

1 **Title: Nitrate inhibits nodule organogenesis through inhibition of cytokinin biosynthesis in**
2 ***Lotus japonicus***

3 Authors: Jieshun Lin¹, Yuda Purwana Roswanjaya^{2,3}, Wouter Kohlen², Jens Stougaard¹ and Dugald
4 Reid¹

5 **Affiliations:**

6 ¹Department of Molecular Biology and Genetics, Aarhus University, Denmark

7 ²Laboratory for Molecular Biology, Wageningen University, Netherlands.

8 ³Centre of Technology for Agricultural Production, Agency for the Assessment and Application of
9 Technology (BPPT), Jakarta, Indonesia.

10

11 **Corresponding author contact:** dugald@mbg.au.dk

12 **Running Title:** Nitrate regulation of symbiotic cytokinin

13 **One sentence summary:** Cytokinin biosynthesis is suppressed by nitrate in *Lotus japonicus*,
14 providing a mechanism for nitrate inhibition of symbiotic nodule organogenesis.

15 **ORCID**

16 Jieshun Lin 0000-0002-3726-0303

17 Yuda Purwana Roswanjaya 0000-0002-8195-8100

18 Wouter Kohlen 0000-0001-9057-2392

19 Jens Stougaard 0000-0002-9312-2685

20 Dugald Reid 0000-0001-9291-9775

21

22 **Abstract**

23 Legumes balance nitrogen acquisition from soil nitrate with symbiotic nitrogen fixation. Nitrogen
24 fixation requires establishment of a new organ, which is a cytokinin dependent developmental process
25 in the root. We found cytokinin biosynthesis is a central integrator, balancing nitrate signalling with
26 symbiotic acquired nitrogen. Low nitrate conditions provide a permissive state for induction of
27 cytokinin by symbiotic signalling and thus nodule development. In contrast, high nitrate is inhibitory
28 to cytokinin accumulation and nodule establishment in the root zone susceptible to nodule formation.
29 This reduction of symbiotic cytokinin accumulation was further exacerbated in cytokinin biosynthesis
30 mutants, which display hypersensitivity to nitrate inhibition of nodule development, maturation and
31 nitrogen fixation. Consistent with this, cytokinin application can rescue nodulation and nitrogen
32 fixation of biosynthesis mutants in a concentration dependent manner. These inhibitory impacts of
33 nitrate on symbiosis occur in a *Nlp1* and *Nlp4* dependent manner and contrast with the positive
34 influence of nitrate on cytokinin biosynthesis that occurs in non-symbiotic species. Altogether this
35 shows that legumes, as exemplified by *Lotus japonicus*, have evolved a different cytokinin response
36 to nitrate compared to non-legumes.

37 **Introduction**

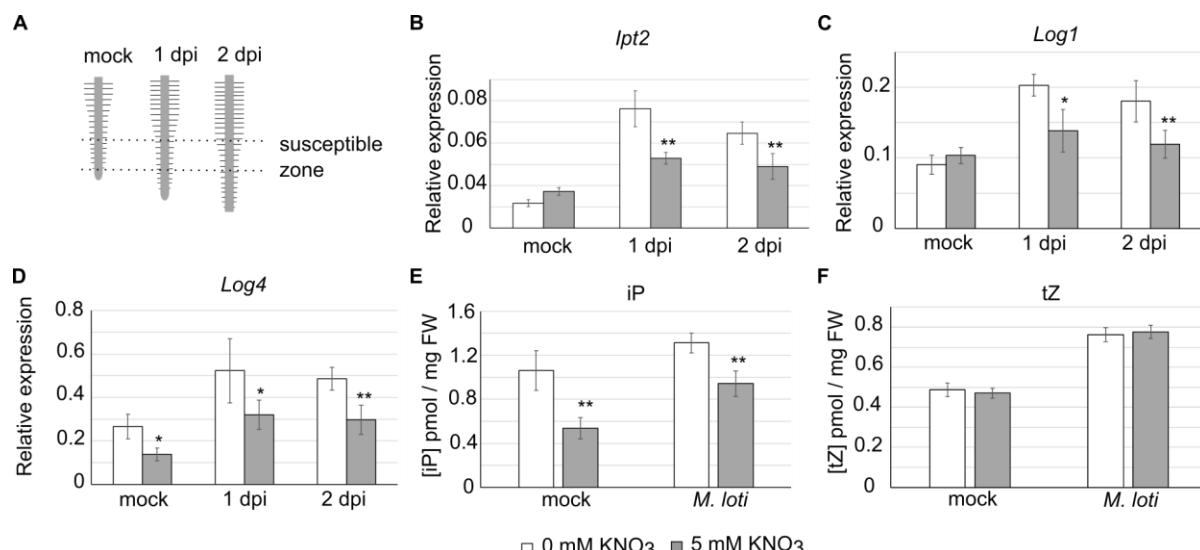
38 Nitrogen deficiency is the most common nutritional limitation to plant growth. Legumes can
39 overcome this limitation by acquiring nitrogen through the establishment of a symbiotic relationship
40 with nitrogen fixing rhizobia. The establishment of a new organ (a nodule) and transfer of resources to
41 the bacterial partner makes symbiotic nitrogen fixation less favourable than uptake of soil nitrate.
42 Therefore, nitrate is preferentially acquired and nodule development is inhibited in soils with high
43 nitrate levels (Oldroyd and Leyser, 2020).

44 Nodule development is initiated through a common symbiotic pathway shared with establishment of
45 arbuscular mycorrhizal fungus (Kistner and Parniske, 2002; Madsen et al., 2010; Martin et al., 2017).
46 A major downstream target in the establishment of nodules is the induction of cytokinin synthesis and
47 signalling (Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Tirichine et al., 2007; Reid et al., 2017;
48 van Zeijl et al., 2015). Cytokinin is essential for nodule organogenesis, as exemplified by loss of
49 nodule development in cytokinin receptor mutants (Gonzalez-Rizzo et al., 2006; Murray et al., 2007;
50 Held et al., 2014; Boivin et al., 2016). Stimulation of cytokinin signalling through biosynthesis and
51 receptor activation is also sufficient to trigger nodule development, even in the absence of rhizobia
52 (Tirichine et al., 2007; Heckmann et al., 2011; Reid et al., 2017; Liu et al., 2018). This cytokinin
53 signalling regulates expression of central components of nodulation signalling, including the
54 transcription factor NIN (Nodule Inception; Schäuser et al., 1999) via distal *cis*-elements in the *Nin*
55 promoter (Liu et al., 2019). Cytokinin- and NIN- dependent signalling also initiates negative feedback
56 of nodule organogenesis and infection via induction of CLE (CLAVATA3/ESR-related) peptides and
57 the AON (Autoregulation of Nodulation) pathway (Soyano et al., 2014; Laffont et al., 2020; Ferguson
58 et al., 2019). The AON pathway integrates signals from both prior nodulation events and soil nitrate
59 availability to balance nodule development with plant resources.

60 Nitrate signalling depends on uptake and perception by nitrate transceptors (transporter-receptors) of
61 the NRT1.1 family (Ho et al., 2009; Bouguyon et al., 2015). The majority of transcriptional responses
62 to nitrate are then controlled by the action of NIN-Like proteins (NLPs) (Castaings et al., 2009; Liu et
63 al., 2017). In legumes, NLP signalling is tightly integrated with symbiotic signalling with NLPs
64 regulating symbiotic signalling both directly and through competition for NIN binding sites (Lin et
65 al., 2018; Nishida et al., 2018). Loss-of-function mutants in legume NLPs (eg. *LjnrSYM1/Ljnlp4* and
66 *Mtnlp1*) therefore show nitrate resistant symbiosis phenotypes.

67 In addition to local responses to nitrate, plants possess systemic regulatory circuits allowing response
68 to nitrate to be coordinated between roots and shoots. Cytokinin signalling is one of the pathways
69 underlying this systemic signalling of nitrate availability (Sakakibara, 2020). Outside of legumes,
70 induction of cytokinin biosynthesis by nitrate has been described in several species including maize
71 (Takei et al., 2001), rice (Kamada-Nobusada et al., 2013) and Arabidopsis (Miyawaki et al., 2004).
72 Several cytokinin biosynthesis (IPT, LOG and CYP735A enzymes) and transport (ABCG14)

73 components have subsequently been shown to coordinate plant responses to nitrogen. For example,
74 *AtIPT3* and *AtABCG14* activity in the root vasculature can increase cytokinin export in response to
75 nitrate supply (Miyawaki et al., 2004; Zhang et al., 2014; Poitout et al., 2018), while *AtIPT3* and
76 *AtCYP735A2* have been implicated in NLP dependent nitrate signalling (Maeda et al., 2018; Takei et
77 al., 2004a, 2004b). In rice, four IPT genes and a resulting accumulation of cytokinin were identified as
78 nitrate and ammonium responsive (Kamada-Nobusada et al., 2013).

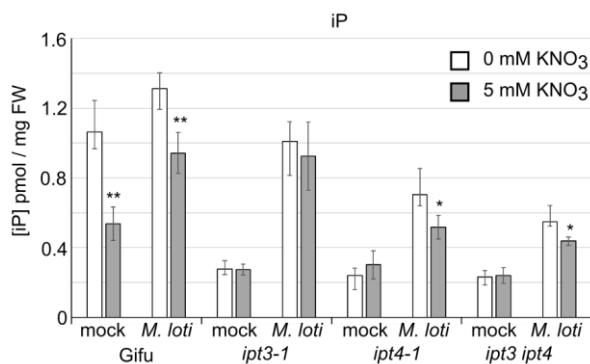

79 Given the positive role of cytokinin in nodule development, in contrast to the inhibitory role of nitrate
80 in this process, it remains to be seen how and whether cytokinin synthesis and signalling play
81 equivalent signalling and coordination roles in nitrogen signalling in legumes. Here, we investigate
82 this link and find nitrate is inhibitory to cytokinin biosynthesis in the model legume *Lotus japonicus*.
83 This provides a regulatory target for nitrate signalling, ensuring nodule development and soil nitrate is
84 balanced and implies additional regulatory mechanisms must be recruited or amplified in legumes to
85 signal nitrogen availability.

86 **Results**

87 **Rhizobia induced cytokinin biosynthesis is inhibited by nitrate**

88 In response to rhizobia, *L. japonicus* induces the expression of cytokinin biosynthesis genes, including
89 *Ipt2*; *Log1*; and *Log4*, to trigger nodule organogenesis (Reid et al., 2017). This induction occurs
90 primarily in the region of emerging root hairs at the root tip, known as the susceptible zone (Figure
91 1a). While environmental nitrate induces cytokinin synthesis in many species, in legumes high nitrate
92 can inhibit nodule organogenesis, raising the question of how legumes deal with this apparent
93 paradox? To investigate the effect of nitrate on cytokinin biosynthesis during nodule initiation, we
94 first analysed the expression of cytokinin biosynthesis genes. In the absence of nitrate, *Ipt2*; *Ipt3*; *Ipt4*;
95 *Log1*; and *Log4* are up-regulated in the susceptible zone following rhizobia inoculation, in line with
96 previous results (Fig 1A-D; S1) (Reid et al., 2017). However, in the presence of high nitrate which is
97 inhibitory to nodule initiation (5 mM KNO₃), the relative transcript abundance of *Ipt2*; *Ipt3*; *Ipt4*;
98 *Log1*; and *Log4* was lower at both one and two days post inoculation (dpi), relative to plants grown in
99 the absence of nitrate (Fig 1B-D; S1).

