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Abstract

Cupping of the optic nerve head, a highly heritable trait, is a hallmark of glaucomatous optic neuropathy.
Two key parameters are vertical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD). However,
manual assessment often suffers from poor accuracy and is time-intensive. Here, we show convolutional
neural network models can accurately estimate VCDR and VDD for 282,100 images from both UK Biobank
and an independent study (Canadian Longitudinal Study on Aging), enabling cross-ancestry
epidemiological studies and new genetic discovery for these optic nerve head parameters. Using the Al
approach we perform a systematic comparison of the distribution of VCDR and VDD, and compare these
with intraocular pressure and glaucoma diagnoses across various genetically determined ancestries, which
provides an explanation for the high rates of normal tension glaucoma in East Asia. We then used the large
number of Al gradings to conduct a more powerful genome-wide association study (GWAS) of optic nerve
head parameters. Using the Al based gradings increased estimates of heritability by ~50% for VCDR and
VDD. Our GWAS identified more than 200 loci for both VCDR and VDD (double the number of loci from
previous studies), uncovers dozens of novel biological pathways, with many of the novel loci also conferring

risk for glaucoma.

Keywords: artificial intelligence, image, optic nerve head, glaucoma, GWAS, UK Biobank, CLSA.
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Introduction

The optic nerve head is the exit point of retinal ganglion cell axons from the eye to the brain." It is commonly
assessed during ophthalmic examinations using fundoscopy or optical imaging technology for multiple
ocular diseases, such as glaucoma, which is the leading cause of irreversible blindness globally and is
characterized by characteristic cupping of the optic disc as a result of retinal ganglion cell apoptosis.?3
Enlarged vertical cup-to-disc ratio (VCDR) is considered a hallmark of glaucomatous optic neuropathy and
is often used to define glaucoma in general population based prevalence surveys.* However, VCDR alone
is not adequate to assess glaucomatous damage in part because of the variation of optic disc size. For
instance, a vertical cup:disc ratio of 0.5 in a small optic disc could be pathologic whereas a vertical cup:disc
ratio of 0.8 in a large disc size may represent physiologic cupping. Adjusting for optic disc size is hence
important to maximizing the clinical utility of VCDR in diagnosing glaucoma.

Family studies have shown that optic disc morphology traits are highly heritable with an estimated
heritability of 0.48 and 0.57 for VCDR and optic disc diameter, respectively.’ Large-scale genome-wide
association studies (GWAS) for optic disc morphology have begun to shed light on the development and
pathogenesis of glaucoma and other optic nerve diseases.®® However, both large sample sizes and
accurate phenotyping are critical in GWAS and further progress will be difficult under the existing manual
phenotype paradigm. Manual assessment of optic disc photographs is time-intensive and often suffers from
poor inter-observer concordance, even when performed by trained specialists and an alternative approach
is required.®'° Clinical estimates of VCDR are more difficult from monoscopic photographs compared with
stereoscopic viewing of the optic nerve head which can be achieved during slit-lamp biomicroscopy or from

stereoscopic photographs.

Recent advances in artificial intelligence (Al) algorithms have shown exciting promise in healthcare',
including the automated diagnosis of eye diseases.'?'® With the high performance of Al technology, the
U.S. Food and Drug Administration approved the first medical device to use Al technology to detect diabetic
retinopathy in 2018."*15 The probabilistic nature and non-linear capabilities, as well as analytical capabilities
to deal with single and multimodal, high-dimensional data, has seen application of Al experience lower

resistance to adoption in the medical field when applied to computer vision applications. Two fundamental
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properties have facilitated Al application to medical diagnostics. Firstly, the problem space (medical
imaging) is, relative to other medical domains, well studied and very well understood. Secondly, an
observation of the output can be quickly validated by a clinical practitioner, who by having access to
additional clinical or historical data about that patient, may suggest alternative diagnosis. A motivating factor
driving utilisation of Al on data such as fundus images is the large volume of images available for algorithms
to be trained on. Furthermore, standardised imaging techniques can drastically reduce the dataset
heterogeneity. This is highlighted by the collection of images as part of the UKB and CLSA biobanks
completed over a decade. Automated diagnosis from retinal fundus imaging has been approached through
a number of different algorithms, ranging from multi-stage “classical” learning algorithms to end-to-end deep

learning models.'®-1°

In this study, a convolutional neural network (CNN) model was utilised in a transfer learning approach,
training on clinical assessments of the optic nerve head in ~70,000 photographs (Labelled Training Data)
of UK Biobank (UKB) participants. Automatic labelling by the CNN model dramatically boosts the effective
sample size (n=282,100 total images graded), presenting an opportunity to greatly expand the utility of the
GWAS approach for VCDR and optic disc diameter. We also apply the Al labels systematically across the
multiple different ancestries in UKB and CLSA and investigate how VCDR and other glaucoma risk factors,

such as IOP, relate to glaucoma risk in different ancestries.

Results

Study Design And Overview

The overall study design is summarised in Figure 1. We use transfer learning to train three CNN models for
image gradability, VCDR, and vertical disc diameter (VDD) values from ~70,000 UKB fundus images graded
by clinicians. These models were then applied to all UKB fundus images (85,736 participants and 175,770
images in total) and another independent cohort - the Canadian Longitudinal Study on Aging (CLSA, 29,635
participants and 106,330 images in total). We performed the largest Al-based GWAS for VCDR and VDD,

and replicated novel genetic discoveries in clinician-graded fundus images from International Glaucoma
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99  Genetics Consortium (IGGC) and in glaucoma case-control studies (UKB and the Australian and New
100  Zealand Registry of Advanced Glaucoma; ANZRAG). The large scale biobank data for both VCDR and IOP
101 also allow us to systematically compare the glaucoma risk and optic nerve head parameters across different

102 ancestries.

