

1 Calcium depletion challenges endoplasmic reticulum proteostasis by
2 destabilising BiP-substrate complexes

3
4 Steffen Preissler^{1,2}, Claudia Rato¹, Yahui Yan¹, Luke A. Perera¹, Aron Czako¹, David Ron^{1,2}
5

6 ¹Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY,
7 United Kingdom

8 ²Address correspondence to: Steffen Preissler, David Ron

9
10

11 **Abstract**

12

13 The metazoan endoplasmic reticulum (ER) serves both as a hub for maturation of secreted
14 proteins and as an intracellular calcium storage compartment, facilitating calcium release-
15 dependent cellular processes. ER calcium depletion robustly activates the unfolded protein
16 response (UPR). However, it is unclear how fluctuations in ER calcium impact organellar
17 proteostasis. Here we report that calcium selectively affects the dynamics of the abundant
18 metazoan ER Hsp70 chaperone BiP, by enhancing its affinity for ADP. In the calcium replete
19 ER, ADP rebinding to post-ATP hydrolysis BiP-substrate complexes competes with ATP
20 binding during both spontaneous and co-chaperone-assisted nucleotide exchange, favouring
21 substrate retention. Conversely, in the calcium depleted ER, relative acceleration of ADP-to-
22 ATP exchange favours substrate release. These findings explain the rapid dissociation of
23 certain substrates from BiP observed in the calcium-depleted ER and suggest a mechanism for
24 tuning ER quality control and coupling UPR activity to signals that mobilise ER calcium in
25 secretory cells.

26

27 Introduction

28 The endoplasmic reticulum (ER) of eukaryotic cells is a hub for synthesis and processing of
29 most secreted and membrane proteins. The maturation of these ER clients involves their *N*-
30 glycosylation, thiol oxidation, folding, and the assembly of multiprotein complexes. Oxidative
31 folding is error-prone and requires assistance by ER-resident molecular chaperones and
32 oxidoreductases. A signal transduction pathway, the unfolded protein response (UPR),
33 regulates ER protein folding capacity by adjusting the expression of chaperones and other
34 quality control factors to match the load of unfolded proteins (Walter and Ron, 2011). ER
35 stress, defined as a condition of excess unfolded ER client proteins over the capacity of the
36 folding machinery, activates UPR signalling to re-establish proteostasis.

37 The ER of animal cells is distinct in maintaining a high concentration of calcium (Ca^{2+})
38 compared to the surrounding cytoplasm (Alvarez and Montero, 2002; Bygrave and Benedetti,
39 1996; Meldolesi and Pozzan, 1998; Solovyova and Verkhratsky, 2002). Transient Ca^{2+} release
40 from the ER during signalling events controls numerous processes including gene expression
41 and exocytosis (Carreras-Sureda et al., 2018; Raffaello et al., 2016). It has long been known
42 that pharmacological manipulations (Macer and Koch, 1988; Welch et al., 1983; Wong et al.,
43 1993; Wu et al., 1981) and even physiological cues that deplete ER Ca^{2+} (Sans et al., 2002)
44 activate the UPR transducers, but the role of proteostatic challenge in UPR activation under
45 these conditions remains unclear.

46 The folded state of some ER clients, like the low-density lipoprotein receptor (Fass et al., 1997),
47 is stabilised by binding Ca^{2+} as a ligand. However, the contribution to UPR activity by the
48 proteostatic challenge arising from the mass of proteins whose maturation is directly
49 compromised by low ER Ca^{2+} (Cooper et al., 1997; Guest et al., 1997; Lodish and Kong, 1990;
50 Lodish et al., 1992; Pena et al., 2010) is unknown.

51 Components of the ER protein folding machinery have low-affinity Ca^{2+} binding sites, whose
52 occupancy is likely to decrease upon ER Ca^{2+} depletion within the physiological range.
53 Examples are the lectin-like chaperones calnexin (CNX) and calreticulin (CRT) (Baksh and
54 Michalak, 1991; Wada et al., 1991), Grp94 (Macer and Koch, 1988; Van et al., 1989), and
55 protein disulphide isomerase (PDI) (Lebeche et al., 1994; Lucero et al., 1994; Macer and Koch,
56 1988). These low-affinity binding sites are often found on N- or C-terminal extensions of the
57 aforementioned proteins, a feature consistent with the observation that their core functions as
58 chaperones or oxidoreductases are not known to be measurably affected at Ca^{2+} levels expected

59 in the depleted ER. In the ER, the functionality of these components might be altered, for
60 example through the effects of changing $[Ca^{2+}]$ on their mobility or spatial distribution (Avezov
61 et al., 2015; Corbett et al., 1999), but presently the significance of this feature remains
62 unknown. Upon Ca^{2+} release from the ER, changes to cytoplasmic $[Ca^{2+}]$ may have important
63 indirect effects on the ER environment (Groenendyk et al., 2014), but as these are mediated
64 via changes in gene expression, their inherent latency precludes an important contribution to
65 the rapid post-translational activation of UPR transducers observed in calcium depleted cells
66 (Bertolotti et al., 2000; Harding et al., 1999; Wong et al., 1993).

67 Against this background, we were intrigued by the behaviour of the abundant Hsp70-type ER
68 chaperone BiP upon depletion of ER Ca^{2+} . Release of ER Ca^{2+} has long been known to correlate
69 with disruption of certain BiP-substrate complexes (Suzuki et al., 1991). Such dissociation
70 occurs very rapidly, on the time-scale of minutes (Preissler et al., 2015), which is inconsistent
71 with a process driven by the slow build-up of competing unfolded newly-synthesised proteins.
72 ER Ca^{2+} depletion is also associated with the appearance of more BiP oligomers (Preissler et
73 al., 2015). As chaperoning of unfolded proteins by BiP competes with BiP oligomerisation, the
74 presence of more BiP oligomers is not easy to reconcile with a model whereby a proteostatic
75 challenge arising from the destabilisation of Ca^{2+} -binding secreted proteins, or compromised
76 functionality of parallel chaperone systems (e.g. CNX/CRX, PDI), is the major perturbation to
77 ER function imposed by low $[Ca^{2+}]$.

78 These considerations have led us to revisit the effect of ER Ca^{2+} depletion on BiP function in
79 cells and *in vitro*. Here we report on a molecular basis of ER $[Ca^{2+}]$ -dependent regulation of
80 BiP's functional dynamics under physiological conditions. Our observations provide a
81 plausible explanation for the rapid dissociation of BiP from substrates noted upon ER Ca^{2+}
82 depletion and suggest a chain of causality, whereby a primary effect of $[Ca^{2+}]$ on BiP's
83 chaperone cycle gives rise to a secondary proteostatic challenge in the ER.

84

85 **Results**

86 **Divergent effects of ER Ca^{2+} depletion and ER proteostatic challenge on**
87 **trafficking of a model BiP substrate protein**

88 To gauge the effect of ER Ca^{2+} depletion on trafficking of a model BiP substrate protein
89 through the secretory pathway to the plasma membrane, we chose the T-cell antigen receptor
90 α chain (TCR α). In absence of other TCR complex subunits the luminal part of this
91 transmembrane protein interacts with BiP as a substrate and is retained in the ER (Suzuki et
92 al., 1991). The reporter consisted of a cleavable, N-terminal ER targeting signal sequence
93 fused to a FLAG-M1 sequence and the ectoplasmic/luminal domain of murine TCR α ,
94 followed by a transmembrane domain and a cytosolically-localised turquoise fluorescent
95 protein (Tq) (Figure 1A). Since the transmembrane domain of TCR α contains a motif that
96 leads to rapid ER-associated degradation of the orphan subunit (Bonifacino et al., 1990), it
97 was replaced in this reporter by the transmembrane domain of the interleukin 2 receptor α
98 subunit (Bonifacino et al., 1991). We anticipated that reporter transport would expose FLAG-
99 M1 on the cell surface, making it accessible for immunostaining in non-permeabilised cells.
100 Further stringency is imparted by the primary FLAG-M1 antibody that only recognises the
101 epitope on the free N-terminus of TCR α following signal sequence removal. The turquoise
102 fluorescence signal is thus a measure of reporter expression, while the FLAG-M1 signal is
103 specific to the surface-exposed fraction.

104 Treatment of a CHO-K1 cell line stably expressing the TCR α reporter with thapsigargin (Tg),
105 an agent that causes selective loss of ER Ca^{2+} by inhibiting the ER Ca^{2+} pump SERCA (Sagara
106 and Inesi, 1991; Thastrup et al., 1990), led to a conspicuous increase of the FLAG-M1 signal,
107 consistent with retention of the reporter in the ER under normal conditions and its Ca^{2+}
108 depletion-induced migration to the cell surface (Figure 1B), as previously noted (Suzuki et al.,
109 1991).

110 The TCR α ectoplasmic domain might be subject to multiple competing quality control
111 processes in the ER as it contains several glycosylation sites that may also engage lectin
112 chaperones. To focus the reporter on BiP-mediated regulation, all four glycosylation sites were
113 removed (by single amino acid substitutions), generating a reporter (TCR α -N/Q) that was more
114 tightly retained intracellularly under basal conditions and exposed on the cell surface upon ER
115 Ca^{2+} release (Figure 1A and B).

116 Importantly, both wildtype TCR α and TCR α -N/Q co-immunoprecipitated with BiP and the
117 interaction was diminished in Tg-treated cells (Figure 1C). Binding of ATP to BiP lowers its
118 affinity for substrates and enhances their dissociation (Gaut and Hendershot, 1993; Munro and
119 Pelham, 1986), a feature common to the Hsp70 chaperone family. Addition of ATP to the cell
120 lysates strongly decreased co-precipitation of both reporters with BiP, consistent with their
121 binding to BiP as typical substrates (Figure 1C). Of note, more BiP was bound to TCR α -N/Q
122 compared to the wildtype version, suggesting that the fate of the mutant reporter more strongly
123 depends on its association with BiP (Figure 1C, compare lanes 2 and 5). These results agree
124 with a scenario whereby retention of the TCR α proteins in the ER is mediated by their
125 interaction with BiP and Ca²⁺ depletion leads to reporter dissociation from BiP, facilitating ER
126 exit and appearance on the cell surface (Suzuki et al., 1991).

127 This interpretation was further corroborated by the observation that Tg-induced progression of
128 the reporters to the plasma membrane was blocked by brefeldin A (Figure 1-figure supplement
129 1), which disrupts vesicular transport between ER and the Golgi apparatus (Lippincott-
130 Schwartz et al., 1989). Moreover, reporter exposure on the cell surface accrued gradually over
131 several hours (Figure 1-figure supplement 2), consistent with the kinetics of vesicular transport
132 between ER and the cell surface (Chen et al., 2013; Hirschberg et al., 1998; Suzuki et al., 1991).

133 Next, we examined whether reporter display on the plasma membrane could also arise from an
134 increased burden of misfolded ER proteins, or if it is a feature specifically related to low ER
135 Ca²⁺. We used TCR α -N/Q for these experiments due to its improved ER retention
136 characteristics. Depletion of ER Ca²⁺ with the ionophore A23187 also led to accumulation of
137 the reporter on the cell surface (Figure 1D). In contrast, the reporter remained intracellular
138 upon treatment with tunicamycin (Tm) or 2-deoxyglucose (2DG) — compounds that cause
139 protein misfolding in the ER by interfering with N-glycosylation (Kozutsumi et al., 1988;
140 Kurtoglu et al., 2007). These observations suggest that release of the reporter's retention by
141 Ca²⁺ depletion can be uncoupled from a general proteostatic challenge.

142 To further address the relationship between proteostatic challenge, Ca²⁺ depletion, and TCR α -
143 N/Q trafficking, we temporally separated the perturbation to ER protein folding from Ca²⁺
144 depletion. Treatment of cells with Tm before addition of Tg diminished ER Ca²⁺ depletion-
145 induced reporter exposure on the cell surface (Figure 1E, compare bars 2 and 4). Furthermore,
146 pharmacological inhibition of basal PERK activity, which increases substrate protein load in
147 the ER [by dysregulating the influx of newly-synthesised proteins (Harding et al., 2012)], had
148 a similar effect. The combined application of Tm and PERK inhibitor almost fully blocked

149 subsequent Tg-induced reporter trafficking (Figure 1E, bar 6). Thus, ER stress caused by
150 accumulation of unfolded proteins seems to disfavour Ca^{2+} release-mediated reporter export.
151 However, despite their divergent effects on reporter redistribution, both Ca^{2+} depleting agents
152 and glycosylation inhibitors robustly activated of UPR (Figure 1F and 1-figure supplement 3).
153 These findings hint at a qualitative difference between UPR induction caused by proteostatic
154 challenge and Ca^{2+} depletion.

155 **Ca^{2+} decelerates BiP's ATPase cycle**

156 The dissociation of BiP from model substrates emerges as an intriguing feature that
157 distinguishes ER Ca^{2+} depletion from manipulations that are known to primarily pose a
158 proteostatic challenge. BiP has been shown to bind Ca^{2+} (Lamb et al., 2006; Lievremont et al.,
159 1997; Macer and Koch, 1988), but a designated Ca^{2+} binding site has not been identified (see
160 below). We therefore set out to investigate the effect of Ca^{2+} on BiP function using cell-free
161 approaches.

162 Like typical Hsp70s, BiP consists of an N-terminal nucleotide binding domain (NBD) and C-
163 terminal substrate binding domain (SBD) connected by a hydrophobic linker peptide (Figure
164 2A). The binding of BiP to its substrates is subject to an ATP binding- and hydrolysis-
165 dependent allosteric chaperone cycle. In the ATP-bound state, the NBD and SBD are docked
166 against each other and the SBD adopts an open conformation, allowing fast exchange of
167 substrates. ATP hydrolysis to ADP causes domain undocking and closure of the SBD, leading
168 to tight substrate binding. Nucleotide exchange resets the cycle and triggers substrate release.
169 Under physiological conditions (i.e. in excess of ATP), ATP hydrolysis is considered the rate-
170 limiting step of the cycle due to BiP's low intrinsic ATPase activity. However, ER-resident J-
171 domain proteins (JDP) enhance BiP's ATP hydrolysis rate, whereas nucleotide exchange
172 factors (NEF) stimulate ADP release (Behnke et al., 2015).

173 ATP turnover is a global measure of BiP's activity and is reflected in rates of ADP production.
174 A kinetic assay detecting oxidation of nicotinamide adenine dinucleotide (NADH) that is
175 enzymatically coupled to ADP production, confirmed BiP's known low basal ATPase activity
176 and its stimulation by wildtype JDP cofactor, whereas a non-functional version, JDP^{QPD},
177 carrying a H-to-Q mutation in the conserved HPD motif of the J-domain (Wall et al., 1994),
178 did not stimulate BiP's ATPase activity (Figure 2B). Reaction velocity scaled with BiP
179 concentration, confirming that the assays were performed under non-saturating conditions
180 (Figure 2-figure supplement 1). Addition of CaCl_2 [to reactions containing magnesium (Mg^{2+})]

181 did not significantly alter BiP's basal ATPase rate but inhibited its JDP-stimulated activity by
182 ~30% (Figure 2B). The latter may be explained by competition between Ca^{2+} and Mg^{2+} for
183 nucleotides — a CaATP pool is more likely to expose its competitive effect on productive
184 MgATP binding to BiP at JDP-accelerated ATPase rates. This is consistent with the
185 requirement of Mg^{2+} for BiP's ATPase activity (Kassenbrock and Kelly, 1989).

186 These observations seemingly disagree with earlier reports of inhibition of BiP's basal ATPase
187 activity by Ca^{2+} (Kassenbrock and Kelly, 1989; Wei and Hendershot, 1995). Such differences
188 may relate to the fact that ADP was allowed to accumulate in the assays performed previously,
189 whereas here it was continuously depleted (and ATP regenerated) by the coupled NADH
190 oxidation. However, it is plausible that the presence of ADP might be physiologically relevant
191 and thus important to expose the effect of Ca^{2+} on BiP's function observed *in vivo*.
192 Corroborating this hypothesis, it has been shown that ADP and Ca^{2+} may modulate each other's
193 affinity for BiP (Lamb et al., 2006). Furthermore, recent reports suggest physiological
194 fluctuations in ER luminal nucleotide composition, with lower ATP concentrations in the ER
195 compared with mitochondria and the cytoplasm (Depaoli et al., 2018; Vishnu et al., 2014; Yong
196 et al., 2019), hinting at a variable and relatively low luminal ATP:ADP ratio.

197 We therefore turned to an assay that detects orthophosphate production and allows
198 measurement of ATPase activity in presence of ADP. The basal ATPase activity of BiP (at 3
199 mM MgCl_2 and 2 mM ATP) was only slightly affected when up to 1.6 mM CaCl_2 was added
200 (Figure 2C). However, in presence of 0.5 mM ADP ($[\text{ATP}]/[\text{ADP}] = 4$) titration of CaCl_2
201 showed a clear inhibitory effect, lowering the average ATPase rate of BiP by ~44% at the
202 highest $[\text{CaCl}_2]$. Ca^{2+} -dependent inhibition was slightly enhanced at 1 mM ADP ($[\text{ATP}]/[\text{ADP}]$
203 = 2), with a reduction by ~51%. This was observed in the context of generally lower ATPase
204 rates measured in presence of ADP, which directly competes with ATP for binding to BiP. The
205 dependence of Ca^{2+} -mediated inhibition on ADP suggested an important effect of Ca^{2+} on the
206 nucleotide exchange phase of BiP's ATPase cycle.

207 **Ca^{2+} favours binding of ADP over ATP to BiP**

208 Based on the above observations we investigated the effect of Ca^{2+} on ADP release — the first
209 step of nucleotide exchange (Figure 2A). Complexes between BiP and MABA-ADP [an ADP
210 analogue whose fluorescence intensity is enhanced when bound to Hsp70s (Theyssen et al.,
211 1996)] were allowed to form, and the decrease in fluorescence as MABA-ADP dissociated in
212 presence of an excess of non-fluorescent nucleotides was measured. In presence of 3 mM

213 MgCl_2 , the basal rate of MABA-ADP release from BiP ($k_{\text{off}} 0.0865 \pm 0.0045 \text{ s}^{-1}$) was similar
214 to values reported earlier (Figure 3A) (Mayer et al., 2003; Preissler et al., 2017). When added
215 during the dissociation phase, CaCl_2 (up to 1 mM) had little effect on MABA-ADP release.
216 However, when included alongside the MABA-ADP (and 3 mM MgCl_2) during the loading
217 phase, Ca^{2+} strongly inhibited release in the subsequent dissociation step (decreasing the k_{off}
218 ~ 5.1 -fold to $0.0171 \pm 0.0004 \text{ s}^{-1}$) (Fig 3A, compare traces 2 and 3).

219 Importantly, titrating CaCl_2 during MABA-ADP binding to BiP (in presence of 3 mM MgCl_2)
220 yielded a half maximal inhibitory concentration (IC_{50}) of $82.3 \pm 16.4 \mu\text{M}$ (Figure 3B). This
221 value fits well into the estimated range of physiological free Ca^{2+} fluctuations (from $>100 \mu\text{M}$
222 to low micromolar concentrations) in the ER and suggests that this effect could indeed be
223 relevant to BiP function in vivo.

224 The NEF, Grp170, enhanced nucleotide release and its net stimulatory effect was considerably
225 greater when BiP•MABA-ADP complexes were formed in presence of CaCl_2 [~ 3.1 -fold
226 (Mg^{2+} alone) vs. ~ 11.1 -fold (Ca^{2+} and Mg^{2+})] (Figure 3A, compare traces 1 and 4; 3 and 5).
227 As expected, in samples containing only CaCl_2 , baseline MABA-ADP release was even slower
228 ($k_{\text{off}} 0.0098 \pm 0.0007 \text{ s}^{-1}$) and the Grp170-mediated stimulation was enhanced further (~ 14.7 -
229 fold) (Figure 3-figure supplement 1). The role of NEFs in BiP's chaperone cycle may therefore
230 be particularly important at the high Ca^{2+} levels of the resting ER.

231 To explore the affinities of BiP for nucleotides in presence of Mg^{2+} or Ca^{2+} , the association and
232 dissociation rates of MABA-labelled ADP and ATP were compared. Complexes were allowed
233 to form in presence of either cation. To avoid the confounding effects of ATP hydrolysis, an
234 ATPase-deficient BiP^{T229A} mutant was also used (Gaut and Hendershot, 1993). In Ca^{2+} -
235 containing samples the dissociation of MABA-ADP from wildtype BiP was again slower,
236 while the association rate was slightly enhanced, resulting in a ~ 7.5 -fold lower dissociation
237 constant (K_D) for ADP binding to BiP in presence of Ca^{2+} compared to Mg^{2+} (Figure 3C, grey
238 bars). MABA-ADP bound to BiP^{T229A} with a similar K_D (although the rates were somewhat
239 higher), indicating that the T229A mutation does not have a major global impact on BiP's
240 nucleotide binding properties (Figure 3C, red bars). MABA-ATP dissociation from BiP^{T229A}
241 was unaffected by Ca^{2+} , but its association was conspicuously slower, leading to a ~ 3.2 -fold
242 higher K_D for MABA-ATP binding to BiP in presence of Ca^{2+} (Figure 3C, blue bars). Thus,
243 Ca^{2+} has opposite effects on the binding of ADP and ATP to BiP: it enhances BiP's affinity for
244 ADP while decreasing the affinity for ATP.

245 It has been proposed, based on differential scanning and isothermal titration calorimetry data,
246 that Ca^{2+} and Mg^{2+} bind cooperatively with ADP or ATP to BiP (each in a 1:1 stoichiometry)
247 and that both cations occupy the same or overlapping sites in the NBD (Lamb et al., 2006).
248 Our findings agree with these conclusions and suggest that Ca^{2+} and Mg^{2+} compete for
249 cooperative binding with either nucleotide to BiP. Moreover, the nucleotide release
250 experiments presented here indicate that Ca^{2+} 's effect is played out during $\text{BiP} \bullet$ nucleotide
251 complex formation rather than by cation swap on existing $\text{BiP} \bullet$ nucleotide complexes. In
252 presence of large excess of Mg^{2+} and ATP, productive binding of MgATP to Hsp70s is fast
253 and does not limit the rate of re-entering another round of ATP hydrolysis. However, our
254 observations suggest that the presence of Ca^{2+} favours futile ADP-to-ADP exchange,
255 attenuating the cycle. This non-productive nucleotide exchange might, to some extent, be
256 further promoted by a CaATP pool that competes with MgATP for BiP binding. Thus, at
257 expected physiological ATP:ADP ratios in the ER, Ca^{2+} has a substantial impact on the kinetics
258 of BiP's ATPase cycle and stands to influence its chaperone activity.

259 **Ca^{2+} stabilises interactions between BiP and substrates**

260 The rate of ADP-to-ATP exchange limits the kinetics with which BiP dissociates from its
261 substrates (Figure 2A). This implies that non-productive ADP exchange cycles, favoured by
262 Ca^{2+} , might also affect BiP-substrate interactions. We used biolayer interferometry (BLI) to
263 monitor the JDP-mediated binding of BiP to immobilised substrate on the surface of a sensor.
264 This approach tracks transient BiP-substrate interactions in real-time (Preissler et al., 2017). A
265 biotinylated J-domain (from ERdj6) was co-immobilised together with a substrate peptide
266 [P15, (Misselwitz et al., 1998)] on streptavidin-coated BLI sensors (Figure 4A). These were
267 then transferred to solutions containing BiP to detect its association, followed by introduction
268 into solutions without BiP to detect its dissociation. The large number and heterogeneity of
269 potential BiP binding sites on protein-coated sensors provides a good means to study the
270 substrate binding characteristics of BiP (Preissler et al., 2017). Fast recruitment of BiP was
271 observed in presence of ATP and Mg^{2+} (Figure 4A, traces 1-5). This interaction was dependent
272 on J-domain-stimulated ATP hydrolysis, as the BiP binding signal was weak in presence of a
273 non-functional J-domain (J^{OPD}) [Figure 4A, trace 6 and (Preissler et al., 2017)]. Though slightly
274 slower, BiP recruitment was also efficient in presence of Ca^{2+} ($[\text{MgCl}_2]/[\text{CaCl}_2] = 3$),
275 suggesting that Ca^{2+} competes only weakly with Mg^{2+} under these conditions (Figure 4A, trace
276 2); consistent with slower cooperative binding of CaATP to BiP, compared to MgATP, and the

277 absence of an allosteric effect of Ca^{2+} on ATP binding- and hydrolysis-dependent substrate
278 interactions.

279 BiP molecules bound to the sensor via high-affinity substrate interactions are, by definition, in
280 a post-hydrolysis state — either ADP-bound or nucleotide-free (apo). Thus, BiP dissociation
281 is subject to nucleotide exchange events and is accelerated by ATP binding. Accordingly, in
282 Mg^{2+} -containing solutions, BiP dissociation was slow in presence of ADP and fast in presence
283 of ATP. When present in the dissociation phase, the combination of Mg^{2+} and Ca^{2+}
284 ($[\text{MgCl}_2]/[\text{CaCl}_2] = 3$) did not affect the rate of ATP-induced BiP dissociation from sensors
285 (Figure 4A, trace 3). Dissociation of BiP was also fast in a solution containing ATP and Ca^{2+}
286 as the only divalent cation, indicating that CaATP is able to allosterically trigger BiP
287 dissociation from its substrates (Figure 4A, trace 5). Given that Ca^{2+} slows down the binding
288 of ATP to BiP (Figure 3C), it seemed surprising that the average dissociation rate was slightly
289 higher compared to MgATP-induced BiP dissociation. This finding might be explained by poor
290 hydrolysis of CaATP, countering the contribution of ATP-hydrolysis-dependent re-
291 establishment of a stable BiP-substrate complex to the BLI signal arising in presence of the
292 hydrolysable MgATP.

