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ABSTRACT

1 Understanding how genetic variation shapes an age-dependent complex trait relies on accurate

2 quantification of both the additive genetic effects and genotype-environment interaction effects in
3 an age-dependent manner. We used a generalization of the linear mixed model to quantify diet-
4 dependent genetic contributions to body weight and growth rate measured from early development
5 through adulthood of 960 Diversity Outbred female mice subjected to five dietary interventions.
6 We observed that heritability of body weight remained substantially high (h? = 0.8) throughout
7 adulthood under the 40% calorie restriction diet, while heritability, although still appreciably high,
8 declined with age under all other dietary regimes. We identified 14 loci significantly associated with
9 body weight in an age-dependent manner and 19 loci that contribute to body weight in an age- and
10 diet-dependent manner. We found the effect of body weight alleles to be dynamic with respect to
11 genomic background, age, and diet, identifying the scope of pleiotropy and several instances of allelic
12 heterogeneity. In many cases, we fine-mapped these loci to narrow genomic intervals containing a
13 few genes and impute putative functional variants from the genome sequence of the DO founders.
14 Of the loci associated with body weight in a diet-dependent manner, many have been previously
15 linked to neurological function and behavior in mice or humans. These results enable us to more
16 fully understand the dynamics of the genetic architecture of body weight with age and in response
17 to different dietary interventions, and to predict the effectiveness of dietary intervention on overall
18 health in distinct genetic backgrounds.

19 Keywords heritability - gene-environment interaction - mixed models - longitudinal - quantitative trait locus - diversity
20 outbred

211 Introduction

22 Quantifying the contributions of genetic and environmental factors to population variation in an age-dependent
23 phenotype is critical to understanding how phenotypes change over time and in response to external perturbations. The
24 identification of genetic loci that are associated with a complex trait in an age- and environment-dependent manner
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25 allows us to elucidate the dynamics and context-dependence of the genetic architecture of the trait and facilitates trait
26 prediction. For health-related traits, these genetic loci may also facilitate greater understanding and prediction of
27 age-related disease etiology, which is an important step to genetically or pharmacologically manipulating these traits to
28 improve health.

29 Standard approaches used to identify genetic loci associated with quantitative traits can be confounded by non-additive
30 genetic effects such as genotype-environment (GxXE) and genotype-age (GxA) interactions [1} ], contributing to the
31 "missing heritability" of quantitative traits [2| ]. The linear statistical models routinely used in genetic mapping
32 analyses do not account for variation in population structure between environments and polygenicity in GxE interac-
33 tions. Population structure can substantially increase the false-positive rate when testing for GXE associations [3, ].
34+ Furthermore, not accounting for polygenic GXE interactions has the potential to incorrectly estimate the heritability
35 of quantitative traits in the context of specific environments [2| ]. To address these limitations, recent efforts have
36 generalized standard linear mixed models (LMMs) with multiple variance components that allow for polygenic GXE
37 interactions and environment-dependent residual variation [2}4} 13,15, ]. Moreover, these generalized LMMs substantially
38 increase the power to discover genomic loci that are associated with phenotype in both an environment-independent and
39 environment-dependent manner.

40 In this study, we used a generalized LMM to investigate the classic quantitative trait, body weight, in a large population
41 of Diversity Outbred (DO) mice. Body weight was measured longitudinally from early development to late adulthood,
42 before and after the imposition of dietary intervention at six months of age. We expect diet and age to be important
43 factors affecting body weight and growth rate; however, it remains to be determined how these factors will interact with
44 genetic variation to shape growth. Two early studies found significant genetic correlations for body weight and growth
45 rate during the first 10 weeks of mouse development, which supported the hypothesis that growth rates during early
46 and late development were affected by pleiotropic loci [6} (7, ]. Subsequent experiments found that the heritability of
47 body weight increased monotonically with age throughout development: from 29.3% to 76.1% between 1 and 10 weeks
48 of age [6) ], from 6% to 24% between 1 and 16 weeks of age ([8]), and from 9% to 32% between 5 and 13 weeks of
49 age [9l ]. The heritability of growth rate also varied with age, but exhibited a peak of 24% at 3 weeks of age and then
so declined to nearly 4% at 16 weeks of age [8, ]. The strength of association and effect size of QTLs for body weight and
51 growth rate were specific to early or late ages and were inconsistent with the hypothesis that pleiotropic alleles affect
52 animal size at early and late developmental stages [6} 8, ]. While these results are well supported, their interpretation is
53 somewhat limited because body weight measurements ceased at young ages and significant QTLs encompassed fairly
54 large chromosomal regions. Given these limitations, we were motivated to ask two questions: Will fine-mapping to
55 greater resolution reveal single genes which function at either early or late developmental stages, or reveal multiple
56 genes in tight linkage with variable age-specific effects? How will the effect of these loci change at later ages and under
57 different diets?

58 We expect the interaction of dietary interventions, such as caloric restriction or intermittent fasting, with genetics to
s9 greatly impact the body weight trajectories of mice. Researchers have observed genotype-dependent reductions in body
60 weight in the 7 to 50 weeks after imposing a 40% caloric restriction, and variation in heritability of this trait with age
61 from 42% to 54% [10, ]. A second study subjected a large genetic-mapping population to dietary intervention and
62 1dentified multiple loci with significant genetic and genotype-diet interaction effects on body weight at 2 to 6 months
63 of age [L1} ]. These studies identified substantial diet- and age-dependent genetic variance for body weight in mice,
64 similar to what has been found in humans [1}, 12, |13} ]. It, however, remains to be determined how the contribution
65 of specific genetic loci to body weight changes in response to different dietary interventions and whether the effects
66 observed in younger mice are indicative of the maintenance of body weight in adult mice.

67 In order to address these questions, we measured the body weight of multiple cohorts of genetically diverse mice
es from the DO population [14} ] from 60 to 660 days of age (Figure[TJA). At 180 days of age, we randomized mice by
69 body weight and assigned each mouse to one of five dietary regimes — Ad libitum (AL), 20% and 40% daily calorie
70 restriction (CR), and 1 or 2 day per week intermittent fasting (IF). Longitudinal measurements of body weight in these
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71 DO mice allowed us to discover the age-dependent genetic determinants of body weight and growth rate, in the context
72 of different dietary interventions.

73 In the following sections, we first describe the study design and collection of the genetic and body weight measurements.
74 Second, we specify the Gene-Environment Mixed Model (GXEMM) [5} ], the generalized LMM we use to quantify total
75 and diet-dependent heritabilities of body weight and growth rate from 60 to 660 days of age. We next use this model to
76 identify genetic loci having additive or genotype-diet interaction effects on body weight. We fine-map candidate loci
77 and determine the scope of pleiotropy for age and diet specific effects. We find many, but not all, loci are associated
78 with body weight in a narrow age range and localize to small genomic regions, in some cases to single genes. We utilize
79 the full genome sequence of the DO founders and external chromatin accessibility data to further narrow the genomic
go regions to a small number of candidate variants at each locus. Interestingly, many diet-specific body weight loci localize
81 the genes implicated in neurological function and behavior in mice or humans.

g2 2 Study Design and Measurements

83 The Diversity Outbred (DO) house mouse (Mus musculus) population was derived from eight inbred founder strains
g4+ and is maintained at Jackson Labs as an outbred heterozygous population [14} ]. This study contains 960 female DO
85 mice, sampled at generations: 22 — 24 and 26 — 28. There were two cohorts per generation for a total of 12 cohorts
g6 and 80 animals per cohort. Enrollment occurred in successive quarterly waves starting in March 2016 and continuing
g7 through November 2017.

g8 A single female mouse per litter was enrolled into the study after wean age (3 weeks old), so that no mice in the study
8o were siblings and maximum genetic diversity was achieved. Mice were housed in pressurized, individually ventilated
90 cages at a density of eight animals per cage (cage assignments were random). Mice were subject to a 12 hr:12 hr
o1 light:dark cycle beginning at 0600 hrs. Animals exit the study upon death. All animal procedures were approved by the
92 Animal Care and Use Committee at The Jackson Laboratory.

93 From enrollment until six months of age, all mice were on an Ad Libitum diet of standard rodent chow SKOG from
94+ LabDiet. At six months of age, each cage of eight animals was randomly assigned to one of five dietary treatments,
95 with each cohort equally split between the five groups (N=192/group): AD Libitum (AL), 20% caloric restriction
96 (20), 40% caloric restriction (40), one day per week fast, (ID) and two days per week fast (2D) (see Figure ). Ina
97 previous internal study at the Jackson Laboratory, the average food consumption of female DO mice was estimated
98 to be 3.43g/day. Based on this observation, mice on 20 diet were given 2.75g/mouse/day and those on 40 diet were
99 given 2.06g/mouse/day. Food was weighed out for an entire cage of 8. Observation of the animals indicated that the
100 distribution of food was roughly equal among all mice in a cage across diet groups.

