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Abstract

The EMBL-EBI Complex Portal is a knowledgebase of macromolecular complexes providing
persistent stable identifiers. Entries are linked to literature evidence and provide details of
complex membership, function, structure and complex-specific Gene Ontology annotations.
Data is freely available and downloadable in HUPO-PSI community standards and missing
entries can be requested for curation. In collaboration with Saccharomyces Genome
Database and UniProt, the yeast complexome, a compendium of all known heteromeric
assemblies from the model organism Saccharomyces cerevisiae, was curated. This
expansion of knowledge and scope has led to a 50% increase in curated complexes
compared to the previously published dataset, CYC2008. The yeast complexome is used as
a reference resource for the analysis of complexes from large-scale experiments. Our
analysis showed that genes coding for proteins in complexes tend to have more genetic
interactions, are co-expressed with more genes, are multifunctional, localize more often in
the nucleus, and are more often involved in nucleic acid-related metabolic processes and
processes where large machineries are the predominant functional drivers. A comparison to
genetic interactions showed that about 40% of expanded co-complex pairs also have genetic
interactions, suggesting strong functional links between complex members.

Introduction

Many proteins exist as part of stable, macromolecular complexes that act as functional units
in the cell. Identifying such complexes is crucial for a systems level understanding of
biological processes. The EMBL-EBI Complex Portal (www.ebi.ac.uk/complexportal, (1, 2) is
a manually curated, encyclopaedic resource of macromolecular complexes from a number of
key model organisms, including Saccharomyces cerevisiae. Entries describe assemblies of
two or more macromolecules (proteins, nucleic acids, small molecules) for which there is
evidence (experimental or inferred) that these molecules stably interact with each other and
have a demonstrated molecular function. Unlike other compendia of complexes, such as
CORUM (3), it not only lists the protein composition of each complex but it also includes
non-protein components, stoichiometry (when known), topology (including intra-complex
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binary interactions), and provides both, a free-text and structured description of complex
function and properties (Figure 1). Each entry is linked to a range of related resources such
as complex-centric Gene Ontology (GO) annotations (4, 5), structure determinations
deposited in the wwPDB (6) or the role of the complex in a pathway in Reactome (human-
only) (7). Links to these and other resources are provided both via cross-referencing and the
integration of widgets on the website to display Reactome pathways diagrams, structures via
the PDBe LiteMol App (8) and gene expression data via the Expression Atlas widget (9).
Versioning of the stable accession numbers indicates when a complex has been significantly
updated, for example by the addition or removal of a protein subunit from the list of
participants. The data are freely available and downloadable in the HUPO-PSI community
standard PSI-MI XML3.0 (10), MI-JSON and tab-delimited ComplexTab formats (2).

Saccharomyces cerevisiae (henceforth referred to as “yeast”) is an important model
organism for our understanding of the biology of all eukaryotic organisms and significant
effort has gone into identifying all its stable complexes. However, until recently, information
about such complexes was scattered across many publications and in different databases.
An early effort to concatenate these data was the, now deprecated, MIPS yeast complex
database (11). Domain-specific resources such as structural data in wwPDB, functional
statements and Gene Ontology annotations on the protein pages of UniProt (12) and gene
pages of the Saccharomyces Genome Database (SGD; www.yeastgenome.org) (13) provide
highly-detailed, component-specific information only. It was very difficult to derive a picture of
the complete yeast complexome without systematically integrating information from these
and other sources. Additionally, molecular interaction databases such as those maintained
by members of the IMEx Consortium (14) provide experimentally-derived interaction data
without combining evidence from multiple sources for a whole complex. Several studies in
the early 2000s predicted yeast complexes based on high-throughput yeast two-hybrid (15,
16) or affinity-purification methods (17—19) but only few studies included systematic
validation by way of small-scale experiments and manual curation (20). In 2009, Pu et al.
published a comprehensive analysis of 400 highly inter-connected assemblies derived from
high-throughput experiments (Yeast High ThroughPut, YHTP2008) and also a compendium
of 408 literature-derived, manually curated complexes based on small-scale experiments
(Curated Yeast Complexes, CYC2008) (21). Whilst both datasets contained approximately
400 entries, less than 20% of these were identical to each other. However, in the 12 years
since this set was first published, significant advances have been made in the field of
interaction biology and considerably more high-quality datasets are now available to
contribute to our understanding of this field. This has allowed a re-evaluation of the data and
in 2018 the first version of an updated and enhanced dataset of known yeast complexes, the
“yeast complexome”, was released in the Complex Portal. Additional complexes are being
added to the dataset on an ongoing basis, if and when they are experimentally verified.

