligand levels to attenuate expression (40), the low-level *metE* transcripts found in the
359 wild type strain likely reflects a physiological equilibrium between ligand-bound and

360 unbound riboswitch states which allow for limited gene expression. Therefore,
361 although the uptake of exogenous CNCbl is restricted in both wild type and $\Delta cobK$
362 strains, the low level of uptake was still enough to shift the endogenous ligand-
363 riboswitch equilibrium more significantly in wild type than in mutant cells which
364 exhibited elevated MetE protein content (Figure 4A, B). Unlike in *M. tuberculosis*,
365 exogenous CNCbl was unable to exert significant changes to *metE* transcript levels
366 in *M. smegmatis*, presumably owing to the limited uptake. While these results imply
367 transcriptional regulation, we also observed an unexpected and dramatic reduction in
368 MetE protein levels in the wild type in the presence of exogenous CNCbl. These
369 results suggested that this riboswitch might utilise a coupled translational-
370 transcriptional regulation mechanism by which the inhibition of translation initiation
371 precedes transcription termination and mRNA instability (41–43). Future work will
372 elucidate the precise mechanism of cobalamin-sensing riboswitches in
373 mycobacteria.

374 Our *in vitro* results support the conclusion that constitutive endogenous
375 production of cobalamin compels *M. smegmatis* to rely on MetH for the biosynthesis
376 of methionine. We found that the disruption of MetH activity was growth-retarding in
377 the presence of cobalamin, ostensibly owing to methionine depletion. In contrast, in
378 the absence of cobalamin, bacilli were relieved of riboswitch-mediated repression of
379 MetE, allowing the alternative methionine synthase to substitute for the inactivated
380 MetH. We predict that *metH* will be essential in all mycobacteria capable of *de novo*
381 cobalamin biosynthesis, representing an important deviation from cobalamin-
382 deficient pathogenic mycobacteria like *M. tuberculosis*. The corollary is that
383 mycobacterial species which are incapable of *de novo* cobalamin biosynthesis will
384 accommodate MetH inactivation. Indeed, *metH*-null *M. tuberculosis* mutants have

385 been generated (18) and several naturally-occurring, potentially inactivating
386 mutations in *metH* have been found in circulating *M. tuberculosis* clinical isolates
387 (13). Consistent with our findings, a recent Tn-screen identified *metH* among the
388 subset of genes essential for the growth of *M. smegmatis* *in vitro* (23). Another
389 recent study reported the inactivation of MetH in *M. smegmatis*, but in contrast to our
390 findings, the authors did not observe any growth inhibition in their *metH*-null mutants
391 in supplement-free media (31). The results presented here, together with our own
392 independent Tn-seq and CRISPRi-seq analyses of *M. smegmatis* gene essentiality
393 (24), demonstrate that *metH* cannot be disrupted in a cobalamin-replete strain
394 without sacrificing viability. This apparent conflict might be explained by the
395 possibility that the *metE* riboswitch in the parental strains used by Guzzo *et al.* to
396 generate their *metH*-null mutants harboured inactivating mutations, which can
397 accumulate spontaneously during the serial passage of mycobacterial cultures (44,
398 45). To eliminate the potential confounding effect of mutations in our study, the wild
399 type and its derivative mutant strains were subjected to whole-genome sequencing.

400 In summary, we have shown that *M. smegmatis*, a non-pathogenic
401 mycobacterium, is a constitutive producer of cobalamin *in vitro*. Surprisingly, the
402 transport of corrinoids in *M. smegmatis* appears restricted despite the presence in
403 the genome of multiple putative transporters. Notably, this study also revealed
404 differences in the regulation of methionine biosynthesis between *M. smegmatis* and
405 *M. tuberculosis*. These differences in cobalamin-dependent metabolism between an
406 environmental mycobacterium and an obligate pathogen might be informative in
407 understanding the selective pressures which have shaped *M. tuberculosis*
408 metabolism for pathogenicity and host tropism.

409 **MATERIALS AND METHODS**

410 **Bacterial strains and culture conditions.** The bacterial strains and plasmids used
411 in this study are described in Table S1. Unless specified, *M. smegmatis* cultures
412 were grown in either Middlebrook (Difco) 7H9 broth supplemented with 10% Oleic
413 Albumin Dextrose Catalase (OADC) (Becton Dickinson) and 0.05% Tween 80 or on
414 Middlebrook (Difco) 7H10 agar supplemented with 10% OADC. For mycobacterial
415 cultures, kanamycin (Km) and hygromycin (Hyg) were used at final concentrations of
416 25 μ g/mL and 50 μ g/mL, respectively. *E. coli* was cultured in LB or LA with 50 μ g/mL
417 Km or 200 μ g/mL Hyg, where appropriate. All cultures were incubated at 37°C. To
418 generate growth curves, 50 μ L *M. smegmatis* cells were seeded at a concentration of
419 1 \times 10⁶ cfu/mL in 96-well culture plates (Greiner Bio-One) and absorbance
420 measurements were recorded every 1.5 h, over a period of 30 h, in a FLUOstar
421 OPTIMA microplate reader (BMG Labtech).

422 **Cloning.** The oligonucleotides (oligos) used for cloning and PCR are listed in Table
423 S2. An in-frame, unmarked deletion in *M. smegmatis* *cobK* (MSMEG_3875) was
424 generated by joining a 912-bp PCR-generated fragment (FR1) containing 40bp of
425 the 5' end of *cobK* to a second 923-bp PCR-generated fragment (FR2) containing
426 107bp of the 3' end of *cobK* in a three-way ligation reaction with p2NIL backbone
427 (Addgene plasmid #20188; (46)), using *Asp718I*, *BglII*, and *HindIII* restriction. The
428 resultant vector (p3875K) contained a deleted 120-bp *cobK* allele. To generate an in-
429 frame, unmarked deletion in *M. smegmatis* *metH* (MSMEG_4185), an 1524-bp
430 amplicon (FR1) of the 5' coding sequence of *metH* and another 1480-bp amplicon
431 (FR2) containing 354bp of the 3' end of *metH* were joined in a three-way ligation
432 reaction with p2NIL using *Asp718I*, *HindIII* and *BglII* to produce the p4185K vector

433 carrying a truncated *metH* allele of 1848bp. Counter-selection fragments carrying the
434 *lacZ*, *hyg*, and *sacB* genes was excised from pGOAL19 (Addgene plasmid #20190;
435 (46)) and cloned at *PacI* sites of p3875K and p4185K to generate the suicide vectors
436 p3875K19 and p4185K19, respectively. To generate the *hyg*-marked *metH*
437 construct, a *hyg* cassette was excised from the pIJ963 vector (47) and cloned into
438 the *Bgl*II site of p4185K. A counter-selection cassette derived from pGOAL17
439 (Addgene plasmid #20189; (46)) was then inserted into p4185K to generate
440 p4185K17. Constructs were validated by restriction enzyme mapping and Sanger
441 sequencing using the primers listed in Table S2.

442 **Isolation of allelic exchange mutants.** *M. smegmatis* Δ *cobK* and Δ *cobK* Δ *metH*
443 mutants were generated by allelic exchange mutagenesis (22). A total of 100 μ L
444 competent cells were incubated in a 1mm cuvette with 1–8 μ g DNA for 20 min on ice
445 prior to pulsing in a GenePulser XcellTM electroporator (Bio-Rad) with time constant
446 and voltage settings at 5 ms and 1200V, respectively. Single crossover (SCO)
447 transformants were selected with Km and Hyg on 7H10-OADC plates. As colonies
448 became visible, 50 μ L of 2% (w/v) 5-bromo-4-chloro-3-indolyl- β -D-galactoside (X-gal)
449 was underlain in each plate for blue/white screening of SCOs. PCR-verified SCOs
450 were then cultured in antibiotic-free 7H9-OADC, followed by 10-fold serial dilutions
451 and plating on 7H10-OADC containing 2% (w/v) sucrose. DCOs were screened by
452 PCR and confirmed with Southern blotting or Sanger sequencing. For Southern
453 blotting confirmation of Δ *cobK*, 2-3 μ g DNA was digested overnight with *Sty*I,
454 separated on 1% agarose gel at 80V and transferred and fixed onto a HydrobondTM
455 N+ membrane (Amersham), and hybridised overnight at 42°C with target-specific
456 PCR-generated probes labelled with the ECL Direct Nucleic Acid Labelling and

457 Detection Systems (Amersham). The target DNA fragments were visualised on
458 Kodak hypersensitive X-ray films.

459 **Cobalamin extraction.** Wild type or mutant *M. smegmatis* strains were cultured until
460 stationary phase (OD₆₀₀ ~2) in 50mL 7H9-OADC supplemented with 3µg/mL cobalt
461 chloride. Cells were harvested by centrifugation at 4000 × g for 10 min at 4°C, re-
462 suspended in 8mL of 50mM sodium acetate buffer, pH4.5, and stored at -80°C until
463 needed. Once thawed, the cells were lysed by 5 min of sonication using a microtip
464 sonicator set at 30 amplitude,15 s pulse on and 15 s pulse off. Next, 16µL of 100mM
465 KCN was added to the lysed cells and, with the extraction tube tightly closed, the
466 samples were incubated at room temperature for 30 min in a chemical fume hood,
467 followed by boiling at 90°C for 45 min inside the hood. The tube was then cooled on
468 ice briefly and centrifuged at 4°C at 4000 × g for 10 min. The supernatant was
469 filtered through a 0.22µm filter and loaded onto a Sep-Pak C18 Plus Light Cartridge
470 (Waters), which had been washed with 5mL 75% (v/v) ethanol and conditioned with
471 10mL sterile water. Next, the cartridge was washed with 10mL of water and eluted
472 with 75% ethanol, collecting about 15 drops. The eluent was analysed immediately
473 by LC-MS/MS or stored in -20°C until needed. When analysis was done on frozen
474 samples, a centrifugation at 14000 × g for 10 min on a bench-top centrifuge was first
475 performed, followed by chloroform purification.