100 To confirm that this nitrate-induced suppression of transcript levels resulted in altered levels of
101 cytokinin, we quantified the cytokinin ribosides and bases in the same tissue and conditions two days
102 post inoculation. We found that both iP and tZ cytokinin bases are induced by rhizobia inoculation in
103 both the absence and presence of nitrate (Fig 1E,F). In agreement with the gene expression analysis,
104 rhizobia inoculation results in an increase in iP levels, while nitrate exposure significantly reduces iP
105 relative to nitrate-free plants irrespective of inoculation status (Fig 1E). The levels of tZ were not
106 significantly different in the two nitrate conditions (Fig 1F).

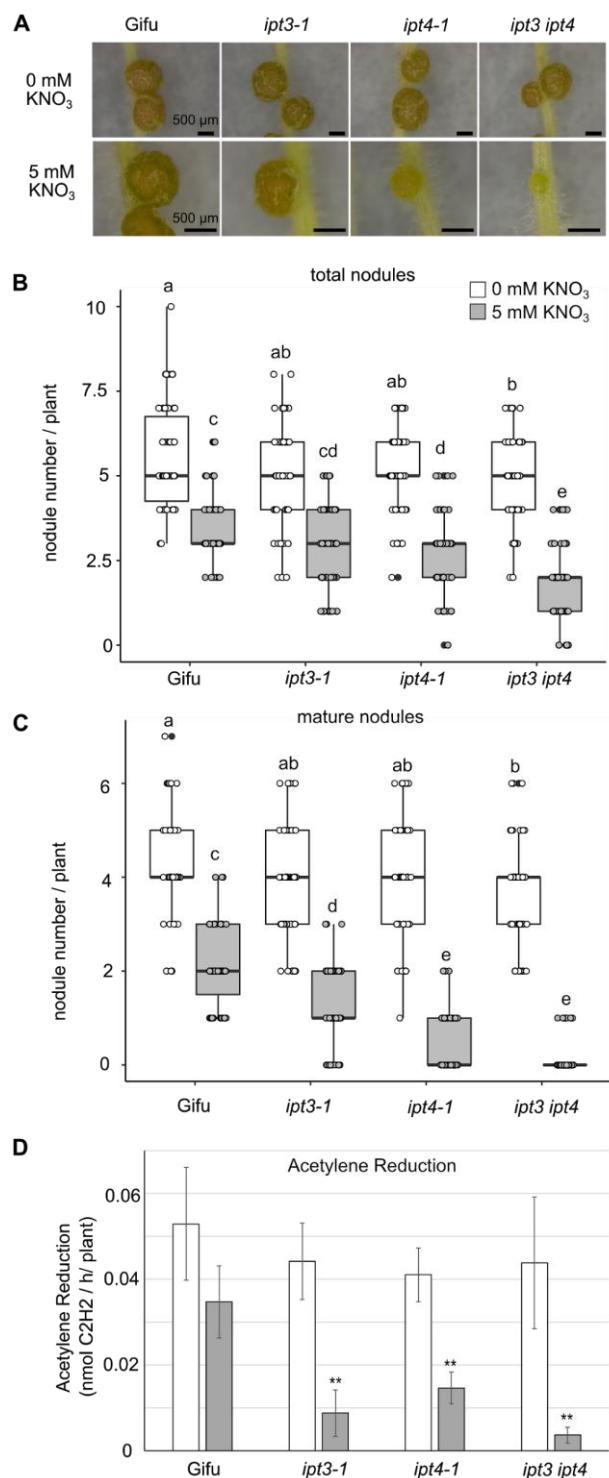


107

108 Figure 1. Nitrate inhibits induction of symbiotic cytokinin biosynthesis. A, The root zone susceptible
 109 to nodule initiation used for qRT-PCR and cytokinin analysis is indicated. B-D, Relative transcript
 110 abundance by qRT-PCR 1 and 2 days post inoculation (dpi) with *M. loti* in absence and presence of 5
 111 mM KNO₃. E-F, Cytokinin free base content (iP and tZ) analysed in mock or 2 days post inoculation
 112 with *M. loti* in absence and presence of 5 mM KNO₃. Ubiquitin is used as a reference gene. Bars show
 113 mean +/-SE for n=5 in qRT-PCR and n=6 in cytokinin analysis. Significant differences between
 114 nitrate presence and absence conditions is indicated by * < 0.05 and ** < 0.01 as determined by
 115 Student's t-test.

116 **Cytokinin biosynthesis mutants show reduced iP content in N sufficient conditions**

117 Given that iP production is inhibited by nitrate, we hypothesised that *ipt* biosynthesis mutants may
 118 exacerbate this reduction. We therefore analysed the cytokinin content of *ipt3-1*, *ipt4-1* and the *ipt3-2*
 119 *ipt4-1* double mutant two days post rhizobia inoculation in the absence and presence of nitrate (Fig 2).
 120 In uninoculated conditions, all of these mutants showed reduced iP content in the susceptible zone
 121 relative to the wild-type Gifu. Similar to the wild-type, in all cases iP content increased after
 122 inoculation, likely through activity of the symbiotic responsive *LjIpt2* (Reid et al., 2017) and
 123 confirming the redundancy present in the cytokinin biosynthesis pathway. In high nitrate both the
 124 *ipt4-1* and *ipt3-2 ipt4-1* mutants showed reduced iP content after inoculation relative to plants grown
 125 without nitrate. Under high nitrate, the *ipt4-1* and *ipt3-2 ipt4-1* mutants showed the lowest iP content
 126 following inoculation with 54.9% and 46.3% of wild-type levels in the same condition.

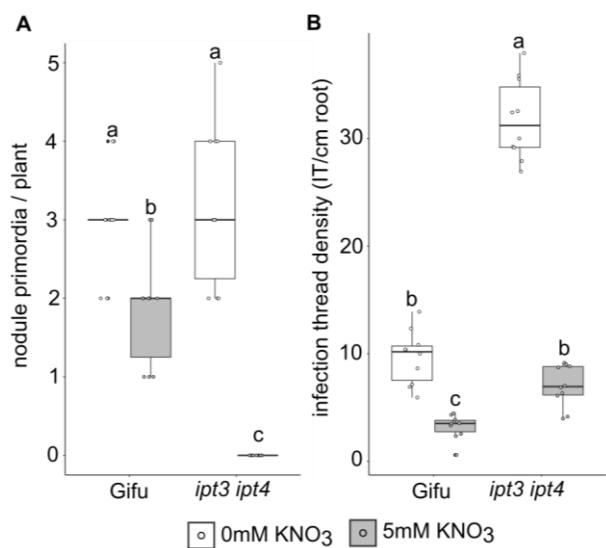

127

128 **Figure 2. *ipt3* and *ipt4* mutants show reduced iP content in high nitrate conditions. Cytokinin iP free**
129 **base content analysed in mock or 2 days post inoculation with *M. loti* in absence and presence of 5**
130 **mM KNO₃ is shown. Bars show mean +/- SE for n=6. Significant differences between nitrate presence**
131 **and absence conditions is indicated by * < 0.05 and ** < 0.01 as determined by Student's t-test.**

132 **Cytokinin biosynthesis mutants are hyper-sensitive to nitrate inhibition of nodule organogenesis**
133 **but not infection**

134 To assess the impact of the reduced iP on nodule development, we investigated the nodulation
135 phenotypes of *ipt3-1*, *ipt4-1* and *ipt3-2 ipt4-1* relative to Gifu in the absence or presence of 5 mM
136 nitrate. In the absence of nitrate, *ipt3-1* and *ipt4-1* mutants do not show significantly reduced
137 nodulation while *ipt3-2 ipt4-1* formed slightly fewer nodules in these conditions (Fig 3A-C). In high
138 nitrate, nodule initiation (indicated here as total nodules) and nodule maturation (as determined by
139 nodules acquiring a distinct pink-red colour) are both significantly impaired on *ipt3-1*, *ipt4-1* and *ipt3-2*
140 *ipt4-1* roots (Fig 3A-C). In particular, on *ipt3-2 ipt4-1* roots, only small bumps that do not fully
141 mature are observed (Fig 3A).

142 The impact of impaired nodule maturation on nitrogen fixation was assessed by Acetylene Reduction
143 Assay (ARA). In line with our scoring of nodule development, in the absence of nitrate, there is no
144 significant difference in ARA in these mutants. Under high nitrate conditions, Gifu shows a
145 significant 35.4% reduction in ARA activity relative to nitrate free conditions (Fig 3D). We found
146 *ipt3-1*, *ipt4-1* and *ipt3-2 ipt4-1* mutants all showed a significantly greater sensitivity to nitrate
147 inhibition, exhibiting 80.2%, 64.3% and 91.7% reduction in ARA respectively relative to nitrate free
148 conditions (Fig 3D).

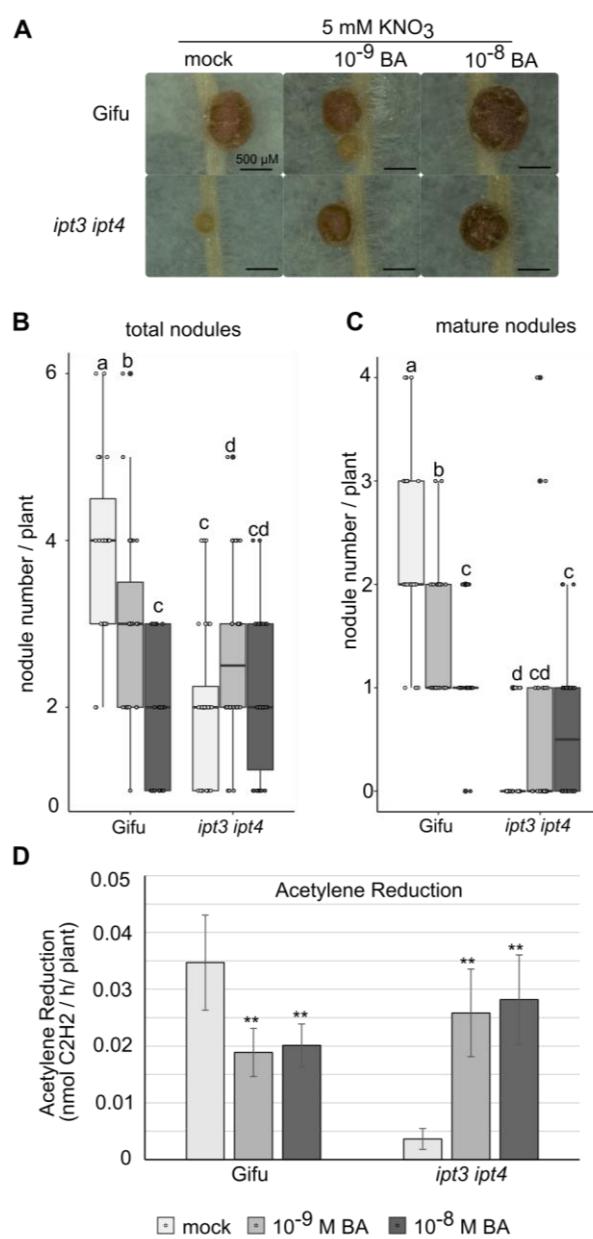

149

150 Figure 3. *Ipt3* and *Ipt4* are required for resistance to nitrate inhibition of nodulation. A, Images of
 151 nodules developed in the absence and presence of 5 mM KNO₃ at 14 dpi with *M. loti* on the indicated
 152 host genotypes. Scale bar = 500 μM. B-C, Development of pink (B) and total (C) nodules in the
 153 absence and presence of 5 mM KNO₃ at 14 dpi with *M. loti*. D, Nitrogenase activity assessed by
 154 Acetylene Reduction Assay (ARA) at 21 dpi with *M. loti* in the absence and presence of 5 mM KNO₃.
 155 n≥50 in nodulation assay, significant differences among different genotypes and nutrient conditions
 156 are indicated by letters (p<0.05) as determined by ANOVA and Tukey post-hoc testing. n=6 in ARA,

157 significant differences between Gifu and mutants are indicated by ** <0.01 as determined by Student's
158 t-test.