~85,000 participants in UK Biobank
with fundus images

v

Training Al tasks in UKB

Task 1: gradability Task 2: VCDR training Task 3: VDD training

\/

Internal data testing: UKB
External data testing: CLSA

\/

Testing Al tasks

GWAS discovery: Optic nerve head parameters across
VCDR (adjusted for VDD), VDD different ancestries:
(UKB + CLSA + IGGC) (UKB, CLSA)

\/

Replication and gene prioritization Across ancestry comparison
Look up in glaucoma GWAS summary statistics

Gene prioritization and pathway analysis

103

104  Figure 1. Flowchart of Al framework and datasets. In UK Biobank (UKB), the fundus retinal eye images were
105 available for ~85,000 participants (~68,000 participants in the baseline visit and ~19,000 participants in the first repeat
106 assessment visit). In our previous study, vertical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD) were graded
107 by two clinicians in ~70,000 photographs using a custom Java program. These clinical assessments were used as
108 Training Data for three convolutional neural network (CNN) models for image gradability, VCDR, and VDD values. The
109 learned models were then applied to all UKB fundus images (85,736 participants and 175,770 images in total) and
110 another independent cohort - the Canadian Longitudinal Study on Aging (CLSA, 29,635 participants and 106,330
111 images in total). The Al labels were further used to systematically evaluate optic nerve head parameters across the
112 multiple different ancestries in UKB and CLSA, and allowed us to perform the largest Al-based GWAS for VCDR and
113  vDD.

114

115
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116  Study data and performance of the trained Al model

117 In the UKB, 85,736 participants had at least one fundus retinal image, with a total of 175,770 images
118  available (Table 1). The mean age at baseline was 57.0 (SD: 8.1) years and 54% were women. In the CLSA
119 cohort, 29,635 participants with 106,330 images were included in analysis, of whom 50% were women, and
120  the mean age at recruitment was 62.6 (SD: 10.0) years.

121 We first trained a convoluted neural network to assess if each image was gradable in the UKB training
122  sample. We found that most participants (> 95%) had gradable images in the UKB and the CLSA cohort
123  (Supplementary Figure 1). We then predicted the measurements of both VCDR and VDD, and compared
124  the Al-based measures with clinician gradings. The Al-based VCDR and VDD measurements exhibited a
125  higher concordance to clinician gradings compared with previous gradings by two clinicians.82°-22 For
126 instance, the Pearson's correlation coefficient of the VCDR measurements in the UKB samples was 0.81
127  (95% confidence interval [CI]: 0.80-0.81), and 0.84 (95% Cl: 0.82-0.86) for an independent Canadian data
128  set (CLSA) (Supplementary Figure 2). We therefore speculated that with the improved accuracy of VCDR
129 and VDD measurements and the larger number of images graded, the optic nerve head assessment would

130  increase the power for genetic discovery.
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131 Table 1. Characteristics of retinal fundus images from the UK Biobank and Canadian Longitudinal

132  Study on Aging participants.

Variable UKB CLSA
Number of images 175,770 106,330
Number of participants 85,736 29,635

% with at least one gradable image 95% 99%

Sex Women (%) 44,017 (54%) 14,941 (51%)
Age at recruitment  [Mean (SD), years |57 +8 63 +10
Vertical cup-disc-

ratio Unit in 0-1 0.37+£0.14 0.35+0.15
Vertical disc

diameter Unit in pixel count [129.0 + 10.5 121.4£10.6

133  CLSA, Canadian Longitudinal Study on Aging cohort; SD, standard deviation; UKB, UK Biobank.

134

135 Optic nerve head parameters and intraocular pressure across different ancestries

136 We compared Al model-derived VCDR and VDD measurements across different genetically-defined
137 ancestry groups. VDD was similar across 3 ancestral groups (Europeans, East Asians and South Asians)
138  and larger in Africans (Figure 2B, 2E). On average, after adjusting for age, sex, and VDD, VCDR was
139 markedly higher in Asians and Africans than it was in Europeans (similar results in UKB Figure 2A and in
140  CLSA Figure 2D). A different ancestry-based trend was also observed for intraocular pressure (IOP);
141 relative to Europeans, South Asians had similar IOP, East Asians had lower IOP, and Africans had higher
142  |OP (Figure 2C,F).

143  We then examined whether the systematically assessed VCDR, VDD and IOP can explain the observed
144 prevalence of glaucoma seen across different ancestries in the UK and Canada. Figure 3 shows the
145  glaucoma risk of Africans, East Asians and South Asians, with European ancestry (the most common
146  ancestry in UKB and CLSA data sets) as the baseline. Consistent with previous epidemiological studies,
147  Africans have the highest glaucoma risk (Figure 3 base model, correcting for only age and sex OR = 2.5
148 relative to the reference of Europeans). As seen in Figure 2, Africans have higher VCDR and higher IOP

149  than Europeans and when these were corrected for, the glaucoma risk approached that of Europeans in
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150  both CLSA and UKB. East Asians had a similar base model risk to Europeans, although the contribution of
151 IOP and VDR differs; on average their IOP is lower and their VCDR is larger (Figure 2), with the pattern of
152  glaucoma risk changing as either IOP alone or VCDR alone were adjusted for in the regression model.
153  Adjusting for both IOP and VCDR, the risk of glaucoma in East Asians was not significantly different to
154 Europeans, suggesting that the higher VCDR and lower IOP in this group relative to Europeans counteract
155 each other, explaining the similar glaucoma incidences between these ancestries. Interestingly, in South
156  Asians, IOP is similar to Europeans, but VCDR is higher (Figure 2). This means that South Asian base
157  model risk does not change when IOP is included in the model, but when VCDR is included the glaucoma
158  risk decreases to become indistinguishable from the incidence in Europeans. In summary, by examining
159  individuals of varying ancestry living in the UK and Canada, we show that relative to European ancestry,
160  African ancestry glaucoma incidence is driven by both elevated VCDR and IOP, East Asian ancestry
161 glaucoma is driven by elevated VCDR but ameliorated by lower IOP and finally that South Asian glaucoma
162 is driven by elevated VCDR, but not by changes in IOP (relative to that in Europeans).