476 **LC-MS/MS detection and analysis of cobalamin.** Eluents were analysed using LC-
477 MS/MS in a positive ionisation mode and quantitated using the following multiple
478 reaction monitoring (MRM) parameters: m/z, 678→359 and m/z, 678→147.
479 Chromatographic separation was performed through a HPLC reverse phase column

480 (Phenomenex SynergiTM Polar-RP 100Å, 50 x 2mm (Separations)) using an Agilent
481 1200 Rapid Resolution HPLC system equipped with a binary pump, degasser, and
482 auto sampler, coupled to an AB Sciex 4000 QTRAP hybrid triple quadrupole linear
483 ion-trap spectrometer. Mobile phases were A: 0.1% formic acid in water; and B:
484 0.1% formic acid in acetonitrile. The following gradients were run: 0-2 min, 95% A; 2-
485 4 min, 5% A; 4-6 min, 95% A; and 6-8 min, 95% A at a flow rate of 400µL/min. The
486 mass spectrometry analysis was performed on an AB Sciex 4000 QTRAP LC mass
487 spectrometer using the following parameters: Curtain gas (25.00); IS (5500.00);
488 Temperature (200.00°C); GS1 (80.00); GS2 (55.00); EP (12.0). Data processing was
489 done using the SCIEX Analyst® software.

490 **Quantitative gene expression analysis by ddPCR.** Droplet digital PCR (ddPCR)
491 and data analysis was performed as described previously (48). Total RNA was
492 extracted using the FastRNA® Pro Blue kit (MP Biomedicals) and DNase-treated
493 with TURBO DNase (Ambion) after which 0.5µg was used as template for cDNA
494 synthesis, using the High Capacity RNA to cDNA kit (Thermofisher). Primers and
495 minor groove binder (MGB) Taqman probes (Table S2) were designed using Primer
496 Express 3.0 (Applied Biosystems). For duplexing, TaqMan MGB probes homologous
497 to the target genes were labelled with 2'-chloro-7'-phenyl-1, 4-dichloro-6-
498 carboxyfluorescein (VIC) whereas those binding the reference gene, *sigA*, were
499 labelled with 6-carboxyfluorescein (FAM).

500 **Targeted protein mass spectrometry.** Triplicate cultures of *M. smegmatis* were
501 grown to OD₆₀₀ ~1.2 in 7H9-OADC with or without 10µM CNCbl. Cell lysis,
502 fractionation and the generation of tryptic peptides was done as described (21).
503 Selected Reaction Monitoring (SRM) assays were developed in Skyline (version 4.1)

504 using a spectral library generated from previous discovery MS data (21) with a cut-
505 off score of 0.9. Skyline was set up to select two peptides per input protein, with the
506 highest picked MS1 intensity in the discovery data, and then the top 5 most intense
507 fragment ions for each of those peptides. A transition list was then generated for the
508 Thermo Scientific triple stage quadrupole (TSQ) Vantage mass spectrometer.
509 Samples were separated using a Thermo Accella LC system on a 10-cm monolithic
510 C18 column (Phenomenex) with a 4.6-mm ID with a mobile phase that comprised a
511 mixture of solvent A (water + 0.1% formic acid) and solvent B (HPLC-grade
512 acetonitrile + 0.1% formic acid). The method run time was 45 min in total with a flow
513 rate of 300 μ L/min. The gradient program began with 3% B, followed by a gradient of
514 8%-45% B from 5-25 min, then an increase to 80% B at the 30-min mark for a 5-min
515 wash, before returning to 3% B for the remainder of the method. The LC system was
516 run in-line into a Thermo TSQ Vantage through a heated electrospray ionisation
517 (HESI) source. The source voltage was +3500V, with a capillary temperature of
518 300°C, a vaporiser temperature of 200°C, sheath gas of 30, and aux gas of 10. To
519 determine the retention time for each peptide, methods were generated for the TSQ
520 Vantage with a maximum of 20 transitions monitored per method. Since the original
521 list contained 5 transitions, a total of 8 unscheduled methods were generated, with a
522 cycle time of 5 s to maximise the amount of signal, a collision gas pressure of 1.5
523 mTorr, a Q1 peak width (FWHM) of 0.7, and collision energies as determined by
524 Skyline. The unscheduled methods were then run with consecutive 2 μ L injections of
525 a reference sample to further refine the list of transitions and determine the retention
526 time for each peptide. The reference sample was generated by pooling all samples.
527 The unscheduled runs were analysed in Skyline to determine the retention times for
528 each peptide. Any transitions with no intensity, background-level intensity,

529 interference, or ambiguous signal were removed from the method, and a minimum of
530 3 transitions per peptide were kept in the final list. The spectral library was used to
531 further refine the assays and any peptides with a *dotp* score lower than 0.7 were
532 removed from the final list.

533 **Microplate Alamar Blue Assay.** Cell viability was determined using the microplate
534 Alamar blue assay (20) as follows: 50 μ L of 1:1000 diluted exponential-phase
535 cultures (OD₆₀₀ ~ 0.5) was added to 50 μ L 7H9-OADC with or without 10 μ M CNCbl in
536 a 96-well plate. Plates were incubated overnight at 37°C, after which 10 μ L of
537 100 μ g/mL resazurin was added to each well. The plates were incubated for an
538 additional 5 h at 37°C before fluorescence intensity measurements were taken using
539 a FLUOstar OPTIMA microplate reader (BMG Labtech) using excitation and
540 emission wavelengths of 485 nm and 508 nm, respectively.

541 **Gene silencing using CRISPRi.** Thirteen pairs of sgRNA oligos targeting the *M.*
542 *smegmatis* *metH* ORF (Table S3) were designed as described previously (24). The
543 oligos were annealed and cloned into the PLJR962 plasmid using *Bsm*BI restriction
544 sites in an overnight ligation reaction with T4 DNA ligase (NEB). Following ligation,
545 the entire reaction mix (10 μ L) was transformed into 50 μ L electrocompetent *E. coli*
546 DH5 α cells and selected on LB plates with 50 μ g/mL Km. Plasmid DNA was
547 extracted from single colonies and validated by Sanger sequencing using primer
548 1834 (Table S3). Next, competent *M. smegmatis* cells were transformed by
549 electroporation with 200ng of *metH* cKD constructs or an *mmpL3* cKD control and
550 selected on 7H10-OADC containing 25 μ g/mL Km with or without 100ng/mL ATc

551 **WGS, genome assembly and variant detection.** Genomic DNA was extracted as
552 described by van Helden *et al.* (49) from exponential phase cultures of single
553 colonies. Genomic libraries, prepared using the TruSeq Nano DNA (Illumina) sample
554 preparation kit according to the manufacturer's instructions, were sequenced using a
555 150-bp paired-end strategy on an Illumina HiSeq 4000 instrument. Trimmomatic
556 v0.35 (50) was used to remove adapters, leading or trailing bases with a quality
557 score < 3, reads shorter than 36bp in length, and bases with an average quality
558 score of < 15 based on a 4-base sliding window. BWA v0.7.12 (51, 52) was then
559 used to map paired-end reads to the *M. smegmatis* mc²155 reference genome
560 (CP000480.1) (53). SAMtools v0.1.2 (54) was used to call bases. Sites that had
561 Phred scores lower than 20 or coverage below 10-fold were removed from further
562 analysis. SNPeff v4.1 (55), using the *M. smegmatis* mc²155 (uid57701) reference,
563 was used to annotate variant positions.

564 **Live-cell imaging and quantification of the growth of microcolonies.** A 100 μ L
565 bacterial suspension of 2.0×10^6 cells/mL was prepared and loaded on the four-
566 chambered CellASIC ONIX B04A-03 microfluidic platform (Merck). Cells were
567 trapped with the following pressure and flow time settings: channel A8 at 13.8 kPa
568 for 15 s; channel A6 at 27.6kPa for 15 s. Channel A6 was then rinsed at 6.9kPa for
569 30 s. Untrapped cells were washed out by flowing inlet solution at 34.5kPa for 5 min.
570 7H9-OADC medium containing 25 μ g/mL Km with or without 100ng/mL ATc was
571 perfused continuously for 43 h. Live-cell imaging was performed on a Zeiss
572 AxioObserver using a 100X, 1.4NA Objective with Phase Contrast and Colibri.7
573 fluorescent illumination system. Images were captured every 15 min using a Zeiss
574 Axiocam 503 and analysed using FIJI software (<https://fiji.sc/>). To quantify the growth

575 of microcolonies, a thresholded for the time-lapse images was set with a Yen filter in
576 FIJI and the thresholded area over time was then quantified. For each strain type,
577 data extraction and all subsequent analyses were performed on four independent
578 fields of view. The data was analysed using “R” software. Growth curves were
579 generated by subtracting initial background objects from the size data over time and
580 smoothed with a loess regression. Growth rates were predicted from fitting a linear
581 model to the \log_2 microcolony size obtained between 3 h and 18 h.

