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ABSTRACT

Understanding how genetic variation shapes an age-dependent complex trait relies on accurate1

quantification of both the additive genetic effects and genotype-environment interaction effects in2

an age-dependent manner. We used a generalization of the linear mixed model to quantify diet-3

dependent genetic contributions to body weight and growth rate measured from early development4

through adulthood of 960 Diversity Outbred female mice subjected to five dietary interventions.5

We observed that heritability of body weight remained substantially high (h2 ≈ 0.8) throughout6

adulthood under the 40% calorie restriction diet, while heritability, although still appreciably high,7

declined with age under all other dietary regimes. We identified 14 loci significantly associated with8

body weight in an age-dependent manner and 19 loci that contribute to body weight in an age- and9

diet-dependent manner. We found the effect of body weight alleles to be dynamic with respect to10

genomic background, age, and diet, identifying the scope of pleiotropy and several instances of allelic11

heterogeneity. In many cases, we fine-mapped these loci to narrow genomic intervals containing a12

few genes and impute putative functional variants from the genome sequence of the DO founders.13

Of the loci associated with body weight in a diet-dependent manner, many have been previously14

linked to neurological function and behavior in mice or humans. These results enable us to more15

fully understand the dynamics of the genetic architecture of body weight with age and in response16

to different dietary interventions, and to predict the effectiveness of dietary intervention on overall17

health in distinct genetic backgrounds.18

Keywords heritability · gene-environment interaction · mixed models · longitudinal · quantitative trait locus · diversity19

outbred20

1 Introduction21

Quantifying the contributions of genetic and environmental factors to population variation in an age-dependent22

phenotype is critical to understanding how phenotypes change over time and in response to external perturbations. The23

identification of genetic loci that are associated with a complex trait in an age- and environment-dependent manner24
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allows us to elucidate the dynamics and context-dependence of the genetic architecture of the trait and facilitates trait25

prediction. For health-related traits, these genetic loci may also facilitate greater understanding and prediction of26

age-related disease etiology, which is an important step to genetically or pharmacologically manipulating these traits to27

improve health.28

Standard approaches used to identify genetic loci associated with quantitative traits can be confounded by non-additive29

genetic effects such as genotype-environment (GxE) and genotype-age (GxA) interactions [1, ], contributing to the30

"missing heritability" of quantitative traits [2, ]. The linear statistical models routinely used in genetic mapping31

analyses do not account for variation in population structure between environments and polygenicity in GxE interac-32

tions. Population structure can substantially increase the false-positive rate when testing for GxE associations [3, ].33

Furthermore, not accounting for polygenic GxE interactions has the potential to incorrectly estimate the heritability34

of quantitative traits in the context of specific environments [2, ]. To address these limitations, recent efforts have35

generalized standard linear mixed models (LMMs) with multiple variance components that allow for polygenic GxE36

interactions and environment-dependent residual variation [2, 4, 3, 5, ]. Moreover, these generalized LMMs substantially37

increase the power to discover genomic loci that are associated with phenotype in both an environment-independent and38

environment-dependent manner.39

In this study, we used a generalized LMM to investigate the classic quantitative trait, body weight, in a large population40

of Diversity Outbred (DO) mice. Body weight was measured longitudinally from early development to late adulthood,41

before and after the imposition of dietary intervention at six months of age. We expect diet and age to be important42

factors affecting body weight and growth rate; however, it remains to be determined how these factors will interact with43

genetic variation to shape growth. Two early studies found significant genetic correlations for body weight and growth44

rate during the first 10 weeks of mouse development, which supported the hypothesis that growth rates during early45

and late development were affected by pleiotropic loci [6, 7, ]. Subsequent experiments found that the heritability of46

body weight increased monotonically with age throughout development: from 29.3% to 76.1% between 1 and 10 weeks47

of age [6, ], from 6% to 24% between 1 and 16 weeks of age ([8]), and from 9% to 32% between 5 and 13 weeks of48

age [9, ]. The heritability of growth rate also varied with age, but exhibited a peak of 24% at 3 weeks of age and then49

declined to nearly 4% at 16 weeks of age [8, ]. The strength of association and effect size of QTLs for body weight and50

growth rate were specific to early or late ages and were inconsistent with the hypothesis that pleiotropic alleles affect51

animal size at early and late developmental stages [6, 8, ]. While these results are well supported, their interpretation is52

somewhat limited because body weight measurements ceased at young ages and significant QTLs encompassed fairly53

large chromosomal regions. Given these limitations, we were motivated to ask two questions: Will fine-mapping to54

greater resolution reveal single genes which function at either early or late developmental stages, or reveal multiple55

genes in tight linkage with variable age-specific effects? How will the effect of these loci change at later ages and under56

different diets?57

We expect the interaction of dietary interventions, such as caloric restriction or intermittent fasting, with genetics to58

greatly impact the body weight trajectories of mice. Researchers have observed genotype-dependent reductions in body59

weight in the 7 to 50 weeks after imposing a 40% caloric restriction, and variation in heritability of this trait with age60

from 42% to 54% [10, ]. A second study subjected a large genetic-mapping population to dietary intervention and61

identified multiple loci with significant genetic and genotype-diet interaction effects on body weight at 2 to 6 months62

of age [11, ]. These studies identified substantial diet- and age-dependent genetic variance for body weight in mice,63

similar to what has been found in humans [1, 12, 13, ]. It, however, remains to be determined how the contribution64

of specific genetic loci to body weight changes in response to different dietary interventions and whether the effects65

observed in younger mice are indicative of the maintenance of body weight in adult mice.66

In order to address these questions, we measured the body weight of multiple cohorts of genetically diverse mice67

from the DO population [14, ] from 60 to 660 days of age (Figure 1A). At 180 days of age, we randomized mice by68

body weight and assigned each mouse to one of five dietary regimes – Ad libitum (AL), 20% and 40% daily calorie69

restriction (CR), and 1 or 2 day per week intermittent fasting (IF). Longitudinal measurements of body weight in these70
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DO mice allowed us to discover the age-dependent genetic determinants of body weight and growth rate, in the context71

of different dietary interventions.72

In the following sections, we first describe the study design and collection of the genetic and body weight measurements.73

Second, we specify the Gene-Environment Mixed Model (GxEMM) [5, ], the generalized LMM we use to quantify total74

and diet-dependent heritabilities of body weight and growth rate from 60 to 660 days of age. We next use this model to75

identify genetic loci having additive or genotype-diet interaction effects on body weight. We fine-map candidate loci76

and determine the scope of pleiotropy for age and diet specific effects. We find many, but not all, loci are associated77

with body weight in a narrow age range and localize to small genomic regions, in some cases to single genes. We utilize78

the full genome sequence of the DO founders and external chromatin accessibility data to further narrow the genomic79

regions to a small number of candidate variants at each locus. Interestingly, many diet-specific body weight loci localize80

the genes implicated in neurological function and behavior in mice or humans.81

2 Study Design and Measurements82

The Diversity Outbred (DO) house mouse (Mus musculus) population was derived from eight inbred founder strains83

and is maintained at Jackson Labs as an outbred heterozygous population [14, ]. This study contains 960 female DO84

mice, sampled at generations: 22 – 24 and 26 – 28. There were two cohorts per generation for a total of 12 cohorts85

and 80 animals per cohort. Enrollment occurred in successive quarterly waves starting in March 2016 and continuing86

through November 2017.87

A single female mouse per litter was enrolled into the study after wean age (3 weeks old), so that no mice in the study88

were siblings and maximum genetic diversity was achieved. Mice were housed in pressurized, individually ventilated89

cages at a density of eight animals per cage (cage assignments were random). Mice were subject to a 12 hr:12 hr90

light:dark cycle beginning at 0600 hrs. Animals exit the study upon death. All animal procedures were approved by the91

Animal Care and Use Committee at The Jackson Laboratory.92

From enrollment until six months of age, all mice were on an Ad Libitum diet of standard rodent chow 5KOG from93

LabDiet. At six months of age, each cage of eight animals was randomly assigned to one of five dietary treatments,94

with each cohort equally split between the five groups (N=192/group): AD Libitum (AL), 20% caloric restriction95

(20), 40% caloric restriction (40), one day per week fast, (1D) and two days per week fast (2D) (see Figure 1A). In a96

previous internal study at the Jackson Laboratory, the average food consumption of female DO mice was estimated97

to be 3.43g/day. Based on this observation, mice on 20 diet were given 2.75g/mouse/day and those on 40 diet were98

given 2.06g/mouse/day. Food was weighed out for an entire cage of 8. Observation of the animals indicated that the99

distribution of food was roughly equal among all mice in a cage across diet groups.100

Mice on AL diet had unlimited food access; they were fed when the cage was changed once a week. In rare instances101

when the AL mice consumed all food before the end of the week, the grain was topped off mid week. Mice on 20% and102

40% CR diets were fed daily. We gave them a triple feeding on Friday afternoon to last till Monday afternoon. As the103

number of these mice in each cage decreased over time, the amount of food given to each cage was adjusted to reflect104

the number of mice in that cage. Fasting was imposed weekly from Wednesday noon to Thursday noon for mice on 1D105

diet and Wednesday noon to Friday noon for mice on 2D diet. Mice on 1D and 2D diets have unlimited food access106

(similar to AL mice) on their non-fasting days.107

2.1 Body weight measurements108

Body weight was measured once every week for each mouse throughout its life. The body weight measurements for this109

analysis were collated on February 1, 2020 at which point 941 mice (98%) had measurements at 180 days, 890(93%) at110

