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Abstract

The electroencephalogram (EEG) is one of the main tools for non-invasively studying
brain function and dysfunction. To better interpret EEGs in terms of neural mechanisms, it is
important to compare experimentally recorded EEGs with the output of neural network models.
Most current neural network models use networks of simple point neurons. They capture
important properties of cortical dynamics, and are numerically or analytically tractable.
However, point neuron networks cannot directly generate an EEG, since EEGs are generated
by spatially separated transmembrane currents. Here, we explored how to compute an accurate
approximation of the EEG with a combination of quantities defined in point-neuron network
models. We constructed several different candidate approximations (or proxies) of the EEG
that can be computed from networks of leaky integrate-and-fire (LIF) point neurons, such as
firing rates, membrane potentials, and specific combinations of synaptic currents. We then
evaluated how well each proxy reconstructed a realistic ground-truth EEG obtained when the
synaptic input currents of the LIF network were fed into a three-dimensional (3D) network
model of multi-compartmental neurons with realistic cell morphologies. We found that a new
class of proxies, based on an optimized linear combination of time-shifted AMPA and GABA
currents, provided the most accurate estimate of the EEG over a wide range of network states
of the LIF point-neuron network. The new linear proxies explained most of the variance (85-
95%) of the ground-truth EEG for a wide range of cell morphologies, distributions of
presynaptic inputs, and position of the recording electrode. Non-linear proxies, obtained using
a convolutional neural network (CNN) to predict the EEG from synaptic currents, increased
proxy performance by a further 2-8%. Our proxies can be used to easily calculate a biologically
realistic EEG signal directly from point-neuron simulations and thereby allow a quantitative
comparison between computational models and experimental EEG recordings.

Author summary

Networks of point neurons are widely used to model neural dynamics. Their output,
however, cannot be directly compared to the electroencephalogram (EEG), which is one of the
most used tools to non-invasively measure brain activity. To allow a direct integration between
neural network theory and empirical EEG data, here we derived a new mathematical
expression, termed EEG proxy, which estimates with high accuracy the EEG based simply on
the variables available from simulations of point-neuron network models. To compare and
validate these EEG proxies, we computed a realistic ground-truth EEG produced by a network
of simulated neurons with realistic 3D morphologies that receive the same spikes of the simpler
network of point neurons. The new obtained EEG proxies outperformed previous approaches
and worked well under a wide range of simulated configurations of cell morphologies,
distribution of presynaptic inputs, and position of the recording electrode. The new proxies
approximated well both EEG spectra and EEG evoked potentials. Our work provides important
mathematical tools that allow a better interpretation of experimentally measured EEGs in terms
of neural models of brain function.
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64

65 Introduction

66 Electroencephalography is a powerful and widely used technique for non-invasively
67 measuring neural activity, with important applications both in scientific research and in the
68 clinic [1]. Electroencephalography has played a key role in the study of how both neural
69  oscillations and stimulus-evoked activity relate to sensation, perception, cognitive and motor
70  functions [2-4]. The electroencephalogram (EEQG), like its intracranial counterpart, the local
71 field potential (LFP), originates from the aggregation of all the electric fields generated by
72 transmembrane currents across the surfaces of all neurons sufficiently close to the electrode [5-
73 8]. The physics of how electromagnetic fields are generated from transmembrane currents are
74 well understood, and mathematically described by forward models [6]. Yet, how to interpret
75  changes in EEG across experimental conditions or diagnostic categories in terms of underlying
76  neural processes remains challenging [1].

77 One way to better understand the EEG in terms of neural circuit mechanisms and to
78  link theoretical models of brain functions to empirical EEG recordings is to compare EEG data
79  with quantitative predictions obtained from network models. Network models of recurrently
80 connected leaky-integrate-and-fire (LIF) point neurons are a current major tool in modelling
81  brain function [9-11]. These models reduce the morphology of neurons to a single point in
82  space and describe the neuron dynamics by a tractable set of coupled differential equations.
83  These models are sufficiently simple to be understood thoroughly, either with simulations that
84  are relatively light to implement, or by analytical approaches [12, 13]. Despite their simplicity,
85 they generate a wide range of network states and dynamics that resemble those observed in
86  cortical recordings. They have been employed to satisfactorily explain a broad spectrum of
87  different cortical mechanisms and cortical functions, such as sensory information coding [14,
88 15], working memory [16, 17], attention [18], propagating waves [19, 20], non-rhythmic
89  waking states [21, 22], or the emergence of up and down states [23]. It remains an open
90 question how to compute realistically EEGs from such widely used network models of simple
91  point neurons.