In this paper we explore the yeast complexome and compare the extent and depth of data
available through the Complex Portal to other resources that contain data on yeast
complexes, namely to the curated and predicted complexes from Pu et al. and complexes
predicted based on all experimental protein-protein interactions in the IntAct molecular
interaction database (22). Compared to CYC2008, the Complex Portal dataset contains
almost 50% more entries (589 vs 408), covers 4% more of the yeast proteome (30% vs
26%) and includes additional detail about the complexes as described above. Finally, we
compare and contrast protein complex co-membership with the global genetic interaction
network (23) and found that both datasets significantly overlap.
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Methods
Source data for the Yeast Complexome

The data for the yeast complexome was derived from detailed literature searches and
collated in collaboration with curators based at UniProt and SGD. A draft list of putative
complexes was created based on the following sources: the CYC2008 dataset, UniProtkKB
SUBUNIT comment lines search with keywords “found in a complex with”, a close
collaboration with SGD who provided a list of identified complexes and by directed literature
searches. A complex is only included in the Complex Portal dataset if there is literature
evidence for its existence and functional role in vivo. Complexes that were identified based
only on either high or low-throughput analyses without the presence of further verification
experiments or functional assays were not included. 13 homomers have been curated, to
date, because the protein was also present in a related heteromeric complex. It should be
noted that homomers have largely been omitted from manually curated datasets because it
is often challenging to demonstrate experimentally if their function requires oligomerization
and their generic functions are already described in the UniProtKB database. Literature
searches and the collaboration with SGD are ongoing and new complexes are being added
to the dataset when they are experimentally identified.

The datasets
The protein complex datasets analysed were the following:

Complex Portal - 589 complexes (release 228, 16/11/2019)

CYC2008 - 408 manually-curated complexes (21)

YHTP2008 - 400 predicted complexes (21)

IntAct-LT - 332 predicted complexes derived from low-throughput experiments in
IntAct (release 228, 16/11/2019)

e IntAct-HT - 689 predicted complexes derived from high-throughput experiments in
IntAct (release 228, Nov 2019)

To enable direct comparison of protein complex components represented in the Complex
Portal and IntAct, gene locus IDs in CYC2008 and YHTP2008 were mapped to UniProt ACs
using the UniProt Mapping service web application (UniProt Release November 2019).
Ambiguous mappings, where a locus could be mapped to more than one UniProt entry with
the same sequence, were expanded to include all potential mapping pairs.

Complex Portal data was exported in ComplexTab format. Where complexes are part of
larger assemblies (sub-complexes) these were expanded to provide a list of unique
UniProtKB identifiers. Sets of paralogous ribosomal proteins were expanded to a full list,
therefore all potential UniProtKB identifiers were included in the analyses. The expansion of
paralogous proteins leads to an over-inflation of the subunit count per complex for the two
ribosomal subunits but is the only way to include all proteins in the comparative analysis. As
stoichiometry information is only available in a limited number of Complex Portal and IntAct
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entries and often missing due to a lack of available evidence, it was ignored and
comparisons were based on unique protein identifiers only. Non-protein complex members
such as nucleic acids and small molecules were not included as these are not provided in
full by any resource other than the Complex Portal.

IntAct complexes were derived from all yeast-yeast interactions in IntAct release 228.
Interactions were exported in MI-TAB2.7 format and split into those derived from papers with
100 or less interactions/paper and those with more than 100 interactions/paper. Complexes
were predicted using the Cytoscape App ClusterONE (24) using default parameter settings,
MI-score values as weights and a minimum cluster size of n=3.

Functional analyses

For the selection of genetic interactions we used the global yeast genetic interaction
network, the first comprehensive genetic interaction map in any organism (23). The network
was constructed by evaluating the growth defects associated with the majority of the ~18
million possible gene pairs in yeast, and includes ~350,000 positive and ~550,000 negative
genetic interactions. Non-essential genes were queried by deletion alleles and essential
genes by temperature-sensitive and DAmP alleles. However, we disregarded the DAmMP
data because few DAmP alleles had an effect on cellular fithess. For pairs of genes
screened more than once (for instance, pairs involving genes queried using different alleles)
a consensus approach was implemented in which we considered a given pair to have a
genetic interaction if that was the result in at least half of the screens.

