

1 **Role and Dynamics of Vacuolar pH during Cell-in-Cell mediated**
2 **Death**

3

4 Yan Su^{1,2}, He Ren^{2,3}, Meng Tang^{2,3}, You Zheng², Bo Zhang^{2,3}, Chenxi Wang², Xinyu

5 Hou³, Zubiao Niu², Lihua Gao², Zhaolie Chen², Tianzhi Luo^{1*}, Qiang Sun^{2*}

6

7 ¹*CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department*

8 *of Modern Mechanics, University of Science and Technology of China, Hefei, China;*

9 ²*Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street,*

10 *Beijing 100071, China;*

11 ³*Department of Oncology, Beijing Shijitan Hospital of Capital Medical University,*

12 *Beijing, China*

13

14 *Correspondence:

15 Qiang Sun at sunq@bmi.ac.cn

16 Tianzhi Luo at tzluo@ustc.edu

17

18

19 **Abstract**

20 The non-autonomous cell death by entosis was mediated by the so-called cell-in-cell
21 structures, which were believed to kill the internalized cells by a mechanism
22 dependent on acidified lysosomes. However, the precise values and roles of pH
23 critical for the death of the internalized cells remained undetermined yet. We
24 creatively employed keima, a fluorescent protein that displays different excitation
25 spectra in responding to pH changes, to monitor the pH dynamics of the entotic
26 vacuoles during cell-in-cell mediated death. We found that different cells varied in
27 their basal intracellular pH, and the pH was relatively stable for entotic vacuoles
28 containing live cells, but sharply dropped to a narrow range along with the inner cell
29 death. In contrast, the lipidation of entotic vacuoles by LC3 displayed previously
30 underappreciated complex patterns associated with entotic and apoptotic death,
31 respectively. The pH decline seemed to play distinct roles in the two types of inner
32 cell deaths, where apoptosis is preceded with moderate pH decline while a profound
33 pH decline is likely to be determinate for entotic death. Whereas the cancer cells
34 seemed to be lesser tolerant to acidified environments than non-cancerous cells,
35 manipulating vacuolar pH could effectively control inner cell fates and switch the
36 ways whereby inner cell die. Together, this study demonstrated for the first time the
37 pH dynamics of entotic vacuoles that dictate the fates of internalized cells, providing a
38 rationale for tuning cellular pH as a potential way to treat cell-in-cell associated
39 diseases such as cancer.

40 **Keywords:** keima, pH, cell death, cell-in-cell, entosis

41

42 **Introduction**

43 Cell-in-cell structure (CICs) refers to a unique type of cellular structure characterized
44 by the enclosure of one or more cells into the cytosolic vacuoles of another cell. CICs
45 had been mostly documented in various of human tumors^{1,2}, such as pancreatic cancer
46³⁻⁵, head and neck squamous cell carcinoma⁶ and breast cancer^{7,8}, where it was
47 proposed to mediate competition between tumor cells to facilitate clonal selection and
48 tumor evolution⁹. Meanwhile, recent studies implicated CICs in a wider range of
49 biological processes, such as embryonic development¹⁰, genome stability^{11,12}, virus
50 infection^{13,14} and immune homeostasis^{15,16} and the like. Over the past decade,
51 intensive efforts were endeavored to decipher the molecular mechanisms underlying
52 the formation of CICs, among which entosis represents one of the mostly studied
53 programs. During entotic CIC formation, the polarized adherens junction and
54 contractile actomyosin are two well-established core elements^{17,18}. Recently, the
55 vinculin-enriched mechanical ring was identified as a novel core element interfacing
56 between adherens junction and actomyosin to coordinate cell internalization¹⁹.
57 Besides, a group of factors, by acting on the core elements, were identified to regulate
58 CIC formation, such as PCDH7, CDKN2A, MTRF and LPA and the like²⁰⁻²⁵.

59 Despite of the great progress made on the formation mechanisms for CICs, much
60 less is known about the fate control of the internalized cell in CICs. It was proposed
61 that entosis was a CICs-mediated type IV programmed death²⁶, which resulted in
62 lysosomal entotic death as a predominant mechanism and apoptotic death as an

63 alternate program when lysosomal function was disrupted²⁷. The LC3 lipidation onto
64 the entotic vacuole seemed to be associated with the death of the internalized cells via
65 facilitating its fusion with adjacent small lysosomes²⁸. The dead inner cells were
66 cleared by entotic vacuoles, as a huge lysosome actually, through active fusion and
67 fission processes^{29,30}. Nevertheless, previous studies of the death mechanisms of the
68 internalized cells had not dealt with the critical condition of lysosome acidification for
69 cell death and degradation, and the determined turning point for the fates of
70 internalized cells.

71 We here introduced keima^{31,32}, a protein pH sensor, to measure the precise pH of
72 entotic vacuoles during the death of internalized cells and explore the complementary
73 relationship between entotic death and apoptotic death. Keima is a coral-derived
74 acid-stable fluorescent protein that has a bimodal excitation spectrum peaking at 440
75 and 550 nm corresponding to the neutral and ionized states³². Generally, the
76 dual-excitation ratio (550 nm / 440 nm) of this probe can precisely indicate the
77 cellular pH value, allowing its extensive usage in various studies of cell physiology.
78 Keima was adopted to detect autophagic events based on lysosomal delivery³³, and
79 was also applied as a marker of mitophagy³⁴ to explore autophagosome-lysosome
80 fusion³⁵. With this genetically encoded fluorescent protein, we could conveniently
81 probe the pH dynamics of cell death occurring within cell-in-cell structures.

82 In this study, we studied the pH titration behaviors of keima-overexpressed cells
83 using gradient pH buffer, which enabled us to read out the context-specific pH value
84 for each cell lines based on its correlation with the dual-excitation ratios of keima

85 protein. The keima-overexpressed cells were then applied to the time-lapse assay to
86 measure the accurate pH value of entotic vacuole during the process of the inner cell
87 death associated with different patterns of LC3 lipidation. Moreover, we demonstrated
88 that manipulating lysosomal acidification is effective in controlling inner cell fates as
89 well as the ways whereby the inner cells die.

90 **Materials and methods**

91 **Antibodies and chemical reagents.**

92 The following antibodies were used: anti-cleaved-caspase 3 (1:200; CST, #9664s) and
93 secondary Alexa Fluor 647 anti-rabbit (1:500; Invitrogen, #A-20991). Reagents
94 including EN6 (Selleck, #S6650), Hydroxychloroquine (CQ) (MCE, #HY-W031727),
95 Concanamycin A (Con A) (Shanghai ZZbio.co, ZAE-ALX-380-034-C025), NH₄Cl
96 (Coolaber, CA30112320), Lysotracker (Invitrogen, #L7526), DAPI (Life
97 technologies, #D1306) were purchased and used according to manufacturer's
98 instructions.

99 **Cells and culture conditions.**

100 Cell lines MCF7, SW480 expressing E-cadherin (SW480/E), MDA-MB-231
101 expressing E-cadherin (MM231/E), HEK293T, and their derivatives were cultured in
102 Dulbecco's modified Eagle's medium (MACGENE Technology Ltd., Beijing, China)
103 supplemented with 10% fetal bovine serum (Kangyuan Biology, China). MCF10A and
104 their derivatives were maintained in DMEM/F12 (Gibco, USA) supplemented with 5%

105 equine serum (Kangyuan Biology, China), 20 ng/ml EGF (Peprotech, USA), 10 g/ml
106 insulin (Sigma, USA), 0.5 ug/ml hydrocortisone (Sigma, USA), and 100 ng/ml cholera
107 toxin (Sigma, USA). All cells were cultured in the humidified incubator of 5% CO₂ at
108 37°C.

109 **Cloning and generation of stable cell lines.**

110 pQCXIP-mKeima-N1 was cloned by inserting the mKeima sequence
111 (pCHAC-mt-mKeima, Addgene, #72342) into *Bam*HI/*Sal*II sites of the pQCXIP-N1
112 vector using the T4 DNA ligase (New England BioLabs, #M0202S) according to
113 manufacturer's instructions. The cDNA encoding EGFP-LC3 fusion protein was
114 released from pBABE-EGFP-LC3-puro (Addgene, #22405) and cloned into
115 pQCXIN-EGFP-N1-Neo by the 5'- *Eco*RI and 3'- *Age*I sites. To generate stable cell
116 lines, retroviruses were packaged in HEK293T cells using Lipofectamine 2000 reagent
117 (Invitrogen) as described before ³⁶. All cell lines were transduced with viruses for 24 h
118 with 8 µg/ml polybrene (Sigma). Virus-infected cells were selected and grown in
119 medium with 2 µg/ml puromycin or 200 µg /ml G418.

120 **pH titration.**

121 Cells overexpressing fluorescent protein keima were incubated in a series of buffers
122 with pH values ranging from 4.12 to 7.97, then the fluorescent signal of keima was
123 measured under the conditions of excitation of 440 nm and 550nm and emission of 610
124 nm using Nikon ECLIPSE Ti-U epi-fluorescence microscope. Then the fluorescent
125 intensity of keima was measured by NIS-Elements F 3.0 software ³⁷. The pH titration

126 curves and fitting equation were obtained by the negative correlation between the pH
127 value and the fluorescent intensity ratio of 550 nm / 440 nm of keima protein.

128 **Time-lapse microscopy.**

129 Cell-in-cell time-lapse assay was performed as previously described ². About 3 x 10⁵
130 cells were suspended in 0.5% agarose-coated plates for 6 hours, and then cell
131 suspensions were transferred and grown on cover-glass dishes. Images of cells were
132 captured for DIC and fluorescence channels (excitation of 440 nm and 550nm and
133 emission of 610 nm) every 10 min with 20 x objective lenses at 37°C and 5% CO₂ for
134 24 hours by the Nikon ECLIPSE Ti-U epi-fluorescence microscope and analyzed by
135 NIS-Elements F 3.0 software (Nikon, Japan). The timing of cell death was judged
136 morphologically by the appearance of a broken cell membrane, or cessation of cell
137 movement, or both.

138 **LysoTracker staining.**

139 LysoTracker staining was performed according to manufacturer's instructions.
140 LysoTracker FITC (Invitrogen, #L7526) dissolved in serum-free medium was added to
141 keima-expressing cells for 30 min at 37°C. After that, cells were washed with PBS and
142 cultured in complete growth medium followed by imaging using Nikon ECLIPSE Ti-U
143 epi-fluorescence microscope.

144 **Immunostaining.**

145 Immunostaining was performed as previously described³⁸. Briefly, cells were fixed in
146 4% paraformaldehyde for 10 min at room temperature, then permeabilized with 0.2%
147 Triton X-100/PBS for 3 min and washed with PBS followed by blocking with 5% BSA
148 at room temperature for 1 hour. Fixed samples were incubated with primary antibody at
149 4°C overnight and washed with PBS before incubated with fluorophore-labeled
150 secondary antibodies at room temperature for 1 hour. Cells mounted with mounting
151 medium with DAPI (ZSGB-BIO, #ZLI-9557) and imaged by Nikon ECLIPSE Ti-U
152 epi-fluorescence microscope.

153 **Statistical analysis.**

154 All of the experiments were performed for at least three times. Data were displayed as
155 mean \pm SD. *P* values were calculated by two-tailed Student's t test or Dunnett-t test
156 using Excel or GraphPad Prism software, with statistical significance assumed at *P* <
157 0.05.

