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Abstract  
 
Autism spectrum disorder (ASD) is a heterogenous disorder predominantly characterized by social and 
communicative differences, but increasingly recognized to also alter (multi)sensory function. To face the 
heterogeneity and ubiquity of ASD, researchers have proposed models of statistical inference operating at the 
level of ‘computations’. Here, we attempt to bridge both across domains – from social to sensory – and levels of 
description – from behavioral computations to neural ensemble activity to a biologically-plausible artificial neural 
network – in furthering our understanding of autism. We do so by mapping visuo-tactile peri-personal space 
(PPS), and examining its electroencephalography (EEG) correlates, in individuals with ASD and neurotypical 
individuals during both a social and non-social context given that (i) the sensory coding of PPS is well understood, 
(ii) this space is thought to distinguish between self and other, and (iii) PPS is known to remap during social 
interactions. In contrast to their neurotypical counterparts, psychophysical and EEG evidence suggested that 
PPS does not remap in ASD during a social context. To account for this observation, we then employed a neural 
network model of PPS and demonstrate that PPS remapping may be driven by changes in neural gain operating 
at the level of multisensory neurons. Critically, under the anomalous excitation-inhibition (E/I) regime of ASD, 
this gain modulation does not result in PPS resizing. Overall, our findings are in line with recent statistical 
inference accounts suggesting diminished flexibility in ASD, and further these accounts by demonstrating within 
an example relevant for social cognition that such inflexibility may be due to E/I imbalances.   
 
 
Keywords: Peri-Personal Space; Multisensory Integration; Global Field Power; Excitation-Inhibition Balance; 
Bayesian Inference; Electroencephalography (EEG) 
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Introduction  
 
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by altered social interactions, 
repetitive behaviors and restricted interests, and differences in language and communication skills. The current 
diagnosis rate is approximately 1 in 59 children in the United States (Xu et al., 2018), and in addition to growing 
in pervasiveness, it is a condition growing in scope. Beyond the established core features in the social domain, 
sensory processing differences are increasingly recognized in ASD (Robertson & Baron-Cohen, 2018). In fact, 
atypical sensory responses are now part of the ASD diagnostic criteria (DSM-V). 
 
Two overarching themes have emerged in the study of sensory function in ASD. The first of these comes from 
animal model work, and highlights a marked hyper-sensitivity of neurons during weak sensory stimulation in 
mouse models of autism (e.g., Goncalves et al., 2013; Orefice et al., 2016). In principle, these changes could be 
a property of the neurons themselves, but they are more widely considered to be a circuit property (Chen et al., 
2020) reflecting changes in the balance of excitation and inhibition (E/I imbalance, Rubenstein & Merzenich, 
2003; Lee et al., 2017). The second theme, derived largely from the human literature, suggests that while 
individuals with ASD may outperform their neurotypical counterparts in local sensory processing (e.g., Joseph 
et al., 2009), they present with decreased holistic processing (i.e., weak central coherence; Happe & Frith, 2006). 
A similar conclusion applies to the ability to integrate information across different sensory modalities, with a 
growing body of evidence pointing to atypical multisensory integration in ASD (see Baum et al., 2015, and 
Wallace et al., 2020, for reviews, but also Zaidel et al., 2015, for opposing evidence).  
 
Now, bridging across the core features deficits that characterize ASD, their phenotypic-level sensory processing 
(dis)abilities (e.g., multisensory integration), and their putative underlying neural implementation level causes 
(e.g., E/I imbalance), is a notorious challenge. Arguably, this endeavor requires both (1) the appropriate 
computational tools to bridge across levels of description (i.e., from neurons to behavior) and, (2) an experimental 
paradigm that is germane to both social and sensory processing.  
 
Regarding the former, the recent rise of computational psychiatry reflects an attempt to both broadly ascribe the 
heterogeneity of psychiatric disorders (including ASD) to underlying algorithmic anomalies, as well as to bridge 
across levels of description (e.g., Huys et al., 2016). In autism, much of this current effort is centered around 
weaknesses in the ability of those with ASD to perform and update statistical inferences (Pellicano & Burr, 2012; 
Palmer et al., 2017; Karvelis et al., 2018) – a computation which is ubiquitous across brain networks and 
fundamental for perception (e.g., Pitkow & Angelaki, 2017). However, these studies are limited in their ability to 
link across levels of description, e.g., from phenomenology to neural circuitry. Regarding the latter, much of the 
work bridging between perceptual and social deficits in ASD has focused on establishing correlations between 
multisensory (i.e., audio-visual) temporal perception and social-communicative abilities (e.g., language 
comprehension; Woynaroski et al., 2013; Stevenson et al., 2014; see Wallace et al., 2020). The linkage from 
language comprehension to neurons, however, may be a bridge too far for current computational tools. 
 
In the current study, we take advantage of a spatial multisensory paradigm that offers the opportunity to bridge 
from sensation to social cognition. Namely, it is well established that there is a network of multisensory (e.g., 
visuo-tactile) neurons located in posterior parietal and ventral pre-motor cortices that map the space immediately 
surrounding and adjacent to the body – the peri-personal space (PPS; Rizzolatti et al., 1981, 1983, Shelton et 
al., 1990; Ladavas et al., 1998; Serino, 2019). This space is thought to delineate the space of the self vs. that of 
other agents (Blanke, 2012, Noel et al., 2015; Salomon et al., 2017), and both physiological recordings in 
monkeys (Ishida et al., 2010) and psychophysical tasks in healthy humans (Teneggi et al., 2013; Pellencin et al., 
2017) have suggested that the PPS remaps as a function of social context (e.g., quality of social interaction or 
even perceived morality of others). PPS has been reported to be smaller in individuals with ASD than in their 
neurotypical counterparts (Mul et al., 2019; Noel et al., 2020), yet its reshaping based on social context has not 
been studied. Further, biologically-plausible neural network models of PPS have been proposed (Magosso et 
al., 2010a, 2010b; Serino et al., 2015a), and these models are able to recapitulate the basic properties of PPS 
encoding (e.g., visual or auditory facilitation of tactile processing when the former is near but not far from the 
body). However, these models have yet been brought to bear on questions of clinical interest in ASD, or to the 
issue of the malleability of PPS based on social context. 
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We map PPS in ASD both via psychophysics and electroencephalography (EEG). The neural recordings 
provides direct evidence for true multisensory integration (visuotactile) in individuals with ASD that is modulated 
by the distance between constituent cues (visual and tactile). These approaches suggested an inflexible mapping 
of PPS and an immutable degree of multisensory integration in ASD regardless of social context. Neural network 
modeling suggests that this inflexibility may be due to a gain modulation provided by the social context being 
less impactful within the E/I regime characterizing ASD.  
 