293 In presence of Mg^{2+} and both ATP and ADP ($[\text{ATP}]/[\text{ADP}] = 2$), the dissociation of BiP from
294 J-domain- and P15-coated BLI sensors was slower compared to a solution containing only
295 Mg^{2+} and ATP, consistent with direct competition of ADP with ATP for binding to BiP (Figure
296 4B, trace 3). Addition of Ca^{2+} ($[\text{MgCl}_2]/[\text{CaCl}_2] = 3$) to a solution containing both nucleotides
297 further inhibited dissociation of BiP (Figure 4B, trace 4). This result agrees with the notion that
298 Ca^{2+} kinetically extends futile nucleotide exchange cycles by enhancing the affinity of ADP
299 (but not ATP) for BiP.

300 To dissect this further, BiP•substrate complexes were assembled on J-domain- and P15-coated
301 BLI sensors (in presence of MgATP, as above) followed by two sequential dissociation steps.
302 The BiP-loaded sensors were first introduced into solutions containing ADP and either Mg^{2+}
303 or Ca^{2+} to promote formation of BiP•MgADP•substrate or BiP•CaADP•substrate complexes,
304 which represent the expected intermediates of futile nucleotide exchange. The sensors were
305 then transferred to solutions containing Mg^{2+} and ATP. BiP bound to a sensor that had been
306 exposed to Mg^{2+} and ADP dissociated twice as fast in the second step than BiP on a sensor that
307 had been exposed to Ca^{2+} and ADP (Figure 4B, compare traces 5 and 6). This observation
308 indicates that the slow release of CaADP kinetically limits ADP-to-ATP exchange and
309 consequently ATP-enhanced dissociation of BiP from substrates.

310 These observations suggest that changes in $[Ca^{2+}]$ (within the physiological range) regulate
311 BiP's chaperone activity by modulating the kinetics of productive nucleotide exchange, and
312 thus the rates of substrate release and entry into the next ATPase cycle. These findings propose
313 a mechanism for the decline in BiP-substrate interactions observed upon ER Ca^{2+} depletion.
314 All other things being equal, at high $[Ca^{2+}]_{ER}$ (resting state) substrate dissociation is slower.
315 Release of Ca^{2+} from the ER accelerates ATP binding and substrate dissociation, whereas the
316 rate at which ATP hydrolysis-dependent substrate interactions are formed remains largely
317 unaffected. The acceleration of productive nucleotide exchange and substrate dissociation,
318 relative to substrate binding, partitions BiP from its substrates.

319 **Selective responsiveness of ER-localised Hsp70s to Ca^{2+}**

320 Ca^{2+} excursions within the range shown here to affect BiP activity are unique to the ER.
321 Therefore, we deemed it of interest to determine if regulation by Ca^{2+} is a feature selective to
322 ER-localised Hsp70 (i.e. BiP) or common to all Hsp70s, regardless of the Ca^{2+} environment in
323 which they operate. To this end, we produced and purified bacterial DnaK, the *Drosophila*
324 *melanogaster* homologue of BiP, as well as human cytosolic Hsp70 (HSPA1A) and Hsc70
325 (HSPA8).

326 As before, MABA-ADP complexes with the different Hsp70s were formed in presence of Mg^{2+}
327 and nucleotide release upon exposure to excess of ATP was measured. MABA-ADP release
328 rates varied between the different Hsp70s (Figure 5A, dark traces). Similar to mammalian BiP,
329 Ca^{2+} strongly inhibited MABA-ADP release from *Drosophila* BiP (~5.6-fold) but had a more
330 modest inhibitory effect on MABA-ADP release from DnaK (~1.4-fold), cytosolic Hsp70
331 (~1.6-fold), and Hsc70 (~2.0-fold) (Figure 5A). Thus, under these conditions, Ca^{2+} had the
332 strongest inhibitory effect on MABA-ADP release from BiP paralogues.

333 We also analysed JDP-mediated substrate interactions of the different Hsp70 proteins using the
334 BLI assay. Dissociation was performed in presence of Mg^{2+} , ATP, and ADP ($[ATP]/[ADP] =$
335 2). Further addition of Ca^{2+} had the strongest inhibitory effect on the dissociation of BiP (~1.8-
336 fold decreased dissociation rate) and *Drosophila* BiP (~2.1-fold decrease), whereas
337 dissociation of the other chaperones was affected to a lesser degree (Hsp70 ~1.2-fold, Hsc70
338 ~1.2-fold, DnaK ~1.1-fold) (Figure 5B and C).

339 These observations suggest that sensitivity of nucleotide exchange and substrate interactions
340 to Ca^{2+} is a feature specific to BiP paralogues, perhaps having evolved as an adaptation to the
341 ER environment.

342 **CaADP binding selectively affects BiP's structural stability**

343 To establish if the selective effect of Ca^{2+} on ADP binding to BiP is reflected in the structure
344 of the complex, we purified the NBDs of mammalian BiP, Hsp70, and Hsc70 and co-
345 crystallised them with Ca^{2+} and ADP. High-resolution X-ray crystal structures were obtained
346 for all three NBDs (Table S1). In each case, additional density in the nucleotide binding cleft
347 indicated occupancy by ADP (Figure 6-figure supplement 1A) and the overall conformations
348 of the three NBDs were very similar (Figure 6A). Overlay of the BiP(NBD) structure with the
349 Hsp70(NBD) and Hsc70(NBD) structures revealed root-mean-squared deviations (RMSD) of
350 0.769 Å and 0.734 Å over the C_α alignment, respectively. Moreover, in each structure, Ca^{2+}
351 was identified in the nucleotide binding cleft, where it formed contacts to both phosphate
352 groups (α and β) of the nucleotide as well as indirect contacts to protein residues via several
353 water molecules (Figure 6A, inset). The position of the Ca^{2+} ion and the coordinated water
354 molecules were nearly identical in all three complexes and similar to a previously reported
355 lower-resolution structure of human BiP bound to CaADP (Wisniewska et al., 2010). In
356 contrast, the Mg^{2+} ion in an earlier NBD• Mg^{2+} •ADP structure coordinates only the β -phosphate
357 of ADP directly (Figure 6B, upper panel), which may contribute to the lower affinity of
358 MgADP compared to CaADP for NBD binding. The BiP(NBD)• Ca^{2+} •ADP complex also
359 resembled the structures of BiP(NBD)^{apo} and the NBD of BiP^{apo} containing both its NBD and
360 SBD (Figure 6-figure supplement 1B). The Ca^{2+} location is slightly shifted with respect to the
361 position of Mg^{2+} in structures that likely reflect the post-hydrolysis state, where the cation
362 coordinates orthophosphate (P_i) and the β -phosphate of ADP (Figure 6B, lower panel). The
363 latter is more similar to the configuration of Hsp70• MgATP complexes, where the Mg^{2+} is
364 located between the β - and γ -phosphate groups of ATP (Figure 6-figure supplement 1C). The
365 Ca^{2+} ion in a structure of human Hsp70(NBD) in complex with Ca^{2+} , ADP, and P_i occupies the
366 same position as Mg^{2+} in a post-hydrolysis state NBD structure (Figure 6-figure supplement
367 1D). Together, these findings reveal that Ca^{2+} participates in the coordination of ADP in the
368 NBD, which is consistent with cooperative binding of Ca^{2+} and nucleotide to BiP. The
369 structures also imply that binding of Ca^{2+} and Mg^{2+} is mutually exclusive. This is consistent
370 with evidence against replacement of Mg^{2+} by Ca^{2+} in the post-hydrolysis complex and with

371 evidence that Ca^{2+} binds together with ADP after release of the hydrolysis products (i.e. to the
372 apo NBD) in cycles of ADP rebinding. Our structures also revealed a second, surface-exposed
373 Ca^{2+} ion, which is unlikely to be involved in allosteric regulation (Figure 6-figure supplement
374 1E; see discussion).

375 The highly similar CaADP binding mode does not explain the stronger effect of Ca^{2+} on BiP
376 function compared to the other Hsp70s. However, the IC_{50} values for Ca^{2+} -dependent inhibition
377 of MABA-ADP release from the NBDs of Hsp70 ($444.7 \pm 80.5 \mu\text{M}$) and Hsc70 (345.5 ± 71.1
378 μM) were much higher than from the NBD of BiP ($57.1 \pm 7.4 \mu\text{M}$) (Figure 6C). The latter was
379 similar to the IC_{50} values of full-length BiP and the *Drosophila* BiP(NBD) ($52.4 \pm 8.1 \mu\text{M}$)
380 (Figure 3B and Figure 6-figure supplement 2A). In contrast, the IC_{50} for inhibition of MABA-
381 ADP release from DnaK(NBD) by Ca^{2+} was so high ($> 8 \text{ mM}$) that saturation was not reached
382 over the titration range (Figure 6-figure supplement 2A). Given that concentrations of Ca^{2+} in
383 the cytoplasm are in the nanomolar range, these results imply that the effect of Ca^{2+} on ADP
384 binding to cytoplasmic Hsp70s has limited physiological relevance. We also tested the NBD
385 of Kar2, the ER Hsp70 chaperone of yeast (*Saccharomyces cerevisiae*), which had a high IC_{50}
386 of $888.0 \pm 233.6 \mu\text{M}$ (Figure 6-figure supplement 2A). Thus, regulation by Ca^{2+} seems specific
387 to metazoan BiP.

388 Despite their nearly identical CaADP-bound structures, BiP(NBD), Hsp70(NBD), and
389 Hsc70(NBD) share only 70% sequence identity. We speculated that structural variation that is
390 inapparent in the low-energy, crystallised state may nonetheless lead to functionally important
391 differences in thermodynamic stabilisation by Ca^{2+} and ADP. Differential scanning fluorimetry
392 (DSF) measurements revealed that binding of ADP to all NBDs substantially elevated their
393 melting temperatures (T_m), as observed previously for intact BiP (Lamb et al., 2006). The T_m
394 increased further in presence of Ca^{2+} (Figure 6D and 6-figure supplement 2B). Importantly, the
395 stabilising effect of Ca^{2+} was greatest for mammalian and *Drosophila* BiP(NBD), compared to
396 the cytosolic Hsp70(NBD)s. These findings suggest that CaADP binding to the NBD
397 selectively decreases the structural flexibility of the ER-localised Hsp70s and thereby
398 contributes to their observed greater affinity for ADP.

399 **Differential sensitivity of BiP oligomers and BiP•substrate complexes to Ca^{2+}**

400 The activity of BiP in the ER is subject to post-translational regulatory mechanisms, one of
401 which is the transient sequestration of substrate-free BiP into inactive oligomeric assemblies.
402 These homomeric BiP complexes are based on typical substrate interactions between the SBD

403 of one protomer and the interdomain linker of another protomer (Preissler et al., 2015). As a
404 consequence, all BiP molecules of an oligomer are in a post-hydrolysis (ADP-bound or apo),
405 domain-undocked state (Figure 7A). These features entail a chain-like configuration where
406 only the first BiP molecule ('A') can bind substrate, whereas the SBDs and linkers of all
407 internal protomers ('B') are occupied. Apart from the last molecule ('C'), which exposes a free
408 linker, all other protomers are conformationally locked and therefore considered functionally
409 inactive. This model also predicts that oligomer assembly and disassembly occurs mainly on
410 one end and involves the 'C' protomer because it provides a binding site for another BiP
411 molecule (in assembly) and is the only protomer able to undergo ATP-induced domain docking
412 (required for dissociation). We define this end of BiP oligomers as the 'plus' (+)-end in analogy
413 to the more dynamic end of cytoskeletal filaments (Figure 7A).

414 The strong propensity of BiP to form oligomers and their architecture is further supported by
415 structural data: despite lacking part of the flexible C-terminal SBD lid structure and a substrate
416 binding-weakening V461F mutation, we obtained crystals of BiP in multi-component mixtures
417 formed by substrate interactions between the SBD and the interdomain linker of adjacent
418 molecules in the crystal lattice (Figure 7B and Figure 7-figure supplement 1).

419 Due to their characteristics, BiP oligomers are in direct competition with binding of unfolded
420 substrates, which explains their disappearance during ER stress (Blond-Elguindi et al., 1993;
421 Preissler et al., 2015). This suggests a physiological role of oligomerisation in buffering folding
422 capacity by transient withdrawal of BiP from the pool of active chaperones during periods of
423 declining unfolded protein load. However, the surprising observation that BiP oligomers are
424 enhanced by ER Ca^{2+} depletion seems to contradict this function and remained unexplained so
425 far (Preissler et al., 2015). We revisited this phenomenon in light of the new insights gleaned
426 here.

427 BiP oligomers rapidly disassemble in vitro in presence of ATP. However, the hypothesised
428 process by which BiP oligomers form and disassemble, described above, predicts that specific
429 inactivation of the 'C' protomer at the (+)-end would render them refractory to the destabilising
430 effect of ATP. We therefore took advantage of the protease subtilisin A (SubA), that cleaves
431 BiP site-specifically at the linker sequence (Paton et al., 2006). Under conditions that favour
432 oligomers, a large fraction of BiP is resistant to SubA cleavage (Preissler et al., 2015), likely
433 because only the linker of the 'C' protomer is accessible to the protease, whereas the linkers of
434 all other protomers are protected by an SBD of another BiP protein (Figure 7A). Indeed, size-
435 exclusion chromatography (SEC) analysis after exposure of BiP to SubA revealed a shift of all

436 peaks to later elution times, consistent with removal of a single NBD from oligomeric
437 structures and complete cleavage of monomers (Figure 7C).

438 We next formed complexes between BiP and fluorescently-labelled substrate peptide by
439 extended incubation of BiP (at a concentration where it is largely oligomeric) with trace
440 amounts of the peptide. The samples were then analysed by SEC and substrate peptide
441 fluorescence was detected separately from bulk protein absorbance at 230 nm (A_{230}), which is
442 vastly dominated by BiP. The peptide co-eluted with BiP monomers and oligomers (Figure
443 7D, left panels). The stepwise increase in the ratio of A_{230} to fluorescence signal with oligomer
444 size is consistent with each oligomeric species exposing only a single binding site [at its (-)-
445 end]. As expected, addition of ATP to the sample shortly before injection onto the SEC column
446 converted BiP oligomers largely into monomers, releasing the bound substrate peptide. As
447 noted previously, treatment with SubA prior to SEC, shifted the oligomer peaks to later elution
448 times and abolished the monomer signal in both the A_{230} and fluorescence channel. However,
449 in contrast to the intact oligomers, the cleaved species were completely insensitive to ATP-
450 induced disassembly and peptide release (Figure 7D, right panels). We conclude that
451 proteolytic removal of the NBD from the terminal protomer stabilises BiP oligomers by
452 inactivating their only conformationally responsive molecule, the 'C' protomer on the (+)-end.
453 These data also provide evidence for a strictly directional oligomer disassembly mode that
454 proceeds from the (+)-end.

455 Their inertness suggested the possibility of separating SubA-cleaved BiP oligomers from other
456 cleavage products by size to enable their biochemical characterisation (Figure 7D). To this end,
457 we incubated purified BiP protein at high concentration with SubA followed by preparative
458 SEC to isolate the early-eluting oligomeric species. Subsequent analytical SEC revealed that
459 the isolated cleaved oligomers retained their expected elution profile (Figure 7-figure
460 supplement 2) and proved resistant to ATP-induced disassembly (stable over 3 hours at 26°C),
461 and thus deemed suitable for further biochemical characterisation (Figure 7-figure supplement
462 2).

463 MABA-ADP (bound in presence of Mg^{2+}) dissociated from stabilised (SubA-cleaved) BiP
464 oligomers and untreated BiP at similar rates (Figure 7E). Addition of Ca^{2+} ($[MgCl_2]/[CaCl_2] =$
465 3) had a similar inhibitory effect on MABA-ADP dissociation from both samples. In contrast,
466 under these conditions, Grp170 enhanced the rate of MABA-ADP release from stabilised
467 oligomers only ~2.9-fold, whereas release from untreated BiP was enhanced ~12.3-fold
468 (Figure 7E). The latter is consistent with the experiments shown above (Figure 3A). These

469 results indicate (i) that passive nucleotide exchange occurs with normal rates on BiP oligomers
470 but their conformationally trapped state renders them non-responsive to ATP binding, and (ii)
471 that oligomers are largely resistant to Grp170-stimulated nucleotide release. Together with the
472 finding that BiP oligomers disassemble from one end, these observations suggest a mechanism
473 whereby the relative inertness of the internal protomers kinetically favours BiP oligomers over
474 other BiP-substrate interactions in the Ca^{2+} -depleted ER.

475 **Discussion**

476 The roles of BiP as an abundant effector chaperone and feedback regulator of the UPR render
477 it an essential guardian of ER physiology. Both functions converge on conventional Hsp70
478 substrate-binding interactions and are subordinate to the kinetics of nucleotide turnover by
479 BiP's ATPase activity. The finding that BiP's ATPase cycle is modulated by Ca^{2+} fluctuations
480 within the physiological range suggests a defined mechanism that links ER Ca^{2+} changes to
481 protein homeostasis. In the Ca^{2+} -depleted ER, BiP-substrate interactions are destabilised
482 (Figure 8). The partitioning of substrates away from the only luminal Hsp70 favours trafficking
483 of those substrates that would otherwise have been retained by BiP, whilst promoting de-
484 repression of the UPR transducers, themselves BiP substrates. The perturbation to ER
485 proteostasis is compounded by the polarity of BiP oligomers, which specifies their relative
486 inertness to Ca^{2+} fluctuations, thus kinetically driving BiP to oligomerise and depleting the
487 pool of active monomers. Alongside the direct role played by Ca^{2+} in the folding of certain
488 secreted proteins, and the role of Ca^{2+} binding to low affinity sites in regulating the *in vivo*
489 activity of parallel ER chaperones, the aforementioned mechanism goes some way to explain
490 the well-established relationship between ER Ca^{2+} depletion and the activation of ER stress
491 signalling.

492 Comparison of cytosolic and ER Hsp70s suggests that regulation of BiP by Ca^{2+} co-evolved
493 with the functions of the mammalian ER in Ca^{2+} storage and signalling. This is reflected in the
494 relative insensitivity of cytosolic and bacterial Hsp70s to Ca^{2+} and in apparent tuning of
495 metazoan BiP to the range of physiological ER Ca^{2+} fluctuations. In this vein, the yeast ER
496 Hsp70 Kar2, is of special interest, as we found it to be much less sensitive to Ca^{2+} than its
497 metazoan counter parts. This correlates with the yeast vacuole, not the ER, serving as the major
498 intracellular Ca^{2+} store responsible for regulated Ca^{2+} release (Denis and Cyert, 2002;
499 Halachmi and Eilam, 1989; Strayle et al., 1999).

500 At high CaADP concentrations, the crystallised NBDs of all Hsp70's tested bind the ion-
501 nucleotide complex indistinguishably. Solution-based assays suggest that subtle differences in
502 protein stability, arising from the 30% sequence divergence between the NBD of metazoan BiP
503 and its cytosolic counterparts, may account for their different sensitivity to Ca^{2+} . Regardless of
504 its structural basis, it is intriguing to consider how this specialised feature of BiP (conserved
505 from mammals to flies) improves fitness.

506 From the pancreatic acinus to killer T cells, secretion of proteins (stored in granules) is
507 regulated by Ca^{2+} release from the ER. The destabilising effect of Ca^{2+} depletion on BiP-
508 substrate complexes may have arisen as a response to situations in which the demands for bulk
509 protein export from the ER (to replenish secreted protein stores) outweighs the benefits of
510 stringent quality control (that would otherwise be imposed by more prolonged BiP-substrate
511 interactions and ER retention). ER quality control responds continuously to the thermodynamic
512 instability of its substrates (Sekijima et al., 2005). The dissociation of BiP from a class of not
513 yet natively assembled but export-ready substrates during Ca^{2+} signalling events may thus
514 reflect a mechanism for tuning the stringency of quality control to physiological demands.

515 Activation of the UPR transducers, IRE1, PERK, and ATF6 is a prominent consequence of ER
516 Ca^{2+} depletion. Disagreements on the details notwithstanding, most models for UPR regulation
517 acknowledge the importance of BiP-substrate interactions (Karagoz et al., 2019). In one model,
518 BiP is thought to bind directly to the regulatory luminal domain of the transducers via typical
519 BiP-substrate interactions, to keep it in a repressed state (Amin-Wetzel et al., 2019; Amin-
520 Wetzel et al., 2017). Competing substrates displace BiP from the signal transducers resulting
521 in their activation. The findings presented here imply that declining ER Ca^{2+} favours
522 dissociation of BiP from UPR signal transducers, which is consistent with previous pulldown
523 experiments showing release of BiP from PERK and ATF6 upon ER Ca^{2+} depletion (Bertolotti
524 et al., 2000; Shen et al., 2002). Importantly, BiP dissociation under these conditions is complete
525 on a timescale of minutes and does not require an ongoing supply of nascent unfolded proteins,
526 placing it upstream of any proteostatic challenge arising directly from Ca^{2+} depletion.
527 Similarly, dissociation of BiP from substrates may fuel the supply of activating ligands of the
528 UPR transducers (Karagoz et al., 2019). Physiological fluctuations of Ca^{2+} levels are often
529 oscillatory (Berridge et al., 2000; Dupont et al., 2011; Raffaello et al., 2016; Thomas et al.,
530 1996). The Ca^{2+} -entrained pulses of UPR signalling arising from the specialised sensitivity of
531 BiP to Ca^{2+} may have evolved to tune gene expression programs that build secretory capacity
532 to the secretory activity of cells. Given the reversibility of the Ca^{2+} effect on BiP and the
533 transient nature of physiological Ca^{2+} fluctuations, such conditioning of the ER is likely
534 attained without a significant cost of protein aggregation and proteotoxicity.

535 Our findings indicate that Ca^{2+} acts mainly on the nucleotide exchange phase of BiP's
536 chaperone cycle. After post-hydrolysis ADP release, ATP and ADP compete for binding to
537 BiP. Depending on the outcome of this competition BiP either enters a futile nucleotide
538 exchange cycle through ADP re-binding, or acquires ATP, which triggers substrate release.

539 Ca^{2+} enhances the affinity of ADP for BiP and thereby promotes the ADP-bound state during
540 nucleotide exchange. The efficiency of ADP-to-ATP exchange and rates of substrate release
541 are thus inversely related to $[\text{Ca}^{2+}]$. As BiP requires MgATP to re-enter its chaperone cycle
542 (Kassenbrock and Kelly, 1989), the rate at which ATP hydrolysis-dependent interactions with
543 substrates are formed remain largely unaffected by Ca^{2+} . This rationalises the observed
544 consequences of lowering free Ca^{2+} levels in the ER on the interactions of BiP with its
545 substrates: a decrease in $[\text{Ca}^{2+}]$ enhances the effective rate of ATP-induced substrate release
546 from BiP relative to the rate of substrate binding, leading to a net decline of BiP•substrate
547 complexes.

548 Our structural data show that Ca^{2+} binds in the nucleotide binding cleft of the NBD and
549 participates in coordinating the phosphate groups of ADP. This sufficiently explains the
550 observed cooperative binding mode of Ca^{2+} and nucleotide to BiP. Although none of our
551 functional experiments indicated that Ca^{2+} exerts an allosteric effect on BiP through a
552 mechanism other than by replacing Mg^{2+} during nucleotide binding, an additional Ca^{2+} ion was
553 present on the surface in all of our Hsp70 NBD structures. Ca^{2+} binding to this second site is
554 likely an experimental artefact favoured by the high $[\text{Ca}^{2+}]$ in the crystallisation solution and
555 crystal packing. Its relevance to any allosteric regulation of BiP is rendered improbable by the
556 high degree of solvent exposure of the bound Ca^{2+} .

557 Chaperones, in particular BiP, are the most abundant ATPases in the ER (Bakunts et al., 2017;
558 Dierks et al., 1996). Increasing protein folding load could thus boost ATP consumption by
559 chaperones and temporarily lower the luminal ATP:ADP ratio. Coupling regulation of BiP by
560 Ca^{2+} to the ATP:ADP ratio may therefore save energy at basally high luminal $[\text{Ca}^{2+}]$ by
561 amplifying the effect of ADP as a competitor for ATP and thus lowering BiP's ATPase activity.
562 Similar principles may apply to chaperone systems in other cellular compartments as well
563 (although there the impact of Ca^{2+} is most likely negligible).

564 In contrast, ER Ca^{2+} depletion might enhance BiP's ATPase activity. The cost of this to the ER
565 energy balance may be compensated (at least transiently) by an increase in ATP import into
566 the organelle (Vishnu et al., 2014; Yong et al., 2019). Furthermore, the effect on global
567 energetics is mitigated by PERK activation and the attendant decrease in energetically
568 expensive protein synthesis. In this sense, it is interesting to speculate that BiP's responsiveness
569 to Ca^{2+} is an animal cell feature that co-evolved with the acquisition of PERK.