158

159 **Results**

160 **Keima-based monitoring of the cellular and lysosomal pH values**

161 To monitor the pH dynamics in live cells, we made cell lines that stably expressed
162 keima, a genetically engineered protein pH meter that displays different excitation
163 spectra upon pH changes. As shown in **Fig. 1A**, the excitation at 550 nm decrease
164 accompanied with an increase in excitation at 440 nm when the buffering pH is
165 getting higher, which is consistent with the published study³³. Briefly, keima

166 displayed red in the acidified buffer (pH 4.12-5.5), green in the neutral buffer (pH
167 7.07-7.97), and orange in the transitory buffer (pH 5.6-7.06). For accurate pH
168 measurement based on keima excitation, we managed to make a correlation between
169 the pH value and the ratio of keima excitations (550 nm / 440 nm), and obtained pH
170 titration curves for four entosis-proficient cell lines: MCF7, MCF10A, SW480
171 expressing E-cadherin (SW480/E) and MDA-MB-231 expressing E-cadherin
172 (MM231/E), respectively (**Fig. 1B-E**). Interestingly, based on the titration curves and
173 the derived equations, the above four cell lines were found to have profoundly
174 different intracellular pH values (**Fig. S1B, C**).

175 In agreement with its pH sensitive property, keima displayed bright red fluorescent
176 signals (550 nm) at the subcellular regions marked by lysotracker, a fluorescent dye
177 specifically labeling lysosomes (**Fig. S1A**) ³⁹. Remarkably, the pH values derived
178 from the keima ratio of 550 nm / 440 nm were tightly correlated with the intensity of
179 lysotracker at the subcellular organelle of lysosomes (**Fig. 1F-I**), further supporting
180 the liability of keima to be an *in situ* pH meter for live cell analysis.

181

182 **The pH dynamics during the death of internalized cells**

183 By taking advantage of the keima-expressing cells as a pH read out, we firstly tried to
184 examine the pH changes of the entotic vacuoles during the inner cell death of
185 MCF10A cells. As shown in **Fig. 2A**, the entotic vacuoles gradually turned into
186 yellow and subsequently into red along with the death and degradation of the inner
187 cells, indicating progressive vacuolar acidification (**Fig. S3A and Movie S1**). Based

188 on the changes in keima excitation and inner cell morphology, the death process could
189 be roughly divided into four steps, including internalization (S1), acidification (S2),
190 entotic death (S3), and degradation (S4) (**Fig. 2B**). While the pH changed little in the
191 outer cells, it kept declining in the dying inner cells during the four sequential stages
192 (S1-S4) (**Fig. 2B, C**). By contrast, the live inner cells were in green throughout whole
193 process of time lapse imaging (**Fig. S3B and Movie S2**), which is similar to those of
194 the outer cells and non-CICs live cells (**Fig. S3C**), indicating relative stable pH of the
195 entotic vacuoles containing live cells.

196 For the sake of more accurate evaluation, we calculated the rate of the pH changes in
197 different categories of cells, and found that the pH of vacuoles with dying cells
198 decreased at a speed of 0.0678 to 0.1779 per hour that was significantly faster than
199 those for vacuoles with live cells (-0.0236 to 0.0632 per hour) (**Fig. 2D**). The mean
200 pH of the non-CIC normal cells (6.14) was slightly higher than that of the alive inner
201 cells (5.74) which was significantly higher than that of dead inner cells (4.90) (**Fig**
202 **2E**). Importantly, the pH of 4.5 seemed to be the dead point, referring to dead pH
203 hereafter, for the internalized MCF10A cells as no cells were found to be alive at pH
204 below 4.5, whereas, cells would be alive within vacuoles of pH > 5.0 (**Fig. 2F**).
205 Similar dynamics were obtained on the other three entosis-proficient cells (**Fig. 2G-I**).
206 However, the dead pH varied with 5.0 for MCF7 cells (**Fig. 2J**), 5.6 for
207 MDA-MB-231/E cells (**Fig. 2K and S3D, E**), and 5.2 for SW480/E cells (**Fig. 2L**
208 **and S3F, G**). Interestingly, the dead pHs for the later three cells that are cancer cells
209 were much higher than that of MCF10A cells that are non-transformed epithelial cells

210 (Fig. 2F, 2J-L). These data suggest that the vacuolar pH is critical for the fate control
211 of the internalized cells, which, however, is context-dependent, and cancer cells
212 seemed to be less tolerant to the acidified environments than the non-cancerous
213 epithelial cells.

214

215 **LC3 lipidation onto the entotic vacuoles in complex patterns**

216 LC3 lipidation of the entotic vacuole was reported to be a critical event taking place
217 right prior to and mediating entotic cell death by facilitating lysosome fusion ²⁸. It is
218 interesting to determine the relationship between LC3 lipidation and acidification of
219 the entotic vacuoles. We therefore established MCF10A cells stably co-expressing
220 keima and EGFP-LC3 and examined the LC3 recruitment to the entotic vacuoles by
221 time-lapse microscopy of 24 hours as the first step. As reported, the typical LC3
222 lipidation, which is rapid, transient and generally occurred within one hour, of the
223 entotic vacuole were observed right before the entotic death in most of the CICs
224 (53.3%) (Fig. 3A-C and Movie S3). Unexpectedly, a number of vacuoles (40%) also
225 recruited LC3 post inner cell death, which could be subdivided into two classes based
226 on the presence of pre-death LC3 lipidation, ie, LC3-entosis-LC3 (Fig. 3D) and
227 entosis-LC3 (Fig. 3E and Movie. S5). Moreover, we observed two cases of LC3
228 lipidation that were not associated with any signs of inner cell death in the 24 hours
229 duration of time lapse (Fig. 3F and Movie S6), instead, LC3 either retained for long
230 time (200 min), or was repetitively recruited for multiple times. Furthermore, the
231 post-death LC3 lipidation seemed to be an indispensable event (100%) for the

232 vacuoles that contained cells dying through an apoptotic program (**Fig. 3G, H and**
233 **Movie S4**). These finding demonstrated a previously underappreciated relationship
234 between LC3 lipidation and cell death mediated by cell-in-cell structures.

235

236 **LC3 lipidation associated with vacuolar acidification during the death of**
237 **internalized cells**

238 We next investigated the pH change associated with the LC3 lipidation with the
239 co-expressed keima protein. All the pH values associated with the above five patterns
240 of LC3 lipidation were measured *in situ* and plotted along the time course of death
241 events (**Fig. 4C, D and S4A-C, E, F**). For the typical LC3 lipidation that occurred
242 prior to the entotic death of inner cells (**Fig. 3A**), the pH of entotic vacuoles was in a
243 range of 4.8-6.20 followed by the entotic death of the inner cells at a lower pH about
244 4.3-5.2 (**Fig. 4A, C and Movie S3**). By contrast, the apoptotic death of the inner cells
245 took place at a relatively higher pH about 5.3-6.0 followed by LC3 lipidation on the
246 apoptotic bodies at a lower pH about 4.5-5.6 (**Fig. 4B, D and Movie S4**). And the pH
247 for LC3 lipidation of post-entotic death was about 4.4-4.8, which was frequently
248 preceded by entotic death events of higher pH (4.8-5.6) as compared with that of
249 entotic death without post-death LC3 lipidation (**Fig. 4E-G and S4A, B**). The pH for
250 LC3 lipidation without death was similar to that of pre-entotic death (**Fig. 4G and**
251 **S4A, C**). Nevertheless, all the LC3 lipidation events were followed by a continuous
252 decline of vacuolar pH (**Fig. 4H**), which is consistent with a role of LC3 lipidation in
253 facilitating entotic vacuoles-lysosome fusion ^{28,40}. These data suggested that LC3

254 lipidation may not occur in responding to a defined range of vacuolar pH, instead,
255 vacuolar acidification was a consequence of LC3 lipidation that not only initiated
256 entotic cell death but also facilitated subsequent degradation of corpses from both
257 entotic and apoptotic death. Consistently, LC3 lipidation took place primarily in
258 entotic vacuoles containing dead cells, either entotic (82.4%) or apoptotic (80.0%),
259 but rather infrequent in vacuoles with live cells (2.4%) (**Fig. S4D**).

260

261 **The fate control of internalized cells by vacuolar pH manipulation**

262 Given the pivotal role of pH in determining inner cell death, it's conceivable that
263 manipulating vacuolar acidification might be a way to control inner cell fates. To
264 examine this idea, we first treat MCF10A cells with EN6, an activator of v-ATPase
265 that facilitates vacuolar acidification ⁴¹, which significantly lowered the pH of entotic
266 vacuoles containing live cells to around 5.1, a value really close to the range of the
267 death pH (4.0-4.9) (**Fig. 2F and 5A**). As a result, the death rate of inner cells
268 increased (from ~45% to >65%) (**Fig. 5B**), and, remarkably, all the death events
269 were exclusively entotic (100%) but not apoptotic (**Fig. 5C**), as confirmed by
270 immunostaining of cleaved-caspase 3, the marker of apoptosis (**Fig. 5D, 5E**). To our
271 best knowledge, this is the first demonstration that enhancing vacuolar acidification
272 could promote CICs-mediated entotic death of internalized cells.

273 To confirm this finding, we then treated MCF10A cells with compounds that were
274 capable of compromising vacuolar acidification, including concanamycin A (ConA)
275 that selectively inhibits V-ATPase ⁴², chloroquine (CQ) that could inhibit

276 vacuole-lysosome fusion ⁴³, and ammonium chloride (NH₄Cl) that could alkalinize
277 intracellular compartments ^{44,45}. As expected, the average pH of the entotic vacuoles
278 containing live cells increased to above 6.1 upon CQ, or ConA, or NH₄Cl treatments
279 (**Fig. 5A**), leading to much less inner cell death (<30%) as compare with control
280 (>45%) and EN6-treated cells (>65%) (**Fig. 5B**), and, interestingly, majority of the
281 death were switched to apoptosis (from ~ 20% to ~ 80%), and consistent with
282 above observation (**Fig. 4C**), the mean death pH for apoptosis here is of >5.2 (**Fig.**
283 **5A**). Furthermore, similar results were obtained from the other three CICs-proficient
284 cells, including MCF7 (**Fig. 5F, I, S5**), MDA-MB-231 (**Fig. 5G, J**) and SW480 cells
285 (**Fig. 5H, K**), and among them, the mean pH of each case was generally higher than
286 that in MCF10A cells (**Fig. 5A, F-H**). Together, these results support that the inner
287 cell death of a CIC structure was dictated by the vacuolar pH and could be
288 manipulated by compounds that regulate the acidification of intracellular vacuoles.

289

290 **Discussion**

291 We studied the dynamic process of pH change in the internalized cells in the CICs by
292 keima, a fluorescent protein pH meter. We determined the lysosome-dependent death
293 pH critical for the entotic death (**Fig. 6**), and identified LC3 lipidation onto the entotic
294 vacuole as a preceding condition for the pH declining to a critical value and evoke the
295 entotic death. Meanwhile, the LC3 lipidation following cell death, primarily apoptotic
296 and, to a lesser extends, entotic, would promote the clearance of dead corpse by
297 facilitating vacuolar acidification.

298 It is known that fluorescent dyes, such as Lysotracker, could efficiently label
299 acidified intracellular vacuoles and emit bright signals, and were generally employed
300 to detect acidified vacuoles³⁹. However, these dyes, due to strong phototoxicity and
301 easily to be quenched, were not good candidates for long period of time lapse imaging,
302 particular for the process of CIC-mediated death that usually takes place within a
303 period of up to >10 hours. Whereas, the fluorescent proteins, such as keima, were
304 ideal alternatives attributed to their properties of optional excitation spectra and
305 ratio-based measurement⁴⁶. As a proof of concept for the application in CIC-mediated
306 death, we chosen four entosis-proficient cell lines, and examined the feasibility of
307 keima as a pH meter to probe the role and dynamics of vacuolar acidification along
308 with the inner cell death by long period (~ 24 hours) of time lapse microscopy, which
309 reported ideal results. Meanwhile, our study uncovered a number of previously
310 unrecognized findings in terms of pH changes during CIC-mediated death, which set
311 a basis for further investigation.