101 Mice on AL diet had unlimited food access; they were fed when the cage was changed once a week. In rare instances
102 when the AL mice consumed all food before the end of the week, the grain was topped off mid week. Mice on 20% and
103 40% CR diets were fed daily. We gave them a triple feeding on Friday afternoon to last till Monday afternoon. As the
104 number of these mice in each cage decreased over time, the amount of food given to each cage was adjusted to reflect
105 the number of mice in that cage. Fasting was imposed weekly from Wednesday noon to Thursday noon for mice on 1D
106 diet and Wednesday noon to Friday noon for mice on 2D diet. Mice on 1D and 2D diets have unlimited food access
107 (similar to AL mice) on their non-fasting days.

108 2.1 Body weight measurements

109 Body weight was measured once every week for each mouse throughout its life. The body weight measurements for this
110 analysis were collated on February 1, 2020 at which point 941 mice (98%) had measurements at 180 days, 890(93%) at
111 365 days, 813 (85%) at 550 days, and 719(75%) at 660 days. For these analyses, we included all body weight measures
112 for each mouse up to 660 days of age. We smoothed out measurement noise, either due to errors in measurement or
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Figure 1: (A) Outline of study design. (B) Median (inter-quartile range) body weight in grams and (C) median
(inter-quartile range) growth rate in grams per day for five dietary treatments from 60 to 660 days of age. Vertical grey
dotted line denotes the onset of dietary intervention at 180 days of age.
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113 swaps in assigning measurements to mice, using an ¢; trend filtering algorithm [[15 ] which calculates a piece-wise
114 linear trend line for body weight for each mouse over its measurement span. The degree of smoothing was learned by
115 minimizing the error between the predicted fit and measurements at randomly held-out ages across all mice. In the rest
116 of this paper, body weight and growth rate refer to the predicted fits from ¢; trend filtering.

117 We present the average trends in body weight and growth rate, stratified by dietary intervention, in Figure[T| panels B and
118 C, respectively. The body weight and growth rate trends without ¢; trend filtering are presented in Supplemental Figure
119 [ST] The most prominent observation from these trends is that dietary intervention contributes the most to variation
120 in body weight in this mouse population. After accounting for this source of variation, there remains substantial and
121 different quantities of variation in body weight trends between the different dietary interventions, suggesting a plausible
122 GxD interaction effect on body weight trajectories.

123 2.2 Genotype measurements

124  We collected tail clippings and extracted DNA from 954 animals (http://agingmice.jax.org/protocols).
125 Samples were genotyped using the 143,259-probe GigaMUGA array from the Illumina Infinium II platform [16,
126 ] by NeoGen Corp. (genomics.neogen.com/). We evaluated genotype quality using the R package: qtl2
127 [17, ]. We processed all raw genotype data with a corrected physical map of the GigaMUGA array probes
128 (https://kbroman.org/MUGAarrays/muga_annotations.html). After filtering genetic markers for uniquely
129 mapped probes, genotype quality and a 20% genotype missingness threshold, our dataset contained 110,807 markers.

130 We next examined the genotype quality of individual animals. We found seven pairs of animals with identical genotypes
131 which suggested that one of each pair was mislabelled. We identified and removed a single mislabelled animal per pair
132 by referencing the genetic data against coat color. Next, we removed a single sample with missingness in excess of 20%.
133 The final quality assurance analysis found that all samples exhibited high consistency between tightly linked markers:
134 log odds ratio error scores were less than 2.0 for all samples [18| ]. The final set of genetic data consisted of 946 mice.

135 For each mouse, starting with its genotypes at the 110,807 markers and the genotypes of the 8 founder strains at the
136 same markers, we inferred the founders-of-origin for each of the alleles at each marker using the R package: qtl2
137 [[17, ]. This allowed us to test directly for association between founder-of-origin and phenotype (rather than allele
138 dosage and phenotype, as is commonly done in QTL mapping) at all genotyped markers. Using the founder-of-origin of
139 consecutive typed markers and the genotypes of untyped variants in the founder strains, we then imputed the genotypes
140 of all untyped variants (34.5 million) in all 946 mice. Targeted association testing at imputed variants allowed us to
141 fine-map QTLs to a resolution of 1 — 10 genes.

142 3 Models and Methods

143 3.1 Motivating models for environment-dependent genetic architecture

144  Genome-wide QTL analyses in model organisms over the last decade have predominantly employed linear mixed
145 models (e.g., EMMA [19, ], FastLMM [20, ], and GEMMA [21}, ]), expanding on the heuristic that samples sharing
146 more of their genome have more correlated phenotypes than genetically independent samples. We found that the
147 distributions of covariances in body weight, measured at 500 days of age, between animal pairs within the AL treatment
148 were nearly indistinguishable when we partition pairs into high kinship (>0.2) and low kinship groups (Figure |2} no
149 significant separation between solid and dashed red lines). However, animal pairs in the 40%CR treatment exhibit
150 significantly lower covariance in body weight in the low kinship group compared to the high kinship group (Figure 2]
151 significant separation between solid and dashed orange lines). This observation suggests that the genetic contribution to
152 body weight is different in distinct dietary environments. This observation also motivates the use of recently developed
153 generalized linear mixed models to conduct genome-wide QTL analysis because they more fully account for the
154 environment-dependent genetic variances, reduce false positive rates and increase statistical power [2, 14,13, 15, ]).


http://agingmice.jax.org/protocols
genomics.neogen.com/
https://kbroman.org/MUGAarrays/muga_annotations.html
https://doi.org/10.1101/2020.11.04.364398
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.04.364398; this version posted November 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - NOVEMBER 5, 2020

1.0

o
(0 0)
l

o
o)
|

o
~
|

= high kinship
= = = |ow kinship

PR AL (auc=0.53, p-value=0.188)

0.0 p==St =

cumulative density

o
N
|

I I |
-200 -100 0 100 200 300 400
covariance in body weight between animal pairs

Figure 2: Phenotypic divergence between animal pairs is quantified by the covariance in body weight at 500 days of
age. We plot the cumulative density of body weight covariance for all pairs of animals in the AL and 40% CR dietary
treatments, partitioned into high kinship (> 0.2) or low kinship groups.

155 3.2 QOverview of analyses

156 Starting with body weight measurements in 959 mice from 30-660 days of age, and founder-of-origin alleles inferred at
157 110,807 markers in 946 mice, we first quantified how the heritability of body weight and growth rate changes with age
158 and between dietary contexts. We used the GXEMM model (described below in detail) to account for both additive
159 environment-dependent fixed effects and polygenic gene-environment interactions. We considered two different types of
160 environments: diet and generation. The five diet groups were assessed from 180 — 660 days and the twelve generations
161 were assessed from 30 — 660 days. Next, we performed genome-wide QTL mapping for body weight at each age
162 independently, testing for association between body weight and the inferred founder-of-origin at each genotyped marker.
163 For ages 180 — 660 days, we additionally tested for association between body weight and the interaction of diet and
164 founder-of-origin at each marker. We computed p-values using a sequential permutation procedure [22} 23] ] at each
165 variant for each of the additive and interaction tests and used these to assign significance [24} ]. Finally, for each
166 significant locus, we performed fine-mapping to identify the putative causal variants and founder alleles driving body
167 weight, and underlying functional elements (genes and regulatory elements) to ascertain the possible mechanisms by
168 which these variants act.
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169 3.3 Polygenic models for gene x environment interactions

170 GXEMM [3] ] is a generalization of the standard linear mixed model that allows for polygenic GXE effects. Under this
171 model, the phenotype is written in terms of genetic effects as follows:

E % E V
Y:a0+zzeae+ZGu5v+ZZG7JZ€71)€+€; (l)
e=1 v=1 e=1v=1
172 where Y € R¥ is the vector of phenotypes over N samples, G,,v = 1,...,V are genotypes of V bi-allelic single
173 nucleotide polymorphisms (SNPs), Z.,e = 1, ..., E are binary vectors over E environments, and & denotes the residual

174 vector.