92 A major problem in achieving the above goal is that in such LIF point neurons all
93 transmembrane currents collapse into a single point in space and the resulting extracellular
94  potential is, therefore, zero [6]. Previous studies comparing the simulation output of networks
95  of simple model neurons without a spatial structure with measures of graded extracellular
96 potentials such as EEGs or LFPs have used ad-hoc approaches to estimate the EEG from
97  variables available from simulation of the network, including the average membrane potentials
98  [23-28], the average firing rate [29-31], the sum of all synaptic currents [13, 32, 33], or the sum
99  of absolute values of synaptic currents [ 14, 34]. However, the limitations and caveats of using
100  such ad-hoc simplifications to compute the EEG have been rarely considered and tested. As a
101 result, it is still unclear how best to compute EEGs directly from output from point-like neuron
102  network models [35, 36].

103 In order to generate extracellular potentials, spatially extended neuron models, i.e.,
104  multicompartment neuron models, are required [37, 38]. Previous studies have numerically
105 computed the compound extracellular potential as the linear superposition of all single-cell
106  distance-weighted transmembrane currents within a network of multicompartment neurons
107  [39-41]. This approach is however computationally cumbersome, and it does not allow an
108  easily tractable and exhaustive analysis of the dynamics of such networks. One alternative
109  could be using a hybrid scheme [30, 35, 42, 43] that projects the spike times generated by the
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110  LIF point-neuron network onto morphologically detailed 3D neuron models and then
111 computing the electric field that the currents flowing through these 3D networks generate. This
112 scheme provides a simplification by separating the study of the network dynamics (described
113 by the point-neuron network model) from that of field generation (described by the
114  multicompartment neuron model), but still requires running cumbersome multicompartment
115  model simulations for each simulation of the LIF network.

116 In this article, we implemented a much simpler and lighter method to predict the EEG
117  based simply on the variables available directly from simulation of a point-neuron network
118  model (e.g., membrane potentials, spike times or synaptic currents of the neuron models). We
119  constructed several different candidate approximations (termed proxies) of the EEG that can
120  be computed from networks of LIF point neurons. We then evaluated how well each proxy
121 reconstructed a ground-truth EEG obtained when the synaptic input currents of the LIF network
122 were injected into an analogous three-dimensional (3D) network model of multi-
123 compartmental neurons with realistic cell morphologies. This approach was shown to perform
124  remarkably well in predicting the LFP [42], based on a specific weighted sum of synaptic
125  currents from the point-neuron network model, for a specific network state (i.e., asynchronous
126  irregular) of the LIF network model. However, the previously obtained LFP proxy did not
127  include a head model that approximates the different geometries and electrical conductivities
128  of the head necessary for computing a realistic EEG signal recorded by scalp electrodes. We
129  thus derived a new proxy for the EEG that was validated against detailed simulations of the
130  multicompartment model, investigating different cell morphologies, variations of distribution
131  of presynaptic inputs, and changes in position of the recording electrode. Unlike previous
132 studies which focused on approximations valid in specific network states [42], we also
133 validated our proxies across the repertoire of network states displayed by recurrent network
134  models, namely the asynchronous irregular (AI), synchronous irregular (SI), and synchronous
135 regular (SR) [12] states, with different patterns of global oscillations and individual cell
136  activity. We found that a new class of simple EEG proxies, based on a weighted sum of synaptic
137  currents, outperformed previous approaches, including those optimized for predicting LFPs
138  [14, 42]. The new EEG proxies closely captured both the temporal and spectral features of the
139 EEG. We also provided a non-linear refinement using a convolutional neural network to
140  estimate the EEG from synaptic currents, which yielded moderate improvements over the
141  linear proxy at the expense of increasing complexity of the EEG estimation model.

142

143  Results

144  Computing the ground-truth EEG and EEG proxies

145 We investigated how to compute a simple but accurate approximation of the EEG
146  (“EEG proxy” hereafter) that would be generated by the activity of a LIF point-neuron network
147  if its neurons had a realistic spatial structure. We therefore first simulated a well-established
148  model of a recurrent network of LIF point neurons. We then fed the spiking activity generated
149 by the LIF point-neuron network into a realistic three-dimensional multicompartmental
150 network model of a cortical layer and computed the EEG generated by this activity. We finally
151  studied how to approximate this EEG simply by using the variables directly available from the
152  simulation of the point-neuron network model.