312 It is worth to pointed out that the pH of cells was correlated to the pH of
313 lysosome in these four cell lines. The cytoplasmic pH and lysosomal pH of the MCF7
314 cells were the highest whereas those of the MDA-MB-231 cells were the lowest (**Fig.**
315 **S1B, C**). Moreover, we found that lysosome pH and cellular pH were both positively
316 related to entotic death rate for these four cell lines (**Fig. S1B-D**), suggesting that the
317 cellular or even environmental pH might have profound impacts on cells' behaviors.
318 Indeed, there were studies showing that cancer cells were actually grown in acidic
319 tumor microenvironment^{47,48}, under which circumstance, MDA-MB-231 cells

320 displayed high metastatic potentials than did MCF7 cells ⁴⁹, consistent with the idea
321 that the cytoplasmic pH and lysosomal pH were somehow related to the metastasis
322 and malignancy of the tumor cells.

323 Interestingly, in addition to a clear role of vacuolar pH in dictating inner cell fates
324 and the ways whereby inner cells die, complicated relationships were observed among
325 the pH titration behaviors of the four cell lines (**Fig. 1B-E**). For instances, the cellular
326 pH and the lysosomal pH were positively correlated to entotic death time for
327 MCF10A, SW480, MDA-MB-231 cell lines but not for MCF7 cell line (**Fig. S1B, C,**
328 **S2C**); the rate of pH change was correlated to the death rate of the inner cells for
329 MCF7, MCF10A, SM480 cell lines but not for MDA-MB-231 cell line (**Fig. S1D, S2**
330 **A**); despite of the negative correlation between the rate of pH change and the death
331 time of the inner cells (**Fig. S2D-G**), there was no correlation between the death pH
332 and the lysosome pH (**Fig. S1B, S2B**). The above complicated relationships might be
333 due to the significant genotypic and proteomic differences among these cell lines, or
334 were related to the cell metabolism regulated by lysosome as reported ^{50,51}.

335 As our results suggested that vacuolar pH levels were not a trigger, but a
336 consequence instead, of LC3 lipidation onto the entotic vacuoles, and an interesting
337 issue, though might be beyond the scope of this study, is what are the upstream factors
338 that dictate the initiation of LC3 lipidation. Though the LC3 lipidation was executed
339 in the outer cells, the commanding signals were likely from the internalized cells as
340 the apoptosis of inner cells seemed to be always followed shortly by the LC3
341 lipidation. Actually, previous study indicated that osmotic changes in the vacuoles

342 could efficiently induce LC3 lipidation, which required activity of the vacuolar-type
343 H (+)-ATPase (V-ATPase)⁴². Thus, it's conceivable that LC3 lipidation followed the
344 entotic death might be a result of increased osmotic changes in the vacuoles, which
345 ended up with increased vacuolar pH that facilitates the degradation and clearance of
346 the dead corpse. Since CIC structures in tumor cells were believed to promote cell
347 competition, clonal selection and tumor evolution by multiple mechanisms, such as
348 conferring growth advantages to the outer survivors via consuming the dead inner
349 cells^{1,9}, interfering with the vacuolar acidification might be a potential strategy for the
350 treatment of cancers undergoing active CIC formation.

351

352 **Acknowledgements**

353 We thank Dr. Zhongyi Wang for comments on manuscript preparation. This work was
354 supported by the National Key Research and Development Program of China
355 (2019YFA09003801 and 2018YFA0900804), the National Natural Science
356 Foundation of China (31970685, 31671432 and 81872314), the Fundamental
357 Research Funds for the Central Universities (WK2090050042) and Anhui Province
358 Science and Technology Major Project (201903a07020019).

359

360 **Author Contributions**

361 Concept and design: QS and TL; Phenotype: YS; Gene cloning: HR and BZ; Data
362 collection: YS, HR, XH, ZN and LG; Figures: YS, QS, TL, MT and YZ; Data
363 interpretation: QS, TL and YS; Manuscript: QS, TL and YS, with input from MT, YZ,

364 ZN, CW and HS; Funding: QS, YZ, ZC and TL. All authors have read and approved
365 the final manuscript.

366

367 **Competing interests.**

368 The authors declare that they have no conflicts of interest.

369

370 **REFERENCE**

- 371 1. Huang, H., Chen, Z. & Sun, Q. Mammalian cell competitions, cell-in-cell phenomena and
372 their biomedical implications. *Current molecular medicine* **15**, 852–860 (2015).
- 373 2. Fais, S. & Overholtzer, M. Cell-in-cell phenomena in cancer. *Nature reviews. Cancer* **18**,
374 758–766 (2018).
- 375 3. Kowalczyk, M., Sarnecka, A., Mlynarczuk-Bialy, I. & Milik, A. Cell-in-cell structures in
376 BxPC3 pancreatic cancer cell line are the result of entosis. (2019)
377 doi:10.14293/P2199-8442.1.SOP-MED.PEGA6W.v1.
- 378 4. Cano, C. E. *et al.* Homotypic cell cannibalism, a cell-death process regulated by the nuclear
379 protein 1, opposes to metastasis in pancreatic cancer. *EMBO molecular medicine* **4**, 964–979
380 (2012).
- 381 5. Huang, H. *et al.* Identification and validation of heterotypic cell-in-cell structure as an
382 adverse prognostic predictor for young patients of resectable pancreatic ductal
383 adenocarcinoma. (2020) doi:10.1101/2020.07.08.20148825.
- 384 6. Schenker, H., Büttner-Herold, M., Fietkau, R. & Distel, L. v. Cell-in-cell structures are more
385 potent predictors of outcome than senescence or apoptosis in head and neck squamous cell
386 carcinomas. *Radiation oncology (London, England)* **12**, 21 (2017).
- 387 7. Zhang, X. *et al.* Subtype-based prognostic analysis of cell-in-cell structures in early breast
388 cancer. *Frontiers in oncology* **9**, 895 (2019).
- 389 8. Ruan, B. *et al.* High frequency of cell-in-cell formation in heterogeneous human breast
390 cancer tissue in a patient with poor prognosis: a case report and literature review. *Frontiers
391 in oncology* vol. 9 1444 (2019).
- 392 9. Sun, Q. *et al.* Competition between human cells by entosis. *Cell research* **24**, 1299–1310
393 (2014).
- 394 10. Lee, Y. *et al.* Entosis controls a developmental cell clearance in *C. elegans*. *Cell reports* **26**,
395 3212-3220.e4 (2019).
- 396 11. Mackay, H. L. *et al.* Genomic instability in mutant p53 cancer cells upon entotic engulfment.
397 *Nature communications* **9**, 3070 (2018).
- 398 12. Liang, J. *et al.* Counteracting genome instability by p53-dependent mitosis. (2020).

- 399 doi:10.1101/2020.01.16.908954.

400 13. Ni, C. *et al.* Implication of cell-in-cell structures in the transmission of HIV to epithelial
401 cells. *Cell research* vol. 25 1265–1268 (2015).

402 14. Ni, C. *et al.* In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by
403 cell-in-cell structures. *Cell research* **25**, 785–800 (2015).

404 15. Davies, S. P. *et al.* Hepatocytes delete regulatory T cells by enclysis, a CD4(+) T cell
405 engulfment process. *Cell reports* **29**, 1610–1620.e4 (2019).

406 16. Benseler, V. *et al.* Hepatocyte entry leads to degradation of autoreactive CD8 T cells.
407 *Proceedings of the National Academy of Sciences of the United States of America* **108**,
408 16735–16740 (2011).

409 17. Ning, X., Luo, T., Chen, Z. & Sun, Q. The physics for the formation of cell-in-cell structures.
410 *Current molecular medicine* **15**, 867–872 (2015).

411 18. Sun, Q., Cibas, E. S., Huang, H., Hodgson, L. & Overholtzer, M. Induction of entosis by
412 epithelial cadherin expression. *Cell research* **24**, 1288–1298 (2014).

413 19. Wang, M. *et al.* Mechanical ring interfaces between adherens junction and contractile
414 actomyosin to coordinate entotic cell-in-cell formation. *Cell reports* **32**, 108071 (2020).

415 20. Hinojosa, L. S., Holst, M., Baarlink, C. & Grosse, R. MRTF transcription and
416 Ezrin-dependent plasma membrane blebbing are required for entotic invasion. *The Journal
417 of cell biology* **216**, 3087–3095 (2017).

418 21. Purvanov, V., Holst, M., Khan, J., Baarlink, C. & Grosse, R. G-protein-coupled receptor
419 signaling and polarized actin dynamics drive cell-in-cell invasion. *eLife* **3**, (2014).

420 22. Wang, C. *et al.* PCDH7 inhibits the formation of homotypic cell-in-cell structure. *Frontiers
421 in cell and developmental biology* **8**, 329 (2020).

422 23. Ruan, B. *et al.* Cholesterol inhibits entotic cell-in-cell formation and actomyosin
423 contraction. *Biochemical and biophysical research communications* **495**, 1440–1446
424 (2018).

425 24. Ruan, B. *et al.* Expression profiling identified IL-8 as a regulator of homotypic cell-in-cell
426 formation. *BMB reports* **51**, 412–417 (2018).

427 25. Liang, J. *et al.* CDKN2A inhibits formation of homotypic cell-in-cell structures.
428 *Oncogenesis* **7**, 50 (2018).

429 26. Martins, I. *et al.* Entosis: The emerging face of non-cell-autonomous type IV programmed
430 death. *Biomedical journal* **40**, 133–140 (2017).

431 27. Overholtzer, M. *et al.* A nonapoptotic cell death process, entosis, that occurs by cell-in-cell
432 invasion. *Cell* **131**, 966–979 (2007).

433 28. Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M. & Overholtzer, M. Autophagy
434 machinery mediates macroendocytic processing and entotic cell death by targeting single
435 membranes. *Nature cell biology* **13**, 1335–1343 (2011).

436 29. Krajcovic, M., Krishna, S., Akkari, L., Joyce, J. A. & Overholtzer, M. mTOR regulates
437 phagosome and entotic vacuole fission. *Molecular biology of the cell* **24**, 3736–3745 (2013).

438 30. Krishna, S. *et al.* PIKfyve regulates vacuole maturation and nutrient recovery following
439 engulfment. *Developmental cell* **38**, 536–547 (2016).

440 31. Miesenböck, G., de Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic
441 transmission with pH-sensitive green fluorescent proteins. *Nature* **394**, 192–195 (1998).