Interacting protein pairs in a complex (i.e. co-complex pairs) were inferred by matrix
expansion of all complexes. UniProt identifiers were mapped to ORFs in order to compare
inferred physical interactions and genetic interactions as the latter are provided as ORFs.
Background pairs (i.e. “no co-complex pairs”) were defined as those pairs of proteins present
only in different complexes. The fractions of co-complex and background pairs with positive
and negative interactions were calculated, considering only pairs of proteins whose genes
were present in the genetic interaction network (52%, 51%, 55%, 58%, and 64% of co-
complex pairs in CP, CYC, YHTP, IntAct-LT, and IntAct-HT, respectively). Statistical
significance was calculated by Fisher’s exact tests.

In addition to genetic interactions, we evaluated the overlap of co-complex relationships with
the co-expression, co-localization, and co-annotation functional standards. In all cases, only
protein pairs for which functional data was available were considered. The co-expression
standard was derived from the MEFIT co-expression network, which integrates data from
multiple microarray datasets (25). Pairs with a MEFIT score >1.0 were considered to be co-
expressed. The co-localization standard was based on a previous high-throughput study
(26). Protein pairs localized in one or more shared cellular compartments were considered to
be co-localized. The co-annotation standard is based on GO biological process annotations
and disregards very frequently annotated GO terms as described in a previous work (23).

To obtain a comprehensive view of the differences between those proteins participating in
complexes and those that do not, the following characteristics were compared:
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genetic interaction degree calculated on array genes and averaging estimates across the
different alleles of a gene (23), co-expression degree calculated as the number of co-
expression relationships per gene (see above), gene conservation in other species (27),
expression variation (28), fithess of non-essential gene deletion alleles (23), PPl degree
(from IntAct yeast-yeast interaction, release 234 (09/07/2020), restricted to high-throughput
dataset with more than 100 interactions per publication as it reduces the bias from
confirmatory small-scale experiments), multifunctionality of proteins based on the number of
biological process annotations in GOSIlim (downloaded from SGD, July 2020), fraction of
disordered residues downloaded from d2p2.pro (29), being essential (30), being a gene
duplicate defined as having a paralog in YeastMine (31), being a membrane protein (32) as
well as subcellular localization (26) and broad functional classes (33). For each numerical
feature, values were z-score normalized using the median and the standard deviation of the
values for the background proteins. Statistical significance was evaluated using two-sided
Mann-Whitney U tests. For each binary feature, fold enrichment was calculated as the ratio
of complex members with that feature divided by the ratio of non-complex members with that
feature. Statistical significance was calculated by two-sided Fisher’s exact tests.

The relative difference in transcript counts, expression variance, protein abundance, and
protein halflife was calculated for co-complex and background pairs. For every pair and
measure, we calculated the maximum (MAX) and minimum (MIN) value within the pair. The
relative difference was then calculated as (MAX-MIN)/MAX. The larger this score is, the
larger the difference between the pair of proteins/genes. Statistical significance was
calculated using two-sided Mann-Whitney U tests.

Direct and indirect contacts were selected from a set of Complex Portal complexes of size 3
or larger that contained information for both types of contacts. Self interactions were ignored.
Protein pairs belonging to different complexes of the selected set were defined as
background. Genetic interaction profile similarity values were downloaded from
http://thecellmap.org (34), considering both essential and non-essential genes, and
averaging similarity values across alleles of the same gene.

A list of 12 high level GO terms (Table 2) was manually selected to best represent processes
and functions related to nucleic acids as well as the component term “nucleus”. These terms
were used to build a bespoke SLIM and all annotations to yeast proteins using these terms
and their children were exported on 09/10/2020. This list of GO terms was used to filter all
Complex Portal complexes that were also annotated to any of these terms. This analysis
was only performed on the Complex Portal dataset as there are no complex-specific GO
annotations for the other datasets.

Analysis Tools
Data manipulation and visualisations were performed in R (data.table, splitstackshape,

reticulate, rio, ggplot2, scales), Python and Excel. Unique versus shared sets of complexes
were identified using Venny (https://bicinfogp.cnb.csic.es/tools/venny/).

Results and Discussion
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The Yeast Complexome in the Complex Portal

Saccharomyces cerevisiae complexes were captured in the Complex Portal leading to yeast
being the first completed species complexome. It is the largest manually-curated
compendium of yeast multi-molecular complexes, comprising 589 complexes, 1930 proteins
and 15,863 co-complex relationships. In order to identify all known yeast complexes we
gathered information from a number of sources (CYC2008 complexes, UniProt, SGD,
literature publications). Some complexes that are included in these sources have not been
included in the Complex Portal because they have since been identified as part of a bigger
complex or they lack clear experimental evidence for their existence and their functional role
in vivo. These putative complexes are kept in a separate list and are periodically revisited to
see if more evidence has been published. Collaborations with SGD are ongoing and we
update existing entries and add new ones when new evidence comes to light.