159 To study whether *Ipt3* and *Ipt4* also play a role in resistance to nitrate inhibition of early nodule
160 initiation and rhizobia infection (IT), we counted the nodule primordia and infection threads (IT) that
161 developed 7 dpi with *M. loti*. In the absence of nitrate, *ipt3-2 ipt4-1* does not form significantly less
162 nodule primordia than Gifu. However, in high nitrate conditions, *ipt3-2 ipt4-1* did not develop any
163 nodule primordia at 7dpi, while a few visible primordia are already developed on Gifu (Fig 4A).

164 In contrast to the positive role in nodule organogenesis, cytokinin plays a negative role in regulating
165 infection by rhizobia (Murray et al., 2007). Similar to the hyperinfection phenotype of the *lhk1*
166 cytokinin receptor mutants (Murray et al., 2007), *ipt3-2 ipt4-1* forms more than 3 times more IT than
167 Gifu, implying cytokinin biosynthesis plays a negative role in IT formation (Fig 4B). However, under
168 high nitrate conditions, both Gifu and *ipt3-2 ipt4-1* show significantly reduced IT formation relative to
169 nitrate free plants (Fig 4B).

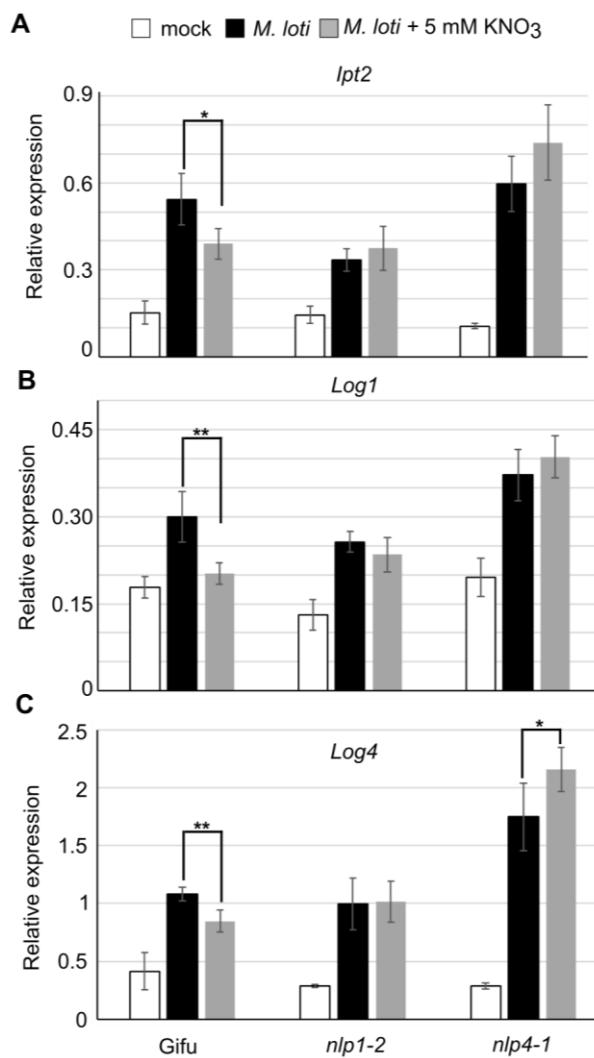

170
171 Figure 4. *Ipt3* and *Ipt4* contribute to nitrate resistance to nodule initiation but not infection thread
172 formation. A, Nodule primordia number in absence and presence of 5 mM KNO₃ at 7dpi with *M. loti*.
173 B, Infection thread density in absence and presence of 5 mM KNO₃ at 7dpi with *M. loti*. n=10,
174 significant differences between genotypes and nutrient conditions are indicated by letters (p<0.05) as
175 determined by ANOVA and Tukey post-hoc analysis.

176 Cytokinin application rescues nitrate inhibition of nodule initiation and maturation

177 Because IPTs are key enzymes in cytokinin biosynthesis, we asked whether application of the
178 cytokinin 6-Benzylaminopurine (BA) could rescue the hypersensitivity to nitrate inhibition seen in
179 *ipt3-2 ipt4-1*. When grown in the presence of 10⁻⁸ M BA, Gifu develops shorter roots and forms less
180 nodules compared with mock treatment (Fig 5A-C and Fig S2). This inhibition of root elongation is

181 also seen in *ipt3-2 ipt4-1* grown on 10^{-8} M BA (Fig S2). However, grown in the presence of BA, *ipt3-2 ipt4-1* can form on average 0.47 (10^{-9} M BA) and 1.15 (10^{-8} M BA) mature pink nodules under high nitrate condition, which is otherwise completely inhibitory to mature nodule formation (Fig 5A-C). Applying BA at lower concentration (10^{-9} M BA) is also able to trigger formation of more total nodules on *ipt3-2 ipt4-1* in the presence of nitrate, while 10^{-8} M BA did not increase total nodule numbers (Fig 5B).

187 We also measured nitrogenase activity by ARA in the BA rescued plants. Consistent with the pink
 188 nodule number, the ARA activity of BA treated *ipt3-2 ipt4-1* is significantly higher than untreated
 189 plants in high nitrate conditions (Fig 5D). Cytokinin application is thus able to rescue nitrate
 190 inhibition of nodule initiation, maturation and nitrogen fixation of the *ipt3-2 ipt4-1* mutant.

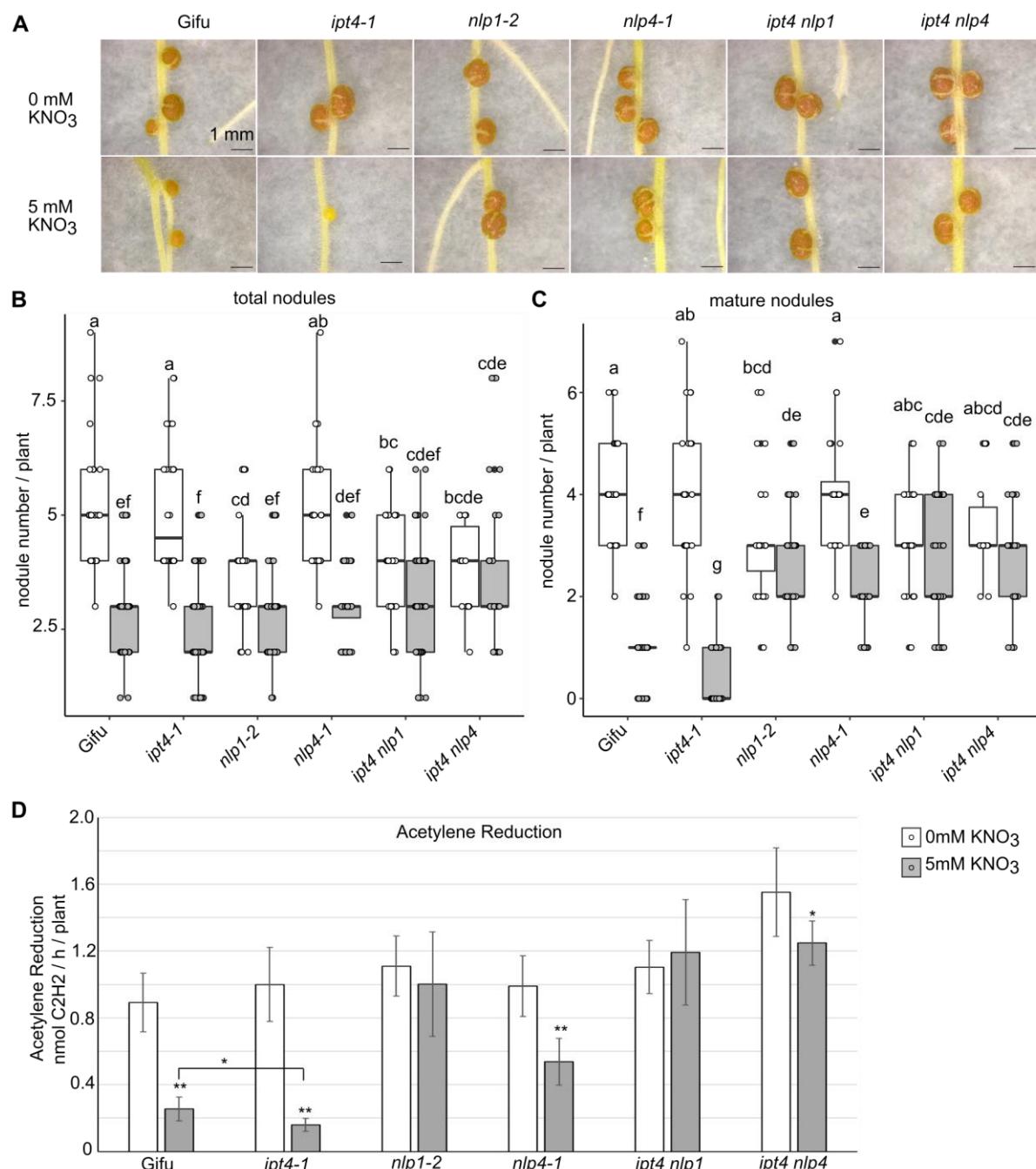

191

192 **Figure 5. Nitrate inhibition of nodule development can be rescued by cytokinin application.** A, Images
193 of nodules developed in the presence of 5 mM KNO₃ with mock, 10⁻⁹ or 10⁻⁸ M BA at 14 dpi with *M.*
194 *loti* on the indicated host genotypes. Scale bar = 500 μ M. B-C, Development of pink (B) and total (C)
195 nodules in the presence of 5 mM KNO₃ with mock, 10⁻⁹ or 10⁻⁸ M BA at 14 dpi with *M. loti*. D,
196 Nitrogenase activity assessed by ARA at 21 dpi with *M. loti* in the presence of 5 mM KNO₃ with
197 mock, 10⁻⁹ or 10⁻⁸ M BA. $n \geq 25$ in nodulation assay, significant differences among different genotypes
198 and concentration of BA are indicated by letters ($p < 0.05$) as determined by ANOVA and Tukey post-
199 hoc testing. $n=6$ in ARA, significant differences between mock and BA application are indicated by
200 ** <0.01 as determined by Student's t-test.