365 days, 813 (85%) at 550 days, and 719(75%) at 660 days. For these analyses, we included all body weight measures111

for each mouse up to 660 days of age. We smoothed out measurement noise, either due to errors in measurement or112
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Figure 1: (A) Outline of study design. (B) Median (inter-quartile range) body weight in grams and (C) median
(inter-quartile range) growth rate in grams per day for five dietary treatments from 60 to 660 days of age. Vertical grey
dotted line denotes the onset of dietary intervention at 180 days of age.
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swaps in assigning measurements to mice, using an `1 trend filtering algorithm [15, ] which calculates a piece-wise113

linear trend line for body weight for each mouse over its measurement span. The degree of smoothing was learned by114

minimizing the error between the predicted fit and measurements at randomly held-out ages across all mice. In the rest115

of this paper, body weight and growth rate refer to the predicted fits from `1 trend filtering.116

We present the average trends in body weight and growth rate, stratified by dietary intervention, in Figure 1 panels B and117

C, respectively. The body weight and growth rate trends without `1 trend filtering are presented in Supplemental Figure118

S1. The most prominent observation from these trends is that dietary intervention contributes the most to variation119

in body weight in this mouse population. After accounting for this source of variation, there remains substantial and120

different quantities of variation in body weight trends between the different dietary interventions, suggesting a plausible121

GxD interaction effect on body weight trajectories.122

2.2 Genotype measurements123

We collected tail clippings and extracted DNA from 954 animals (http://agingmice.jax.org/protocols).124

Samples were genotyped using the 143,259-probe GigaMUGA array from the Illumina Infinium II platform [16,125

] by NeoGen Corp. (genomics.neogen.com/). We evaluated genotype quality using the R package: qtl2126

[17, ]. We processed all raw genotype data with a corrected physical map of the GigaMUGA array probes127

(https://kbroman.org/MUGAarrays/muga_annotations.html). After filtering genetic markers for uniquely128

mapped probes, genotype quality and a 20% genotype missingness threshold, our dataset contained 110,807 markers.129

We next examined the genotype quality of individual animals. We found seven pairs of animals with identical genotypes130

which suggested that one of each pair was mislabelled. We identified and removed a single mislabelled animal per pair131

by referencing the genetic data against coat color. Next, we removed a single sample with missingness in excess of 20%.132

The final quality assurance analysis found that all samples exhibited high consistency between tightly linked markers:133

log odds ratio error scores were less than 2.0 for all samples [18, ]. The final set of genetic data consisted of 946 mice.134

For each mouse, starting with its genotypes at the 110,807 markers and the genotypes of the 8 founder strains at the135

same markers, we inferred the founders-of-origin for each of the alleles at each marker using the R package: qtl2136

[17, ]. This allowed us to test directly for association between founder-of-origin and phenotype (rather than allele137

dosage and phenotype, as is commonly done in QTL mapping) at all genotyped markers. Using the founder-of-origin of138

consecutive typed markers and the genotypes of untyped variants in the founder strains, we then imputed the genotypes139

of all untyped variants (34.5 million) in all 946 mice. Targeted association testing at imputed variants allowed us to140

fine-map QTLs to a resolution of 1− 10 genes.141

3 Models and Methods142

3.1 Motivating models for environment-dependent genetic architecture143

Genome-wide QTL analyses in model organisms over the last decade have predominantly employed linear mixed144

models (e.g., EMMA [19, ], FastLMM [20, ], and GEMMA [21, ]), expanding on the heuristic that samples sharing145

more of their genome have more correlated phenotypes than genetically independent samples. We found that the146

distributions of covariances in body weight, measured at 500 days of age, between animal pairs within the AL treatment147

were nearly indistinguishable when we partition pairs into high kinship (>0.2) and low kinship groups (Figure 2, no148

significant separation between solid and dashed red lines). However, animal pairs in the 40%CR treatment exhibit149

significantly lower covariance in body weight in the low kinship group compared to the high kinship group (Figure 2,150

significant separation between solid and dashed orange lines). This observation suggests that the genetic contribution to151

body weight is different in distinct dietary environments. This observation also motivates the use of recently developed152

generalized linear mixed models to conduct genome-wide QTL analysis because they more fully account for the153

environment-dependent genetic variances, reduce false positive rates and increase statistical power [2, 4, 3, 5, ]).154
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Figure 2: Phenotypic divergence between animal pairs is quantified by the covariance in body weight at 500 days of
age. We plot the cumulative density of body weight covariance for all pairs of animals in the AL and 40% CR dietary
treatments, partitioned into high kinship (> 0.2) or low kinship groups.

3.2 Overview of analyses155

Starting with body weight measurements in 959 mice from 30-660 days of age, and founder-of-origin alleles inferred at156

110,807 markers in 946 mice, we first quantified how the heritability of body weight and growth rate changes with age157

and between dietary contexts. We used the GxEMM model (described below in detail) to account for both additive158

environment-dependent fixed effects and polygenic gene-environment interactions. We considered two different types of159

environments: diet and generation. The five diet groups were assessed from 180− 660 days and the twelve generations160

were assessed from 30 − 660 days. Next, we performed genome-wide QTL mapping for body weight at each age161

independently, testing for association between body weight and the inferred founder-of-origin at each genotyped marker.162

For ages 180− 660 days, we additionally tested for association between body weight and the interaction of diet and163

founder-of-origin at each marker. We computed p-values using a sequential permutation procedure [22, 23, ] at each164

variant for each of the additive and interaction tests and used these to assign significance [24, ]. Finally, for each165

significant locus, we performed fine-mapping to identify the putative causal variants and founder alleles driving body166

weight, and underlying functional elements (genes and regulatory elements) to ascertain the possible mechanisms by167

which these variants act.168
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3.3 Polygenic models for gene x environment interactions169

GxEMM [5, ] is a generalization of the standard linear mixed model that allows for polygenic GxE effects. Under this170

model, the phenotype is written in terms of genetic effects as follows:171

Y = α0 +
E∑

e=1

Zeαe +
V∑

v=1

Gvβv +
E∑

e=1

V∑
v=1

GvZeγve + ε, (1)

where Y ∈ RN is the vector of phenotypes over N samples, Gv, v = 1, . . . , V are genotypes of V bi-allelic single172

nucleotide polymorphisms (SNPs), Ze, e = 1, . . . , E are binary vectors overE environments, and ε denotes the residual173

vector.174

In our application, Y is the vector of `1 trend filtered body weights at a specific age; we do not standardize the body175

weights so that the estimated effects are interpretable and comparable across ages. When testing for association with176

the founder-of-origin of markers, Gnv ∈ [0, 1]8; ‖Gnv‖1 = 1 is a vector denoting the probability that the two alleles177

of the marker came from each of the eight founder lines from which the DO population is derived. ‖ · ‖1 denotes the178

L1-norm of a vector. Alternatively, when testing for association with the allele dosage of a variant, Gnv ∈ [0, 2] is the179

expected allele count at variant v. Finally, Zne = 1 denotes that sample n is subject to environment e. Prior to dietary180

intervention, the environments in our model are the 12 generations over which the DO samples span (i.e., E = 12).181

After dietary intervention, the environments further include the 5 diet groups (i.e., E = 17 ).182

The effects of covariates, α, are modeled as fixed while the genetic effects, β, and genotype-environment effects, γ,183

are modeled as random. Assuming heteroscedastic noise, ε ∼ N (0,Θ), a normal prior on the random genetic effects,184

βv ∼ N (0, %2/V ), and a normal prior on the random GxE effects, γv· ∼ N (0, 1
V Ω), we get Y ∼ N (µ,Λ), where185

µ = α0 +
∑

e Zeαe and Λ = Θ + %2K +
∑

e,e′ Ωee′
(
K ◦

(
ZeZ

T
e′

))
. Θ is a diagonal matrix with entries specified186

as Θnn =
∑

e Zneσ
2
e , K is the kinship matrix with entries defined as Kmn = 1

V

∑
v G

T
mvGnv, %2 is the variance of187

environment-independent genetic effects, Ω ∈ RE×E is the variance-covariance matrix representing the co-variation in188

environment-dependent genetic effects between pairs of environments, and A ◦B denotes the Hadamard product of189

matrices A and B. For simplicity, we constrain Ω to be a diagonal matrix in this study, limiting our ability to account190

for correlated genetic effects in pairs of environments. Note that each of the above parameters and data vectors in the191

model may be distinct at different ages.192

3.4 Proportion of phenotypic variance explained by genetics193

The proportion of total phenotypic variance explained by genetic effects is

PVEtot =
VarG
VarY

, (2)

VarG = %2
(
tr(K)

N
− sum(K)

N2

)
+
∑
e

Ωee

(
tr(K ◦We)

N
− sum(K ◦We)

N2

)
,

(3)

VarY = VarG

+

((∑
n µ

2
n

)
N

−
(
∑

n µn)
2

N2

)

+ tr(Θ)

(
N − 1

N2

)
,

(4)

where We = ZeZ
T
e , tr(·) denotes the trace of a matrix, and sum(·) denotes the sum of all elements of a matrix. The194

two terms in VarG are genetic contributions to phenotypic variation that are shared across environments and specific to195
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environments, respectively. The second and third terms in VarY are phenotypic variation explained by fixed effects196

and unexplained residual phenotypic variation, respectively.197

Similarly, the environment-dependent PVE is

PVEe =
VarG|e

VarY |e
, (5)

VarG|e = %2
(
tr(K ◦We)

Ne
− sum(K ◦We)

N2
e

)
+
∑
e′

Ωe′e′

(
tr(K ◦We ◦We′)

Ne
− sum(K ◦We ◦We′)

N2
e

)
,

(6)