163

164
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166
167 Figure 2. Optic nerve head measurements and intraocular pressure across different ancestry

168 groups. Panel A shows the boxplot for VCDR values from different ancestry groups in UK Biobank. The box represents
169 median value with first and third quartiles. The red diamond is the mean value of VCDR after accounting for age, sex,
170 and VDD, where the mean value is annotated as text. The dark red diamond is the 97.5th percentile of VCDR value.
171 The dark red error bar is the 95% confidence interval (2.5% to 97.5% quantiles) of the 97.5th percentile based on 1000
172 bootstrapped samples, which is essential for CLSA data, where the sample size for African, East Asian and South
173 Asian was substantially smaller (N < 300). Panel B shows the boxplot for VDD values from different ancestry groups in
174 UK Biobank. Due to the scale from fundus images, the VDD was rank normalized (mean = 0, SD = 1). The red diamond
175 is the mean value of VDD after accounting for age and sex. Panel C shows the boxplot for IOP levels from different
176 ancestry groups in the UK Biobank (truncated at 40 mm Hg, with 15 participants between 40 - 60 mm Hg). Panel D, E
177  and F show the boxplots for VCDR, VDD and IOP in the CLSA cohort, respectively.

178
179
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181 Figure 3. Glaucoma risk across different ancestry groups. The figure shows the risk of glaucoma in different
182 ancestry groups. The horizontal line at OR = 1 is the reference for European ancestry. The Y-axis is the odds ratio (OR)
183 and 95% confidence interval (Cl) for three ethnic groups (African, South Asian, and East Asian). In each different model,
184 different covariates were adjusted to evaluate the association of ethnic groups and glaucoma risk. In the base model,
185 only sex and age were adjusted for; the other models also include either IOP, VCDR, or both (IOP & VCDR).

186
187

188 Al-based phenotypes greatly increase SNP-based heritability and identify more loci

189  Inthe GWAS of VDD-adjusted VCDR, 145 and 19 statistically independent genome-wide significant SNPs
190  were respectively identified in the UKB alone and CLSA alone (Supplementary Figure 3). The analogous
191 numbers of SNPs for VDD were 142 and 17 for UKB and CLSA, respectively. We found weak evidence of
192 genomic inflation from linkage disequilibrium score regression (Supplementary Table 1). From UKB, the Al-
193  based GWAS of VDD-adjusted VCDR and VDD identified substantially more loci than our previous GWAS
194  based on clinician gradings (76 for VDD-adjusted VCDR and 91 for VDD)®2. Strikingly, the SNP-based
195  heritability increased by ~50% for VCDR and VDD (Supplementary Figure 4). For instance, the SNP-based
196 heritability for VCDR was 0.22 from clinician gradings (only single measure), whereas the heritability
197  increased to 0.35 from Al-based GWAS (average of multiple measures). The increased heritability indicated
198 that Al-based phenotyping was substantially cleaner than clinician gradings, which may be a result of two
199 aspects: 1) higher accuracy of Al-based gradings; 2) improved accuracy from multiple measures per
200 individual. We further tested the hypothesis in UKB and CLSA using only one measure per individual from
201 Al-based gradings. The SNP-based heritability from a single measure (left or right eyes in the baseline or

202  first follow-up visit) was ~0.3, which is roughly in the middle of heritability estimation from clinician gradings

10
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203 and Al-based multiple measures (Supplementary Figure 4). These results indicate the higher accuracy of
204  Al-based single measure per individual contributes to the increase of heritability estimation, and averaging
205 of multiple measures per individual can further increase the heritability. Consistent with our previous study,
206  correcting for VDD in VCDR GWAS also improved the relevance to glaucoma, with a higher genetic
207  correlation with glaucoma in VDD-adjusted VCDR compared with unadjusted VCDR GWAS (genetic
208  correlation rg = 0.502 vs 0.457 in UKB, and 0.543 vs 0.481 in CLSA).

209

210

211  Validation Al-based GWAS

212 We then compared Al-based and clinician grading-based GWAS using independent samples from the
213 IGGC. The concordance of SNP effect sizes of top SNPs between the Al-based and clinician gradings was
214 essentially one (Panel A and D in Figure 4), and nearly all previously published loci using clinician ratings
215  were replicated. The estimated effect sizes at the top SNPs from Al-based GWAS were also highly
216  concordant between UKB and CLSA (Panel B and E in Figure 4). When combining UKB and CLSA Al-
217  based GWAS we identified 193 and 188 loci for VDD-adjusted VCDR and VDD, respectively, again
218  exhibiting very high concordance with IGGC (Panel C and F in Figure 4). The high concordance and more
219 loci support the better-powered GWAS from Al-based measurements.

220

11
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222  Figure 4. Validation Al-based GWAS. The figure shows the effect sizes for VDD-adjusted VCDR and VDD from
223 different data sets. The vertical and horizontal error bars are the 95% confidence interval for SNP effect sizes. The red

224  line is the best fit line with 95% confidence interval region in grey.