582 **ACKNOWLEDGEMENTS**

583 We thank Clemens Hermann and Bridget Calder from Jonathan Blackburn’s
584 proteomics facility for advice and assistance; Sarah Fortune and Jeremy Rock for
585 kindly providing the mycobacterial CRISPRi system; and Stephanie Dawes for
586 providing the $\Delta metE$ $cobK::hyg$ mutant. We also thank Gopinath Krishnamoorthy and
587 Kristine Arnvig for the helpful advice and critical reading of the manuscript. We
588 acknowledge Caitlin Taylor for technical assistance with the CellASC platform and
589 members of the MMRU for their advice and helpful discussions. This work was
590 supported by grants from the Howard Hughes Medical Institute (Senior International
591 Research Scholar’s grant to V.M.), the South African Medical Research Council (to
592 V.M.) and the National Research Foundation of South Africa (to V.M. and D.F.W.).

593 **Data Availability**

594 Raw fastq files for whole genome sequencing data for *M. smegmatis* mc²155,
595 $\Delta cobK$, and $\Delta cobK \Delta metH$ are available in the European Nucleotide Archive under
596 the accession numbers ERS3716042, ERS3716043, and ERS3716041, respectively.

597 Supplementary Movies S1–5 can be accessed at
598 <https://uct.figshare.com/s/65105b9914196c4b4654>.

599 **REFERENCES**

600 1. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Comparative
601 Genomics of the Vitamin B₁₂ Metabolism and Regulation in Prokaryotes. *J Biol
602 Chem* 278:41148–41159.

603 2. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN. 2009. Comparative
604 genomic analyses of nickel, cobalt and vitamin B₁₂ utilization. *BMC Genomics*
605 10:78.

606 3. Minias A, Minias P, Dziadek J. 2018. Purifying selective pressure suggests the
607 functionality of a vitamin B₁₂ biosynthesis pathway in a global population of
608 *Mycobacterium tuberculosis*. *Genome Biol Evol* 10:2326–2337.

609 4. Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, Taga ME.
610 2018. Uneven distribution of cobamide biosynthesis and dependence in
611 bacteria predicted by comparative genomics. *ISME J*.

612 5. Gopinath K, Moosa A, Mizrahi V, Warner DF. 2013. Vitamin B₁₂ metabolism in
613 *mycobacterium tuberculosis*. *Future Microbiol* 8:1405–1418.

614 6. Reyrat J-M, Kahn D. 2001. *Mycobacterium smegmatis*: an absurd model for
615 tuberculosis? *Trends Microbiol* 9:472–473.

616 7. Barry CE. 2001. *Mycobacterium smegmatis*: an absurd model for tuberculosis?
617 Response from Barry, III. *Trends Microbiol* 9:473–474.

618 8. WHO. 2019. Global tuberculosis report 2019. Geneva.

619 9. Ragsdale SW. 2008. Catalysis of Methyl Group Transfers Involving
620 Tetrahydrofolate and B12. *Vitam Horm* 79:293–324.

621 10. Giedyk M, Goliszewska K, Gryko D. 2015. Vitamin B₁₂ catalysed reactions.
622 *Chem Soc Rev* 44:3391–3404.

623 11. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. 2002. The
624 biosynthesis of adenosylcobalamin (vitamin B₁₂). *Nat Prod Rep* 19:390–412.

625 12. Gopinath K, Venclovas C, Ioerger TR, Sacchettini JC, McKinney JD, Mizrahi V,
626 Warner DF. 2013. A vitamin B₁₂ transporter in *Mycobacterium tuberculosis*.
627 *Open Biol* 3:120175.

628 13. Young DB, Comas I, de Carvalho LPS. 2015. Phylogenetic analysis of vitamin
629 B₁₂-related metabolism in *Mycobacterium tuberculosis*. *Front Mol Biosci* 2:1–
630 14.

631 14. Ferla MP, Patrick WM. 2014. Bacterial methionine biosynthesis. *Microbiol*
632 (United Kingdom) 160:1571–1584.

633 15. Ferguson SJ. 2016. SAM – a helping hand in many places. *FEBS Lett*
634 590:2536–2537.

635 16. Koutmos M, Datta S, Patridge KA, Smith JL, Matthews RG. 2009. Insights into
636 the reactivation of cobalamin-dependent methionine synthase. *Proc Natl Acad*
637 *Sci* 106:18527–18532.

638 17. Gonzalez JC, Banerjee R V., Huang S, Sumner JS, Matthews RG. 1992.

639 Comparison of Cobalamin-independent and Cobalamin-Dependent Methionine
640 Synthases from *Escherichia coli*: Two Solutions to the Same Chemical
641 Problem. *Biochemistry* 31:6045–6056.

642 18. Warner DF, Savvi S, Mizrahi V, Dawes SS. 2007. A riboswitch regulates
643 expression of the coenzyme B₁₂-independent methionine synthase in
644 *Mycobacterium tuberculosis*: Implications for differential methionine synthase
645 function in strains H37Rv and CDC1551. *J Bacteriol* 189:3655–3659.

646 19. Valvay SE, Sanchez MPC, Shinnick TF, Orme I, Agerton T, Hoy D, Jones JS,
647 Westmoreland H, Onorato IM. 1998. An Outbreak Involving Extensive
648 Transmission of a Virulent Strain of *Mycobacterium tuberculosis*. *N Engl J Med*
649 338:633–639.

650 20. Cho S, Lee HS, Franzblau S. 2015. Microplate Alamar Blue Assay (MABA)
651 and Low Oxygen Recovery Assay (LORA) for *Mycobacterium tuberculosis*, p.
652 281–292. *In* Parish, T, Roberts, DM (eds.), *Mycobacteria Protocols*. Springer
653 New York, New York, NY.

654 21. Hermann C, Giddey AD, Nel AJM, Soares NC, Blackburn JM. 2018. Cell wall
655 enrichment unveils proteomic changes in the cell wall during treatment of
656 *Mycobacterium smegmatis* with sub-lethal concentrations of rifampicin. *J*
657 *Proteomics* 191:166–179.

658 22. Gopinath K, Warner DF, Mizrahi V. 2015. Targeted Gene Knockout and
659 Essentiality Testing by Homologous Recombination, p. 131–149. *In* Parish, T,
660 Roberts, DM (eds.), *Mycobacteria Protocols: Third Edition*.

661 23. Dragset MS, Ioerger TR, Zhang YJ, Mærk M, Ginbot Z, Sacchettini JC, Flo TH,
662 Rubin EJ, Steigedal M. 2019. Genome-wide Phenotypic Profiling Identifies and
663 Categorizes Genes Required for Mycobacterial Low Iron Fitness. *Sci Rep* 9:1–
664 11.

665 24. de Wet TJ, Gobe I, Mhlanga MM, Warner DF. 2018. CRISPRi-Seq for
666 Improved Identification, Targeting and Phenotyping of Essential Mycobacterial
667 Genes 1–9.

668 25. Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Gerrick ER, Pritchard
669 JR, Church GM, Rubin EJ, Sassetti CM, Schnappinger D, Fortune SM. 2017.
670 Programmable transcriptional repression in mycobacteria using an orthogonal
671 CRISPR interference platform. *Nat Microbiol* 2.

672 26. Xu Z, Meshcheryakov VA, Poce G, Chng S-S. 2017. MmpL3 is the flippase for
673 mycolic acids in mycobacteria. *Proc Natl Acad Sci* 114:7993–7998.

674 27. Takade A, Takeya K, Taniguchi H, Mizuguchi Y. 1983. Electron Microscopic
675 Observations of Cell Division in *Mycobacterium vaccae* V 1. *J Gen Microbiol*
676 129:2315–2320.

677 28. Dahl JL. 2004. Electron microscopy analysis of *Mycobacterium tuberculosis*
678 cell division. *FEMS Microbiol Lett* 240:15–20.

679 29. Karasseva V, Weiszfeiler JG, Lengyel Z. 1977. Synthesis of vitamin B₁₂ by
680 various species of mycobacteria. *Zentralblatt für Bakteriol Parasitenkunde,*
681 *Infekt und Hyg Erste Abte*:514–520.

682 30. Upton AM, McKinney JD. 2007. Role of the methylcitrate cycle in propionate

683 metabolism and detoxification in *Mycobacterium smegmatis*. *Microbiology*
684 153:3973–3982.

685 31. Guzzo MB, Nguyen HT, Pham TH, Wyszczelska-Rokiel M, Jakubowski H,
686 Wolff KA, Ogwang S, Timpona JL, Gogula S, Jacobs MR, Ruetz M, Kräutler B,
687 Jacobsen DW, Zhang GF, Nguyen L. 2016. Methylfolate Trap Promotes
688 Bacterial Thymineless Death by Sulfa Drugs. *PLoS Pathog* 12:1–28.

689 32. Crofts TS, Seth EC, Hazra AB, Taga ME. 2013. Cobamide structure depends
690 on both lower ligand availability and CobT substrate specificity. *Chem Biol*
691 20:1265–1274.

692 33. Anderson PJ, Lango J, Carkeet C, Britten A, Kräutler B, Hammock BD, Roth
693 JR. 2008. One pathway can incorporate either adenine or
694 dimethylbenzimidazole as an α -axial ligand of B12 cofactors in *Salmonella*
695 *enterica*. *J Bacteriol* 190:1160–1171.

696 34. Orgeur M, Brosch R. 2018. Evolution of virulence in the *Mycobacterium*
697 tuberculosis complex. *Curr Opin Microbiol* 41:68–75.

698 35. Supply P, Brosch R. 2017. The Biology and Epidemiology of *Mycobacterium*
699 *canettii*, p. 27–41. *In* Gagneux, S (ed.), *Advances in Experimental Medicine*
700 and *Biology*. Springer International Publishing.