153 The LIF point-neuron network was constructed using a well-established two-
154  population (one excitatory and one inhibitory) model of a recurrent cortical circuit [12],
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illustrated in Fig 1 A. The network receives thalamic synaptic input that carry the sensory
information and stimulus-unrelated inputs representing slow ongoing fluctuations of cortical
activity. This network can generate a repertoire of different network states that map well into
empirical observations of cortical dynamics [12, 44]. Fig 1 B shows, as an example, the
asynchronous irregular spiking activity generated by a subset of the excitatory and inhibitory
populations in response to a low firing rate of the thalamic input. We have shown in previous
work that this model captured well (even more than 90% of the variance of empirical data) the
dynamics of primary visual cortex under naturalistic stimulation [14, 34, 45].
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Fig 1. Overview of the network models and computation of proxies and EEG. (A) Sketch of the
point-neuron network with recurrent connections between two types of populations: excitatory cells
(pyramidal cells, PY) and inhibitory cells (interneurons, IN). Each population receives two kinds of
external inputs: global ongoing cortico-cortical activity and thalamic stimulation. (B) Raster plot of
spiking activity from a subset of cells in each population. (C) Sketch of the multicompartment neuron
models used for generation of the EEG. Two representative model neurons are depicted, a pyramidal
cell on the left and an interneuron on the right, positioned within a cylinder of 7= 0.5 mm. While AMPA
synapses are homogenously distributed over all compartments of both types of cells, GABA synapses
on pyramidal cells are located only below Z= 8.5 mm. The EEG recording electrode is situated on the
surface of the scalp layer. (D) Comparison between example proxies calculated from the point-neuron
network and the ground-truth EEG computed from the multicompartment neuron model network. (E)
EEG generated in the multicompartment neuron network by all neurons (dotted black), only pyramidal
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177  neurons (dashed red) or only interneurons (solid blue). (F) Corresponding power spectra for the three
178  sets depicted in (E).

179

180 We then computed a “ground-truth” EEG (referred to simply as “EEG” in the paper),
181  following the hybrid modelling scheme [30, 35, 42, 43], and used this ground-truth EEG to
182  compare the performance of the different proxies. To do so, we created a network of
183  unconnected multicompartment neuron models with realistic morphologies and homogeneous
184  distribution within the circular section of a cylinder of radius r= 0.5 mm (Fig 1 C), which
185  roughly approximates the spatial extension of a layer in a cortical column. We focused on
186  computing the EEG generated by neurons with somas positioned in layer 2/3, so that somas of
187  the multicompartment neurons are aligned in the Z-axis (150 um below the reference point Z
188 = 8.5 mm). We chose to position somas in layer 2/3 based on previous computational work
189  suggesting that this layer gives a large contribution to extracellular potentials [30, 35]. The
190 reference point Z = 8.5 mm was chosen to approximate the radial distance between the center
191  of a spherical rodent head model and the brain tissue [46]. In this specific set of simulations
192  performed for optimizing the proxies, we used the reconstructed morphology of a broad-tuft
193  layer-2/3 pyramidal cell from rat somatosensory cortex available in the Neocortical
194  Microcircuitry (NMC) portal [47, 48], referenced as dend-C2505004-P3_axon-C260897C-P2-
195  Clone 9 (see “Methods”). We chose this pyramidal-cell morphology because its open-field
196  geometry is expected to generate large extracellular potentials. Inhibitory cells of the model
197  were implemented using the morphology of L2/3 large basket cell interneurons (the most
198  numerous class in L2/3 [47].

199 AMPA synapses were homogenously positioned along the Z-axis in both cell types,
200 representing uniformly distributed excitatory input. In our default setting, we assumed that all
201  inhibitory synapses are made by large basket cell interneurons of the model, which based on
202  their morphology would be principally located below the reference point Z = 8.5 mm. Thus,
203  all dendrites of inhibitory cells receive GABA synapses while only those dendrites of
204  excitatory cells below Z = 8.5 mm receive GABA synapses, representing perisomatic
205  inhibition.

206 EEGs were then generated from transmembrane currents of multicompartment neurons
207  in combination with a forward-modelling scheme based on volume conduction theory [6]. To
208  approximate the different geometries and electrical conductivities of the head, we computed
209 the EEG using the four-layered spherical head model described in [35, 49]. In this model, the
210  different layers represent the brain tissue, cerebrospinal fluid (CSF), skull, and scalp, with radii
211 9,9.5,10 and 10.5 mm respectively, which approximate the dimensions of a rodent head model
212 [46]. The values of the chosen conductivities are the default values of 0.3, 1.5, 0.015 and 0.3
213 S/m. The simulated EEG electrode was placed on the scalp surface, at the top of the head model
214 (Fig1 Q).

215 The time series of spikes of individual point neurons were finally mapped to synapse
216  activation times on corresponding postsynaptic multicompartment neurons. Each
217  multicompartment neuron was randomly assigned to a unique neuron in the point-neuron
218 network and receives the same input spikes of the equivalent point neuron. Since the
219  multicompartment neurons were not connected to each other, they were not involved in the
220 network dynamics and their only role was to transform the spiking activity of the point-neuron
221  network into a realistic estimate of the EEG. The EEG computed from the multicompartment
222 neuron model network was then used as benchmark ground-truth data against which we
223 compared different candidate proxies (Fig 1 D).
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224  Dynamic states of network activity of the point-neuron network model

225 The LIF point-neuron network model chosen to generate network dynamics is known
226  to generate a number of qualitatively different activity states [12, 44] with patterns of
227  variability of spike activity and network oscillations observed in cortical data. Since one of our
228  goals is to determine EEG proxies which work well under a wide range of different network
229  dynamics, we computed the different network states that the LIF point-neuron network can
230  generate and which are recapitulated here.