Materials and Methods 
 
 Participants 
 
A total of 50 participants (20 females, 30 males, mean age = 20.8 ± 3.34 years) took part in this experiment. Of 
these, 20 (8 females, mean age = 21.3 ± 4.5 years) were individuals previously diagnosed by a clinician 
practitioner as on the autism spectrum according to the diagnostic criteria of the DSM-5, and further evaluated 
and confirmed as individuals with ASD by a research-reliable clinician using the Autism Diagnosis Observation 
Schedule (ADOS-2,; Lord et al., 2012). The other 30 participants were neurotypical control individuals group-
matched for age, gender, and IQ to the ASD group (all p > 0.18). Individuals within the control group did not have 
a diagnosis of ASD or any other psychiatric or neurologic disorder. All participants completed the Social 
Responsiveness Scale (SRS; Constantino et al., 2003) and as expected ASD participants scored higher (mean 
± sem, 95.15 ± 6.30) than the neurotypical participants (44.40 ± 4.29, p = 1.59 x 10-8). Participants gave consent 
in according to the Declaration of Helsinki before taking part in the experiment, and all protocols were approved 
at the Institutional Review Board at Vanderbilt University.  
 
 Materials and Apparatus 
 
Visual and tactile stimuli were driven via a micro-controller (SparkFun Electronics, Redboard, Boulder CO) and 
direct serial port communication under the control of purpose written MATLAB (MathWorks, Natick MA) and 
Arduino (ArduinoTM) scripts. Visual stimuli were a flash of light from a red LED (3 mm diameter, 640 nm 
wavelength), while tactile stimuli consisted of vibrotactile stimulation administered via a mini motor disc (10mm 
diameter, 2.7mm thick, 0.9 gram, 5V, 11000 RPM). These stimuli were 50 ms in duration (square-wave, onset 
and offset <1 ms, as measured via oscilloscope). The LEDs and vibrotactile motor were mounted in an opaque 
enclosure where 30 LEDs sequentially protruded above the enclosure every 3.3 cm (in depth) and counted with 
a hand rest immediately adjacent to the first LED (see Noel et al., 2018a for a similar apparatus). In the current 
study LEDs number 5, 8, 11, 14, and 17 were utilized, corresponding to visuotactile depths of 13.2cm, 23.1cm, 
33.0cm, 42.9cm, and 52.8cm. Visuotactile stimuli consisted of the synchronous presentation of the visual and 
tactile stimuli described above.  
 
 Procedure 
 
Participants were seated in a light- and sound-controlled room in which they performed a tactile reaction time 
(RT) task to a tactile stimulation administered on their left index finger. Responses were given by button-press 
with their right index finger. Trials could be visuotactile (i.e., experimental trials; VT), tactile (i.e., baseline; T), or 
visual (i.e., catch; V) trials. Visual trials were ‘catch trials’ in that they did not require a motor response, while 
tactile trials were ‘baseline trials’ as these permitted us to gauge tactile RTs in the absence of visual inputs, and 
hence determine whether a multisensory effect was present as a function of visuo-tactile distance. Visuotactile 
and visual trials were presented at 5 different distances (D1 through D5 = 13.2cm, 23.1cm, 33.0cm, 42.9cm, and 
52.8cm, Figure 1A). Within each block 132 trials were presented; 20 VT trials at each of the 5 distances, 4 V 
trials at each of the 5 distances, and 12 T only trials. Trial type was randomized within blocks, and inter-trial 
interval was random between 1500-2250ms (uniform distribution). Participants completed 8 or 10 blocks (total 
of 1056 to 1320 trials) according to time constraints. Block duration was ~6 minutes. Half of the blocks were 
‘non-social’, and half were ‘social’. During ‘social’ blocks an experimenter sat facing the participant at a distance 
of 150 cm with a neutral expression (see Teneggi et al., 2013 for a similar manipulation; Figure 1A). The order 
of blocks was counter-balanced across participants.  
 

Behavioral Analyses 
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Tactile RTs were measured as the time elapsed from touch onset to button response. These responses were 
coalesced as a function of sensory modality (unimodal tactile vs. multisensory visuo-tactile), distance (D1-D5), 
and social context (social vs. non-social). Then, the median RT was computed for each participant and condition. 
As a preliminary analysis, we performed a paired t-test across sensory modalities in order to confirm that 
multisensory visuo-tactile trials (regardless of distance) were faster than unisensory tactile trials, and thus as 
expected visual presentations facilitated tactile responses (Noel et al., 2019). Next, we performed a one-way 
ANOVA to confirm that tactile facilitation was dependent on the proximity of visual presentation; namely, to query 
whether as a whole participants demonstrated a PPS effect (e.g., Pfeiffer et al., 2018). Lastly, on a participant-
per-participant basis we fit RTs to a sigmoidal function (Eq. 1), 
 
 

𝑦(𝑥) = !!"#"!!$%∙$(%'%() *⁄

%"$(%'%() *⁄
  (Eq. 1) 

 
from which we extracted the central point of the sigmoidal (𝑥,, in Eq. 1, representing the boundary of PPS) and 
a parameter inversely proportional to its slope at the central point (𝑏 in Eq. 1, characterizing the gradient of PPS 
representation; see Noel et al., 2018, 2020, for a similar approach). The central point and slope of the sigmoidal 
fit were contrasted via a mixed ANOVA as a function of social context (i.e., social vs. non-social), the participant 
group (i.e., control vs. ASD), and the interaction of these variables to describe the shape (size and gradient) of 
PPS encoding. An a priori cutoff r-square >0.25 was applied, excluding data at the participant level if this 
threshold was not reached on both the social and non-social conditions. This resulted in 9/50 (18%) participants 
being excluded. To ascertain whether results held on the sample as a whole, we additionally employed the 
Spearman-Karber method (see Bausenhart et al., 2018 for a tutorial review, and see Masson et al., 2020 for 
prior application of this method to PPS data) to estimate the central point and slope of the psychometric functions 
without requiring a fitting procedure.  
 