442 32. Violot, S., Carpentier, P., Blanchoin, L. & Bourgeois, D. Reverse pH-dependence of

- 443 chromophore protonation explains the large Stokes shift of the red fluorescent protein
444 mKeima. *Journal of the American Chemical Society* **131**, 10356–10357 (2009).
- 445 33. Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T. & Miyawaki, A. A sensitive and
446 quantitative technique for detecting autophagic events based on lysosomal delivery.
447 *Chemistry & biology* **18**, 1042–1052 (2011).
- 448 34. Lindqvist, L. M. *et al.* Autophagy induced during apoptosis degrades mitochondria and
449 inhibits type I interferon secretion. *Cell death and differentiation* **25**, 784–796 (2018).
- 450 35. Nguyen, T. N. *et al.* Atg8 family LC3/GABARAP proteins are crucial for
451 autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin
452 mitophagy and starvation. *The Journal of cell biology* **215**, 857–874 (2016).
- 453 36. Ponimaskin, E. G., Profirovic, J., Vaiskunaite, R., Richter, D. W. & Voyno-Yasenetskaya, T.
454 A. 5-Hydroxytryptamine 4(a) receptor is coupled to the Galpha subunit of heterotrimeric
455 G13 protein. *The Journal of biological chemistry* **277**, 20812–20819 (2002).
- 456 37. Zhang, Z. *et al.* Acidic pH environment induces autophagy in osteoblasts. *Scientific reports*
457 **7**, 46161 (2017).
- 458 38. Sun, Q. & Overholtzer, M. Methods for the study of entosis. *Methods in molecular biology*
459 (*Clifton, N.J.*) **1004**, 59–66 (2013).
- 460 39. Chikte, S., Panchal, N. & Warnes, G. Use of Lysotracker dyes: a flow cytometric study of
461 autophagy. *Cytometry. Part A: the journal of the International Society for Analytical
462 Cytology* **85**, 169–178 (2014).
- 463 40. Lai, S.-C. & Devenish, R. J. LC3-Associated Phagocytosis (LAP): Connections with Host
464 Autophagy. *Cells* **1**, 396–408 (2012).
- 465 41. Chung, C. Y.-S. *et al.* Covalent targeting of the vacuolar H (+)-ATPase activates autophagy
466 via mTORC1 inhibition. *Nature chemical biology* **15**, 776–785 (2019).
- 467 42. Florey, O., Gammoh, N., Kim, S. E., Jiang, X. & Overholtzer, M. V-ATPase and osmotic
468 imbalances activate endolysosomal LC3 lipidation. *Autophagy* **11**, 88–99 (2015).
- 469 43. Mauthe, M. *et al.* Chloroquine inhibits autophagic flux by decreasing
470 autophagosome-lysosome fusion. *Autophagy* **14**, 1435–1455 (2018).
- 471 44. Dabydeen, S. A. & Meneses, P. I. The role of NH4Cl and cysteine proteases in Human
472 Papillomavirus type 16 infection. *Virology journal* **6**, 109 (2009).
- 473 45. Kim, Y. Y. *et al.* Assessment of mitophagy in mt-Keima Drosophila revealed an essential
474 role of the PINK1-Parkin pathway in mitophagy induction in vivo. *FASEB journal: official
475 publication of the Federation of American Societies for Experimental Biology* **33**, 9742–
476 9751 (2019).
- 477 46. Sun, N. *et al.* A fluorescence-based imaging method to measure in vitro and in vivo
478 mitophagy using mt-Keima. *Nature protocols* **12**, 1576–1587 (2017).
- 479 47. Roma-Rodrigues, C., Mendes, R., Baptista, P. v & Fernandes, A. R. Targeting tumor
480 microenvironment for cancer therapy. *International journal of molecular sciences* **20**,
481 (2019).
- 482 48. Wojtkowiak, J. W., Verduzco, D., Schramm, K. J. & Gillies, R. J. Drug resistance and
483 cellular adaptation to tumor acidic pH microenvironment. *Molecular pharmaceutics* **8**,
484 2032–2038 (2011).
- 485 49. Aumsuwan, P., Khan, S. I., Khan, I. A., Walker, L. A. & Dasmahapatra, A. K. Gene
486 expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast

487 cancer cell lines treated with dioscin. *Data in brief* **8**, 272–279 (2016).
488 50. Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control
489 centre for cellular clearance and energy metabolism. *Nature reviews. Molecular cell biology*
490 **14**, 283–296 (2013).
491 51. Dubland, J. A. & Francis, G. A. Lysosomal acid lipase: at the crossroads of normal and
492 atherogenic cholesterol metabolism. *Frontiers in cell and developmental biology* **3**, 3
493 (2015).

494

495

496 **Figure legends**

497 **Fig. 1 Probing cellular pH by keima fluorescent protein. (A)** Representative
498 images of three channels (550 nm, 440 nm and merged) for keima-overexpressed
499 MCF7 cells in a series of buffers of different pHs. Scale bar, 20 μ m. **(B-E)** The
500 cellular pH value was negatively correlated with the excitation ratio of keima
501 (550/440), in MCF10A (B), MCF7 (C), MDA-MB-231/E (D) and SW480/E (E),
502 respectively. **(F-I)** The lysosomal pH was negatively correlated with the fluorescent
503 intensity of Lysotracker in MCF10A (F), MCF7 (G), MDA-MB-231/E (H) and
504 SW480/E (I), respectively.

505 **Fig. 2 The pH dynamics during the CICs-mediated death.** **(A)** The time-lapse
506 images showed keima signal changes in one CICs from MCF10A cells. The keima
507 channel was merged from 440 nm (green) and 550 nm (red) channels. Scale bar, 10
508 μm . **(B)** The quantitative presentation of pH changes in **(A)** for the respective inner
509 and outer cell over time course. **(C)** The pH changes of inner cells from a group of
510 CICs over time. The solid lines are for the mean pH while the upper dotted lines and
511 lower dotted lines indicate the pH ranges. The inner cell death was set as time zero. n
512 = 17 (dead), 28 (live). **(D)** The change of pH value per hour for live (green) and dead
513 inner cells (red), respectively. **(E)** Quantification of the cellular pH for non-CIC cells
514 (dark green), live inner cells (green dots) and dead inner cell (dark red). **(F)** Graph
515 shows the minimum pH of live inner cell (green), the pH of dead inner cells at the
516 moment of cell death (bright red) and minimum pH of the dead inner cell (dark red).
517 **(G-I)** The pH of inner cells changed over time in the keima-overexpressed MCF7 **(G)**,
518 MDA-MB-231/E **(H)** and SW480/E **(I)**, respectively. **(G)** n = 12 (dead), 8 (live); **(H)**
519 n=12 (dead), 17 (live); **(I)** n=19 (dead), 18 (live). **(J-L)** Graph shows the minimum pH
520 of live inner cell (green), the pH of dead inner cells at the moment of cell death
521 (bright red) and minimum pH of the dead inner cell (dark red) for MCF7 **(G)**,
522 MDA-MB-231/E **(H)** and SW480/E **(L)**, respectively. ** $P<0.01$; *** $P<0.001$; ****
523 $P<0.0001$.

524 **Fig. 3 The dynamics of vacuolar LC3 lipidation.** **(A)** Time-lapse images of
525 transient recruitment of GFP-LC3 (purple) to the entotic vacuole prior to inner cell
526 death. Arrow indicates LC3 on the entotic vacuole, also see Supplementary
527 Information Movie S3. Scale bar, 10 μ m. **(B)** Pie chart shows the percentage of four
528 types of LC3 lipidation as indicated, $n = 30$. **(C-F)** Time course-based plotting of four
529 patterns of LC3 recruitment (purple dots) in relation with the fates of internalized cells,
530 including LC3 lipidation before entotic death (C), LC3 lipidation before and after
531 entotic death (D), LC3 lipidation after entotic death (E), LC3 lipidation for live inner
532 cells (F). **(G)** Time-lapse images of vacuolar GFP-LC3 (purple) recruitment following
533 inner cell apoptosis. Arrow indicates LC3 recruited to the apoptotic body, also see
534 Supplementary Information Movie S4. Scale bar, 10 μ m. **(H)** Time course-based
535 plotting of LC3 lipidation in relation with inner cell apoptosis.

536 **Fig. 4 The analysis of vacuolar acidification along with LC3 lipidation. (A, B)**

537 Time-lapse images for keima (excitation at 440 nm in green, 550 nm in red) and
538 GFP-LC3 (purple) during the entotic (A), or apoptotic (B) death of internalized
539 MCF10A cell. Scale bars, 10 μ m. (C, D) Time course-based plotting of vacuolar pH
540 in related to LC3 lipidation during the entotic (C), or apoptotic (D) death of
541 internalized cells. (E) The average pH dynamics for inner cells that were alive
542 (green), or underwent apoptotic death (orange), or underwent entotic death (red),
543 respectively. (F) The pH for normal cells (non-CICs), alive inner cells, apoptotically
544 dead inner cells and entotically dead inner cells, respectively. (G) The vacuolar pH on
545 the moment of LC3 lipidation, including LC3 lipidation for alive inner cells (green),
546 LC3 lipidation before entosis (yellow), LC3 lipidation after entosis (red) and LC3
547 lipidation after apoptosis (orange). (H) Changes in vacuolar pH before and after LC3
548 lipidation. ** $P<0.01$; *** $P<0.001$; **** $P<0.0001$.

549 **Fig. 5 The fates of inner cells were controlled by vacuolar pH. (A-C)** The pH of
550 vacuoles containing live or dead inner cells (A), and inner cell fates (B), and the ways
551 inner cells died (entotic or apoptotic) (C), for MCF10A cells upon treatments with
552 EN6 (10 μ M), CQ (20 μ M), ConA (200 nM) and NH₄Cl (100 μ M). n (left to right) =
553 30, 33, 30, 31, 30 for (A); 30, 33, 30, 31, 30 for (B); 58, 49, 32, 34, 26 for (C). **(D)**
554 Representative images of CICs, with inner cells undergoing entotic death (up) or
555 apoptotic death (low), that were stained with antibody for cleaved-caspase 3 (cyan).
556 Keima for merged channels of 440 nm and 550 nm. White arrows indicate inner cells.
557 Scale bar, 10 μ m. **(E)** Quantification of inner cells that were positive in
558 cleaved-caspase 3, or died either entotically or apoptotically. n (left to right) = 64, 57,
559 respectively. **(F-K)** The pH of vacuoles containing live or dead inner cells (F-H), and
560 inner cell fates (I-K), for cells (MCF7, MM231/E and SW480/E) upon treatments
561 with EN6 (10 μ M), CQ (20 μ M), ConA (200 nM) and NH₄Cl (100 μ M), respectively.
562 n (left to right) = 26, 23, 26, 20, 28 for (F, I); 31, 32, 57, 38, 33 for (G, J); 36, 43, 32,
563 37, 32 for (H, K). * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; **** $P < 0.0001$.

564 **Fig. 6** Schematic demonstration of pH dynamics along with typical LC3 lipidation in
565 two ways of inner cell death (entotic or apoptotic) mediated by CICs. Following the
566 fully internalization to form CICs, the inner cells generally die via two
567 mechanistically distinct ways. On one hand, inner cells could be killed
568 non-autonomously by the outer cells that are lysosome-dependent and preceded by a
569 transient pre-death LC3 lipidation onto the entotic vacuole; on the other hand, inner
570 cells may die cell-autonomously in a caspase-dependent apoptotic way, which is
571 followed by a rapid post-death LC3 lipidation onto the apoptotic vacuoles. Under both
572 circumstances, the pH of vacuoles that contain the internalized cells continues to
573 decline, which may function to kill the inner cells and/or facilitate the clearance of
574 dead corpses. Colors ranging from green to red indicate pH rang from neutral (about
575 7) to acidity (about 3). Purple ring indicates LC3 lipidation to vacuole.

576 **Supplemental Data**

577 **Supplemental Figures**

578 **Fig. S1 Keima-based measurement of the lysosomal pH and cellular pH. (A)**
579 Representative images for four keima overexpressed cell lines (550 nm, 440 nm), that
580 were stained with Lysotracker (purple). Scale bar, 20 μ m. **(B, C)** The lysosomal pH
581 (B) and cellular pH (C) for four keima overexpressed cell lines. **(D)** The ratio of inner
582 cell fates (live/dead) for four cell lines.