701 36. Ngabonziza JCS, Loiseau C, Marceau M, Jouet A, Menardo F, Tzfadia O,
702 Antoine R, Niyigena EB, Mulders W, Fissette K, Diels M, Gaudin C, Duthoy S,
703 Ssengooba W, André E, Kaswa MK, Habimana YM, Brites D, Affolabi D,
704 Mazarati JB, de Jong BC, Rigouts L, Gagneux S, Meehan CJ, Supply P. 2020.

705 A sister lineage of the *Mycobacterium tuberculosis* complex discovered in the
706 African Great Lakes region. *Nat Commun* 11:1–11.

707 37. Rempel S, Gati C, Nijland M, Thangaratnarajah C, Karyolaimos A, de Gier JW,
708 Guskov A, Slotboom DJ. 2020. A mycobacterial ABC transporter mediates the
709 uptake of hydrophilic compounds. *Nature* 580:409–412.

710 38. Noinaj N, Guillier M, Barnard, TJ, Buchanan SK. 2010. TonB-Dependent
711 Transporters: Regulation, Structure, and Function. *Annu Rev Microbiol* 64:43–
712 60.

713 39. Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H. 2010.
714 Mycobacterial outer membranes: in search of proteins. *Trends Microbiol*
715 18:109–116.

716 40. Henkin TM. 2008. Riboswitch RNAs : using RNA to sense cellular metabolism.
717 *Genes Dev* 22:3383–3390.

718 41. Nou X, Kadner RJ. 2000. Adenosylcobalamin inhibits ribosome binding to *btuB*
719 RNA. *Proc Natl Acad Sci* 97:7190–7195.

720 42. Polaski JT, Holmstrom ED, Nesbitt DJ, Batey RT. 2016. Mechanistic Insights
721 into Cofactor-Dependent Coupling of RNA Folding and mRNA
722 Transcription/Translation by a Cobalamin Riboswitch. *Cell Rep* 15:1100–1110.

723 43. Nou X, Kadner RJ. 1998. Coupled changes in translation and transcription
724 during cobalamin- dependent regulation of *btuB* expression in *Escherichia coli*.
725 *J Bacteriol* 180:6719–6728.

726 44. Kucukyildirim S, Long H, Sung W, Miller SF, Doak TG, Lynch M. 2016. The
727 Rate and spectrum of spontaneous mutations in *Mycobacterium smegmatis*, a
728 bacterium naturally devoid of the postreplicative mismatch repair pathway. *G3*
729 *Genes, Genomes, Genet* 6:2157–2163.

730 45. Ioerger TR, Feng Y, Ganesula K, Chen X, Dobos KM, Fortune S, Jacobs WR,
731 Mizrahi V, Parish T, Rubin E, Sassetti C, Sacchettini JC. 2010. Variation
732 among genome sequences of H37Rv strains of *Mycobacterium tuberculosis*
733 from multiple laboratories. *J Bacteriol* 192:3645–3653.

734 46. Parish T, Stoker NG. 2000. Use of flexible cassette method to generate a
735 double unmarked *Mycobacterium tuberculosis* *tlyA* *plcABC* mutant by gene
736 replacement. *Microbiology* 146:1969–1975.

737 47. Blondelet-Rouault M-H, Weiser J, Lebrihi A, Branny P, Pernodet J-L. 1997.
738 Antibiotic resistance gene cassettes derived from the Ω interposon for use in
739 *E. coli* and *Streptomyces*. *Gene* 190:315–317.

740 48. Singh V, Brecik M, Mukherjee R, Evans JC, Svetlíková Z, Blaško J, Surade S,
741 Blackburn J, Warner DF, Mikušová K, Mizrahi V. 2015. The complex
742 mechanism of antimycobacterial action of 5-fluorouracil. *Chem Biol* 22:63–75.

743 49. van Helden PD, Victor TC, Warren RM, Helden EG Van. 2001. Isolation of
744 DNA from *Mycobacterium tuberculosis*. *Methods Mol Med* 54:19–29.

745 50. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for
746 Illumina sequence data. *Bioinformatics* 30:2114–2120.

747 51. Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-

748 Wheeler transform. *Bioinformatics* 26:589–595.

749 52. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
750 Wheeler transform. *Bioinformatics* 25:1754–1760.

751 53. Fleischmann RD, Dodson RJ, Haft DH, Merkel JS, Nelson WC, Fraser CM.
752 2006. Direct submission. Bethesda, MD Natl Cent Biotechnol Information, NIH.

753 54. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
754 Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and
755 SAMtools. *Bioinformatics* 25:2078–2079.

756 55. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X,
757 Ruden DM. 2012. A program for annotating and predicting the effects of single
758 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila*
759 *melanogaster* strain w1118 ; iso-2; iso-3. *Fly (Austin)* 6:80–92.

760 56. Kapopoulou A, Lew JM, Cole ST. 2011. The MycoBrowser portal: A
761 comprehensive and manually annotated resource for mycobacterial genomes.
762 *Tuberculosis* 91:8–13.

763 57. Snapper SB, Melton RE, Mustafa S, Kieser T, Jr WRJ. 1990. Isolation and
764 characterization of efficient plasmid transformation mutants of *Mycobacterium*
765 *smegmatis*. *Mol Microbiol* 4:1911–1919.

766

767 **TABLES**

768 **Table 1. Predicted cobalamin-dependent enzymes in *M. smegmatis***

Gene	Annotation (56)	Co-factor	Reaction
			catalysed
MSMEG_3158 (mutA)	Methylmalonyl-CoA mutase, small subunit	AdoCbl	Isomerisation
MSMEG_3159 (mutB)	Methylmalonyl-CoA mutase large subunit		
MSMEG_0497	Glycerol dehydratase large subunit	AdoCbl	Isomerisation
MSMEG_1547	Glycerol dehydratase large subunit		
MSMEG_6321	Glycerol dehydratase large subunit		
MSMEG_1553 (eutB)	Ethanolamine ammonia- lyase, large subunit	AdoCbl	Isomerisation
MSMEG_1554 (eutC)	Ethanolamine ammonia- lyase, light chain		
MSMEG_4185 (methH)	Methionine synthase	MeCbl	Methyl transfer

769

770 **Table 2. SNMs unique to the $\Delta cobK$ strain relative to the wild type parental**
771 **strain**

Gene	Annotation (56)	SNP	Type of SNM	Amino Acid
				Change
MSMEG_0691	Putative transcriptional regulatory protein	1T>G	5' mutation	UTR
MSMEG_2148	HNH endonuclease domain protein	1135 T>C	missense	Trp379Arg
MSMEG_3876	Putative phosphotransferase enzyme family protein	887G >A	missense	Arg296His
MSMEG_6127	Anti-anti-sigma factor	107T >G	missense	Leu36Arg
MSMEG_6270	Hypothetical protein	1A>C 1G>A	5' mutation	UTR
MSMEG_6423	Glycerophosphoryl diester phosphodiesterase family protein	1T>C 1T>G	5' mutation	UTR

772

773 **Table S1: Strains and plasmids used in this study**

Strain or plasmid	Description	References
<i>Mycobacterium smegmatis</i>		
mc²155	High-frequency transformation mutant of <i>M. smegmatis</i> ATCC 607	(57)
ΔcobK	<i>cobK</i> knock-out in mc ² 155	This study
ΔcobKΔmetH	<i>metH</i> knock-out in ΔcobK	This study
ΔmetE cobK::hyg	<i>metE</i> knock-out and insertion of a <i>hyg</i> fragment in <i>cobK</i>	Dr. Stephanie Dawes, unpublished
metH cKD	<i>M. smegmatis</i> <i>metH</i> conditional knockdown strain	This study

Plasmids

p2NIL	Suicide plasmid; Km ^R	(46)
pGOAL17	Counter-selection cassette plasmid; Amp ^R	(46)

Strain or plasmid	Description	References
pGOAL19	Counter-selection cassette plasmid; Amp ^R	(46)
plJ963	Hyg-cassette plasmid	(47)
p3875K	<i>M. smegmatis</i> Δ cobK vector; Km ^R	This study
p3875K19	<i>M. smegmatis</i> Δ cobK vector containing <i>PacI</i> cassette from pGOAL19; Km ^R , Hyg ^R , Suc ^S	This study
p4185K	<i>M. smegmatis</i> Δ metH vector; Km ^R	This study
p4185K19	<i>M. smegmatis</i> Δ metH vector containing <i>PacI</i> cassette from pGOAL19; Km ^R , Hyg ^R , Suc ^S	This study
p4185K17	<i>M. smegmatis</i> Δ metH::hyg vector containing <i>PacI</i> cassette from pGOAL19; Km ^R , Hyg ^R , Suc ^S	This study
PLJR962	CRISPRi backbone for <i>M. smegmatis</i>	(25)
PLJR962_metH1	<i>M. smegmatis</i> metH knock-down	This study

Strain or plasmid	Description	References
	construct with sgRNA1 oligo	
PLJR962_metH2	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA2 oligo	This study
PLJR962_metH3	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA3 oligo	This study
PLJR962_metH4	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA4 oligo	This study
PLJR962_metH5	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA5 oligo	This study
PLJR962_metH6	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA6 oligo	This study
PLJR962_metH7	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA7 oligo	This study
PLJR962_metH8	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA8 oligo	This study
PLJR962_metH9	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA9 oligo	This study

Strain or plasmid	Description	References
PLJR962_metH10	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA10 oligo	This study
PLJR962_metH11	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA11 oligo	This study
PLJR962_metH12	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA12 oligo	This study
PLJR962_metH15	<i>M. smegmatis</i> <i>metH</i> knock-down construct with sgRNA15 oligo	This study
PLJR962_mmpL3	<i>M. smegmatis</i> <i>mmpL3</i> knock-down construct	This study