EEG Recording and Preprocessing 
 

Continuous EEG was recorded from 128 electrodes with a sampling rate of 1000Hz (Net Amps 400 amplifier, 
Hydrocel GSN 128 EEG cap, EGI systems Inc.) and referenced to the vertex (Cz). Electrode impedances were 
maintained below 40 kΩ throughout the recording procedure. Data were acquired with NetStation 5.1.2 and 
further pre-processed using MATLAB and EEGLAB (Delorme and Makeig, 2004). Continuous EEG data were 
notch filtered at 60 Hz and bandpass filtered from 0.1 Hz to 40 Hz using an 8th order bi-directional zero-phase 
infinite impulse response (IIR) filter. Epochs from 500 ms before to 1000 ms after stimuli onset were extracted 
and divided according to experimental condition. Artifact contaminated trials (e.g., eye-blinks, 11.9% ± 4.5%) 
and bad channels (1.2% ± 0.7%) were identified and removed through a combination of automated rejection of 
trials in which any channel exceeded ± 100 mV and rigorous visual inspection. Data were then recalculated to 
the average reference and bad channels were reconstructed using spherical spline interpolation (Perrin et al., 
1987). Lastly, data were baseline corrected for the pre-stimuli period (-200 to 0 ms post-stimuli onset).  

 
EEG Analyses 

 
We quantified the global electric field strength present throughout the recording montage using global field power 
(GFP; Lehman & Skrandies, 1980). This measure corresponds to the standard deviation of the trial-averaged 
voltage values across the entire electrode montage at a given time point, and represents a reference- and 
topographic-independent measure of evoked potential magnitude (Murray et al., 2008). Further, GFP is 
additionally a data-reduction technique given that it summarizes 128 distinct time-series (i.e., electrodes) into a 
singular one, thus reducing the multiple comparisons problem in EEG and the possibility for false positives. 
 
In a first pass, we calculated the GFPs for each participant, as well as for the entire sample of participants (i.e., 
grand average) for tactile, visual, and visuotactile conditions separately while collapsing across distances (see 
Figure 2). Time-resolved t-tests against zero were performed at each time-point from 200 ms pre-stimuli 
presentation to 1000 ms post-stimuli onset in order to ascertain whether reliable evoked potentials were 
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generated (to V, T, and VT stimuli). To account for the inherent auto-correlation problem in EEG, we set alpha 
at < 0.01 for at least 10 consecutive time points (Guthrie & Buchwald, 1991; see Simon et al., 2017, and Cascio 
et al., 2015, for a similar approach). Next, to ascertain whether a veritable multisensory effect existed (i.e., non-
linearity between the co-presentation of V and T information vis-à-vis their presentation in isolation; e.g., Stein & 
Stanford, 2008) we created artificial visuo-tactile summed responses (hereafter, “summed” or “sum”) by adding 
the participant-level average responses to V and T. GFP was then calculated for this summed response and 
contrasted to the GFP of the multisensory visuotactile condition (or “paired” response; see Cappe et al., 2010 
for a similar approach). Indeed, as GFP is by definition positive, an advantage of utilizing this method within a 
multisensory context is that super- and sub-additivity indices may be measured with no ambiguity due to 
polarities (e.g., Sperdin et al., 2010). Having established that the co-presentation of visual and tactile information 
resulted in a multisensory effect, and having identified the time-period and spatial cluster driving this effect, we 
next computed the multisensory effect (i.e., difference in voltage between summed and paired responses within 
the spatio-temporal window of interest) for each visuo-tactile distance, social context, and participant group. 
These latter variables were contrasted via a 5 (distance) by 2 (social context) by 2 (participant group) mixed 
ANOVA.  
 

Neural Network Modeling 
 
To examine putative circuit-level mechanisms subserving the behavioral and physiological results observed, we 
implemented and extended a well-established biologically-plausible neural network model of PPS (Magosso et 
al., 2010a, b; Serino et al., 2015a; Noel et al., 2018b, 2020a). The model is composed of non-spiking (rate) 
neurons whose output is a continuous variable representing the neuron’s firing rate. The network includes two 
recurrently connected unisensory areas (tactile and visual) projecting onto a third area composed of a 
multisensory visuo-tactile neuron (see Figure 3).  
 
Each unisensory area is composed of a matrix of unisensory neurons. The tactile area is composed of 200 
neurons (20 x 10 grid) covering a skin portion of 10 cm x 5 cm. The visual area is composed of 1680 neurons 
(120 x 14 grid), covering a visual space of 60 cm in depth and 7 cm horizontally. These unisensory neurons each 
have a bivariate Gaussian receptive field through which stimuli are convolved, and cells within each area are 
reciprocally connected via lateral synapses 𝐿  having a “Mexican-hat pattern” (i.e., near excitation and far 
inhibition). The specific weights assigned to each synapse are obtained as the difference between two Gaussians 
(one excitatory and one inhibitory) according to, 
 

𝐿-.,012 =	&𝐿34
2 ∙ exp +−	

(5!")#675$"8
#

9∙(;%!" )#
- −	𝐿-<2 ∙ exp +−	

(5!")#675$"8
#

9∙7;&'
" 8#

- , 𝑖𝑗 ≠ ℎ𝑘	

0, 𝑖𝑗 = ℎ𝑘
 (Eq. 2) 

 
where 𝐿-.,012  denotes the weight of the synapse from a pre-synaptic neuron at position ℎ𝑘 to post-synaptic neuron 
at position 𝑖𝑗, the superscript 𝑠 can take on 𝑡 (i.e., tactile) or 𝑣 (i.e., visual) as values, and the subscripts 𝑒𝑥𝑝 and 
𝑖𝑛 respectively refer to excitation and inhibition. 𝐷42 and 𝐷=2 indicate the distances between the pre- and post-
synaptic neuron along the horizontal and depth axis of the unisensory area. The null term is included to avoid 
auto-excitation. 
 
Neurons within both unisensory areas send excitatory feedforward synapses, 𝑊, to the downstream visuotactile 
area. In turn, the multisensory neuron sends excitatory feedback connections, 𝐵, back to the unisensory areas. 
The feedforward synapses from the tactile neurons to the multisensory one have a uniform value, 𝑊!

". Similarly, 
the feedback projections from the multisensory neuron to tactile neurons all have strength 𝐵!". On the other hand, 
the weights of synapses that connect visual neurons and the multisensory neuron take on their maximal value, 
𝑊!

# and 𝐵!#, within a certain depth boundary, 𝐿𝑖𝑚, and then decrease with further depth according to the bi-
exponential functions,   
 

𝑊-.
> = 	𝛼 ∙ 	𝑊?