583 **Fig. S2 The change of pH value and the entotic death time. (A-C)** The change of
584 pH value per hour (A), the cellular pH on death moment (B) and death time (from
585 internalization to cell death) (C) for dead inner cells in MCF7, MCF10A,
586 MDA-MB-231/E and SW480 /E, respectively. **(D-G)** The rate of pH change was
587 negatively correlated with the death time of inner cells in MCF7 (D), MCF10A (E),
588 MDA-MB-231/E (F) and SW480 /E (G), respectively.

589 **Fig. S3 The pH dynamics during the CICs-mediated death. (A)** The time-lapse
590 images showed keima signal by two channels (550 nm and 440 nm) in one CICs from
591 MCF10A cells. Scale bar, 10 μ m. **(B)** The time-lapse images showed keima signal
592 changes in two CICs from MCF7 cells. Blue and white arrows indicate live and dead
593 inner cells respectively. Scale bar, 10 μ m. **(C)** Quantification of the cellular pH for
594 non-CIC cells (green) and outer cells of CICs (blue). **(D, F)** Changes in vacuolar pH
595 before and after internalization. **(E, G)** Quantification of the cellular pH for non-CIC
596 cells (dark green), live inner cells (green dots) and dead inner cell (red).

597 **Fig. S4 The analysis of vacuolar acidification along with LC3 lipidation. (A-C)**
598 Time course-based plotting of vacuolar pH in related to LC3 lipidation during the
599 entosis, including LC3 lipidation before and after entotic death (A), LC3 lipidation
600 after entotic death (B) and LC3 lipidation for live inner cells (C). **(D)** The ratio of
601 LC3 lipidation in three situations of inner cell fate. n (left to right) = 81, 10, 34,
602 respectively. **(E, F)** Time course-based plotting (E) and vacuolar pH (F) in related to
603 LC3 lipidation during the entosis.

604 **Fig. S5 The vacuolar pH and cell fates of CICs treated with lysosome inhibitor.**

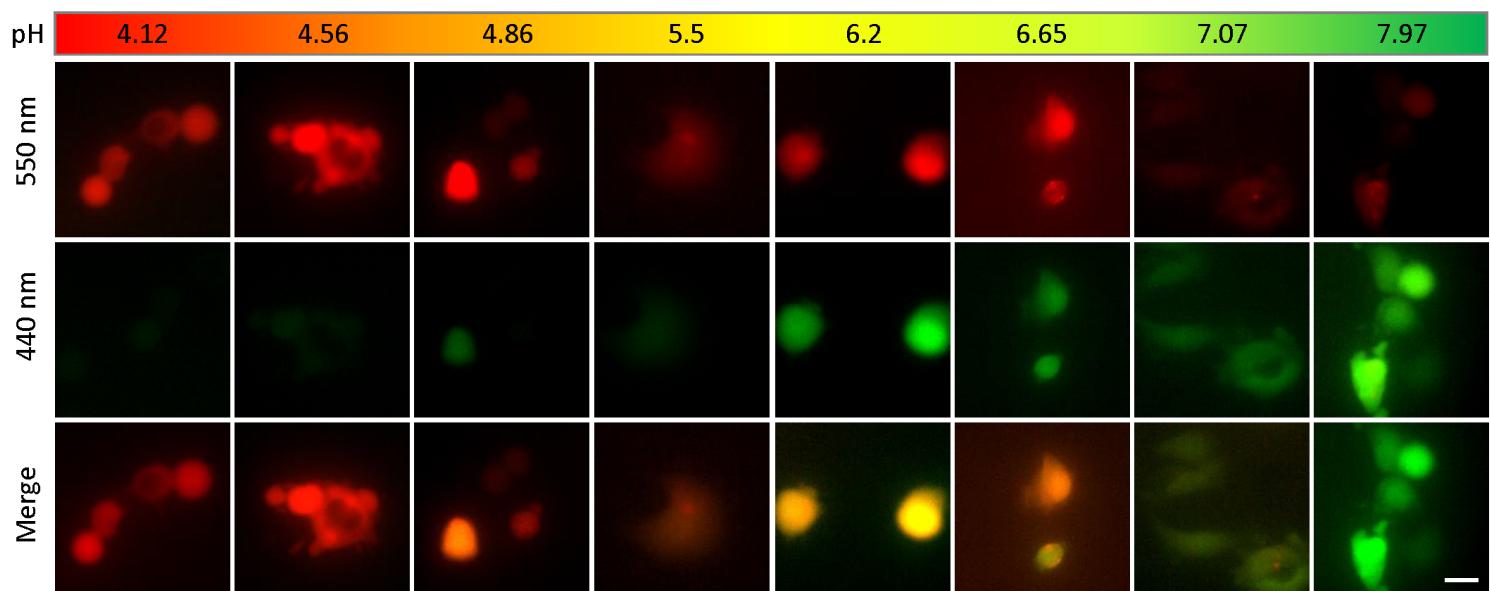
605 **(A-D)** The distribution of vacuolar pH upon treatments with different concentration of
606 EN6 (A), NH₄Cl (B), CQ (C) and ConA (D), respectively. The pH value was divided
607 into three level: pH 3-4 (low, red), pH 5-6 (middle, yellow) and pH 7-8 (high, green).
608 **(E-H)** The ratio of inner cell fates (live/dead) for MCF7 cells upon treatments with
609 different concentration of EN6 (E), NH₄Cl (F), CQ (G) and ConA (H) n (left to right)
610 = 16, 25, 25, 23 for (A, E); 16, 30, 21, 26, 26 for (B, F); 16, 10, 20, 20 for (C, G); 16,
611 22, 23, 23, 18 for (D, H).

612 **Supplemental Movies**

613 **Movie. S1** The time-lapse microscopy movies showed keima signal changes in one
614 CICs from MCF10A cells.

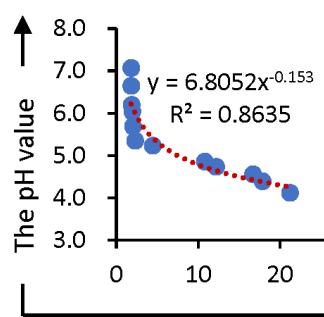
615 **Movie. S2** The time-lapse microscopy movies showed keima signal changes in two
616 CICs from MCF7 cells.

617 **Movie. S3** Time-lapse microscopy movies of transient recruitment of GFP-LC3
618 (purple) to the entotic vacuole prior to inner cell death.

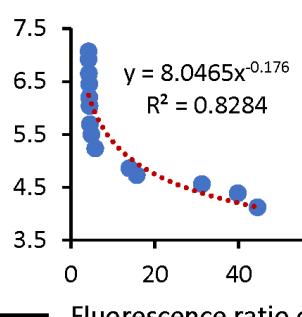

619 **Movie. S4** Time-lapse microscopy movies of vacuolar GFP-LC3 (purple) recruitment
620 following inner cell apoptosis.

621 **Movie. S5** Time-lapse microscopy movies of vacuolar GFP-LC3 (purple) recruitment
622 following inner cell entosis.

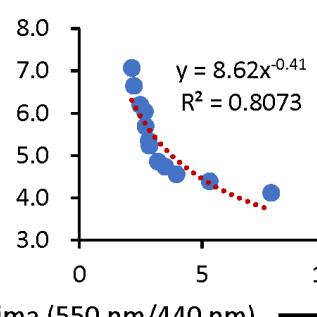
623 **Movie. S6** Time-lapse microscopy movies of vacuolar GFP-LC3 (purple) recruitment
624 for alive inner cells.


625

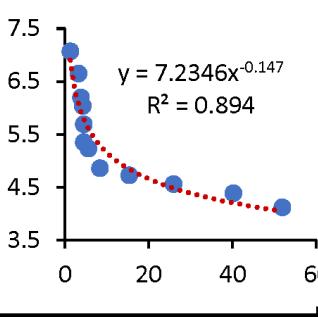
A


B

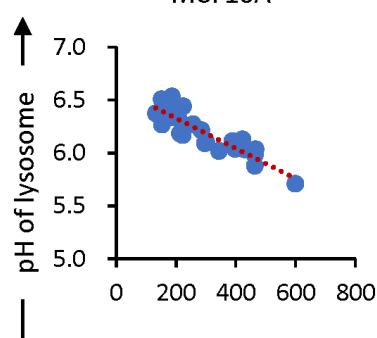
MCF10A


C

MCF7


D

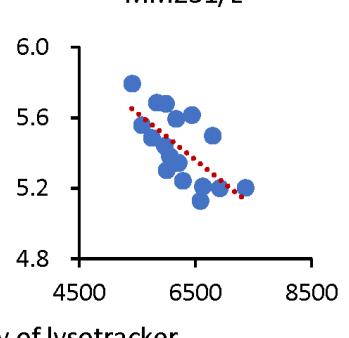
MM231/E


E

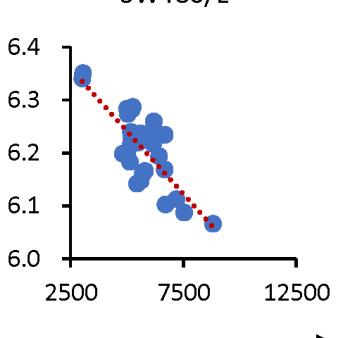
SW480/E


F

MCF10A


G

MCF7


H

MM231/E

I

SW480/E

Fig. 1 Probing cellular pH by keima fluorescent protein.

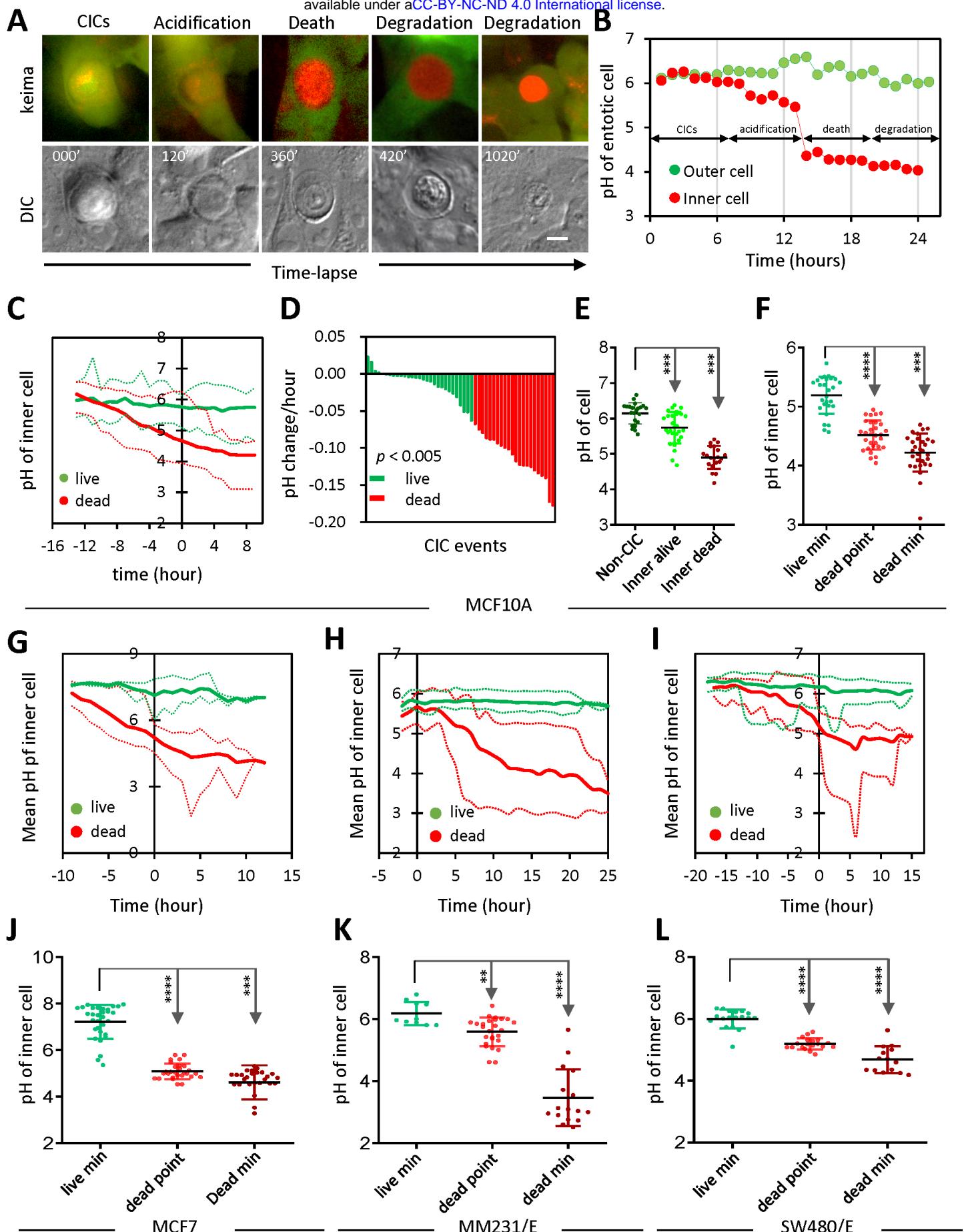


Fig. 2 The pH dynamics during the CICs-mediated death.