225
226

227 New genetic discovery of optic nerve head measures, cross-ancestry comparison, and implications
228  for glaucoma

229  To maximize power for locus discovery, we combined UKB, CLSA and IGGC GWAS (European ancestry),
230  and identified 230 and 231 independent genome-wide significant SNPs for VDD-adjusted VCDR and VDD,
231 respectively (Figure 5). Of them, we found 111 and 107 novel loci for VDD-adjusted VCDR and VDD,
232 respectively (Supplementary Table 2 and 3). We then compared the effect sizes of top VDD-adjusted VCDR
233  and VDD loci across different ancestries (Asian and African GWAS), due to the much smaller available

234 sample sizes, their confidence intervals of effect estimations were very large, however the clear linear trend

12
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indicated the loci identified from European ancestry also had an effect on Asian populations (Figure 6A, B,
for VCDR and VDD the Pearson's correlation coefficient is 0.65 [P value 3.6 x 10?"] and 0.62 [P value 9.3
x 10'2%], respectively). The sample size of African ancestry was much smaller than Asian ancestry (N =
2,245 versus 8,373 for VCDR) and showed a lower concordance (Supplementary Figure 5). The genetic
correlations across the genome were essentially one based on the Popcorn approach for VCDR and VDD
(Supplementary Table 4). We also compared the effect sizes of VDD-adjusted VCDR top loci with their
effect sizes on glaucoma (Figure 6C), and found a relatively high concordance (Pearson's correlation
coefficient 0.61, P = 8.2 x10%). Of the 230 VCDR (adjusted for VDD) loci (227 available in glaucoma
GWAS), 187 (82%) were in the same direction, 84 were associated with glaucoma at a nominal significance
level (P<0.05) and 24 were associated with glaucoma after Bonferroni correction (P< 0.05/227= 2.2 x 104,

the nearest gene names are highlighted in Figure 6C, e.g. LMX1B, ABCA1, CAV1, and GAS?).
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Figure 5. Al enables new genetic discovery for optic nerve head measures.

Manhattan plot panel A shows P values for VDD-adjusted VCDR from the meta-analysis of UKB, CLSA, and IGGC

(European ancestry). Panel B shows P values for VDD from the meta-analysis of UKB, CLSA, and IGGC (European

ancestry). The Y-axis is in log-log scale. The red horizontal line is the genome-wide significance level at P = 5 x 1078,

SNPs with P value less than 1 x 10 are not shown in Manhattan plot. Previously unknown loci are highlighted with red
dots, with the nearest gene names in black text. Known SNPs are highlighted with purple dots, with the nearest gene

names in purple text.
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Figure 6. Comparison of the effect sizes for VCDR (adjusted for VDD) and VDD lead SNPs versus

those observed in the Asian ancestry group and in independent glaucoma cohorts. Panel A and B
show the effect sizes for lead VCDR (adjusted for VDD) and VDD loci (European versus Asian population). Panel C
shows the effect sizes for VCDR (adjusted for VDD) lead SNPs versus log odds ratio in meta-analysis of UKB and
ANZRAG glaucoma GWAS. The 24 SNPs associated with glaucoma after Bonferroni correction (P<0.05/227 = 2.2

x 10) are highlighted with red dots, with the nearest gene names in black text.
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266  Gene prioritization and pathway analysis

267  We performed TWAS analysis in FUSION based on the VDD-adjusted VCDR and VDD GWAS summary
268  statistics and retinal gene expression data. For VDD-adjusted VCDR we identified 101 genes that were
269  significant after Bonferroni correction for multiple testing, nine of which were not genome-wide significant
270 in the per-SNP analysis (Supplementary Figure 6A and 6B). For VDD we identified 64 genes that were
271 significant after Bonferroni correction for multiple testing, 13 of which were not genome-wide significant in
272  the per-SNP analysis. From SMR analysis, we identified 29 and 24 genes for VDD-adjusted VCDR and
273 VDD, respectively, that were significant after multiple testing. We also compared the genes identified from
274  both FUSION and SMR, 11 and 8 genes overlap from the two methods for VDD-adjusted VCDR and VDD,
275 respectively (Supplementary Figure 6C and 6D). For instance, of the 11 genes that were associated with
276  VDD-adjusted VCDR for the two approaches, 6 genes also passed the HEIDI tests (P4HTM, SNX32,
277  RASGRF, HAUS4,LRP11, AC012613.2), suggesting the effects on VCDR may be mediated via these gene
278 expression in retina tissue. The large increase in power resulting from the use of Al grading to improve
279  accuracy and enable substantially larger datasets with multiple images per participant meant we were able
280  to discover many new biological pathways influencing optic nerve head development and aging. Our
281 pathway enrichment analysis uncovered 65 pathways for VCDR and 82 pathways for VDD after Bonferroni
282 correction for multiple testing (Supplementary Table 5 and 6). As well as extracellular matrix pathways
283 uncovered by our previous work, these new pathway analysis uncovered associations with telencephalon
284 (forebrain) regionalization, embryo development, and anatomical tube development. There were several

285 unexpected but statistically robust associations with kidney development (e.g. GO mesonephros

286  development, Praw = 3.45 x 10-8, P=0.00053 after correction for multiple comparisons). The genes driving

287 the kidney development pathway enrichment included BMP2, BMP4, EYA1, FAT4, FOXC1, GLI3, PAX2,
288 RARB, SIX1, and SALL1. Several kidney pathways were also significant in the pathway enrichment analysis
289  applied to our VDD GWAS.