> ∙ exp ?−	5&(
@)
@ + (1 − 𝛼) ∙ 	𝑊?

> ∙ exp ?−	5&(
@#
@  (Eq. 3) 
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𝐵-.> = 	𝛼 ∙ 	𝐵?> ∙ exp ?−	

5&(
@)
@ + (1 − 𝛼) ∙ 	𝐵?> ∙ exp ?−	

5&(
@#
@  (Eq. 4) 

 
𝐾A, 𝐾9, and 𝛼 are parameters governing the exponential decay of synaptic weights after the first 𝐿𝑖𝑚 cm.  

The overall input, 𝑢, to a neuron in the network is processed via a first-order temporal dynamics (Eq. 5, mimicking 
the post-synaptic membrane time constant) and a sigmoidal function (Eq. 6 and 7, mimicking the neuron’s 
activation function), generating the neuron’s output activity, 𝑧(𝑡): 
 

𝜏
$%!"

# (")

$"
= −𝑞()* (𝑡) + 𝑢()* (𝑡),													𝑠 = 𝑡, 𝑣,𝑚																	(Eq. 5) 

 
 

𝑧()* (𝑡) = 𝜓	 5𝑞()* (𝑡)6 ∙ 𝐻	(𝜓	 5𝑞()* (𝑡)6),						𝑠 = 𝑡, 𝑣,𝑚  (Eq. 6) 

 

𝜓	 5𝑞()* (𝑡)6 =
+$!%
# ,+$&'

# ∙.
()*!"

# (,)./#0∙2#3

/,.
()*!"

# (,)./#0∙2#3
,						𝑠 = 𝑡, 𝑣,𝑚  (Eq. 7) 

Eq. 5 holds for both unisensory neurons 𝑠 = 𝑡, 𝑣  and for the multisensory neuron 𝑠 = 𝑚. 𝑞-.2 (𝑡) is the state 
variable of a neuron at a given time step, 𝑡. 𝑢2(𝑡) is the input to the neuron and	𝜏 the time constant. Eq. 6 
describes a sigmoidal function, 𝜓, being applied to the state variable and this being multiplied by a Heaviside 
function 𝐻 to avoid negative values in the activity of neurons (similar to a ReLu function in machine learning; 
Hahnloser et al., 2000). Eq. 7 describes the sigmoidal activation function; 𝑓B-<2  and 𝑓BC42  represent the lower and 
upper saturation of the sigmoidal function, 𝜗2 establishes the central value of the sigmoidal function (i.e. the input 
value at which the output is midway between 𝑓B-<2 and𝑓BC42  ) and 𝑟2 defines the slope. 

 

The overall input to each unisensory neuron (𝑢2(𝑡), s = t, v) is made up of the external input coming from outside 
the network (i.e., the stimulus filtered by the neurons’ receptive field, 𝑒-.2 (𝑡)), plus the lateral input coming from 
other neurons in the same area (via weights defined by lateral synapses 𝐿), and feedback input from the 
multisensory neuron (via weight defined by the feedback synapses 𝐵, see Eq. 8).  

𝑢()* (𝑡) = 𝑒()* (𝑡) +;;𝐿(),12 ∙ 𝑧12* (𝑡)
3

24/

3

14/

+ 𝐵()* ∙ 𝑧5(𝑡),					𝑠 = 𝑡, 𝑣													(Eq. 8) 

 
The overall input to the multisensory neuron is made up of the feedforward inputs from the two unisensory areas 
(via weights defined by the feedforward synapses 𝑊, see Eq. 9). 

 

𝑢5(𝑡) =;;𝑊()
" (𝑡) ∙ 𝑧()" (𝑡)

3

)4/

3

(4/

+;;𝑊()
#(𝑡) ∙ 𝑧()# (𝑡)

3

)4/

3

(4/

										(Eq. 9) 

 
All abovementioned differential equations are solved by numerically employing the Euler integration method with 
a discrete time-step of 0.4ms. Tactile stimuli within the network were always applied at 𝑥D = 10	𝑐𝑚 and 𝑦D =
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5	𝑐𝑚. In contrast, the visual stimuli were always applied at coordinate 𝑦> = 7.5	𝑐𝑚 and critically 𝑥>  changed 
across trials to take on the true experimental values of visual stimuli during the behavioral experiment. 
 
The reaction time of the network was registered at every distance as the time at which any neuron of the tactile 
area reached 90% of its maximum state (i.e., 90% of 𝑓BC42 ). To translate between output of the neural network 
and human psychophysical reaction times, we also presented the network with tactile-only stimuli, and computed 
its multisensory facilitation just as we did for the human observers (i.e., difference between unisensory and 
multisensory reaction times). Then, we matched the time units of the model to real time by linear regression,  
 

 	
𝑅𝑇67589* =	𝑎	 ⋅ 𝑅𝑇5:$.2 + 𝑏										(Eq. 10) 

 
Where 𝑅𝑇0EBC<2 is the multisensory facilitation measured in humans, 𝑅𝑇BFG3H is that measured within the neural 
network, 𝑎 denotes how many milliseconds correspond to one unit time of the model, and 𝑏 represents the 
duration of neural processing not captured by the model. Novelty, within the current report we implemented a 
differential evolution algorithm (see Wormington et al., 1999, Virtanen et al., 2020) to perform model fitting of the 
PPS neural network. During this fitting 𝑎 was bounded to be positive, and 𝑏 to be negative. To further constrain 
the neural network model fits, we generated ‘experimental data’ at seven distances (as opposed to the five tested 
in humans) given the median 𝑦B-<, 𝑦BC4, 𝑥, , and 𝑏 (see Eq. 1) from the social and non-social conditions in 
controls and individuals with ASD.  
 
Default parameter values were inherited from previous reports (Magosso et al., 2010a,b) and can be found in 
Table S1. For more detail see Supplementary Note. 
 
Results 
 

Smaller PPS During Social Context in Neurotypical but not ASD Individuals  
 

Overall participants were very accurate at withholding responses during visual-only catch trials (false positives, 
2.3% ± 1.4%) and therefore behavioral analyses focuses on reaction times (RT, see Serino et al., 2015b for a 
similar approach).  
 
