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2 

Abstract 23 

 24 

Cupping of the optic nerve head, a highly heritable trait, is a hallmark of glaucomatous optic neuropathy. 25 

Two key parameters are vertical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD). However, 26 

manual assessment often suffers from poor accuracy and is time-intensive. Here, we show convolutional 27 

neural network models can accurately estimate VCDR and VDD for 282,100 images from both UK Biobank 28 

and an independent study (Canadian Longitudinal Study on Aging), enabling cross-ancestry 29 

epidemiological studies and new genetic discovery for these optic nerve head parameters. Using the AI 30 

approach we perform a systematic comparison of the distribution of VCDR and VDD, and compare these 31 

with intraocular pressure and glaucoma diagnoses across various genetically determined ancestries, which 32 

provides an explanation for the high rates of normal tension glaucoma in East Asia. We then used the large 33 

number of AI gradings to conduct a more powerful genome-wide association study (GWAS) of optic nerve 34 

head parameters. Using the AI based gradings increased estimates of heritability by ~50% for VCDR and 35 

VDD. Our GWAS identified more than 200 loci for both VCDR and VDD (double the number of loci from 36 

previous studies), uncovers dozens of novel biological pathways, with many of the novel loci also conferring 37 

risk for glaucoma.  38 

 39 

Keywords: artificial intelligence, image, optic nerve head, glaucoma, GWAS, UK Biobank, CLSA. 40 
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Introduction 43 

The optic nerve head is the exit point of retinal ganglion cell axons from the eye to the brain.1 It is commonly 44 

assessed during ophthalmic examinations using fundoscopy or optical imaging technology for multiple 45 

ocular diseases, such as glaucoma, which is the leading cause of irreversible blindness globally and is 46 

characterized by characteristic cupping of the optic disc as a result of retinal ganglion cell apoptosis.2,3 47 

Enlarged vertical cup-to-disc ratio (VCDR) is considered a hallmark of glaucomatous optic neuropathy and 48 

is often used to define glaucoma in general population based prevalence surveys.4 However, VCDR alone 49 

is not adequate to assess glaucomatous damage in part because of the variation of optic disc size. For 50 

instance, a vertical cup:disc ratio of 0.5 in a small optic disc could be pathologic whereas a vertical cup:disc 51 

ratio of 0.8 in a large disc size may represent physiologic cupping. Adjusting for optic disc size is hence 52 

important to maximizing the clinical utility of VCDR in diagnosing glaucoma.  53 

Family studies have shown that optic disc morphology traits are highly heritable with an estimated 54 

heritability of 0.48 and 0.57 for VCDR and optic disc diameter, respectively.5 Large-scale genome-wide 55 

association studies (GWAS) for optic disc morphology have begun to shed light on the development and 56 

pathogenesis of glaucoma and other optic nerve diseases.6–8 However, both large sample sizes and 57 

accurate phenotyping are critical in GWAS and further progress will be difficult under the existing manual 58 

phenotype paradigm. Manual assessment of optic disc photographs is time-intensive and often suffers from 59 

poor inter-observer concordance, even when performed by trained specialists and an alternative approach 60 

is required.9,10 Clinical estimates of VCDR are more difficult from monoscopic photographs compared with 61 

stereoscopic viewing of the optic nerve head which can be achieved during slit-lamp biomicroscopy or from 62 

stereoscopic photographs.  63 

 64 

Recent advances in artificial intelligence (AI) algorithms have shown exciting promise in healthcare11, 65 

including the automated diagnosis of eye diseases.12,13 With the high performance of AI technology, the 66 

U.S. Food and Drug Administration approved the first medical device to use AI technology to detect diabetic 67 

retinopathy in 2018.14,15 The probabilistic nature and non-linear capabilities, as well as analytical capabilities 68 

to deal with single and multimodal, high-dimensional data, has seen application of AI experience lower 69 

resistance to adoption in the medical field when applied to computer vision applications. Two fundamental 70 
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properties have facilitated AI application to medical diagnostics. Firstly, the problem space (medical 71 

imaging) is, relative to other medical domains, well studied and very well understood. Secondly, an 72 

observation of the output can be quickly validated by a clinical practitioner, who by having access to 73 

additional clinical or historical data about that patient, may suggest alternative diagnosis. A motivating factor 74 

driving utilisation of AI on data such as fundus images is the large volume of images available for algorithms 75 

to be trained on. Furthermore, standardised imaging techniques can drastically reduce the dataset 76 

heterogeneity. This is highlighted by the collection of images as part of the UKB and CLSA biobanks 77 

completed over a decade. Automated diagnosis from retinal fundus imaging has been approached through 78 

a number of different algorithms, ranging from multi-stage “classical” learning algorithms to end-to-end deep 79 

learning models.16–19 80 

 81 

In this study, a convolutional neural network (CNN) model was utilised in a transfer learning approach, 82 

training on clinical assessments of the optic nerve head in ~70,000 photographs (Labelled Training Data) 83 

of UK Biobank (UKB) participants. Automatic labelling by the CNN model dramatically boosts the effective 84 

sample size (n=282,100 total images graded), presenting an opportunity to greatly expand the utility of the 85 

GWAS approach for VCDR and optic disc diameter. We also apply the AI labels systematically across the 86 

multiple different ancestries in UKB and CLSA and investigate how VCDR and other glaucoma risk factors, 87 

such as IOP, relate to glaucoma risk in different ancestries. 88 

 89 

 90 

Results 91 

Study Design And Overview 92 

The overall study design is summarised in Figure 1. We use transfer learning to train three CNN models for 93 

image gradability, VCDR, and vertical disc diameter (VDD) values from ~70,000 UKB fundus images graded 94 

by clinicians. These models were then applied to all UKB fundus images (85,736 participants and 175,770 95 

images in total) and another independent cohort - the Canadian Longitudinal Study on Aging (CLSA, 29,635 96 

participants and 106,330 images in total). We performed the largest AI-based GWAS for VCDR and VDD, 97 

and replicated novel genetic discoveries in clinician-graded fundus images from International Glaucoma 98 
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Genetics Consortium (IGGC) and in glaucoma case-control studies (UKB and the Australian and New 99 