231 The states generated by the LIF neuron network can be mapped by systematically
232 varying across simulations the thalamic input (vy) and the relative strength of inhibitory
233 synapses (g). We then use three different measures to describe the network dynamics:
234 synchrony, irregularity, and mean firing rate [12, 44].

235 In Fig 2 A, we plot these three descriptors as a function of g and vp . We individuated
236 3 different regions of the parameter space, each corresponding to a qualitatively different
237  network state, according to the criteria employed by Kumar and collaborators [44]. The
238  asynchronous irregular (Al) state is characterized by a low value of network synchrony (<
239 0.01), an irregularity level close to the value of a Poisson generator (> 0.8) and a very low
240  firing rate, below 2 spikes/s. The synchronous irregular (SI) state has a level of network
241 synchrony higher than that of the Al state (between 0.01 and 0.1), but with highly irregular
242 firing of individual neurons (irregularity above 0.8). In the SI, neurons spike at low rate (< 5
243 spikes/s). For the synchronous regular (SR) state, the network exhibits high synchronous
244 activity (> 0.1), a more regular single-cell spiking (irregularity below 0.8) and high spiking rate
245 (> 60 spikes/s). Spike raster plots of excitatory and inhibitory cell populations of representative
246 samples selected for each network state are shown in Fig 2 B.

247  Optimization and validation of proxies across different network states

248 We investigated how best to compute the proxy that combines the variables available
249  directly from the simulation of a LIF point-neuron network model for accurately predicting the
250 EEG over a wide range of network activity states. We explored different proxies that have been
251  commonly used in previous literature for estimating the extracellular signal from point-neuron
252  networks: (i) the average firing rate (FR), (ii) the average membrane potential (Vy,), (iii) the
253  average sum of AMPA currents (AMPA), (iv) the average sum of GABA currents (GABA), (v)
254  the average sum of synaptic currents (/) and (vi) the average sum of their absolute values
255  (|I]). Furthermore, we propose here a new class of current-based proxies, (vii) the EEG
256  reference weighted sum 1 (ERWS1) and (viii) the EEG reference weighted sum 2 (ERWS2),
257  which are optimized linear combinations of time-delayed measures of AMPA and GABA
258  currents. Indeed, an optimized weighted sum of synaptic currents (defined here as LRWS) was
259  previously shown to be a robust proxy for the LFP [42]. The difference between ERWSI and
260  ERSW?2 is that parameters of ERWS?2 adapt theirs values as a function of the strength of the
261  external thalamic input vy, whereas the parameters of ERWSI are not dependent on v, (see
262 “Methods”™).

263 We only considered the transmembrane currents of pyramidal cells to generate the EEG (in the
264  multicompartment neuron network) because the contribution of transmembrane currents of
265 interneurons to the EEG was shown to be negligible (Fig 1 E and F), in line with findings of
266  Refs. [35] for the EEG and [42] for the LFP. Interneurons, though, play an indirect role in
267  generating the EEG, since GABAergic currents in pyramidal cells depend on interneuronal
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268  spikes. In a similar way, proxies of the LIF neuron network are computed only on excitatory
269  neurons.

270 The firing rate of inhibitory neurons might be expected to contribute as well to the FR
271  proxy and, as a consequence, to the EEG, as observed in [30]. To keep consistency with
272 definition of the other proxies, we decided to compute the FR proxy based only on firing rates
273 of excitatory cells. We checked that using a proxy computed on firing rates of both excitatory
274 and inhibitory cells gave an EEG reconstruction accuracy considerably poorer than accuracy
275  of the proxies based on synaptic currents (from proxy iii to proxy viii above).

276 The first 6 proxies taken from previous literature are parameter-free. The two new ones,
277  ERWSI and ERWSZ2 have 3 and 9 free parameters, respectively, which need to be optimized
278  (Egs. 7-9). Following previous work [42], these parameters define the factor a describing the
279  relative ratio between the two currents and a specific delay for each type of current (Tamepa,
280  Tgapa). We computed the values of these parameters by a cross-validated optimization of
281  the predicted EEG across the different network states seen for the LIF network model.