The contrast between tactile and visuo-tactile RTs (regardless of distance) demonstrated a clear multisensory 
facilitation effect (tactile, 383.3 ms ± 2.9 ms; visuo-tactile, 354.9 ms ± 3.5 ms, t = 10.32, p = 6.85x10-14). Moreover, 
in general the RTs of individuals with ASD (376.6 ms ± 2.8 ms) were slower than that of control individuals (340.5 
ms ± 3.1 ms, p = 1.57x10-4). Thus, to examine putative space-dependent multisensory effects, we first computed 
for each participant and visuo-tactile disparity an index of multisensory facilitation (i.e., VT – T); the more negative 
this value, the stronger the multisensory effect (see Noel et al., 2018, for a similar approach). For both the 
neurotypical (p = 0.024) and the ASD groups (p = 0.019), facilitation in the detection of a tactile target by a co-
presented visual stimulus was space dependent, with the effect being most apparent at smaller visuo-tactile 
spatial disparities (Figure 1B). Thus, both groups showed a modulation of behavior based on the spatial structure 
of co-presented visual and tactile stimuli, consistent with the encoding of PPS. 
 
To more fully characterize the PPS effect we fit RTs to a sigmoidal function (Eq. 1) with its central point and 
slope at the central point as free parameters. After removal of participants with very poor fits (see Methods 
section), this function closely fit the pattern of RTs (R2, 0.78 ± 16.2), and did so equally for the two participant 
groups (p = 0.43). Although there was a tendency for those with ASD to have a smaller PPS at baseline (ASD, 
32.68 cm ± 1.64 ms; neurotypical controls, 34.09 ± 0.67cm, p = 0.18, F-test main effect), in the current dataset 
this difference failed to reach significance (but see Mul et al., 2019 and Noel et al., 2020, for evidence suggesting 
smaller PPS in ASD than neurotypical individuals). More importantly, however, to the best of our knowledge the 
current report is the first to examine the re-sizing of PPS in individuals with ASD as a function of an experimental 
manipulation – the presence of another individual in this case. In line with Teneggi et al., 2013, the presence of 
another individual (social condition) appeared to overall shrink our participant’s’ PPS (non-social, 33.39 cm ± 
0.89 cm; social, 31.46 cm ± 0.82 cm, p < 0.001, F-test main effect). Critically, this re-sizing was true in control 
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participants (non-social, 34.09 cm ± 1.64 cm; social, 29.66 cm ± 1.28 cm, p = 5.96 x10-6), but not for the ASD 
group (non-social, 32.68 cm ± 0.67 cm; social, 33.27 cm ± 0.82 cm, p = 0.26; Figure 1C). Similar (but non-
parametric due to their skewed distribution) analyses on the gradient of PPS (parameter 𝑏  in Eq. 1) 
demonstrated no difference between or within groups (all p > 0.25). The most striking feature of these estimates 
was their marked variability (see Figure 1D). 
 
Lastly, as a confirmatory analysis we estimated again the central point of the psychometric function describing 
visuo-tactile RTs as a function of visuo-tactile distance via the Spearman-Karber method (see Bausenhart et al., 
2018). This method allows for estimating the measures of interest without sigmoidal fitting, and thus we were 
able to include all participants in this analysis. Results confirmed an interaction between social context and 
participant group (p = 0.01). This effect was driven by the resizing of PPS within a social setting in the control 
group (p = 0.021), but not the ASD group (p = 0.12). 
 

 
Figure 1. Methods and Behavioral Results. A) Experimental Setup. Participants responded as fast as possible to tactile 
stimuli (orange), which could be paired with visual stimuli (red, example show at third distance) at different distances (D1-
D5, 13.2 – 52.8cm). In different blocks, an experimenter would sit facing the participants with a neutral expression (social 
blocks). In the non-social blocks there was nobody else in the experimental room. B) Visuo-tactile reaction times as a 
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function of visuo-tactile distance. Both for neurotypical control (left) and ASD (right) participants, reaction times were 
further facilitated when visual stimuli were near the body, demonstrating a PPS effect. The facilitation was well expressed 
in the majority of participants by a sigmoidal function in both the non-social (black) and social (red) blocks. The fit shown is 
to the average RTs across participants, and not the average fit. C) Extracted Central Point. PPS become smaller in 
neurotypical control (left) but not ASD (right) participants during the social blocks. D) Extracted Slope Parameter. The 
gradient separating the space where visual presentation facilitated vs. not tactile reaction times did not change in either 
group as a function of social context, and instead was characterized by a marked inter-participant variability. 
 

Physiological Marker Suggests Unchanged Multisensory Integration During Social Context in ASD 
 

The behavioral paradigm employed above allows mapping PPS via a task that has been classically used to index 
multisensory interactions, and suggests that that while PPS in individuals with ASD may be smaller (empirically 
supported by Mul et al., 2019, Noel et al., 2020, and theoretically suggested by Noel et al., 2017), its starker 
defining characteristic is its inflexibility. Namely, in contrast to neurotypical individuals, PPS did not remap for 
ASD individuals during a social context. In this behavioral paradigm, however, participants are instructed not to 
respond to visual stimuli alone. This experimental design choice was driven by the fact that inclusion of “catch, 
non-response” trials greatly reduces the expectation bias that results from having to respond on every trial (see 
Kandula et al., 2017 and Hobeika et al., 2019 for more detail). However, not indexing unisensory visual-only 
trials impedes from ascertaining whether true multisensory integration occurred, via race (Miller, 1982) or drift-
diffusion (Drugowitsch et al., 2014) models, both requiring RTs to every component (e.g., V, T, and VT).  
 
To take a different approach toward assessing true multisensory integration (vs. interactions), we turned to 
electrophysiology. We sought to assess visuo-tactile multisensory integration as a function of spatial disparity, 
social context, and clinical diagnosis. In a first step, we computed Global Field Power (GFP, see Methods), an 
index of overall neural response strength. This analysis demonstrated a reliable evoked tactile response 
beginning at 151 ms post-stimulus onset (p<0.01). This tactile GFP signal peaked at 334 ms post-stimulus onset 
(Figure 2A, leftmost). Visual evoked responses were reliably indexed somewhat later, beginning at 170 ms post-
stimulus onset (p<0.01), and peaking shortly thereafter at 182 ms post-stimulus onset (Figure 2A, 2nd column). 
Response to combined visuotactile stimulation began 152 ms post-stimulus onset (p<0.01), and peaked at 218 
ms post-stimulus onset (Figure 2A, 3rd column). In regards to their spatial distribution on the scalp, the tactile 
response was characterized by a central positivity (Figure 2B, leftmost), the visual response was characterized 
by an occipital negativity (Figure 2B, 2nd column), and the visuotactile response was a combination of these 
topographies, showing both a negativity in posterior electrodes and a positivity pole over fronto-central electrodes 
(Figure 2B, 3rd column).  
 