570 Likewise, BiP oligomerisation may have evolved to alleviate the consequences of enhanced
571 ATP consumption at low Ca^{2+} levels by sequestering BiP in inactive complexes with relatively
572 slow turnover rates under these conditions. Mechanistically this can be explained by the finding
573 that BiP oligomer disassembly proceeds in a strictly directional manner and thus might be
574 relatively slow compared to the one-step dissociation of heterodimeric BiP•substrate
575 complexes. This difference is likely enhanced at low $[\text{Ca}^{2+}]$ when ADP-to-ATP exchange is
576 more efficient and the unidirectional, step-wise dissociation of BiP oligomers imposes an even
577 greater relative kinetic penalty, causing a redistribution of BiP from heterodimeric
578 BiP•substrate complexes to oligomers. Furthermore, conformationally trapped oligomeric BiP
579 is largely resistant to stimulated ADP release by Grp170, the most abundant NEF in the ER
580 (Behnke et al., 2015; Weitzmann et al., 2007). Grp170 belongs to the Hsp110 class of NEFs,
581 which bind Hsp70s via a large contact area (Polier et al., 2008). It is therefore possible that part
582 of the Grp170 binding site on BiP is sterically occluded in oligomers. The differential action
583 of Grp170 (and potentially other co-factors) on BiP•substrate complexes and oligomers likely
584 contributes to the altered BiP dynamics at varying Ca^{2+} levels.

585 Changes in BiP's substrate interaction kinetics are observed within minutes of ER Ca^{2+}
586 depletion (Preissler et al., 2015). The dissociation of substrates from BiP under conditions of
587 low $[\text{Ca}^{2+}]$ may allow some of them to escape retention in the ER and enhance their secretion.
588 This is supported by the behaviour of the BiP-interacting TCR α reporters, which migrated to
589 the cell surface after release of ER Ca^{2+} [Figure 1 and (Suzuki et al., 1991)]. TCR α trafficking
590 to the cell surface is not observed under conditions that primarily perturb protein folding
591 homeostasis, suggesting that this effect of ER Ca^{2+} depletion is not a consequence of
592 downstream proteostatic challenge. However, the dominance of the mechanistic link proposed
593 here for TCR α 's itinerary remains unproven, as we are unable to establish a system in which
594 BiP's essential role as a chaperone is uncoupled from its responsiveness to Ca^{2+} . Moreover,
595 destabilisation of BiP-substrate interactions is likely not the only mechanistic connection
596 between ER Ca^{2+} release, enhanced protein trafficking, and UPR induction. The downstream
597 perturbation to protein folding arising from substrate release and partitioning to oligomers may
598 contribute, especially under experimental conditions of protracted ER Ca^{2+} depletion following
599 lengthy application of Ca^{2+} -mobilising agents or irreversible uptake inhibitors. The action of
600 such parallel mechanism is evident in the escape of misfolded prion precursor protein from the
601 ER quality control upon proteostatic challenge with a reducing agent (Satpute-Krishnan et al.,

602 2014). It should be interesting to define in molecular terms the basis for other condition-
603 dependent modulation of ER quality control.

604

605 Acknowledgements

606 We thank the CIMR flow cytometry facility for technical support, the James Huntington group
607 (CIMR) for access to BLI equipment, Matthias P. Mayer (University of Heidelberg) for Hsp70
608 and Hsc70 expression plasmids, and Claes Andréasson (Stockholm University) for Grp170
609 expression plasmids. We are grateful to the Diamond Light Source for beamtime (proposals
610 mx21426 and mx27082) and the staff of beamlines I03, I04 and I24 for assistance with data
611 collection. We also thank Luka Smalinskaite for help with ATPase experiments as well as Alisa
612 F. Zyryanova and Lisa Neidhardt for comments on the manuscript.

613

614 Author contributions

615 **S.P.** Conceptualisation, project administration, methodology, investigation, formal analysis,
616 visualisation, and writing — original draft preparation.

617 **C.R.** Methodology, investigation, formal analysis, and writing — review and editing.

618 **Y.Y.** Investigation, formal analysis, data curation, visualisation, and writing — review and
619 editing.

620 **L.P.** Investigation, formal analysis, data curation, and writing — review and editing.

621 **A.C.** Investigation and writing — review and editing.

622 **D.R.** Conceptualisation, methodology, funding acquisition, and writing — original draft
623 preparation.

624

625 Competing interests

626 The authors declare no competing or financial interests.

627

628

629

630 **Methods**

631
632 **DNA plasmids**
633

634 The plasmids used in this study have been described previously or were generated by standard
635 molecular cloning techniques and are listed in **Table S2**.

636
637 **Mammalian cell lines**
638

639 CHO-K1 cells (ATCC CCL-61) were phenotypically validated as proline auxotrophs and their
640 Chinese hamster (*Cricetulus griseus*) origin was confirmed by genomic sequencing. The cells
641 were grown on cell culture dishes or multi-well plates (Corning) at 37°C and 5% CO₂ in
642 Nutrient mixture F-12 Ham (Sigma-Aldrich) supplemented with 10% (v/v) serum (FetalClone
643 II; HyClone), 1× penicillin–streptomycin (Sigma-Aldrich), and 2 mM L-glutamine (Sigma-
644 Aldrich). Cell lines were randomly tested for mycoplasma contamination using the MycoAlert
645 Mycoplasma Detection Kit (Lonza). All experiments were performed at cell densities of 60–
646 90% confluence. Where indicated, cells were treated with 0.5 µM Thapsigargin (Tg;
647 Calbiochem), 2.5 µg/ml Tunicamycin (Tm; Melford), 10 µM A23187 (Sigma, C7522), 3 mM
648 2-deoxy-D-glucose (2DG; ACROS Organics), 2 µM PERK inhibitor (PERKi; gift from GSK,
649 GSK2606414) and 10 µg/ml brefeldin A (BFA; LC Laboratories, B-8500). All compounds
650 were diluted freshly in pre-warmed medium and applied to the cells by medium exchange.

651
652 The UPR reporter cell line CHO-K1 *CHOP::GFP XBPI::Turquoise* (clone S21) has been
653 described previously (Sekine et al., 2016). Cell lines stably expressing TCRα and TCRα-N/Q
654 were generated by targeting CHO-K1 cells with puromycin-resistant retrovirus. For that,
655 HEK293T cells (ATCC CRL-3216) were cultured in Dulbecco's modified Eagle's medium
656 (Sigma) supplemented as described above. The cells were split onto 6 cm-dishes 24 h prior to
657 co-transfection of pBABE Puro plasmids encoding TCRα or TCRα-N/Q (plasmids UK2469
658 and UK2520, respectively; **Table S2**) with VSV-G retroviral packaging vectors, using TransIT-
659 293 Transfection Reagent (Mirus) according to the manufacturer's instructions. Sixteen hours
660 after transfection, medium was changed to medium supplemented with 1% BSA (Sigma).
661 Retroviral infections were performed following a 24 h incubation period by diluting 0.45 µm
662 filter-sterilised cell culture supernatants at a 1:1 ratio with CHO-K1 cell medium supplemented
663 with 10 µg/ml polybrene (8 ml final volume) and adding this preparation to target CHO-K1
664 cells (1 x 10⁶ cells seeded onto 10 cm-dishes 24 h prior to infection). After 8 h the viral
665 supernatants were replaced with fresh medium. The cells were split 48 h later into medium
666 supplemented with 6 µg/ml puromycin (Calbiochem). After further 24 h the medium was
667 changed to medium supplemented with 8 µg/ml puromycin. The medium was changed every
668 third day until puromycin-resistant colonies were visible. Individual clones were isolated and
669 tested for reporter expression. CHO-K1 TCRα (clone 24) and CHO-K1 TCRα-N/Q (clone 12)
670 were used for all experiments shown.

671
672 **Flow cytometry**
673

674 To analyse expression of TCRα and TCRα-N/Q reporters on the cell surface, stable CHO-K1
675 clones (see above) or parental cells were grown on 6-well plates to 80-90% confluence and
676 treated as indicated. The cells were then washed with 1 ml PBS and incubated in 0.5 ml PBS
677 + 2 mM EDTA for 5 min at 37°C. Afterwards, the cells were transferred to a 1.2 ml tube
678 (STARLAB, I1412-7400) and pelleted for 3 min in a swing-out rotor at 1000 rpm in a tabletop
679 centrifuge (Allegra X-30R, Beckman Coulter). The supernatant was aspirated and cells were

680 suspended in the remaining liquid to $1 \times 10^5 - 1 \times 10^7$ cells/100 μ l. The cells were washed with
681 1 ml ice-cold TBS solution [TBS + 3% bovine serum albumin (BSA) + 2 mM CaCl₂ + 0.1%
682 NaN₃] and pelleted as above. The supernatant was removed entirely and cells were suspended
683 in 100 μ l of the same TBS solution containing mouse monoclonal ANTI-FLAG M1 antibodies
684 (Sigma, F3040) at a 1:500 dilution. The cells were incubated 30 min on ice while gently mixing
685 every 10 min. After the incubation time, cells were washed twice in 1 ml TBS solution and
686 suspended in TBS solution containing Alexa Fluor 488 Goat anti-mouse IgG (Jackson
687 ImmunoResearch, 115-545-146; 0.75 mg/ml stock in 50% glycerol) at a 1:750 dilution for 30
688 min on ice in the dark as above. The cells were pelleted, washed with TBS solution and
689 suspended in 400 μ l TBS solution for flow cytometry analysis. For analysis of UPR reporter
690 induction, CHO-K1 S21 cells were treated as indicated, washed with PBS and collected in PBS
691 containing 4 mM ethylenediaminetetraacetic acid (EDTA).

692

693 Single-cell fluorescence signals (20,000/sample) were analysed by dual-channel flow
694 cytometry with an LSRFortessa cell analyser (BD Biosciences). GFP fluorescence and Alexa
695 Fluor 488 fluorescence was detected with excitation laser 488 nm and a 530/30 emission filter
696 and Turquoise fluorescence was detected with excitation laser 405 nm and a 450/50 emission
697 filter. Data were processed using FlowJo and median reporter analysis was performed using
698 Prism 6.0e (GraphPad).

699

700 **Immonoprecipitation (IP) and immunoblotting**

701

702 Mammalian cells were grown on 10 cm dishes and treated as indicated. The dishes were then
703 placed on ice and washed with ice-cold PBS, and cells were detached in PBS containing 1 mM
704 EDTA using a cell scraper. The cells were sedimented for 5 min at 370 \times g at 4°C and lysed in
705 HG lysis buffer (20 mM HEPES-KOH pH 7.4, 150 mM NaCl, 2 mM MgCl₂, 10 mM D-
706 glucose, 10% glycerol, 1% Triton X-100) containing protease inhibitors [2 mM
707 phenylmethylsulphonyl fluoride (PMSF), 4 μ g/ml pepstatin, 4 μ g/ml leupeptin, 8 μ g/ml
708 aprotinin] with 100 U/ml hexokinase (from *Saccharomyces cerevisiae* type F-300; Sigma) for
709 10 min on ice. To release BiP from substrates, hexokinase was replaced by 1 mM ATP during
710 lysis. The lysates were cleared for 10 min at 21,000 \times g at 4°C and Bio-Rad protein assay
711 reagent (Bio-Rad) was used to determine the protein concentrations of lysates. Equal volumes
712 of normalised lysates were incubated for 2 h at 4°C with 20 μ l UltraLink Hydrazine Resin
713 (Pierce, 53149) on which hamster BiP-specific chicken IgY antibodies had been covalently
714 immobilised (Preissler et al., 2015). The beads were recovered by centrifugation for 1 min at
715 1,000 \times g and washed three times (for 5 min) with HG lysis buffer. The proteins were eluted
716 in 2 \times SDS sample buffer and denatured for 10 min at 70°C. Equal volumes of the samples
717 were applied to SDS-PAGE and proteins were transferred onto PVDF membranes. The
718 membranes were blocked with 5% (w/v) dried skimmed milk in TBS and incubated with
719 primary antibodies followed by IRDye fluorescently labelled secondary antibodies (LiCor).
720 The membranes were scanned with an Odyssey near-infrared imager (LiCor). Primary
721 antibodies against hamster BiP [chicken anti-BiP IgY; (Avezov et al., 2013)] and ANTI-FLAG
722 M1 (see above) were used. The relevant signals were quantified with ImageJ (NIH) and
723 analysed with Prism 8.4 (GraphPad).

724

725 **Protein purification**

726

727 BiP and stabilised oligomers

728

729 Wildtype (UK173) and T229A mutant (UK838) Chinese hamster BiP proteins with an N-
730 terminal His6-tag were expressed in M15 *E. coli* cells (Qiagen). The bacterial cultures were
731 grown in LB medium with 100 µg/ml ampicillin and 50 µg/ml kanamycin at 37°C to an OD₆₀₀
732 nm of 0.8 and expression was induced with 1 mM isopropylthio β-D-1-galactopyranoside
733 (IPTG). The cells were further grown for 6 h at 37°C, collected and lysed with a high-pressure
734 homogeniser (EmulsiFlex-C3; Avestin) in buffer A (50 mM Tris–HCl pH 8, 500 mM NaCl, 1
735 mM MgCl₂, 10% glycerol, 20 mM imidazole) containing protease inhibitors (1 mM PMSF, 2
736 µg/ml pepstatin, 8 µg/ml aprotinin, 2 µM leupeptin) and 0.1 mg/ml DNaseI. The lysates were
737 cleared for 30 min at 45,000 × g at 4°C and incubated with 1 ml of Ni-NTA agarose beads
738 (Qiagen) per 1 l of expression culture for 2 h rotating at 4°C. Afterwards, the beads was
739 transferred to a gravity-flow Econo column (49 ml volume; Bio-Rad) and washed with 2
740 column volumes (CV) buffer B (50 mM Tris–HCl pH 8.0, 500 mM NaCl, 10% glycerol, 30
741 mM imidazole), 2 CV buffer C (50 mM Tris–HCl pH 8.0, 300 mM NaCl, 10 mM imidazole, 5
742 mM β-mercaptoethanol) and buffer C sequentially supplemented with (i) 1 M NaCl, (ii) 10
743 mM MgCl₂ + 3 mM ATP, (iii) 0.5 M Tris–HCl pH 7.4 or (iv) 35 mM imidazole (2 CV each).
744 The BiP proteins were then eluted with buffer D (50 mM Tris–HCl pH 8.0, 300 mM NaCl, 5
745 mM β-mercaptoethanol, 250 mM imidazole), dialysed against HKM (50 mM HEPES-KOH
746 pH 7.4, 150 mM KCl, 10 mM MgCl₂) and concentrated with 30-kDa MWCO centrifugal filters
747 (Amicon Ultra, Merck Millipore). The proteins were flash-frozen in aliquots and stored at
748 –80°C. To obtain nucleotide-free preparations, the purified proteins were additionally dialysed
749 24 h at 4°C against 50 mM HEPES-KOH pH 7.4, 150 mM KCl, 4 mM EDTA and twice against
750 50 mM HEPES-KOH pH 7.4, 150 mM KCl before concentration and freezing.
751

752 Stabilised BiP oligomers were generated from purified BiP protein (UK173). The proteins were
753 concentrated in HKM buffer to ~16 mg/ml and SubA protease (produced in-house) (Paton et
754 al., 2006) was added at 50 ng/µl. After incubation for 40 minutes at 26°C to allow for complete
755 cleavage, the sample was cooled on ice for 5 min. The solution was then cleared through a 0.22
756 µm pore size centrifuge tube filter (Spin-X, Corning) and injected onto a Superdex 200 Increase
757 10/300 GL column (GE Healthcare) equilibrated in 50 mM HEPES-KOH pH 7.4, 150 mM
758 KCl. The early eluting peak fractions containing oligomeric BiP species were immediately
759 pooled, concentrated and frozen in aliquots.
760

761 Grp170 and authentic Hsp70s

762 Full-length human Grp170 (UK2225), BiP from *Drosophila melanogaster* (UK2354) as well
763 as human Hsp70 (UK2510) and Hsc70 (UK2511) were expressed as fusion proteins with an
764 N-terminal His6-Smt3 in *E. coli* BL21 T7 Express lysY/Iq cells (New England BioLabs,
765 C3013). The cells were grown in LB medium containing 50 µg/ml kanamycin at 37°C until
766 OD_{600 nm} 0.5. The cells were then transferred to 20°C and expression was induced after 20 min
767 with 0.5 mM IPTG. After incubation for 14 h, the cells were collected by centrifugation and
768 suspended in lysis buffer E (50 mM Tris–HCl pH 8, 500 mM NaCl, 20 mM imidazole, 10%
769 glycerol) containing protease inhibitors (1 mM PMSF, 2 µg/ml pepstatin, 8 µg/ml aprotinin, 2
770 µM leupeptin). Before lysis 1 mM MgCl₂, 0.1 mM tris(2-carboxyethyl)phosphine (TCEP), and
771 0.1 mg/ml DNaseI were added and lysis was performed with an EmulsiFlex-C3 high-pressure
772 homogeniser. The lysates were cleared for 30 min at 45,000 × g at 4°C and incubated with 0.6
773 ml of Ni-NTA agarose beads (Qiagen) per 1 l of expression culture (1 ml beads per 1 l
774 expression culture was used in case of *Drosophila* BiP, Hsp70 and Hsc70) for 1 h rotating at
775 4°C. Afterwards, the beads were transferred to a 49-ml gravity-flow column and washed with
776 2 CV lysis buffer E, 2 CV buffer F (25 mM Tris–HCl pH 8, 150 mM NaCl, 10 mM imidazole,
777

778 5 mM β -mercaptoethanol), and buffer F sequentially supplemented with (i) 1 M NaCl, (ii) 10
779 mM MgCl₂ + 3 mM ATP + 0.01 mg/ml RNaseA, or (iii) 0.5 M Tris-HCl pH 8 + 1 mM TCEP
780 (2 CV each), followed by 2 CV buffer F. Proteins were eluted by on-column cleavage with 1.5
781 μ g/ml Ulp1 protease carrying a C-terminal StrepII-tag in 2.5 bed volumes buffer TNT-Iz15 (25
782 mM Tris-HCl pH 8, 150 mM NaCl, 1 mM TCEP, 15 mM imidazole) overnight at 4°C. The
783 eluate was collected, retained cleavage products were washed off the beads with buffer G, and
784 all fractions were pooled. The combined eluate was diluted 1:3 in 25 mM Tris-HCl pH 8 + 0.1
785 mM TCEP, passed through a 0.22 μ m filter, and further purified by anion exchange
786 chromatography using a 6 ml RESOURCE Q column (GE Healthcare) equilibrated in 95%
787 AEX-A (25 mM Tris-HCl pH 8, 25 mM NaCl, 0.1 mM TCEP) and 5% AEX-B (25 mM Tris-
788 HCl pH 8, 1 M NaCl, 0.1 mM TCEP). Proteins were eluted by applying a gradient from 5 to
789 50% AEX-B in 25 CV at 6 ml/min. The elution peak fractions corresponding to Grp170 were
790 pooled and 1 mM TCEP was added. After buffer exchange to HKT (50 mM HEPES-KOH pH
791 7.4, 150 mM KCl, 1 mM TCEP) and concentration using 30-kDa MWCO centrifugal filters,
792 the proteins were frozen in aliquots and stored at -80°C. BiP from *Drosophila melanogaster*
793 (UK2354) and human Hsp70 (UK2510; natural variant E110D) and Hsc70 (UK2511) were all
794 expressed as fusion proteins with an N-terminal His6-Smt3 and purified likewise.
795 DnaK (from *Escherichia coli*) with an N-terminal His6-Smt3 (UK2243) was expressed and
796 purified likewise, except that after anion exchange chromatography the pooled eluate was
797 adjusted to 500 mM NaCl and 40 mM imidazole. The eluate was then incubated with 1 ml Ni-
798 NTA agarose for 1 h rotating at 4°C (to remove traces of uncleaved protein). The beads were
799 then collected by centrifugation at 100 \times g for 2 min and the supernatant was transferred to a
800 30-kDa MWCO centrifugal filter for buffer exchange to HKT and protein concentration.
801

802 Nucleotide binding domains of BiP, Hsp70 and Hsc70 for crystallisation

803 All NBDs were expressed as fusion proteins with a N-terminal His6-Smt3. The NBD of
804 hamster BiP (UK2039) was produced in M15 *E. coli* cells grown in LB medium containing 50
805 μ g/ml kanamycin and 100 mg/ml ampicillin. The NBDs of human Hsp70 (UK2532; natural
806 variant E110D) and human Hsc70 (UK2533) were produced in *E. coli* BL21 T7 Express
807 lysY/Iq cells grown in LB medium containing 50 μ g/ml kanamycin. The cells were grown at
808 37°C to OD_{600 nm} 0.5, transferred to 22°C for 20 min, and expression was induced with 0.5 mM
809 IPTG. After incubation for 14 h at 22°C the cells were collected by centrifugation and
810 suspended in lysis buffer G (50 mM Tris-HCl pH 8, 500 mM NaCl, 20 mM imidazole)
811 containing protease inhibitors (1 mM PMSF, 2 μ g/ml pepstatin, 8 μ g/ml aprotinin, 2 μ M
812 leupeptin), 1 mM MgCl₂, 0.1 mM TCEP, and 0.1 mg/ml DNaseI. The cells were lysed with an
813 EmulsiFlex-C3 high-pressure homogeniser and lysates were centrifuged for 30 min at 45,000
814 \times g at 4°C. The cleared lysates were incubated with 1 ml Ni-NTA agarose beads per 1 l
815 expression culture for 30 min rotating at 4°C. The beads were then transferred to a 49-ml
816 gravity-flow column, washed in 2 CV lysis buffer G, 2 CV buffer H (50 mM Tris-HCl pH 8,
817 500 mM NaCl, 30 mM imidazole, 5 mM β -mercaptoethanol), 2 CV buffer I (50 mM Tris-HCl
818 pH 8, 300 mM NaCl, 10 mM imidazole, 5 mM β -mercaptoethanol), and with buffer I
819 supplemented sequentially with (i) 1 M NaCl, (ii) 10 mM MgCl₂ + 3 mM ATP + 0.01 mg/ml
820 RNaseA, or (iii) 0.5 M Tris-HCl pH 8 + 1 mM TCEP (2 CV each), followed by 2 CV buffer
821 TNT-Iz10 (25 mM Tris-HCl pH 8, 150 mM NaCl, 1 mM TCEP, 10 mM imidazole). Proteins
822 were eluted by on-column cleavage with 3.7 μ g/ml Ulp1 protease carrying a C-terminal
823 StrepII-tag in 1 bed volume buffer TNT-Iz10 overnight at 4°C. The eluate was collected,
824 retained cleavage products were washed off the beads with buffer TNT-Iz10, and all fractions
825 were pooled. To remove bound nucleotide, the proteins were dialysed for 6 h against buffer J
826

827 (25 mM Tris-HCl pH 8, 150 mM NaCl, 5 mM EDTA, 5 mM β -mercaptoethanol), 16 h against
828 fresh buffer J, 6 h against buffer K (25 mM Tris-HCl pH 8, 100 mM NaCl, 5 mM β -
829 mercaptoethanol), and 16 h against fresh buffer K. The protein solutions were then diluted 1:2
830 with 25 mM Tris-HCl pH 8 + 0.2 mM TCEP, filtered (0.22 μ m filter), and applied to anion
831 exchange chromatography using a 6 ml RESOURCE Q column equilibrated in 100% AEX-A1
832 (25 mM Tris-HCl pH 8, 75 mM NaCl, 0.2 mM TCEP). The flow-through fractions were
833 collected and bound proteins were eluted by applying a gradient from 0 to 50% AEX-B2 (25
834 mM Tris-HCl pH 8, 1 M NaCl, 0.2 mM TCEP) in 25 CV at 5 ml/min. The fractions
835 corresponding to the NBD proteins were pooled and further purified. In case of the NBDs of
836 Hsp70 (UK2532) and Hsc70 (UK2533) the unbound material (flow-through of the loading
837 step) was used for further purification. The proteins were concentrated, applied to gel-filtration
838 using a Superdex 75 prep grade HiLoad 16/60 column (GE Healthcare) equilibrated in buffer
839 K (10 mM Tris-HCl pH 8, 150 mM KCl, 0.2 mM TCEP), and proteins were eluted at 0.75
840 ml/min. The elution peak fractions were pooled, supplemented with 1 mM TCEP, and proteins
841 were concentrated in 10-kDa MWCO centrifugal filter to ~1-1.5 mM. The protein preparations
842 were frozen in aliquots and stored at -80°C for crystallisation and functional experiments.
843

844 Nucleotide binding domains (NBDs) of *Drosophila* BiP, DnaK and Kar2

845
846 The NBDs were expressed as fusion proteins with a N-terminal His6-Smt3. The NBD of
847 *Drosophila* BiP (UK2534) was produced in M15 *E. coli* cells grown in LB medium containing
848 50 μ g/ml kanamycin and 100 mg/ml ampicillin. The NBDs of DnaK (UK2531) and yeast Kar2
849 (UK2606) were produced in *E. coli* BL21 T7 Express lysY/Iq cells grown in LB medium
850 containing 50 μ g/ml kanamycin. The cells were grown at 37°C to OD_{600 nm} 0.5, transferred to
851 22°C for 20 min, and expression was induced with 0.5 mM IPTG. After incubation for 14 h at
852 22°C, the cells were collected by centrifugation and suspended in lysis buffer E (50 mM Tris-
853 HCl pH 8, 500 mM NaCl, 20 mM imidazole, 10% glycerol) containing protease inhibitors (1
854 mM PMSF, 2 μ g/ml pepstatin, 8 μ g/ml aprotinin, 2 μ M leupeptin), 1 mM MgCl₂, 0.1 mM
855 TCEP, and 0.1 mg/ml DNaseI. The cells were lysed with an EmulsiFlex-C3 high-pressure
856 homogeniser and lysates were centrifuged for 30 min at 45,000 \times g at 4°C. The cleared lysates
857 were incubated with 1 ml Ni-NTA agarose beads per 1 l expression culture for 30 min rotating
858 at 4°C. The beads were then transferred to a 49-ml gravity-flow column, washed in 2 CV lysis
859 buffer G, 2 CV buffer H (50 mM Tris-HCl pH 8, 500 mM NaCl, 30 mM imidazole, 5 mM β -
860 mercaptoethanol), 2 CV buffer I (50 mM Tris-HCl pH 8, 300 mM NaCl, 10 mM imidazole, 5
861 mM β -mercaptoethanol) and with buffer I supplemented sequentially with (i) 1 M NaCl, (ii)
862 10 mM MgCl₂ + 3 mM ATP + 0.01 mg/ml RNaseA, or (iii) 0.5 M Tris-HCl pH 8 + 1 mM
863 TCEP (2 CV each), followed by 2 CV buffer TNT-Iz10 (25 mM Tris-HCl pH 8, 150 mM
864 NaCl, 1 mM TCEP, 10 mM imidazole). Proteins were eluted by on-column cleavage with 3.7
865 μ g/ml Ulp1 protease carrying a C-terminal StrepII-tag in 1 bed volume buffer TNT-Iz10
866 overnight at 4°C. The eluate was collected, retained cleavage products were washed off the
867 beads with buffer TNT-Iz10, and all fractions were pooled. After buffer exchange to HKT (50
868 mM HEPES-KOH pH 7.4, 150 mM KCl, 1 mM TCEP) and concentration using 10-kDa
869 MWCO centrifugal filters, the proteins were frozen in aliquots and stored at -80°C for
870 functional experiments.