201 **Nitrate inhibition of cytokinin biosynthesis requires *Nlp1* and *Nlp4***

202 NLP1 and NRSYM1 (here called NLP4) play central roles in nitrate signaling and nitrate inhibition of
203 nodulation (Lin et al., 2018; Nishida et al., 2018), thus we obtained LORE1 insertion lines
204 (Małolepszy et al., 2016) for each gene and characterised their phenotypes (Fig S3A). In the absence
205 of nitrate, *nlp1-2* forms slightly fewer nodules, while *nlp4-1* was not different to wild-type Gifu (Fig
206 S3C-D). In high nitrate, where Gifu forms few pink nodules, *nlp1-2* and *nlp4-1* are able to form
207 significantly more mature pink nodules, which is consistent with previous observations for *nlp*
208 mutants in *M. truncatula* and *L. japonicus* (Lin et al., 2018; Nishida et al., 2018).

209 To assess the role of *Nlp1* and *Nlp4* mediated signaling in nitrate inhibition of symbiotic cytokinin
210 biosynthesis, we analysed expression of cytokinin biosynthesis genes in the respective mutant
211 backgrounds. As demonstrated in the earlier experiments, *Ipt2*, *Log1* and *Log4* are all induced after *M.*
212 *loti* inoculation and suppressed by nitrate (Fig 6). Both *nlp1-2* and *nlp4-1* show induction of *Ipt2*,
213 *Log1* and *Log4* after *M. loti* inoculation, similar to what is seen in Gifu. However, neither *nlp1-2* nor
214 *nlp4-1* mutants show suppression of these cytokinin biosynthesis genes by nitrate, with *nlp4-1* having
215 slightly higher *Log4* expression (Fig 6).


216

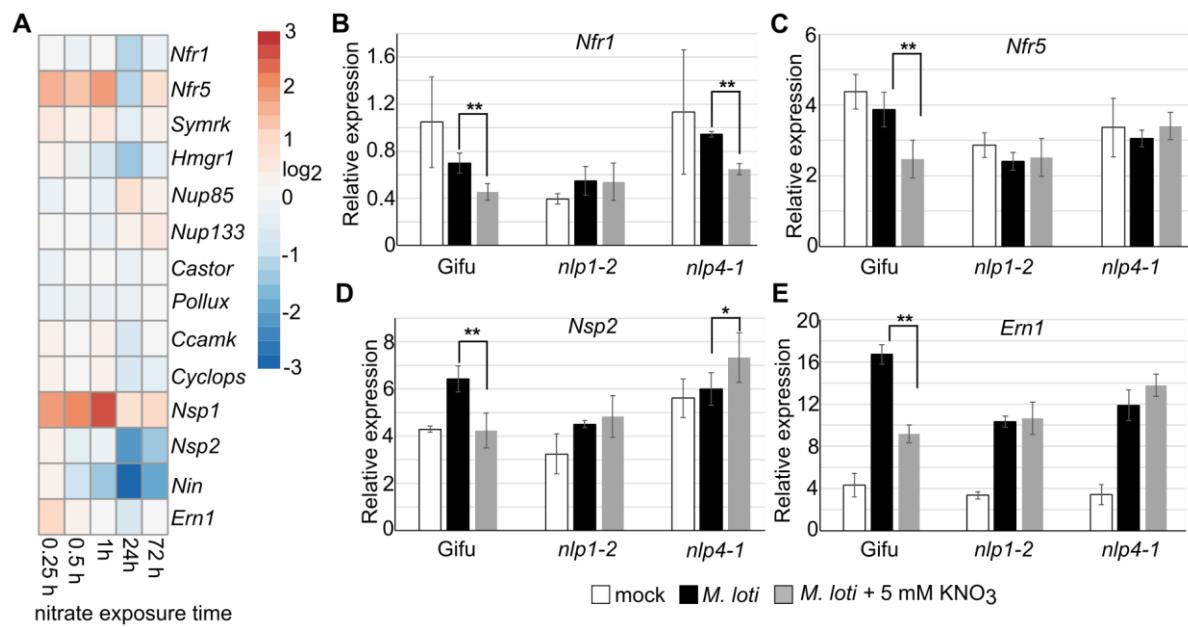
217 Figure 6. Nitrate inhibition of cytokinin biosynthesis requires *Nlp1* and *Nlp4*. Relative transcript
218 abundance of *Ipt2* (A), *Log1* (B) and *Log4* (C) by qRT-PCR 1 dpi with *M. loti* in absence and
219 presence of 5 mM KNO₃ in the indicated genotypes. Ubiquitin is used as a reference gene. Bars show
220 mean +/-SE for n=5. Significant differences between nitrate presence and absence conditions is
221 indicated by * <0.05 and ** <0.01 as determined by Student's t-test.

222 Given this insensitivity to nitrate inhibition of cytokinin biosynthesis gene expression, we assessed the
223 ability of *nlp1-2* and *nlp4-1* to rescue the nitrate sensitivity of the *ipt4* mutant. In high nitrate, *ipt4-1*
224 shows significantly impaired nodule maturation with very few mature pink nodules compared with
225 Gifu (Fig 7A-C). However, *ipt4-1 nlp1-2* and *ipt4-1 nlp4-1* double mutants show nitrate resistant
226 nodulation in line with the *nlp1-2* and *nlp4-1* phenotypes, including developing mature nodules (Fig
227 7A) in increased numbers when compared with *ipt4-1* or Gifu (Fig 7B-C).

228 To assess the rescue of nodule function by *nlp* mutations, we also measured nitrogenase activity of
229 these mutants by ARA at 21 dpi. In line with the nodule scoring, in the absence of nitrate, there was
230 no significant difference between Gifu and any of the mutants (Fig 7D). In high nitrate conditions,

231 which inhibits nodule ARA activity compared with nitrate-free condition, *ipt4-1* exhibits a further
 232 reduction in ARA activity relative to Gifu (Fig 7D). However, *nlp1-2* and *ipt4-1 nlp1-2* maintain
 233 equivalent ARA activity to nitrate free conditions. Although *nlp4-1* and *ipt4-1 nlp4-1* exhibit lower
 234 ARA activity compared with nitrate-free condition, the nitrate inhibition of ARA activity are
 235 significantly less than in Gifu (Fig 7D).

236


237 **Figure 7.** Nitrate signalling mediated by *Nlp1* and *Nlp4* acts upstream of cytokinin biosynthesis to
 238 restrict symbiotic signalling. A, Images of nodules developed in the absence and presence of 5 mM
 239 KNO₃ at 14 dpi with *M. loti* on the indicated host genotypes. Scale bar = 1 cm. B-C, Development of
 240 pink (B) and total (C) nodules in the absence and presence of 5 mM KNO₃ at 14 dpi with *M. loti*. D,

241 Nitrogenase activity assessed by ARA at 21 dpi with *M. loti* in the absence and presence of 5 mM
242 KNO_3 . $n \geq 25$ in nodulation assay, significant differences among different genotypes and nutrient
243 conditions are indicated by letters ($p < 0.05$) as determined by ANOVA and Tukey post-hoc testing.
244 $n = 6$ in ARA, significant differences between Gifu and mutants are indicated by * < 0.05 and ** < 0.01
245 as determined by Student's t-test.

246 ***Nlp1* and *Nlp4* mediated nitrate signaling inhibit cytokinin biosynthesis via interfering NF
247 signaling**

248 To identify nitrate regulated genes that may contribute to the inhibition of symbiotic cytokinin
249 biosynthesis, we exposed nitrogen starved plants to high levels of nitrate (10 mM KNO_3) over a time
250 series (0.25 h, 0.5 h, 1 h, 24 h and 72 h) and conducted RNA-seq. Similar to the rapid onset of
251 primary nitrate responses in other species (Krouk et al., 2010), we identified 425 genes that respond to
252 nitrate within 15 minutes, and up to 4411 genes differentially regulated 72 h after nitrate exposure
253 (Fig S4A). Among these genes, many nitrate marker genes, such as *Nrt2.1a*, *Nrt2.1b*, *Nia* and *Nir*, are
254 induced at all time points in the series (Fig S4B). On the other hand, nitrogen starvation marker genes
255 such as *Cep1* and *Cep7*, are suppressed after 24 h nitrate exposure (Fig S4B). Taken together, the
256 general nitrate response in *L. japonicus* is similar to other species. However, in contrast to the
257 induction of cytokinin biosynthesis, particularly *AtIPT3* by nitrate in Arabidopsis, none of the *LjIpt* or
258 *LjLog* genes was significantly induced by nitrate across our time series (Fig S5).

259 Given symbiotic cytokinin biosynthesis is regulated by NF signaling (van Zeijl et al., 2015; Reid et
260 al., 2017), we analysed the expression of key components in early nodulation signalling, including NF
261 signaling and downstream transcription factor genes under nitrate exposure. After 24 h nitrate
262 exposure, *Nfr1*, *Nfr5*, *Nsp2* and *Nin* were all suppressed, although the inhibitions of *Nfr1* and *Nfr5* did
263 not persist after 72 h exposure (Fig 8A). To investigate whether *Nlp* mediated nitrate signaling plays a
264 role in the nitrate suppression of these components, we investigated *Nfr1*, *Nfr5*, *Nsp2* and *Ern1*
265 expression following nitrate exposure and rhizobia inoculation in Gifu, *nlp1-2* and *nlp4-1*. Consistent
266 with previous RNAseq studies (Larrañzar et al., 2015; Kelly et al., 2018), rhizobia inoculation
267 upregulates *Nsp2* and *Ern1* expression, while *Nfr1* and *Nfr5* expression is suppressed (Fig 8B-E). In
268 turn, expression of *Nfr1*, *Nfr5*, *Nsp2* and *Ern1* were all significantly reduced in high nitrate in Gifu
269 (Fig 8B-E). In contrast, *nlp1-2* mutants showed no significant suppression of these genes in the high
270 nitrate condition. In *nlp4-1* mutants, *Nfr1* expression was suppressed by nitrate, while either no
271 reduction (*Nfr5*, *Ern1*) or even greater induction (*Nsp2*) was found for the other genes in high nitrate
272 conditions (Fig 8B-E). Together, this indicates *Nlp1* and *Nlp4* mediate nitrate signaling repression of
273 the upstream NF perception and signaling components in addition to their suppression of cytokinin
274 biosynthesis expression.

275

276 **Figure 8. Nitrate inhibits symbiotic signalling via *Nlp1* and *Nlp4*.** A, The heatmap of NF signalling
277 gene expressions under different time series of nitrate exposure. B-E, Relative transcript abundance of
278 *Nfr1* (B), *Nfr5* (C), *Nsp2* (D) and *Ern1* (E) by qRT-PCR 1 dpi with *M. loti* in the absence and
279 presence of 5 mM KNO₃ in the indicated plant genotypes. Ubiquitin is used as a reference gene. Bars
280 show mean +/- SE for n=5. Significant differences between nitrate presence and absence conditions is
281 indicated by * < 0.05 and ** < 0.01 as determined by Student's t-test. Gene IDs and expression values
282 are shown in table S1 and table S4.