VarY |e = VarG|e

+

((∑
n µ

2
nZne

)
Ne

−
(
∑

n µnZne)
2

N2
e

)

+ tr(Θ ◦We)

(
Ne − 1

N2
e

)
,

(7)

where Ne =
∑

n Zen is the number of individuals in environment e (see Appendix A for more details). The proportion198

of phenotypic variance explained by genetic effects is equivalent to narrow-sense heritability, once variation due to199

additive effects of environment, batch, and other study design artifacts have been removed. In this work, we use the200

more general term, proportion of variance explained, to accommodate variation due to effects of diet and environment.201

3.5 Genome-wide association mapping202

3.5.1 Additive genetic effects:203

To test for additive effect of a genetic variant on the phenotype, we include the focal variant among the fixed effects in204

the model while treating all other variants to have random effects.205

Y =
∑
c

Xcαc + φsGs +
∑
v 6=s

Gvβv +
∑
v,e

GvZeγve + ε (8)

Applying the priors described above for βv, γv and ε, we can derive the corresponding mixed effects model is as206

follows:207

Y ∼ N

(∑
c

Xcαc + φsGs,Λs

)
, (9)

where Λs = Θ + %2Ks +
∑

e Ωee (Ks ◦We) and Ks is the kinship matrix after excluding the entire chromosome208

containing the variant s (leave-one-chromosome-out or LOCO kinship). Leaving out the focal chromosome when209

computing kinship increases our power to detect associations at the focal variant [20, ]. The test statistic is the log210

likelihood ratio Λa(Y,Gs) comparing the alternate model H : φs 6= 0 to the null model H0 : φs = 0. The log211

likelihood ratio is also referred to as log odds ratio or LOD through the rest of the paper.212

Λa(Y,Gs) = log
maxL(φs,α,σ, %,Ω)

maxL(φs = 0,α,σ, %,Ω)
(10)

See Appendix B for details on computing the maximum likelihood estimates of the model parameters.213

3.5.2 Genotype-Environment effects:214

To test for effects of interaction between genotype and environment on the phenotype, we include a fixed effect for the215

focal variant and its interactions with the set of all environments of interest (E) while treating all other variants to have216
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random effects for their additive and interaction contributions,217

Y =
∑
c

Xcαc + φsGs +
∑
e∈E

χseGsZe +
∑
v 6=s

Gvβv +
∑
v 6=s,e

GvZeγve + ε. (11)

The corresponding mixed effects model is218

Y ∼ N

(∑
c

αcXc + φsGs +
∑
e∈E

χseGsZe,Λs

)
, (12)

and the test statistic is219

Λi(Y,Gs) = log
maxL(χs, φs,α,σ, %,Ω)

maxL(χs = 0, φs,α,σ, %,Ω)
(13)

Note that this statistic tests for the presence of interaction effects between the focal variant and any of the environments220

of interest.221

4 Simulations222

To evaluate the accuracy of GxEMM and compare it against standard linear mixed models like EMMA ([19]), we223

simulated phenotypic variation under a broad range of values for PVE in each of two environments. For all simulations,224

we fixed the total sample size to N = 946 and used the observed kinship matrix for the 946 DO mice in this study. For225

each simulation, the environment-specific genetic contribution PVEe, environment-specific noise σ2
e , and the relative226

distribution of samples between environments are fixed. In order to explore how the two models behave under a wide227

range of conditions, we varied PVEe ∈ {0.05, 0.10, . . . , 0.95}, σ2
1 = 1.0, and σ2

2 ∈ {1.0, 2.0, 5.0}, and the samples228

were assigned to environments either at a 1:1 ratio or a 4:1 ratio (i.e., a total of 114 parameter values). For each set of229

fixed parameter values, we run 100 replicate simulations. At the start of each simulation, we randomly assign samples230

to one of the two environments. Using equations 5, 6, and 7, we computed the variance component parameters by231

solving a set of linear equations. We then generated the vector of phenotypes from a multivariate normal distribution232

with zero mean and covariance structure dependent upon these variance component parameters (as per the generative233

model above). Using the simulated phenotypes, we estimated PVEtot using both the EMMA and GxEMM models and234

PVEe using the GxEMM model.235

We first evaluated the accuracy of PVEtot estimated from the two models and found that the GxEMM model estimated236

total PVE with little bias and lower variance compared to EMMA in nearly all simulations across the suite of parameter237

combinations that we investigated (Figures 3A and 3B). In particular, we found that EMMA substantially underestimated238

the total PVE in comparison to GxEMM when samples were equally distributed between environments and there was239

substantial difference in PVE or noise between environments. This is because PVEe will have a greater impact on240

PVEtot when both environments are more equally represented in the study sample.241

Next, we examined the sensitivity and specificity of the GxEMM model to quantify environment-specific genetic242

contribution to phenotypic variance. We found that when samples were equally distributed between environments,243

GxEMM accurately estimates PVEe under a wide range of parameter values (Figure 3C). We observe an exception244

to this general result wherein we underestimate PVEe for the environment with lower PVE when there is a large245

difference in PVE between the two environments. In contrast, when there is a skew in the number of samples between246

environments, we tend to underestimate low PVE values for the environment with fewer samples (Figure 3D). We247

observe similar patterns of bias when the two environments have comparable PVE values but different amounts of248

environment-specific noise.249

Overall, the GxEMM model outperforms the EMMA model in estimating total PVE and shows little bias in estimating250

environment-specific PVE across a broad range of scenarios relevant to our study.251
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Figure 3: Evaluating GxEMM and EMMA using simulated datasets. (A). Comparison of true PVEtot to that
estimated from EMMA (left panel) and GxEMM (right panel) models. Simulations were run with an equal number
of samples each environment and σ2

resid was fixed at 1.0. We ran for pairwise combination of PVEe1 and PVEe2

varied from 0.05 to 0.95, with fifty replicates per pair of values. (B). Same as (A) but with a 4:1 of samples between
environments 1 and 2. (C). Plot of the true vs GxEMM estimate of PVEe2, the PVE specific to environment 2. Grey
points are the results of individual simulations, orange lines denote the median and 95% inter-quartile range (IQR).
The three panels differ in the true PVE specific to environment 1, PVEe1 ∈ {0.2, 0.5, 0.8}. Simulations were run with
an equal number of samples in each environment and σ2

resid was fixed at 1.0. (D). Same as (C) but with a 4:1 ratio of
samples between environments 1 and 2.
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5 Results and Discussion252

5.1 PVE of body weight across age and diet253

First, we quantified the overall contribution of genetics to variation in body weight and, importantly, how this contribution254

changed with age. We applied both EMMA and GxEMM to body weight estimated every 10 days. Since the mice255

from each generation cohort were measured at the same time every week, we used generation as a proxy for the shared256

environment that mice are exposed to as part of the study design. We accounted for generation-specific fixed effects257

(α in Equation 1) in both models and genotype-generation random effects (γ) in GxEMM. For ages after dietary258

intervention (≥ 180 days), we accounted for diet-specific fixed effects in both models and genotype-diet random effects259

in GxEMM. We estimated the variance components in the model at each age independently and computed the total and260

diet-dependent PVE using Equations 2 and 5.261

In Figure 4A, we observed that the PVE of body weight steadily increased during development and up to 180 days262

of age, when dietary intervention was imposed. The GxEMM model estimates a higher PVE than the EMMA model263

during this age interval because the former model specifically accounts for polygenic genotype-generation effects.264

Following dietary intervention, PVE decreased in four of the five dietary groups; the one exception was the 40% CR265

group which maintained a high PVE (PVE40 ≈ 0.8) (Figure 4A) and low total phenotypic variance (Supplemental266

Figure S3A, top right panel) from 180− 660 days of age. In contrast, the Ad-lib group had the lowest PVE and greatest267

total phenotypic variance in the same age range. Notably, `1 trend filtering of the raw measurements proved useful in268

quantifying smoothly varying trends in the PVE of body weight and growth rate, and improving our estimates of the269

PVE of growth rate by reducing the effect of measurement noise (Supplemental Figure S2). Moreover, these results270

were robust to variation in the genetic data used to calculate the kinship matrix and to survival bias at 660 days of age.271

The kinship matrix used for estimating these PVE values was computed based on the founder-of-origin of marker272

variants [25, ]. When using kinship estimated using bi-allelic marker genotypes (as is commonly done in genome-wide273

association studies), we observed largely similar trends in PVE; however, differences in PVE between diets after 400274

days were harder to discern due to much larger standard errors for the estimates (Supplemental Figure S3A, left panels).275

To test for bias or calibration errors in our PVE estimates, we randomly permuted the body weight trends between mice276

in the same diet group and re-calculated the total and diet-dependent PVE values. Consistent with our expectations,277

PVE dropped to nearly zero for the permuted dataset (Supplemental Figure S3B, left panel), indicating that the PVE278

estimates are well-calibrated. Note that when using kinship computed from genotypes, the PVE in the permuted dataset279

does not drop to zero, suggesting that PVE estimated in this manner is not well-calibrated (Supplemental Figure S3B,280

right panel). Finally, to evaluate the contribution of survival bias to our estimates, we recomputed PVE at all ages after281

restricting the dataset to mice that were alive at 660 days. We observed PVE estimates largely similar to those computed282

from the full dataset, suggesting very little contribution of survival bias to our estimates (Supplemental Figure S3C).283

Next, we quantified the age-dependent contribution of genetics to variation in growth rate, enabled by the dense temporal284

measurement of body weight. As before, we applied EMMA and GxEMM to growth rate estimated every 10 days. In285