Compared to other resources, the Complex Portal provides added value through its greater
scope of annotation. Each complex entry has a manually annotated description of their
function and physical properties and includes stoichiometry and topological information when
available. The Evidence and Conclusion Ontology (ECO) (35) is used to indicate the type of
evidence we have for each entry and where interaction evidence is available in an IMEx
member database, the wwPDB or EMDB (36) cross-references are provided. Each complex
is annotated to GO terms specific for the complex and a selection of supporting literature
references are provided. Versioning allows easy tracking of changes in complex
composition. Additionally, the data is downloadable in three different community standard
formats and as a live resource it gets updated every two months.

Dataset comparisons

The yeast complex dataset published in the Complex Portal is the first manually annotated
yeast complex dataset since the publication of CYC2008 by Pu et al. in 2009. We compare
these two manually curated datasets with each other and with corresponding experimentally-
derived predicted complexes from YHTP2008 and IntAct release 228 (16/11/2019). The
IntAct data was split into low and high throughput publications setting a cut-off at 100
interactions per publication. See Table 1 for a summary of the five datasets and Figure 2 for
the distribution of unique proteins per complex.

The two manually-curated datasets share 1543 proteins (80% and 95%, respectively): 387
proteins are unique to the Complex Portal and 81 unique to CYC2008 (Table 1, Figure 3a);
overall, Complex Portal and CYC2008 complexes cover 32% and 27% of the yeast
proteome, respectively. The reason for the relatively low proteome coverage may be
multifaceted: both datasets have concentrated on stable, macromolecular machines
whereas many proteins may be found in more transient interactions, such as signalling
assemblies or enzyme-substrate interactions. The identification of protein complexes may
also be limited by technological constraints and some complexes simply cannot be purified
by existing methods, for example insoluble membrane components.

The Complex Portal contains 589 yeast complexes compared to 408 in the CYC2008
dataset, a 44% increase (Table 1). They share 286 identical complexes which responds to
49% of Complex Portal complexes and 70% of CYC2008 complexes (Jaccard Index = 1.0)
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(Figure 4a). When reducing protein identity matching to a minimum of 50% (Jaccard Index =
0.5) the overlap is over 80% for both datasets (Figure 4c). There are many more complexes
in the Complex Portal than in CYC2008 because a large amount of knowledge has
accumulated in the intervening 12 years. On the other hand, approximately 30 CYC2008
complexes were not re-curated into the Complex Portal because the available interaction
evidence does not meet current curation criteria (1) or because they are now believed to be
part of larger complexes. These complexes remain on a watch list and will be added if
sufficient evidence becomes available. Complex Portal complexes also contain 94% of
CYC2008 co-complex pairs while CYC2008 complexes only contain 66% of Complex Portal
co-complex pairs (Figure 3c).

The IntAct yeast interactome contains a total of 124,918 yeast-yeast binary interactions
containing 5850 unique proteins or 97% of the yeast proteome (proteome = 6049 proteins)
and 18 interactions between a yeast protein and a yeast complex. A topological clustering
analysis of the IntAct yeast interactome was performed using the Cytoscape App
ClusterONE, restricting accepted clusters to those with 3 or more proteins. The resulting
clusters encompassed only just over half the proteome (3280 proteins, 54%) and predicted
332 complexes from low-throughput publications (IntAct-LT) and 689 complexes from high
throughput publications (IntAct-HT) (Table 1). Only a third of the proteome was present in
the 400 YHTP2008 predicted complexes based on high throughput data (1911 proteins,
32%).

Complex sizes (Figure 2) are difficult to compare as the minimum sizes are determined by
the curation strategies (see Table 1 for a reference of which datasets contain homomers and
dimers) and the maximum sizes determined by the handling of paralogous proteins. Where
possible, Complex Portal curates separate complexes for each paralogous protein but in the
case of the ribosomal subunits it creates sets for each paralogous pair. Similarly, CYC2008
often includes each paralogous gene locus in the same complex. The inclusion of
paralogous proteins or loci in a complex artificially inflates its maximum (and with that the
mean and median) size. Likewise, clustering algorithms tend to group paralogous proteins
together. Therefore, the largest complexes are found in the predicted datasets of YHTP2008
and IntAct-HT. Excluding the ribosomal subunits that contain multiple paralogous pairs of
proteins or loci, the maximum size of a complex in the Complex Portal is 73 and in CYC2008
is 44.