282
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284  Fig 2. Optimization and validation of proxies for different sets of network parameters (vo, g). (A)
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285  Dynamic states of network activity defined by the control parameters g and vy. The labels Al
286  (asynchronous irregular), SI (synchronous irregular) and SR (synchronous regular) indicate the
287  combinations of parameters that have been selected as representative samples of each network state.
288  The synchrony and irregularity are unitless, the mean firing rate (FR) is measured in spikes/s. (B)
289  Spiking activity from a subset of cells of the excitatory and inhibitory populations for the same samples
290  shownin (A). (C) Optimized parameters of ERWS1 and ERWSZ (Egs. 7-9) as a function of the thalamic
291  firing rate vo. We considered two alternative scenarios. In the causal version of the proxy, the output
292 depends only on present and past inputs so that the time constants (Tampa and T¢aps) are constrained to
293  be positive. In contrast, non-causal proxies can be indifferently assigned positive and negative time
294  constants. (D) Outputs of non-causal ERWSI (bottom row) and non-causal ERWS2 (top row) proxies
295  for different network states compared to ground-truth EEGs. (E) Spiking activity for the same
296  simulation cases of panel D. (F) Average performance, evaluated by using the coefficient of
297  determination R?, of Y|I|, LRWS, ERWS1 (non-causal) and ERWSZ2 (non-causal) calculated on the
298  validation dataset as a function of vy (same colors as shown in (G)). (G) Average R* of every proxy
299  across all network instantiations i of the validation dataset (c is causal, # is non-causal). The same colors
300 shown in this legend are used throughout the article to identify the different proxies. Tests for statistical
301  significance are computed only for the pair ERWS1 (non-causal) and ERWSZ (non-causal) and for the
302  pair ERWS1 (causal) and ERWS2 (causal). (H) R? across network states. (I) Power spectral density
303  (PSD) of the proxies and the EEG (in black). (J) Average R* applied to proxies’ PSDs instead of their
304  temporal responses. R? is computed in the 5-200 Hz frequency range.

305

306 For optimization and validation of proxies we generated a large set of numerical
307 simulations (522 simulations) by systematically varying the values of g and vy over a wide
308 state range. In each simulation instantiation, we set a given value g and vy and used different
309 random initial conditions (e.g., recurrent connections of the point-neuron network or soma
310 positions of multicompartment neurons). The best-fit values of ERWS1 and ERWSZ2 were
311  calculated by minimizing the sum of square errors between the ground-truth EEG and the proxy
312  for all network instantiations of the optimization dataset (see “Methods”, Eq. 11).

313 Fig 2 C shows the best parameters (a, Tamps and Teapa) found by the optimization
314  algorithm for the two alternative scenarios considered here: causal and non-causal proxies (see
315 also Table 1). For causal proxies, the predicted EEG depended only on present and past values
316 of AMPA and GABA currents. Thus, the time delay parameters tamps and Teapa (quantifying
317  the delay by which the synaptic current contributes to the EEG) were constrained during
318 optimization to be non-negative. For non-causal proxies, time delay parameters can take
319 positive and negative values. Non-causal relationships between measured extracellular
320 potentials and neural activity at multiple sites may emerge because of closed-loop recurrent
321 interactions within the network [6]. The mathematical expressions of the optimized causal
322  proxies are:

323 ERWS1(t) = Yore AMPA(L) — 0.1(Xore. GABA(t — 3.1 ms)) (1)
324

325 ERWS2(t,vp) = Yexe. AMPA(E) — (0.505%%) Bexe. GABA(t + 1.5v5 %% ms — 4 ms))
326 (2)

327

328 Expressions of the optimized non-causal proxies (vo is unitless) are:

329 ERWS1(t) = Yore AMPA(t + 0.9 ms) — 0.3(Zexe GABA(t — 2.3 ms)) (3)
330
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331 ERWS2(t,vp) = Yexe AMPA(t + 0.6v5%1 ms + 0.4 ms) — (1.4v517 +

332 0.2) T exe. GABA(t + 1.9v5%° ms — 3 ms)) ()

333

334 We first show the best fits obtained from optimization of the two ERSW proxies (Fig 2

335 (). For both ERWS1 and ERWSZ2, in the non-causal versions, the time delay parameters were
336  small (few milliseconds) but had opposite signs, Tcapa Was positive while Tamps was negative.
337  In the causal version of both proxies, we observed a similar trend but Tamps was constrained to
338 0 by the optimization. Thus, the best EEG proxies depend on past values of GABA synaptic
339  currents and on current and future values of AMPA synaptic currents. These values are
340  different from the optimal delays (t¢4pa = 0 ms and tampa = 6 ms) found for the LFP in [42].
341  One reason for the observed difference between the previous LFP proxy and our new EEG
342  proxies may relate to differences in spatial integration properties of the EEG signal and the
343  LFP signal. Another probable cause of this difference is that in [42] the LFP proxy was
344  optimized over a much smaller range of network states and external input rates (vo < 6 spikes/s).
345 Indeed, our results for ERWS2 show that optimal values of T¢apsa exhibit strong adaptation
346  towards Tgapa = 0 ms within the low regime of the external rate vo. The parameter @, which
347  expresses the ratio of the contribution to the EEG of GABA relative to AMPA synaptic
348 currents, also exhibits a strong adaptation. The dependence of a on the value of input rate vp in
349  Fig 2 C is particularly relevant because it reflects a larger weight of GABA currents for low
350 values of vy and the opposite effect, stronger weight of AMPA currents, as the external rate
351  increases.

352
353 Table 1. Parameters of ERWS1 and ERWS?2.