871 BiP for oligomer crystallisation

872
873 Chinese hamster BiP^{T229A-V461F} (residues 28-549) was expressed as an N-terminal His6-Smt3-
874 tagged protein (UK2090). The purification protocol was the same as used for His6-Smt3-FICD

876 purification described in (Perera et al., 2019) with minor modifications. The protein was
877 expressed in M15 *E. coli* cells grown in LB medium supplemented with 100 µg/ml ampicillin
878 and 50 µg/ml kanamycin. After anion exchange chromatography the protein was exchanged
879 into 10 mM HEPES-KOH pH 7.4, 150 mM KCl, 2 mM MgCl₂, and 1 mM TCEP by gel
880 filtration and concentrated to 21 mg/ml.

881
882 For crystallisation, BiP and an equimolar amount of human FICD^{L258D-H363A} [residues 104-445;
883 UK2093, purified as in (Perera et al., 2019)] were diluted to 150 µM with TNKM (10 mM
884 Tris-HCl pH 8.0, 100 mM NaCl, 50 mM KCl and 2 mM MgCl₂) and supplemented with 175
885 µM ATP. Note: FICD was excluded from the resulting crystals of oligomeric BiP (see below).

886
887 Biotinylated J domains

888
889 The J-domain of *E. coli* DnaJ (amino acids 1-72; UK2470) as well as the wildtype (UK1965;
890 J) and H422Q mutant (UK1966; J^{QPD}) J-domain of mammalian ERdj6 (amino acids 390-455)
891 were expressed with an AviTag-His6 sequence at the C-terminus in BL21 T7 Express lysY/Iq
892 cells grown in LB medium containing 50 µg/ml kanamycin. The cells were grown at 37°C to
893 OD_{600 nm} 0.5, transferred to 18°C for 20 min, and expression was induced with 0.5 mM IPTG.
894 The cells were incubated for 16 h at 18°C during which the recombinant proteins were
895 biotinylated on the AviTag to sufficient degree by the endogenous *E. coli* BirA biotin ligase.
896 Afterwards, the cells were collected by centrifugation and lysed in buffer G (50 mM Tris-HCl
897 pH 8, 500 mM NaCl, 20 mM imidazole) containing protease inhibitors (1 mM PMSF, 2 µg/ml
898 pepstatin, 8 µg/ml aprotinin, 2 µM leupeptin), 1 mM MgCl₂, 0.1 mM TCEP, 0.1 mg/ml DNaseI,
899 and 0.02 mg/ml RNaseA using an EmulsiFlex-C3 high-pressure homogeniser. The lysates were
900 cleared for 30 min at 45,000 × g at 4°C and the supernatants were incubated with 1 ml Ni-NTA
901 agarose beads per 1 l expression culture for 2 h rotating at 4°C. The beads were then transferred
902 to a 49-ml gravity-flow column, washed with 1 CV buffer I (50 mM Tris-HCl pH 8, 300 mM
903 NaCl, 10 mM imidazole, 5 mM β-mercaptoethanol) and with buffer I supplemented
904 sequentially with (i) 1 M NaCl, (ii) 10 mM MgCl₂ + 3 mM ATP, or (iii) 0.5 M Tris-HCl pH 8
905 + 1 mM TCEP (2 CV each), followed by 2 CV buffer I containing 35 mM imidazole. Proteins
906 were eluted in buffer J (50 mM Tris-HCl pH 8, 300 mM NaCl, 250 mM imidazole) and dialysed
907 against TNM (50 mM Tris-HCl pH 8, 150 mM NaCl, 2 mM MgCl₂) for 16 h at 4°C and for
908 further 6 h against fresh TNM. The protein solutions were frozen in aliquots and stored at -
909 80°C for Bio-Layer interferometry experiments.

910
911 **X-ray crystallography**

912
913 Concentrated NBD protein preparations (see above) of hamster BiP (UK2039), human Hsp70
914 (UK2532), and human Hsc70 (UK2533) were adjusted to ~50 mg/ml. The preparations were
915 supplemented with an additional 7 mM CaCl₂ and 2 mM ADP. Crystallisation of NBDs was
916 performed in 96-well sitting drop plates by combining 200 nl protein solution with 200 nl
917 reservoir solution and equilibration at 20°C against 70 µl reservoir solution. Crystallisation of
918 lid-truncated BiP oligomers was achieved by mixing 100 nl of protein solution and 100 nl
919 reservoir solution. Diffraction quality crystals grew in the following solutions: BiP(NBD) —
920 26% PEG6000, 0.2M CaCl₂, 0.1M NaOAc pH 5; Hsp70(NBD) — 10% PEG8000, 0.1 M Tris
921 pH 8.4, 0.2 M CaCl₂; Hsc70(NBD) — 24% PEG3350, 0.2M CaOAc; apo BiP oligomer —
922 20% PEG3350, 0.1 M Bis-Tris Propane pH 7.5, 0.2 M Na₃Citrate; ADP-bound BiP oligomer
923 — 20% PEG3350, 0.2 M K₃Citrate. Crystals were soaked in cryosolution [the well solutions
924 containing additional 25% (v/v) glycerol] and snap frozen in liquid nitrogen. Diffraction data
925 were collected at the Diamond Light Source beamlines i03, i04, and i24 (Diamond Light

926 Source, United Kingdom; see [Table S1](#)) and processed by the XIA2 pipeline (Winter, 2010)
927 implementing Mosflm (Battye et al., 2011) or XDS (Kabsch, 2010) for indexing and
928 integration, Pointless (Evans, 2011) for space group determination, and Aimless (Winn et al.,
929 2011), for scaling and merging. All structures were solved by molecular replacement in Phaser
930 (McCoy et al., 2007). NBD datasets were solved by using BiP nucleotide binding domain (PDB
931 3IUC) as the search model. BiP oligomer structures were solved by searching for an ensemble
932 of apo BiP's NBD and SBD, taken from PDB 6HAB. Manual model building was carried out
933 in COOT (Emsley et al., 2010) and further refinements were performed in refmac5 (Winn et
934 al., 2001) and phenix.refine (Liebschner et al., 2019). The final refinement statistics are
935 summarised in [Table S1](#). The structural graphs were generated with UCSF Chimera (Pettersen
936 et al., 2004) and Pymol (version 1.3 educational). CheckMyMetal (Zheng et al., 2017) has been
937 used for metal validation. The polder-maps in [Figure 6-figure supplement 1A](#) were calculated
938 using phenix.polder (Liebschner et al., 2017) by omitting ADP, Ca²⁺ and Ca²⁺-coordinated
939 water molecules.

940
941

942 NADH ATPase assay

943

944 BiP (UK173), J (UK1965) and J^{QPD} (UK1966) proteins were diluted from concentrated stocks
945 and exposed to ATP and β-NADH to start the reactions. Proteins were used at final
946 concentrations as indicated. The reactions were performed in HK solution (50 mM HEPES-
947 KOH pH 7.4, 100 mM KCl) containing 10 mM MgCl₂, 0.05% Triton X-100, 1 mM TCEP. The
948 reactions also contained 4 mM ATP, 3 mM Phospho(enol)pyruvic acid (PEP; Sigma, P0564),
949 0.25 mM β-NADH (Sigma, N8129), and pyruvate kinase/lactic dehydrogenase enzyme mix
950 (diluted final 1:45; Sigma, P0294). Where indicated 3 mM CaCl₂ was present. The reactions
951 were carried out in a final volume of 110 µl in 384-well microplates (µClear ; Grainer bio-one,
952 781096) and β-NADH absorbance at 340 nm (A₃₄₀) was measured over time at 25°C with a
953 Clariostar plate reader (BMG Labtech). Linear regression analysis was performed with Prism
954 8 (GraphPad) and the ATP hydrolysis activity were calculated using the molar extinction
955 coefficient of β-NADH (ε = 6220 M⁻¹ cm⁻¹).

956
957

958 Malachite green ATPase assay

959

960 Malachite green (MG) reaction solution was prepared freshly by combining stock solutions of
961 MG dye (0.111% malachite green, 6 N sulphuric acid), 7.5% ammonium molybdate, and 11%
962 Tween 20 in a 5:1.25:0.1 ratio. Samples of BiP protein (UK173) at 5 µM were prepared in HK
963 solution containing 3 mM MgCl₂ and 3 mM ATP in a final volume of 20 µl. Where indicated
964 ADP and CaCl₂ was added. The samples were incubated for 1.5 h at 26°C. Afterwards, 15 µl
965 of each sample were diluted with 135 µl water on a 96-well plate, mixed with 50 µl MG
966 reaction solution and incubated for 2 min at room temperature. Twenty µl of a 34% sodium
967 citrate solution were added to each well. After further 30 min incubation at room temperature
968 the absorbance at 623 nm (A₆₂₃) was measured with a plate reader (SpectraMax, Molecular
969 Devices). Standard curves from serial dilutions of KH₂PO₄ served as a reference to calculate
970 the specific ATPase activity.

971
972

973 Nucleotide binding assays

974

975

Nucleotide release and binding measurements were performed using the fluorescent nucleotide
analogues MABA-ADP (Jena Bioscience, NU-893-MNT) and MABA-ATP (Jena Bioscience,
NU-806-MNT) carrying a MANT moiety whose fluorescence increases upon binding to

976 Hsp70s (Theyssen et al., 1996). The measurements were started by adding 55 μ l of solution A
977 to 5 μ l of solution B (specified below) in a quartz cuvette (Hellma Analytics) and fluorescence
978 (excitation 360 nm, emission 420 nm) was detected over time with a fluorescence spectrometer
979 (Perkin Elmer LS55) at 26°C. All solutions contained 50 mM HEPES-KOH pH 7.4, 100 mM
980 KCl.
981

982 To measure nucleotide release, 1.42 μ M fluorescent nucleotide analogues were incubated with
983 1.42 μ M proteins in solution A for at least 1 h at 26°C to allow for complex formation (binding
984 phase). Solution B contained assay buffer with 18 mM MgATP. Where specified, 15.6 μ M
985 Grp170 were added to solution B. The final concentrations after mixing (release phase) were
986 1.3 μ M for each protein, 1.3 μ M fluorescent nucleotides, and 1.5 mM MgATP. The solutions
987 contained MgCl₂ and CaCl₂ where indicated (final concentrations are stated on the figures and
988 in figure legends). For Ca²⁺ titration experiments, CaCl₂ was present in solution A and final
989 [CaCl₂] are plotted on the graphs and were used to calculate IC₅₀ values. The dissociation rate
990 constants (k_{off}) were determined by fitting the data to a one phase exponential function using
991 Prism 8.4 (GraphPad). In experiments involving cytoplasmic Hsp70s all solutions contained
992 0.2 mM TCEP (Figure 5A, Figure 6C, Figure 6-figure supplement 2A).
993

994 The association rate constants (Figure 3C) were determined by combining nucleotide-free BiP
995 (UK173) or BiP^{T229A} (UK838) proteins (in solution A) with MABA-ADP or MABA-ATP (in
996 solution B) at the start of the measurement. Solutions A and B contained either 1 mM MgCl₂
997 or CaCl₂. Each association rate was calculated from six individual measurements, covering a
998 final protein concentration range from 1.3 μ M to 7.8 μ M. For that, the data were fitted to a one
999 phase exponential function and the observed rates (k_{obs}) were plotted against the protein
1000 concentration to calculate association rate constants (k_{on}) with the equation $k_{obs} = k_{on}[\text{protein}]$
1001 + k_{off} using the dissociation rate constants (k_{off}) determined separately under the same
1002 conditions.
1003

1004 **Bio-Layer interferometry (BLI)**

1005

1006 BLI experiments were performed on the FortéBio Octet RED96 System (Pall FortéBio) in
1007 buffer solution containing 50 mM HEPES-KOH pH 7.4, 100 mM KCl, 0.2 mM TCEP, and
1008 0.05% Triton X-100 (HKTTx). Nucleotide and divalent cations were added as indicated.
1009 Streptavidin (SA)-coated biosensors (Pall FortéBio) were hydrated in HKTTx solution for at
1010 least 10 min prior to use. Experiments were conducted at 28°C and 700 rpm shake speed and
1011 binding signals were recorded at an acquisition rate of 10 Hz. BLI reactions were prepared in
1012 200 μ l volumes in 96-well microplates (greiner bio-one, 655209). The following assay steps
1013 were performed: After an initial equilibration step in HKTTx solution (I), JDPs (J, UK1965 or
1014 J^{QPD}, UK1966) carrying a biotinylated Avi-tag (each at 5 μ M in HKTTx) were loaded until a
1015 binding signal of \sim 0.4 nm was reached. After a brief wash step in assay solution (III) the
1016 binding sites on the sensors were saturated with P15 peptide (ALLLSAPRRGAGKK,
1017 biotinylated on the C-terminal lysine; custom synthesised by GenScript, Piscataway, NJ)
1018 solubilised at 100 nM in HKTTx solution (IV). The sensors were then washed in HKTTx until
1019 a stable baseline signal was established (V). Association of BiP or other Hsp70s was performed
1020 in HKTTx solution containing 3 mM MgCl₂, 1.5 mM ATP and the indicated proteins at 5 μ M
1021 (VI). To allow for dissociation, the sensors were transferred to protein-free assay solution with
1022 variable components as indicated (VII). The data were processed in Prism 8.4 (GraphPad) and
1023 dissociation rate constants were obtained by fitting to a one phase exponential function. When
1024 DnaK was analysed (Figure 5C), a JDP containing the J-domain of DnaJ was immobilised
1025 (UK2470).

1026

1027 Differential scanning fluorimetry (DSF)

1028

1029 DSF measurements were performed on a Bio-Rad CFX96 Touch Real-Time PCR Detection
1030 System in 96-well plates (Bio-Rad Hard-Shell, #HSP9601) sealed with transparent adhesive
1031 film (Bio-Rad Microseal 'B' Adhesive Sealer, #MSB1001). Samples were prepared in a
1032 volume of 25 μ l. The solutions contained 50 mM HEPES-KOH pH 7.4, 100 mM KCl, 1 mM
1033 TCEP and SYPRO orange protein gel stain at a 1:500 dilution of the manufacturer's stock
1034 (Invitrogen, S6651). The samples also contained 5 μ M NBD protein, 4 mM ADP, and 6 mM
1035 MgCl₂ or CaCl₂ as indicated. The plates were centrifuged for 1 min at 150 \times g before the
1036 experiment. Temperature scanning was performed in 0.5°C intervals from 20 to 95°C and
1037 SYPRO orange fluorescence was detected. The data were then analysed in Prism 8.4
1038 (GraphPad) and the melting temperature (T_m) was determined as the temperature corresponding
1039 to the global minimum of the negative first derivatives of the melt curves.

1040

1041 Size-exclusion chromatography (SEC)

1042

1043 Samples for analytical SEC were prepared in SEC buffer (50 mM HEPES-KOH pH 7.4, 150
1044 mM KCl, 10 mM MgCl₂) in a final volume of 25 μ l. The samples were incubated for at least
1045 20 min at 25°C before 10 μ l were injected onto a SEC-3 HPLC column (300 Å pore size;
1046 Agilent Technologies, Santa Clara, CA) equilibrated with SEC buffer. The runs were
1047 performed at a flow rate of 0.3 ml/min at 26°C and peptide bond absorbance at 230 nm (A₂₃₀)
1048 was detected and plotted against the elution time. A gel filtration standard (Bio-Rad, 151–1901)
1049 was applied as a size reference and the elution peaks of Thyroglobulin (670 kDa), γ -globulin
1050 (158 kDa), Ovalbumin (44 kDa), and Myoglobin (17 kDa) are indicated.

1051

1052 In the experiment shown in [Figure 7C](#), the samples contained 40 μ M BiP protein (UK173) and
1053 1 mM ADP and the samples were incubated for 20 min at 24°C before SEC analysis. Where
1054 indicated, 36 ng/ μ l SubA protease was added during the incubation period.

1055

1056 For the experiment shown in [Figure 7D](#), BiP at 50 μ M was incubated for 6 h at 24°C with 1
1057 mM ADP and 1.3 μ M fluorescently labelled NR peptide (NRLLLTG carrying a fluorescein
1058 moiety at the N-terminus, custom synthesised by GenScript at >95% purity) (Yang et al., 2017).
1059 Afterwards, the samples were incubated without or with SubA protease (36 ng/ μ l) for 30 min
1060 before SEC analysis. Where indicated, 5 mM ATP was added 10 min before injection onto the
1061 column. The final concentration of BiP in the samples was 45 μ M. The fluorescein fluorescence
1062 signal (excitation 495nm; emission 520 nm) of the peptide was recorded separately during the
1063 SEC runs.

1064

1065 For the experiment shown in [Figure 7-figure supplement 2](#), untreated BiP protein or SubA-
1066 treated, purified BiP oligomers (both at 20 μ M) were incubated without or with 4 mM ATP in
1067 SEC buffer solution at 26°C as indicated. The BiP oligomers had been thawed from frozen
1068 stocks before the experiment.

1069

1070 *t*-tests

1071

1072 Unpaired (degrees of freedom = total sample size minus 2), parametric (assuming equal
1073 variance), *t*-tests were applied where indicated using GraphPad Prism 8.

1074

1075 [References](#)

1076

- 1077 1. Alvarez, J., and Montero, M. (2002). Measuring [Ca²⁺] in the endoplasmic reticulum
1078 with aequorin. *Cell Calcium* **32**, 251-260.
- 1079 2. Amin-Wetzel, N., Neidhardt, L., Yan, Y., Mayer, M.P., and Ron, D. (2019).
1080 Unstructured regions in IRE1alpha specify BiP-mediated destabilisation of the luminal
1081 domain dimer and repression of the UPR. *Elife* **8**.
- 1082 3. Amin-Wetzel, N., Saunders, R.A., Kamphuis, M.J., Rato, C., Preissler, S., Harding,
1083 H.P., and Ron, D. (2017). A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1
1084 and Repress the Unfolded Protein Response. *Cell* **171**, 1625-1637 e1613.
- 1085 4. Avezov, E., Cross, B.C., Kaminski Schierle, G.S., Winters, M., Harding, H.P., Melo,
1086 E.P., Kaminski, C.F., and Ron, D. (2013). Lifetime imaging of a fluorescent protein
1087 sensor reveals surprising stability of ER thiol redox. *J Cell Biol* **201**, 337-349.
- 1088 5. Avezov, E., Konno, T., Zyryanova, A., Chen, W., Laine, R., Crespillo-Casado, A.,
1089 Melo, E.P., Ushioda, R., Nagata, K., Kaminski, C.F., *et al.* (2015). Retarded PDI
1090 diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum.
1091 *BMC Biol* **13**, 2.
- 1092 6. Baksh, S., and Michalak, M. (1991). Expression of calreticulin in Escherichia coli and
1093 identification of its Ca²⁺ binding domains. *J Biol Chem* **266**, 21458-21465.
- 1094 7. Bakunts, A., Orsi, A., Vitale, M., Cattaneo, A., Lari, F., Tade, L., Sitia, R., Raimondi,
1095 A., Bachi, A., and van Anken, E. (2017). Ratiometric sensing of BiP-client versus BiP
1096 levels by the unfolded protein response determines its signaling amplitude. *Elife* **6**.
- 1097 8. Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R., and Leslie, A.G. (2011).
1098 iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM.
1099 *Acta Crystallogr D Biol Crystallogr* **67**, 271-281.
- 1100 9. Behnke, J., Feige, M.J., and Hendershot, L.M. (2015). BiP and its nucleotide exchange
1101 factors Grp170 and Sil1: mechanisms of action and biological functions. *J Mol Biol*
1102 **427**, 1589-1608.
- 1103 10. Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of
1104 calcium signalling. *Nat Rev Mol Cell Biol* **1**, 11-21.
- 1105 11. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., and Ron, D. (2000).
1106 Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response.
1107 *Nat Cell Biol* **2**, 326-332.
- 1108 12. Blond-Elguindi, S., Fourie, A.M., Sambrook, J.F., and Gething, M.J. (1993). Peptide-
1109 dependent stimulation of the ATPase activity of the molecular chaperone BiP is the
1110 result of conversion of oligomers to active monomers. *J Biol Chem* **268**, 12730-12735.
- 1111 13. Bonifacino, J.S., Cosson, P., and Klausner, R.D. (1990). Colocalized transmembrane
1112 determinants for ER degradation and subunit assembly explain the intracellular fate of
1113 TCR chains. *Cell* **63**, 503-513.
- 1114 14. Bonifacino, J.S., Cosson, P., Shah, N., and Klausner, R.D. (1991). Role of potentially
1115 charged transmembrane residues in targeting proteins for retention and degradation
1116 within the endoplasmic reticulum. *EMBO J* **10**, 2783-2793.
- 1117 15. Bygrave, F.L., and Benedetti, A. (1996). What is the concentration of calcium ions in
1118 the endoplasmic reticulum? *Cell Calcium* **19**, 547-551.
- 1119 16. Carreras-Sureda, A., Pihan, P., and Hetz, C. (2018). Calcium signaling at the
1120 endoplasmic reticulum: fine-tuning stress responses. *Cell Calcium* **70**, 24-31.
- 1121 17. Chen, D., Gibson, E.S., and Kennedy, M.J. (2013). A light-triggered protein secretion
1122 system. *J Cell Biol* **201**, 631-640.

1123 18. Cooper, G.R., Brostrom, C.O., and Brostrom, M.A. (1997). Analysis of the
1124 endoplasmic reticular Ca^{2+} requirement for alpha1-antitrypsin processing and
1125 transport competence. *Biochem J 325 (Pt 3)*, 601-608.

1126 19. Corbett, E.F., Oikawa, K., Francois, P., Tessier, D.C., Kay, C., Bergeron, J.J., Thomas,
1127 D.Y., Krause, K.H., and Michalak, M. (1999). Ca^{2+} regulation of interactions between
1128 endoplasmic reticulum chaperones. *J Biol Chem 274*, 6203-6211.

1129 20. Denis, V., and Cyert, M.S. (2002). Internal $\text{Ca}^{(2+)}$ release in yeast is triggered by
1130 hypertonic shock and mediated by a TRP channel homologue. *J Cell Biol 156*, 29-34.

1131 21. Depaoli, M.R., Karsten, F., Madreiter-Sokolowski, C.T., Klec, C., Gottschalk, B.,
1132 Bischof, H., Eroglu, E., Waldeck-Weiermair, M., Simmen, T., Graier, W.F., *et al.*
1133 (2018). Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic
1134 Setting of Single Cells. *Cell Rep 25*, 501-512 e503.

1135 22. Dierks, T., Volkmer, J., Schlenstedt, G., Jung, C., Sandholzer, U., Zachmann, K.,
1136 Schlotterhose, P., Neifer, K., Schmidt, B., and Zimmermann, R. (1996). A microsomal
1137 ATP-binding protein involved in efficient protein transport into the mammalian
1138 endoplasmic reticulum. *EMBO J 15*, 6931-6942.

1139 23. Dupont, G., Combettes, L., Bird, G.S., and Putney, J.W. (2011). Calcium oscillations.
1140 *Cold Spring Harb Perspect Biol 3*.

1141 24. Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and
1142 development of Coot. *Acta Crystallogr D Biol Crystallogr 66*, 486-501.

1143 25. Evans, P.R. (2011). An introduction to data reduction: space-group determination,
1144 scaling and intensity statistics. *Acta Crystallogr D Biol Crystallogr 67*, 282-292.

1145 26. Fass, D., Blacklow, S., Kim, P.S., and Berger, J.M. (1997). Molecular basis of familial
1146 hypercholesterolaemia from structure of LDL receptor module. *Nature 388*, 691-693.

1147 27. Gaut, J.R., and Hendershot, L.M. (1993). Mutations within the nucleotide binding site
1148 of immunoglobulin-binding protein inhibit ATPase activity and interfere with release
1149 of immunoglobulin heavy chain. *J Biol Chem 268*, 7248-7255.

1150 28. Groenendyk, J., Peng, Z., Dudek, E., Fan, X., Mizianty, M.J., Dufey, E., Urra, H.,
1151 Sepulveda, D., Rojas-Rivera, D., Lim, Y., *et al.* (2014). Interplay between the
1152 oxidoreductase PDIA6 and microRNA-322 controls the response to disrupted
1153 endoplasmic reticulum calcium homeostasis. *Sci Signal 7*, ra54.