However, despite the issues with minimum and maximum complex sizes, the overall
complex size distributions are very similar. The majority of complexes contain 10 or fewer
unique proteins with a rapidly reducing tail. This is dataset-independent and demonstrates
that most proteins function within a relatively small group of partners. There are a few larger
complexes in the Complex Portal than in CYC2008. ClusterOne predicts no complexes
larger than 40 proteins/complex for the IntAct-LT dataset resulting in the smallest complex
size distribution of all datasets. In comparison, IntAct-HT has the highest predicted complex
size distribution of all datasets when ignoring the expanded ribosomal complexes. The
IntAct-HT dataset includes many affinity purification experiments, which can identify large
associations of co-purifying proteins which in turn result in more centralized and heavily-
connected areas of the underlying interactome. Such heavily-connected areas in the
interactome result in many overlapping clusters that have a tendency to get combined into
superclusters by the ClusterOne algorithm.
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We also compared the manually-curated complexes with those predicted from experimental
protein-protein interaction (PPI) evidence. The overlap between any curated and predicted
dataset never exceeded 20% in any comparison with a Jaccard Index of 1.0 (Figure 3b). The
IntAct-HT complexes contain an even smaller overlap with either of the curated complex
datasets (7-8%) than the IntAct-LT or YHTP2008 complexes (13-17%). At the protein level,
only 42-72% of proteins from an experimental dataset could also be found in a curated
complex dataset while 68-81% of proteins in the curated datasets are also found in the
experimental datasets (Figure 3a).

The low level of overlap between manually-curated and predicted complexes may be the
result of a combination of factors: Firstly, experimentally-derived interactomes contain a lot
more proteins than the complex datasets but incorporate fewer validated evidence than the
often thoroughly and even functionally validated interaction evidence used to define curated
complexes. Secondly, the need for a reductionist representation of the interactome, where
multiprotein associations are reduced to binary pairs via spoke expansion methods
introduces a bias in the internal topology of PPI evidence networks, potentially generating
spurious associations. Finally, prediction algorithms are restricted to predicting heteromers
and ClusterOne restricts clusters to size 3 and larger; therefore, any heterodimeric
complexes are not included in the predicted datasets and were removed from the

above comparisons for the overlap of complexes between the five datasets.

Features of protein complexes, their proteins and genes that code for them

The properties of protein complex members were characterised using a panel of numerical
and binary features (Supplementary Figure 1). Genes coding for proteins in complexes
tended to have more genetic interactions and to be co-expressed with more genes. They
were also more likely to be multifunctional, conserved across species, and present more
stable expression patterns. Additionally, they often coded for proteins with a higher
percentage of disorder, higher PPI degree and were enriched for essential genes and non-
essential genes with larger fitness defects. On the other hand, these genes were depleted
for duplicates and were less likely to code for membrane proteins. Localization patterns
changed slightly across datasets. Proteins in complexes tended to localize more often in the
nucleus and the nucleolus than other proteins, while they were less likely to be found in the
vacuole. To further explore this finding, complexes in the Complex Portal dataset were
analyzed for annotations to nuclear and nucleic acid-related processes and functions (Table
2) taking advantage of the complex-specific GO annotations available for this dataset. More
than half of complexes (304/589, 52%) are annotated to at least one of these 12 selected
terms or their children (Supplementary Table 2). 65% of these complexes (197/304) are
annotated to “G0:0005634 nucleus” or a child term and 52% (159/304) to “G0:0006139
nucleobase-containing compound metabolic process” or a child term. In all datasets,
proteins found in complexes were also significantly over-represented in processes where
large machineries are the predominant functional drivers such as replication, transcription,
translation, and ER to Golgi and trans-Golgi transports. This reflects how such processes
require a variety of tightly regulated multimolecular machineries whose diversity has been
thoroughly explored in the literature. However, proteins found in complexes were
underrepresented in many signaling, transportation, and localization processes that are
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more often driven by single proteins. Importantly, most results were consistent across all five
complex datasets.