283 Discussion

284 In this study, we show that the symbiotic induction of cytokinin biosynthesis in *L. japonicus* is
285 suppressed by high nitrate concentrations, thereby reducing the positive influence of cytokinin on
286 nodule organogenesis. Cytokinin biosynthesis mutants, which have reduced cytokinin levels
287 exacerbate this response and are more sensitive to nitrate inhibition of nodule development. In
288 agreement with this, we show that this increased nitrate sensitivity can be rescued by supplementing
289 growth media with cytokinin. We also find that *Nlp1* and *Nlp4* mediated nitrate signalling is required
290 for this suppression of symbiotic cytokinin biosynthesis and nodule organogenesis, by suppressing the
291 expression of upstream signalling components including *Nfr1*, *Nfr5*, *Nsp2* and *Ern1*.

292

293 Cytokinin is a hub integrating external stimulus with nodulation signalling

294 In response to NF perception, many cytokinin biosynthesis genes are up-regulated in the root
295 susceptible zone where cytokinin accumulates transiently to trigger nodule initiation (Reid et al.,
296 2017; van Zeijl et al., 2015). The cytokinin trigger for nodulation requires signalling via the receptors
297 (predominantly *Lhk1/Cre1*), with loss-of-function mutants impaired in nodule development (Murray
298 et al., 2007; Held et al., 2014; Gonzalez-Rizzo et al., 2006; Boivin et al., 2016). In contrast, cytokinin

299 application or constitutive activation of cytokinin signaling can activate nodule organogenesis
300 programs in the absence of rhizobia (Tirichine et al., 2007; Heckmann et al., 2011; Liu et al., 2018).
301 Here, we find the transient induction of cytokinin in the susceptible zone is reduced when grown in
302 high nitrate conditions. Nodule initiation and maturation, which is required for nitrogen fixation, is
303 therefore suppressed and delayed by nitrate exposure.

304 In addition to the mechanism we describe where inhibited cytokinin synthesis leads to reduced nodule
305 development, excessive cytokinin accumulation can also inhibit nodulation. This has been shown to
306 occur through induction of Autoregulation of Nodulation (AON) and ethylene signalling, which both
307 play negative roles in nodulation (Miri et al., 2019; Suzaki et al., 2012; Saur et al., 2011; Mortier et
308 al., 2012; Reid et al., 2018). This is also supported by the enhanced sensitivity to nitrate inhibition of
309 nodulation that occurs in the *Ljckx3* cytokinin over-accumulation mutants (Reid et al., 2016). We find
310 support for this fine balance of cytokinin for nodule development with lower concentrations of
311 cytokinin supplementation able to rescue the biosynthesis mutant impairment, or at increased levels to
312 inhibit nodulation. Together these observations support a model where cytokinin levels are tightly
313 regulated by multiple internal and external influences to balance the requirements for plant nitrogen
314 between uptake from the soil and nodule development (and thus nitrogen fixation).

315

316 **Cytokinin plays a role in nitrate inhibition of organogenesis but not rhizobia infection**

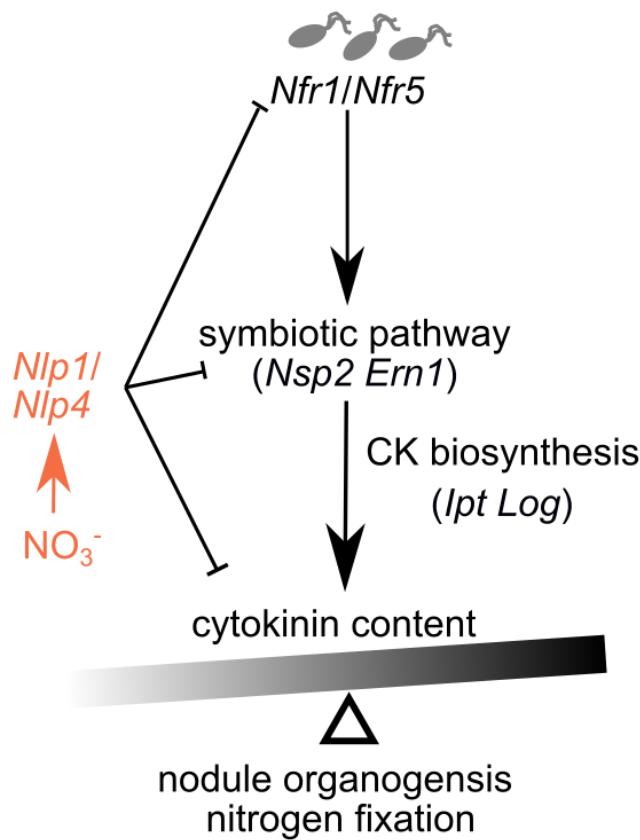
317 In contrast to the requirement in nodule organogenesis, cytokinin plays a negative role in rhizobia
318 infection (Murray et al., 2007). Consistent with the hyperinfection phenotype of *ljlhk1*, the *ipt3-2 ipt4-1*
319 double mutant shows more than triple the infection density of wild type. This shows that in addition
320 to receptor signaling, cytokinin biosynthesis negatively regulates rhizobia infection. In high nitrate
321 conditions this hyperinfection is suppressed in *ipt3-2 ipt4-1*, with a similar degree of inhibition to
322 wild-type. This implies that at least cytokinin biosynthesis is not critical to nitrate inhibition of
323 rhizobia infection. The ethylene and AON pathways may therefore play more prominent roles in
324 negatively regulating infection by nitrate. In addition, *MtNlp1* may directly interfere with infection by
325 blocking NIN's function (Lin et al., 2018). Thus, nitrate inhibition of rhizobia infection is likely to
326 target alternative pathways or downstream of cytokinin biosynthesis.

327

328 ***Lotus japonicus* differs from non-legumes in the cytokinin response to nitrate**

329 In the non-legumes, cytokinin biosynthesis plays an important role in signalling root nitrate
330 availability and coordination of shoot growth (Poitout et al., 2018; Landrein et al., 2018). This
331 cytokinin response to nitrate has been reported in several species including *Arabidopsis* (Takei et al.,
332 2004a), rice (Kamada-Nobusada et al., 2013) and maize (Takei et al., 2001). In response to nitrate, tZ
333 and iP type cytokinin accumulate in shoot, but cytokinin level remains unchanged in roots of
334 *Arabidopsis* (Poitout et al., 2018). Here we show that in *Lotus japonicus*, where cytokinin plays an
335 important role in symbiotic organ establishment, root cytokinin biosynthesis is not enhanced by

336 nitrate supply. Our RNA-seq data, which showed consistent induction of nitrate marker genes
337 indicated that none of the *Ipt* or *Log* genes in *Lotus* are significantly upregulated by nitrate exposure.
338 How *L. japonicus* signals nitrate availability relative to non-legumes may therefore differ. One
339 possibility is that *L. japonicus* maintains a cytokinin response to nitrate in non-susceptible root tissue,
340 with the nitrate suppressed and rhizobia enhanced cytokinin being restricted to root zones supporting
341 nodulation. Supportive of this is that nitrate can only induce AtIpt3 in vascular bundles (Takei et al.,
342 2004a) which differs from the predominantly cortical location of symbiotic cytokinin in *Lotus* (Reid
343 et al., 2017). In soybean for example *GmIpt3* and *GmIpt15* are induced by nitrate (Mens et al., 2018),
344 and the location of this induction and influence on nodule development would be interesting to
345 determine. Both cytokinin dependent and independent pathways are thought to play roles in
346 coordinating systemic nitrogen signals (Ruffel et al., 2011). Other root-shoot coordination pathways
347 such as CEP signalling (Delay et al., 2013; Tabata et al., 2014) may therefore play a more prominent
348 role in coordinating shoot growth with nitrogen availability in legumes, relegating cytokinin
349 signalling of nitrate to a more minor role.


350

351 ***Nlp* mediated nitrate signaling inhibits NF signaling**

352 Nitrate negatively influences many processes in nodulation, including NF signaling, nodule initiation
353 and development, rhizobia infection and nitrogen fixation (Nishida and Suzuki, 2018). *Nlps* play
354 central roles in nitrate signaling and development in many species (Castaings et al., 2009; Marchive et
355 al., 2013). Both *LjNlp4* and *MtNlp1* are involved in nitrate inhibition of nodule initiation and
356 development, rhizobia infection and nitrogen fixation (Lin et al., 2018; Nishida et al., 2018). *LjNlp4*,
357 in response to nitrate, directly targets *LjCle-rs2* to trigger the AON pathway and restriction of nodule
358 initiation (Nishida et al., 2018). *MtNlp1* is able to interact and/or compete with *Nin* to block *Nin*
359 function, which is essential for nodule initiation and development and rhizobia infection (Lin et al.,
360 2018). We found that nitrate suppression of NF receptors expression, which is likely to reduce the
361 susceptibility to rhizobia, requires *Nlps*. Additionally, we found *Nlps* are also required for nitrate
362 suppression of some nodulation transcription factors, such as *Nsp2* and *Ern1*. Taken together with
363 previous studies, *Nlps* regulation of nodule initiation and development, rhizobia infection and nitrogen
364 fixation is likely to occur through restriction of key components in NF perception and signaling. This
365 restriction results in a significant reduction in symbiotically triggered cytokinin biosynthesis which is
366 required for nodule development. Our finding that cytokinin application can rescue the inhibitory
367 effect of nitrate on nodule maturation and nitrogen fixation suggests that it is primarily these early
368 signalling events that are inhibited by nitrate and not the signalling events downstream of cytokinin in
369 nodule development. Further mechanistic studies into how *Nlps* mediate nitrate regulation of NF
370 signaling components and nitrogen fixation will provide opportunities to improve nitrogen fixation
371 and yield in an economic and sustainable way.

372

373 In conclusion, we propose a model where nitrate interferes with NF signaling and symbiotic cytokinin
374 biosynthesis in the root susceptible zone, ultimately suppressing nodule organogenesis (Fig 9). In high
375 nitrate, *Nlp1* and *Nlp4* is activated to suppress the early symbiotic pathway components, resulting in
376 less sensitivity to NF and reduced output of NF signaling. This reduced NF signaling capability
377 inhibits cytokinin accumulation, which is essential for nodule initiation and development, essential
378 prerequisites for nitrogen fixation in mature nodules.

379
380 **Figure 9. Proposed model for regulation of nodule organogenesis by nitrate.** In high nitrate, nitrate
381 signaling inhibits expression of NF receptors (*Nfr1* and *Nfr5*), *Nsp2* and *Ern1* mediated by *Nlp1* and
382 *Nlp4*, therefore suppressing symbiotic cytokinin biosynthesis that is crucial for nodule organogenesis.
383 Nodulation is thus balanced between a permissive low-nitrate state where high cytokinin levels can
384 accumulate, or a restrictive state with low root cytokinin.

385 **Materials and Methods**

386 **Plant and bacteria genotypes**

387 *Lotus japonicus* ecotype Gifu was used as wild type (Handberg and Stougaard, 1992), while *ipt3-1*,
388 *ipt4-1* and *ipt3-2 ipt4-1* were LORE1 insertion mutants (Reid et al., 2017). LORE1 mutants *nlp1-2*
389 and *nlp4-1* were ordered through LotusBase (<https://lotus.au.dk>) and homozygotes were isolated for
390 phenotyping and generation of higher order mutants as described (Małolepszy et al., 2016). Line
391 numbers and genotyping primers are given in table S2. *Mesorhizobium loti* NZP2235 was used for

392 nodulation assay. For infection thread observation, *M. loti* R7A strain constitutively expressing DsRed
393 was used.