Proxy Optimized values
ERWS1 (causal) Tampa = 0 ms, Tapa = 3.1 ms, a=0.1
ERWSZ (causal) ai;=0,b:=0,c1=0,a2=-1.5,b2=0.2,c2=4,a3=0.5, b3 =
0.5,¢c3=0
ERWS1 (non-causal) Tampa = -0.9 ms, Teapa=2.3 ms,a=0.3
ERWSZ2 (non-causal) a;=-0.6,b1=0.1,¢c1=-04,a:=-19,b2=0.6,c2=3,a3:=1.4,
bs =1.7,¢c3=0.2
354
355 To quantitatively evaluate the performance of all proxies, we computed for each proxy

356 the coefficient of determination RZ2, which represents the fraction of the EEG variance
357 explained. The average R? calculated on the validation dataset (Fig 2 G) shows a clear
358  superiority of the new class of proxies. Both the causal and non-causal versions of ERWS1 and
359  ERWSZ2 outperform all the other proxies, and the non-causal versions reach the best overall
360 performance (ERWS1: R2 = 0.94 and ERWSZ2: R? = 0.95). In agreement with previous results
361  for the LFP [42], the three proxies that give the worst fits were FR, )1 and V.

362 To understand if the performance of proxies depended on the specific state of network
363  activity, we first examined the performance of the most interesting proxies (}|I|, LRWS,
364 ERWSI (non-causal) and ERWSZ2 (non-causal)) separately for different values of the input rate
365  vo. We found that while LRWS performs well for low input rates (the range of external rates
366  for which it was optimized [42]), its performance rapidly dropped with vy (Fig 2 F). The other
367 three proxies maintained a high R? for the whole spectrum of firing rates studied here, with
368 ERWSI and ERWSZ performing notably better than ) |I|. Note also that ERWSZ is the only
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369  proxy that yields a value of R? above 0.9 for all firing rates. We then computed the performance
370  of these proxies separately for different types of network states. We found that the new proxies
371  developed here, ERWS1 and ERWSZ2, produced accurate fits of the EEG for all network states
372 (Fig 2 H), while accuracy of EEG approximations made by the other proxies was less uniform
373  across network states.

374 The above analyses quantified how well the proxies approximated the actual values of
375 the EEG in the time domain for each data point. We next examined how well the proxies
376  approximated the overall power spectrum of the EEG rather than all variations of the EEG time
377  series. In Fig 2 I we show power spectral density (PSD) functions of all the proxies for the Al
378 and SI states, compared to spectral responses of the EEG. In the whole frequency range
379  considered (5 — 200 Hz), all proxies provide a prominent good fit of the EEG power spectrum,
380 except ).I, which attenuates low frequencies and amplifies high frequencies. In Fig 2 J we
381 report the average R? computed for the PSDs across all data points of the validation dataset,
382  confirming that all proxies gave an accurate approximation of the EEG power spectrum (except

383 Y.

384 In sum, while almost all proxies are good enough to capture the general properties of
385 the EEG power spectrum, ERWS1 and ERWSZ capture best the details of time variations of the
386 EEG.

387

388  Time-shifted variants of proxies

389 The ERSW proxies were optimized for EEG prediction choosing optimal values for the
390 time shifts between neural activity and the EEG. It is thus possible that the superior
391 performance of the ERWS proxies over all others may have been due to the fact that the other
392  proxies were not optimally time shifted. To investigate this hypothesis, we generated optimized
393  time-shifted versions of all the other proxies by computing cross-correlation between the
394  ground-truth EEG and all other proxies and choosing the optimum time shift of each proxy as
395 the lag of the cross-correlation peak. We then compared the performance of the time-shifted
396  versions of proxies in predicting the EEG with the performance of the ERWS proxies.

397 In this analysis, we recomputed the optimum time shift of every proxy separately for
398 each network state, whereas the parameters of the ERWS proxies were jointly optimized (see
399  previous section) over the entire simulated EEG dataset spanning all possible network states.
400  Thus, this comparison was clearly favorable to the other proxies. Nevertheless, we still found
401  that the ERWS proxies outperformed all previous proxies for the majority of network states.
402  Only in the Al state, we observed that the LRWS proxy slightly outperformed ERWS1 and
403  ERWSZ2. The ERWSZ2 proxy was the only one providing remarkably good performance across
404  all states (R? > 0.9 over all states).

405 Further results came out of this analysis. Two proxies clearly improved the quality of
406  their fits after time shifting, FR and Vn, but presented opposed time shifts: while FR was
407  delayed, V» was moved forward in time. A spike is a local and instantaneous event in time and,
408  as a result, a firing-rate proxy is expected to exhibit faster temporal changes than the EEG
409  signal. By contrast, integration of the postsynaptic soma membrane potentials following
410  presynaptic spiking is a slower process that might lead to a signal more low-pass filtered than
411  the EEG.