Multifunctionality

More than 70% of proteins in each dataset are only found in a single complex
(Supplementary Figure 2) and there is no difference in this distribution between curated and
predicted complexes. Only a few proteins from each dataset are found in two to five different
complexes while CYC contains only a few and YHTP and IntAct-LT contain no proteins that
occur in more than six complexes. Most of the proteins found in more than one complex are
core subunits of complexes of which many different variants exist, such as cyclin-dependent
kinases or ubiquitin ligases. In a recent analysis of datasets from several yeast interactome
datasets it was demonstrated that this long right-hand tail of a few proteins occurring in
many complexes is almost always significantly different from a random distribution (37). The
random distribution estimates that proteins should be found in a maximum of 6-9 complexes
while in the real data some proteins occur in >20 complexes, matching our observations.

There are 5 proteins that are found in 24 complexes in the Complex Portal where the

complexes are annotated to two or more unrelated pathways or complexes and three of
these proteins are also found in more than one subcellular location when part of multiple
complexes. Four of these proteins, H4 (P02309), LTV1 (P34078), SKP1 (P52286) and
TAF14 (P35189), are regulatory subunits and one, PP12 (P32598), is a protein phosphatase
(Supplementary Table 1). These five proteins have a relatively higher number of GO SLIM
annotations compared to the rest (p < 0.0005, Supplementary Figure 3). All other complexes
that share proteins are functionally-related homologues.

Biological assessment of complexes via omics data

Genetic interactions identify combinations of genes that yield unexpected phenotypes when
simultaneously mutated. Negative genetic interactions identify cases with more severe
phenotypes than expected given the individual mutant phenotypes, whereas in positive
genetic interactions the resulting phenotype is healthier. Both types of genetic interactions
are a powerful tool for the characterization of genes and to elucidate the functional wiring of
the cell (38).

Since genetic interactions identify potentially functional relationships between genes, we
evaluated whether gene pairs coding for proteins within the same complex were enriched in
genetic interactions using the global genetic interaction network (23). Genetic interactions
have been explored for ~52% of the co-complex pairs defined in the Complex Portal dataset.
Of these, 30% and 10% of genes coding for co-complex pairs had negative and positive
genetic interactions, respectively. These represent a 4.4 and 2.4 fold increase, respectively,
over what was observed in background pairs, i.e. pairs of genes coding for proteins in
different complexes (p<0.05, Figure 5, Supplementary Figure 4). The significant overlap
between genetic interactions and co-complex relationships is in agreement with previous
studies (23, 39). This result was consistent across the different complex datasets, but the
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curated datasets and IntAct-LT showed a higher overlap with genetic interactions. A lower
overlap of the high-throughput datasets, IntAct-HT and YHTP, with genetic interactions could
be due to a larger fraction of indirect physical associations identified in weakly connected,
large complexes in such studies. We found similar trends when comparing co-complex pairs
to co-expression, co-localization, and co-annotation datasets (Figure 6, Supplementary
Figure 5). In all cases, co-complex pairs had a higher overlap with these functional
standards than background pairs and this overlap was particularly pertinent in the curated
datasets. For instance, ~90% of co-complex pairs in the curated datasets were co-
expressed, whereas the overlap for the remaining datasets ranged from 41% to 76%.
Additionally, we observed more similar transcript counts, expression variance, and protein
abundance and halflife for co-complex pairs than background pairs (Figure 7,
Supplementary Figure 6), which reflects that members of the same protein complex tend to
exhibit similar regulation patterns at a gene and protein level in order to act as a single
coordinated biological unit.

Identifying the direct physical contacts within protein complexes can reveal sub-complex
modules, improve the characterization of protein function, and help to interpret how
mutations affect the phenotype. The Complex Portal is the only dataset that describes the
internal connectivity of complexes, with detailed information for 237 complexes that have 3
or more participants. The functional relevance of this data was evaluated by comparing
genetic interaction profiles (i.e., the set of genetic interactions of a gene) of direct and
indirect contacts within protein complexes. These profiles are quantitative phenotypic
signatures and revealed a higher similarity for gene pairs coding for proteins in direct contact
(Figure 8; p<0.01 for all pairwise comparisons). This suggests that, in protein complexes
with unknown internal connectivity, the analysis of genetic interaction profiles of the
individual components may discriminate direct from indirect contacts.

Conclusions

Our knowledge of the biology of Saccharomyces cerevisiae has substantially improved over
the last 12 years. The Complex Portal now provides almost 50% more complexes than did
the previous compendium, CYC2008 (21), and these include more protein components,
details on non-protein participants and more complex variants. The Complex Portal also
provides a searchable website, a web service and three download formats.