290

291

292 Discussion
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293  Our results show the promising application of Al algorithms in genetics studies. Large scale biobanks such
294  as UKB and CLSA have accumulated hundreds of thousands of optic nerve images containing important
295 information for glaucomatous optic neuropathy. However, the time-intensive and moderate agreement of
296 manual assessment have impeded the usage of retinal fundus images. We trained a deep learning model
297  using clinically estimated VCDR and VDD, and found the trained model has a high accuracy. The large
298 scale biobank data for both VCDR and IOP allow us to systematically compare the glaucoma risk and optic
299 nerve head parameters across different ancestries. Combining genetic and image data, we doubled the
300  number of loci for both VCDR and VDD, with increased heritability.

301

302 The scope of available deep learning models for computer vision tasks is extensive and continuously
303  developing. Various approaches to grade fundus images often utilise intricate data preprocessing
304  methods?*?® as well as computationally heavy models and training methods'®2. In the instance of
305  statistically powered, large scale population study, fast inference and quick iterations are key, making heavy
306  computational and design costs harder to justify. Here we demonstrate that a relatively lightweight,
307 pretained CNN model is capable of producing highly accurate estimations of VCDR and VDD as evinced
308 by high correlation with clinical grading, improved genetic discovery and further validations in independent
309 samples.

310

311 Our Al approach has dramatically accelerated the pace of genetic discoveries. In our previous study, we
312  laboriously manually assessed a subset of UKB images. With the deep learning model trained on clinical
313  measurements, we were able to predict on a new subject within a fraction of a second, making time and
314  effort of image labelling trivial, even when applied to large scale datasets (~1 hour for ~0.3 million images).
315 Sample size is one of the most important limiting factors for genetic discovery. Leveraging the Al-based
316 algorithm and large scale data, we were able to conduct the most powerful GWAS of optic nerve head
317  parameters to date. We doubled the number of genome-wide significant loci for both VCDR and VDD.
318 Interestingly, the estimated SNP-based heritability also increased by ~50% for VCDR and VDD
319 (Supplementary Figure 4); the estimate for VCDR is not substantially lower than the heritability estimate

320 from twin studies (~50%), although given more accurate (Al based) phenotypes, the twin study based

17


https://doi.org/10.1101/2020.11.03.367623
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.367623; this version posted November 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

321 heritability estimate may increase. The increased heritability is a result of more accurate measurements,
322  which arises in part due to the higher accuracy of Al-based predictions and in part to the Al approach
323  allowing time-efficient grading of multiple measures per individual.

324

325 Many of the newly identified VCDR genes are associated with other eye traits (e.g. glaucoma, I0P,
326 exfoliation syndrome, myopia). For some loci associated with I0OP, it is likely that they have an effect on
327  VCDR as a secondary effect of the locus first acting on IOP. Loci including genes such as ABCA1, CAV1,
328  AFAP1 and LMX1B were associated with VCDR for the first time; a likely explanation for this association is
329 that the associated variant alters IOP and subsequently VCDR. Over 20 of the VCDR loci are also
330  associated with refractive error, with multiple aspects of eye physiology likely involved (axial length, corneal
331 thickness, retinal ganglion cell function). We also found a significant genome-wide genetic correlation
332  between VCDR (adjusted for VDD) and myopia (rg = 0.3, P = 1x10™'%), as well as with well studied traits
333  which are associated with myopia such as years of education.?’

334

335 In addition, several of the new VCDR genes provide possible links to retinal ganglion cell biology and they
336 may constitute possible drug repositioning candidates. There are too many to discuss individually but one
337  SNP of interest is rs17855988; this missense variant in the elastin gene (ELN) has been associated with
338  facial ageing. Elastin in the sclera is most dense around the optic nerve head?® and ELN expression has
339 been shown to be high in exfoliation glaucoma lens?®. A subset of the VDD loci have been found to be
340  associated at genome-wide significance levels in previous glaucoma GWAS. However, in the majority of
341 cases, the association with glaucoma appears to be driven by the lead SNP having a primary effect on
342  VCDR (where the variance explained in VCDR for the peak SNP is larger than that for VDD: e.g. SNPs in
343  ornear GMDS, CAV1, MYOF, SIX6, CHEK2, TMTC2). Hence, the primary link between the disc parameters
344 and glaucoma is via VCDR rather than via VDD. This is also shown in the lower genetic correlation between
345  glaucoma and VDD (rg = 0.01) compared with glaucoma and VCDR (rg = 0.5).82° With the high genetic
346  correlation between VCDR and glaucoma, a multitrait analysis has recently shown that including VCDR
347  canimprove the power to identify glaucoma genes and to enable the development of polygenic risk score.?°

348  Future studies of glaucoma would benefit from incorporating these accurate Al derived VCDR estimates.
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349

350 Previous studies have looked at the differences between VDD across different ancestries.®*3" Our results
351 were consistent with this, with Africans having the largest disc size, followed by those of Asian ancestry.
352  For VCDR, an early study (100 black and 100 white) found that blacks had larger VCDR (mean values:
353  blacks 0.35, white 0.24).3? A subsequent larger study (1534 black and 1853 white) reported larger VCDR
354 in blacks (mean values: blacks 0.56, whites 0.49).33 A subsequent study in three different Asian ancestries,
355  showed that VCDR values were similar between the studied ancestries (mean VCDR 0.40, 0.42 and 0.40,
356 in Malay, Chinese, Indian, respectively).3* It is striking that despite VCDR theoretically being a simple
357 parameter to assess, the mean VCDR varies widely across studies, possibly due to differences in
358 measurement protocol, sex, age and eye disease status. A further study* looked at the 97.5th percentile of
359 VCDRinstead of the mean and reported broadly similar values in the Netherlands (0.73), Bangladesh (0.7),
360 Mongolia (0.70), Singapore (0.7), Tanzania (0.7). A major advantage of our study is that we use our Al
361 derived gradings in two population-based cohort studies to systematically assess VCDR differences across
362 ancestries in a consistent study design. By leveraging large sample sizes, we are able to clearly show both
363  Asian and African ancestry individuals have larger VCDR values than Europeans. Our primary results in
364 Figure 2 correct VCDR for VDD, given previous studies showing that correcting for VDD enhances the
365 relevance to glaucoma.?®