Figure 4B, we observed that PVE of growth rate increases rapidly during early development, and then decreases to286

negligible values around 240 days of age. In contrast to body weight, PVE of growth rate is substantially lower at287

all ages, and there is little divergence in PVE across diet groups for most ages. Notably, the decrease and subsequent288

increase in growth rate PVE coincides with specific metabolic, hematologic and physiological phenotyping procedures289

that these mice underwent at specific ages as part of the study (Supplemental Figure S1). Due to lower values and290

greater variance in PVE of growth rate with age, we focus on body weight throughout the rest of the paper.291

In summary, the 40% CR intervention produced the greatest reduction in average body weight and maintained a high292

PVE after dietary intervention. This is because the total genetic variance in body weight remained relatively high and293

the environmental variance remained relatively low throughout this interval. In contrast, body weight PVE steadily294

decreased with age in each of the four less restrictive diets, which was due to a steady increase in environmental295
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Figure 4: (A) Body weight PVE values for 30− 660 days of age. Total PVE estimates are derived from the EMMA
(light grey) and GxEMM (dark grey) models. Diet-dependent PVE values are derived from the GxEMM model. Dotted
vertical line at 180 days depicts the time at which all animals were switched to their assigned diets. (B) Growth rate
PVE; details the same as A.
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variance and not a decrease in the total genetic variance of body weight (Supplemental Figure S3A) . Even though the296

total genetic variance in body weight is nearly constant across diets from 180− 660 days of age, the effect of specific297

variants may change with age.298

5.2 Genomewide QTL analysis of body weight across age and diet299

We sought to identify loci significantly associated with body weight in a diet-dependent and age-dependent manner. To300

this end, we tested for association between the inferred founder-of-origin of each typed variant and body weight at each301

age independently. We note that body weight measurements taken at different ages are not independent; i.e., we may302

detect a locus at a specific age if it has small effects on body weight acting over a long period of time or a large effect303

on body weight resulting in rapid bursts in growth. Thus, a locus identified as significant at a specific age indicates its304

cumulative contribution to body weight at that age.305

We identified 29 loci significantly associated with body weight at any age in the additive or interaction models using a306

p ≤ 10−4 cutoff for the additive test and a weaker p ≤ 10−3 cut-off for the genotype-diet interaction test (Supplemental307

Figure S4). Using all bi-allelic variants imputed from the complete genome sequences of the eight DO founder strains308

[26, ], we re-tested the genetic association for the 29 candidate loci with the additive and interaction models. Specifically,309

we tested for association between all imputed genotype variants and body weight, accounting for kinship estimated310

using founder-of-origin inferred at genotyped variants as before. We found that 24 loci remained significant in the311

fine mapping analysis: five loci unique to the additive model, ten loci unique to the interaction model, and nine loci312

significant in both models (Table 1). We identified body weight associations with age-dependent effects from early313

development to adulthood: four diet-independent loci were associated with body weight exclusively during development314

(ages 60 – 160 days) and three were associated exclusively during adulthood (ages 200 – 660 days); the remaining315

seven loci were associated during development prior to the imposition of dietary restriction at day 180 and continued to316

be associated into adulthood (Table 1). The majority of diet-dependent loci (12 of 19) had a detectable effect on body317

weight only 240 days after dietary intervention (ages 420 – 660 days; Table 1). For each candidate body weight locus,318

we sought to determine the likely set of causal variants and estimate the effect of the eight founder alleles in a diet- and319

age-dependent manner.320

In order to facilitate characterization and interpretation of the genetic associations at each locus, we sought to represent321

these associations in terms of the effects of founder haplotypes. First, we determined the founder-of-origin for each322

allele at every variant that was significant in at least one age. This allowed us to assign a founder allele pattern (FAP) to323

each significant variant in the locus. For example, if a variant with alleles A/G had allele A in founders AJ, NZO, and324

PWK and the allele G in the other 5 founders, then we assign A to be the minor allele of this variant and define the325

FAP of the variant to be AJ/NZO/PWK. Next, we grouped variants based on FAP and define the LOD score of the FAP326

group to be the largest LOD score among its constituent variants. (Note that, by definition, no variant can be a member327

of more than one FAP group.) By focusing on the FAP groups with the largest LOD scores, we significantly reduced328

the number of putative causal variants (Table 1, Supplemental File 1), while representing the age- and diet-dependent329

effects of these loci in terms of the effects of its top FAP groups. We further narrowed the number of candidates by330

intersecting the variants in top FAP groups with functional annotations (e.g., gene annotations, regulatory elements,331

tissue-specific regulatory activity, etc). For many loci, this procedure identified candidate regions containing one to332

three genes (Table 1) and we provide the full list of all genes within candidate regions in Supplemental File 2. In order333

to demonstrate the utility of this approach, we first examined a single locus on chromosome 6 strongly associated under334

the additive model.335

We identified a diet-independent locus on chromosome 6 significantly associated with body weight during early336

development and nominally associated with body weight in certain dietary treatments at later ages (Figure 5A). One337

explanation for this result is a single pleiotropic allele affecting body weight at two distinct stages of life: early338

development and adulthood. Alternatively, this result could be explained by allelic heterogeneity [27, ] – a single locus339
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Table 1: Significant body weight loci identified using the additive and interaction models. For each locus, we
identified the founder allele pattern (FAP) of the variant with the strongest association at any age, the genomic location
of these variants, number of significant variants that comprise this lead FAP, the number of these variants located within
regulatory elements identified using chromatin accessibility measurements, and the ages at which at least one variant in
the lead FAP is significantly associated with body weight. For loci in which the lead FAP is comprised of fewer than 10
variants, we also present results for the second FAP. We list candidate genes for loci where the FAP spans three or fewer
genes.
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Figure 5: Distinct loci contribute to diet-independent and diet-dependent effects on body weight within a region
on chromosome 6. (A) Manhattan plots of additive genetic associations and genotype-diet associations on chromosome
6 at multiple ages. (B) and (C) Fine-mapping loci associated with body weight, independent of diet at 80 days of age
and dependent on diet at 600 days of age. Significant variants (solid circles). Colors denote variants with shared FAPs;
rank 1, 2, and 3 by LOD score are colored red, orange, and yellow, respectively. (D) and (E) Significant variants, colored
by their FAP group, along with the gene models (shown in green) and the tissue-specific activity of regulatory elements
near these variants (shown in grey). Significant variants that lie within regulatory elements are highlighted as diamonds,
and regulatory elements that contain a significant variant are highlighted in dark grey. (F) and (G) Log odds ratio of
body weight association as a function of age for the lead variant from each FAP group. FAP colors are consistent with
(B) and (C), respectively. (H) and (I) Estimated mean (se) effect on body weight (grams) of the minor allele for the lead
imputed variant. For the diet dependent locus (I), effects are shown for each diet treatment. (J) Estimated mean (se)
effect on body weight (grams) of each founder allele for the genotyped marker with the highest LOD score from the
additive model. (K) Estimated effect (se) on body weight (grams) of each founder allele under the AL and 20% CR
diets. 15
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harboring multiple functional alleles each with distinct phenotypic effects. A third possibility is that this single genomic340

region contains multiple functional body weight loci that are only revealed with sufficient fine-mapping resolution.341

Fine-mapping this locus using the additive model, we identified the variant with the highest LOD score to be at 53.6342

Mb. The minor allele at this lead variant was common to the AJ and NOD founders, while the remaining 6 founders343

possessed the alternate allele; this defined the lead diet-independent FAP at this locus to be AJ/NOD (Figure 5B).344

Separately, we fine-mapped this locus using the interaction model, identified the lead variant at 55.1 Mb, and determined345

the lead FAP to be B6/CAST/PWK (Figure 5C). These results are consistent with the hypothesis that at least two distinct346

body weight QTLs with functional alleles derived from different DO founders were responsible for the diet-dependent347

and diet-independent body weight associations at this locus.348

We hypothesized that the functional variant(s) responsible for the diet-independent and diet-dependent body weight349

associations at this locus are among the variants in the respective lead FAP groups because they exhibit the strongest350

statistical association and it is unlikely any additional variants are segregating in this genomic interval beyond those351

identified in the full genome sequences of the eight founder strains. For the diet-independent locus, at age 120, we352

identified 87 significantly associated variants; of these, 79 could be assigned to the lead FAP group and shared a353

similarly high LOD score (Figure 5B). All of these variants are SNPs located in the gene CREB5, 78 are intronic and354

one a synonymous exon variant. For the diet-dependent locus, at age 600 days, we identified 617 variants as significant;355

of these, 507 could be assigned to the lead FAP and shared a similarly high LOD score (Figure 5C). Two of the 507356

variants were intergenic structural variants; of the remaining SNPs, 5 were non-coding exon variants, 167 were intronic,357

and the remainder were intergenic. Given that all candidate variants were non-coding, we next sought to determine358

whether they were located in regulatory elements across a number of tissues, identified as regions of open chromatin359

measured using ATAC-seq [28, ] or DNase-seq [29, ]. For the diet-independent and diet-dependent loci, we found 2 and360

101 variants, respectively, that were located in regions of open chromatin (Figure 5D,E). Notably, both variants with361

diet-independent effects lay within the same muscle-specific regulatory element located within CREB5, suggesting that362

these variants likely affected body weight by regulating gene expression in muscle cells.363

We found the relationship between model LOD score and age was similar for each of the three lead FAPs at the364

diet-independent and diet-dependent loci (Figure 5F, G). The minor allele of the lead variant at the diet-independent365

locus was associated with increased body weight at young ages (Figure 5H) whereas the minor allele for the lead366

diet-dependent variant had a positive effect on body weight under the 20% CR diet, a nearly neutral effect under the367