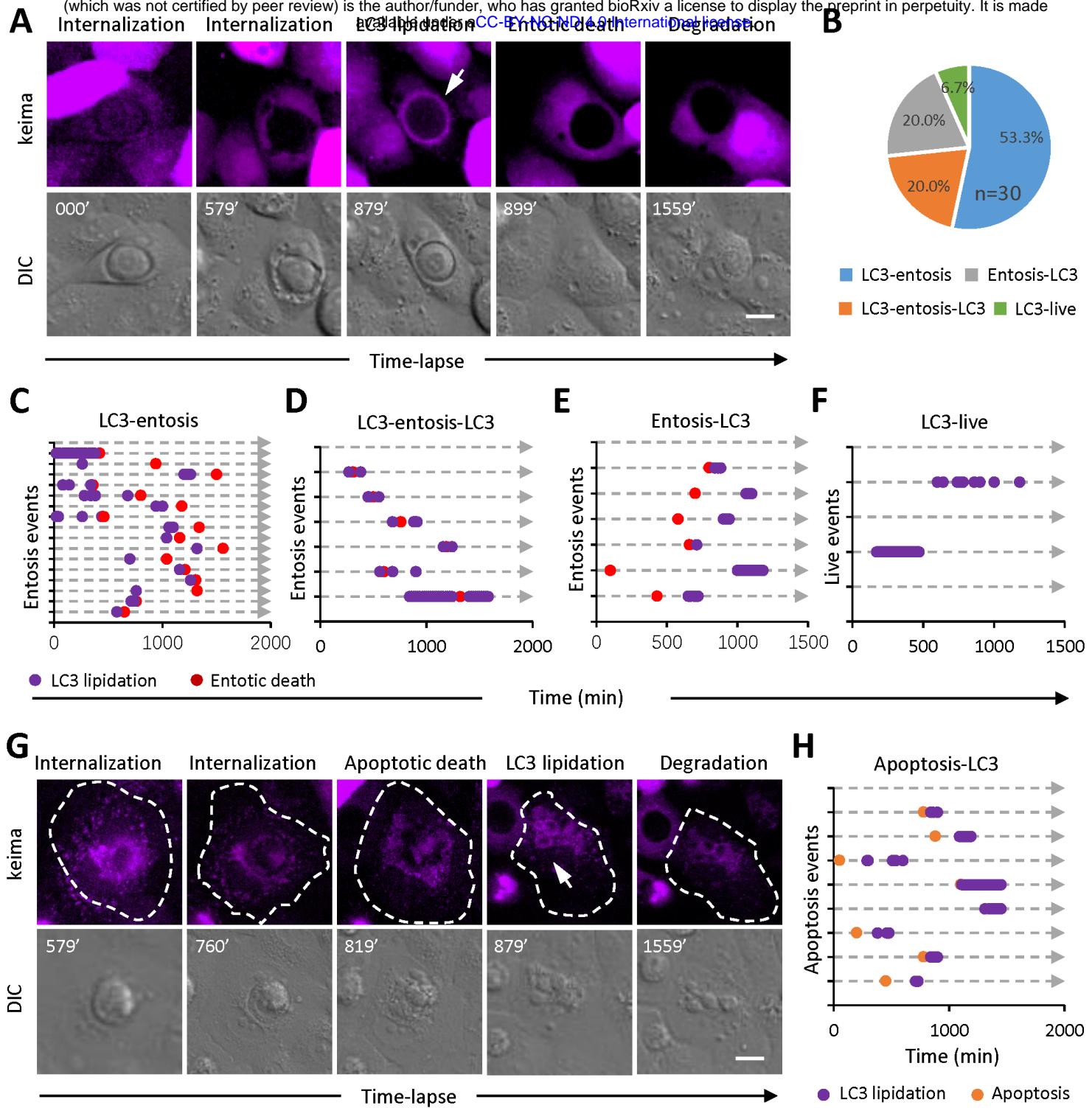


Fig. 3 The dynamics of vacuolar LC3 lipidation.

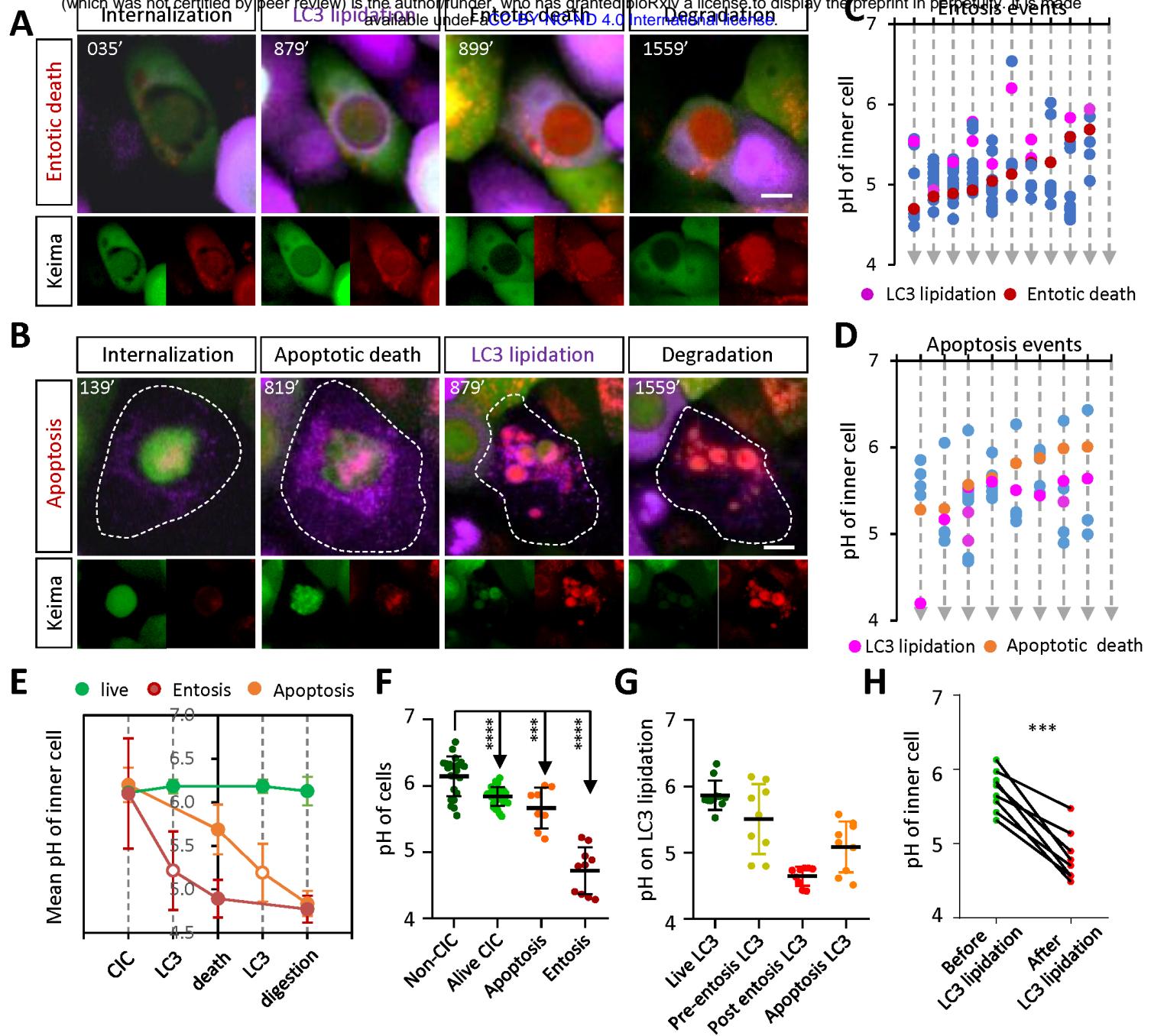


Fig. 4 The analysis of vacuolar acidification along with LC3 lipidation.