175 In our application, Y is the vector of ¢; trend filtered body weights at a specific age; we do not standardize the body
176 weights so that the estimated effects are interpretable and comparable across ages. When testing for association with
177 the founder-of-origin of markers, G, € [0,1]%;||G. |1 = 1 is a vector denoting the probability that the two alleles
178 of the marker came from each of the eight founder lines from which the DO population is derived. || - ||; denotes the
17e  L1-norm of a vector. Alternatively, when testing for association with the allele dosage of a variant, G,,,, € [0, 2] is the
180 expected allele count at variant v. Finally, Z,,. = 1 denotes that sample 7 is subject to environment e. Prior to dietary
181 intervention, the environments in our model are the 12 generations over which the DO samples span (i.e., £ = 12).
182 After dietary intervention, the environments further include the 5 diet groups (i.e., E = 17).

183 The effects of covariates, «, are modeled as fixed while the genetic effects, 3, and genotype-environment effects, ~,
184 are modeled as random. Assuming heteroscedastic noise, € ~ A(0, ©), a normal prior on the random genetic effects,
185 3, ~ N(0,0%/V), and a normal prior on the random GxE effects, 7y,. ~ N(0, %Q), we get’ Y ~ N (u, A), where
186 =00+, Zeaeand A =0+ *K+ 3,
187 as Opp = >, Zneo?2, K is the kinship matrix with entries defined as K, = = >, GT |Gy, 0% is the variance of
188 environment-independent genetic effects, 2 € R¥*¥ is the variance-covariance matrix representing the co-variation in

Qeer (IC o (zezg)). O is a diagonal matrix with entries specified

189 environment-dependent genetic effects between pairs of environments, and A o B denotes the Hadamard product of
190 matrices A and B. For simplicity, we constrain € to be a diagonal matrix in this study, limiting our ability to account
191 for correlated genetic effects in pairs of environments. Note that each of the above parameters and data vectors in the
192 model may be distinct at different ages.

193 3.4 Proportion of phenotypic variance explained by genetics

The proportion of total phenotypic variance explained by genetic effects is

V.
PVE,,; = Vzii )
Varg = ¢° (tr](\;C) - Sm;g’c))
3
tr(KoW,) sum(KoW,)
+ Z Qee < N - N2 > )
Vary = Varg
I (Zn M%) B (>, #n)Q
N N2 “4)

N -1
194 where W, = Z,ZT, tr(-) denotes the trace of a matrix, and sum(-) denotes the sum of all elements of a matrix. The
195 two terms in Varg are genetic contributions to phenotypic variation that are shared across environments and specific to


https://doi.org/10.1101/2020.11.04.364398
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.04.364398; this version posted November 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - NOVEMBER 5, 2020

196 environments, respectively. The second and third terms in Vary are phenotypic variation explained by fixed effects
197 and unexplained residual phenotypic variation, respectively.

Similarly, the environment-dependent PVE is

PVE. — Varg, 5
¢ Vary|e’ ( )
tr(IC o W, sum(K o W,
VarG‘e = 92 < ( N, ) - (N2 ))
n Z ~ tr(CoWeoWe)  sum(KoW,oWe) (6)
— Ne Ng ’
Vary‘e = Varg‘e
+ (ZTL ‘leiznc) _ (Zn anne)Q
N N2 (7
N, —1
+tr(© o We) < e ) ,

18 where N, = Y Z.,, is the number of individuals in environment e (see for more details). The proportion
199 of phenotypic variance explained by genetic effects is equivalent to narrow-sense heritability, once variation due to
200 additive effects of environment, batch, and other study design artifacts have been removed. In this work, we use the
201 more general term, proportion of variance explained, to accommodate variation due to effects of diet and environment.

202 3.5 Genome-wide association mapping
203 3.5.1 Additive genetic effects:

204 To test for additive effect of a genetic variant on the phenotype, we include the focal variant among the fixed effects in
205 the model while treating all other variants to have random effects.

Y = Z Xeae + ¢sGs + Z G, 8, + Z GyZeywe +€ (3
c V#£S v,e

206 Applying the priors described above for 3, 7, and €, we can derive the corresponding mixed effects model is as

207 follows:

Y ~N (Z Xcac+¢sGsaA3> ) ®)

208 where A, = © + 02K, + >0 Qee (Ks 0 We) and K is the kinship matrix after excluding the entire chromosome
209 containing the variant s (leave-one-chromosome-out or LOCO kinship). Leaving out the focal chromosome when
210 computing kinship increases our power to detect associations at the focal variant [20, ]. The test statistic is the log
211 likelihood ratio A%(Y, Gg) comparing the alternate model H : ¢; # 0 to the null model Hg : ¢s = 0. The log
212 likelihood ratio is also referred to as log odds ratio or LOD through the rest of the paper.

max£(¢87 «,0,0, Q)
max L(¢s =0, a,0,0,9)

AYY,Gg) =log (10)

213 See[Appendix B|for details on computing the maximum likelihood estimates of the model parameters.

214 3.5.2 Genotype-Environment effects:

215 To test for effects of interaction between genotype and environment on the phenotype, we include a fixed effect for the
216 focal variant and its interactions with the set of all environments of interest (£) while treating all other variants to have
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217 random effects for their additive and interaction contributions,
Y =) Xeae+0:Ge+ Y XeeGaZe + Y GuBut+ > GuZeyue +e. (11
c ecé v#S v#s,e

218 The corresponding mixed effects model is

Y~N ZacXc+¢sGs +ZXseGsZeaAs s (12)
c ec&

219 and the test statistic is

maXE(X.w ¢S, «,0,Q, Q)

13
HlaX[:(XS :07(253,(1,0', Q?Q> ( )

A(Y,G,) = log

220 Note that this statistic tests for the presence of interaction effects between the focal variant and any of the environments
221 of interest.

22 4 Simulations

223 To evaluate the accuracy of GXEMM and compare it against standard linear mixed models like EMMA ([19])), we
224 simulated phenotypic variation under a broad range of values for PVE in each of two environments. For all simulations,
225 we fixed the total sample size to N = 946 and used the observed kinship matrix for the 946 DO mice in this study. For
226 each simulation, the environment-specific genetic contribution PVE,, environment-specific noise o2, and the relative
227 distribution of samples between environments are fixed. In order to explore how the two models behave under a wide
228 range of conditions, we varied PVE, € {0.05,0.10,...,0.95}, 02 = 1.0, and 03 € {1.0,2.0, 5.0}, and the samples
229 were assigned to environments either at a 1:1 ratio or a 4:1 ratio (i.e., a total of 114 parameter values). For each set of
230 fixed parameter values, we run 100 replicate simulations. At the start of each simulation, we randomly assign samples
231 to one of the two environments. Using equations 5] [6] and [7, we computed the variance component parameters by
232 solving a set of linear equations. We then generated the vector of phenotypes from a multivariate normal distribution
233 with zero mean and covariance structure dependent upon these variance component parameters (as per the generative
234 model above). Using the simulated phenotypes, we estimated PVE,,; using both the EMMA and GXEMM models and
235 PVE, using the GXEMM model.

236 We first evaluated the accuracy of PVE,,; estimated from the two models and found that the GXEMM model estimated
237 total PVE with little bias and lower variance compared to EMMA in nearly all simulations across the suite of parameter
238 combinations that we investigated (Figures[3]A and[3B). In particular, we found that EMMA substantially underestimated
239 the total PVE in comparison to GXREMM when samples were equally distributed between environments and there was
240 substantial difference in PVE or noise between environments. This is because PVE, will have a greater impact on
241 PVE.,; when both environments are more equally represented in the study sample.

242 Next, we examined the sensitivity and specificity of the GXEMM model to quantify environment-specific genetic
243 contribution to phenotypic variance. We found that when samples were equally distributed between environments,
244  GXEMM accurately estimates PVE, under a wide range of parameter values (Figure 3|C). We observe an exception
245 to this general result wherein we underestimate PVE, for the environment with lower PVE when there is a large
246 difference in PVE between the two environments. In contrast, when there is a skew in the number of samples between
247 environments, we tend to underestimate low PVE values for the environment with fewer samples (Figure 3D). We
248 observe similar patterns of bias when the two environments have comparable PVE values but different amounts of
249 environment-specific noise.