1154 29. Guest, P.C., Bailyes, E.M., and Hutton, J.C. (1997). Endoplasmic reticulum Ca^{2+} is
1155 important for the proteolytic processing and intracellular transport of proinsulin in the
1156 pancreatic beta-cell. *Biochem J 323 (Pt 2)*, 445-450.

1157 30. Halachmi, D., and Eilam, Y. (1989). Cytosolic and vacuolar Ca^{2+} concentrations in
1158 yeast cells measured with the Ca^{2+} -sensitive fluorescence dye indo-1. *FEBS Lett 256*,
1159 55-61.

1160 31. Harding, H.P., Zhang, Y., and Ron, D. (1999). Protein translation and folding are
1161 coupled by an endoplasmic-reticulum-resident kinase. *Nature 397*, 271-274.

1162 32. Harding, H.P., Zyryanova, A.F., and Ron, D. (2012). Uncoupling proteostasis and
1163 development in vitro with a small molecule inhibitor of the pancreatic endoplasmic
1164 reticulum kinase, PERK. *The Journal of biological chemistry*.

1165 33. Hirschberg, K., Miller, C.M., Ellenberg, J., Presley, J.F., Siggia, E.D., Phair, R.D., and
1166 Lippincott-Schwartz, J. (1998). Kinetic analysis of secretory protein traffic and
1167 characterization of golgi to plasma membrane transport intermediates in living cells. *J
1168 Cell Biol 143*, 1485-1503.

1169 34. Kabsch, W. (2010). Xds. *Acta Crystallogr D Biol Crystallogr 66*, 125-132.

1170 35. Karagoz, G.E., Acosta-Alvear, D., and Walter, P. (2019). The Unfolded Protein
1171 Response: Detecting and Responding to Fluctuations in the Protein-Folding Capacity
1172 of the Endoplasmic Reticulum. *Cold Spring Harb Perspect Biol 11*.

1173 36. Kassenbrock, C.K., and Kelly, R.B. (1989). Interaction of heavy chain binding protein
1174 (BiP/GRP78) with adenine nucleotides. *EMBO J* 8, 1461-1467.

1175 37. Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J., and Sambrook, J. (1988).
1176 The presence of malfolded proteins in the endoplasmic reticulum signals the induction
1177 of glucose-regulated proteins. *Nature* 332, 462-464.

1178 38. Kurtoglu, M., Gao, N., Shang, J., Maher, J.C., Lehrman, M.A., Wangpaichitr, M.,
1179 Savaraj, N., Lane, A.N., and Lampidis, T.J. (2007). Under normoxia, 2-deoxy-D-
1180 glucose elicits cell death in select tumor types not by inhibition of glycolysis but by
1181 interfering with N-linked glycosylation. *Mol Cancer Ther* 6, 3049-3058.

1182 39. Lamb, H.K., Mee, C., Xu, W., Liu, L., Blond, S., Cooper, A., Charles, I.G., and
1183 Hawkins, A.R. (2006). The affinity of a major Ca²⁺ binding site on GRP78 is
1184 differentially enhanced by ADP and ATP. *J Biol Chem* 281, 8796-8805.

1185 40. Lebeche, D., Lucero, H.A., and Kaminer, B. (1994). Calcium binding properties of
1186 rabbit liver protein disulfide isomerase. *Biochem Biophys Res Commun* 202, 556-561.

1187 41. Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I.,
1188 Hintze, B., Hung, L.W., Jain, S., McCoy, A.J., et al. (2019). Macromolecular structure
1189 determination using X-rays, neutrons and electrons: recent developments in Phenix.
1190 *Acta Crystallogr D Struct Biol* 75, 861-877.

1191 42. Liebschner, D., Afonine, P.V., Moriarty, N.W., Poon, B.K., Sobolev, O.V., Terwilliger,
1192 T.C., and Adams, P.D. (2017). Polder maps: improving OMIT maps by excluding bulk
1193 solvent. *Acta Crystallographica Section D* 73, 148-157.

1194 43. Lievremont, J.P., Rizzuto, R., Hendershot, L., and Meldolesi, J. (1997). BiP, a major
1195 chaperone protein of the endoplasmic reticulum lumen, plays a direct and important
1196 role in the storage of the rapidly exchanging pool of Ca²⁺. *J Biol Chem* 272, 30873-
1197 30879.

1198 44. Lippincott-Schwartz, J., Yuan, L.C., Bonifacino, J.S., and Klausner, R.D. (1989). Rapid
1199 redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence
1200 for membrane cycling from Golgi to ER. *Cell* 56, 801-813.

1201 45. Lodish, H.F., and Kong, N. (1990). Perturbation of cellular calcium blocks exit of
1202 secretory proteins from the rough endoplasmic reticulum. *J Biol Chem* 265, 10893-
1203 10899.

1204 46. Lodish, H.F., Kong, N., and Wikstrom, L. (1992). Calcium is required for folding of
1205 newly made subunits of the asialoglycoprotein receptor within the endoplasmic
1206 reticulum. *J Biol Chem* 267, 12753-12760.

1207 47. Lucero, H.A., Lebeche, D., and Kaminer, B. (1994). ERcalcistorin/protein disulfide
1208 isomerase (PDI). Sequence determination and expression of a cDNA clone encoding a
1209 calcium storage protein with PDI activity from endoplasmic reticulum of the sea urchin
1210 egg. *J Biol Chem* 269, 23112-23119.

1211 48. Macer, D.R., and Koch, G.L. (1988). Identification of a set of calcium-binding proteins
1212 in reticuloplasm, the luminal content of the endoplasmic reticulum. *J Cell Sci* 91 (Pt
1213 1), 61-70.

1214 49. Mayer, M., Reinstein, J., and Buchner, J. (2003). Modulation of the ATPase cycle of
1215 BiP by peptides and proteins. *J Mol Biol* 330, 137-144.

1216 50. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and
1217 Read, R.J. (2007). Phaser crystallographic software. *J Appl Crystallogr* 40, 658-674.

1218 51. Meldolesi, J., and Pozzan, T. (1998). The endoplasmic reticulum Ca²⁺ store: a view
1219 from the lumen. *Trends Biochem Sci* 23, 10-14.

1220 52. Misselwitz, B., Staech, O., and Rapoport, T.A. (1998). J proteins catalytically activate
1221 Hsp70 molecules to trap a wide range of peptide sequences. *Mol Cell* 2, 593-603.

1222 53. Munro, S., and Pelham, H.R. (1986). An Hsp70-like protein in the ER: identity with
1223 the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein.
1224 *Cell* **46**, 291-300.

1225 54. Paton, A.W., Beddoe, T., Thorpe, C.M., Whisstock, J.C., Wilce, M.C., Rossjohn, J.,
1226 Talbot, U.M., and Paton, J.C. (2006). AB5 subtilase cytotoxin inactivates the
1227 endoplasmic reticulum chaperone BiP. *Nature* **443**, 548-552.

1228 55. Pena, F., Jansens, A., van Zadelhoff, G., and Braakman, I. (2010). Calcium as a crucial
1229 cofactor for low density lipoprotein receptor folding in the endoplasmic reticulum. *J
1230 Biol Chem* **285**, 8656-8664.

1231 56. Perera, L.A., Rato, C., Yan, Y., Neidhardt, L., McLaughlin, S.H., Read, R.J., Preissler,
1232 S., and Ron, D. (2019). An oligomeric state-dependent switch in the ER enzyme FICD
1233 regulates AMPylation and deAMPylation of BiP. *EMBO J*, e102177.

1234 57. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng,
1235 E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory
1236 research and analysis. *J Comput Chem* **25**, 1605-1612.

1237 58. Polier, S., Dragovic, Z., Hartl, F.U., and Bracher, A. (2008). Structural basis for the
1238 cooperation of Hsp70 and Hsp110 chaperones in protein folding. *Cell* **133**, 1068-1079.

1239 59. Preissler, S., Chambers, J.E., Crespillo-Casado, A., Avezov, E., Miranda, E., Perez, J.,
1240 Hendershot, L.M., Harding, H.P., and Ron, D. (2015). Physiological modulation of BiP
1241 activity by trans-protomer engagement of the interdomain linker. *Elife* **4**, e08961.

1242 60. Preissler, S., Rohland, L., Yan, Y., Chen, R., Read, R.J., and Ron, D. (2017).
1243 AMPylation targets the rate-limiting step of BiP's ATPase cycle for its functional
1244 inactivation. *Elife* **6**.

1245 61. Raffaello, A., Mammucari, C., Gherardi, G., and Rizzuto, R. (2016). Calcium at the
1246 Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria,
1247 and Lysosomes. *Trends Biochem Sci* **41**, 1035-1049.

1248 62. Sagara, Y., and Inesi, G. (1991). Inhibition of the sarcoplasmic reticulum Ca²⁺
1249 transport ATPase by thapsigargin at subnanomolar concentrations. *J Biol Chem* **266**,
1250 13503-13506.

1251 63. Sans, M.D., Kimball, S.R., and Williams, J.A. (2002). Effect of CCK and intracellular
1252 calcium to regulate eIF2B and protein synthesis in rat pancreatic acinar cells. *Am J
1253 Physiol Gastrointest Liver Physiol* **282**, G267-276.

1254 64. Satpute-Krishnan, P., Ajinkya, M., Bhat, S., Itakura, E., Hegde, R.S., and Lippincott-
1255 Schwartz, J. (2014). ER stress-induced clearance of misfolded GPI-anchored proteins
1256 via the secretory pathway. *Cell* **158**, 522-533.

1257 65. Sekijima, Y., Wiseman, R.L., Matteson, J., Hammarstrom, P., Miller, S.R., Sawkar,
1258 A.R., Balch, W.E., and Kelly, J.W. (2005). The biological and chemical basis for tissue-
1259 selective amyloid disease. *Cell* **121**, 73-85.

1260 66. Sekine, Y., Zyryanova, A., Crespillo-Casado, A., Amin-Wetzel, N., Harding, H.P., and
1261 Ron, D. (2016). Paradoxical Sensitivity to an Integrated Stress Response Blocking
1262 Mutation in Vanishing White Matter Cells. *PLoS One* **11**, e0166278.

1263 67. Shen, J., Chen, X., Hendershot, L., and Prywes, R. (2002). ER stress regulation of ATF6
1264 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization
1265 signals. *Dev Cell* **3**, 99-111.

1266 68. Solovyova, N., and Verkhratsky, A. (2002). Monitoring of free calcium in the neuronal
1267 endoplasmic reticulum: an overview of modern approaches. *J Neurosci Methods* **122**,
1268 1-12.

1269 69. Strayle, J., Pozzan, T., and Rudolph, H.K. (1999). Steady-state free Ca(2+) in the yeast
1270 endoplasmic reticulum reaches only 10 microM and is mainly controlled by the
1271 secretory pathway pump pmr1. *EMBO J* **18**, 4733-4743.

1272 70. Suzuki, C.K., Bonifacino, J.S., Lin, A.Y., Davis, M.M., and Klausner, R.D. (1991).
1273 Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic
1274 reticulum: Ca(2+)-dependent association with BiP. *J Cell Biol* 114, 189-205.

1275 71. Thastrup, O., Cullen, P.J., Drobak, B.K., Hanley, M.R., and Dawson, A.P. (1990).
1276 Thapsigargin, a tumor promoter, discharges intracellular Ca²⁺ stores by specific
1277 inhibition of the endoplasmic reticulum Ca²⁺(+)-ATPase. *Proc Natl Acad Sci U S A* 87,
1278 2466-2470.

1279 72. Theyssen, H., Schuster, H.P., Puckschies, L., Bukau, B., and Reinstein, J. (1996). The
1280 second step of ATP binding to DnaK induces peptide release. *J Mol Biol* 263, 657-670.

1281 73. Thomas, A.P., Bird, G.S., Hajnoczky, G., Robb-Gaspers, L.D., and Putney, J.W., Jr.
1282 (1996). Spatial and temporal aspects of cellular calcium signaling. *Faseb J* 10, 1505-
1283 1517.

1284 74. Van, P.N., Peter, F., and Soling, H.D. (1989). Four intracisternal calcium-binding
1285 glycoproteins from rat liver microsomes with high affinity for calcium. No indication
1286 for calsequestrin-like proteins in inositol 1,4,5-trisphosphate-sensitive calcium
1287 sequestering rat liver vesicles. *J Biol Chem* 264, 17494-17501.

1288 75. Vishnu, N., Jadoon Khan, M., Karsten, F., Groschner, L.N., Waldeck-Weiermair, M.,
1289 Rost, R., Hallstrom, S., Imamura, H., Graier, W.F., and Malli, R. (2014). ATP increases
1290 within the lumen of the endoplasmic reticulum upon intracellular Ca²⁺ release. *Mol
1291 Biol Cell* 25, 368-379.

1292 76. Wada, I., Rindress, D., Cameron, P.H., Ou, W.J., Doherty, J.J., 2nd, Louvard, D., Bell,
1293 A.W., Dignard, D., Thomas, D.Y., and Bergeron, J.J. (1991). SSR alpha and associated
1294 calnexin are major calcium binding proteins of the endoplasmic reticulum membrane.
1295 *J Biol Chem* 266, 19599-19610.

1296 77. Wall, D., Zyllicz, M., and Georgopoulos, C. (1994). The NH₂-terminal 108 amino acids
1297 of the *Escherichia coli* DnaJ protein stimulate the ATPase activity of DnaK and are
1298 sufficient for lambda replication. *J Biol Chem* 269, 5446-5451.

1299 78. Walter, P., and Ron, D. (2011). The unfolded protein response: from stress pathway to
1300 homeostatic regulation. *Science* 334, 1081-1086.

1301 79. Wei, J., and Hendershot, L.M. (1995). Characterization of the nucleotide binding
1302 properties and ATPase activity of recombinant hamster BiP purified from bacteria. *J
1303 Biol Chem* 270, 26670-26676.

1304 80. Weitzmann, A., Baldes, C., Dudek, J., and Zimmermann, R. (2007). The heat shock
1305 protein 70 molecular chaperone network in the pancreatic endoplasmic reticulum - a
1306 quantitative approach. *Febs J* 274, 5175-5187.

1307 81. Welch, W.J., Garrels, J.I., Thomas, G.P., Lin, J.J., and Feramisco, J.R. (1983).
1308 Biochemical characterization of the mammalian stress proteins and identification of
1309 two stress proteins as glucose- and Ca²⁺-ionophore-regulated proteins. *J Biol Chem*
1310 258, 7102-7111.

1311 82. Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R.,
1312 Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., *et al.* (2011). Overview of
1313 the CCP4 suite and current developments. *Acta Crystallographica Section D* 67, 235-
1314 242.

1315 83. Winn, M.D., Isupov, M.N., and Murshudov, G.N. (2001). Use of TLS parameters to
1316 model anisotropic displacements in macromolecular refinement. *Acta Crystallogr D
1317 Biol Crystallogr* 57, 122-133.

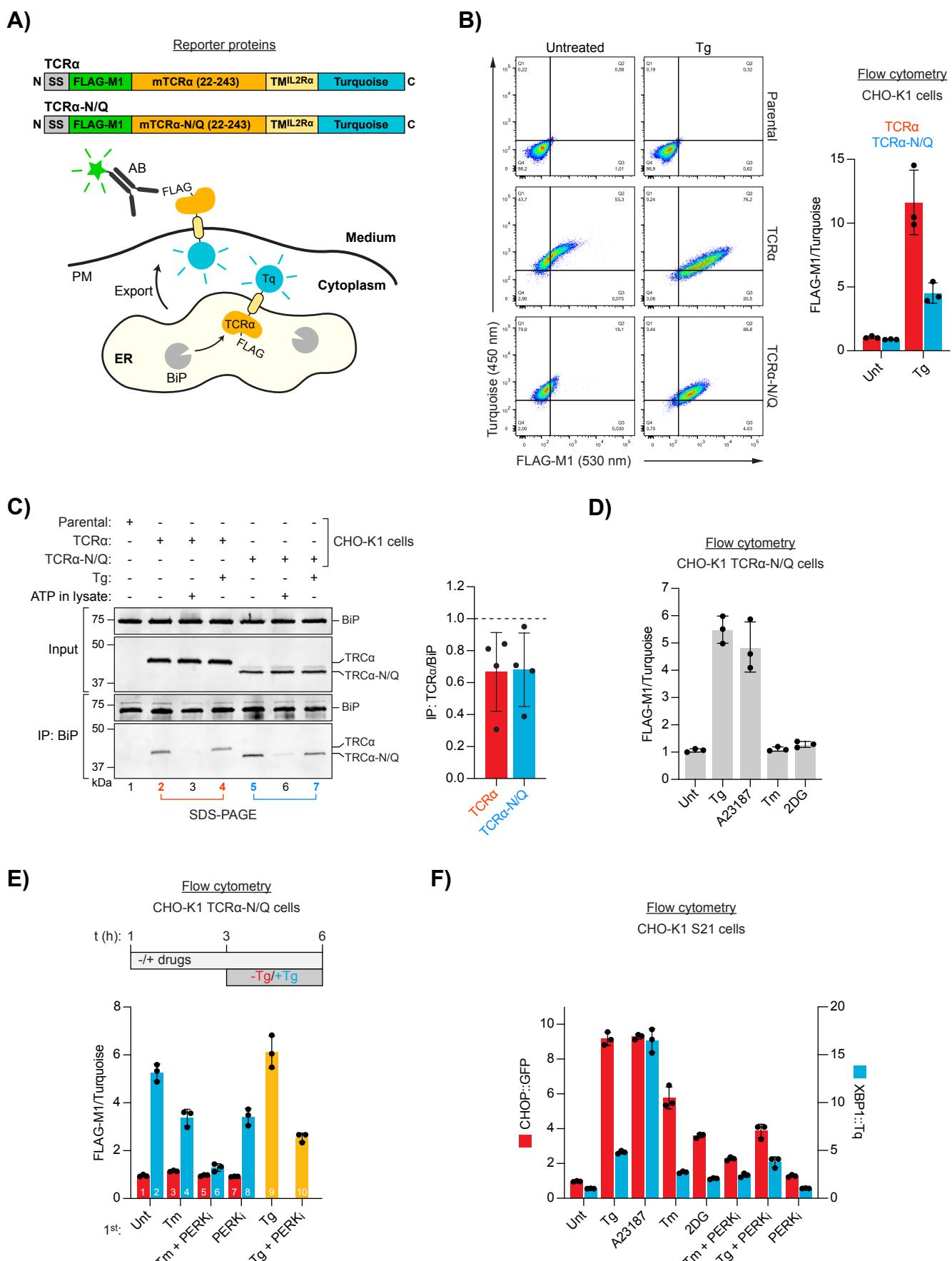
1318 84. Winter, G. (2010). xia2: an expert system for macromolecular crystallography data
1319 reduction. *Journal of Applied Crystallography* 43, 186-190.

1320 85. Wisniewska, M., Karlberg, T., Lehtio, L., Johansson, I., Kotenyova, T., Moche, M.,
1321 and Schuler, H. (2010). Crystal structures of the ATPase domains of four human Hsp70

1322 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and
1323 HSPA5/BiP/GRP78. PLoS One 5, e8625.

1324 86. Wong, W.L., Brostrom, M.A., Kuznetsov, G., Gmitter-Yellen, D., and Brostrom, C.O.
1325 (1993). Inhibition of protein synthesis and early protein processing by thapsigargin in
1326 cultured cells. Biochem J 289 (Pt 1), 71-79.

1327 87. Wu, F.S., Park, Y.C., Roufa, D., and Martonosi, A. (1981). Selective stimulation of the
1328 synthesis of an 80,000-dalton protein by calcium ionophores. J Biol Chem 256, 5309-
1329 5312.


1330 88. Yang, J., Zong, Y., Su, J., Li, H., Zhu, H., Columbus, L., Zhou, L., and Liu, Q. (2017).
1331 Conformation transitions of the polypeptide-binding pocket support an active substrate
1332 release from Hsp70s. Nat Commun 8, 1201.

1333 89. Yong, J., Bischof, H., Burgstaller, S., Siirin, M., Murphy, A., Malli, R., and Kaufman,
1334 R.J. (2019). Mitochondria supply ATP to the ER through a mechanism antagonized by
1335 cytosolic Ca(2). Elife 8.

1336 90. Zheng, H., Cooper, D.R., Porebski, P.J., Shabalin, I.G., Handing, K.B., and Minor, W.
1337 (2017). CheckMyMetal: a macromolecular metal-binding validation tool. Acta
1338 Crystallographica Section D 73, 223-233.

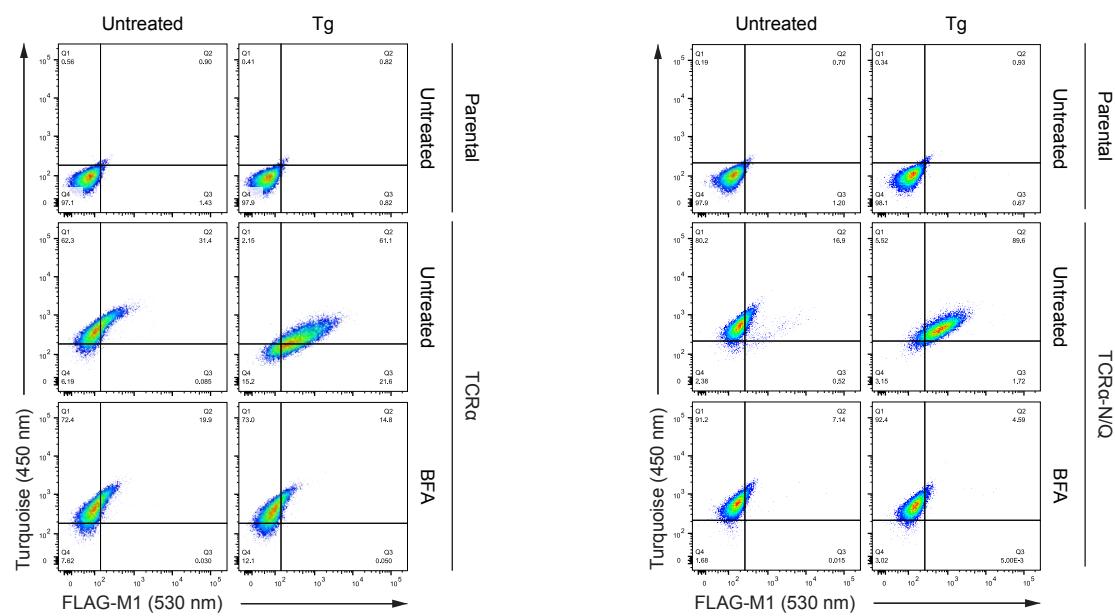
1339

Figure 1

Figure 1

ER Ca²⁺ depletion-dependent trafficking of TCRα-based reporter proteins

A) Schematic representation of reporter proteins and detection principles. Signal sequence (SS); FLAG-M1 epitope tag; mouse T-cell antigen receptor α chain (mTCRα); transmembrane domain of the interleukin 2 receptor α subunit (TM^{IL2Rα}); monomeric Turquoise (Tq); endoplasmic reticulum (ER); plasma membrane (PM).


B) Flow cytometry analysis of TCRα cell surface exposure. CHO-K1 cell lines stably expressing TCRα or glycosylation-deficient TCRα-N/Q were left untreated or exposed to Thapsigargin (Tg) for 3 h before analysis. Dot plots of a representative experiment are shown. Graph: reporter surface exposure is plotted as the ratio between the FLAG-M1 and Turquoise median fluorescence signal (relative to a data point of TCRα in untreated cells arbitrarily set to 1). Bars represent mean \pm SD from three independent experiments.

C) Co-immunoprecipitation (IP) of TCRα reporter proteins with BiP from stable CHO-K1 cell lines (as in ‘B’) analysed by SDS-PAGE and immunoblotting. Where indicated cells were treated with Tg for 3 h prior to lysis. ATP was depleted from samples during lysis to stabilise BiP-substrate interactions except from the sample marked with ‘ATP’ to which additional ATP was added instead. Graph: ratios of the quantified blot signals relative to untreated samples (set to 1; dashed line). Bars represent mean \pm SD from four independent experiments.

D-E) Flow cytometry analysis as in ‘B’. **(D)** Cells were treated for 3 h, as indicated, before analysis [tunicamycin (Tm); 2-deoxyglucose (2DG)]. **(E)** Cells were exposed to the compounds indicated. After 3 h the medium was replaced by medium containing the same compounds without (red) or with additional Tg (blue) for further 3 h before analysis. Samples 9 and 10 (yellow bars) contained the same amount of Tg before and after medium exchange. PERK inhibitor (PERK_i). Bars: mean \pm SD from three independent experiments.

F) Flow cytometry analysis of a UPR reporter CHO-K1 cell line (S21) carrying a predominantly PERK-controlled CHOP::GFP marker and a predominantly IRE1-controlled XBP1::Turquoise marker. The cells were treated for 6 h, as indicated. Median fluorescence signals relative to untreated cells are shown. Bars: mean \pm SD from three independent experiments.