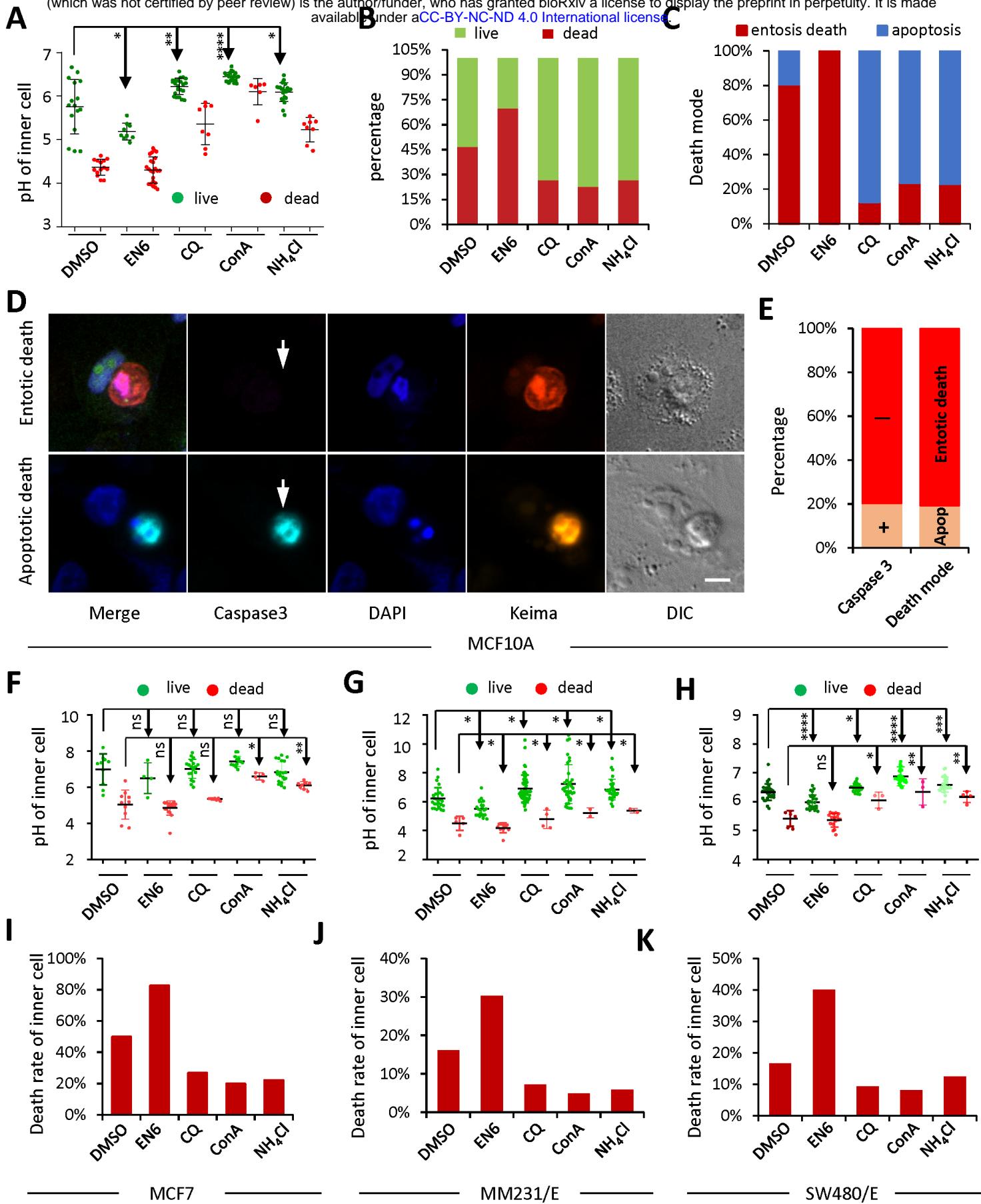


Fig. 5 The fates of inner cells were controlled by vacuolar pH.

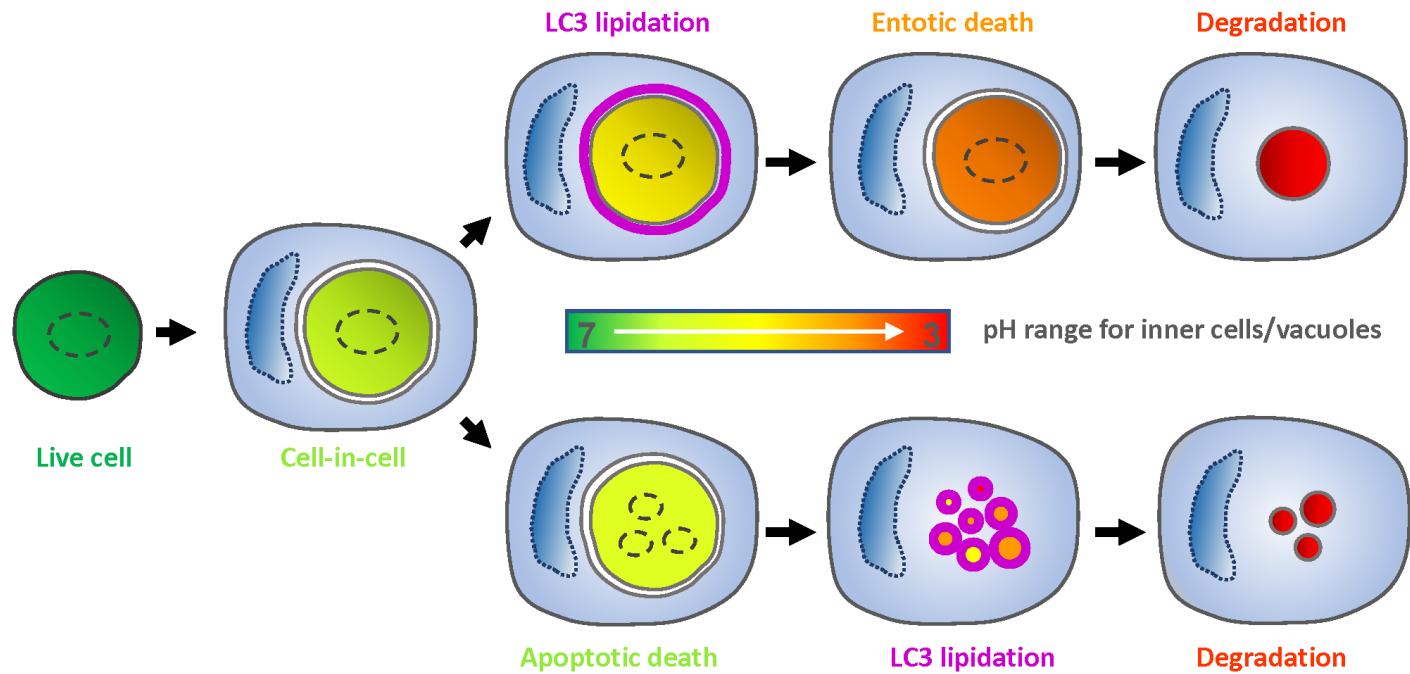
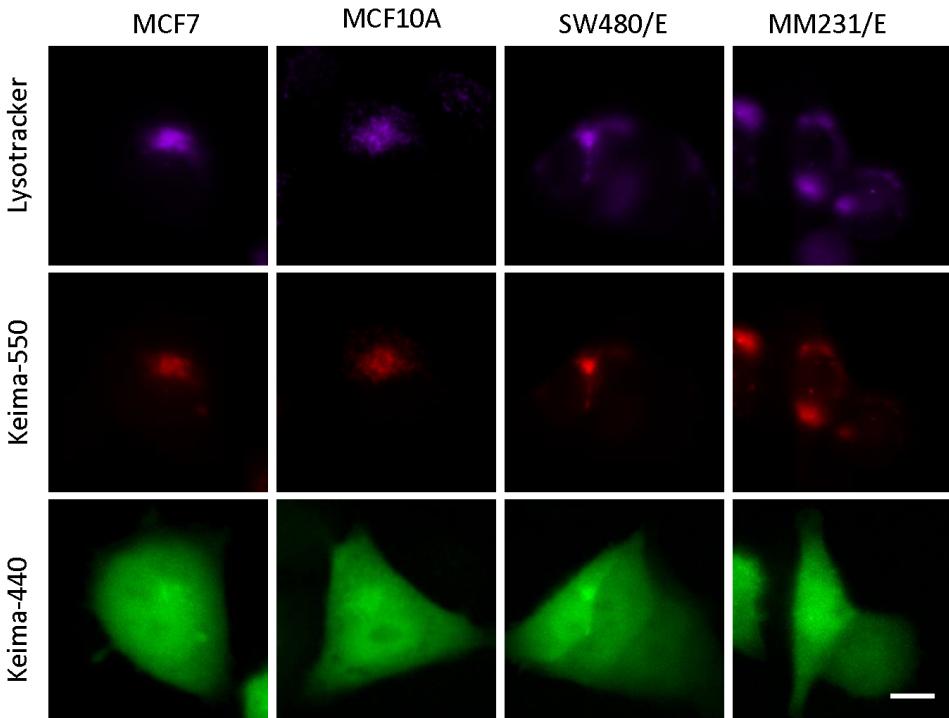
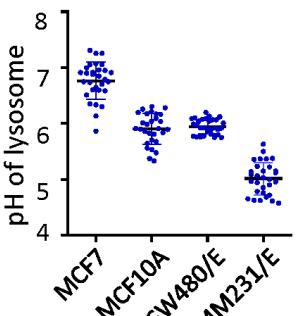
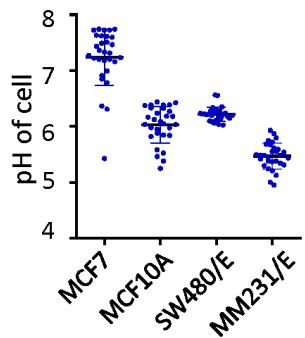
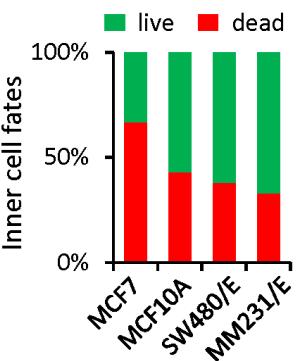




Fig. 6 pH dynamics along with LC3 lipidation in CICs-mediated death.