250 Overall, the GXEMM model outperforms the EMMA model in estimating total PVE and shows little bias in estimating
251 environment-specific PVE across a broad range of scenarios relevant to our study.
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Figure 3: Evaluating GXEMM and EMMA using simllﬁated datasets. (A). Comparison of true PVE,,, to that
estimated from EMMA (left panel) and GXEMM (right panel) models. Simulations were run with an equal number
of samples each environment and o2, was fixed at 1.0. We ran for pairwise combination of PVE.; and PVE.,
varied from 0.05 to 0.95, with fifty replicates per pair of values. (B). Same as (A) but with a 4:1 of samples between
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22 5 Results and Discussion

253 5.1 PVE of body weight across age and diet

254  First, we quantified the overall contribution of genetics to variation in body weight and, importantly, how this contribution
255 changed with age. We applied both EMMA and GXEMM to body weight estimated every 10 days. Since the mice
256 from each generation cohort were measured at the same time every week, we used generation as a proxy for the shared
257 environment that mice are exposed to as part of the study design. We accounted for generation-specific fixed effects
258 (o in Equation [T in both models and genotype-generation random effects () in GXEMM. For ages after dietary
259 intervention (> 180 days), we accounted for diet-specific fixed effects in both models and genotype-diet random effects
260 in GXEMM. We estimated the variance components in the model at each age independently and computed the total and
261 diet-dependent PVE using Equations[2]and 5

262 In Figure JA, we observed that the PVE of body weight steadily increased during development and up to 180 days
263 of age, when dietary intervention was imposed. The GXKEMM model estimates a higher PVE than the EMMA model
264 during this age interval because the former model specifically accounts for polygenic genotype-generation effects.
265 Following dietary intervention, PVE decreased in four of the five dietary groups; the one exception was the 40% CR
266 group which maintained a high PVE (PVE4, =~ 0.8) (Figure @A) and low total phenotypic variance (Supplemental
267 Figure[S3A, top right panel) from 180 — 660 days of age. In contrast, the Ad-lib group had the lowest PVE and greatest
268 total phenotypic variance in the same age range. Notably, ¢; trend filtering of the raw measurements proved useful in
269 quantifying smoothly varying trends in the PVE of body weight and growth rate, and improving our estimates of the
270 PVE of growth rate by reducing the effect of measurement noise (Supplemental Figure[S2). Moreover, these results
271 were robust to variation in the genetic data used to calculate the kinship matrix and to survival bias at 660 days of age.

272 The kinship matrix used for estimating these PVE values was computed based on the founder-of-origin of marker
273 variants [25 ]. When using kinship estimated using bi-allelic marker genotypes (as is commonly done in genome-wide
274 association studies), we observed largely similar trends in PVE; however, differences in PVE between diets after 400
275 days were harder to discern due to much larger standard errors for the estimates (Supplemental Figure [S3JA, left panels).
276 To test for bias or calibration errors in our PVE estimates, we randomly permuted the body weight trends between mice
277 in the same diet group and re-calculated the total and diet-dependent PVE values. Consistent with our expectations,
278 PVE dropped to nearly zero for the permuted dataset (Supplemental Figure [S3B, left panel), indicating that the PVE
279 estimates are well-calibrated. Note that when using kinship computed from genotypes, the PVE in the permuted dataset
280 does not drop to zero, suggesting that PVE estimated in this manner is not well-calibrated (Supplemental Figure [S3[B,
281 right panel). Finally, to evaluate the contribution of survival bias to our estimates, we recomputed PVE at all ages after
282 restricting the dataset to mice that were alive at 660 days. We observed PVE estimates largely similar to those computed
283 from the full dataset, suggesting very little contribution of survival bias to our estimates (Supplemental Figure [S3[C).

284 Next, we quantified the age-dependent contribution of genetics to variation in growth rate, enabled by the dense temporal
285 measurement of body weight. As before, we applied EMMA and GXEMM to growth rate estimated every 10 days. In
286 Figure B, we observed that PVE of growth rate increases rapidly during early development, and then decreases to
287 negligible values around 240 days of age. In contrast to body weight, PVE of growth rate is substantially lower at
288 all ages, and there is little divergence in PVE across diet groups for most ages. Notably, the decrease and subsequent
289 increase in growth rate PVE coincides with specific metabolic, hematologic and physiological phenotyping procedures
200 that these mice underwent at specific ages as part of the study (Supplemental Figure [ST). Due to lower values and
291 greater variance in PVE of growth rate with age, we focus on body weight throughout the rest of the paper.

292 In summary, the 40% CR intervention produced the greatest reduction in average body weight and maintained a high
203 PVE after dietary intervention. This is because the total genetic variance in body weight remained relatively high and
294 the environmental variance remained relatively low throughout this interval. In contrast, body weight PVE steadily
295 decreased with age in each of the four less restrictive diets, which was due to a steady increase in environmental
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Figure 4: (A) Body weight PVE values for 30 — 660 days of age. Total PVE estimates are derived from the EMMA
(light grey) and GXEMM (dark grey) models. Diet-dependent PVE values are derived from the GREMM model. Dotted
vertical line at 180 days depicts the time at which all animals were switched to their assigned diets. (B) Growth rate
PVE; details the same as A.
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206 variance and not a decrease in the total genetic variance of body weight (Supplemental Figure[S3]A) . Even though the
297 total genetic variance in body weight is nearly constant across diets from 180 — 660 days of age, the effect of specific
298 variants may change with age.

299 5.2 Genomewide QTL analysis of body weight across age and diet

300 We sought to identify loci significantly associated with body weight in a diet-dependent and age-dependent manner. To
so1 this end, we tested for association between the inferred founder-of-origin of each typed variant and body weight at each
s02 age independently. We note that body weight measurements taken at different ages are not independent; i.e., we may
303 detect a locus at a specific age if it has small effects on body weight acting over a long period of time or a large effect
304 on body weight resulting in rapid bursts in growth. Thus, a locus identified as significant at a specific age indicates its
305 cumulative contribution to body weight at that age.

so6  We identified 29 loci significantly associated with body weight at any age in the additive or interaction models using a
307 p < 10~* cutoff for the additive test and a weaker p < 10~3 cut-off for the genotype-diet interaction test (Supplemental
08 Figure[S4). Using all bi-allelic variants imputed from the complete genome sequences of the eight DO founder strains
309 [26l ], we re-tested the genetic association for the 29 candidate loci with the additive and interaction models. Specifically,
310 we tested for association between all imputed genotype variants and body weight, accounting for kinship estimated
311 using founder-of-origin inferred at genotyped variants as before. We found that 24 loci remained significant in the
312 fine mapping analysis: five loci unique to the additive model, ten loci unique to the interaction model, and nine loci
s13  significant in both models (Table[I)). We identified body weight associations with age-dependent effects from early
314 development to adulthood: four diet-independent loci were associated with body weight exclusively during development
315 (ages 60 — 160 days) and three were associated exclusively during adulthood (ages 200 — 660 days); the remaining
st6  seven loci were associated during development prior to the imposition of dietary restriction at day 180 and continued to
317 be associated into adulthood (Table[T)). The majority of diet-dependent loci (12 of 19) had a detectable effect on body
18 weight only 240 days after dietary intervention (ages 420 — 660 days; Table[I). For each candidate body weight locus,
st9  we sought to determine the likely set of causal variants and estimate the effect of the eight founder alleles in a diet- and
320 age-dependent manner.

321 In order to facilitate characterization and interpretation of the genetic associations at each locus, we sought to represent
322 these associations in terms of the effects of founder haplotypes. First, we determined the founder-of-origin for each
323 allele at every variant that was significant in at least one age. This allowed us to assign a founder allele pattern (FAP) to
324 each significant variant in the locus. For example, if a variant with alleles A/G had allele A in founders AJ, NZO, and
325 PWK and the allele G in the other 5 founders, then we assign A to be the minor allele of this variant and define the
326 FAP of the variant to be AJ/NZO/PWK. Next, we grouped variants based on FAP and define the LOD score of the FAP
327 group to be the largest LOD score among its constituent variants. (Note that, by definition, no variant can be a member
328 of more than one FAP group.) By focusing on the FAP groups with the largest LOD scores, we significantly reduced
329 the number of putative causal variants (Table |1} Supplemental File 1), while representing the age- and diet-dependent
s30 effects of these loci in terms of the effects of its top FAP groups. We further narrowed the number of candidates by
331 intersecting the variants in top FAP groups with functional annotations (e.g., gene annotations, regulatory elements,
332 tissue-specific regulatory activity, etc). For many loci, this procedure identified candidate regions containing one to
s33  three genes (Table[l)) and we provide the full list of all genes within candidate regions in Supplemental File 2. In order
334 to demonstrate the utility of this approach, we first examined a single locus on chromosome 6 strongly associated under
335 the additive model.