Figure 1-figure supplement 1

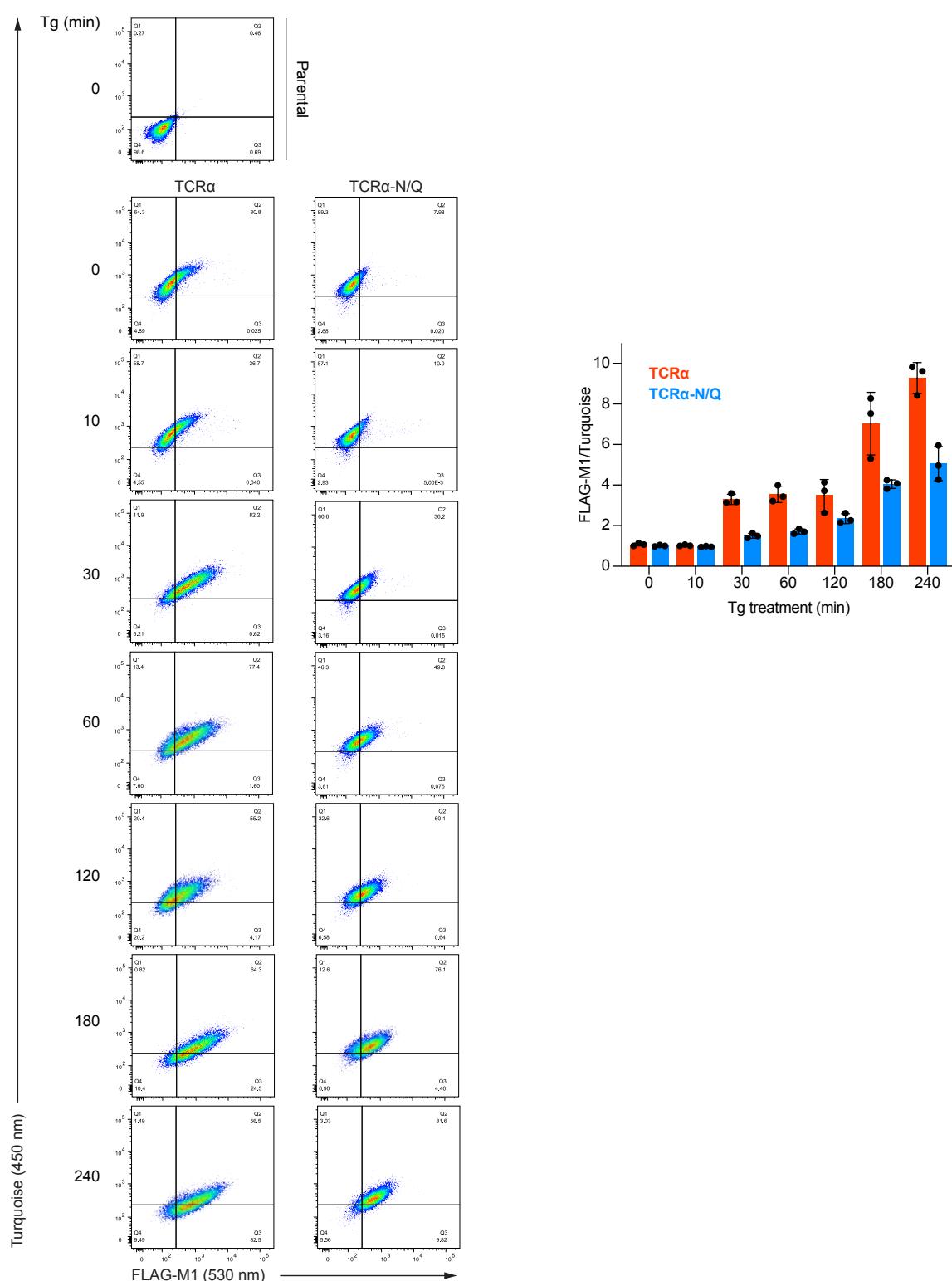
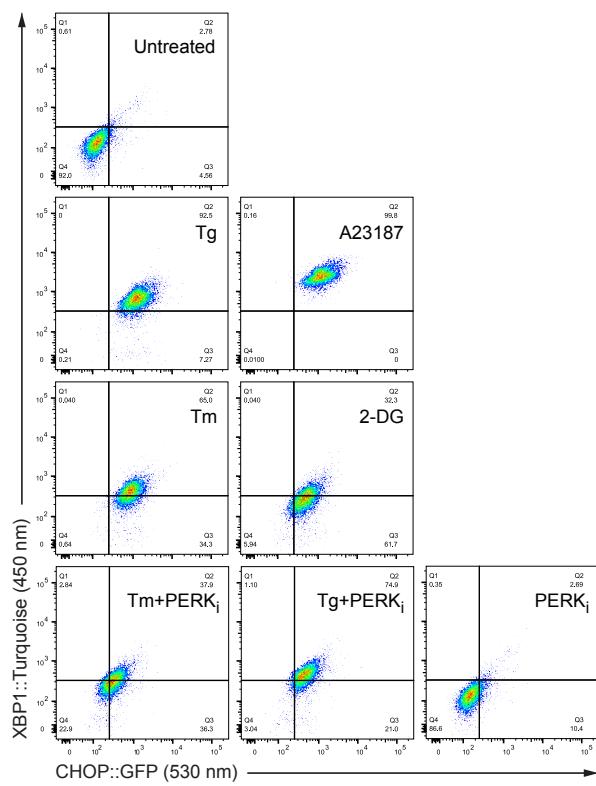


Figure 1-figure supplement 1

Brefeldin A blocks exposure of the TCR α reporter on the cell surface

Dot plots of a representative flow cytometry analysis of CHO-K1 cells stably expressing TCR α or TCR α -N/Q after treatment with Thapsigargin (Tg) and brefeldin A (BFA) for 3 h, as indicated.

Figure 1-figure supplement 2

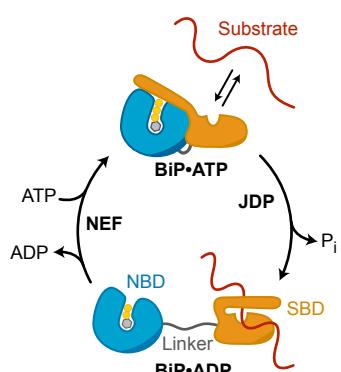

Figure 1-figure supplement 2

Time course of exposure of the TCR α reporter on the cell surface during ER Ca^{2+} depletion

Dot plots of a representative flow cytometry analysis of CHO-K1 cells stably expressing TCR α or TCR α -N/Q after treatment with Thapsigargin (Tg) for indicated periods. Graph: reporter surface exposure is given as the ratio between the FLAG-M1 and Turquoise median fluorescence signal relative to untreated cells. Bars: mean \pm SD bars are shown from three independent experiments.

Figure 1-figure supplement 3

CHO-K1 S21 cells


Figure 1-figure supplement 3

ER Ca²⁺ depletion and ER stress induce the UPR

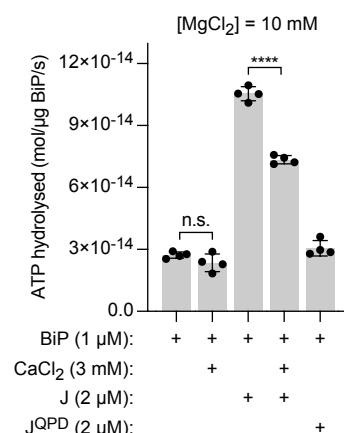
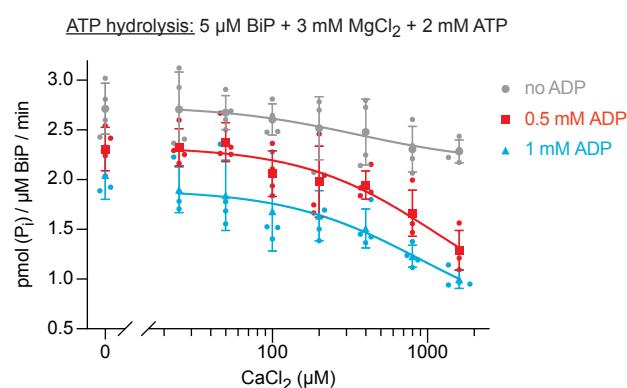

Dot plots of a representative flow cytometry experiment using CHO-K1 CHOP::GFP XBP1::Tq cells (S21). The cells were treated for 6 h, as indicated. Related to **Figure 1F**.

Figure 2


A)

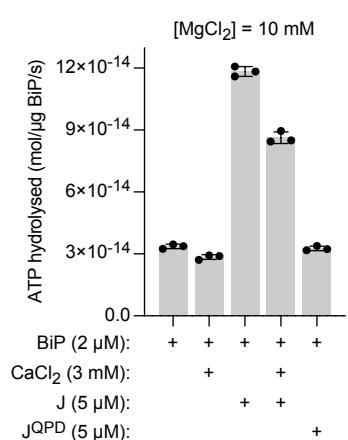
B)

C)

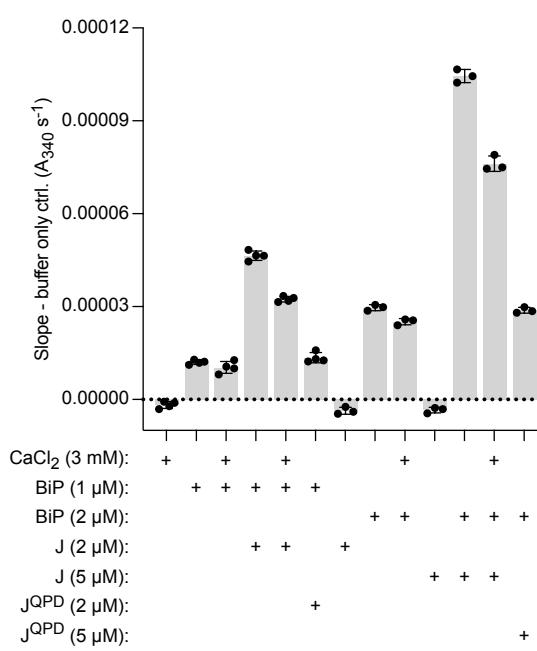
Figure 2

Effect of Ca^{2+} on BiP's ATPase activity

A) Schematic representation of BiP's chaperone cycle. Unfolded substrate protein (red); nucleotide binding domain (NBD); substrate binding domain (SBD); interdomain linker (grey); orthophosphate (P_i); J-domain protein (JDP); nucleotide exchange factor (NEF).


B) ATP hydrolysis by purified BiP measured with a NADH-based ATPase assay. All samples contained 10 mM MgCl_2 and 1 μM BiP. Where indicated CaCl_2 (3 mM) and wildtype (J) or mutant J-domain (J^{QPD}) were added (both at 2 μM). Bars: mean \pm SD from four independent experiments. **** $p < 0.0001$, 95% CI -3.672e⁻¹⁴ to -2.695e⁻¹⁴, two-tailed, unpaired, parametric *t*-test.

C) ATPase activity of BiP measured by detection of ATP hydrolysis product (P_i) accumulation using a malachite green-based assay. All samples contained 3 mM MgCl_2 and 2 mM ATP. CaCl_2 was titrated (0 - 1.6 mM). Where indicated samples contained 0.5 mM (red) and 1 mM (blue) ADP. Bold symbols represent mean values \pm SD derived from individual data points (staggered dots). Best-fit lines are shown.


Figure 2-figure supplement 1

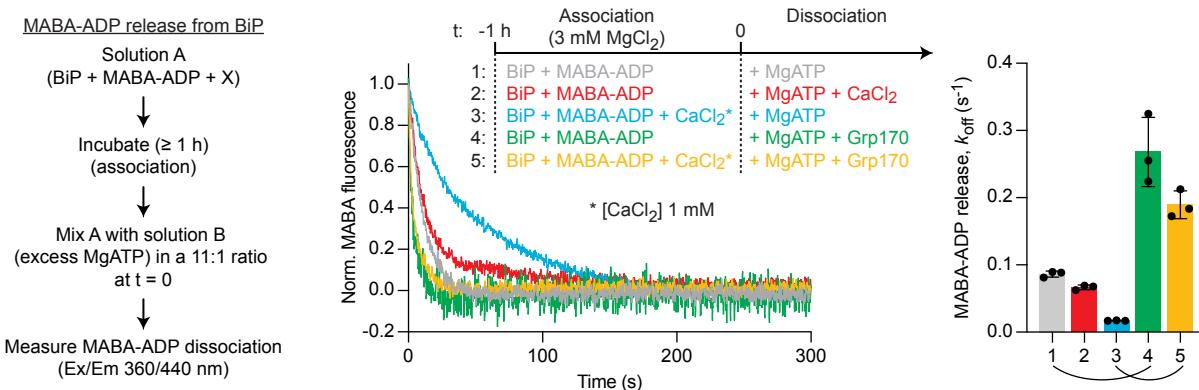
Preissler et al.

A)

B)

Figure 2-figure supplement 1

Effect of Ca^{2+} on BiP's ATPase activity measured by a NADH-based assay


ATP hydrolysis by purified BiP measured with a NADH-based ATPase assay that detects ADP production. All samples contained 10 mM MgCl_2 . Where indicated CaCl_2 (3 mM) and wildtype or mutant J-domain ($\text{J}; \text{J}^{\text{QPD}}$) were added.

(A) Same as **Figure 2B** but with higher protein concentrations. Bars: mean \pm SD from three independent experiments.

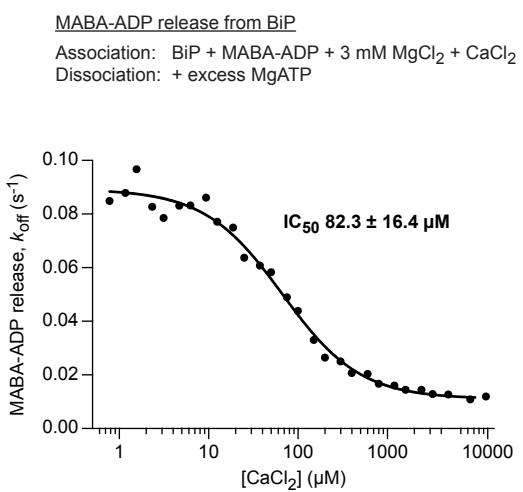
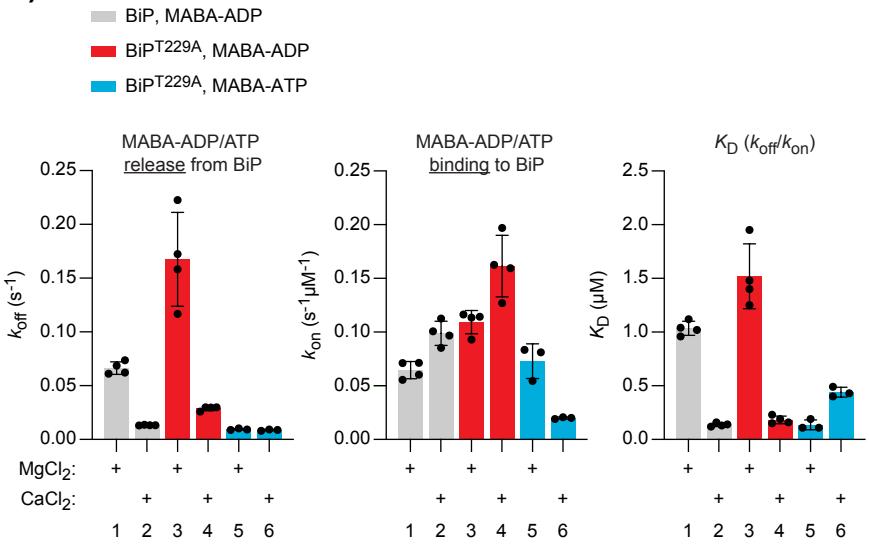

(B) Slopes of time-dependent NADH signals (absorbance at 340 nm; A_{340}) of experiments shown in 'A' and **Figure 1B**. The value of the 'buffer only' control reaction was subtracted in each experiment. Bars: mean \pm SD from at least three independent experiments. Note: the reaction velocity correlates with the BiP concentration.

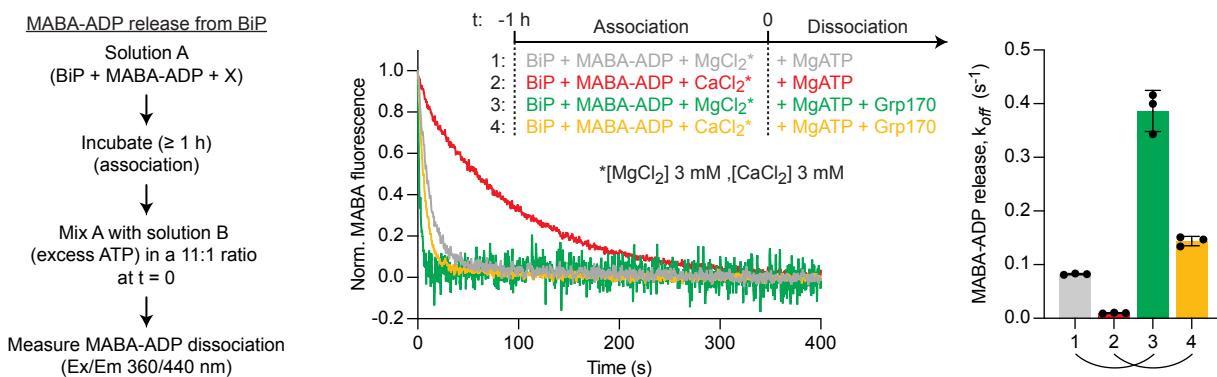
Figure 3


A)

B)

C)

Figure 3

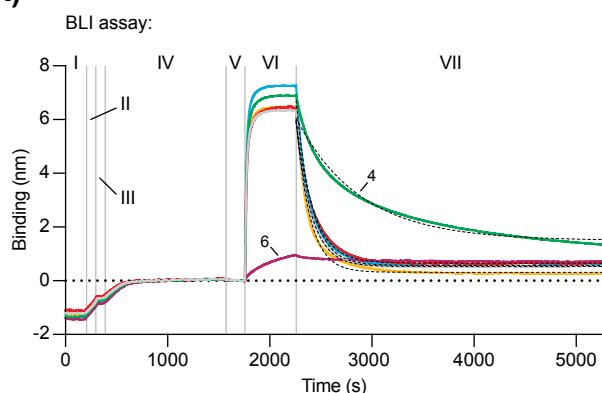

Differential effect of Ca^{2+} on ATP and ADP binding to BiP

A) Representative plot of fluorescence against time of pre-formed complexes of MABA-ADP and BiP (each 1.3 μM) challenged at $t = 0$ with excess of MgATP (1.5 mM) to reveal nucleotide release. All solutions contained 3 mM MgCl₂, CaCl₂ (1 mM) and Grp170 (1.3 μM) were added at $t = -1$ or $t = 0$ as indicated. Graph: mean MABA-ADP dissociation rate constants (k_{off}) \pm SD from three independent experiments (the curved line connecting conditions 1 & 4 and 3 & 5 emphasises the effect of calcium on the activity of Grp170).

B) MABA-ADP dissociation rates from BiP plotted against [CaCl₂] of a representative experiment. The experiment was performed as in ‘A’. All samples contained MgCl₂ (3 mM). CaCl₂ was present at increasing concentrations during nucleotide binding (solution A). The half maximal inhibitory concentration (IC₅₀) of CaCl₂ (mean \pm SD) was calculated from three independent experiments.

C) Effect of Ca²⁺ on affinities of nucleotides for BiP. The dissociation rates of MABA-ADP and MABA-ATP from wildtype or ATPase-impaired T229A mutant BiP were measured as in ‘A’, whereby either MgCl₂ or CaCl₂ (1 mM) were present throughout the experiment (solutions A and B). The association rate constants (k_{on}) were measured upon addition of MABA-labelled nucleotides to BiP in presence of either divalent cation. The dissociation constants (K_{D}) were calculated based on the rate constants ($k_{\text{off}}/k_{\text{on}}$). Nucleotide-free proteins were used. Bars: mean \pm SD. All the data points from ≥ 3 independent experiments are shown.

Figure 3-figure supplement 1

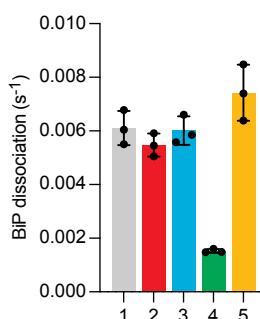

Figure 3-figure supplement 1

Dissociation BiP•MABA-ADP complexes formed in presence of either Mg²⁺ or Ca²⁺

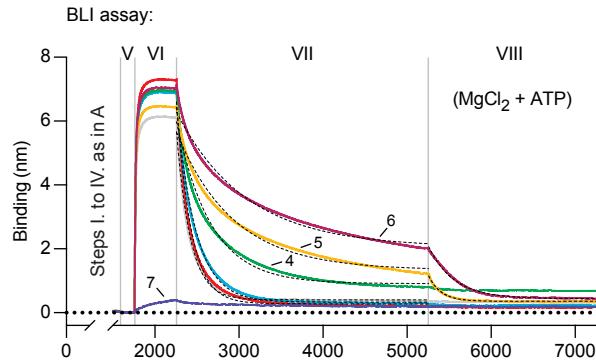
Representative plot of fluorescence against time of complexes of MABA-ADP and BiP (each 1.3 μ M) formed in presence of either MgCl₂ or CaCl₂ (each 3 mM). Excess of MgATP (1.5 mM) without or with Grp170 (1.3 μ M) was added at t = 0 to reveal nucleotide release. Graph: mean MABA-ADP dissociation rate constants (k_{off}) \pm SD from three independent experiments. Final concentrations after mixing are given. Note: the stronger stimulatory effect of Grp170 compared to **Figure 3A** may be due to variations in the experimental conditions.

Figure 4

A)


Steps:

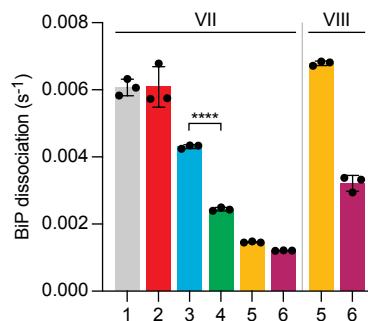
- I. Sensor equilibration
- II. J or JQPD loading
- III. Wash
- IV. P15 peptide loading
- V. Baseline
- VI. BiP association
- VII. BiP dissociation


VI. Association (BiP +) VII. Dissociation

1 $\text{MgCl}_2 + \text{ATP}$	$\text{MgCl}_2 + \text{ATP}$
2 $\text{MgCl}_2 + \text{CaCl}_2 + \text{ATP}$	$\text{MgCl}_2 + \text{ATP}$
3 $\text{MgCl}_2 + \text{ATP}$	$\text{MgCl}_2 + \text{CaCl}_2 + \text{ATP}$
4 $\text{MgCl}_2 + \text{ATP}$	$\text{MgCl}_2 + \text{ADP}$
5 $\text{MgCl}_2 + \text{ATP}$	$\text{CaCl}_2 + \text{ATP}$
6 $\text{MgCl}_2 + \text{ATP} (\text{JQPD})$	$\text{MgCl}_2 + \text{ATP}$

Conc. 1.5 mM ATP, 1.5 mM ADP,
3 mM MgCl_2 , 1 mM CaCl_2

B)

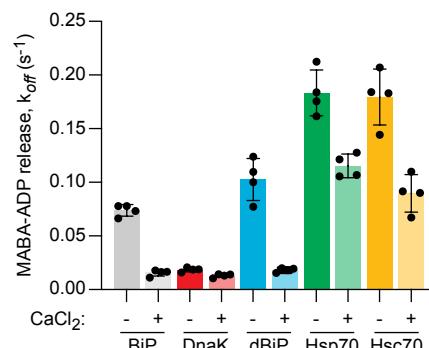
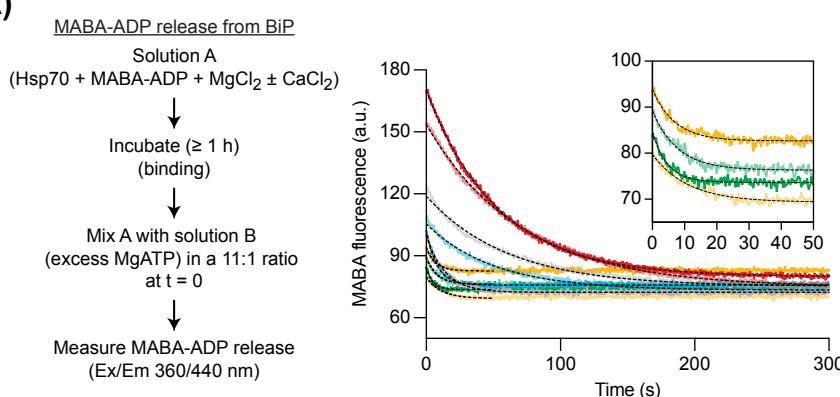


VI. Association: BiP + $\text{MgCl}_2 + \text{ATP}$

VII. Dissociation

1 $\text{MgCl}_2 + \text{ATP}$	$\text{MgCl}_2 + \text{ATP}$
2 $\text{MgCl}_2 + \text{CaCl}_2 + \text{ATP}$	$\text{MgCl}_2 + \text{ATP}$
3 $\text{MgCl}_2 + \text{ATP} + \text{ADP}$	$\text{MgCl}_2 + \text{CaCl}_2 + \text{ATP} + \text{ADP}$
4 $\text{MgCl}_2 + \text{ATP} + \text{ADP}$	$\text{MgCl}_2 + \text{ADP}$
5 $\text{MgCl}_2 + \text{ADP}$	$\text{CaCl}_2 + \text{ADP}$
6 $\text{CaCl}_2 + \text{ADP}$	$\text{MgCl}_2 + \text{ATP} (\text{JQPD})$
7 $\text{MgCl}_2 + \text{ATP} (\text{JQPD})$	