Our set of curated yeast complexes shows a large overlap with previous curation efforts (i.e.
CYC2008). However, these show a poor overlap when compared to predicted complexes.
This may be due to large-scale affinity purification data producing clusters of apparently
highly connected proteins as well as the presence of transient interactions in these datasets.
This poor overlap also highlights that experimental protein-protein interactomes are a limited
predictor for functional complexes which highlights the continuing need for a manually
curated complex database.

Most proteins are found in only one complex and those found in two or more complexes tend
to have the same function in multiple complexes. Only five proteins found in four or more
complexes are linked to different processes showing that protein function is fairly conserved
when they are part of complexes.
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We highlight that there is a relative enrichment of multi-molecular machines in the nucleus
and the nucleolus. These complexes are often involved in nucleic acid-related metabolic
processes like replication, transcription and translation, plus other processes where multi-
molecular assemblies are the predominant functional drivers such as ER to Golgi and trans-
Golgi transports.

We found that the co-complex pairs overlap significantly with genetic interaction, co-
expression, co-localization, and co-annotation datasets, which highlights the functional
relevance of co-complex membership and the potential of protein complex datasets to
address questions of biological interest. Members of the same co-complex also tended to
present more similar regulation patterns which reflects the role of the protein complex as a
coordinated biological unit. Genes coding for co-complex pairs in physical contact exhibited
more similar patterns of genetic interactions, illustrating that the structural organization within
complexes is key to interpret the results of functional studies. Importantly, contact
information within complexes is only available in Complex Portal and not in the other
complex datasets.

To date, the Complex Portal yeast complexome has been used to validate complexes in
several large-scale studies (37, 39—42) and our stable identifiers are used as annotation
objects and cross-references in several other curated databases, such as IMEx consortium
partners, Gene Ontology (43), Genome Properties (44), MatrixDB (45), SGD (13),
Reactome, Signor (46, 47) and Wikipathways (48) while other collaborations are under
development, e.g. with PDBe (49). As we move to complete more complexomes, for
example that of Escherichia coli, and continually improve our coverage of the human and
mouse complexes, it will also be possible to improve our understanding of the evolution of
these assemblies (50), and from there how the regulation of cellular processes has
developed as organisms evolve.

We have shown how the Complex Portal yeast complexome is a key resource that
significantly extends previously-available datasets. Our commitment to keep it updated and
freely accessible ensures the scientific community can count on a stable, high-quality
reference set for the study of multi-molecular machineries in yeast and other organisms.

We encourage our users to get in touch via the website if they find missing complexes or
have suggestions on how to improve or extend our service.

Data Availability

The complete yeast complexome is available for download from
www.ebi.ac.uk/complexportal/download, the CYC2008 and YHTP2008 data from
http://wodaklab.org/cyc2008/downloads and all files listing complexes and co-complexes
used as input for our analyses have been deposited in Zenodo (10.5281/zenodo.4160609).
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Table and Figure Legends

Table 1: Basic statistics about the five complex datasets

Table 2: Number of Complex Portal complexes annotated to nuclear and nucleic acid related
GO terms

Figure 1: The nuclear cohesion complex is curated as one entry in CYC2008 (a) but
represented by two, process-specific complexes in Complex Portal (b), one involved in
mitosis and one involved in meiosis. The two complexes differ by one subunit. (¢ )
Screenshots of the Details page of these complexes in Complex Portal.

Figure 2: Distribution of number of unique proteins per complex. Homomers are found in the

pink rectangle and heterodimers in the blue rectangle. Total number of complexes per
dataset: CP = 589, CYC =408, YHTP = 400, IntAct-LT = 332, IntAct-HT = 689
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Figure 3: Fraction of (a) proteins (CP = 1930, CYC = 1624, YHTP = 1911, IntAct-LT = 1918,
IntAct-HT = 3147), (b) complexes, based on Jaccard Index = 1.0 for complexes with a
minimum of 3 protein participants (CP = 345, CYC = 236, YHTP = 208, IntAct-LT = 332,
IntAct-HT = 689) and (c) co-complex pairs shared between two any datasets (CP = 15863,
CYC =11238, YHTP = 28146, IntAct-LT = 9808, IntAct-HT = 30493). Each row compares
the overlap of both datasets to the total number of entities in the dataset given on the left.

Figure 4: Overlap of complexes by protein identities and decreasing stringencies for complex
membership between Complex Portal (n = 589, blue) and CYC (n = 408, orange). (a) JI =
1.0, (b) JI =0.75, (c) JI = 0.5. JI = Jaccard Index. NB: Total numbers per dataset for JI =
0.75 and JI = 0.5 are higher than the absolute number of complexes per dataset as one
complex can be broken down into more than one partial complex that matches a complex in
the other dataset.