336 We identified a diet-independent locus on chromosome 6 significantly associated with body weight during early
337 development and nominally associated with body weight in certain dietary treatments at later ages (Figure[5A). One
ass explanation for this result is a single pleiotropic allele affecting body weight at two distinct stages of life: early
339 development and adulthood. Alternatively, this result could be explained by allelic heterogeneity [27, ] — a single locus
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FAP position (Mb) Significant Variants  Age Range (Days)
Chrm FAP FAP Start End Total Open ) Start End Lead Candidate
Rank Chromatin Gene
; 1 AJ/NOD 152.046626  152.046626 1 1 60 60 Trmt1l, Edem3
2 AJ/NOD/129 151.473677 152.280212 58 10 60 60 -
2 1 129/CAST/PWK 77154962  77.357295 80 8 120 360 Ccdc141, Sestd1
3 1 AJ/NOD/NZO/CAST ~ 50.533599  50.595073 55 0 200 260 Skc7a11
4 1 AJ 58.950364  60.267128 5 2 260 360 Ugcg
- 2 PWK/WSB 59.461248  59.981846 39 &) 100 300 -
S 6 1 AJ/NOD 53.61761 55.555977 89 2 60 200 Creb5
T 7 1 B6/CAST 71.375007  72.786849 47 1 80 160 Mctp2
8_ 7 1 AJ/129/NZO/PWK 134.08785  134.704465 20 2 80 200 Adam12
§ 10 1 129/NZO/PWK/WSB  9.078054 9.078054 1 0 540 660 Samd5
T 2 129/NZO/WSB 8.903387 9.092694 10 2 540 540 Sash1, Samd5
% 10 1 CAST/PWK 91.163191  91.905287 2779 81 120 660 Anks1b, Apaf1
. 1 AJINZO/PWK/CAST  58.155424  58.155424 1 0 80 80 =
2 B6/CAST 56.985645  59.035309 603 70 80 100 =
12 1 NZO/CAST 99.520559  99.907182 43 3 160 260 Foxn3
15 1 B6/129/NZO 99.390603  99.65295 92 20 260 600 Agp2, Aqp5, Aqp6
17 1 AJ/NOD/WSB 6.753277 8.85311 149 11 60 420 Pde10a
19 1 AJ/129/NZO/PWK 23.025043 23.17612 58 14 80 120 Trpm3, KIf9
1 1 NOD/CAST 151.032114  153.716837 28 3 360 660 -
2 1 AJ/ICAST/PWK/WSB ~ 22.192222 2278664 86 8 480 480 =
2 1 PWK 73590142  75.371564 1672 44 280 300 -
3 1 NZO/CAST/PWK/WSB 50.184746  50.419821 5 0 420 660 Slc7al1
3 1 B6/PWK 156.74554  156.74554 1 0 660 660 Negr1
2 129/CAST/WSB 156.133466  156.387825 170 8 660 660
A 1 129/NOD/PWK 57.696301 57.84652 10 1 200 200 Palm2, Pakap, Akap2
2 NOD 57.669827  57.669827 1 0 200 200
= 5 1 NOD 19.213904 21.57007 153 16 420 660 Magi2, Ptpn12
g 5 1 PWK 68.986655  70.490341 277 0 360 480 Kctd8
GC) 5 1 AJ129/NOD/WSB  117.543498  118.050453 7 0 480 540 -
% 2 B6/CAST/PWK 116.797769 118.270745 69 10 360 600
S 6 1 B6/CAST/PWK 54146132 55452827 507 101 540 660 Ghrhr
o 6 1 B6/CAST 139.190506  140.141694 111 5 240 420 Pik3c2g
N 7 1 NZO/PWK 133.838117  133.924023 218 3 420 420 Adam12
12 1 AJ/B6 78.06102 79.734912 10 2 420 540 Gphn
2 WSB 78.107988  78.932842 122 8 360 420 Gphn
12 1 AJ/ICAST/PWK/WSB  102.447268  102.56532 43 4 420 480
13 1 NZO/WSB 117.100864 118.777463 99 1 200 300 Fgf10
15 1 AJ/129/NOD 10.738034  12.040137 53 4 240 300 =
17 1 B6/129/NZO 6.755865 7.598818 26 3 300 360 -
18 1 129/CAST 71.36087 71.58844 16 1 480 540 Dcc
19 1 AJ/B6/WSB 21.806665  22.051277 32 1 220 300 -

Table 1: Significant body weight loci identified using the additive and interaction models. For each locus, we
identified the founder allele pattern (FAP) of the variant with the strongest association at any age, the genomic location
of these variants, number of significant variants that comprise this lead FAP, the number of these variants located within
regulatory elements identified using chromatin accessibility measurements, and the ages at which at least one variant in
the lead FAP is significantly associated with body weight. For loci in which the lead FAP is comprised of fewer than 10
variants, we also present results for the second FAP. We list candidate genes for loci where the FAP spans three or fewer
genes.
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Figure 5: Distinct loci contribute to diet-independent and diet-dependent effects on body weight within a region
on chromosome 6. (A) Manhattan plots of additive genetic associations and genotype-diet associations on chromosome
6 at multiple ages. (B) and (C) Fine-mapping loci associated with body weight, independent of diet at 80 days of age
and dependent on diet at 600 days of age. Significant variants (solid circles). Colors denote variants with shared FAPs;
rank 1, 2, and 3 by LOD score are colored red, orange, and yellow, respectively. (D) and (E) Significant variants, colored
by their FAP group, along with the gene models (shown in green) and the tissue-specific activity of regulatory elements
near these variants (shown in grey). Significant variants that lie within regulatory elements are highlighted as diamonds,
and regulatory elements that contain a significant variant are highlighted in dark grey. (F) and (G) Log odds ratio of
body weight association as a function of age for the lead variant from each FAP group. FAP colors are consistent with
(B) and (C), respectively. (H) and (I) Estimated mean (se) effect on body weight (grams) of the minor allele for the lead
imputed variant. For the diet dependent locus (I), effects are shown for each diet treatment. (J) Estimated mean (se)
effect on body weight (grams) of each founder allele for the genotyped marker with the highest LOD score from the
additive model. (K) Estimated effect (se) on body weight (grams) of each founder allele under the AL and 20% CR
diets.
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340 harboring multiple functional alleles each with distinct phenotypic effects. A third possibility is that this single genomic
341 region contains multiple functional body weight loci that are only revealed with sufficient fine-mapping resolution.
342 Fine-mapping this locus using the additive model, we identified the variant with the highest LOD score to be at 53.6
343 Mb. The minor allele at this lead variant was common to the AJ and NOD founders, while the remaining 6 founders
44 possessed the alternate allele; this defined the lead diet-independent FAP at this locus to be AJ/NOD (Figure 5B).
345 Separately, we fine-mapped this locus using the interaction model, identified the lead variant at 55.1 Mb, and determined
ass  the lead FAP to be B6/CAST/PWK (Figure[5IC). These results are consistent with the hypothesis that at least two distinct
347 body weight QTLs with functional alleles derived from different DO founders were responsible for the diet-dependent
a4g and diet-independent body weight associations at this locus.

349 We hypothesized that the functional variant(s) responsible for the diet-independent and diet-dependent body weight
350 associations at this locus are among the variants in the respective lead FAP groups because they exhibit the strongest
351  statistical association and it is unlikely any additional variants are segregating in this genomic interval beyond those
s52 identified in the full genome sequences of the eight founder strains. For the diet-independent locus, at age 120, we
353 identified 87 significantly associated variants; of these, 79 could be assigned to the lead FAP group and shared a
ss4  similarly high LOD score (Figure[5B). All of these variants are SNPs located in the gene CREBS, 78 are intronic and
355 one a synonymous exon variant. For the diet-dependent locus, at age 600 days, we identified 617 variants as significant;
56 of these, 507 could be assigned to the lead FAP and shared a similarly high LOD score (Figure 5[C). Two of the 507
357 variants were intergenic structural variants; of the remaining SNPs, 5 were non-coding exon variants, 167 were intronic,
sss and the remainder were intergenic. Given that all candidate variants were non-coding, we next sought to determine
359 whether they were located in regulatory elements across a number of tissues, identified as regions of open chromatin
sso measured using ATAC-seq [28, ] or DNase-seq [29] ]. For the diet-independent and diet-dependent loci, we found 2 and
6t 101 variants, respectively, that were located in regions of open chromatin (Figure [SD,E). Notably, both variants with
s62 diet-independent effects lay within the same muscle-specific regulatory element located within CREBS, suggesting that
363 these variants likely affected body weight by regulating gene expression in muscle cells.

ss4  We found the relationship between model LOD score and age was similar for each of the three lead FAPs at the
ses  diet-independent and diet-dependent loci (Figure[5F, G). The minor allele of the lead variant at the diet-independent
se6 locus was associated with increased body weight at young ages (Figure 5H) whereas the minor allele for the lead
367 diet-dependent variant had a positive effect on body weight under the 20% CR diet, a nearly neutral effect under the
38 40% CR, and a negative effect under the AL diet (Figure [5]). We next measured the effect of each founder allele at the
se9 lead diet-independent genotyped marker and, consistent with the lead FAP group for the diet-independent association,
a0 the AJ and NOD alleles had large positive effects at young ages (Figure [3]J). For the diet-dependent association, B6,
s71 CAST, and PWK alleles were associated with decreased body weight in the AL diet and increase in body weight in
a7z the 20% CR diet (Figure [5K), consistent with their role in defining the lead diet-dependent FAP group. This example
a73  clearly demonstrates the insight gained by focusing on lead FAP variants to link specific founder alleles to variation in
374 body weight and narrow the number of potential functional variants underlying body weight.