Zealand Registry of Advanced Glaucoma; ANZRAG). The large scale biobank data for both VCDR and IOP 100 

also allow us to systematically compare the glaucoma risk and optic nerve head parameters across different 101 

ancestries.  102 

 103 

Figure 1. Flowchart of AI framework and datasets. In UK Biobank (UKB), the fundus retinal eye images were 104 

available for ~85,000 participants (~68,000 participants in the baseline visit and ~19,000 participants in the first repeat 105 

assessment visit). In our previous study, vertical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD) were graded 106 

by two clinicians in ~70,000 photographs using a custom Java program. These clinical assessments were used as 107 

Training Data for three convolutional neural network (CNN) models for image gradability, VCDR, and VDD values. The 108 

learned models were then applied to all UKB fundus images (85,736 participants and 175,770 images in total) and 109 

another independent cohort - the Canadian Longitudinal Study on Aging (CLSA, 29,635 participants and 106,330 110 

images in total). The AI labels were further used to systematically evaluate optic nerve head parameters across the 111 

multiple different ancestries in UKB and CLSA, and allowed us to perform the largest AI-based GWAS for VCDR and 112 

VDD.  113 

 114 

 115 
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Study data and performance of the trained AI model 116 

In the UKB, 85,736 participants had at least one fundus retinal image, with a total of 175,770 images 117 

available (Table 1). The mean age at baseline was 57.0 (SD: 8.1) years and 54% were women. In the CLSA 118 

cohort, 29,635 participants with 106,330 images were included in analysis, of whom 50% were women, and 119 

the mean age at recruitment was 62.6 (SD: 10.0) years.  120 

We first trained a convoluted neural network to assess if each image was gradable in the UKB training 121 

sample. We found that most participants (> 95%) had gradable images in the UKB and the CLSA cohort 122 

(Supplementary Figure 1). We then predicted the measurements of both VCDR and VDD, and compared 123 

the AI-based measures with clinician gradings. The AI-based VCDR and VDD measurements exhibited a 124 

higher concordance to clinician gradings compared with previous gradings by two clinicians.8,20–22 For 125 

instance, the Pearson's correlation coefficient of the VCDR measurements in the UKB samples was 0.81 126 

(95% confidence interval [CI]: 0.80-0.81), and 0.84 (95% CI: 0.82-0.86) for an independent Canadian data 127 

set (CLSA) (Supplementary Figure 2). We therefore speculated that with the improved accuracy of VCDR 128 

and VDD measurements and the larger number of images graded, the optic nerve head assessment would 129 

increase the power for genetic discovery.  130 
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Table 1. Characteristics of retinal fundus images from the UK Biobank and Canadian Longitudinal 131 

Study on Aging participants. 132 

Variable UKB CLSA 

Number of images 175,770 106,330 

Number of participants 85,736  29,635 

% with at least one gradable image 95% 99% 

Sex Women (%) 44,017 (54%) 14,941 (51%) 

Age at recruitment Mean (SD), years 57 ± 8 63 ± 10 

Vertical cup-disc-
ratio Unit in 0-1 0.37 ± 0.14 0.35 ± 0.15 

Vertical disc 
diameter Unit in pixel count 129.0 ± 10.5 121.4 ± 10.6 

CLSA, Canadian Longitudinal Study on Aging cohort; SD, standard deviation; UKB, UK Biobank.  133 

 134 

Optic nerve head parameters and intraocular pressure across different ancestries 135 

We compared AI model-derived VCDR and VDD measurements across different genetically-defined 136 

ancestry groups. VDD was similar across 3 ancestral groups (Europeans, East Asians and South Asians) 137 

and larger in Africans (Figure 2B, 2E). On average, after adjusting for age, sex, and VDD, VCDR was 138 

markedly higher in Asians and Africans than it was in Europeans (similar results in UKB Figure 2A and in 139 

CLSA Figure 2D). A different ancestry-based trend was also observed for intraocular pressure (IOP); 140 

relative to Europeans, South Asians had similar IOP, East Asians had lower IOP, and Africans had higher 141 

IOP (Figure 2C,F).  142 

We then examined whether the systematically assessed VCDR, VDD and IOP can explain the observed 143 

prevalence of glaucoma seen across different ancestries in the UK and Canada. Figure 3 shows the 144 

glaucoma risk of Africans, East Asians and South Asians, with European ancestry (the most common 145 

ancestry in UKB and CLSA data sets) as the baseline. Consistent with previous epidemiological studies, 146 

Africans have the highest glaucoma risk (Figure 3 base model, correcting for only age and sex OR = 2.5 147 

relative to the reference of Europeans). As seen in Figure 2, Africans have higher VCDR and higher IOP 148 

than Europeans and when these were corrected for, the glaucoma risk approached that of Europeans in 149 
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both CLSA and UKB. East Asians had a similar base model risk to Europeans, although the contribution of 150 

IOP and VDR differs; on average their IOP is lower and their VCDR is larger (Figure 2), with the pattern of 151 

glaucoma risk changing as either IOP alone or VCDR alone were adjusted for in the regression model. 152 

Adjusting for both IOP and VCDR, the risk of glaucoma in East Asians was not significantly different to 153 

Europeans, suggesting that the higher VCDR and lower IOP in this group relative to Europeans counteract 154 

each other, explaining the similar glaucoma incidences between these ancestries. Interestingly, in South 155 