774

775 **Table S2: Oligos used for cloning, PCR screening, Sanger sequencing and**
776 **gene expression analysis**

Oligo ID	5' → 3' sequence	Description
3875F1	CTCAGAAAG <u>CTT</u> GAAAGGCGGCGATT	Forward primer for FR1 Δ cobK; <u>Hind</u> III
3875R1	GCAGCAGAA <u>CTCGC</u> <u>AGATCT</u> ATCGTC	Reverse primer for FR1 Δ cobK; <u>Bgl</u> II
3875F2	TGGCGG <u>GAGATCTT</u> GATCATGGTGGAC	Forward primer for FR2 Δ cobK; <u>Bgl</u> II
3875R2	GGTCCGAG <u>CATGCGGTACCGTT</u> CTA	Reverse primer for FR2 Δ cobK; <u>Asp</u> 718I
4185F1	GAGACGTT <u>GGTACCGAACAT</u>	Forward primer for FR1 Δ metH; <u>Asp</u> 718I
4185R1	GCGCCCG <u>CAGATCTGCTT</u>	Reverse primer

Oligo ID	5' → 3' sequence	Description
		for FR1 $\Delta metH$; <u>BglII</u>
4185F2	GCACCGAG <u>ATCTGGCGT</u>	Forward primer for FR2 $\Delta metH$; <u>BglII</u>
4185R2	GGTGTCGA <u>AGCTTACCGGA</u>	Reverse primer for FR2 $\Delta metH$; <u>HindIII</u>
3875_SF1	CTCAGAGAAAGGCGGCGAT	Flanking primers for
3875_SR1	GGCGACGACATGATGGT	$\Delta cobK$ 5' SCO PCR screening
3875_SF2	GTTACCTGTACTCGGCGA	Flanking primers for
3875_SR2	CGGTGAGGGAGCAGATT	$\Delta cobK$ 3' SCO PCR screening
4185_SF1	GTTGAGCTTGTGGCGAT	Flanking primers for
4185_SR1	GCGGGTGCGAGAAATACCA	$\Delta metH$ 5' SCO

Oligo ID	5' → 3' sequence	Description
		PCR screening
4185_SF2	GATTGCACTGACGCGCTGA	Flanking primers for $\Delta metH$ 3' SCO
4185SR2	CGAAAAGTAATGGCGCCCA	PCR screening
3875_KO_F	GGTGCGTATCGGAGGATT	Internal primers $\Delta cobK$
3875_KO_R	GTTCGCCCTCGTAGTCAT	
3875_F	CAACATCGTCCCCAACTGA	Flanking primers $\Delta cobK$
3875_R	CGACATCACGCTCGACAAAC	
4185-KO-F	GTTCCTGTTCCACGCCAT	Internal primers $\Delta metH$
4185-KO-R	CTGTCAGCCACTTCTCCT	
4185_F	CAACATGGACCGAGGGCATGA	Flanking primers $\Delta metH$
4185_R	GACTGCGGGTGCGAGAAATA	
6638_F	GGTTCATCGCCTCGTGGAAAT	Flanking primers $\Delta metE$
6638_R	GTCAACTTGTCAAGGGCTGCT	

Oligo ID	5' → 3' sequence	Description
3875_ProbeF	GGGTGCACAGCGTCACCA	Primers generating 562bp probe for southern blot on Δ cobK
3875_ProbeR	CCGACATCACGCTCGACA	
rt_metE_Fwd	GGAGCGCAACGACATGGT	Sequence detection primers for metE gene expression by ddPCR
rt_metE_Rev	TCTCGGTCGCGAAGAAACC	
rt_sigA_Fwd	GCCCGCACCATCCGTAT	Sequence detection primer for sigA gene expression by ddPCR
rt_sigA_Rev	ATACGGCCGAGCTTGTGAT	
rt_metE_probe	TATTCGCCGAACAGC	Taqman hydrolysis probe for metE

Oligo ID	5' → 3' sequence	Description
rt_sigA_probe	CCGGTGCACATGGT	Taqman hydrolysis probe for <i>SigA</i>
MSMcobK_SeqKF1	CAAGGCATGACGGTCTAC	Sanger sequencing primer
MSMcobK_SeqKF2	ACGCCAAGGTGATCGACA	Sanger sequencing primer
MSMcobK_SeqKF3	CAACATCGTCCCCAACT	Sanger sequencing primer
MSMcobK_SeqKF4	GGGGTCGAAGAGCATGTT	Sanger sequencing primer
MSMcobK_SeqKR1	CGCCGAGTACAGGTAACT	Sanger sequencing primer

Oligo ID	5' → 3' sequence	Description
MSMcobK_SeqKR2	ATGATGGTGGTGATGGCG	Sanger sequencing primer
MSMcobK_SeqKR3	GAGACCTGTTGGCGCGAT	Sanger sequencing primer
MSMcobK_SeqKR4	CGACATCACGCTCGACAA	Sanger sequencing primer
MSMcobK_SeqKR5	CGGTGAGGGAGCAGATT	Sanger sequencing primer
MSMmetHKO_SeqF1	CGATCGTTGTCAGAAGTA	Sanger sequencing primer
MSMmetHKO_SeqR1	GAAACAGCCCACCGGATA	Sanger sequencing primer

Oligo ID	5' → 3' sequence	Description
MSMmetHKO_SeqF2	GCAGGAGAGTGATACCGAT	Sanger sequencing primer
MSMmetHKO_SeqR2	GTCGACTCCGAAAAGCTGT	Sanger sequencing primer
MSMmetHKO_SeqF3	CCCGACGCTTAGTCACA	Sanger sequencing primer
MSMmetHKO_SeqR3	CAGTACTTCGTCGTGGCA	Sanger sequencing primer
MSMmetHKO_SeqF4	CTTGAACAACGTGGCCTT	Sanger sequencing primer
MSMmetHKO_SeqR4	CAAGGTCGTGGAGGGCAA	Sanger sequencing primer

Oligo ID	5' → 3' sequence	Description
MSMmetHKO_SeqF5	CGATCCGGTGATGTTGGT	Sanger sequencing primer
MSMmetHKO_SeqR5	GAATACAGCACCCGGACA	Sanger sequencing primer
MSMmetHKO_SeqF6	GTTGAGGGTGTGAGAT	Sanger sequencing primer
MSMmetHKO_SeqF7	GGGTTGAGTGTGTTCCA	Sanger sequencing primer
MSMmetHKO_SeqR6	GGGTTCCGATTTAGTGCT	Sanger sequencing primer

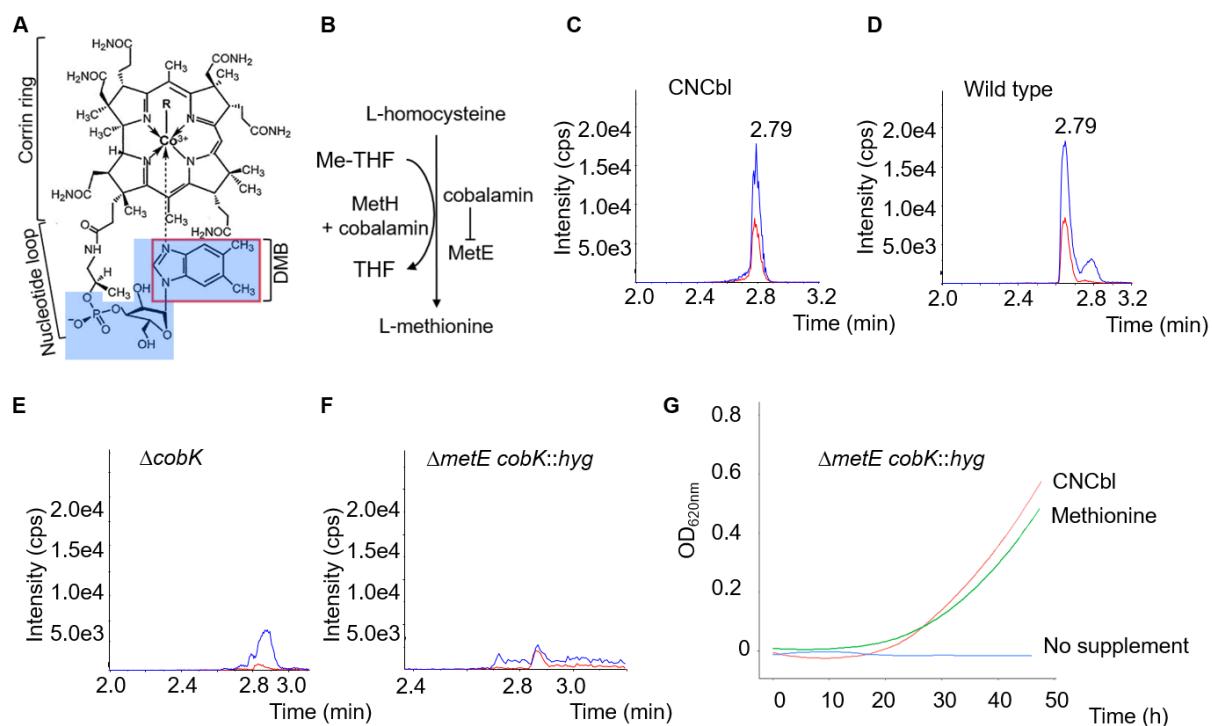
778 **Table S3: sgRNAs targeting *M. smegmatis* *metH* gene**

sgRNA ID	Distance	Target	Oligo	5' → 3' Sequence
	from	complementarity		
	<i>metH</i>	score (25)		
TSS				
sgRNA1	3603	3	F1	GGGAAAGTACTGCGACTGC GGGTG
			R1	AAACCACCCGCAGTCGCAG TACTT
sgRNA2	3060	4	F2	GGGAGTCGTACCCGACGGC GTTGGC
			R2	AAACGCCAACGCCGTCGGT GACGAC
sgRNA3	3057	1	F3	GGGAGTCACCGACGGCGTT GGCCGG
			R3	AAACCCGGCCAACGCCGTC GGTGAC
sgRNA4	2934	11	F4	GGGAGCCGGTTGTTGAGG