To determine whether the presentation of visuotactile stimuli elicited a response indicative of multisensory 
integration, we created an artificial summed (i.e., visual + tactile) response. An actual multisensory (“paired”) 
response that deviates from this additive prediction is considered a hallmark of multisensory integration (see 
Stein & Stanford, 2008, for a review, and Bernasconi et al., 2018, and Noel et al., 2019a for a similar approach 
within the study of PPS). The contrast between the actual and summed GFP demonstrated superadditivity of the 
multisensory response (V+T<VT) between 153 and 175 ms post-stimulus onset (p < 0.01). This finding was true 
for both the control (between 154 ms and 170 ms post-stimuli onset, p < 0.01) and ASD (between 158 ms and 
174 ms post-stimuli onset, p < 0.01) individuals. While the evoked multisensory response at its peak amplitude 
was driven by a widespread negativity in posterior electrodes and positivity more anteriorly, the topography of 
the difference wave was focused with a positivity in centro-posterior electrodes (Figure 2B, rightmost, electrodes 
highlighted in white demonstrated a voltage-difference between the paired and summed response).  
 
Having restricted our time-period of interest to between 158 and 170 ms post-stimulus onset (the union of the 
time-periods demonstrating a response indicative of multisensory integration in all groups), as well as our 
montage state space (i.e., spatial window of interest) to those centro-posterior electrodes driving the 
multisensory effect, Figure 2B, rightmost), we next investigated whether this response differed based on visuo-
tactile disparity, and how it varied as a function of social context and participant group. We extracted and 
averaged voltages within the spatio-temporal window defined above for each participant, modality type (T, V, or 
VT) and distance (in the case of V and VT). We then computed the degree of multisensory superadditivity (VT – 
(V + T), positive values indicating greater multisensory integration) and performed a 5 (distance) by 2 (social 
context) by 2 (participant group) mixed ANOVA.  
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Results demonstrated that the multisensory response was indeed graded by visuo-tactile disparity (F = 6.02, p 
< 0.001, Figure 2C), being strongest when touch and vision were presented near each other and progressively 
decreasing with distance between them (D1 trough D5 respectively; 0.46μV ± 0.10μV, 0.34μV ± 0.11μV, 0.15μV 
± 0.13μV, 0.06μV ± 0.08μV, -0.02μV ± 0.07μV). Most importantly, at near distances (D1 & D2, corresponding to 
13.2 and 23.1cm) this metric had positive values significantly different from zero (all p < 0.006), indicating a true 
multisensory effect. This effect was present in controls (all p < 0.01) and in ASD individuals, but only for the 
nearest distance in the latter group (D1, p = 0.04; D2, p = 0.12). Thus, while the behavioral results failed to 
indicate differently sized PPSs in controls and ASD, the EEG suggests that these two groups do indeed differ in 
overall size (Mul et al., 2019; Noel et al., 2020).  
 
The main effect differentiating controls (0.27μV ± 0.12μV) and ASD individuals (0.12μV ± 0.11μV) regardless of 
distance or social context approached but did not reach significance (p = 0.06), as did the contrast between 
social contexts regardless of experimental group and distance (p = 0.13). Critically, however, the group by social 
context did show a significant interaction (F = 3.74, p = 0.019). This latter effect was driven by the fact that social 
context altered the general degree of multisensory integration in neurotypical controls (non-social, 0.42μV ± 
0.12μV; social, 0.14μV ± 0.16μV, p = 0.014), but not in individuals with ASD (non-social, 0.15μV ± 0.13μV; social, 
0.14μV ± 0.13μV, p = 0.83). The 3-way interaction was not significant (p = 0.32). 
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Figure 2. Electroencephalography Results.  A) Global Field Power as a function of sensory modality. Results show 
clear evoked responses for tactile (leftmost), visual (2nd panel), and visuo-tactile (black, 3rd panel) stimuli presentations. 
More importantly, the visuo-tactile response shows true multisensory integration, being stronger than the artificially summed 
visual+tactile response (magenta). Rightmost panel shows the difference wave between the paired and summed response. 
B) Topography of responses and difference wave (rightmost). The topography of responses (nose at the front) is 
indicative of tactile (leftmost), visual (2nd panel), and visuotactile (3rd panel). The rightmost panel shows that the supra-
additive multisensory effect is driven by electrodes in centro-occipital areas, between unisensory visual and somatosensory 
areas. C) Voltages during supra-additive period within the cluster driving the GFP effect. The difference in voltage 
between the paired (VT) and summed (V+T) conditions show a clear multisensory integration effect, and one that is 
dependent on spatial disparity between V and T. Most interestingly, social context (black = non-social, red = social) modified 
the degree of multisensory integration in controls (left) but not ASD (right) individuals.  
 
 Neural Network Modeling: Differences in E/I balance in Autism may cause PPS inflexibility 
 
Having established that both control and individuals with ASD showed a PPS effect behaviorally, as well as the 
presence of multisensory integration as indexed by physiology (i.e., superadditivity) that was greatest in the near 
space, we attempted to provide a neural modeling framework capable of accounting for the apparent inflexibility 
of PPS in ASD. For this purpose, we adapted an existing biologically-plausible neural network model of PPS 
(Magosso et al., 2010a, 2010b) by (i) reducing the number of neurons simulated, (ii) rendering it deterministic by 
eliminating noise sources, and (iii) introducing a mapping between neural activation and reaction times (see 
Methods and Figure 3A for details). Importantly, these three ingredients (and the targeted, hypothesis-driven 
fixing or not of parameters) allowed for the first time to use this neural network within the context of a model 
fitting procedure (Bogacz & Cohen, 2004, see Supplementary Note for detail). 
 
First, we fitted the neural network to the psychophysical data from neurotypical individuals under the non-social 
condition. Here, 𝐾A, 𝐾9,	𝛼, and 𝐿𝑖𝑚 (see Eq. 3 and Eq. 4) were allowed to vary while the rest of parameters 
(Table S1) were fixed to the values in Magosso et al., 2010. These parameters were chosen given that they bear 
relation to features that are anatomical, likely immutable across the duration of the experiment but that could 
account for differences between individual participants. Most importantly for this first fit, results demonstrated 
that we were able to closely reproduce the pattern of reaction times exhibited by healthy controls during the non-
social condition (RMSE = 0.41, Figure 3B). For the following steps, 𝐾A , 𝐾9 , 	𝛼 , and 𝐿𝑖𝑚  are set to this 
configuration, which serves as baseline.  
 