Asians, IOP is similar to Europeans, but VCDR is higher (Figure 2). This means that South Asian base 156 

model risk does not change when IOP is included in the model, but when VCDR is included the glaucoma 157 

risk decreases to become indistinguishable from the incidence in Europeans. In summary, by examining 158 

individuals of varying ancestry living in the UK and Canada, we show that relative to European ancestry, 159 

African ancestry glaucoma incidence is driven by both elevated VCDR and IOP, East Asian ancestry 160 

glaucoma is driven by elevated VCDR but ameliorated by lower IOP and finally that South Asian glaucoma 161 

is driven by elevated VCDR, but not by changes in IOP (relative to that in Europeans).  162 

 163 

 164 
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 165 
 166 
Figure 2. Optic nerve head measurements and intraocular pressure across different ancestry 167 

groups. Panel A shows the boxplot for VCDR values from different ancestry groups in UK Biobank. The box represents 168 

median value with first and third quartiles. The red diamond is the mean value of VCDR after accounting for age, sex, 169 

and VDD, where the mean value is annotated as text. The dark red diamond is the 97.5th percentile of VCDR value. 170 

The dark red error bar is the 95% confidence interval (2.5% to 97.5% quantiles) of the 97.5th percentile based on 1000 171 

bootstrapped samples, which is essential for CLSA data, where the sample size for African, East Asian and South 172 

Asian was substantially smaller (N < 300). Panel B shows the boxplot for VDD values from different ancestry groups in 173 

UK Biobank. Due to the scale from fundus images, the VDD was rank normalized (mean = 0, SD = 1). The red diamond 174 

is the mean value of VDD after accounting for age and sex. Panel C shows the boxplot for IOP levels from different 175 

ancestry groups in the UK Biobank (truncated at 40 mm Hg, with 15 participants between 40 - 60 mm Hg). Panel D, E 176 

and F show the boxplots for VCDR, VDD and IOP in the CLSA cohort, respectively.  177 

 178 
 179 
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 180 
Figure 3. Glaucoma risk across different ancestry groups. The figure shows the risk of glaucoma in different 181 
ancestry groups. The horizontal line at OR = 1 is the reference for European ancestry. The Y-axis is the odds ratio (OR) 182 
and 95% confidence interval (CI) for three ethnic groups (African, South Asian, and East Asian). In each different model, 183 
different covariates were adjusted to evaluate the association of ethnic groups and glaucoma risk. In the base model, 184 
only sex and age were adjusted for; the other models also include either IOP, VCDR, or both (IOP & VCDR).  185 
 186 
 187 

AI-based phenotypes greatly increase SNP-based heritability and identify more loci 188 

In the GWAS of VDD-adjusted VCDR, 145 and 19 statistically independent genome-wide significant SNPs 189 

were respectively identified in the UKB alone and CLSA alone (Supplementary Figure 3). The analogous 190 

numbers of SNPs for VDD were 142 and 17 for UKB and CLSA, respectively. We found weak evidence of 191 

genomic inflation from linkage disequilibrium score regression (Supplementary Table 1). From UKB, the AI-192 

based GWAS of VDD-adjusted VCDR and VDD identified substantially more loci than our previous GWAS 193 

based on clinician gradings (76 for VDD-adjusted VCDR and 91 for VDD)8,20. Strikingly, the SNP-based 194 

heritability increased by ~50% for VCDR and VDD (Supplementary Figure 4). For instance, the SNP-based 195 

heritability for VCDR was 0.22 from clinician gradings (only single measure), whereas the heritability 196 

increased to 0.35 from AI-based GWAS (average of multiple measures). The increased heritability indicated 197 

that AI-based phenotyping was substantially cleaner than clinician gradings, which may be a result of two 198 

aspects: 1) higher accuracy of AI-based gradings; 2) improved accuracy from multiple measures per 199 

individual. We further tested the hypothesis in UKB and CLSA using only one measure per individual from 200 

AI-based gradings. The SNP-based heritability from a single measure (left or right eyes in the baseline or 201 

first follow-up visit) was ~0.3, which is roughly in the middle of heritability estimation from clinician gradings 202 
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and AI-based multiple measures (Supplementary Figure 4). These results indicate the higher accuracy of 203 

AI-based single measure per individual contributes to the increase of heritability estimation, and averaging 204 

of multiple measures per individual can further increase the heritability. Consistent with our previous study, 205 

correcting for VDD in VCDR GWAS also improved the relevance to glaucoma, with a higher genetic 206 

correlation with glaucoma in VDD-adjusted VCDR compared with unadjusted VCDR GWAS (genetic 207 

correlation rg = 0.502 vs 0.457 in UKB, and 0.543 vs 0.481 in CLSA). 208 

 209 

 210 

Validation AI-based GWAS 211 

We then compared AI-based and clinician grading-based GWAS using independent samples from the 212 

IGGC. The concordance of SNP effect sizes of top SNPs between the AI-based and clinician gradings was 213 

essentially one (Panel A and D in Figure 4), and nearly all previously published loci using clinician ratings 214 

were replicated. The estimated effect sizes at the top SNPs from AI-based GWAS were also highly 215 

concordant between UKB and CLSA (Panel B and E in Figure 4). When combining UKB and CLSA AI-216 

based GWAS we identified 193 and 188 loci for VDD-adjusted VCDR and VDD, respectively, again 217 

exhibiting very high concordance with IGGC (Panel C and F in Figure 4). The high concordance and more 218 

loci support the better-powered GWAS from AI-based measurements.  219 

 220 
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 221 

Figure 4. Validation AI-based GWAS. The figure shows the effect sizes for VDD-adjusted VCDR and VDD from 222 

different data sets. The vertical and horizontal error bars are the 95% confidence interval for SNP effect sizes. The red 223 