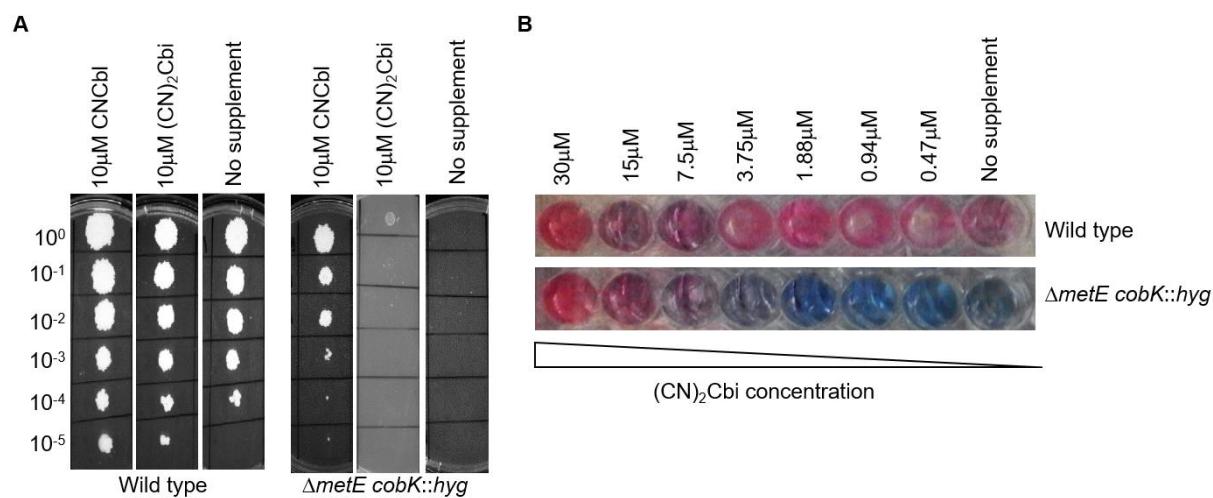
sgRNA ID	Distance	Target	Oligo	5' → 3' Sequence
		from	complementarity	
		<i>meth</i>	score (25)	
		TSS		
				ATGTC
			R4	AAACGACATCCTCAACAAACC CGGC
sgRNA5	2904	5	F5	GGGAGCCCTTCATCTCCCA CGCGTT
			R5	AAACAACGCGTGGGAGATG AAGGGC
sgRNA6	2242	4	F6	GGGAGCTTCTTCTCGGCCT CGATGT
			R6	AAACACATCGAGGCCGAGA AGAAGC
sgRNA7	2184	11	F7	GGGAGCGGACTTCACGACC TGC GG
			R7	AAACCCGCAGGTCGTGAAG TCCGC

sgRNA ID	Distance	Target	Oligo	5' → 3' Sequence
	from	complementarity		
	<i>methH</i>	score (25)		
	TSS			
sgRNA8	2002	4	F8	GGGAGTGCCTGATGCGTTC GCGCA
			R8	AAACTGCGCGAACGCATCA CGCAC
sgRNA9	1791	11	F9	GGGAGTCCAGGCCGGCCTT GATGGC
			R9	AAACGCCATCAAGGCCGGC CTGGAC
sgRNA10	1785	11	F10	GGGAGCCGGCCTTGTGGC GTGGAA
			R10	AAACTTCCACGCCATCAAGG CCGGC
sgRNA11	1743	11	F11	GGGAGCCTCCGCACCGGG TTGTTGCC

sgRNA ID	Distance	Target	Oligo	5' → 3' Sequence
		from	complementarity	
		<i>meth</i>	score (25)	
		TSS		
			R11	AAACGGCAACAACCCGGTG CGGGAGGC
sgRNA12	1737	5	F12	GGGAACCAGGGTTGTTGCCG CGGAA
			R12	AAACTTCCGCGGCAACAAAC CCGGT
sgRNA15	729	5	F15	GGGAGCTGGCGTGCCGG ATCGAGTT
			R15	AAACAACTCGATCCGGCAC GCCCAGC
mmpL3			L3F	GGGAACAGACTGGCTGCC TCGTC
			L3R	AAACGACGAGGGCAGCCAG TCTGT



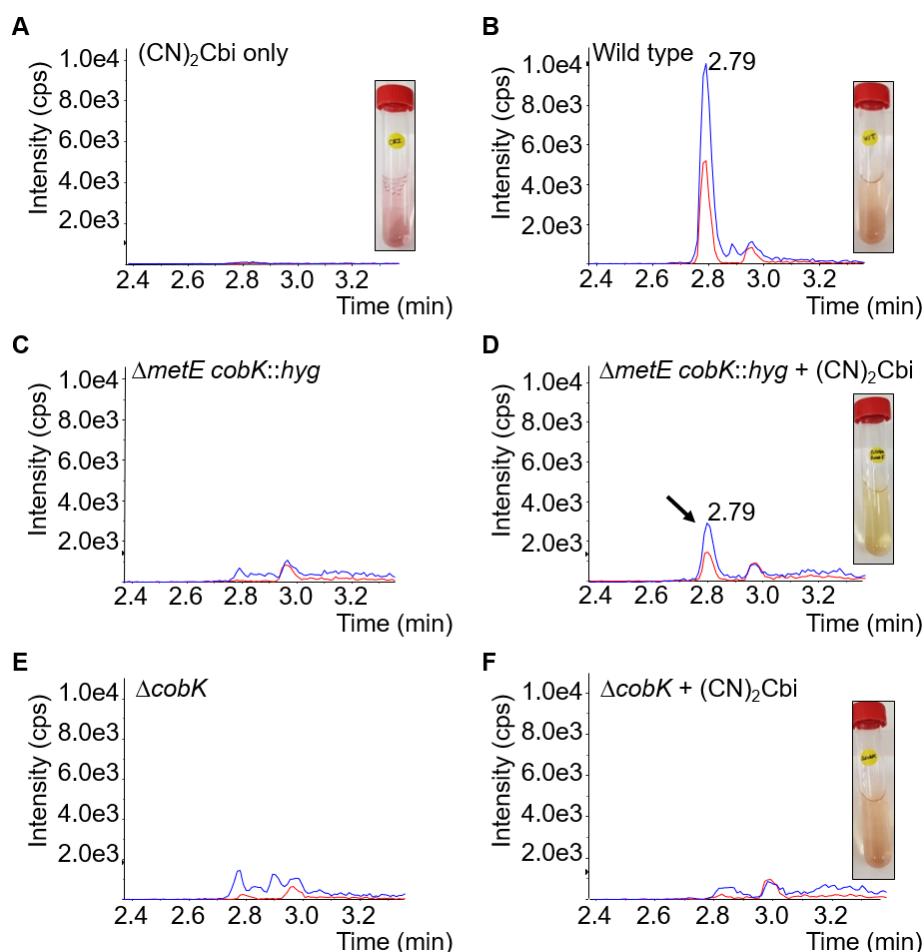
sgRNA ID	Distance	Target	Oligo	5' → 3' Sequence
	from	complementarity		
	<i>meth</i>	score (25)		
P1834				TTCCCTGTGAAGAGGCCATTGA TAATG


779

780 **FIGURES**

781

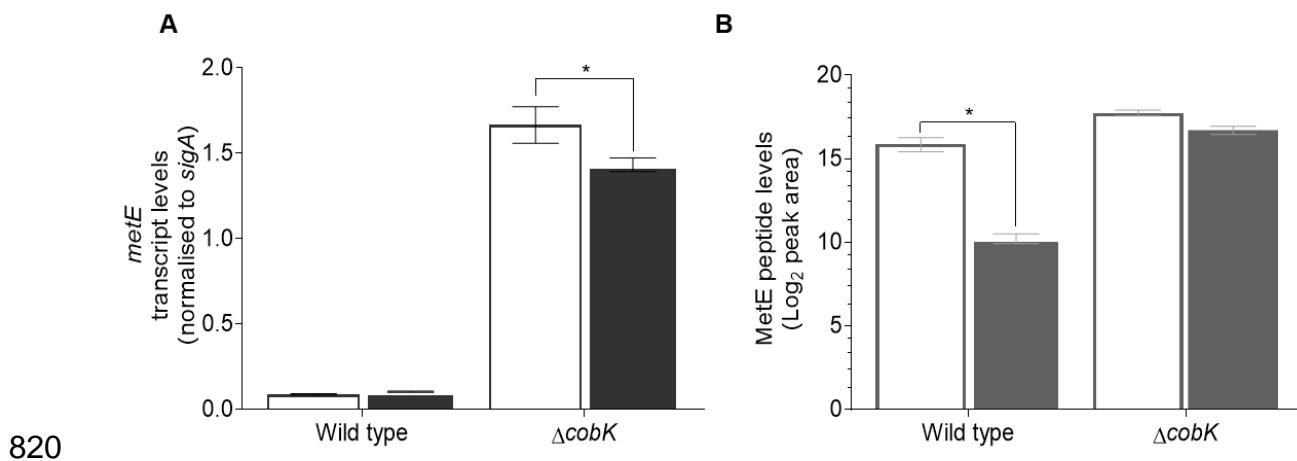
782 **Figure 1. *De novo* cobalamin biosynthesis in *M. smegmatis*. A.** Cobalamin
783 structure. The cobalt ion is coordinated equatorially by four nitrogen atoms of a corrin
784 ring and axially by variable lower (α) and upper (β) ligands (R-group). Examples of β
785 ligands are CN in cyanocobalamin (CNCbl; a.k.a. vitamin B₁₂), adenosyl in
786 adenosylcobalamin (AdoCbl; a.k.a. coenzyme B₁₂) and methyl in methylcobalamin
787 (MeCbl). The α ligand in the physiologically relevant cobalamin is typically
788 dimethylbenzimidazole (DMB; outlined in red box). **B.** The final step in the
789 methionine biosynthesis pathway is a non-reversible transfer of a methyl group from
790 methyltetrahydrofolate (Me-THF) to homocysteine to produce methionine and
791 tetrahydrofolate (THF). This reaction is catalysed by either MetH using cobalamin as
792 co-factor, or MetE. MetE expression is attenuated by cobalamin via a cobalamin
793 sensing riboswitch. **C.** The LC-MS/MS method optimised to detect co-eluting peaks
794 corresponding to α -ribazole 5'-phosphate (highlighted in blue shade in **A**; blue trace)
795 and DMB (red trace) transitions in a 20ng/ml CNCbl standard. **D-F.** Detection of *de*
796 *novo* derivatised CNCbl. Cobalamin was detected in wild type (**D**) but not in Δ cobK
797 (**E**) nor Δ metE cobK::hyg (**F**) mutants. Peak intensities are expressed as counts per
798 second (cps). **G.** Growth curves of the Δ metE cobK::hyg strain in liquid 7H9-OADC
799 medium in the presence of 10 μ M CNCbl or 1mM methionine. The mutant cannot
800 grow without supplementation.