375 Next, we used this approach to examine a locus on chromosome 12 with diet-dependent effects on body weight from
a7 300 to 420 days of age (Table[I} Supplemental Figures[S5D). Upon fine-mapping the locus at 420 days of age, when
a7z the association was the strongest, we identified 77 significant variants partitioning into two distinct lead FAP groups,
a7e  with similarly high LOD scores and centered at the same gene. The rank 1 FAP group contained variants with the
379 minor allele specific to AJ and B6, whereas the rank 2 FAP group contained variants with the minor allele specific to
a0 WSB (Figure[6]A). Of the 77 variants, the AJ/B6 FAP group contained 6 intergenic SNPs and 4 intronic SNPs spanning
a8t three genes: gephyrin (GPHN), Plekhhl, and RAD51b (Figure[6]A). One of these ten variants is located in a regulatory
ss2 element active specifically in adipose tissue. The remaining 67 significant variants all belonged to the WSB-specific
383 FAP group; of these, 23 SNPs were intergenic and 44 were intronic and centered at the gephyrin gene. Four of these 67
3s4 variants were located in regulatory elements active in adipose tissue as well as other tissues relevant to metabolism

sss  (Figure[6B).
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sss Despite having alleles with distinct founders-of-origin, we found that both lead FAPs had largely concordant strengths
387 of association through age, with the WSB-specific FAP having stronger evidence at earlier ages (300-420 days) and the
sss  AJ/B6 FAP having stronger evidence at later ages (360-540 days) (Figure[6IC). The minor allele of the lead imputed
sse variant in the AJ/B6 FAP group was associated with increased body weight in the 2D fasting diet, but had little effect
so0 in the other four diets (Figure [6D). In contrast, the minor allele of the lead imputed variant from the WSB-specific
391 FAP group had the largest positive effect on body weight in the AL and 1D fast diet and largest negative effect on
392 body weight in the 40% CR diet (Figure @D). Estimates of the diet-dependent effects of the AJ, B6, and WSB founder
393 alleles at marker variants with the strongest association were consistent with the effects of FAPs predicted above: the
394 Al and B6 founder alleles were associated with the largest body weights in the 2D fast treatment and had little effect
395 in the other four treatments, whereas the WSB founder allele had large, positive effects under AL and 1D fast diets
se6 and a negative effect under the 40% CR diet (Figure [6E). Taken together, these results provide evidence for allelic
397 heterogeneity at this locus, with at least three functional alleles having distinct diet-dependent effects on body weight.

sss  These two loci demonstrate the varied age- and diet-dependent genetic effects that shaped body weight in this DO mouse
399 population. We found that one locus on chromosome 6 had both diet-dependent and diet-independent associations
400 located in adjacent genomic regions and driven by different FAP groups, which is consistent with the hypothesis that the
401 two associations are due to distinct QTLs rather than a single pleiotropic QTL. In order to determine whether this was a
402 general feature of loci with diet-dependent and diet-independent associations, we examined eight additional such loci in
403 our dataset (Table E]) We found six loci exhibiting a similar pattern as the chromosome 6 locus; i.e., the diet-dependent
404 and diet-independent associations were composed of distinct FAP groups located in adjacent, distinct genomic regions
405 (Supplemental Figure[S3)). The two remaining loci provided examples of a contrasting model; the diet-dependent and
406 diet-independent associations were composed of similar (although, not identical) FAP groups centered upon the same
407 genes (Supplemental Figure[S6). The founder allele effects are distinct between the diet-dependent and diet-independent
408 associations: the diet-dependent and diet-independent loci on chromosome 3 are due to differential effects between
409 CAST/NOD/NZO versus B6/WSB and CAST/PWK versus B6/AJ, respectively (Supplemental Figure[S6B), and the
410 diet-dependent and diet-independent chromosome 7 loci are due to differential effects between B6/WSB/NOD versus
411 AJ/NZO and B6/WSB/129 versus PWK (Supplemental Figure[S6D). These results are consistent with the hypothesis
412 that distinct alleles at the same locus are responsible for the diet-dependent and diet-independent associations, similar
413 the instance of allelic heterogeneity we observed at the chromosome 12 locus (Figure [(B). Additionally, we observed
414 one other plausible instance of allelic heterogeneity at the diet-independent QTL on chromosome 4 (Supplemental
415 Figure[S5C). In summary, fine-mapping body weight QTLs and examining their lead FAPs have revealed evidence for
416  both allelic heterogeneity at individual loci and multiple adjacent QTLs in narrow genomic regions shaping phenotypic
417 variation in this classic quantitative trait.

418 5.3 Nonlinear context-dependent trends in genetic effects on body weight

419 Given high resolution temporal measurements of body weight, we observed an age-dependent nonlinear trend in the
20 effect of the lead variant at the diet-independent locus on chromosome 6 (Figure [5H). Conservatively, we defined
421 age-dependent effects to be nonlinear if the trend of effect size showed a stable change in direction at any age within 30
422 — 660 days (e.g., an increasing effect followed by decreasing effect, each at multiple ages). Surprisingly, the nonlinear
423 genetic effects at this locus appear to be completely driven by the AJ founder background (Figure[3))), indicating that the
424 same allele has substantially different effects on body weight in distinct genetic backgrounds. Notably, such nonlinear
425 trends of genetic effects with age often cannot be discerned even with large cross-sectional data that are typical of
426 modern genome-wide association studies. To quantify the generality of such nonlinear trends, we evaluated the effect
427 size trends at all 14 diet-independent associations identified by our study. We observed nonlinear age-dependent
428 effects to be predominant, with 12 of the 14 loci could be classified as having nonlinear genetic effects. Additionally,
420 mnonlinearity was often specific to a subset of founder strains that are driving the associations at each locus, suggesting
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Figure 6: Allelic heterogeneity at a diet-dependent body weight QTL on chromosome 12. (A) Fine-mapping loci,
under the interaction model, at 420 days of age. Significant variants are marked as solid circles. Colors denote variants
with shared FAPs; rank 1, 2, and 3 by LOD score are colored red, orange, and yellow, respectively. (B) Significant
variants, colored by their FAP, along with the gene models (shown in green) and the tissue-specific activity of regulatory
elements near these variants (shown in grey). Significant variants that lie within regulatory elements are highlighted as
diamonds, and regulatory elements that contain a significant variant are highlighted in dark grey. (C) Log odds ratio of
association, under the interaction model, as a function of age for the lead variant from each FAP group. FAP colors are
consistent with (A). (D) Diet-dependent effects (se) of the minor allele for the lead imputed variant from the AJ/B6 FAP
group (top panel) and the WSB FAP group (bottom panel). (E) Diet-dependent effects (se) of the founder allele for the
genotyped variant with the highest LOD score.
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430 that the genetic background plays an important role when interpreting the dynamics of the genetic architecture of body
431 weight in DO mice.

432 Along similar lines, we observed nonlinear trends with age for diet-dependent effects at the locus on chromosome 12,
433 specifically within the WSB genetic background under the AL diet (Figure[6D). As a more general pattern, we observed
434 such diet-specific nonlinear trends to be less common, with only 6 of 19 diet-dependent loci exhibiting nonlinearity in
435 trends of genetic effects. In contrast to diet-independent loci, where the directionality of genetic effects were always
436 stable across age, we found that 7 out of the 19 diet-dependent loci exhibited a switch in the directionality of effects
437 under specific diets. One example of such a shift in genetic effect was observed in the effect of WSB-private FAP group
ss8  under the 2D fasting diet (Figure[§D), where the minor allele of the lead variant in this FAP group was associated with
439 decrease in body weight soon after the fasting intervention began, but was associated with increase in body weight
440 about 180 days (6 months) after dietary intervention (see Supplemental Figures [S8JA-D for more examples).