line is the best fit line with 95% confidence interval region in grey. 224 

 225 

 226 

New genetic discovery of optic nerve head measures, cross-ancestry comparison, and implications 227 

for glaucoma 228 

To maximize power for locus discovery, we combined UKB, CLSA and IGGC GWAS (European ancestry), 229 

and identified 230 and 231 independent genome-wide significant SNPs for VDD-adjusted VCDR and VDD, 230 

respectively (Figure 5). Of them, we found 111 and 107 novel loci for VDD-adjusted VCDR and VDD, 231 

respectively (Supplementary Table 2 and 3). We then compared the effect sizes of top VDD-adjusted VCDR 232 

and VDD loci across different ancestries (Asian and African GWAS), due to the much smaller available 233 

sample sizes, their confidence intervals of effect estimations were very large, however the clear linear trend 234 
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indicated the loci identified from European ancestry also had an effect on Asian populations (Figure 6A, B, 235 

for VCDR and VDD the Pearson's correlation coefficient is 0.65 [P value 3.6 × 10-27] and 0.62 [P value 9.3 236 

× 10-23], respectively). The sample size of African ancestry was much smaller than Asian ancestry (N = 237 

2,245 versus 8,373 for VCDR) and showed a lower concordance (Supplementary Figure 5). The genetic 238 

correlations across the genome were essentially one based on the Popcorn approach for VCDR and VDD 239 

(Supplementary Table 4). We also compared the effect sizes of VDD-adjusted VCDR top loci with their 240 

effect sizes on glaucoma (Figure 6C), and found a relatively high concordance (Pearson's correlation 241 

coefficient 0.61, P = 8.2 × 10-25). Of the 230 VCDR (adjusted for VDD) loci (227 available in glaucoma 242 

GWAS), 187 (82%) were in the same direction, 84 were associated with glaucoma at a nominal significance 243 

level (P<0.05) and 24 were associated with glaucoma after Bonferroni correction (P< 0.05/227= 2.2 × 10-4, 244 

the nearest gene names are highlighted in Figure 6C, e.g. LMX1B, ABCA1, CAV1, and GAS7).  245 

 246 

 247 

 248 
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 249 

Figure 5. AI enables new genetic discovery for optic nerve head measures. 250 

Manhattan plot panel A shows P values for VDD-adjusted VCDR from the meta-analysis of UKB, CLSA, and IGGC 251 

(European ancestry). Panel B shows P values for VDD from the meta-analysis of UKB, CLSA, and IGGC (European 252 

ancestry). The Y-axis is in log-log scale. The red horizontal line is the genome-wide significance level at P = 5 × 10−8. 253 

SNPs with P value less than 1 × 10-4  are not shown in Manhattan plot. Previously unknown loci are highlighted with red 254 

dots, with the nearest gene names in black text. Known SNPs are highlighted with purple dots, with the nearest gene 255 

names in purple text. 256 
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 257 

Figure 6. Comparison of the effect sizes for VCDR (adjusted for VDD) and VDD lead SNPs versus 258 

those observed in the Asian ancestry group and in independent glaucoma cohorts. Panel A and B 259 

show the effect sizes for lead VCDR (adjusted for VDD) and VDD loci (European versus Asian population). Panel C 260 

shows the effect sizes for VCDR (adjusted for VDD) lead SNPs versus log odds ratio in meta-analysis of UKB and 261 

ANZRAG glaucoma GWAS. The 24 SNPs associated with glaucoma after Bonferroni correction (P<0.05/227 = 2.2 262 

× 10-4) are highlighted with red dots, with the nearest gene names in black text. 263 

 264 

 265 
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Gene prioritization and pathway analysis 266 

We performed TWAS analysis in FUSION based on the VDD-adjusted VCDR and VDD GWAS summary 267 

statistics and retinal gene expression data. For VDD-adjusted VCDR we identified 101 genes that were 268 

significant after Bonferroni correction for multiple testing, nine of which were not genome-wide significant 269 

in the per-SNP analysis (Supplementary Figure 6A and 6B). For VDD we identified 64 genes that were 270 

significant after Bonferroni correction for multiple testing, 13 of which were not genome-wide significant in 271 

the per-SNP analysis. From SMR analysis, we identified 29 and 24 genes for VDD-adjusted VCDR and 272 

VDD, respectively, that were significant after multiple testing. We also compared the genes identified from 273 

both FUSION and SMR, 11 and 8 genes overlap from the two methods for VDD-adjusted VCDR and VDD, 274 

respectively (Supplementary Figure 6C and 6D). For instance, of the 11 genes that were associated with 275 

VDD-adjusted VCDR for the two approaches, 6 genes also passed the HEIDI tests (P4HTM, SNX32, 276 

RASGRF, HAUS4, LRP11, AC012613.2), suggesting the effects on VCDR may be mediated via these gene 277 

expression in retina tissue. The large increase in power resulting from the use of AI grading to improve 278 

accuracy and enable substantially larger datasets with multiple images per participant meant we were able 279 

to discover many new biological pathways influencing optic nerve head development and aging. Our 280 

pathway enrichment analysis uncovered 65 pathways for VCDR and 82 pathways for VDD after Bonferroni 281 

correction for multiple testing (Supplementary Table 5 and 6). As well as extracellular matrix pathways 282 

uncovered by our previous work, these new pathway analysis uncovered associations with telencephalon 283 

(forebrain) regionalization, embryo development, and anatomical tube development. There were several 284 

unexpected but statistically robust associations with kidney development (e.g. GO mesonephros 285 

development, Praw = 3.45 × 10−8, P=0.00053 after correction for multiple comparisons). The genes driving 286 

the kidney development pathway enrichment included BMP2, BMP4, EYA1, FAT4, FOXC1, GLI3, PAX2, 287 