Figure 5: Fraction of co-complex pairs from each complex dataset that overlaps with
negative (blue) and positive (yellow) genetic interactions.

Figure 6: Fold enrichment of co-complex pairs compared to background pairs from all five
datasets for co-expression, co-localization and co-annotation. All enrichments are
statistically significant (p<0.05)

Figure 7: Relative difference in transcript counts, expression variance, protein abundance,
and protein halflife for co-complex and background pairs in the Complex Portal. * p < 0.05.

Figure 8: Genetic interaction profile similarities of gene pairs coding for proteins: in direct
physical contact (blue), in the same complex but not in contact (red), in different complexes
(grey). Boxes represent second and third quartiles, whisker first and forth. Horizontal lines in
boxes represent the medians. All pairwise comparisons: p < 0.05

Supplementary Data

Supplementary Table 1: Associated functions, process and complexes of proteins that occur
in 24 complexes where the protein in question is not a core functional subunit of a set of
paralogous complexes.

Supplementary Table 2: List of all Complex Portal complexes and their annotations to
nuclear and nucleic acid related GO terms

Supplementary Figure 1: Gene and protein features of complex members compared to non-
complex members (background). (a) Panel of numerical features. Yellow and blue dots
identify features with significantly higher and lower values for complex members,
respectively. Numerical values were z-score normalized using the median and the standard
deviation of the background proteins. Dot size is proportional to the median z-score value of
the proteins in complexes. (b-d) Panel of binary features (b), localization patterns (c), and
functional classes (d). Fold enrichment for a particular binary feature was calculated as the
ratio of complex members with that feature divided by the ratio of non-complex members
with that feature. Yellow and blue dots identify features with significantly higher and lower
ratios for complex members, respectively. Dot size is proportional to the fold enrichment.

Supplementary Figure 2: Multifunctionality of proteins in complexes in all five datasets (CP =
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589, CYC =408, YHTP =400, IntAct-LT = 332, IntAct-HT = 689).

Supplementary Figure 3: Density distribution of GO SLIM biological process annotations in
SGD for proteins found in Complex Portal complexes versus those not found in complexes.
The number of annotations for 5 multifunctional proteins found in 24 complexes and
annotated to two or more unrelated pathways or complexes are indicated with arrows.

Supplementary Figure 4: Fraction of protein pairs from each complex dataset that do not
occur in the same complex (= background pairs) that overlaps with negative (blue) and
positive (yellow) genetic interactions.

Supplementary Figure 5: Fraction of co-complex pairs (bars) and background pairs (white
crosses on bars) of all five datasets that overlap with the co-expression, co-localization and
GO co-annotation functional standards.

Supplementary Figure 6: Relative difference in transcript counts, expression variance,
protein abundance, and protein halflife for co-complex and background pairs in CYC, YHTP,
Intact-LT, and Intact-HT. * p < 0.05.
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Table 1

Total no. Total no. Max no. of Mean no. of | Median no. of | Homomers Dimers No. co- Incl non- Stoichio- Manually
proteins complexes proteins/ proteins/ proteins/ complexes protein metry curated
complex complex ** complex ** components *kx fields ***
* k%
Complex 1930 589 80 (73%) 6.93 4 es es 15863 es ves es
Portal (CP) ' y y y (if known) | ¥
CYC2008 1624 408 81 (44%) 6.67 4 no yes 11238 no no partial
YHTP2008 1911 400 181 8.03 4 no yes 28146 no no no
IntAct-LT 1918 332 40 6.71 5 no no 9808 yes optional no
IntAct-HT 3147 689 99 7.31 5 no no 30493 yes optional no
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Table 2
GO termID | GO term name GO class Complexes
GO:0006139 nucleobase-containing compound metabolic biological_process 159

process

G0:0010467 | gene expression biological_process 101
G0:0051276 | chromosome organization biological_process 73
G0:0006974 | cellular response to DNA damage stimulus biological_process 38
G0:0071826 gfg‘;r:l‘zciﬁ) Tomi” complex subunit biological_process | 14
G0:0006997 | nucleus organization biological_process 2
G0:0005634 | nucleus cellular_component | 197
G0:0003676 | nucleic acid binding molecular function 121
G0:0140098 | catalytic activity, acting on RNA molecular_function 37
G0:0140110 | transcription regulator activity molecular_function 16
G0:0140097 | catalytic activity, acting on DNA molecular_function 15
G0:0045182 | translation regulator activity molecular_function 12
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