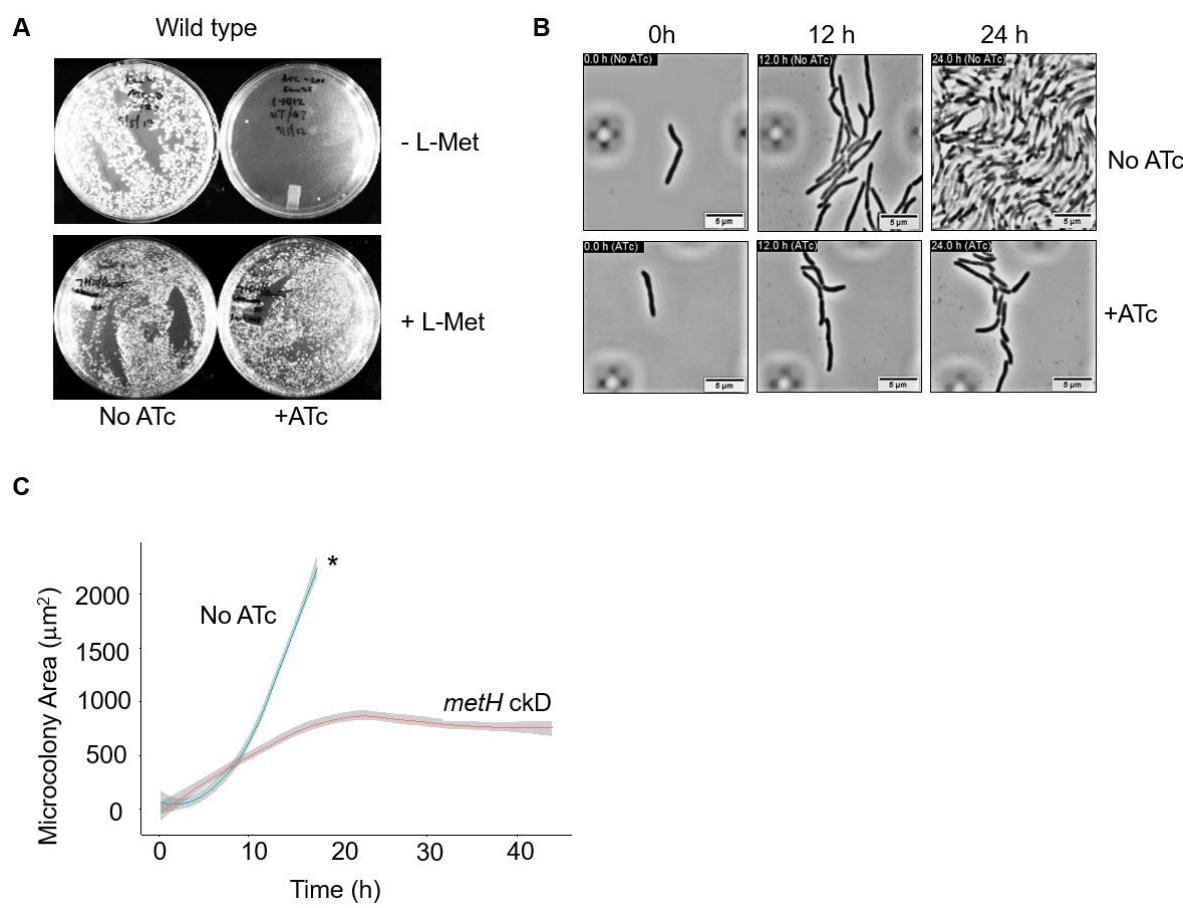
801

802 **Figure 2. Uptake of exogenous CNCbl and (CN)₂Cbi in *M. smegmatis*. A.**

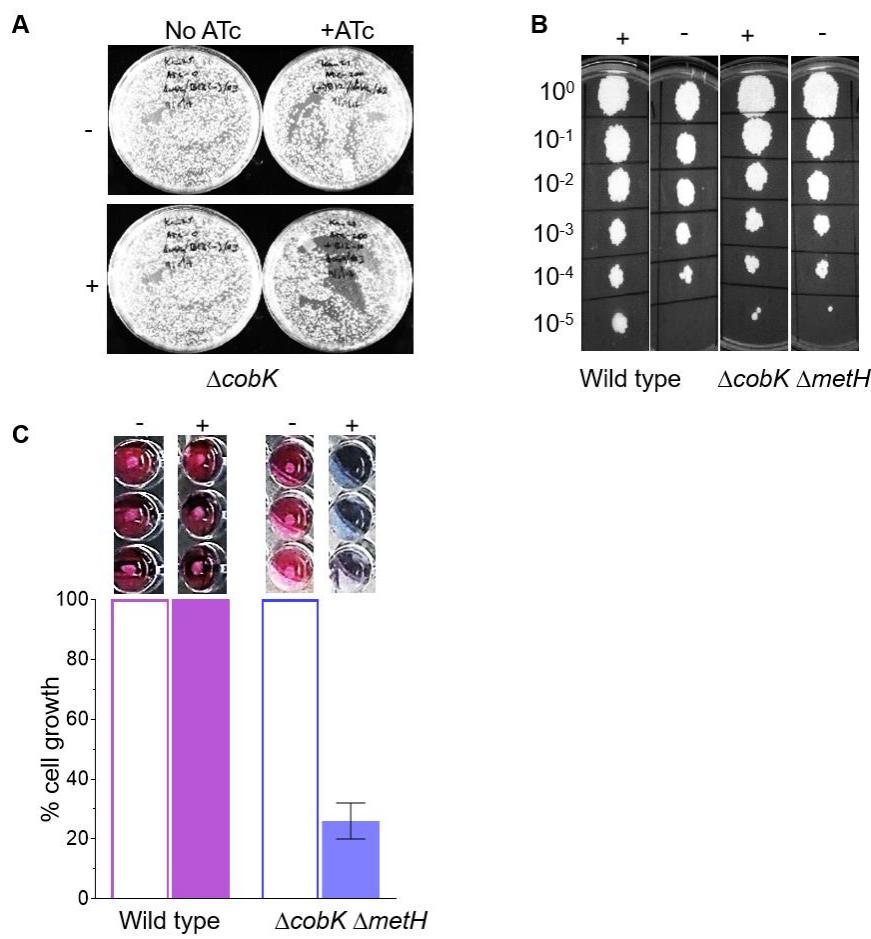
803 Spotting assays of exponential-phase cultures of wild type and $\Delta metE\ cobK::hyg$
804 strains on 7H10-OADC agar with or without 10 μ M CNCbl or 10 μ M (CN)₂Cbi shows
805 restricted uptake of (CN)₂Cbi relative to CNCbl uptake on solid medium. **B.** Alamar
806 Blue assay to evaluate the growth of the $\Delta metE\ cobK::hyg$ strain in liquid medium
807 supplemented with (CN)₂Cbi. 5 \times 10³ cells were seeded in 7H9-OADC medium
808 supplemented with 2-fold dilutions of (CN)₂Cbi starting at 30 μ M as the highest
809 concentration.