441 The diet-dependent locus on chromosome 6 illustrated a rather counter-intuitive result; while we observed an approxi-
442 mately linear reduction in median body weight between the AL, 20% CR, and 40% CR diets in response to a linear
443 reduction in calories (Figure[IB), the effects of this locus on body weight were nonlinear in the context of each diet
444 (Figure[S])). We defined nonlinear diet-dependent effects as instances in which the genetic effects in the context of either
445 the 20% CR or 1D fast treatments were substantially greater (or less) than the genetic effects in the context of AL
446 and 40% CR diets or AL and 2D fast diets, respectively. We observed a second instance of nonlinear diet-dependent
447 effects at a locus we mapped to chromosome 5. This locus had the strongest diet-dependent association observed in
448 the genome. The lead FAP group, containing variants with an allele private to the NOD strain, was associated with
449 large positive effect on body weight in the 20% CR diet, a small positive effect in the 1D fast diet, and nearly neutral
a0 effects in the 40% CR, 2D fast, and AL diets (Supplemental Figure[S7). In total, we found that this pattern to be quite
451 common, with 9 of the 19 significant loci identified under the interaction model exhibiting nonlinear diet-dependent
452 effects (Supplemental Figure[S8).

453 5.4 Fine-mapped genes implicate neurological and metabolic processes

454 Of the 33 significant loci from the additive and interaction models, we identified 14 loci with lead FAP groups spanning
455 1-3 genes (Table[I). Many of these genes implicated in modulating body weight also affect neurological behavior,
456 consistent with the enrichment of genetic associations with body-mass index and obesity in pathways active in the
457 central nervous system in humans [30, 31} 32} ].

458 One example is the neuronal growth regulator 1 (Negrl) gene, a candidate linked to body weight in mid-adulthood via
459 the lead 129/CAST/WSB FAP group within a diet-dependent locus on chromosome 3. This gene is highly expressed in
460 the cerebral cortex and hippocampus in the rat brain [33| ] and is known to regulate synapse formation of hippocampal
461 neurons and promote neurite outgrowth of cortical neurons [34} 35, ]. Negr1 has also been implicated in obesity [36), ],
462 autistic behavior, memory deficits, and increased susceptibility to seizures [37, ] in mice, and body-mass index [38|,
463 ] and major depressive disorder [39, ] in humans. Another example is the gephyrin gene (Gphn) implicated by two
a4 distinct FAP groups in the diet-dependent locus on chromosome 12 (Figure[6JA). Gephyrin is a key structural protein
465 at neuronal synapses that ensures proper localization of postsynaptic inhibitory receptors. Gephyrin is also known
466 to physically interact with mTOR and is required for mTOR signaling [40, ], suggesting two plausible pathways for
467 influencing body weight. On chromosome 1, murine Trmt11 (Trm1-like), a gene with sequence similarity to orthologous
468 tRNA methyltransferases in other species, was linked to body weight during early development (Supplemental Figure
469 @A). Mice deficient in this gene, while viable, have been found to exhibit altered motor coordination and abnormal
470 exploratory behavior [41) ], suggesting that the association at this locus is possibly mediated through modulating
471 exploratory behavior.

472 Among candidates that affect metabolic processes, Creb5, a gene linked to diet-independent effects on body weight
473 (Figure [5B), has previously been reported to be linked to metabolic phenotypes in humans, with differential DNA
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474 methylation detected between individuals with large differences in waist circumference, hypercholesterolemia, and
475  metabolic syndrome [42] ]. Another gene important for metabolic control in the liver, PI3K-C2vy was linked to
476  diet-dependent effects on body weight in early adulthood. PI3K-C2~-deficient mice are known to exhibit reduced
477 liver accumulation of glycogen and develop hyperlipidemia, adiposity, and insulin resistance with age [43| ]. Edem3,
478 another candidate gene at the locus on chromosome 1 linked to body weight in early development (Supplemental
479 Figure [S5]A), has previously been linked to short stature in humans based on family-based exome sequencing and
480 differential expression in chondrocytes [44] ]. Possibly sharing a similar mechanism, Adam12, a candidate gene in both
481 a diet-independent and diet-dependent locus on chromosome 7, is known to play an important role in the differentiation,
482 proliferation, and maturation of chondrocytes [45), ].

483 Thus, our fine-mapping strategy using FAP groups has highlighted several candidate genes associated with body weight,
484 many of which are known to play important roles in a range of processes including metabolism, skeletal growth, motor
485 coordination, and behavior.

s 6 Future Considerations

487 To summarize, we found that the effects of age and diet on body weight differ substantially with respect to the genetic
488 background and type of dietary intervention imposed. These results highlight that with knowledge of these environment-
489 dependent effects, we can generate more accurate predictions of body weight trajectories than would be possible from
490 knowledge of genotype, age, or diet alone. Moreover, with the elucidation of specific candidate genes and variants
491 underlying these effects, we are not limited to predicting how this complex quantitative trait changes with age, but can
492 also identify specific targets for genetic or pharmacological manipulation in an effort to improve organismal health.

493 One important limitation to our study is the lack of direct measurements of food consumption and feeding behaviors for
494 each mouse in the population; this makes it difficult to ascertain how much variation in body weight can be ascribed to
495 variation in such behaviors. Additionally, caloric restriction was imposed based on the average food consumed by a
496 typical DO mouse rather than a per-mouse baseline of food consumption. Furthermore, caloric restriction interventions
497 were imposed on a per-cage basis, not a per-mouse basis, because all animals were housed in groups of eight. Therefore,
498 the social hierarchy within each cage likely contributed to additional variation in body weight [46, ]. Accounting for
499 these sources of variation will be a promising avenue for future research, helping interpret many of the associations
s00 identified in our study.

501 A second important consideration for this study is the potential for survival bias to lead to inflated PVE values and false
502 positive associations at later ages. To evaluate the presence of survival bias, we computed PVE at all ages restricting to
503 animals that survived to 660 days of age (75% of animals in our study). We observed similar PVE values to those from
s04 the full data set, across the full age range, suggesting that survival bias has very little effect on the results presented
s05 in this paper (Supplemental Figure [S3|C, top left panel). However, as these animals age and the survival bias of the
s06 population increases, genetic analyses of body weight at ages past 660 days will need to explicitly account for this
so7  effect.

s08 In this study, we have elucidated the dynamics and context-dependence of the genetic architecture of body weight from
509 60 to 660 days of age. By 660 days of age, nearly all surviving animals have realized their maximum adult body weight
s10 and the majority of animals have yet to experience appreciable loss of body weight indicative of late-age physiological
511 decline. Under AL diet, reduced body weight has been associated with greater longevity, whereas under 40% CR
s12 conditions, greater longevity is associated with the maintenance of high body weight [47, ]. Our future research will
513 assess whether we observe a similar result in this DO population and determine whether alleles at body weight loci are
s14 predictive of lifespan in a diet-dependent manner.
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s29 7 Appendix A: Proportion of variance explained

830 Decomposing the phenotype into genetic and non-genetic effects, Y = Y g+ Y, the expected proportion of phenotypic
831 variance explained by genetic effects is approximately given as

(AD)

PVE=E {V[YG]] _E[V[Yg]] _ Varg

VY] | T E[V]Y]] = Vary’

832 where V [-] denotes the sample variance. The expected sample phenotypic variance conditional on environment e can be
833 written as

E[S, V2Zy] E[(C0YaZne)’]
N, N2 ’

where Z,,. is an indicator variable denoting whether sample n belongs to environment e and N, = Zn Zme 18 the

number of samples in environment e. Under the GXEMM model, starting from Equation [I] and integrating out the

E[V[Yle]] = (A2)

random effects, we can write the numerator of the first term in the expectation as

> Y2 Zne
n

E

= Y+ L3R (A3)
n

n,v

+ Z % Z Gngnezne/ Zner + Z OnnZne;

e’ e’ n,v

and the numerator of the second term in the expectation as

2 2
_ 0
E (Zﬂ: YnZne> - (zn: /J'nZn(:‘) + V Z Z Gnan’vZneZn’e

v n,n’
Q Y2
+ -~ (;/e Xv:2Gn’an’vZn,e/Zn/e”Zn,eZn/e
+Y OunZne. (A4)

n

Therefore, the expected sample phenotypic variance can be decomposed as follows

2 2
E[V [Y‘CH = <Zn]l<f’:zne _ (Zn /;\;;Z’ne) >
tr(CoW,) sum(KoW,)
v ( N  DNZ )

N Z Q. (tr(IC oWe,oWy) sum(KoW,o We/))

(AS5)

N. N?

+tr(© 0 W,) (N;'V; 1) ,

s« where tr(-) denotes that trace of a matrix, sum(-) denotes the sum of all entries of the matrix, and A o B denotes the
835 Hadamard product of matrices A and B. The first term quantifies the phenotypic variance explained by fixed effects,
sss the second and third terms together quantify the phenotypic variance explained by genetic effects (E [V [Yg|e]]), and
837 the fourth term quantifies the residual (unexplained) phenotypic variance. The proportion of variance explained by
838 genetics conditional on environment can now be computed using Equation
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The expected total sample phenotypic variance (across all environments) again has two terms, as in Equation[AZ} the
numerator of the first term is written as