Next, we attempted to account for the shrinking of PPS in control individuals during the social context (see 
findings here and in Teneggi et al., 2013). We entertained two possibilities. First, we fit the neural network with 
feedback synaptic weight (parameter 𝐵?>, Eq. 4) as a free parameter, given that previous reports (Magosso et 
al., 2010a; Noel et al., 2020a) have postulated that changes in the strength of the synapses connecting 
unisensory and multisensory areas may account for the plastic resizing of PPS. However, the above possibility 
would require a very quick update in synaptic strengths, and thus we posited that instead the social context may 
reshape PPS by directly modulating the gain of the multisensory neuron (parameter 𝑟5, Eq. 7). This second 
potential source of modulation could originate from a number of long-range sources, for example, social cognition 
structures such as the amygdala or orbitofrontal cortex (see Clery et al., 2015, and Bufacchi & Iannetti, 2018 for 
a similar argument), and be implemented via a number of (quick) functional properties, such as altering the local 
chemical balance via neuromodulators. Model fits (Figure 3B) showed that the latter was the most likely 
possibility, with modification of 𝑟B	(RMSE = 0.76) providing a better fit than alterations of 𝐵?> (RMSE = 2.03). 
Thus, the resizing of PPS during a social context is most parsimoniously explained by a modulation in the gain 
of the multisensory neuron. 
 
As a last and most important step, we must explain why a social context – via modulation of 𝑟B – does not remap 
PPS in ASD. To do so, we considered that the E/I regime imposed by the “Mexican-hat” (within unisensory areas 
neurons are laterally connected by a “Mexican-Hat” pattern, with near excitation and far inhibition - see inset to 
the top of Figure 3A and Eq. 2) may be different in control neurotypical and ASD individuals. Indeed, a 
substantial literature suggests this possibility (Rubenstein & Merzenich, 2003; Lee et al., 2017), and simulations 
showed that increases in 𝐿342  (i.e., more excitation) led to reductions in the size of PPS (Figure S1). That is, an 
increase in the relative strength of lateral excitations (vs. inhibition) of connections within sensory areas, as is 
hypothesized in ASD, would led to smaller PPS, which is what Mul et al., 2019, and Noel et al., 2020, have 
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reported, and is numerically (but not statistically) consistent with the findings here. Thus, we let 𝐿342  be a free 
parameter, and fit the ASD data during the non-social condition (starting from the baseline, control non-social 
model). This exercise improved the fit to data from the baseline neural network (RMSE = 0.54) and suggested a 
four-fold increase (from 0.15 at baseline to 0.63) in E/I ratio from neurotypical to individuals with ASD (Figure 
3C). Most importantly, we then examined the potential impact  𝑟B would have under this new E/I regime. As 
alluded to above, we observed that under the default (control) condition, modulations of  𝑟B are reflected in the 
size of PPS (Figure 3D). However, under an elevated general state of lateral excitation, 𝑟B had little to no impact 
on the size of PPS (Figure 3E). In other words, the well-established E/I imbalance present in ASD (Rubenstein 
& Merzenich, 2003; Lee et al., 2017) can account for a weakening of the social signal related to the presence of 
another person, and thus renders the mapping of PPS inflexible in ASD.  
 

 

 
Figure 3. Neural Network Model. A) Neural Architecture. The neural network is composed of a tactile area coding for the 
hand, a visual area coding for near and far space, and a multisensory neuron receiving projections from the unisensory 
areas, and reciprocally sending feedback projections back to unisensory areas. The output of each neuron is dependent on 

A
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input-output functions, and the inset to the right shows examples of different gain functions for the multisensory neuron. 
Within unisensory areas, neurons are laterally connected by a “Mexican-Hat” pattern, with near excitation and far inhibition 
(see inset to the top). B) Model Fits to Control Participants. As a first step we fit multisensory facilitation (y-axis) in reaction 
time as a function of distance from the body (x-axis) in the neurotypical control and non-social condition (black). Seven 
distances generated from a sigmoidal with parameters equal to the median experimental parameters were used as observed 
data. The model is well able to account for observations. Then, we try to explain the impact of the social manipulation by 
either a change in neural gain at the level of the multisensory neuron (red) or the strength of feedback projects (green). The 
former approach accounted best for observed data. C) Model Fits to individuals with ASD. The strength of excitatory 
lateral connections were allowed to vary from the non-social control and the non-social ASD model, and this manipulation 
was well able to account for idiosyncrasies in the shape of PPS in ASD (see main text and simulations in supplementary 
note). D) Impact of Multisensory Gain under the Control E/I Regime. Increasing gain of the multisensory neuron (from 
light gray to black) increased the size of PPS. E) Impact of Multisensory Gain under the ASD E/I Regime. Increasing 
gain of the multisensory neuron (from light gray to black) did not impact the size of PPS.  
 
Discussion 
 
We used a multisensory task where touch was applied on the body and visual stimuli were presented at different 
distances from neurotypical observers and individuals with ASD to map their PPS; this space being argued to 
implicitly index self-location and the division between self and other (Blanke, 2012; Serino, 2019; Noel et al., 
2015). In line with results from Teneggi and colleagues (2013), PPS became smaller in neurotypical individuals 
within a social context. In previous work (Teneggi et al., 2013), this reduction in PPS size during a social condition 
has been interpreted as “giving space” to an unknown confederate (in Teneggi et al., 2013, this space then 
expands as to “include” the confederate after a positive social interaction). In the current study, we additionally 
describe for the first time the neural correlates of this social remapping of PPS. In line with observations made 
during intracranial recordings (Bernasconi et al., 2018), a neurophysiological “signature” of PPS could be seen 
as evidenced by changes in multisensory integration (i.e., difference between paired and summed responses) 
as a function of distance. Here we show that indeed this physiological marker of PPS is modulated by social 
context in neurotypical individuals. More importantly, both the behavioral and electrophysiological measures 
concurred in suggesting that PPS remapping and changes in multisensory integration due to social context did 
not occur in individuals with ASD.   
 