Conc. 1.5 mM ATP, 0.75 mM ADP,
3 mM MgCl_2 , 1 mM CaCl_2



Figure 4

Ca²⁺ affects ATP-dependent dissociation of substrates from BiP

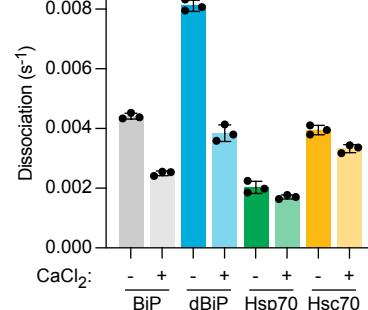
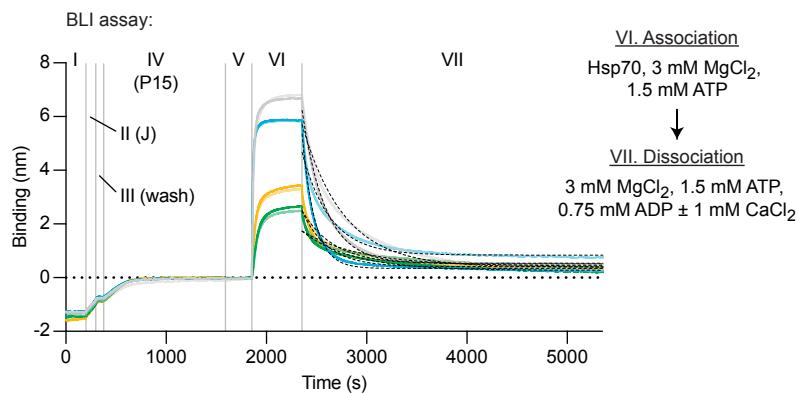
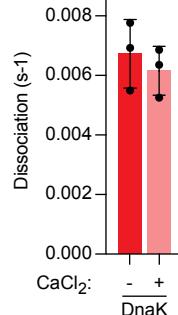
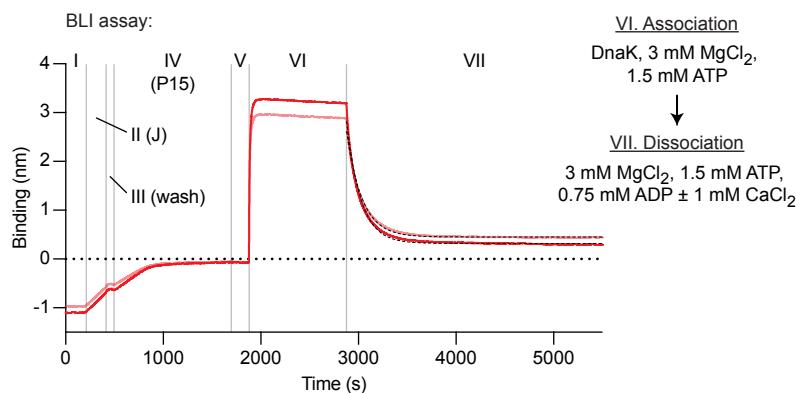


A-B) A representative plot of the Bio-Layer interferometry (BLI) signal against time. The individual steps of the experiment (I-VII) are indicated: following an initial equilibration step (I) biotinylated wildtype or QPD mutant J-domain protein was immobilized corresponding to an interference signal difference of ~0.4 nm (II). After a wash step (III) the sensors were saturated with biotinylated P15 BiP substrate peptide (IV). After a stable baseline signal was established (V) the sensors were transferred into solutions containing BiP to measure association in presence of ATP (VI). Dissociation of BiP from the sensor was measured in protein-free solutions containing either ADP or ATP (VII). The composition of solutions in steps VI and VII as well as the concentrations of the variable components are indicated. **(A)** MgCl₂ and/or CaCl₂ were present where indicated. Dashed lines represent single exponential fit curves. Graph: mean dissociation rate constants (k_{off}) \pm SD from three independent experiments. **(B)** Same as ‘A’ but with identical solutions for all sensors in step VI and varying solution compositions in step VII. In the additional step (VIII) the sensors were introduced into solutions containing ATP and MgCl₂. **** $p < 0.0001$, 95% CI -0.00198822 to -0.00174311, two-tailed, unpaired, parametric t -test.

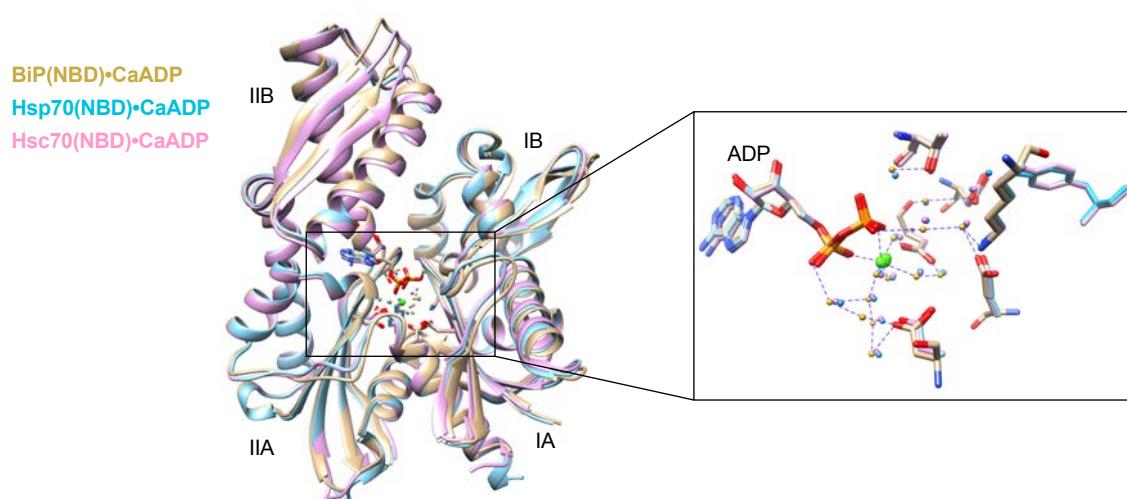
Figure 5



A)

B)

C)

Figure 5


Ca²⁺ selectively stabilises BiP•ADP compared with cytoplasmic Hsp70s

A) Representative plot of fluorescence against time of complexes of MABA-ADP and indicated full-length Hsp70 chaperones (each 1.3 μ M) formed without or with CaCl₂ (1 mM) (dBiP, *Drosophila* BiP). All solutions contained MgCl₂ (3 mM). Excess of MgATP (1.5 mM) was added at t = 0 to reveal MABA-ADP release. Final concentrations are given. Graph: mean MABA-ADP dissociation rate constants (k_{off}) \pm SD from four independent experiments.

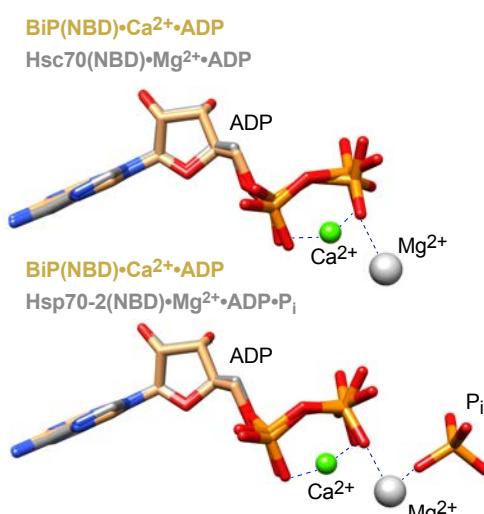
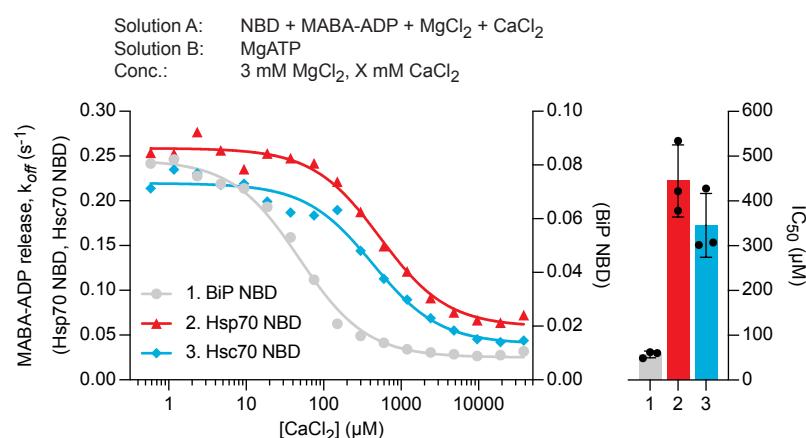
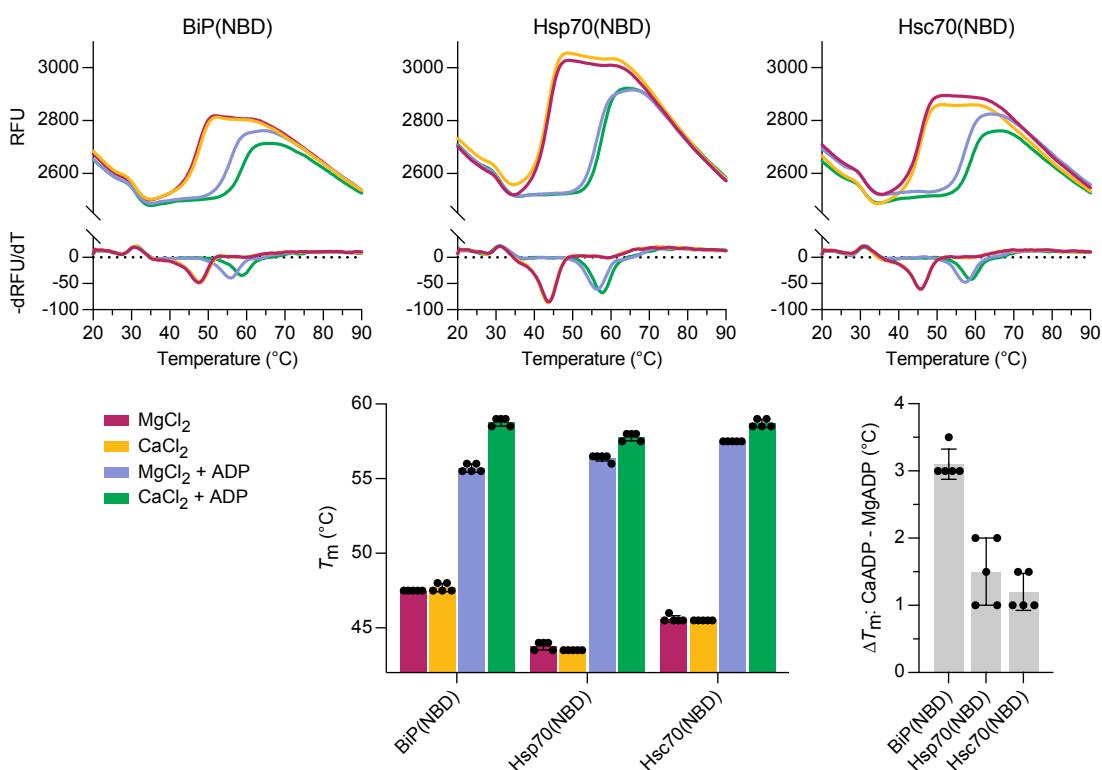

B-C) A representative plot of the Bio-Layer interferometry (BLI) signal against time. The experiments were performed as in **Figure 4A** with the indicated Hsp70s. Dissociation of Hsp70s from the sensor was measured in protein-free solutions (VII). The composition of solutions in steps VI and VII as well as the concentrations of the variable components are indicated. **(B)** Analysis of eukaryotic Hsp70s. Dashed lines represent single exponential fit curves. Graph: mean dissociation rate constants (k_{off}) \pm SD from three independent experiments. **(C)** Same as 'B' but with *E. coli* DnaK.

Figure 6


A)


B)

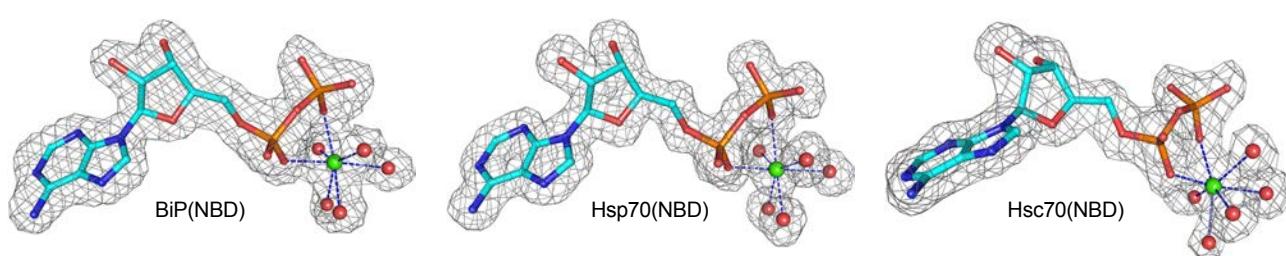
C)

D)

Figure 6

Structural analysis of Ca^{2+} and ADP binding to Hsp70 nucleotide binding domains

A) Ribbon diagram of the aligned crystal structures of BiP (yellow), Hsp70 (blue) and Hsc70 (pink) nucleotide binding domains (NBD) in complex with Ca^{2+} and ADP. The subdomains IA-IIIB are indicated. Inset: coordination of Ca^{2+} ions (green) by water (small spheres) and ADP in the nucleotide binding cleft.


B) Nucleotide and metal ion ligands of BiP(NBD)• Ca^{2+} •ADP (as in 'A') and bovine Hsc70(NBD) • Mg^{2+} •ADP (PDB 1BA1) or human Hsp70-2(NBD)• Mg^{2+} •ADP• P_i (PDB 3I33) based on nucleotide alignment. ADP, inorganic phosphate (P_i), Ca^{2+} (green sphere), and Mg^{2+} (grey sphere) are shown.

C) MABA-ADP dissociation rates from the indicated NBDs plotted against $[\text{CaCl}_2]$ of a representative experiment. The experiment was performed as in **Figure 3A**. All samples contained MgCl_2 (3 mM). CaCl_2 was present at increasing concentrations during NBD•MABA-ADP complex formation. Bars: the half maximal inhibitory concentration (IC_{50}) of CaCl_2 (mean \pm SD) was calculated from three independent experiments.

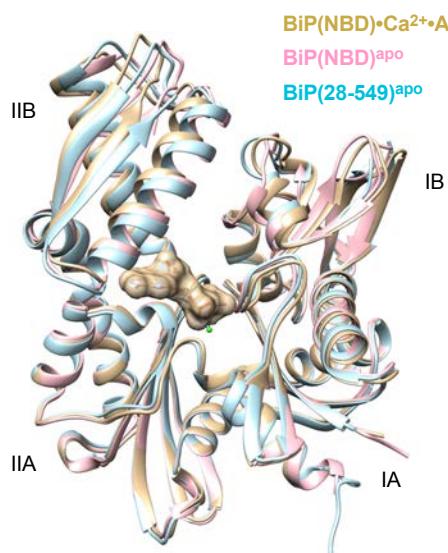
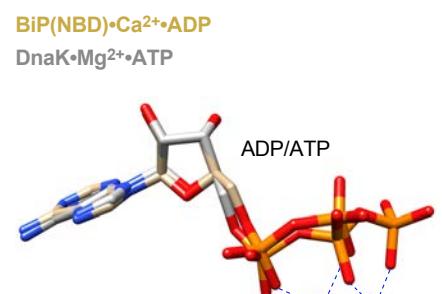
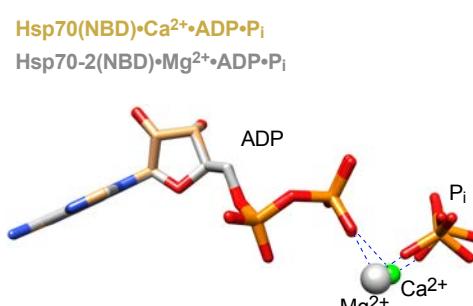
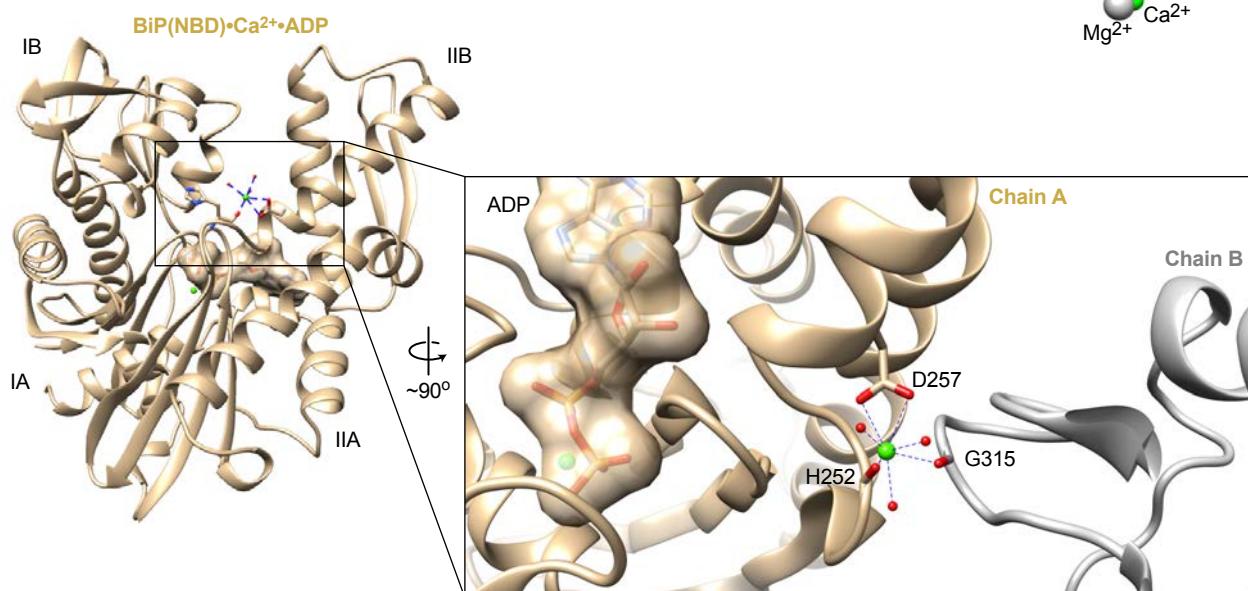

D) Melting temperatures (T_m) of the indicated NBDs (at 5 μM) were measured by differential scanning fluorimetry (DSF) in presence of MgCl_2 or CaCl_2 (each 6 mM) without or with ADP (4 mM). Top: representative melt curves with their negative first derivatives (RFU, relative fluorescence units). Left bar graph: mean $T_m \pm \text{SD}$ of three independent experiments. Right bar graph: difference in T_m (ΔT_m) between MgADP and CaADP containing samples.

Figure 6-figure supplement 1


A)


B)


C)

D)

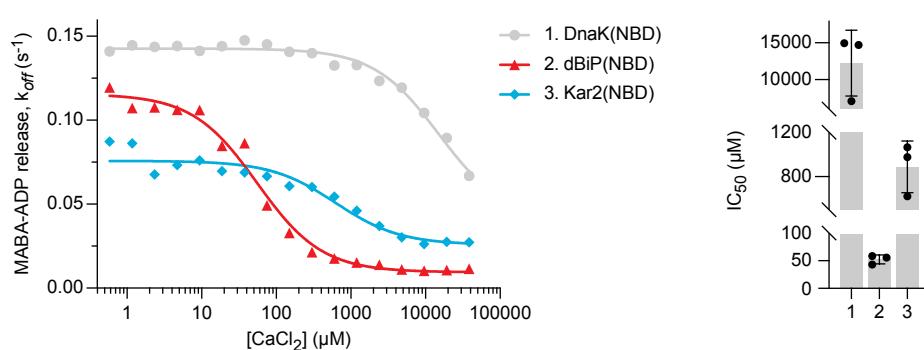
E)

Figure 6-figure supplement 1

Structural details of nucleotide binding domains and their ligands

A) Polder OMIT maps (grey mesh) of BiP, Hsp70, and Hsc70 nucleotide binding domain (NBD) ligands omitting ADP (sticks), Ca^{2+} (green sphere), and water molecules (red spheres) contoured at 3.80 RMSD and including density within 1.6 Å of all atoms shown.

B) Ribbon diagram of NBDs of (i) BiP(NBD)• Ca^{2+} •ADP aligned with (ii) BiP(NBD)^{apo} (PDB 3LDN) (RMSD i vs. ii 0.75 over 336 C_α) and (iii) BiP(28-549)^{apo} (PDB 6HAB) (RMSD i vs. iii 0.776 over 311 C_α). The nucleotide is shown in surface representation and the Ca^{2+} ion (green sphere) is indicated.


C) Nucleotide and metal ion ligands of BiP(NBD)• Ca^{2+} •ADP and DnaK• Mg^{2+} •ATP (PDB 4B9Q) based on nucleotide alignment. ADP, ATP, Ca^{2+} (green sphere), and Mg^{2+} (grey sphere) are shown.

D) Nucleotide and metal ion ligands of human Hsp70-2(NBD)• Mg^{2+} ADP• P_i (PDB 3I33) and human Hsp70(NBD)• Ca^{2+} •ADP• P_i (PDB 1S3X) based on nucleotide alignment. ADP, Ca^{2+} (green sphere), and Mg^{2+} (grey sphere) are shown.

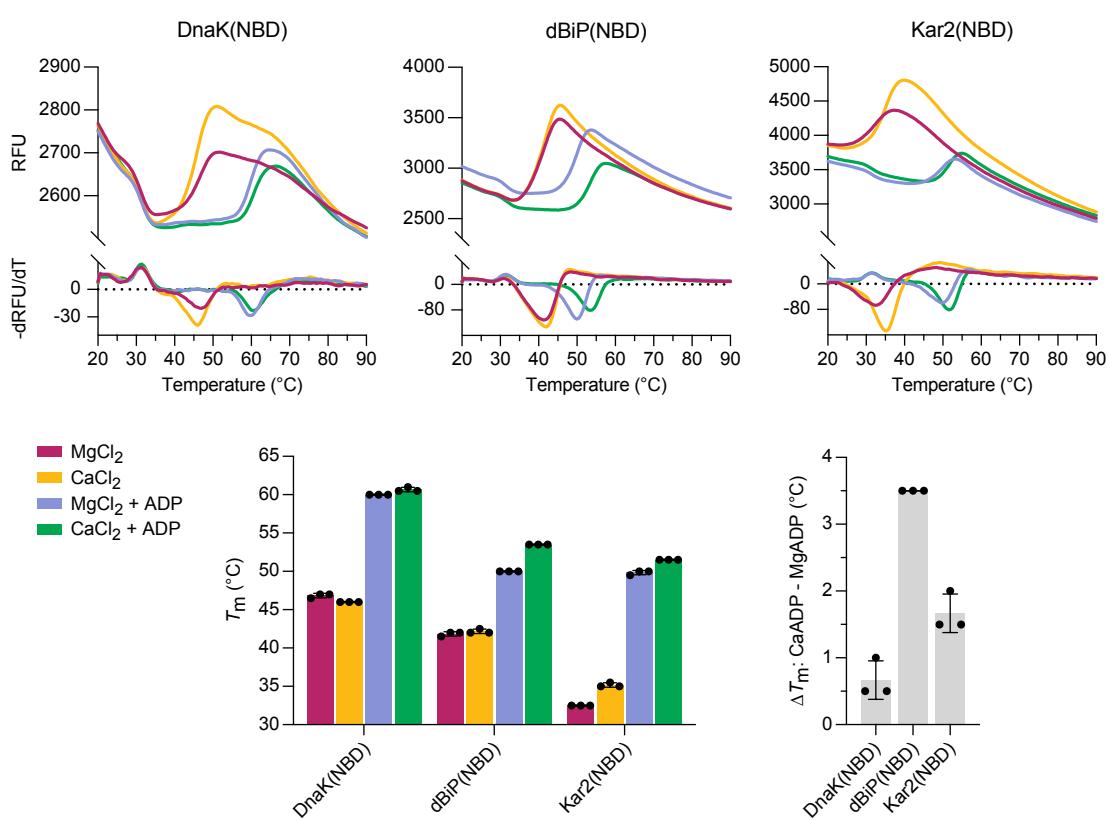
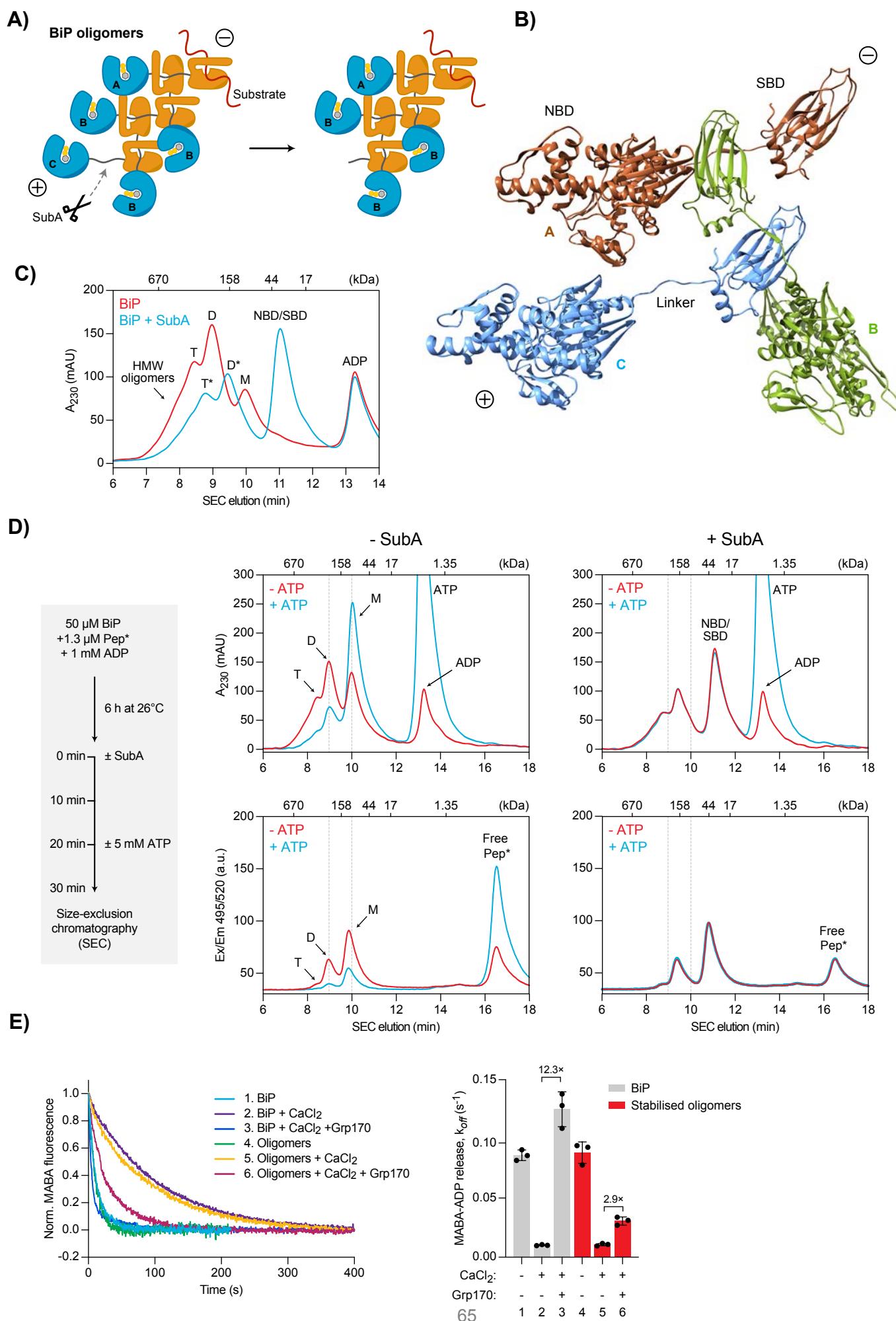

E) Ribbon diagram showing coordination of a surface-bound Ca^{2+} ion (green sphere) in the BiP(NBD) structure, involving contacts to the crystallographic neighbouring molecule (chain B; grey). Relevant water molecules (red spheres) as well as ADP (surface representation) and Ca^{2+} within the nucleotide binding cleft are indicated. A Ca^{2+} ion was also identified at the corresponding surface position in structures of Hsp70(NBD) and Hsc70(NBD). In neither case does this Ca^{2+} ion participate in coordination of the nucleotide.