40% CR, and a negative effect under the AL diet (Figure 5I). We next measured the effect of each founder allele at the368

lead diet-independent genotyped marker and, consistent with the lead FAP group for the diet-independent association,369

the AJ and NOD alleles had large positive effects at young ages (Figure 5J). For the diet-dependent association, B6,370

CAST, and PWK alleles were associated with decreased body weight in the AL diet and increase in body weight in371

the 20% CR diet (Figure 5K), consistent with their role in defining the lead diet-dependent FAP group. This example372

clearly demonstrates the insight gained by focusing on lead FAP variants to link specific founder alleles to variation in373

body weight and narrow the number of potential functional variants underlying body weight.374

Next, we used this approach to examine a locus on chromosome 12 with diet-dependent effects on body weight from375

300 to 420 days of age (Table 1; Supplemental Figures S5D). Upon fine-mapping the locus at 420 days of age, when376

the association was the strongest, we identified 77 significant variants partitioning into two distinct lead FAP groups,377

with similarly high LOD scores and centered at the same gene. The rank 1 FAP group contained variants with the378

minor allele specific to AJ and B6, whereas the rank 2 FAP group contained variants with the minor allele specific to379

WSB (Figure 6A). Of the 77 variants, the AJ/B6 FAP group contained 6 intergenic SNPs and 4 intronic SNPs spanning380

three genes: gephyrin (GPHN), Plekhh1, and RAD51b (Figure 6A). One of these ten variants is located in a regulatory381

element active specifically in adipose tissue. The remaining 67 significant variants all belonged to the WSB-specific382

FAP group; of these, 23 SNPs were intergenic and 44 were intronic and centered at the gephyrin gene. Four of these 67383

variants were located in regulatory elements active in adipose tissue as well as other tissues relevant to metabolism384

(Figure 6B).385
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Despite having alleles with distinct founders-of-origin, we found that both lead FAPs had largely concordant strengths386

of association through age, with the WSB-specific FAP having stronger evidence at earlier ages (300-420 days) and the387

AJ/B6 FAP having stronger evidence at later ages (360-540 days) (Figure 6C). The minor allele of the lead imputed388

variant in the AJ/B6 FAP group was associated with increased body weight in the 2D fasting diet, but had little effect389

in the other four diets (Figure 6D). In contrast, the minor allele of the lead imputed variant from the WSB-specific390

FAP group had the largest positive effect on body weight in the AL and 1D fast diet and largest negative effect on391

body weight in the 40% CR diet (Figure 6D). Estimates of the diet-dependent effects of the AJ, B6, and WSB founder392

alleles at marker variants with the strongest association were consistent with the effects of FAPs predicted above: the393

AJ and B6 founder alleles were associated with the largest body weights in the 2D fast treatment and had little effect394

in the other four treatments, whereas the WSB founder allele had large, positive effects under AL and 1D fast diets395

and a negative effect under the 40% CR diet (Figure 6E). Taken together, these results provide evidence for allelic396

heterogeneity at this locus, with at least three functional alleles having distinct diet-dependent effects on body weight.397

These two loci demonstrate the varied age- and diet-dependent genetic effects that shaped body weight in this DO mouse398

population. We found that one locus on chromosome 6 had both diet-dependent and diet-independent associations399

located in adjacent genomic regions and driven by different FAP groups, which is consistent with the hypothesis that the400

two associations are due to distinct QTLs rather than a single pleiotropic QTL. In order to determine whether this was a401

general feature of loci with diet-dependent and diet-independent associations, we examined eight additional such loci in402

our dataset (Table 1). We found six loci exhibiting a similar pattern as the chromosome 6 locus; i.e., the diet-dependent403

and diet-independent associations were composed of distinct FAP groups located in adjacent, distinct genomic regions404

(Supplemental Figure S5). The two remaining loci provided examples of a contrasting model; the diet-dependent and405

diet-independent associations were composed of similar (although, not identical) FAP groups centered upon the same406

genes (Supplemental Figure S6). The founder allele effects are distinct between the diet-dependent and diet-independent407

associations: the diet-dependent and diet-independent loci on chromosome 3 are due to differential effects between408

CAST/NOD/NZO versus B6/WSB and CAST/PWK versus B6/AJ, respectively (Supplemental Figure S6B), and the409

diet-dependent and diet-independent chromosome 7 loci are due to differential effects between B6/WSB/NOD versus410

AJ/NZO and B6/WSB/129 versus PWK (Supplemental Figure S6D). These results are consistent with the hypothesis411

that distinct alleles at the same locus are responsible for the diet-dependent and diet-independent associations, similar412

the instance of allelic heterogeneity we observed at the chromosome 12 locus (Figure 6B). Additionally, we observed413

one other plausible instance of allelic heterogeneity at the diet-independent QTL on chromosome 4 (Supplemental414

Figure S5C). In summary, fine-mapping body weight QTLs and examining their lead FAPs have revealed evidence for415

both allelic heterogeneity at individual loci and multiple adjacent QTLs in narrow genomic regions shaping phenotypic416

variation in this classic quantitative trait.417

5.3 Nonlinear context-dependent trends in genetic effects on body weight418

Given high resolution temporal measurements of body weight, we observed an age-dependent nonlinear trend in the419

effect of the lead variant at the diet-independent locus on chromosome 6 (Figure 5H). Conservatively, we defined420

age-dependent effects to be nonlinear if the trend of effect size showed a stable change in direction at any age within 30421

– 660 days (e.g., an increasing effect followed by decreasing effect, each at multiple ages). Surprisingly, the nonlinear422

genetic effects at this locus appear to be completely driven by the AJ founder background (Figure 5J), indicating that the423

same allele has substantially different effects on body weight in distinct genetic backgrounds. Notably, such nonlinear424

trends of genetic effects with age often cannot be discerned even with large cross-sectional data that are typical of425

modern genome-wide association studies. To quantify the generality of such nonlinear trends, we evaluated the effect426

size trends at all 14 diet-independent associations identified by our study. We observed nonlinear age-dependent427

effects to be predominant, with 12 of the 14 loci could be classified as having nonlinear genetic effects. Additionally,428

nonlinearity was often specific to a subset of founder strains that are driving the associations at each locus, suggesting429
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Figure 6: Allelic heterogeneity at a diet-dependent body weight QTL on chromosome 12. (A) Fine-mapping loci,
under the interaction model, at 420 days of age. Significant variants are marked as solid circles. Colors denote variants
with shared FAPs; rank 1, 2, and 3 by LOD score are colored red, orange, and yellow, respectively. (B) Significant
variants, colored by their FAP, along with the gene models (shown in green) and the tissue-specific activity of regulatory
elements near these variants (shown in grey). Significant variants that lie within regulatory elements are highlighted as
diamonds, and regulatory elements that contain a significant variant are highlighted in dark grey. (C) Log odds ratio of
association, under the interaction model, as a function of age for the lead variant from each FAP group. FAP colors are
consistent with (A). (D) Diet-dependent effects (se) of the minor allele for the lead imputed variant from the AJ/B6 FAP
group (top panel) and the WSB FAP group (bottom panel). (E) Diet-dependent effects (se) of the founder allele for the
genotyped variant with the highest LOD score.
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that the genetic background plays an important role when interpreting the dynamics of the genetic architecture of body430

weight in DO mice.431

Along similar lines, we observed nonlinear trends with age for diet-dependent effects at the locus on chromosome 12,432

specifically within the WSB genetic background under the AL diet (Figure 6D). As a more general pattern, we observed433

such diet-specific nonlinear trends to be less common, with only 6 of 19 diet-dependent loci exhibiting nonlinearity in434

trends of genetic effects. In contrast to diet-independent loci, where the directionality of genetic effects were always435

stable across age, we found that 7 out of the 19 diet-dependent loci exhibited a switch in the directionality of effects436

under specific diets. One example of such a shift in genetic effect was observed in the effect of WSB-private FAP group437

under the 2D fasting diet (Figure 6D), where the minor allele of the lead variant in this FAP group was associated with438

decrease in body weight soon after the fasting intervention began, but was associated with increase in body weight439

about 180 days (6 months) after dietary intervention (see Supplemental Figures S8A-D for more examples).440

The diet-dependent locus on chromosome 6 illustrated a rather counter-intuitive result; while we observed an approxi-441

mately linear reduction in median body weight between the AL, 20% CR, and 40% CR diets in response to a linear442

reduction in calories (Figure 1B), the effects of this locus on body weight were nonlinear in the context of each diet443

(Figure 5I). We defined nonlinear diet-dependent effects as instances in which the genetic effects in the context of either444

the 20% CR or 1D fast treatments were substantially greater (or less) than the genetic effects in the context of AL445

and 40% CR diets or AL and 2D fast diets, respectively. We observed a second instance of nonlinear diet-dependent446

effects at a locus we mapped to chromosome 5. This locus had the strongest diet-dependent association observed in447

the genome. The lead FAP group, containing variants with an allele private to the NOD strain, was associated with448

large positive effect on body weight in the 20% CR diet, a small positive effect in the 1D fast diet, and nearly neutral449

effects in the 40% CR, 2D fast, and AL diets (Supplemental Figure S7). In total, we found that this pattern to be quite450

common, with 9 of the 19 significant loci identified under the interaction model exhibiting nonlinear diet-dependent451

effects (Supplemental Figure S8).452

5.4 Fine-mapped genes implicate neurological and metabolic processes453

Of the 33 significant loci from the additive and interaction models, we identified 14 loci with lead FAP groups spanning454