394

395 **Plant and Bacteria growth conditions**

396 Phenotyping on growth plates was conducted by transferring 3-d old seedlings onto filter paper placed
397 on vertical 1.4% agar noble plates containing 1/4 Long Ashton (table S3) in the presence of 5 mM KCl
398 or KNO₃. For the cytokinin rescue assay, 6-Benzylaminopurine (BA, Sigma-Aldrich) were added into
399 1/4 Long Ashton plates containing 5 mM KNO₃. 3 days after transfer, seedlings were inoculated with
400 rhizobia inoculum OD₆₀₀=0.015. Infection threads were counted at 7 day post inoculation (dpi), while
401 nodule numbers were counted at 14 dpi. For nitrate and RNA-seq, 3-d old seedlings were transferred
402 on 1/4 B&D plates and grown for 14 days.

403

404 **Gene expression analysis**

405 For RNA-seq, following 14 days growth on plates, plants were acclimatised prior to treatment by
406 submerging in 1/4 B&D liquid medium overnight, then treated with 10 mM KNO₃ for 0, 0.25, 0.5, 1,
407 24 or 72 hours. Root tips were removed and the remainder of the root harvested. mRNA were isolated
408 using the NucleoSpin RNA Plant kit (Macherey-Nagel) then library preparation and PE-150 bp
409 Illumina sequencing was conducted by Novogene.

410

411 For qPCR, the root susceptible zone was harvested at 1 or 2 dpi. mRNA were isolated using the kit
412 described above. RevertAid Reverse Transcriptase (Thermo) was used for the first strand of cDNA
413 synthesis. LightCycler480 SYBR Green I master (Roche Diagnostics) and LightCycler480
414 instrument were used for the real-time quantitative PCR. Ubiquitin-conjugating enzyme was used as a
415 reference gene (Czechowski et al., 2005). The initial cDNA concentration of each target gene was
416 calculated using amplicon PCR efficiency calculations using LinRegPCR (Ramakers et al., 2003).
417 Target genes were compared with the reference genes for each of 5 biological repetitions (each
418 consisting of 6 to 10 plants/ root susceptible zones). At least two technical repetitions were performed
419 in each analysis. Primers used are listed in supplemental material.

420 **Cytokinin extraction, detection and quantification**

421 For cytokinin extraction from *L. japonicus* material, ~20 mg of snap-frozen root and nodule material
422 was used per sample. Samples were extracted (Floková et al., 2014) and analysed by Liquid
423 Chromatography-Tandem Mass Spectrometry as previously described (van Zeijl et al., 2015). To
424 determine sample concentrations, a 10-point calibration curve was constructed for each compound
425 ranging from 1 µM to 190 pM and each dilution also contained a known amount of an appropriate
426 deuterium-labelled internal standard.

427 **Acetylene reduction assay**

428 Acetylene reduction assays were conducted essentially as described previously (Reid et al., 2016).
429 Briefly, 250 µl air in the 5 ml glass GC vials containing the sample was replaced with 2% acetylene.
430 Samples were incubated for 30 min before ethylene quantification using a SensorSense (Nijmegen,
431 NL) ETD-300 ethylene detector operating in sample mode with 2.5 L/h flow rate and 6-min detection
432 time.

433

434 **Statistical analysis**

435 Statistical analyses were carried out using R software (R Core Team, 2015). Comparison of multiple
436 groups included ANOVA followed by Tukey posthoc testing to determine statistical significance
437 indicated by different letter annotations. Students t-test was used as indicated when making single
438 comparisons.

439

440 For statistical analysis of RNAseq, A decoy-aware index was built for Gifu transcripts using default
441 Salmon parameters and reads were quantified using the --validateMappings flag (Salmon version
442 0.14.1) (Patro et al., 2017). Expression was normalised across all conditions using the R-package
443 DESeq2 version 1.20 (Love et al., 2014) after summarising gene level abundance using the R-package
444 tximport (version 1.8.0). Differentially expressed genes with correction for multiple testing were
445 obtained from this DESeq2 normalised data. Normalised count data for all genes is shown in
446 supplemental table 5.

447 **Accession numbers**

448 RNAseq raw data has been submitted to NCBI under BioProject accession number PRJNA642098.

449 **Author contributions**

450 J.L. Conceived and performed experiments, analysed data, prepared figures and wrote the paper; Y.R.
451 Performed cytokinin quantification; W.K. Designed cytokinin quantification procedure and analysed
452 the data; J.S. Conceived experiments, supervised and revised the paper; D.R. Conceived experiments,
453 analysed data, supervised and wrote the paper.

454 **Acknowledgements**

455 We thank Finn Pedersen for expert plant handling and Francel Verstappen for assistance with
456 cytokinin quantification. We are grateful for support from the project Engineering Nitrogen
457 Symbiosis for Africa (ENSA) currently supported through a grant to the University of
458 Cambridge by the Bill & Melinda Gates Foundation and UK government's Department for
459 International Development (DFID). Analysis by Y.R. and W.K. is supported by Netherlands
460 Organization for Scientific Research (VENI1863.15.010).

461

462 **References**

463 **Boivin, S., Kazmierczak, T., Brault, M., Wen, J., Gamas, P., Mysore, K.S., and Frugier, F.**
464 (2016). Different cytokinin histidine kinase receptors regulate nodule initiation as well as later
465 nodule developmental stages in *Medicago truncatula*. *Plant Cell Environ.* **39**: 2198–2209.

466 **Bouguyon, E. et al.** (2015). Multiple mechanisms of nitrate sensing by *Arabidopsis* nitrate
467 transceptor NRT1.1. *Nat Plants* **1**: 15015.

468 **Castaings, L., Camargo, A., Pocholle, D., Gaudon, V., Texier, Y., Boutet-Mercey, S., Taconnat,**
469 **L., Renou, J.-P., Daniel-Vedele, F., Fernandez, E., Meyer, C., and Krapp, A.** (2009). The
470 nodule inception-like protein 7 modulates nitrate sensing and metabolism in *Arabidopsis*. *Plant J.*
471 **57**: 426–435.

472 **Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., and Scheible, W.-R.** (2005). Genome-wide
473 identification and testing of superior reference genes for transcript normalization in *Arabidopsis*.
474 *Plant Physiol.* **139**: 5–17.

475 **Delay, C., Imin, N., and Djordjevic, M. a.** (2013). CEP genes regulate root and shoot development
476 in response to environmental cues and are specific to seed plants. *J. Exp. Bot.* **64**: 5383–5394.

477 **Ferguson, B.J., Mens, C., Hastwell, A.H., Zhang, M., Su, H., Jones, C.H., Chu, X., and**
478 **Gresshoff, P.M.** (2019). Legume nodulation: The host controls the party. *Plant Cell Environ.* **42**:
479 41–51.

480 **Floková, K., Tarkowská, D., Miersch, O., Strnad, M., Wasternack, C., and Novák, O.** (2014).
481 UHPLC–MS/MS based target profiling of stress-induced phytohormones. *Phytochemistry* **105**:
482 147–157.

483 **Gonzalez-Rizzo, S., Crespi, M., and Frugier, F.** (2006). The *Medicago truncatula* CRE1 cytokinin
484 receptor regulates lateral root development and early symbiotic interaction with *Sinorhizobium*
485 *meliloti*. *Plant Cell* **18**: 2680–2693.

486 **Handberg, K. and Stougaard, J.** (1992). *Lotus japonicus*, an autogamous, diploid legume species
487 for classical and molecular genetics. *Plant J.*

488 **Heckmann, A.B., Sandal, N., Bek, A.S., Madsen, L.H., Jurkiewicz, A., Nielsen, M.W., Tirichine,**
489 **L., and Stougaard, J.** (2011). Cytokinin induction of root nodule primordia in *Lotus japonicus*
490 is regulated by a mechanism operating in the root cortex. *Mol. Plant. Microbe. Interact.* **24**:
491 1385–1395.

492 **Held, M., Hou, H., Miri, M., Huynh, C., Ross, L., Hossain, M.S., Sato, S., Tabata, S., Perry, J.,**
493 **Wang, T.L., and Szczyglowski, K.** (2014). *Lotus japonicus* cytokinin receptors work partially
494 redundantly to mediate nodule formation. *Plant Cell* **26**: 678–694.

495 **Ho, C.-H., Lin, S.-H., Hu, H.-C., and Tsay, Y.-F.** (2009). CHL1 functions as a nitrate sensor in
496 plants. *Cell* **138**: 1184–1194.

497 **Kamada-Nobusada, T., Makita, N., Kojima, M., and Sakakibara, H.** (2013). Nitrogen-dependent
498 regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an
499 additional signal. *Plant Cell Physiol.*

500 **Kelly, S., Mun, T., Stougaard, J., Ben, C., and Andersen, S.U.** (2018). Distinct *Lotus japonicus*
501 Transcriptomic Responses to a Spectrum of Bacteria Ranging From Symbiotic to Pathogenic.
502 *Front. Plant Sci.* **9**: 1218.

503 **Kistner, C. and Parniske, M.** (2002). Evolution of signal transduction in intracellular symbiosis.
504 Trends Plant Sci. **7**: 511–518.

505 **Krouk, G., Mirowski, P., LeCun, Y., Shasha, D.E., and Coruzzi, G.M.** (2010). Predictive network
506 modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome
507 Biol. **11**: R123.

508 **Laffont, C., Ivanovici, A., Gautrat, P., Brault, M., Djordjevic, M.A., and Frugier, F.** (2020). The
509 NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation
510 antagonistically. Nat. Commun. **11**: 3167.

511 **Landrein, B., Formosa-Jordan, P., Malivert, A., Schuster, C., Melnyk, C.W., Yang, W.,**
512 **Turnbull, C., Meyerowitz, E.M., Locke, J.C.W., and Jönsson, H.** (2018). Nitrate modulates
513 stem cell dynamics in *Arabidopsis* shoot meristems through cytokinins. Proc. Natl. Acad. Sci. U.
514 S. A. **115**: 1382–1387.

515 **Larraizar, E. et al.** (2015). Deep Sequencing of the *Medicago truncatula* Root Transcriptome
516 Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals. Plant
517 Physiol. **169**: 233–265.

518 **Lin, J.-S., Li, X., Luo, Z., Mysore, K.S., Wen, J., and Xie, F.** (2018). NIN interacts with NLPs to
519 mediate nitrate inhibition of nodulation in *Medicago truncatula*. Nat Plants **4**: 942–952.

520 **Liu, H., Sandal, N., Andersen, K.R., James, E.K., Stougaard, J., Kelly, S., and Kawaharada, Y.**
521 (2018). A genetic screen for plant mutants with altered nodulation phenotypes in response to
522 rhizobial glycan mutants. New Phytol. **220**: 526–538.