366

367  The raised VCDR in Asian and African ancestry individuals living in the UK and Canada is in keeping with
368 elevated glaucoma rates in these ancestries.?® When combined with data on IOP, a combination of VCDR
369 and IOP explains the vast majority of the variation between glaucoma rates in Europeans relative to
370  Africans, South Asians and East Asians. Although crucially, our data show (Figure 3) that the relative
371 contributions of VCDR and IOP are clearly different between all 4 major populations groups that we
372  consider. For individuals of European, South Asian or African ancestry, the vast majority of broadly defined
373  glaucoma cases are open angle glaucoma (OAG). In East Asia, angle closure glaucoma (ACG) is common
374  and a limitation of our analysis is that we cannot distinguish between ACG and OAG in all cases - where
375  available we have removed known cases of ACG in the broad glaucoma definition, but some ACG cases

376  will remain.
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377

378 A strength of our study is that a large number of clinically assessed images were used to train the deep
379  learning model for VCDR and VDD; this allowed us to generate accurate predictions. Our study has shown
380 that the Al-based measurements have a high accuracy. The Al-based optic nerve head assessment has
381 also boosted the available sample size and dramatically expanded gene discovery for these key ocular
382 phenotypes. We show that this deep learning model can also be used to assess future fundus images
383 automatically and rapidly, especially in population-based studies with a large number of images. Moreover,
384 the implementation of transfer-learning techniques shows that Al-aided labelling, with adequate sample
385  size, has a potential to deliver equally successful genetic discoveries in other image based biological
386 phenotypes. Our study has several limitations. Firstly, although our Al approach was able to grade a large
387  proportion of images (particularly in the CLSA study), a small proportion remained ungradable due to poor
388  picture quality. Future studies could explore adversarial architectures to improve clinical ratings of VCDR
389 and VDD. However, a set of high quality truth labels would still be necessary for initial pre-training. Finally,
390 although we were able to use genetic data to clearly identify the major ancestries within UKB and CLSA
391 (European, African, South Asian, East Asian), there remained a group of uncategorized individuals with
392 mixed ancestries that we did not include in our epidemiological or genetic analyses.

393

394  To conclude, we showed that Al-based optic nerve head assessment has a high accuracy and this greatly
395  improves our power to discover new genes. These findings provide new insights into the pathogenesis of
396 glaucomatous optic neuropathy. We also use the systematic assessment of VCDR across different
397  ancestries to help explain how the pattern of IOP and VCDR measures underpin observed glaucoma risk;
398 such findings in mixed ancestry groups living in the UK and Canada help explain the differing characteristics
399 of glaucoma across ancestries. For example, relative to Europeans, individuals with East Asian ancestry
400 are more likely to have lower IOP and increased VCDR. Given these East Asians are genetically similar to
401 East Asians in countries such as China and Japan, this provides support for the assertion that normal
402 tension forms of glaucoma predominate in East Asia due to genetic predisposition for high VCDR, despite

403 low IOP.
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404 Methods

405

406  Study populations

407 UK Biobank

408 The UK Biobank (UKB) is a population-based cohort study with deep genetic and phenotypic data from
409  ~500,000 participants aged between 40 to 69 years at the time of recruitment (2006-2010), living in the
410  United Kingdom.*” Retinal fundus images were available for both left and right eyes from two assessment
411 visits, covering ~85,000 participants (~68,000 participants in the baseline visit and ~19,000 participants in
412  the first repeat assessment visit [2012-2013]). In our previous study, vertical cup-to-disc ratio (VCDR) and
413  vertical disc diameter (VDD) were graded by two clinicians using a custom Java program.?® Detailed image
414  processing and quality control methods were described previously.?® Briefly, given the time-consuming
415  nature of manual grading, we only graded the left eye images (if the left eye images were ungradable, the
416 right eye images were used instead) and one visit (if the second visit measurements were unavailable, the
417 first visit measurements were used instead) of white British ancestry participants. A total of 67,040
418 participants with both VCDR and VDD measurements were included in our previous GWAS. In this study,
419  we used a CNN model to grade left and right eye images from two visits for all participants, irrespective of
420  ancestry, with a total of 175,770 images.

421 In the UKBB, ~488,000 participants were genotyped for 805,426 variants on Axiom arrays (Affymetrix Santa
422 Clara, USA). The genetic data, quality control procedures and imputation methods have been described
423  previously.® Briefly, ~96 million variants were imputed using Haplotype Reference Consortium (HRC) and
424  UK10K haplotype resources®*°, and 487,409 individuals passed genotyping quality control. Of them,
425 438,870 individuals were genetically similar to those of white-British ancestry.3"4' For the GWAS in UKB,
426  we retained SNPs with MAF > 0.01 and imputation quality score > 0.8. To verify self-reported diverse
427  ancestry information (data field 21000 in UKB), we used a K-means clustering method based on genetic
428 principal components (PCs). The genetic clusters were compared with self-reported ancestry. Participants
429 within the same self-reported ancestry groups were largely in the same genetic clusters (e.g. African
430 [N=9791], South Asian [N=2594], and East Asian [N=9941], detailed in Supplementary Figure 7), and on