11
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412 When comparing AMPA and GABA proxies, we observed that, in the Al state (Fig 3
413  A), temporal dynamics of the EEG signal were better approximated by the GABA proxy,
414  whereas AMPA currents showed a faster response. Indeed, the performance of the AMPA proxy
415  was improved after applying the corresponding time shift. As the firing rate of the external
416  input increased and switched the network state from Al to SI (Fig 3 B), the temporal evolution
417  of the EEG began to diverge from GABA currents and, instead, AMPA currents were seen to
418  better approximate the EEG.

A No time shift Optimum time shift — FR
AMPA
GABA

>i

2=FTNEAN /""\\/’ ______ ANAD= 2D Z=ag i /""\/’ ______ VowmamNp=mas 215 0 Z|/|
. v
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ERWS1

ERWS2
== EEG

s~ e Y \‘II,-—\L,, —————

cococoooo

Time (ms) Time (ms)

419

420  Fig 3. Optimum time shift of proxies that maximizes cross-correlation with the EEG. Comparison
421  of the outputs of proxies and the ground-truth EEG before (left) and after (right) applying the optimum
422  time shift, with the optimum time shift for each proxy and network state indicated on the right. Note
423  that some proxies have positive time shifts for all network states (e.g., FR), while others (e.g., GABA)
424 change the sign of the time shift when passing from the Al to the SR state. The network states shown
425  are the following: Al in panel A, SI in panel B and SR in panel C. On the right: R’ before (color bars)
426  and after (black bars) applying the optimum time shift. ERWS1 and ERWS?2 are not time shifted.
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427

428  The performance of EEG proxies depends on the neuron morphology and distribution
429  of synapses

430 Modelling studies have demonstrated that extracellular potentials generated by synaptic
431  input currents vary with the neurons’ dendritic morphology and the positions of individual
432  synaptic inputs [6, 50]. For example, morphological types that display a so-called open-field
433  structure, such as pyramidal cells, have spatially separated current sources and current sinks
434  that generate a sizable current dipole. Synaptic inputs onto neurons that have a closed-field
435  configuration, such as interneurons, largely cancel out when they are superimposed so that the
436  net contribution to the current dipole is weak [35]. The hybrid modelling scheme [30, 35, 42,
437  43] gives us the opportunity to study, independently from the spiking dynamics of the point-
438  neuron network, how different parameters of the multicompartment neuron network (e.g.,
439  distribution of synapses or dendritic morphology) affect the EEG signal and, as a consequence,
440  modify the prediction capabilities of the proxies.

441 Above results (Figs. 2 and 3) were computed using a specific multicompartmental
442  model type of L2/3 pyramidal cell from rat somatosensory cortex (taken from the NMC
443  database [47, 48]) and referred as “NMC L2/3 PY, clone 9” (Table 5, Figure 4A). Here, we
444  studied whether the proxies derived for this morphology provided good approximations to the
445  EEG generated by different cell morphologies. We thus quantified how well our proxies
446  approximate the EEG generated by a different pyramidal-cell morphology taken also from rat
447  somatosensory cortex (“NMC L2/3 PY, clone 0”) and by a third morphology (“ABA L2/3
448  PY”), which is a L2/3 pyramidal cell from the mouse primary visual area [51]. It is important
449  to note that the parameter values of proxies optimized for the morphology “NMC L2/3 PY,
450  clone 9” were applied unchanged to the other morphologies across network states.

451 We found that ERWSZ was the proxy with the highest prediction accuracy (Fig 4). It
452  approximated extremely well the EEG across all three types of morphology and across all
453  network states. The performance of both ERWS proxies in predicting the EEG generated by the
454  mouse pyramidal neuron morphology (“ABA L2/3 PY”, Fig 4, right column) was as good as
455  the performance for the “NMC L2/3 PY, clone 9” morphology (probably because they have
456  similar broad-tuft dendritic morphology, although different size). This suggests that the model
457  generalizes reasonably well across species (at least for EEG generated by broad-tuft dendritic
458  morphologies). ERWS proxies also performed well, though less compared to the morphology
459  they were optimized for, on the EEGs generated by the other rat somatosensory cortex
460  morphology (“NMC L2/3 PY, clone 07, Fig 4, middle column). The small decrease in
461  performance was probably due to the fact that, unlike the broad dendritic tuft morphology used
462  to optimized the proxy, this morphology incorporates long apical dendrites that separates
463  AMPA synapses located in the tuft from GABA synapses more than 200 pm. Analogously, the
464  similarity in performance of LRWS for the “NMC L2/3 PY, clone 0” morphology could be
465  understood in terms of similarity between the pyramidal-cell morphology used to develop the
466  LRWS proxy [42] and this morphology. The LRWS proxy [42] performed well across all
467 morphologies in the AI state but its performance decreased across other states and
468  morphologies. Other proxies performed poorly across different morphologies and/or states.