RARB, SIX1, and SALL1. Several kidney pathways were also significant in the pathway enrichment analysis 288 

applied to our VDD GWAS.  289 

 290 

 291 

Discussion 292 
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Our results show the promising application of AI algorithms in genetics studies. Large scale biobanks such 293 

as UKB and CLSA have accumulated hundreds of thousands of optic nerve images containing important 294 

information for glaucomatous optic neuropathy. However, the time-intensive and moderate agreement of 295 

manual assessment have impeded the usage of retinal fundus images. We trained a deep learning model 296 

using clinically estimated VCDR and VDD, and found the trained model has a high accuracy. The large 297 

scale biobank data for both VCDR and IOP allow us to systematically compare the glaucoma risk and optic 298 

nerve head parameters across different ancestries. Combining genetic and image data, we doubled the 299 

number of loci for both VCDR and VDD, with increased heritability.  300 

 301 

The scope of available deep learning models for computer vision tasks is extensive and continuously 302 

developing. Various approaches to grade fundus images often utilise intricate data preprocessing 303 

methods23–25 as well as computationally heavy models and training methods18,26. In the instance of 304 

statistically powered, large scale population study, fast inference and quick iterations are key, making heavy 305 

computational and design costs harder to justify. Here we demonstrate that a relatively lightweight, 306 

pretained CNN model is capable of producing highly accurate estimations of VCDR and VDD as evinced 307 

by high correlation with clinical grading, improved genetic discovery and further validations in independent 308 

samples.  309 

 310 

Our AI approach has dramatically accelerated the pace of genetic discoveries. In our previous study, we 311 

laboriously manually assessed a subset of UKB images. With the deep learning model trained on clinical 312 

measurements, we were able to predict on a new subject within a fraction of a second, making time and 313 

effort of image labelling trivial, even when applied to large scale datasets (~1 hour for ~0.3 million images). 314 

Sample size is one of the most important limiting factors for genetic discovery. Leveraging the AI-based 315 

algorithm and large scale data, we were able to conduct the most powerful GWAS of optic nerve head 316 

parameters to date. We doubled the number of genome-wide significant loci for both VCDR and VDD. 317 

Interestingly, the estimated SNP-based heritability also increased by ~50% for VCDR and VDD 318 

(Supplementary Figure 4); the estimate for VCDR is not substantially lower than the heritability estimate 319 

from twin studies (~50%), although given more accurate (AI based) phenotypes, the twin study based 320 
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heritability estimate may increase. The increased heritability is a result of more accurate measurements, 321 

which arises in part due to the higher accuracy of AI-based predictions and in part to the AI approach 322 

allowing time-efficient grading of multiple measures per individual.  323 

 324 

Many of the newly identified VCDR genes are associated with other eye traits (e.g. glaucoma, IOP, 325 

exfoliation syndrome, myopia). For some loci associated with IOP, it is likely that they have an effect on 326 

VCDR as a secondary effect of the locus first acting on IOP. Loci including genes such as ABCA1, CAV1, 327 

AFAP1 and LMX1B were associated with VCDR for the first time; a likely explanation for this association is 328 

that the associated variant alters IOP and subsequently VCDR. Over 20 of the VCDR loci are also 329 

associated with refractive error, with multiple aspects of eye physiology likely involved (axial length, corneal 330 

thickness, retinal ganglion cell function). We also found a significant genome-wide genetic correlation 331 

between VCDR (adjusted for VDD) and myopia (rg = 0.3, P = 1×10-14), as well as with well studied traits 332 

which are associated with myopia such as years of education.27  333 

 334 

In addition, several of the new VCDR genes provide possible links to retinal ganglion cell biology and they 335 

may constitute possible drug repositioning candidates. There are too many to discuss individually but one 336 

SNP of interest is rs17855988; this missense variant in the elastin gene (ELN) has been associated with 337 

facial ageing. Elastin in the sclera is most dense around the optic nerve head28 and ELN expression has 338 

been shown to be high in exfoliation glaucoma lens29. A subset of the VDD loci have been found to be 339 

associated at genome-wide significance levels in previous glaucoma GWAS. However, in the majority of 340 

cases, the association with glaucoma appears to be driven by the lead SNP having a primary effect on 341 

VCDR (where the variance explained in VCDR for the peak SNP is larger than that for VDD: e.g. SNPs in 342 

or near GMDS, CAV1, MYOF, SIX6, CHEK2, TMTC2). Hence, the primary link between the disc parameters 343 

and glaucoma is via VCDR rather than via VDD. This is also shown in the lower genetic correlation between 344 

glaucoma and VDD (rg = 0.01) compared with glaucoma and VCDR (rg = 0.5).8,20 With the high genetic 345 

correlation between VCDR and glaucoma, a multitrait analysis has recently shown that including VCDR 346 

can improve the power to identify glaucoma genes and to enable the development of polygenic risk score.20 347 

Future studies of glaucoma would benefit from incorporating these accurate AI derived VCDR estimates. 348 
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 349 

Previous studies have looked at the differences between VDD across different ancestries.30,31 Our results 350 

were consistent with this, with Africans having the largest disc size, followed by those of Asian ancestry. 351 

For VCDR, an early study (100 black and 100 white) found that blacks had larger VCDR (mean values: 352 

blacks 0.35, white 0.24).32 A subsequent larger study (1534 black and 1853 white) reported larger VCDR 353 

in blacks (mean values: blacks 0.56, whites 0.49).33 A subsequent study in three different Asian ancestries, 354 

showed that VCDR values were similar between the studied ancestries (mean VCDR 0.40, 0.42 and 0.40, 355 

in Malay, Chinese, Indian, respectively).34 It is striking that despite VCDR theoretically being a simple 356 

parameter to assess, the mean VCDR varies widely across studies, possibly due to differences in 357 

measurement protocol, sex, age and eye disease status. A further study4 looked at the 97.5th percentile of 358 