A


B

C

D

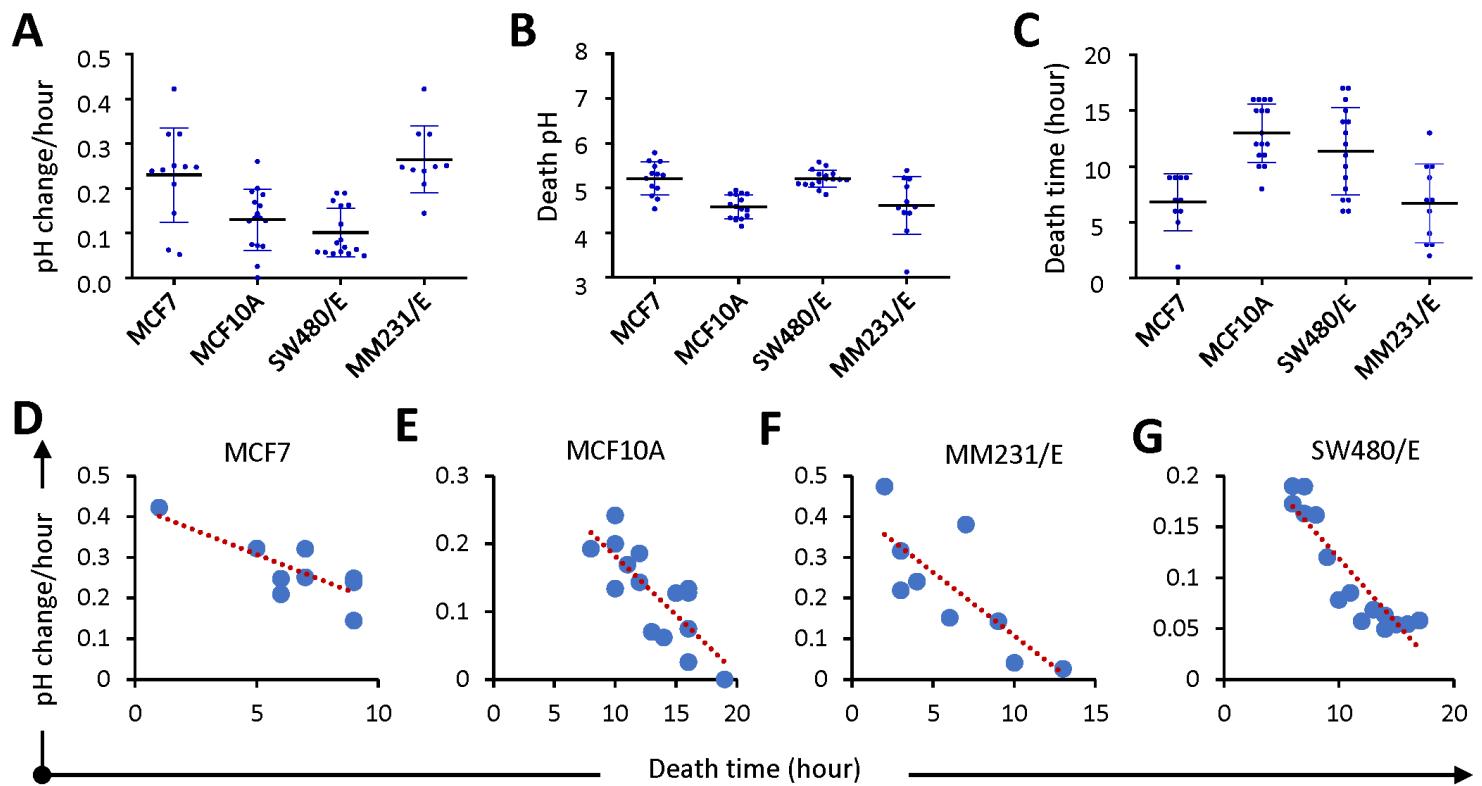


Fig. S2

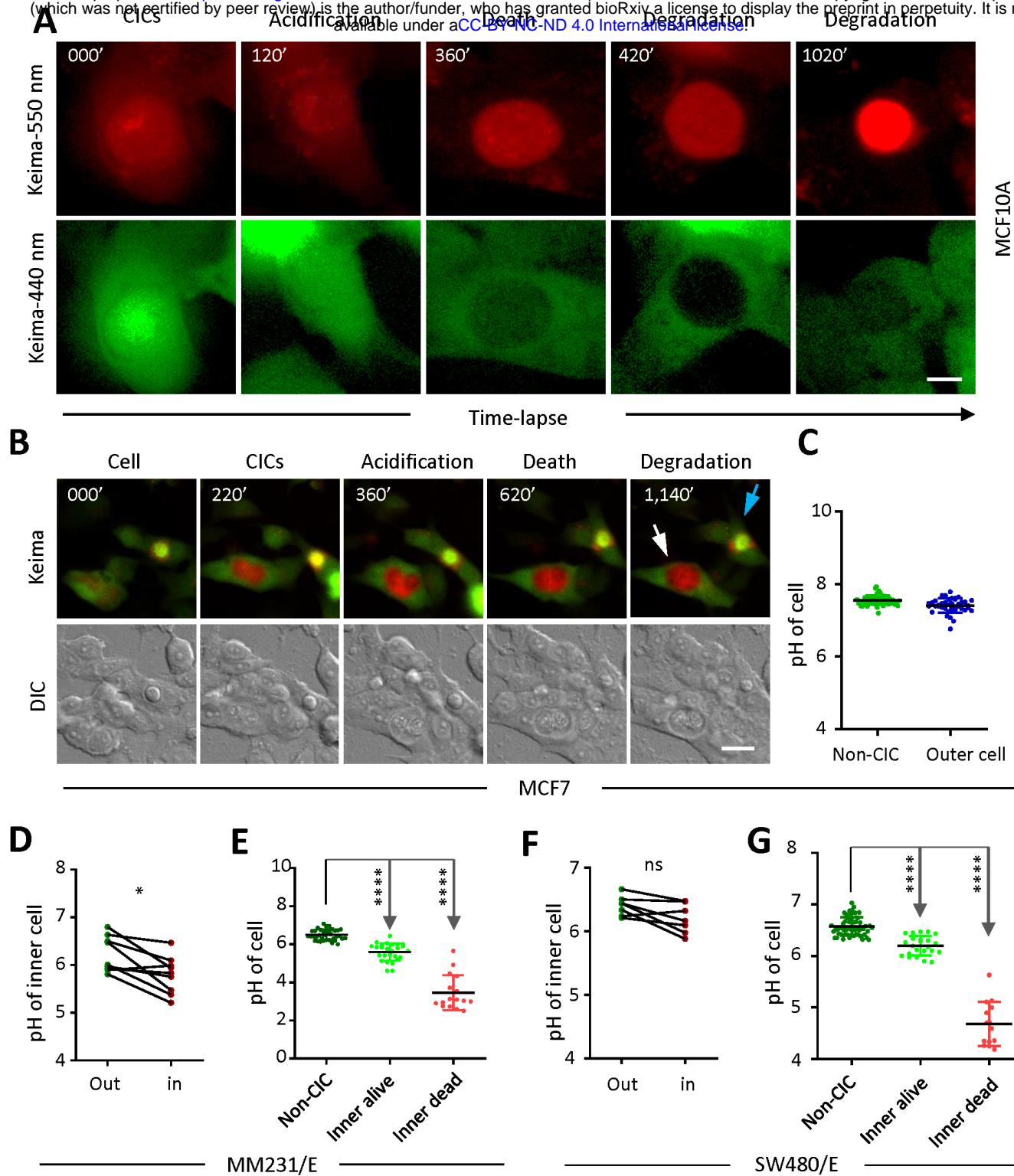


Fig. S3

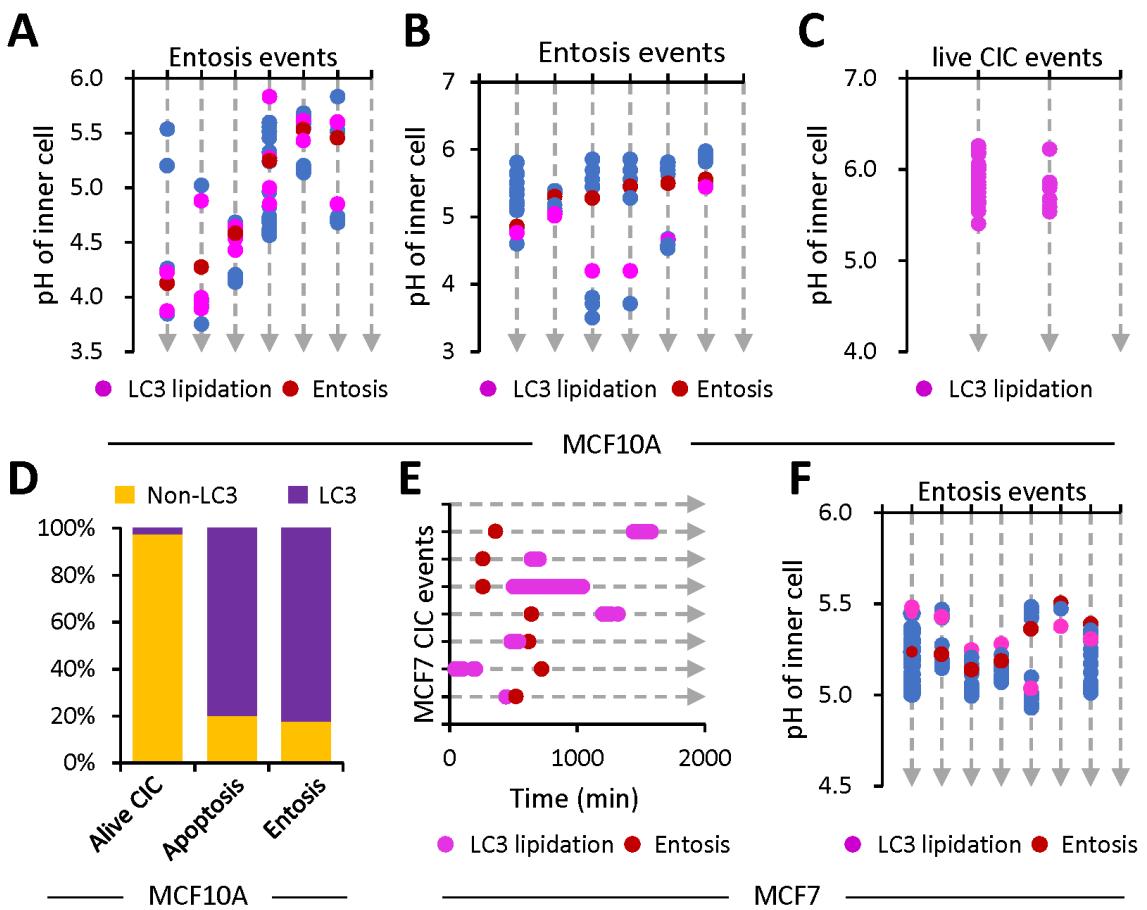


Fig. S4

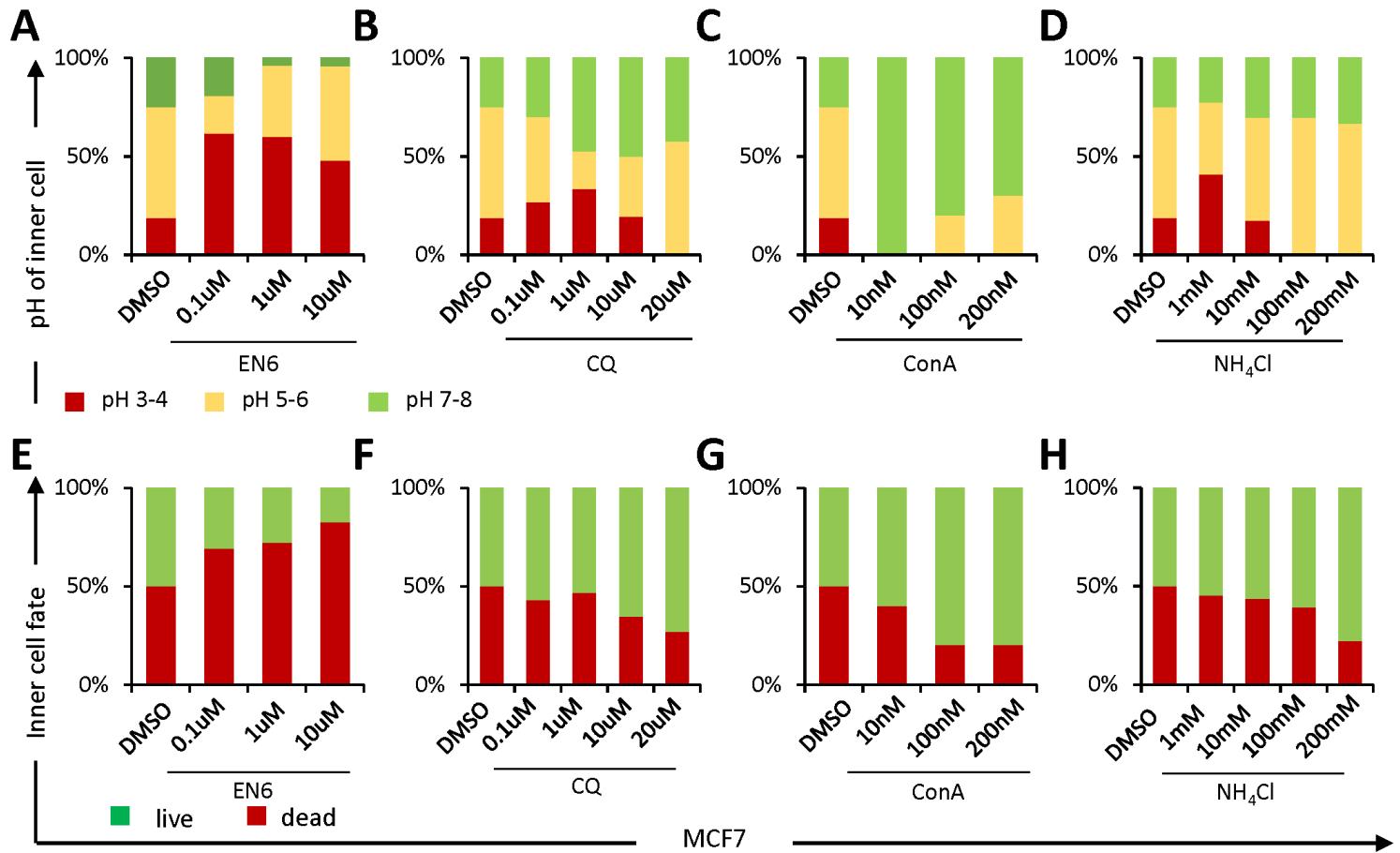


Fig. S5