1-3 genes (Table 1). Many of these genes implicated in modulating body weight also affect neurological behavior,455

consistent with the enrichment of genetic associations with body-mass index and obesity in pathways active in the456

central nervous system in humans [30, 31, 32, ].457

One example is the neuronal growth regulator 1 (Negr1) gene, a candidate linked to body weight in mid-adulthood via458

the lead 129/CAST/WSB FAP group within a diet-dependent locus on chromosome 3. This gene is highly expressed in459

the cerebral cortex and hippocampus in the rat brain [33, ] and is known to regulate synapse formation of hippocampal460

neurons and promote neurite outgrowth of cortical neurons [34, 35, ]. Negr1 has also been implicated in obesity [36, ],461

autistic behavior, memory deficits, and increased susceptibility to seizures [37, ] in mice, and body-mass index [38,462

] and major depressive disorder [39, ] in humans. Another example is the gephyrin gene (Gphn) implicated by two463

distinct FAP groups in the diet-dependent locus on chromosome 12 (Figure 6A). Gephyrin is a key structural protein464

at neuronal synapses that ensures proper localization of postsynaptic inhibitory receptors. Gephyrin is also known465

to physically interact with mTOR and is required for mTOR signaling [40, ], suggesting two plausible pathways for466

influencing body weight. On chromosome 1, murine Trmt1l (Trm1-like), a gene with sequence similarity to orthologous467

tRNA methyltransferases in other species, was linked to body weight during early development (Supplemental Figure468

S5A). Mice deficient in this gene, while viable, have been found to exhibit altered motor coordination and abnormal469

exploratory behavior [41, ], suggesting that the association at this locus is possibly mediated through modulating470

exploratory behavior.471

Among candidates that affect metabolic processes, Creb5, a gene linked to diet-independent effects on body weight472

(Figure 5B), has previously been reported to be linked to metabolic phenotypes in humans, with differential DNA473
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methylation detected between individuals with large differences in waist circumference, hypercholesterolemia, and474

metabolic syndrome [42, ]. Another gene important for metabolic control in the liver, PI3K-C2γ was linked to475

diet-dependent effects on body weight in early adulthood. PI3K-C2γ-deficient mice are known to exhibit reduced476

liver accumulation of glycogen and develop hyperlipidemia, adiposity, and insulin resistance with age [43, ]. Edem3,477

another candidate gene at the locus on chromosome 1 linked to body weight in early development (Supplemental478

Figure S5A), has previously been linked to short stature in humans based on family-based exome sequencing and479

differential expression in chondrocytes [44, ]. Possibly sharing a similar mechanism, Adam12, a candidate gene in both480

a diet-independent and diet-dependent locus on chromosome 7, is known to play an important role in the differentiation,481

proliferation, and maturation of chondrocytes [45, ].482

Thus, our fine-mapping strategy using FAP groups has highlighted several candidate genes associated with body weight,483

many of which are known to play important roles in a range of processes including metabolism, skeletal growth, motor484

coordination, and behavior.485

6 Future Considerations486

To summarize, we found that the effects of age and diet on body weight differ substantially with respect to the genetic487

background and type of dietary intervention imposed. These results highlight that with knowledge of these environment-488

dependent effects, we can generate more accurate predictions of body weight trajectories than would be possible from489

knowledge of genotype, age, or diet alone. Moreover, with the elucidation of specific candidate genes and variants490

underlying these effects, we are not limited to predicting how this complex quantitative trait changes with age, but can491

also identify specific targets for genetic or pharmacological manipulation in an effort to improve organismal health.492

One important limitation to our study is the lack of direct measurements of food consumption and feeding behaviors for493

each mouse in the population; this makes it difficult to ascertain how much variation in body weight can be ascribed to494

variation in such behaviors. Additionally, caloric restriction was imposed based on the average food consumed by a495

typical DO mouse rather than a per-mouse baseline of food consumption. Furthermore, caloric restriction interventions496

were imposed on a per-cage basis, not a per-mouse basis, because all animals were housed in groups of eight. Therefore,497

the social hierarchy within each cage likely contributed to additional variation in body weight [46, ]. Accounting for498

these sources of variation will be a promising avenue for future research, helping interpret many of the associations499

identified in our study.500

A second important consideration for this study is the potential for survival bias to lead to inflated PVE values and false501

positive associations at later ages. To evaluate the presence of survival bias, we computed PVE at all ages restricting to502

animals that survived to 660 days of age (75% of animals in our study). We observed similar PVE values to those from503

the full data set, across the full age range, suggesting that survival bias has very little effect on the results presented504

in this paper (Supplemental Figure S3C, top left panel). However, as these animals age and the survival bias of the505

population increases, genetic analyses of body weight at ages past 660 days will need to explicitly account for this506

effect.507

In this study, we have elucidated the dynamics and context-dependence of the genetic architecture of body weight from508

60 to 660 days of age. By 660 days of age, nearly all surviving animals have realized their maximum adult body weight509

and the majority of animals have yet to experience appreciable loss of body weight indicative of late-age physiological510

decline. Under AL diet, reduced body weight has been associated with greater longevity, whereas under 40% CR511

conditions, greater longevity is associated with the maintenance of high body weight [47, ]. Our future research will512

assess whether we observe a similar result in this DO population and determine whether alleles at body weight loci are513

predictive of lifespan in a diet-dependent manner.514
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Oliver Kretz, Carola A Haas, Martin Hrabě de Angelis, Stephan Herzig, Thomas Brümmendorf, Martin Klin-726

genspor, Fritz G Rathjen, Jan Rozman, George Nicholson, Roger D Cox, and Michael K E Schäfer. Functional727

inactivation of the genome-wide association study obesity gene neuronal growth regulator 1 in mice causes a body728

mass phenotype. PLoS One, 7(7):e41537, July 2012.729

[37] Katyayani Singh, Desirée Loreth, Bruno Pöttker, Kyra Hefti, Jürgen Innos, Kathrin Schwald, Heidi Hengstler, Lutz730

Menzel, Clemens J Sommer, Konstantin Radyushkin, Oliver Kretz, Mari-Anne Philips, Carola A Haas, Katrin731

Frauenknecht, Kersti Lilleväli, Bernd Heimrich, Eero Vasar, and Michael K E Schäfer. Neuronal growth and732

behavioral alterations in mice deficient for the psychiatric Disease-Associated negr1 gene. Front. Mol. Neurosci.,733

11:30, February 2018.734

[38] Elizabeth K Speliotes, Cristen J Willer, Sonja I Berndt, Keri L Monda, Gudmar Thorleifsson, Anne U Jackson,735

Hana Lango Allen, Cecilia M Lindgren, Jian’an Luan, Reedik Mägi, Joshua C Randall, Sailaja Vedantam,736

Thomas W Winkler, Lu Qi, Tsegaselassie Workalemahu, Iris M Heid, Valgerdur Steinthorsdottir, Heather M737

Stringham, Michael N Weedon, Eleanor Wheeler, Andrew R Wood, Teresa Ferreira, Robert J Weyant, Ayellet V738

Segrè, Karol Estrada, Liming Liang, James Nemesh, Ju-Hyun Park, Stefan Gustafsson, Tuomas O Kilpeläinen, Jian739

Yang, Nabila Bouatia-Naji, Tõnu Esko, Mary F Feitosa, Zoltán Kutalik, Massimo Mangino, Soumya Raychaudhuri,740

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.04.364398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.364398
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - NOVEMBER 5, 2020

Andre Scherag, Albert Vernon Smith, Ryan Welch, Jing Hua Zhao, Katja K Aben, Devin M Absher, Najaf Amin,741

Anna L Dixon, Eva Fisher, Nicole L Glazer, Michael E Goddard, Nancy L Heard-Costa, Volker Hoesel, Jouke-Jan742

Hottenga, Asa Johansson, Toby Johnson, Shamika Ketkar, Claudia Lamina, Shengxu Li, Miriam F Moffatt,743

Richard H Myers, Narisu Narisu, John R B Perry, Marjolein J Peters, Michael Preuss, Samuli Ripatti, Fernando744

Rivadeneira, Camilla Sandholt, Laura J Scott, Nicholas J Timpson, Jonathan P Tyrer, Sophie van Wingerden,745

Richard M Watanabe, Charles C White, Fredrik Wiklund, Christina Barlassina, Daniel I Chasman, Matthew N746

Cooper, John-Olov Jansson, Robert W Lawrence, Niina Pellikka, Inga Prokopenko, Jianxin Shi, Elisabeth Thiering,747

Helene Alavere, Maria T S Alibrandi, Peter Almgren, Alice M Arnold, Thor Aspelund, Larry D Atwood, Beverley748

Balkau, Anthony J Balmforth, Amanda J Bennett, Yoav Ben-Shlomo, Richard N Bergman, Sven Bergmann, Heike749

Biebermann, Alexandra I F Blakemore, Tanja Boes, Lori L Bonnycastle, Stefan R Bornstein, Morris J Brown,750

Thomas A Buchanan, Fabio Busonero, Harry Campbell, Francesco P Cappuccio, Christine Cavalcanti-Proença,751

Yii-Der Ida Chen, Chih-Mei Chen, Peter S Chines, Robert Clarke, Lachlan Coin, John Connell, Ian N M Day,752

Martin den Heijer, Jubao Duan, Shah Ebrahim, Paul Elliott, Roberto Elosua, Gudny Eiriksdottir, Michael R Erdos,753

Johan G Eriksson, Maurizio F Facheris, Stephan B Felix, Pamela Fischer-Posovszky, Aaron R Folsom, Nele754

Friedrich, Nelson B Freimer, Mao Fu, Stefan Gaget, Pablo V Gejman, Eco J C Geus, Christian Gieger, Anette P755