VCDR instead of the mean and reported broadly similar values in the Netherlands (0.73), Bangladesh (0.7), 359 

Mongolia (0.70), Singapore (0.7), Tanzania (0.7). A major advantage of our study is that we use our AI 360 

derived gradings in two population-based cohort studies to systematically assess VCDR differences across 361 

ancestries in a consistent study design. By leveraging large sample sizes, we are able to clearly show both 362 

Asian and African ancestry individuals have larger VCDR values than Europeans. Our primary results in 363 

Figure 2 correct VCDR for VDD, given previous studies showing that correcting for VDD enhances the 364 

relevance to glaucoma.35 365 

 366 

The raised VCDR in Asian and African ancestry individuals living in the UK and Canada is in keeping with 367 

elevated glaucoma rates in these ancestries.36 When combined with data on IOP, a combination of VCDR 368 

and IOP explains the vast majority of the variation between glaucoma rates in Europeans relative to 369 

Africans, South Asians and East Asians. Although crucially, our data show (Figure 3) that the relative 370 

contributions of VCDR and IOP are clearly different between all 4 major populations groups that we 371 

consider. For individuals of European, South Asian or African ancestry, the vast majority of broadly defined 372 

glaucoma cases are open angle glaucoma (OAG). In East Asia, angle closure glaucoma (ACG) is common 373 

and a limitation of our analysis is that we cannot distinguish between ACG and OAG in all cases - where 374 

available we have removed known cases of ACG in the broad glaucoma definition, but some ACG cases 375 

will remain.  376 
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 377 

A strength of our study is that a large number of clinically assessed images were used to train the deep 378 

learning model for VCDR and VDD; this allowed us to generate accurate predictions. Our study has shown 379 

that the AI-based measurements have a high accuracy. The AI-based optic nerve head assessment has 380 

also boosted the available sample size and dramatically expanded gene discovery for these key ocular 381 

phenotypes. We show that this deep learning model can also be used to assess future fundus images 382 

automatically and rapidly, especially in population-based studies with a large number of images. Moreover, 383 

the implementation of transfer-learning techniques shows that AI-aided labelling, with adequate sample 384 

size, has a potential to deliver equally successful genetic discoveries in other image based biological 385 

phenotypes. Our study has several limitations. Firstly, although our AI approach was able to grade a large 386 

proportion of images (particularly in the CLSA study), a small proportion remained ungradable due to poor 387 

picture quality. Future studies could explore adversarial architectures to improve clinical ratings of VCDR 388 

and VDD. However, a set of high quality truth labels would still be necessary for initial pre-training. Finally, 389 

although we were able to use genetic data to clearly identify the major ancestries within UKB and CLSA 390 

(European, African, South Asian, East Asian), there remained a group of uncategorized individuals with 391 

mixed ancestries that we did not include in our epidemiological or genetic analyses. 392 

 393 

To conclude, we showed that AI-based optic nerve head assessment has a high accuracy and this greatly 394 

improves our power to discover new genes. These findings provide new insights into the pathogenesis of 395 

glaucomatous optic neuropathy. We also use the systematic assessment of VCDR across different 396 

ancestries to help explain how the pattern of IOP and VCDR measures underpin observed glaucoma risk; 397 

such findings in mixed ancestry groups living in the UK and Canada help explain the differing characteristics 398 

of glaucoma across ancestries. For example, relative to Europeans, individuals with East Asian ancestry 399 

are more likely to have lower IOP and increased VCDR. Given these East Asians are genetically similar to 400 

East Asians in countries such as China and Japan, this provides support for the assertion that normal 401 

tension forms of glaucoma predominate in East Asia due to genetic predisposition for high VCDR, despite 402 

low IOP.  403 
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Methods 404 

 405 

Study populations  406 

UK Biobank 407 

The UK Biobank (UKB) is a population-based cohort study with deep genetic and phenotypic data from 408 

~500,000 participants aged between 40 to 69 years at the time of recruitment (2006-2010), living in the 409 

United Kingdom.37 Retinal fundus images were available for both left and right eyes from two assessment 410 

visits, covering ~85,000 participants (~68,000 participants in the baseline visit and ~19,000 participants in 411 

the first repeat assessment visit [2012-2013]). In our previous study, vertical cup-to-disc ratio (VCDR) and 412 

vertical disc diameter (VDD) were graded by two clinicians using a custom Java program.20 Detailed image 413 

processing and quality control methods were described previously.20 Briefly, given the time-consuming 414 

nature of manual grading, we only graded the left eye images (if the left eye images were ungradable, the 415 

right eye images were used instead) and one visit (if the second visit measurements were unavailable, the 416 

first visit measurements were used instead) of white British ancestry participants. A total of 67,040 417 

participants with both VCDR and VDD measurements were included in our previous GWAS. In this study, 418 

we used a CNN model to grade left and right eye images from two visits for all participants, irrespective of 419 

ancestry, with a total of 175,770 images.  420 

In the UKBB, ~488,000 participants were genotyped for 805,426 variants on Axiom arrays (Affymetrix Santa 421 

Clara, USA). The genetic data, quality control procedures and imputation methods have been described 422 

previously.37 Briefly, ~96 million variants were imputed using Haplotype Reference Consortium (HRC) and 423 

UK10K haplotype resources38–40, and 487,409 individuals passed genotyping quality control. Of them, 424 

438,870 individuals were genetically similar to those of white-British ancestry.37,41 For the GWAS in UKB, 425 

we retained SNPs with MAF > 0.01 and imputation quality score > 0.8. To verify self-reported diverse 426 

ancestry information (data field 21000 in UKB), we used a K-means clustering method based on genetic 427 

principal components (PCs). The genetic clusters were compared with self-reported ancestry. Participants 428 

within the same self-reported ancestry groups were largely in the same genetic clusters (e.g. African 429 