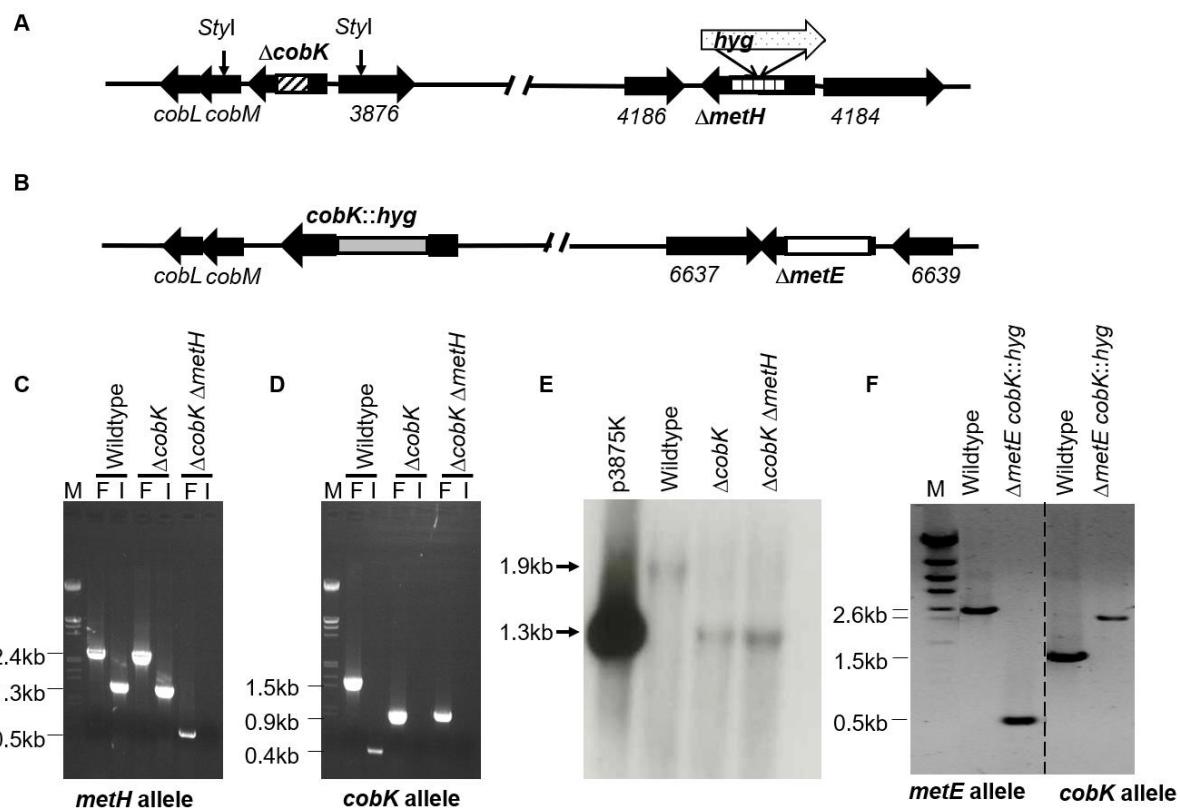

810

811


812 **Figure 3. Assimilation of (CN)₂Cbi in *M. smegmatis*.** **A.** (CN)₂Cbi control. **B.** De
813 *novo*-synthesised cobalamin in the wild type strain. **C-D.** Detection of recovered
814 cobalamin due to (CN)₂Cbi assimilation in the $\Delta metE\ cobK::hyg$ double mutant. **(E-**
815 **F).** Absence of recovered cobalamin in the $\Delta cobK$ strain in the presence of
816 exogenous (CN)₂Cbi. (CN)₂Cbi uptake was accompanied by changes in the colour of
817 the spent media from purple (**A, inset**) to a rusty hue in the wild type (**B, inset**) and
818 $\Delta cobK$ strains (**F, inset**), and pale yellow in the $\Delta metE\ cobK::hyg$ strain (**D, inset**).

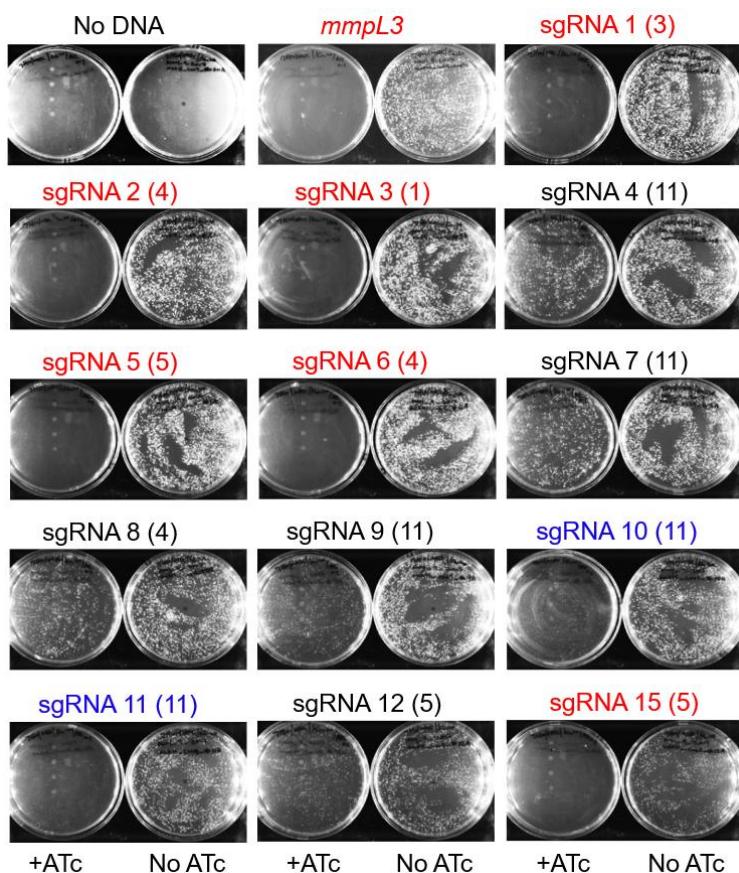
819


821 **Figure 4. Cobalamin-mediated attenuation of MetE expression in *M.***
822 ***smegmatis*. A.** ddPCR analysis of *metE* transcription in the wild type and Δ *cobK*
823 strains cultured in the presence (solid bars) or absence (open bars) of exogenous
824 CNCbl. The Δ *cobK* strain exhibited an overabundance of *metE* transcripts relative to
825 wild type. A small but statistically significant decrease in the level of *metE* transcript
826 in the Δ *cobK* strain was observed in the presence of exogenous CNCbl ($p=0.0359$;
827 (*); two-way ANOVA), but the change in *metE* transcript levels in the wild type strain
828 was not statistically significant. The graphed data are representative of two
829 independent experiments. Error bars show the standard error of the mean. **B.**
830 Targeted MS analysis of MetE peptide levels (\log_2 peak area) in the wild type and
831 Δ *cobK* strains grown in the presence (solid bars) or absence (open bars) of
832 exogenous CNCbl. Exogenous CNCbl more significantly decreased MetE peptide
833 levels in the wild type strain relative to the Δ *cobK* mutant ($p=0.0151$; (*) two-way
834 ANOVA).


835

837 **Figure 5. Growth cessation due to methionine depletion in the *metH* cKD. A.**
838 ATC-induced growth inhibition in the *metH* cKD is rescued by exogenous methionine
839 (L-Met). **B.** Representative images from time-lapse microscopy at the 0-h, 12-h, and
840 24-h time points showing severe growth retardation in the *metH* cKD. Images are
841 taken from Supplementary Movie 2. Scale bars, 5 μm . **C.** Quantification of
842 microcolony growth in the *M. smegmatis* *metH* cKD using “R” software. * limit of
843 detection.

844



854

855 **Figure S1. Construction and screening of *M. smegmatis* mutants. A.** A
856 schematic of the $\Delta cobK$ and $\Delta metH$ genotypes. The marked $\Delta metH:hyg$ construct
857 was generated by inserting a *hyg* fragment (broad arrow with dotted pattern) was
858 inserted into $\Delta metH$ construct using *Bgl*II sites. **B.** A schematic depicting the $\Delta metE$
859 $cobK:hyg$ genotype showing the deleted portion of *metE* allele (white rectangle) and
860 the insertion of a *hyg* fragment (grey rectangle) into the *cobK* allele. **C-D.** PCR
861 screening of the putative $\Delta cobK$ and $\Delta metH$ strains using primers targeting flanking
862 (F) or internal (I) regions of the deleted portion of the genes. Amplicon sizes for
863 flanking primers: wild type *metH* – 2.4kb; $\Delta metH$ – 0.5kb; wild type *cobK* – 1.5kb;
864 $\Delta cobK$ – 0.9kb. Amplicon sizes for internal primers: wild type *metH* – 1.3kb; wild type
865 *cobK* – 0.4kb. M – DNA molecular weight marker. **E.** Confirmation of $\Delta cobK$ by
866 Southern blotting. A PCR-generated probe for *cobK* was used to detect a fragment
867 between two naturally occurring *Sty*I restriction sites (down-facing arrows in **A**).
868 Expected fragments: wild type *cobK* – 1.9kb; $\Delta cobK$ – 1.3kb. **F.** PCR genotyping of
869 $\Delta metE cobK:hyg$ strain using primers flanking *cobK* and *metE*. Dashed line marks
870 the border of two separate gels.

871

872

873 **Figure S2. Conditional knockdown of *metH* using CRISPRi.** The knock-down of
874 *mmpL3* completely inhibited growth, whereas the 13 *metH* cKD constructs
875 suppressed growth to varying degrees. The sgRNAs that produced complete
876 inhibition of growth upon the ATc induction are highlighted in red, those exhibiting
877 partial inhibition in blue, and those with no inhibition in black. The target
878 complementarity scores associated with each sgRNA are indicated in parentheses.

879

880 **SUPPLEMENTARY MOVIES LEGEND**

881 Live-cell imaging of *M. smegmatis* wild type and *metH* cKD strains using time-lapse
882 phase-contrast microscopy. For single cell analysis using microfluidics, a suspension
883 of 2×10^6 bacterial cells/mL at exponential growth phase was preincubated with or
884 without 100ng/mL of ATc for 6 h at 37°C prior to loading on the microfluidics
885 platform. The experiment was run for 43 h and images were captured every 15 min.