Figure 6-figure supplement 2

A)

B)


Figure 6-figure supplement 2

Characterisation of nucleotide binding domains of *Drosophila* BiP, DnaK, and Kar2

A) MABA-ADP dissociation rates from the indicated NBDs plotted against $[CaCl_2]$ of a representative experiment. The experiment was performed as in **Figure 3A**. All samples contained $MgCl_2$ (3 mM). $CaCl_2$ was present at increasing concentrations during NBD:MABA-ADP complex formation. Graph: the half maximal inhibitory concentration (IC_{50}) of $CaCl_2$ (mean \pm SD) was calculated from three independent experiments.

B) Melting temperatures (T_m) of the indicated NBDs (at 5 μM) were measured by differential scanning fluorimetry (DSF) in presence of $MgCl_2$ or $CaCl_2$ (each 6 mM) without or with ADP (4 mM). Top: representative melt curves with their negative first derivatives (RFU, relative fluorescence units). Left bar graph: mean $T_m \pm SD$ of three independent experiments. Right bar graph: difference in T_m (ΔT_m) between MgADP and CaADP containing samples.

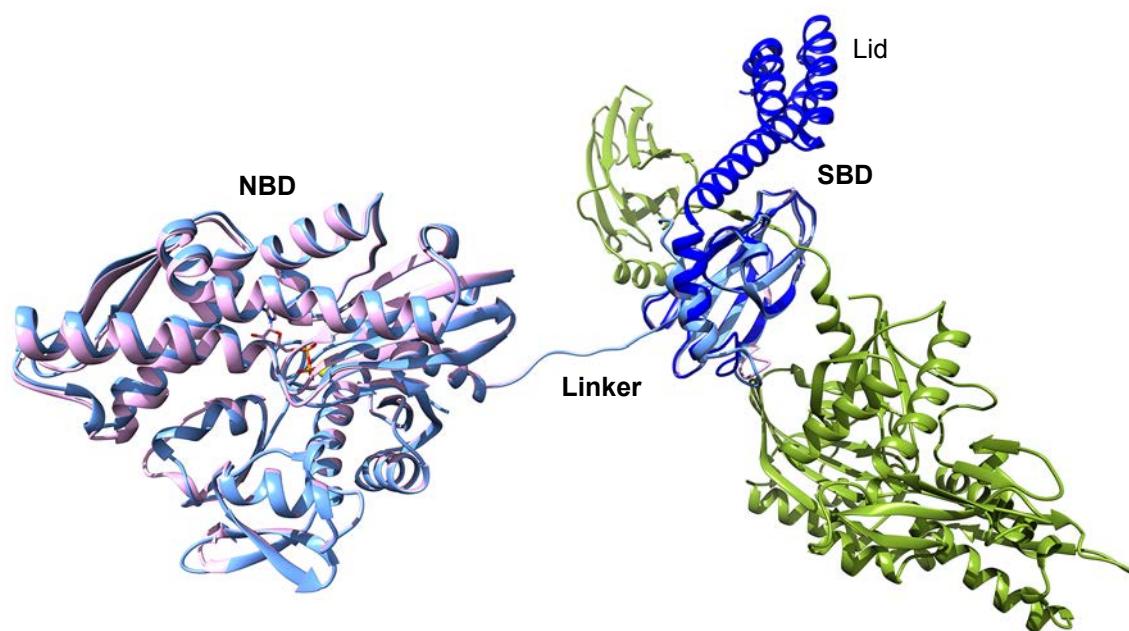
Figure 7

Figure 7

Effect of calcium on BiP oligomers *in vitro*

A) Schematic representation of BiP oligomers. Unfolded substrate protein (red) and the distinct types of BiP protomers (A, B and C) are shown. Oligomers are directional assemblies with minus (-) and plus (+) ends. The cleavage site for the BiP linker-specific protease SubA (scissors) is only accessible on (+)-end protomer (C). The predicted inert BiP oligomer lacking the C protomer nucleotide binding domain (a result of SubA cleavage) is shown on the right.

B) Ribbon diagram of apo BiP^{T229A-V461F} oligomers formed by typical substrate interactions between protomers. Three protomers (labelled A-C according to 'A') are presented in different colours.


C) Size-exclusion chromatography (SEC) elution profile of BiP. BiP was incubated with ADP (1 mM) and where indicated treated with SubA before SEC. Monomeric (M), dimeric (D), and trimeric BiP (T) is indicated. Heterogenous high molecular weight (HMW) BiP complexes elute early as a shoulder. Note that the peaks of proteolytic cleavage products originating from trimers and dimers (*) are shifted to later elution times. Also note the disappearance of BiP monomers and a new peak of the individual nucleotide and substrate binding domains (NBD and SBD) after treatment with SubA.

D) SEC elution profile as in 'C' of BiP and substrate peptide. BiP was incubated with trace amounts of fluorescently labelled substrate peptide (NR; Pep*) in presence of ADP at indicated concentrations. Where indicated the samples were exposed at $t = 0$ to SubA for 30 min before SEC. Where indicated excess of ATP was added 10 min before SEC. Peptide bond absorbance at 230 nm (A_{230}) and the fluorescence signal of the labelled peptide were recorded separately.

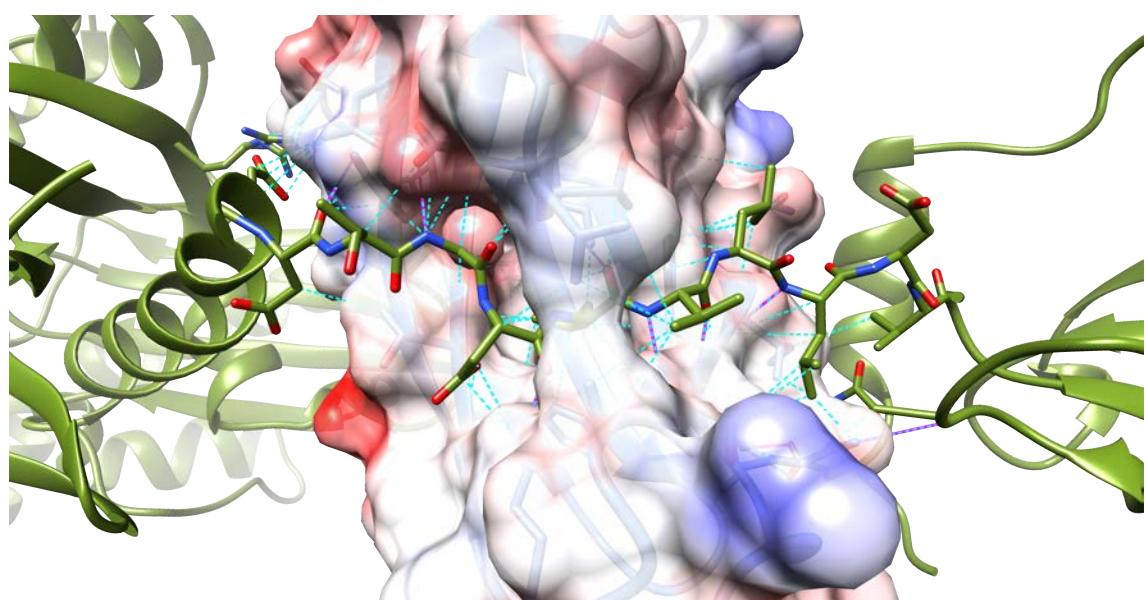
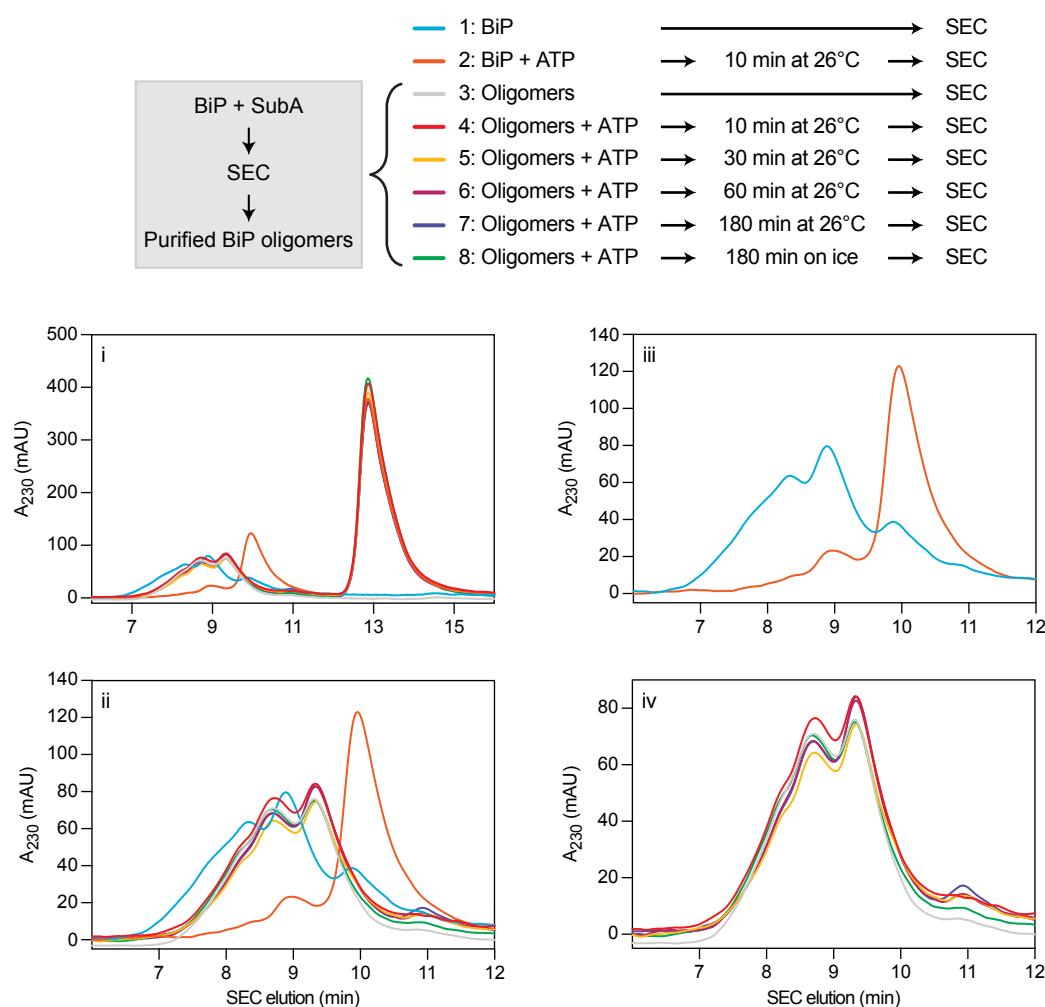

E) Representative plot of fluorescence against time of complexes of MABA-ADP and BiP or purified, stabilised BiP oligomers (each 1.3 μ M) formed in presence of either MgCl₂ or CaCl₂ (each 3 mM). Excess of ATP (1.5 mM) without or with Grp170 (1.3 μ M) was added at $t = 0$ to reveal nucleotide release. Graph: mean MABA-ADP dissociation rate constants (k_{off}) \pm SD from three independent experiments. Final concentrations are given.

Figure 7-figure supplement 1

A)

B)

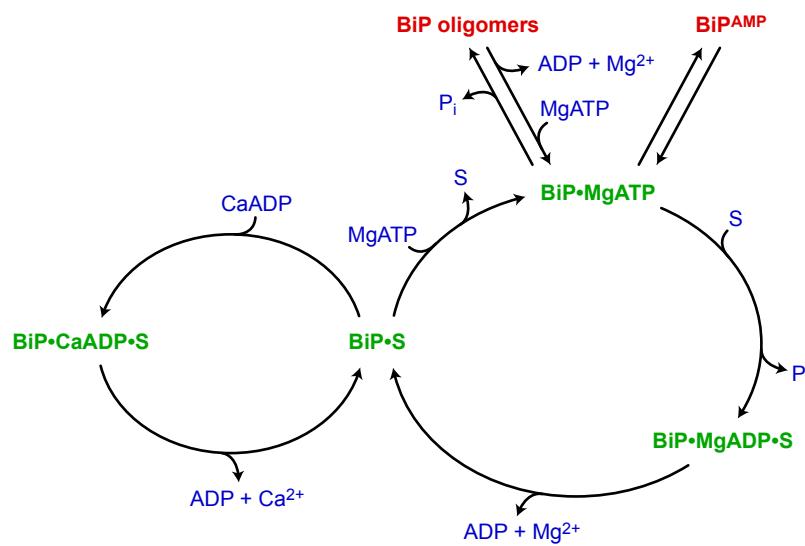

Figure 7-figure supplement 1

Structural features of oligomeric BiP

A) Superposition of the asymmetric unit of a lid-truncated ADP-bound oligomeric BiP (pink) onto the biological (dimeric) assembly of oligomeric apo-BiP protomers (light blue and green, as in Figure 7B) reveals a highly similar conformation. ADP is shown in stick form with its coordinating K^+ ion (yellow sphere). The isolated substrate binding domain (SBD) of DnaK, including the C-terminal lid structure in the closed conformation (dark blue; PDB 1DKZ), is also aligned and reveals only minor conformational differences to the lid-truncated SBD of oligomeric BiP.

B) Close-up view of the interdomain linker of one BiP protomer (green) bound to the SBD of another BiP protomer as in ‘A’. The surface of the linker-binding SBD is shown with translucent coulombic surface colouring. All residues participating in trans-protomer interactions are shown as sticks. Hydrogen bonds are highlighted with solid magenta pseudo bonds and van der Waals interactions are represented by cyan dashed pseudo bonds. Note that the majority of the linker side chains occupy the hydrophobic surface of the substrate binding groove and most polar bonds are to mainchain amide atoms of the β -sheet scaffold of the SBD.

Figure 7-figure supplement 2


Figure 7-figure supplement 2

Stability of purified BiP oligomers after cleavage with SubA, assessed by size-exclusion chromatography

Size-exclusion chromatography (SEC) elution profile of BiP or purified BiP oligomers. BiP oligomers were isolated after cleavage by SubA and frozen. Thawed samples were exposed to ATP for indicated times before SEC analysis. As a control, uncleaved BiP was loaded. Note that purified BiP oligomers were stable in presence of ATP.

Panels ‘ii – iv’ represent different detailed views of the chromatogram shown in ‘i’.

Figure 8

Figure 8

Calcium-dependent alternative fates of BiP during nucleotide exchange

The interaction of BiP with its substrates (S) is driven by an ATPase-dependent chaperone cycle, whereby ATP binding triggers substrate release and ATP hydrolysis (to ADP and orthophosphate; P_i) induces high-affinity substrate binding (right cycle). Re-binding of ADP (instead of ATP) to BiP during post-hydrolysis nucleotide exchange stabilises the interaction between BiP and substrate (left cycle). Because Ca^{2+} enhances the affinity of ADP for BiP, and ADP competes with ATP for binding to BiP, substrate interaction-stabilising ADP-to-ADP exchange cycles are favoured by high $[Ca^{2+}]$ and a low ATP:ADP ratio, whereas a decline in $[Ca^{2+}]$ favours ADP-to-ATP exchange and substrate release. BiP can also oligomerise into conformationally-locked (functionally inactive) assemblies by ATP hydrolysis-dependent substrate interactions amongst BiP proteins. The restricted ability of oligomeric BiP to respond allosterically to ATP binding (and the resistance of oligomeric BiP to NEF-stimulated ADP release; not shown) kinetically stabilises oligomers at the expense of heterodimeric BiP-substrate complexes in the Ca^{2+} -depleted ER. In the ATP-bound state, BiP is also subject to inactivation by reversible, covalent modification — AMPylation (BiP^{AMP}), however, this process is in competition both with recruitment of BiP to the chaperone cycle and with oligomerisation.

Table S1

	BiP NBD	Hsp70 NBD	Hsc70 NBD	Apo BiP Oligomer	ADP BiP Oligomer
Data collection					
Synchrotron stations (DLS)	I03	I04	I04	I24	I24
Space group	P1	P2 ₁ 2 ₁ 2 ₁	P12 ₁ 1	P12 ₁ 1	P12 ₁ 1
a,b,c; Å	48.36, 51.86, 93.08	46.17, 63.71, 144.50	73.68, 78.04, 75.38	50.33, 51.29, 119.72	50.18, 51.25, 188.80
α, β, γ; °	78.07, 86.72, 62.28	90.00, 90.00, 90.00	90.00, 101.26, 90.00	90.00, 100.17, 90.00	90.00, 99.77, 90.00
Resolution, Å*	29.14-1.88 (1.92-1.88)	29.53-1.52 (1.54-1.52)	73.73-1.85 (1.89-1.85)	59.92-1.77 (1.81-1.77)	29.27-1.94 (1.99-1.94)
Rmerge*	0.063 (0.989)	0.065 (0.703)	0.120 (1.005)	0.054 (0.844)	0.047 (0.533)
<I/σ(I)>*	18.2 (1.8)	14.0 (2.3)	8.9 (1.4)	9.9 (1.1)	13.7 (2.0)
CC1/2*	0.999 (0.669)	0.998 (0.814)	0.998 (0.633)	0.975 (0.531)	0.999 (0.717)
No. of unique reflections*	62200 (3792)	66932 (3125)	71566 (4400)	58872 (3347)	43705 (2937)
Completeness, %*	97.4 (90.4)	99.7 (95.1)	100.0 (100.0)	99.9 (99.8)	99.1 (94.5)
Redundancy *	8.9 (7.5)	6.7 (6.3)	6.7 (5.7)	3.2 (3.2)	3.3 (3.2)
Refinement					
Rwork/Rfree	0.209/0.225	0.196/0.212	0.218/0.247	0.185/0.217	0.184/0.226
No. of atoms (non H)	6137	3417	6399	4432	4327
Average B-factors	32.46	18.59	22.9	32.8	34.439
RMS Bond lengths Å	0.002	0.002	0.002	0.006	0.006
RMS Bond angles, °	1.163	1.163	1.172	1.341	1.338
Ramachandran favoured region, %	99.34	99.17	98.28	98.66	98.27
Ramachandran outliers, %	0	0	0	0	0

MolProbity score [†]	0.78 (100)	0.83 (100)	0.80 (100)	0.96 (100)	0.99 (100)
PDB code	6ZYH	6ZYI	6ZYJ	7A4U	7A4V

Table S1 Data Collection and refinement statistics.

*Values in parentheses are for highest-resolution shell.

†100th percentile is the best among structures of comparable resolutions. 0th percentile is the worst.

Table S2

ID	Plasmid name	Description	Encoded protein	Reference
UK173	haBiP_27-654_pQE10	Bacterial expression of His-tagged Chinese hamster BiP amino acids 27-654	BiP	PMID: 18923430
UK838	haBiP_27-654_T229A_pQE10	Bacterial expression of His-tagged ATPase deficient mutant Chinese hamster BiP amino acids 27-654	BiP ^{T229A}	PMID: 26473973
UK1965	mP58_390-455_WT_AviTag_c	Bacterial expression of minimal murine ERdj6 J-domain WT amino acids 390-455 with C-term AviTag-His6	J	This study
UK1966	mP58_390-455_H422Q_AviTa	Bacterial expression of minimal murine ERdj6 J-domain amino acids 390-455 with C-term AviTag-His6 and a H422Q mutation	J ^{OPD}	This study
UK1983	yUlp1(402-621)-StrepII_pET24	Bacterial expression vector for the production of yeast Ulp1 protease with a C-terminal StrepII tag	Ulp1-StrepII	PMID: 31531998
UK2039	haBiP_28-413_WT_pQE30_Sn	Bacterial expression of Chinese hamster BiP NBD (amino acids 28-413) without acidic N-term	BiP NBD	This study
UK2090	haBiP_28-549_T229A_V461F	Bacterial expression of ATPase and substrate binding deficient, lid truncated BiP (N-terminal H6-Smt3 fusion)	Lidless BiP	This study
UK2093	hsHYPE_104-445_L258D_H363	Bacterial expression of inactive and monomeric human H363A mutant of His6-Smt3-HYPE_104-445	FICD	PMID: 31531998
UK2225	huORP150_33-999_pCA833	Bacterial expression of human ORP150/Grp170 (from Claes Andreasson) with N-terminal His6-Smt3	Grp170	Gift from Claes Andréasson lab
UK2243	pSUMO-DnaK	Bacterial expression of E. coli DnaK carrying N-terminal His6-Smt3 on a pET-24-derivative	DnaK	PMID: 29064368
UK2354	dBiP_29-635_pQE30_Smt3	Bacterial expression of Drosophila melanogaster BiP amino acids 29-635 with N-terminal His6-SUMO	dBiP	This study
UK2469	FLAGM1_TCRα_22-243 IL2RA	Mammalian expression of TCRα (source sequence PMID 3027582) FLAG-M1- and turquoise-tagged with a transmembrane domain of IL2RA	TCRα	This study
UK2470	EcDnaJ_1-72_AviTag_pET30a	Bacterial Expression of isolated J-domain of E. coli DnaJ (amino acids 1-72) as a fusion with AviTag-His6	DnaJ	This study
UK2510	pCA528-hsHsp70	Bacterial expression of full-length human HSPA1A (Hsp70) (natural variant E110D)	Hsp70	Gift from Matthias P. Mayer lab
UK2511	pCA528-hsHsc70	Bacterial expression of full-length human HSPA8 (Hsc70)	Hsc70	Gift from Matthias P. Mayer lab
UK2520	FLAGM1_TCRα_22-243_N/Q	Mammalian expression of non-glycosylated version of TCRα-n/Q FLAG-M1- and turquoise-tagged with a transmembrane domain of IL2RA	TCRα-N/Q	This study
UK2531	pSUMO-DnaK-1-388	Bacterial expression of E. coli DnaK NBD amino acids 1-388 with N-terminal Smt3-His6 tag	DnaK NBD	This study
UK2532	pSUMO-Hsp70-1-390	Bacterial expression of human Hsp70 NBD amino acids 1-390 with N-terminal Smt3-His6 tag (natural variant E110D)	Hsp70 NBD	This study
UK2533	pSUMO-Hsc70_1-390	Bacterial expression of human Hsc70 NBD amino acids 1-390 with N-terminal Smt3-His6 tag	Hsc70 NBD	This study
UK2534	dBiP-NBD_pQE30-H6-Smt3	Bacterial expression of Drosophila melanogaster dBiP NBD with N-terminal Smt3-His6 tag	dBiP NBD	This study
UK2606	Kar2_42-433_pCA528_pET24a	Bacterial expression Saccharomyces cerevisiae Kar2 NBD amino acids 42-433 with N-terminal Smt3-His6 tag	Kar2 NBD	This study