[N=9791], South Asian [N=2594], and East Asian [N=9941], detailed in Supplementary Figure 7), and on 430 

average ~20% of them have fundus retinal images.  431 
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 432 

The Canadian Longitudinal Study on Aging 433 

The Canadian Longitudinal Study on Aging (CLSA) is a national, longitudinal cohort study of 51,338 434 

participants from 10 Canadian provinces, aged 45 to 85 years at enrollment.42,43 Recruitment and baseline 435 

data collection were completed in 2015, with participants followed-up every 3 years, and an initial follow-up 436 

visit completed in 2018. In this study the nerve head photographs are available for a subset cohort 437 

“Comprehensive cohort” of 30,097 participants (for both left and right eyes, and the baseline and first follow-438 

up visit). Retinal fundus imaging was performed using a Topcon (TRC-NW8) non-mydriatic retinal camera, 439 

with images saved in jpg format. A random sample of 1000 images was graded by a clinician for both VCDR 440 

and VDD using a custom Java program. The latest genome-wide genotype data (August 2019 release) are 441 

available for 19,669 participants of the Comprehensive cohort, comprising 794,409 genetic variants 442 

genotyped on the Affymetrix Axiom array, and ~40 million genetic variants imputed using the Haplotype 443 

Reference Consortium.39 Variant- and sample- based quality control procedures were consistent with 444 

standards of the UK Biobank37 with detailed steps presented in the CLSA support document (available at 445 

https://www.clsa-elcv.ca/researchers/data-support-documentation). For the GWAS analysis, we included 446 

18,304 participants of European ancestry based on the K-means cluster method on genetic principal 447 

components, and the largest cluster also contains the majority of individuals that self-report European 448 

ancestry. SNPs with MAF > 0.01 and imputation quality score > 0.8 were retained in association analysis. 449 

From the K-means clustering method, the sample size for African South Asian, and East Asian is 135, 219, 450 

and 217, respectively (PC plot was shown in Supplementary Figure 8).  451 

 452 

The International Glaucoma Genetic Consortium 453 

The International Glaucoma Genetic Consortium (IGGC) is one of the largest international consortia 454 

established to identify glaucoma genetic risk variants through large-scale meta-analysis. The phenotype 455 

and genotype data of VCDR and optic disc area for IGGC have been previously described elsewhere.7,44 It 456 

should be noted the optic disc area is not in the same scale as VDD from the AI gradings. When comparing 457 

and meta-analyzing the VDD and disc area data, we applied a rank-based inverse normal transformation 458 

to AI gradings and rendered them back to disc area scale, as detailed in our previous study.8 Publicly 459 
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available summary statistics were downloaded for individuals of European descent (NVCDR= 25,180, Ndisc= 460 

24,509, from the latest HRC imputation), as well as Asian descent (NVCDR= 8,373, Ndisc= 7,307).7,44  461 

 462 

Glaucoma GWAS dataset  463 

The glaucoma datasets were described in our previous study20, including 7,947 glaucoma cases and 464 

119,318 controls from UK Biobank and 3,071 POAG cases and 6,750 historic controls from the Australian 465 

& New Zealand Registry of Advanced Glaucoma (ANZRAG) study.45,46 The detailed information of 466 

phenotype definition and genetic association analyses were presented in detail previously.20 The two 467 

datasets were meta-analysed and the GWAS summary statistics were used to look up each of the VCDR 468 

loci (adjusted for VDD). We also computed the correlation between the effect size on genome-wide 469 

significant VCDR loci and the effect size on glaucoma. The pairwise genetic correlation between VCDR 470 

and glaucoma was examined using a genome-wide approach as implemented in LD-Score regression.47  471 

 472 

AI algorithm on retinal images 473 

Three separate CNN models were used to make inferences about image gradability, VCDR, and VDD 474 

values of retinal fundus images in UKB. The image gradability (gradable or ungradable) was defined as a 475 

binary classification, while the latter two tasks were modelled as regression problems. Images with a higher 476 

likelihood of gradability (i.e. designated softmax probability more than 0.5) were assigned as gradable. 477 

While a variety of CNN model architectures were tested, the final architecture used for all CNN models was 478 

ResNet-34.48 Pre-trained weights, initially trained on ImageNet49 classification tasks, were utilised for each 479 

model as a form of transfer learning. Untrained layers specific to each model were additionally added, 480 

forming a custom regression (Relu) and classification (softmax) heads for each respective task. All fundus 481 

images were cropped and scaled to a pixel ratio of (1080, 800) before training or validation. We used the 482 

highest native resolution for the UKBB training images as we found that using lower resolution negatively 483 

impacted inference metrics. The total dataset sizes used for the VCDR, VDD and gradability tasks were 484 

71,950, 50,984, and 75,718, respectively. Each dataset was randomly split into 80% training and 20% 485 

validation. The model performance was validated by sample hold out, with final testing performed on 486 

images from the CLSA dataset. Model requirements for regression tasks were defined achieving a 487 
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validation loss equal or lower than human inter-rater loss. The gradebillity task criteria was defined as 488 

accuracy above 95%. Both regression tasks utilised mean square error loss function, while the classification 489 

model optimised over the binary cross entropy loss function. Training of all models was completed using 490 

the FastAI framework50, while utilising the in-built data augmentations functionality to improve accuracy and 491 

generalisability. The specifics of which augmentations were used can be found in Supplementary Table 7. 492 

It should be noted that the regression task for VDD was dependent on image scale, as such, augmentations 493 

which introduced scaling were omitted. Training was carried out in two stages: the first involved freezing 494 

the pretrained weights and only training the task head; the second, the ‘fine tuning’ stage, all model weights 495 

were unfrozen. Each stage was trained with cyclical training rate as described elsewhere51, and performed 496 

until the validation loss reached a plateau. 497 

 498 

Optic nerve head parameters, intraocular pressure and glaucoma risk across different 499 

ancestries 500 

Previous studies have reported differences in VCDR and VDD values across different ancestry groups.30,31  501 