Gjesing, Anuj Goel, Philippe Goyette, Harald Grallert, Jürgen Grässler, Danielle M Greenawalt, Christopher J756

Groves, Vilmundur Gudnason, Candace Guiducci, Anna-Liisa Hartikainen, Neelam Hassanali, Alistair S Hall,757

Aki S Havulinna, Caroline Hayward, Andrew C Heath, Christian Hengstenberg, Andrew A Hicks, Anke Hinney,758

Albert Hofman, Georg Homuth, Jennie Hui, Wilmar Igl, Carlos Iribarren, Bo Isomaa, Kevin B Jacobs, Ivonne759

Jarick, Elizabeth Jewell, Ulrich John, Torben Jørgensen, Pekka Jousilahti, Antti Jula, Marika Kaakinen, Eero760

Kajantie, Lee M Kaplan, Sekar Kathiresan, Johannes Kettunen, Leena Kinnunen, Joshua W Knowles, Ivana761

Kolcic, Inke R König, Seppo Koskinen, Peter Kovacs, Johanna Kuusisto, Peter Kraft, Kirsti Kvaløy, Jaana Laitinen,762

Olivier Lantieri, Chiara Lanzani, Lenore J Launer, Cecile Lecoeur, Terho Lehtimäki, Guillaume Lettre, Jianjun763

Liu, Marja-Liisa Lokki, Mattias Lorentzon, Robert N Luben, Barbara Ludwig, MAGIC, Paolo Manunta, Diana764

Marek, Michel Marre, Nicholas G Martin, Wendy L McArdle, Anne McCarthy, Barbara McKnight, Thomas765

Meitinger, Olle Melander, David Meyre, Kristian Midthjell, Grant W Montgomery, Mario A Morken, Andrew P766

Morris, Rosanda Mulic, Julius S Ngwa, Mari Nelis, Matt J Neville, Dale R Nyholt, Christopher J O’Donnell,767

Stephen O’Rahilly, Ken K Ong, Ben Oostra, Guillaume Paré, Alex N Parker, Markus Perola, Irene Pichler, Kirsi H768

Pietiläinen, Carl G P Platou, Ozren Polasek, Anneli Pouta, Suzanne Rafelt, Olli Raitakari, Nigel W Rayner,769

Martin Ridderstråle, Winfried Rief, Aimo Ruokonen, Neil R Robertson, Peter Rzehak, Veikko Salomaa, Alan R770

Sanders, Manjinder S Sandhu, Serena Sanna, Jouko Saramies, Markku J Savolainen, Susann Scherag, Sabine771

Schipf, Stefan Schreiber, Heribert Schunkert, Kaisa Silander, Juha Sinisalo, David S Siscovick, Jan H Smit, Nicole772

Soranzo, Ulla Sovio, Jonathan Stephens, Ida Surakka, Amy J Swift, Mari-Liis Tammesoo, Jean-Claude Tardif,773

Maris Teder-Laving, Tanya M Teslovich, John R Thompson, Brian Thomson, Anke Tönjes, Tiinamaija Tuomi,774

Joyce B J van Meurs, Gert-Jan van Ommen, Vincent Vatin, Jorma Viikari, Sophie Visvikis-Siest, Veronique Vitart,775

Carla I G Vogel, Benjamin F Voight, Lindsay L Waite, Henri Wallaschofski, G Bragi Walters, Elisabeth Widen,776

Susanna Wiegand, Sarah H Wild, Gonneke Willemsen, Daniel R Witte, Jacqueline C Witteman, Jianfeng Xu,777

Qunyuan Zhang, Lina Zgaga, Andreas Ziegler, Paavo Zitting, John P Beilby, I Sadaf Farooqi, Johannes Hebebrand,778

Heikki V Huikuri, Alan L James, Mika Kähönen, Douglas F Levinson, Fabio Macciardi, Markku S Nieminen,779

Claes Ohlsson, Lyle J Palmer, Paul M Ridker, Michael Stumvoll, Jacques S Beckmann, Heiner Boeing, Eric780

Boerwinkle, Dorret I Boomsma, Mark J Caulfield, Stephen J Chanock, Francis S Collins, L Adrienne Cupples,781

George Davey Smith, Jeanette Erdmann, Philippe Froguel, Henrik Grönberg, Ulf Gyllensten, Per Hall, Torben782

Hansen, Tamara B Harris, Andrew T Hattersley, Richard B Hayes, Joachim Heinrich, Frank B Hu, Kristian Hveem,783

Thomas Illig, Marjo-Riitta Jarvelin, Jaakko Kaprio, Fredrik Karpe, Kay-Tee Khaw, Lambertus A Kiemeney,784

Heiko Krude, Markku Laakso, Debbie A Lawlor, Andres Metspalu, Patricia B Munroe, Willem H Ouwehand,785

Oluf Pedersen, Brenda W Penninx, Annette Peters, Peter P Pramstaller, Thomas Quertermous, Thomas Reinehr,786

Aila Rissanen, Igor Rudan, Nilesh J Samani, Peter E H Schwarz, Alan R Shuldiner, Timothy D Spector, Jaakko787

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.04.364398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.364398
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - NOVEMBER 5, 2020

Tuomilehto, Manuela Uda, André Uitterlinden, Timo T Valle, Martin Wabitsch, Gérard Waeber, Nicholas J788

Wareham, Hugh Watkins, Procardis Consortium, James F Wilson, Alan F Wright, M Carola Zillikens, Nilanjan789

Chatterjee, Steven A McCarroll, Shaun Purcell, Eric E Schadt, Peter M Visscher, Themistocles L Assimes,790

Ingrid B Borecki, Panos Deloukas, Caroline S Fox, Leif C Groop, Talin Haritunians, David J Hunter, Robert C791

Kaplan, Karen L Mohlke, Jeffrey R O’Connell, Leena Peltonen, David Schlessinger, David P Strachan, Cornelia M792

van Duijn, H-Erich Wichmann, Timothy M Frayling, Unnur Thorsteinsdottir, Gonçalo R Abecasis, Inês Barroso,793

Michael Boehnke, Kari Stefansson, Kari E North, Mark I McCarthy, Joel N Hirschhorn, Erik Ingelsson, and Ruth794

J F Loos. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat.795

Genet., 42(11):937–948, November 2010.796

[39] Craig L Hyde, Michael W Nagle, Chao Tian, Xing Chen, Sara A Paciga, Jens R Wendland, Joyce Y Tung, David A797

Hinds, Roy H Perlis, and Ashley R Winslow. Identification of 15 genetic loci associated with risk of major798

depression in individuals of european descent. Nat. Genet., 48(9):1031–1036, September 2016.799

[40] D M Sabatini, R K Barrow, S Blackshaw, P E Burnett, M M Lai, M E Field, B A Bahr, J Kirsch, H Betz,800

and S H Snyder. Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science,801

284(5417):1161–1164, May 1999.802

[41] Franz Vauti, Tobias Goller, Rafael Beine, Lore Becker, Thomas Klopstock, Sabine M Hölter, Wolfgang Wurst,803

Helmut Fuchs, Valerie Gailus-Durner, Martin Hrabé de Angelis, and Hans-Henning Arnold. The mouse trm1-like804

gene is expressed in neural tissues and plays a role in motor coordination and exploratory behaviour. Gene,805

389(2):174–185, March 2007.806

[42] Francisca Salas-Pérez, Omar Ramos-Lopez, María L Mansego, Fermín I Milagro, José L Santos, José I Riezu-Boj,807

and J Alfredo Martínez. DNA methylation in genes of longevity-regulating pathways: association with obesity808

and metabolic complications. Aging, 11(6):1874–1899, March 2019.809

[43] Laura Braccini, Elisa Ciraolo, Carlo C Campa, Alessia Perino, Dario L Longo, Gianpaolo Tibolla, Marco810

Pregnolato, Yanyan Cao, Beatrice Tassone, Federico Damilano, Muriel Laffargue, Enzo Calautti, Marco Falasca,811

Giuseppe D Norata, Jonathan M Backer, and Emilio Hirsch. PI3K-C2γ is a rab5 effector selectively controlling812

endosomal akt2 activation downstream of insulin signalling. Nat. Commun., 6:7400, June 2015.813

[44] Nadine N Hauer, Bernt Popp, Leila Taher, Carina Vogl, Perundurai S Dhandapany, Christian Büttner, Steffen Uebe,814

Heinrich Sticht, Fulvia Ferrazzi, Arif B Ekici, Alessandro De Luca, Patrizia Klinger, Cornelia Kraus, Christiane815

Zweier, Antje Wiesener, Rami Abou Jamra, Erdmute Kunstmann, Anita Rauch, Dagmar Wieczorek, Anna-Marie816

Jung, Tilman R Rohrer, Martin Zenker, Helmuth-Guenther Doerr, André Reis, and Christian T Thiel. Evolutionary817

conserved networks of human height identify multiple mendelian causes of short stature. Eur. J. Hum. Genet.,818

27(7):1061–1071, July 2019.819

[45] Masahiro Horita, Keiichiro Nishida, Joe Hasei, Takayuki Furumatsu, Miwa Sakurai, Yuta Onodera, Kanji Fukuda,820

Donald M Salter, and Toshifumi Ozaki. Involvement of ADAM12 in chondrocyte differentiation by regulation of821

TGF-β1-Induced IGF-1 and RUNX-2 expressions. Calcif. Tissue Int., 105(1):97–106, July 2019.822

[46] Amelie Baud, Megan K Mulligan, Francesco Paolo Casale, Jesse F Ingels, Casey J Bohl, Jacques Callebert,823