431  average ~20% of them have fundus retinal images.
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432

433  The Canadian Longitudinal Study on Aging

434  The Canadian Longitudinal Study on Aging (CLSA) is a national, longitudinal cohort study of 51,338
435  participants from 10 Canadian provinces, aged 45 to 85 years at enrollment.*>#® Recruitment and baseline
436  data collection were completed in 2015, with participants followed-up every 3 years, and an initial follow-up
437  visit completed in 2018. In this study the nerve head photographs are available for a subset cohort
438  “Comprehensive cohort” of 30,097 participants (for both left and right eyes, and the baseline and first follow-
439 up visit). Retinal fundus imaging was performed using a Topcon (TRC-NW8) non-mydriatic retinal camera,
440  with images saved in jpg format. A random sample of 1000 images was graded by a clinician for both VCDR
441 and VDD using a custom Java program. The latest genome-wide genotype data (August 2019 release) are
442 available for 19,669 participants of the Comprehensive cohort, comprising 794,409 genetic variants
443 genotyped on the Affymetrix Axiom array, and ~40 million genetic variants imputed using the Haplotype
444 Reference Consortium.?® Variant- and sample- based quality control procedures were consistent with
445  standards of the UK Biobank®” with detailed steps presented in the CLSA support document (available at

446 https://www.clsa-elcv.ca/researchers/data-support-documentation). For the GWAS analysis, we included

447 18,304 participants of European ancestry based on the K-means cluster method on genetic principal
448 components, and the largest cluster also contains the majority of individuals that self-report European
449  ancestry. SNPs with MAF > 0.01 and imputation quality score > 0.8 were retained in association analysis.
450 From the K-means clustering method, the sample size for African South Asian, and East Asian is 135, 219,
451 and 217, respectively (PC plot was shown in Supplementary Figure 8).

452

453  The International Glaucoma Genetic Consortium

454  The International Glaucoma Genetic Consortium (IGGC) is one of the largest international consortia
455  established to identify glaucoma genetic risk variants through large-scale meta-analysis. The phenotype
456  and genotype data of VCDR and optic disc area for IGGC have been previously described elsewhere.”** It
457  should be noted the optic disc area is not in the same scale as VDD from the Al gradings. When comparing
458  and meta-analyzing the VDD and disc area data, we applied a rank-based inverse normal transformation

459  to Al gradings and rendered them back to disc area scale, as detailed in our previous study.® Publicly
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460 available summary statistics were downloaded for individuals of European descent (Nvcor= 25,180, Ndisc=
461 24,509, from the latest HRC imputation), as well as Asian descent (Nvcor= 8,373, Ndisc= 7,307).744

462

463  Glaucoma GWAS dataset

464 The glaucoma datasets were described in our previous study?’, including 7,947 glaucoma cases and
465 119,318 controls from UK Biobank and 3,071 POAG cases and 6,750 historic controls from the Australian
466 & New Zealand Registry of Advanced Glaucoma (ANZRAG) study.*>4% The detailed information of
467  phenotype definition and genetic association analyses were presented in detail previously.?® The two
468  datasets were meta-analysed and the GWAS summary statistics were used to look up each of the VCDR
469 loci (adjusted for VDD). We also computed the correlation between the effect size on genome-wide
470  significant VCDR loci and the effect size on glaucoma. The pairwise genetic correlation between VCDR
471 and glaucoma was examined using a genome-wide approach as implemented in LD-Score regression.*’
472

473 Al algorithm on retinal images

474  Three separate CNN models were used to make inferences about image gradability, VCDR, and VDD
475  values of retinal fundus images in UKB. The image gradability (gradable or ungradable) was defined as a
476 binary classification, while the latter two tasks were modelled as regression problems. Images with a higher
477  likelihood of gradability (i.e. designated softmax probability more than 0.5) were assigned as gradable.
478  While a variety of CNN model architectures were tested, the final architecture used for all CNN models was
479  ResNet-34.8 Pre-trained weights, initially trained on ImageNet*° classification tasks, were utilised for each
480 model as a form of transfer learning. Untrained layers specific to each model were additionally added,
481 forming a custom regression (Relu) and classification (softmax) heads for each respective task. All fundus
482 images were cropped and scaled to a pixel ratio of (1080, 800) before training or validation. We used the
483 highest native resolution for the UKBB training images as we found that using lower resolution negatively
484 impacted inference metrics. The total dataset sizes used for the VCDR, VDD and gradability tasks were
485 71,950, 50,984, and 75,718, respectively. Each dataset was randomly split into 80% training and 20%
486  validation. The model performance was validated by sample hold out, with final testing performed on

487  images from the CLSA dataset. Model requirements for regression tasks were defined achieving a
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488  validation loss equal or lower than human inter-rater loss. The gradebillity task criteria was defined as
489 accuracy above 95%. Both regression tasks utilised mean square error loss function, while the classification
490  model optimised over the binary cross entropy loss function. Training of all models was completed using
491 the FastAl framework®®, while utilising the in-built data augmentations functionality to improve accuracy and
492  generalisability. The specifics of which augmentations were used can be found in Supplementary Table 7.
493 It should be noted that the regression task for VDD was dependent on image scale, as such, augmentations
494  which introduced scaling were omitted. Training was carried out in two stages: the first involved freezing
495  the pretrained weights and only training the task head; the second, the ‘fine tuning’ stage, all model weights
496  were unfrozen. Each stage was trained with cyclical training rate as described elsewhere®, and performed
497  until the validation loss reached a plateau.