The physiological recordings demonstrated superadditivity during multisensory presentations both in 
neurotypical participants and in individuals with ASD. This fact seemingly suggests that the basic processes of 
multisensory integration are intact in individuals with ASD, as recently suggested by behavioral reports focused 
on computational principles of behavior (Zaidel et al., 2015; Noel et al., 2020b). Instead, the results highlight a 
more specific anomaly; the modulation of multisensory integration, or lack thereof, in ASD via or during a social 
context. This finding adds to a series of studies emphasizing anomalies in the finer grain details of how individuals 
with ASD integrate information across sensory modalities, and adds to it through its emphasis on the spatial 
domain, as opposed to the much better studied temporal domain (Wallace et al., 2019; Stevenson et al., 2014; 
Baum et al., 2015; Noel et al., 2018c; Woynaroski et al, 2013). Indeed, alterations in fine grain multisensory 
temporal acuity in ASD (see Feldman et al., 2018, for a meta-analysis showcasing 53 studies in this domain), 
which have largely been studied for audio-visual pairings (vs. e.g., visuo-tactile), have been closely associated 
with language deficits (Bahrick & Todd, 2012; Woynaroski et al, 2013; Patten et al., 2014; Cascio et al., 2016). 
On the other hand, the focus of the current study was on visual-tactile pairings, where the range of biologically 
plausible temporal asynchronies is much more limited, given that touch necessarily occurs on the body. Thus, 
instead of the traditional focus on temporal alignment of multisensory signals, multisensory pairings involving the 
tactile modality are thought to subserve impact prediction (Clery et al., 2015b, 2018; Noel et al., 2018d), 
defensive (Graziano & Cooke, 2006), and approach-related (de Vignemont & Iannetti, 2015) behaviors. As such, 
multisensory pairings involving the tactile modality (e.g., visuo-tactile, audio-tactile) are likely to be more relevant 
for spatial coding, such as the construction and maintenance of PPS. In turn, PPS likely plays an important role 
in supporting non-verbal social behaviors (Noel et al., 2017), which represent a core feature in ASD that has 
been less studied relative to language deficits and their relation to (multi)sensory processing. 
 
A critical contribution in the current report is the ability to perform formal model fitting of a biologically plausible 
neural network model of PPS. Namely, a number of prior reports have suggested potential changes in underlying 
neural circuitry to account for observed remapping of PPS. For instance, a popular suggestion is that remapping 
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of PPS may occur due to changes in the strength of feedforward/feedback synapses via Hebbian Learning (e.g., 
Serino et al., 2015a; Noel et al., 2020a). And indeed, simulations suggest that in principle this could be the case. 
However, there are a number of other parameters within current network, in addition to the strength of synapses, 
that could resize PPS. One candidate is the gain of multisensory neurons. Thus, the framing of the neural network 
of PPS (Magosso et al., 2010a, b) under a model fitting procedure allows contrasting different hypotheses as to 
the mechanism that most likely supports the remapping of PPS. Here we find that in neurotypical individuals and 
during a social context manipulation it is not the strength of long-range synapses that best explains observed 
changes in the size of PPS (as it may in explaining the effect of tool use on PPS; Serino et al., 2015), but instead 
the gain of multisensory neurons (i.e., the steepness of their input-output relation, see Figure 3A) best accounts 
for empirical observations. In future work it will be interesting to examine whether the fitting of the neural network 
is sensitive to fine grain details of the re-sizing of PPS during different conditions yielding similar phenotypic 
results (e.g., enlargement of PPS during tool use or changes in perceived self-location; Serino et al., 2015 and 
Noel et al., 2015, respectively) and able to ascribe these effects that are similar at a surface level, to different 
underlying causes. 
 
Collectively, our behavioral and electrophysiological results point to PPS being immune to social context in ASD. 
Our neural network model suggests that potential differences between the neurotypical control and ASD groups 
in regards to PPS resizing may be explained by well-known anomalies in E/I balance (Rubenstein & Merzenich, 
2003; Lee et al., 2017), where the gain mechanism hypothesized to resize PPS is not effective under a regime 
of heightened excitation. These modeling results need to be confirmed experimentally. However, this framework 
nicely ties together a number of recent observations within the computational study of ASD. For instance, 
Rosenberg et al., 2015, were able to account for a number of perceptual deficits in ASD by postulating an 
anomaly in divisive normalization. This latter computation is ubiquitous in the central nervous system (Carandini 
& Heeger, 2011) and in essence amounts to contextualizing all output from a given neural area before impacting 
downstream targets (i.e., neural output from individual neurons are divided by the activity of a normalizing pool). 
In other words, there is a strong parallel between divisive normalization and changes in E/I balance provided by 
“Mexican-hat” lateral connections within a neural area. Perhaps even more interesting, Lieder and colleagues 
(2019) used an auditory frequency discrimination task to demonstrate that individuals with ASD showed a slow 
updating of Bayesian priors. Similarly, Lawson and colleagues (2017) suggested that adults with ASD 
overestimate the volatility of their sensory environment, and thus are slower in updating Bayesian priors when 
confronted with statistically unlikely events. In this line, Noel and colleagues (2018d) suggested that PPS is best 
conceived as a visuo-proprioceptive prior. Thus, the current findings agree with Bayesian accounts of ASD in 
suggesting an inflexible updating of priors (in this case, the prior being one of visuo-proprioceptive coupling). 
Further, by using a biologically-plausible neural network of PPS we are able to extend these observations and 
postulate a potential neural mechanism for this reduced flexibility. Thus, in the current work we bridge between 
Bayesian accounts of ASD suggesting reduced flexibility of priors (Lawson et al, 2017; Lieder et al., 2019), and 
circuit-level accounts suggesting an impairment in divisive normalization and/or excitation-inhibition imbalance 
(Rosenberg et al., 2015).    
 
To conclude, here we attempt to link between social and sensory differences in ASD, and to add to the rapidly 
expanding field of computational psychiatry. We show via behavior and physiology that PPS updating is inflexible 
in ASD, which is reminiscent of statistical inference accounts suggesting a reduced flexibility of Bayesian priors 
(Lawson et al, 2017; Lieder et al., 2019). Additionally, we suggest a potential mechanism for this reduced 
flexibility – ineffective gain modulation within the E/I regime that has been described in ASD (Rubenstein & 
Merzenich, 2003; Lee et al., 2017). Broadly, given the role of PPS in bodily self-consciousness (Blanke, 2012), 
the current results may re-cast ASD as a disorder of the self – as it was originally described (Kanner, 1943) – 
and suggest how we may bridge across implementation and computational levels of description within the ASD 
pathology. 
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