523 **Liu, J., Rutten, L., Limpens, E., van der Molen, T., van Velzen, R., Chen, R., Chen, Y., Geurts,
524 R., Kohlen, W., Kulikova, O., and Bisseling, T.** (2019). A Remote cis-Regulatory Region Is
525 Required for NIN Expression in the Pericycle to Initiate Nodule Primordium Formation in
526 *Medicago truncatula*. Plant Cell **31**: 68–83.

527 **Liu, K.-H. et al.** (2017). Discovery of nitrate-CPK-NLP signalling in central nutrient-growth
528 networks. Nature **545**: 311–316.

529 **Love, M.I., Huber, W., and Anders, S.** (2014). Moderated estimation of fold change and dispersion
530 for RNA-seq data with DESeq2. Genome Biol. **15**: 550.

531 **Madsen, L.H., Tirichine, L., Jurkiewicz, A., Sullivan, J.T., Heckmann, A.B., Bek, A.S., Ronson,
532 C.W., James, E.K., and Stougaard, J.** (2010). The molecular network governing nodule
533 organogenesis and infection in the model legume *Lotus japonicus*. Nat. Commun. **1**: 10.

534 **Maeda, Y., Konishi, M., Kiba, T., Sakuraba, Y., Sawaki, N., Kurai, T., Ueda, Y., Sakakibara,
535 H., and Yanagisawa, S.** (2018). A NIGT1-centred transcriptional cascade regulates nitrate
536 signalling and incorporates phosphorus starvation signals in *Arabidopsis*. Nat. Commun. **9**: 1376.

537 **Malolepszy, A. et al.** (2016). The LORE1 insertion mutant resource. Plant J. **88**: 306–317.

538 **Marchive, C., Roudier, F., Castaings, L., Bréhaut, V., Blondet, E., Colot, V., Meyer, C., and
539 Krapp, A.** (2013). Nuclear retention of the transcription factor NLP7 orchestrates the early
540 response to nitrate in plants. Nat. Commun. **4**: 1713.

541 **Martin, F.M., Uroz, S., and Barker, D.G.** (2017). Ancestral alliances: Plant mutualistic symbioses
542 with fungi and bacteria. Science **356**.

543 **Mens, C., Li, D., Haaima, L.E., Gresshoff, P.M., and Ferguson, B.J.** (2018). Local and Systemic
544 Effect of Cytokinins on Soybean Nodulation and Regulation of Their Isopentenyl Transferase

545 (IPT) Biosynthesis Genes Following Rhizobia Inoculation. *Front. Plant Sci.* **9**: 1150.

546 **Miri, M., Janakirama, P., Huebert, T., Ross, L., McDowell, T., Orosz, K., Markmann, K., and**
547 **Szczyglowski, K.** (2019). Inside out: root cortex-localized LHK1 cytokinin receptor limits
548 epidermal infection of *Lotus japonicus* roots by *Mesorhizobium loti*. *New Phytol.* **222**: 1523–
549 1537.

550 **Miyawaki, K., Matsumoto-Kitano, M., and Kakimoto, T.** (2004). Expression of cytokinin
551 biosynthetic isopentenyltransferase genes in *Arabidopsis*: tissue specificity and regulation by
552 auxin, cytokinin, and nitrate. *Plant J.* **37**: 128–138.

553 **Mortier, V., De Wever, E., Vuylsteke, M., Holsters, M., and Goormachtig, S.** (2012). Nodule
554 numbers are governed by interaction between CLE peptides and cytokinin signaling. *Plant J.* **70**:
555 367–376.

556 **Murray, J.D., Karas, B.J., Sato, S., Tabata, S., Amyot, L., and Szczyglowski, K.** (2007). A
557 cytokinin perception mutant colonized by *Rhizobium* in the absence of nodule organogenesis.
558 *Science* **315**: 101–104.

559 **Nishida, H. and Suzuki, T.** (2018). Nitrate-mediated control of root nodule symbiosis. *Curr. Opin.*
560 *Plant Biol.* **44**: 129–136.

561 **Nishida, H., Tanaka, S., Handa, Y., Ito, M., Sakamoto, Y., Matsunaga, S., Betsuyaku, S., Miura,**
562 **K., Soyano, T., Kawaguchi, M., and Suzuki, T.** (2018). A NIN-LIKE PROTEIN mediates
563 nitrate-induced control of root nodule symbiosis in *Lotus japonicus*. *Nat. Commun.* **9**: 499.

564 **Oldroyd, G.E.D. and Leyser, O.** (2020). A plant's diet, surviving in a variable nutrient environment.
565 *Science* **368**.

566 **Oliveros, J.C.** (2016). Venny 2.1. 0. Venny. An Interactive Tool for Comparing Lists with Venn's
567 Diagrams. (2007–2015). Available online at: <http://bioinfogp.cnb.csic.es/tools/venny/> (Accessed
568 February 15, 2016).

569 **Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C.** (2017). Salmon provides fast
570 and bias-aware quantification of transcript expression. *Nat. Methods* **14**: 417–419.

571 **Poitout, A., Crabos, A., Petřík, I., Novák, O., Krouk, G., Lacombe, B., and Ruffel, S.** (2018).
572 Responses to Systemic Nitrogen Signaling in *Arabidopsis* Roots Involve trans-Zeatin in Shoots.
573 *Plant Cell* **30**: 1243–1257.

574 **Ramakers, C., Ruijter, J.M., Deprez, R.H.L., and Moorman, A.F.M.** (2003). Assumption-free
575 analysis of quantitative real-time polymerase chain reaction (PCR) data. *Neurosci. Lett.* **339**: 62–
576 66.

577 **Reid, D.E., Heckmann, A.B., Novák, O., Kelly, S., and Stougaard, J.** (2016). CYTOKININ
578 OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule
579 Development in *Lotus japonicus*. *Plant Physiol.* **170**: 1060–1074.

580 **Reid, D.E., Liu, H., Kelly, S., Kawaharada, Y., Mun, T., Andersen, S.U., Desbrosses, G.J., and**
581 **Stougaard, J.** (2018). Dynamics of *Lotus japonicus* ethylene production in response to
582 compatible Nod factor. *Plant Physiol.* **176**: 1764–1772.

583 **Reid, D., Nadzieja, M., Novák, O., Heckmann, A.B., Sandal, N., and Stougaard, J.** (2017).
584 Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development. *Plant*
585 *Physiol.* **175**: 361–375.

586 **Ruffel, S., Krouk, G., Ristova, D., Shasha, D., Birnbaum, K.D., and Coruzzi, G.M.** (2011).

587 Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct
588 systemic signaling for N supply vs. demand. *Proc. Natl. Acad. Sci. U. S. A.* **108**: 18524–18529.

589 **Sakakibara, H.** (2020). Cytokinin Biosynthesis and Transport for Systemic Nitrogen Signaling. *Plant*
590 *J.*

591 **Saur, I.M.L., Oakes, M., Djordjevic, M.A., and Imin, N.** (2011). Crosstalk between the nodulation
592 signaling pathway and the autoregulation of nodulation in *Medicago truncatula*. *New Phytol.*
593 **190**: 865–874.

594 **Schauser, L., Roussis, A., Stiller, J., and Stougaard, J.** (1999). A plant regulator controlling
595 development of symbiotic root nodules. *Nature* **402**: 191–195.

596 **Soyano, T., Hirakawa, H., Sato, S., Hayashi, M., and Kawaguchi, M.** (2014). Nodule Inception
597 creates a long-distance negative feedback loop involved in homeostatic regulation of nodule
598 organ production. *Proc. Natl. Acad. Sci. U. S. A.* **111**: 14607–14612.

599 **Suzaki, T., Yano, K., Ito, M., Umehara, Y., Suganuma, N., and Kawaguchi, M.** (2012). Positive
600 and negative regulation of cortical cell division during root nodule development in *Lotus*
601 *japonicus* is accompanied by auxin response. *Development* **139**: 3997–4006.

602 **Tabata, R., Sumida, K., Yoshii, T., Ohya, K., Shinohara, H., and Matsubayashi, Y.** (2014).
603 Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling.
604 *Science* **346**: 343–346.

605 **Takei, K., Sakakibara, H., Taniguchi, M., and Sugiyama, T.** (2001). Nitrogen-Dependent
606 Accumulation of Cytokinins in Root and the Translocation to Leaf: Implication of Cytokinin
607 Species that Induces Gene Expression of Maize Response Regulator. *Plant and Cell Physiology*
608 **42**: 85–93.

609 **Takei, K., Ueda, N., Aoki, K., Kuromori, T., Hirayama, T., Shinozaki, K., Yamaya, T., and**
610 **Sakakibara, H.** (2004a). AtIPT3 is a key determinant of nitrate-dependent cytokinin
611 biosynthesis in *Arabidopsis*. *Plant Cell Physiol.* **45**: 1053–1062.

612 **Takei, K., Yamaya, T., and Sakakibara, H.** (2004b). *Arabidopsis* CYP735A1 and CYP735A2
613 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. *J. Biol. Chem.* **279**:
614 41866–41872.

615 **Tirichine, L., Sandal, N., Madsen, L.H., Radutoiu, S., Albrektsen, A.S., Sato, S., Asamizu, E.,**
616 **Tabata, S., and Stougaard, J.** (2007). A gain-of-function mutation in a cytokinin receptor
617 triggers spontaneous root nodule organogenesis. *Science* **315**: 104–107.

618 **van Zeijl, A., Op den Camp, R.H.M., Deinum, E.E., Charnikhova, T., Franssen, H., Op den**
619 **Camp, H.J.M., Bouwmeester, H., Kohlen, W., Bisseling, T., and Geurts, R.** (2015).
620 Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in
621 *Medicago truncatula* Roots. *Mol. Plant* **8**: 1213–1226.

622 **Zhang, K., Novak, O., Wei, Z., Gou, M., Zhang, X., Yu, Y., Yang, H., Cai, Y., Strnad, M., and**
623 **Liu, C.-J.** (2014). *Arabidopsis* ABCG14 protein controls the acropetal translocation of root-
624 synthesized cytokinins. *Nat. Commun.* **5**: 3274.