498

499  Optic nerve head parameters, intraocular pressure and glaucoma risk across different
500 ancestries

501 Previous studies have reported differences in VCDR and VDD values across different ancestry groups.303!
502  Taking advantage of the diverse ancestries available in UKB and CLSA, we compared our Al derived VCDR
503 and VDD values, as well as intraocular pressure (IOP, corneal-compensated*') values across different
504 ancestry groups. We used the K-means clustering method to define ancestry groups based on genetic data
505 (detailed above). Boxplots were used to show the differences of optic nerve head measurements across
506 different ancestry groups (e.g. median value, upper and lower quartiles). The mean values of VCDR across
507  different ancestries were estimated after adjusting for age, sex, and VDD. The 97.5th percentile of optic
508 nerve head measurements and its 95% confidence interval (2.5% to 97.5% quantiles) were also calculated
509 based on 1,000 bootstrapped samples, on account of the substantially smaller sample size for individuals
510  of African, East Asian and South Asian ancestry. We then investigated how VCDR and IOP relate to
511 glaucoma risk in different ancestries. The definition of glaucoma cases and controls was detailed in our
512 previous study.?’ Briefly, in UKB glaucoma cases were ascertained from International Classification of
513 Diseases diagnosis, record-linkage data from general practitioners, and self-reported previous diagnosis.
514  Inthe CLSA, participants were interviewed in-person with the question “Has a doctor ever told you that you

515 have glaucoma?”. Logistic regression models were used to evaluate the association between genetically-
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516 defined ancestry groups and glaucoma risk. In each different model, different covariates were adjusted to
517 evaluate the association of ethnic groups and glaucoma risk. In the base model, only sex and age were
518  adjusted for; the other models also include either IOP, VCDR, or both (IOP & VCDR).

519

520 Genome-wide association analysis and meta-analysis

521 For both UKB and CLSA, the VCDR and VDD GWAS association tests were carried out using a linear
522  mixed model (using BOLT-LMM version 2.3)%2 to account for cryptic relatedness and population
523 stratification, adjusting for sex and age. The first ten principal components were also included in the model
524  to speed up the convergence of computations.>® The average values of measurements from left and right
525 eyes and multiple visits (if available) were used, and were first transformed using a rank-based inverse-
526 normal method before association tests.>* To account for optic disc size covariation, VCDR grading was
527  adjusted for VDD in GWAS analyses.®% The VDD-adjusted VCDR and VDD GWAS results from UKB and
528  CLSA were then meta-analysed with those from the IGGC based on the inverse variance-weighted method
529 (METAL software 2011-03-25 release).®® We also conducted association tests for VCDR and VDD in
530 African and South Asian populations in UKB. Due to the relatively small size of each of these populations
531 (Supplementary Table 8, less than the recommended sample size of 5000 in BOLT-LMM), PLINK was used
532 instead, after removing related individuals.5’

533  SNP-based heritability was calculated by LD score regression (LDSC) from GWAS summary statistics.4”-%8
534  Bivariate LD score regression was used to estimate the genetic correlation between pairs of traits in
535  European ancestry.*” We selected independent SNPs based on the PLINK clumping method with P value
536 < 5x10%, r? <0.01, and a window of 1Mb from the index variant.5” To define novel loci from the Al-based
537  GWAS, we checked previous UKB VCDR and VDD GWAS based on clinician gradings®2°, we also looked
538  up the proxy SNPs (r? > 0.8) of top loci and their nearest genes in GWAS Catalog.5°

539

540 Cross population genetic effects on optic nerve head parameters

541 We evaluated the effects of genetics variants on VCDR and VDD cross different populations based on the
542  following methods: 1) we first compared and replicated the Al-based top loci from European ancestry with

543  the GWAS from African and South Asian samples. The effect sizes and standard errors of top loci were
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544  shown in a scatter plot for different ancestries; 2) we calculated the trans-ethnic genetic effect correlation
545 for VCDR and VDD using the “Popcorn” package.®® Specifically, the GWAS summary statistics for VCDR
546 and VDD from European ancestry were compared with that in Asian and African ancestry.

547

548  Transcriptome-wide association study and pathway analysis

549  To prioritize potential causal genes, transcriptome-wide association study analysis (TWAS) was performed
550 in FUSION using GWAS summary statistics and retina gene expression data.®' In FUSION, a reference
551 data with both gene expression and genetic variants (SNPs) were used to train predictive models, which
552  were used to impute the expression-trait association directly from large-scale GWAS summary statistics.®"
553  The weights of retina gene expression were obtained from 406 individuals from Eye Genotype Expression
554  database (EyeGEx).%'%2 We also used the EyeGEx to perform a summary data-based Mendelian
555 randomization (SMR) to investigate the association of gene expression levels (exposure) and phenotype
556  (outcome).®® The heterogeneity in dependent instruments (HEIDI) tests were used to evaluate the null

557 hypothesis that a single causal variant affecting both gene expression and outcome, and the significance

558  threshold was set at 0.05 (Pneipi 2 0.05 not reject the null hypothesis).®® Pathway analysis were conducted

559  in MAGMA as implemented in FUMA (version 1.3.6).54%5 All other analyses were performed with R

560 software.%6
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699 UK Biobank data are available through the UK Biobank Access Management System

31


https://doi.org/10.1101/2020.11.03.367623
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.367623; this version posted November 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

700 https://www.ukbiobank.ac.uk/. We will return the derived data fields following the UK biobank policy and in
701 due course they will be available through the UK Biobank Access Management System.

702 Data are available from the Canadian Longitudinal Study on Aging (www.clsa-elcv.ca) for researchers who
703  meet the criteria for access to de-identified CLSA data.
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