RS

E

2
=Y+ Y,
+>° 97 NN G2 ZneZne + Y O, (A6)

and the numerator of the second term is written as

2 2
2
E (; Yn> = (; un> + 520 GuuCin (A7)

v n,n’

+ Z Q‘;EI Z Z Gnan’vZneZn’e’ + Z @nn

e,e’ v n,n’ n

The expected total sample phenotypic variance can be decomposed as follows

E[VY] = (Zn o, un)2>

N N2
Ly <tr](VIC) ) sur;\r;élC))
S, (M s )
+t:(@) <NN21> . (A8)

839 The total proportion of variance explained by genetics in the entire sample can be computed by substituting the above in
ss0  Equation[AT]

Under the EMMA model, the expected total sample phenotypic variance simplifies to

E[V[Y] = (Zn i (3, un)2>

N N2
5 (tr(K) sum(K)
o (O )
N-1
+6° <N2) (A9)

s+t where 6 denotes the homoscedastic noise. The first component quantifies the phenotypic variance explained by fixed
ga2  effects, the second component quantifies the phenotypic variance explained by genetic effects (E [V [Yg]]), and the
s43  third component quantifies the residual (unexplained) phenotypic variance. Substituting these into Equation [AT] gives
44 us the proportion of variance explained by genetics under the EMMA model.

ss 8 Appendix B: Likelihood and gradients for GXEMM model

s46  Under the full GXEMM model, the phenotype Y depends on fixed and random effects as follows:

Y ~ N(p, A), (A10)
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847 where p = g + Y, Zea, captures all fixed effects and A = © + 0?K + 3, QK 0 (Z.ZT') captures the covariance
s4s  after integrating out the random effects. The parameters to be estimated in this model are «, o, g, and §2. The complete
g49 log likelihood can be written as

L= —% log(2m) — %1og det A — % Y - Xa)"A (Y - Xa). (A11)

850 Maximizing the log likelihood over o gives us
& =argmax £ = (XTATIX) T (XTATY). (A12)

851 Substituting this into the log likelihood, we get
Lo = ,g log(27) — %log det A — %YTPY, (A13)

ss2 where P = A~! — A=1X (XTA-1X) ™" XTA-1,

Computing the gradient of L4, involves evaluating the following gradients,

OA
@ - IZC (A14)
oA
92~ K (A15)
oA T
o Ko (z.2T) (A16)
dlogdet A = tr (A'OA) (A17)
OA™ = —A71OAAT! (A18)
OP = — POAP, (A19)

where Zz_ is a diagonal matrix with elements of the vector Z. on the diagonal. Thus,

8£@ 1 —1 1 T

Foz = " Str(AT7) + YT P, PY (A20)
0Ls 1 -1 1o

i Str (AT'K) + §Y PKPY (A21)
0Ls 1 ey | AT pyee

g, = gt (A7) + Y TPRCPY, (a2

853 where K¢ = Ko (Z,ZT)

ss¢« 9 Supplemental Figures
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Figure S1: Raw measurements. (A) Body weight and (B) growth rate trends as a function of age. Mice in this study
also undering an array of phenotyping procedures; the age range for metabolic cage phenotyping is highlighted in pink,

the age range for blood draws is highlighted in blue, and the age range for a battery of challenge-based phenotyping
procedures is highlighted in green.
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Figure S2: PVE using raw measurements. PVE of (A) Body weight and (B) growth rate, estimated using raw body
weight measurements.

32


https://doi.org/10.1101/2020.11.04.364398
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.04.364398; this version posted November 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - NOVEMBER 5, 2020

GxXEMM: AL 20 40 1D 2D total

=
o

i
o
S

o
o

o
o

o
IS

0.2

Founder allele probability
Founder allele probability

PVE (body weight)

0.0

Bi-allelic Genotype

expected phenotypic variance (body weight)

Bi-allelic Genotype

60

120 180 240 300 360 420 480 540 600 660

120 180 240 300 360 420 480 540 600 660

age (days)
GXEMM: AL 20 40 1D 2D total
1.0 1.0
o8 0.8
5 g
©
o >
go.e é 06
2 &
g o
Coa T o4
(9] ©
° s
c m
>
o2 0.2
'4 e
0.0 T T T T T T T T 0.0 T T T T T T
60 120 180 240 300 360 420 480 540 600 660 60 120 180 240 300 360 420 480 540 600 660
age (days)
all mice survivors @ 660 days
101 GXEMM: AI+ 20 40 1D 2D total
1
i :
084 h AL et
= oo 4
< 1
2 !
o} 1
= 06 : ]
z ! -
s} ! \ } i
2 i s, H |
w04 I ”w‘ 1
> I SERSINL\INRIE R S ! ] :
= : i S : s
1 44 I
02 : s i LT L 02 ; %mmmwwm
i i
1 1
1 1
0.0 1 0.0 1

60

120 180 240 300 360 420 480 540 600 660

age (days)

60

120 180 240 300 360 420 480 540 600 660

Figure S3: Phenotypic variance explained by genetics (A) PVE (left column) and expected phenotypic variance
(right column) estimated using kinship calculated from founder-of-origin allele probabilities (top row) and bi-allelic
genotypes (bottom row) (B) PVE estimated using kinship calculated from founder-of-origin allele probabilities (left
column) and bi-allelic genotypes (right column), after randomly permuting body weight trajectories across mice, within
each dietary intervention. (C) PVE estimated using all mice in the study (left column) and mice that survived to 660
days of age (right column).
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Genetic loci affecting body weight at different ages and in response to caloric restriction
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Figure S4: Age- and diet-dependent Manhattan plots for body weight. Genetic loci associated with body weight at
different ages identified under the additive genetic model (subpanels on the left) and genotype-diet interaction model
(subpanels on the right). Each circle is a genotyped marker, significant markers are in red.
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Figure S5: Loci with significant diet-independent and diet-dependent associations with body weight. (A) Fine-
mapping a locus on chromosome 1 associated with body weight under the additive model (left column) and genotype-diet
interaction model (right column). Each circle is a bi-allelic variant, both imputed and genotyped, and solid circles
denote significantly associated variants. Variants are colored according to their FAP; FAPs of rank 1, 2, and 3 (based
on LOD score) are colored red, orange, and yellow, respectively. Panels (B) - (F) are the same as (A) for loci on
chromosomes: 2, 4, 12, 17, and 19.
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Figure S6: Allelic heterogeneity at loci with significant diet-independent and diet-dependent associations with
body weight. (A) Fine-mapping a locus on chromosome 3 associated with body weight under the additive model
(left column) and genotype-diet interaction model (right column). Each circle is a bi-allelic variant, both imputed and
genotyped, and solid circles denote significantly associated variants. Variants are colored according to their FAP; FAP
with ranks 1, 2, and 3 are colored red, orange, and yellow, respectively. (B) Founder allele effect as a function of age for
the lead FAP variant from (A) for the diet-independent association (left column) and the diet-dependent association
(right column). Panels (C) and (D) are the same as (A) and (B) for a locus on chromosome 7.
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Figure S7: Diet-dependent association with body weight in a locus on chromosome 5. (A) Manhattan plots of
additive genetic associations and genotype-diet associations on chromosome 5 at multiple ages. (B) Fine-mapping a
locus associated with body weight in diet-dependent manner at 660 days of age. Each circle is a bi-allelic variant, both
imputed and genotyped and solid circles denote significantly associated variants. Variants are colored according to their
FAP; FAPs of rank 1, 2, and 3 (by LOD score) are colored red, orange, and yellow, respectively. (C) Significant variants,
colored by their FAP, along with the gene models (shown in green) and the tissue-specific activity of regulatory elements
near these variants (shown in grey). Significant variants that lie within regulatory elements are highlighted as diamonds,
and regulatory elements that contain a significant variant are highlighted in dark grey. (D) Log odds ratio as a function
of age, for a single variant that exhibits the strongest association from each of the top three FAPs. (E) Diet-dependent
effect size of the minor allele as a function of age, for the variant with the strongest association. (F) Estimated effect of
each founder allele in three diets (AL, 20, 40), at the genotyped variant with the strongest diet-dependent association.
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Figure S8: Nonlinear trends in genetic effects with respect to age and dietary intervention. For each fine-mapped
locus, we note the location of the variant with the strongest association and the ages at which the genetic association is
significant, and plot the estimated effect (SE) of this variant as a function of age, under different diets.
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