Taking advantage of the diverse ancestries available in UKB and CLSA, we compared our AI derived VCDR 502 

and VDD values, as well as intraocular pressure (IOP, corneal-compensated41) values across different 503 

ancestry groups. We used the K-means clustering method to define ancestry groups based on genetic data 504 

(detailed above). Boxplots were used to show the differences of optic nerve head measurements across 505 

different ancestry groups (e.g. median value, upper and lower quartiles). The mean values of VCDR across 506 

different ancestries were estimated after adjusting for age, sex, and VDD. The 97.5th percentile of optic 507 

nerve head measurements and its 95% confidence interval (2.5% to 97.5% quantiles) were also calculated 508 

based on 1,000 bootstrapped samples, on account of the substantially smaller sample size for individuals 509 

of African, East Asian and South Asian ancestry. We then investigated how VCDR and IOP relate to 510 

glaucoma risk in different ancestries. The definition of glaucoma cases and controls was detailed in our 511 

previous study.20 Briefly, in UKB glaucoma cases were ascertained from International Classification of 512 

Diseases diagnosis, record-linkage data from general practitioners, and self-reported previous diagnosis. 513 

In the CLSA, participants were interviewed in-person with the question “Has a doctor ever told you that you 514 

have glaucoma?”. Logistic regression models were used to evaluate the association between genetically-515 
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defined ancestry groups and glaucoma risk. In each different model, different covariates were adjusted to 516 

evaluate the association of ethnic groups and glaucoma risk. In the base model, only sex and age were 517 

adjusted for; the other models also include either IOP, VCDR, or both (IOP & VCDR).  518 

 519 

Genome-wide association analysis and meta-analysis 520 

For both UKB and CLSA, the VCDR and VDD GWAS association tests were carried out using a linear 521 

mixed model (using BOLT-LMM version 2.3)52 to account for cryptic relatedness and population 522 

stratification, adjusting for sex and age. The first ten principal components were also included in the model 523 

to speed up the convergence of computations.53 The average values of measurements from left and right 524 

eyes and multiple visits (if available) were used, and were first transformed using a rank-based inverse-525 

normal method before association tests.54 To account for optic disc size covariation, VCDR grading was 526 

adjusted for VDD in GWAS analyses.8,55 The VDD-adjusted VCDR and VDD GWAS results from UKB and 527 

CLSA were then meta-analysed with those from the IGGC based on the inverse variance-weighted method 528 

(METAL software 2011-03-25 release).56 We also conducted association tests for VCDR and VDD in 529 

African and South Asian populations in UKB. Due to the relatively small size of each of these populations 530 

(Supplementary Table 8, less than the recommended sample size of 5000 in BOLT-LMM), PLINK was used 531 

instead, after removing related individuals.57 532 

SNP-based heritability was calculated by LD score regression (LDSC) from GWAS summary statistics.47,58 533 

Bivariate LD score regression was used to estimate the genetic correlation between pairs of traits in 534 

European ancestry.47 We selected independent SNPs based on the PLINK clumping method with P value 535 

< 5×10-8, r2 < 0.01, and a window of 1Mb from the index variant.57 To define novel loci from the AI-based 536 

GWAS, we checked previous UKB VCDR and VDD GWAS based on clinician gradings8,20, we also looked 537 

up the proxy SNPs (r2 > 0.8) of top loci and their nearest genes in GWAS Catalog.59 538 

 539 

Cross population genetic effects on optic nerve head parameters 540 

We evaluated the effects of genetics variants on VCDR and VDD cross different populations based on the 541 

following methods: 1) we first compared and replicated the AI-based top loci from European ancestry with 542 

the GWAS from African and South Asian samples. The effect sizes and standard errors of top loci were 543 
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shown in a scatter plot for different ancestries; 2) we calculated the trans-ethnic genetic effect correlation 544 

for VCDR and VDD using the “Popcorn” package.60 Specifically, the GWAS summary statistics for VCDR 545 

and VDD from European ancestry were compared with that in Asian and African ancestry.   546 

 547 

Transcriptome-wide association study and pathway analysis 548 

To prioritize potential causal genes, transcriptome-wide association study analysis (TWAS) was performed 549 

in FUSION using GWAS summary statistics and retina gene expression data.61 In FUSION, a reference 550 

data with both gene expression and genetic variants (SNPs) were used to train predictive models, which 551 

were used to impute the expression-trait association directly from large-scale GWAS summary statistics.61 552 

The weights of retina gene expression were obtained from 406 individuals from Eye Genotype Expression 553 

database (EyeGEx).61,62 We also used the EyeGEx to perform a summary data-based Mendelian 554 

randomization (SMR) to investigate the association of gene expression levels (exposure) and phenotype 555 

(outcome).63 The heterogeneity in dependent instruments (HEIDI) tests were used to evaluate the null 556 

hypothesis that a single causal variant affecting both gene expression and outcome, and the significance 557 

threshold was set at 0.05 (PHEIDI ≥ 0.05 not reject the null hypothesis).63 Pathway analysis were conducted 558 

in MAGMA as implemented in FUMA (version 1.3.6).64,65 All other analyses were performed with R 559 

software.66    560 
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Data availability 698 

UK Biobank data are available through the UK Biobank Access Management System 699 
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https://www.ukbiobank.ac.uk/. We will return the derived data fields following the UK biobank policy and in 700 

due course they will be available through the UK Biobank Access Management System.  701 

Data are available from the Canadian Longitudinal Study on Aging (www.clsa-elcv.ca) for researchers who 702 

meet the criteria for access to de-identified CLSA data. 703 
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