Jean-Marie Launay, Jon Krohn, Andres Legarra, Robert W Williams, and Oliver Stegle. Genetic variation in the824

social environment contributes to health and disease. PLoS Genet., 13(1):e1006498, January 2017.825

[47] Chen-Yu Liao, Brad A Rikke, Thomas E Johnson, Jonathan A L Gelfond, Vivian Diaz, and James F Nelson. Fat826

maintenance is a predictor of the murine lifespan response to dietary restriction. Aging Cell, 10(4):629–639,827

August 2011.828

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.04.364398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.364398
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - NOVEMBER 5, 2020

7 Appendix A: Proportion of variance explained829

Decomposing the phenotype into genetic and non-genetic effects, Y = YG+Yε, the expected proportion of phenotypic830

variance explained by genetic effects is approximately given as831

PVE = E
[
V [YG]

V [Y]

]
≈ E [V [YG]]

E [V [Y]]
:=

VarG
VarY

, (A1)

where V [·] denotes the sample variance. The expected sample phenotypic variance conditional on environment e can be832

written as833

E [V [Y|e]] =
E
[∑

n Y
2
nZne

]
Ne

−
E
[
(
∑

n YnZne)
2
]

N2
e

, (A2)

where Zne is an indicator variable denoting whether sample n belongs to environment e and Ne =
∑

n Zne is the
number of samples in environment e. Under the GxEMM model, starting from Equation 1 and integrating out the
random effects, we can write the numerator of the first term in the expectation as

E

[∑
n

Y 2
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]
=
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V

∑
n,v

G2
nvZne (A3)

+
∑
e′,e′′

Ωe′e′′

V

∑
n,v

G2
nvZneZne′Zne′′ +

∑
n

ΘnnZne,

and the numerator of the second term in the expectation as
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Therefore, the expected sample phenotypic variance can be decomposed as follows

E [V [Y|e]] =

(∑
n µ

2
nZne

Ne
−

(
∑

n µnZne)
2

N2
e

)

+ %2
(
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(A5)

+
∑
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e

)
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(
Ne − 1

N2
e

)
,

where tr(·) denotes that trace of a matrix, sum(·) denotes the sum of all entries of the matrix, and A ◦B denotes the834

Hadamard product of matrices A and B. The first term quantifies the phenotypic variance explained by fixed effects,835

the second and third terms together quantify the phenotypic variance explained by genetic effects (E [V [YG|e]]), and836

the fourth term quantifies the residual (unexplained) phenotypic variance. The proportion of variance explained by837

genetics conditional on environment can now be computed using Equation A1.838
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The expected total sample phenotypic variance (across all environments) again has two terms, as in Equation A2; the
numerator of the first term is written as

E

[∑
n

Y 2
n

]
=
∑
n

µ2
n +

%2

V

∑
n
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v

G2
nv
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∑
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Θnn, (A6)

and the numerator of the second term is written as
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The expected total sample phenotypic variance can be decomposed as follows
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The total proportion of variance explained by genetics in the entire sample can be computed by substituting the above in839

Equation A1.840

Under the EMMA model, the expected total sample phenotypic variance simplifies to

E [V [Y ]] =

(∑
n µ

2
n

N
−

(
∑

n µn)
2

N2

)

+ %2
(
tr(K)

N
− sum(K)

N2

)
+ θ2

(
N − 1

N2

)
, (A9)

where θ denotes the homoscedastic noise. The first component quantifies the phenotypic variance explained by fixed841

effects, the second component quantifies the phenotypic variance explained by genetic effects (E [V [YG]]), and the842

third component quantifies the residual (unexplained) phenotypic variance. Substituting these into Equation A1 gives843

us the proportion of variance explained by genetics under the EMMA model.844

8 Appendix B: Likelihood and gradients for GxEMM model845

Under the full GxEMM model, the phenotype Y depends on fixed and random effects as follows:846

Y ∼ N (µ,Λ), (A10)
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where µ = α0 +
∑

e Zeαe captures all fixed effects and Λ = Θ + %2K+
∑

e ΩeeK ◦
(
ZeZ

T
e

)
captures the covariance847

after integrating out the random effects. The parameters to be estimated in this model are α, σ, %, and Ω. The complete848

log likelihood can be written as849

L = −N
2

log(2π)− 1

2
log det Λ− 1

2
(Y −Xα)

T
Λ−1 (Y −Xα) . (A11)

Maximizing the log likelihood over α gives us850

α̂ = arg max
α
L =

(
XT Λ−1X

)−1 (
XT Λ−1Y

)
. (A12)

Substituting this into the log likelihood, we get851

Lα̂ = −N
2

log(2π)− 1

2
log det Λ− 1

2
Y TPY, (A13)

where P = Λ−1 − Λ−1X
(
XT Λ−1X

)−1
XT Λ−1.852

Computing the gradient of Lα̂ involves evaluating the following gradients,

∂Λ

∂σ2
e

= IZe
(A14)

∂Λ

∂%2
= K (A15)

∂Λ

∂Ωee
= K ◦ (ZeZ

T
e ) (A16)

∂ log det Λ = tr
(
Λ−1∂Λ

)
(A17)

∂Λ−1 = − Λ−1∂ΛΛ−1 (A18)

∂P = − P∂ΛP, (A19)

where IZe is a diagonal matrix with elements of the vector Ze on the diagonal. Thus,

∂Lα̂
∂σ2

e

= − 1

2
tr(Λ−1IZe

) +
1

2
Y TPIZe

PY (A20)

∂Lα̂
∂%2

= − 1

2
tr
(
Λ−1K

)
+

1

2
Y TPKPY (A21)

∂Lα̂
∂Ωee

= − 1

2
tr
(
Λ−1Ke

)
+

1

2
Y TPKePY, (A22)

where Ke = K ◦ (ZeZ
T
e )853

9 Supplemental Figures854
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Figure S1: Raw measurements. (A) Body weight and (B) growth rate trends as a function of age. Mice in this study
also undering an array of phenotyping procedures; the age range for metabolic cage phenotyping is highlighted in pink,
the age range for blood draws is highlighted in blue, and the age range for a battery of challenge-based phenotyping
procedures is highlighted in green.
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Figure S2: PVE using raw measurements. PVE of (A) Body weight and (B) growth rate, estimated using raw body
weight measurements.
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Figure S3: Phenotypic variance explained by genetics (A) PVE (left column) and expected phenotypic variance
(right column) estimated using kinship calculated from founder-of-origin allele probabilities (top row) and bi-allelic
genotypes (bottom row) (B) PVE estimated using kinship calculated from founder-of-origin allele probabilities (left
column) and bi-allelic genotypes (right column), after randomly permuting body weight trajectories across mice, within
each dietary intervention. (C) PVE estimated using all mice in the study (left column) and mice that survived to 660
days of age (right column).
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Figure S4: Age- and diet-dependent Manhattan plots for body weight. Genetic loci associated with body weight at
different ages identified under the additive genetic model (subpanels on the left) and genotype-diet interaction model
(subpanels on the right). Each circle is a genotyped marker, significant markers are in red.
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Figure S5: Loci with significant diet-independent and diet-dependent associations with body weight. (A) Fine-
mapping a locus on chromosome 1 associated with body weight under the additive model (left column) and genotype-diet
interaction model (right column). Each circle is a bi-allelic variant, both imputed and genotyped, and solid circles
denote significantly associated variants. Variants are colored according to their FAP; FAPs of rank 1, 2, and 3 (based
on LOD score) are colored red, orange, and yellow, respectively. Panels (B) - (F) are the same as (A) for loci on
chromosomes: 2, 4, 12, 17, and 19.
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Figure S6: Allelic heterogeneity at loci with significant diet-independent and diet-dependent associations with
body weight. (A) Fine-mapping a locus on chromosome 3 associated with body weight under the additive model
(left column) and genotype-diet interaction model (right column). Each circle is a bi-allelic variant, both imputed and
genotyped, and solid circles denote significantly associated variants. Variants are colored according to their FAP; FAP
with ranks 1, 2, and 3 are colored red, orange, and yellow, respectively. (B) Founder allele effect as a function of age for
the lead FAP variant from (A) for the diet-independent association (left column) and the diet-dependent association
(right column). Panels (C) and (D) are the same as (A) and (B) for a locus on chromosome 7.
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Figure S7: Diet-dependent association with body weight in a locus on chromosome 5. (A) Manhattan plots of
additive genetic associations and genotype-diet associations on chromosome 5 at multiple ages. (B) Fine-mapping a
locus associated with body weight in diet-dependent manner at 660 days of age. Each circle is a bi-allelic variant, both
imputed and genotyped and solid circles denote significantly associated variants. Variants are colored according to their
FAP; FAPs of rank 1, 2, and 3 (by LOD score) are colored red, orange, and yellow, respectively. (C) Significant variants,
colored by their FAP, along with the gene models (shown in green) and the tissue-specific activity of regulatory elements
near these variants (shown in grey). Significant variants that lie within regulatory elements are highlighted as diamonds,
and regulatory elements that contain a significant variant are highlighted in dark grey. (D) Log odds ratio as a function
of age, for a single variant that exhibits the strongest association from each of the top three FAPs. (E) Diet-dependent
effect size of the minor allele as a function of age, for the variant with the strongest association. (F) Estimated effect of
each founder allele in three diets (AL, 20, 40), at the genotyped variant with the strongest diet-dependent association.
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Figure S8: Nonlinear trends in genetic effects with respect to age and dietary intervention. For each fine-mapped
locus, we note the location of the variant with the strongest association and the ages at which the genetic association is
significant, and plot the estimated effect (SE) of this variant as a function of age, under different diets.
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