625

Parsed Citations

Boivin, S., Kazmierczak, T., Brault, M., Wen, J., Gamas, P., Mysore, K.S., and Frugier, F. (2016). Different cytokinin histidine kinase receptors regulate nodule initiation as well as later nodule developmental stages in *Medicago truncatula*. *Plant Cell Environ.* 39: 2198–2209.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bouguyon, E. et al. (2015). Multiple mechanisms of nitrate sensing by *Arabidopsis* nitrate transceptor NRT1.1. *Nat Plants* 1: 15015.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Castaings, L., Camargo, A., Pocholle, D., Gaudon, V., Texier, Y., Boutet-Mercey, S., Taconnat, L., Renou, J.-P., Daniel-Vedele, F., Fernandez, E., Meyer, C., and Krapp, A. (2009). The nodule inception-like protein 7 modulates nitrate sensing and metabolism in *Arabidopsis*. *Plant J.* 57: 426–435.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., and Scheible, W.-R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in *Arabidopsis*. *Plant Physiol.* 139: 5–17.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Delay, C., Imin, N., and Djordjevic, M. a. (2013). CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. *J. Exp. Bot.* 64: 5383–5394.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ferguson, B.J., Mens, C., Hastwell, A.H., Zhang, M., Su, H., Jones, C.H., Chu, X., and Gresshoff, P.M. (2019). Legume nodulation: The host controls the party. *Plant Cell Environ.* 42: 41–51.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Floková, K., Tarkowská, D., Miersch, O., Strnad, M., Wasternack, C., and Novák, O. (2014). UHPLC–MS/MS based target profiling of stress-induced phytohormones. *Phytochemistry* 105: 147–157.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gonzalez-Rizzo, S., Crespi, M., and Frugier, F. (2006). The *Medicago truncatula* CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with *Sinorhizobium meliloti*. *Plant Cell* 18: 2680–2693.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Handberg, K. and Stougaard, J. (1992). *Lotus japonicus*, an autogamous, diploid legume species for classical and molecular genetics. *Plant J.*
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Heckmann, A.B., Sandal, N., Bek, A.S., Madsen, L.H., Jurkiewicz, A., Nielsen, M.W., Tirichine, L., and Stougaard, J. (2011). Cytokinin induction of root nodule primordia in *Lotus japonicus* is regulated by a mechanism operating in the root cortex. *Mol. Plant. Microbe. Interact.* 24: 1385–1395.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Held, M., Hou, H., Miri, M., Huynh, C., Ross, L., Hossain, M.S., Sato, S., Tabata, S., Perry, J., Wang, T.L., and Szczyglowski, K. (2014). *Lotus japonicus* cytokinin receptors work partially redundantly to mediate nodule formation. *Plant Cell* 26: 678–694.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ho, C.-H., Lin, S.-H., Hu, H.-C., and Tsay, Y.-F. (2009). CHL1 functions as a nitrate sensor in plants. *Cell* 138: 1184–1194.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kamada-Nobusada, T., Makita, N., Kojima, M., and Sakakibara, H. (2013). Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. *Plant Cell Physiol.*
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kelly, S., Mun, T., Stougaard, J., Ben, C., and Andersen, S.U. (2018). Distinct *Lotus japonicus* Transcriptomic Responses to a Spectrum of Bacteria Ranging From Symbiotic to Pathogenic. *Front. Plant Sci.* 9: 1218.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kistner, C. and Parniske, M. (2002). Evolution of signal transduction in intracellular symbiosis. *Trends Plant Sci.* 7: 511–518.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krouk, G., Mirowski, P., LeCun, Y., Shasha, D.E., and Coruzzi, G.M. (2010). Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. *Genome Biol.* 11: R123.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Laffont, C., Ivanovici, A., Gautrat, P., Brault, M., Djordjevic, M.A., and Frugier, F. (2020). The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. *Nat. Commun.* 11: 3167.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Landrein, B., Formosa-Jordan, P., Malivert, A., Schuster, C., Melnyk, C.W., Yang, W., Turnbull, C., Meyerowitz, E.M., Locke, J.C.W., and Jönsson, H. (2018). Nitrate modulates stem cell dynamics in *Arabidopsis* shoot meristems through cytokinins. *Proc. Natl. Acad. Sci. U. S. A.* 115: 1382–1387.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Larraínzar, E. et al. (2015). Deep Sequencing of the *Medicago truncatula* Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals. *Plant Physiol.* 169: 233–265.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lin, J.-S., Li, X., Luo, Z., Mysore, K.S., Wen, J., and Xie, F. (2018). NIN interacts with NLPs to mediate nitrate inhibition of nodulation in *Medicago truncatula*. *Nat Plants* 4: 942–952.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, H., Sandal, N., Andersen, K.R., James, E.K., Stougaard, J., Kelly, S., and Kawahara, Y. (2018). A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants. *New Phytol.* 220: 526–538.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, J., Rutten, L., Limpens, E., van der Molen, T., van Velzen, R., Chen, R., Chen, Y., Geurts, R., Kohlen, W., Kulikova, O., and Bisseling, T. (2019). A Remote cis-Regulatory Region Is Required for NIN Expression in the Pericycle to Initiate Nodule Primordium Formation in *Medicago truncatula*. *Plant Cell* 31: 68–83.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, K.-H. et al. (2017). Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. *Nature* 545: 311–316.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15: 550.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Madsen, L.H., Tirichine, L., Jurkiewicz, A., Sullivan, J.T., Heckmann, A.B., Bek, A.S., Ronson, C.W., James, E.K., and Stougaard, J. (2010). The molecular network governing nodule organogenesis and infection in the model legume *Lotus japonicus*. *Nat. Commun.* 1: 10.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Maeda, Y., Konishi, M., Kiba, T., Sakuraba, Y., Sawaki, N., Kurai, T., Ueda, Y., Sakakibara, H., and Yanagisawa, S. (2018). A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in *Arabidopsis*. *Nat. Commun.* 9: 1376.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Małolepszy, A. et al. (2016). The LORE1 insertion mutant resource. *Plant J.* 88: 306–317.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Marchive, C., Roudier, F., Castaings, L., Bréhaut, V., Blondet, E., Colot, V., Meyer, C., and Krapp, A. (2013). Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. *Nat. Commun.* 4: 1713.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Martin, F.M., Uroz, S., and Barker, D.G. (2017). Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. *Science* 356.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mens, C., Li, D., Haaima, L.E., Gresshoff, P.M., and Ferguson, B.J. (2018). Local and Systemic Effect of Cytokinins on Soybean Nodulation and Regulation of Their Isopentenyl Transferase (IPT) Biosynthesis Genes Following Rhizobia Inoculation. *Front. Plant Sci.* 9: 1150.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Miri, M., Janakirama, P., Huebert, T., Ross, L., McDowell, T., Orosz, K., Markmann, K., and Szczyglowski, K. (2019). Inside out: root cortex-localized LHK1 cytokinin receptor limits epidermal infection of *Lotus japonicus* roots by *Mesorhizobium loti*. *New Phytol.* 222: 1523–1537.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Miyawaki, K., Matsumoto-Kitano, M., and Kakimoto, T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in *Arabidopsis*: tissue specificity and regulation by auxin, cytokinin, and nitrate. *Plant J.* 37: 128–138.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mortier, V., De Wever, E., Vuylsteke, M., Holsters, M., and Goormachtig, S. (2012). Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. *Plant J.* 70: 367–376.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murray, J.D., Karas, B.J., Sato, S., Tabata, S., Amyot, L., and Szczyglowski, K. (2007). A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. *Science* 315: 101–104.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nishida, H. and Suzuki, T. (2018). Nitrate-mediated control of root nodule symbiosis. *Curr. Opin. Plant Biol.* 44: 129–136.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nishida, H., Tanaka, S., Handa, Y., Ito, M., Sakamoto, Y., Matsunaga, S., Betsuyaku, S., Miura, K., Soyano, T., Kawaguchi, M., and Suzuki, T. (2018). A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in *Lotus japonicus*. *Nat. Commun.* 9: 499.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Oldroyd, G.E.D. and Leyser, O. (2020). A plant's diet, surviving in a variable nutrient environment. *Science* 368.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Oliveros, J.C. (2016). Venny 2.1. 0. Venny. An Interactive Tool for Comparing Lists with Venn's Diagrams. (2007-2015). Available online at: <http://bioinfogp.cnb.csic.es/tools/venny/> (Accessed February 15, 2016).

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. *Nat. Methods* 14: 417–419.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Poitout, A., Crabos, A., Petřík, I., Novák, O., Krouk, G., Lacombe, B., and Ruffel, S. (2018). Responses to Systemic Nitrogen Signaling in *Arabidopsis* Roots Involve trans-Zeatin in Shoots. *Plant Cell* 30: 1243–1257.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ramakers, C., Ruijter, J.M., Deprez, R.H.L., and Moorman, A.F.M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. *Neurosci. Lett.* 339: 62–66.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Reid, D.E., Heckmann, A.B., Novák, O., Kelly, S., and Stougaard, J. (2016). CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in *Lotus japonicus*. *Plant Physiol.* 170: 1060–1074.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Reid, D.E., Liu, H., Kelly, S., Kawaharada, Y., Mun, T., Andersen, S.U., Desbrosses, G.J., and Stougaard, J. (2018). Dynamics of *Lotus japonicus* ethylene production in response to compatible Nod factor. *Plant Physiol.* 176: 1764–1772.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Reid, D., Nadzieja, M., Novák, O., Heckmann, A.B., Sandal, N., and Stougaard, J. (2017). Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development. *Plant Physiol.* 175: 361–375.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ruffel, S., Krouk, G., Ristova, D., Shasha, D., Birnbaum, K.D., and Coruzzi, G.M. (2011). Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. *Proc. Natl. Acad. Sci. U. S. A.* 108: 18524–18529.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sakakibara, H. (2020). Cytokinin Biosynthesis and Transport for Systemic Nitrogen Signaling. *Plant J.*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Saur, I.M.L., Oakes, M., Djordjevic, M.A., and Imlim, N. (2011). Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in *Medicago truncatula*. *New Phytol.* 190: 865–874.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schauser, L., Roussis, A., Stiller, J., and Stougaard, J. (1999). A plant regulator controlling development of symbiotic root nodules. *Nature* 402: 191–195.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Soyano, T., Hirakawa, H., Sato, S., Hayashi, M., and Kawaguchi, M. (2014). Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. *Proc. Natl. Acad. Sci. U. S. A.* 111: 14607–14612.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Suzaki, T., Yano, K., Ito, M., Umehara, Y., Suganuma, N., and Kawaguchi, M. (2012). Positive and negative regulation of cortical cell division during root nodule development in *Lotus japonicus* is accompanied by auxin response. *Development* 139: 3997–4006.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tabata, R., Sumida, K., Yoshii, T., Ohyama, K., Shinohara, H., and Matsubayashi, Y. (2014). Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. *Science* 346: 343–346.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Takei, K., Sakakibara, H., Taniguchi, M., and Sugiyama, T. (2001). Nitrogen-Dependent Accumulation of Cytokinins in Root and the Translocation to Leaf: Implication of Cytokinin Species that Induces Gene Expression of Maize Response Regulator. *Plant and Cell Physiology* 42: 85–93.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Takei, K., Ueda, N., Aoki, K., Kuromori, T., Hirayama, T., Shinozaki, K., Yamaya, T., and Sakakibara, H. (2004a). AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in *Arabidopsis*. *Plant Cell Physiol.* 45: 1053–1062.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Takei, K., Yamaya, T., and Sakakibara, H. (2004b). *Arabidopsis* CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. *J. Biol. Chem.* 279: 41866–41872.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tirichine, L., Sandal, N., Madsen, L.H., Radutoiu, S., Albrektsen, A.S., Sato, S., Asamizu, E., Tabata, S., and Stougaard, J. (2007). A gain-

of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. *Science* 315: 104–107.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

van Zeijl, A., Op den Camp, R.H.M., Deinum, E.E., Charnikhova, T., Franssen, H., Op den Camp, H.J.M., Bouwmeester, H., Kohlen, W., Bisseling, T., and Geurts, R. (2015). Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in *Medicago truncatula* Roots. *Mol. Plant* 8: 1213–1226.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, K., Novak, O., Wei, Z., Gou, M., Zhang, X., Yu, Y., Yang, H., Cai, Y., Strnad, M., and Liu, C.-J. (2014). *Arabidopsis* ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. *Nat. Commun.* 5: 3274.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)