469 We next investigated how different spatial distributions of synapses on excitatory cells
470  affect the performance of proxies (Fig 5). More specifically, GABA synapses were distributed
471  on excitatory cells following two alternative approaches: located only on the lower part of the
472 cell, primarily on the soma and basal dendrites (“Asymmetric”’) or homogeneously distributed
473  across all dendrites (“Homogeneous”). Note that the “Asymmetric” case (Fig 5, left column)
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474  corresponds to default configuration shown in Fig 4 A, left column (“NMC L2/3 PY, clone 9”
475  morphology). The most significant change observed when distributing GABA synapses
476  homogeneously on excitatory cells was an overall decrease of the performance of all proxies
477  (but see ),I), most prominently for the Al. These findings are in agreement with previous
478  results obtained for the LFP proxy [42] in which an homogenous distribution of AMPA and
479  GABA synapses on pyramidal cells resulted in the worst approximation of LFPs. In all
480  scenarios, except for the Al state, ERWS1 and ERWSZ2 provided the best performance and their
481  average R’ values across network states reflect their superiority in both the asymmetric and
482  homogenous distributions.

483
A
NMC L23 PY, clone 9 NMC L23 PY, clone 0 ABA L23 PY
100 um
100 um
B
Al
Sl
SR
All
—— LRWS ERWS2
AMPA Vi — S —— ERWS1
484

485  Fig 4. Performance of proxies for different morphologies. (A) Neuron reconstructions of L.2/3
486  pyramidal cells acquired from the Neocortical Microcircuitry (NMC) portal [47, 48] and the Allen Brain
487  Atlas (ABA)[51](Table 5). For visualization purposes, in the synaptic distribution of each morphology,
488  only a subset of AMPA and GABA synapses are shown, drawn randomly from all presynaptic
489  connections. (B) R’ computed for each morphology (columns) and network state (rows). The label “All”
490 indicates the average R’ across the three network states.
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491
492  Fig 5. Influence of synaptic distributions on performance of proxies. Outline of the two different

493  distributions of GABA synapses on excitatory cells: distributed only below the reference point Z= 8.5
494  mm (“Asymmetric”) or distributed homogenously across all dendrites (“Homogeneous”). Each row
495  below the diagram of model cells shows the corresponding R’ for a different network state. The label
496  “All” in the last row displays the average R’ across the three network states.

497
498  Effects of the position of the electrode over the head model on the EEG and proxies

499 To investigate the relationship between the position of the electrode and its effects on
500 the EEG and performance of proxies, we simulated the EEG at four different locations over
501 the head (Fig 6 A). Simulation results are shown as a function of the angle between the
502 electrode location and the Z-axis (Theta), computed for the three different network states: Al,
503  SI and SR. We first explored how properties of the EEG signal changed with the location of
504 the electrode. As expected, the EEG amplitude, defined as the standard deviation of the EEG
505  signal over time, decreased steeply when the electrode is moved away from the top of the head
506 (Fig 6 B). This decrease in EEG amplitude is consistent with previous simulation results of the
507  4-sphere head-model [35, 39], in which a moderate attenuation of the EEG scalp potentials was
508 observed when increasing the lateral distance from the center position along the head surface.
509  Although the EEG amplitude is larger in the SR state, the relative variations of amplitude as a
510 function of Theta were similar across network states. In contrast, we found (Fig 6C) sizeable
511  differences in the normalized time courses of the EEG at different network states: an increase
512  of Theta involved a delay of the EEG signal that is larger for the Al and SI states, but much
513  weaker for the SR state. These results could indicate that as the measurement point moves
514  toward the zero-region of the current dipole, where the EEG power is much smaller, the signal-
515  to-noise ratio is reduced and the influence of the high-frequency noise is more important. Since
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516  the signal power is significantly larger for the SR state, the effects of the high-frequency noise
517  are less evident for the SR state.

518 Variations of properties of the EEG signal when the electrode was shifted from the top
519  of the head affected the performance of proxies. As depicted in Fig 6 D, the performance of
520 Y |I|, LRWS, ERWS1 and ERWSZ2 decreased when Theta was augmented in the Al and SI states.
521  However, the performance of proxies is hardly modified by the position of the electrode in the
522 SR state, or it even shows the opposite trend (an increase) in the case of the LRWS proxy. In
523  any case, ERWS1 and ERWSZ2 give the best performance in most scenarios, particularly ERWS2
524  whose R’ value is above 0.9, provided that Theta is smaller than 36 degrees.
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527  Fig 6. EEG and proxies as a function of the position of the electrode over the head model. (A)
528  Illustration of the scalp layer in the four-sphere head model and locations where the EEG is computed.
529  Location of the center of soma positions of the multicompartment neurons is marked as ‘“Neuron
530 population”. (B) EEG amplitude, (C) normalized EEG and (D) performance of Y |I|, LRWS, ERWS1
531  and ERWS2Z as a function of the angle between the electrode location and the Z-axis (Theta), computed
532 for the three different network states: Al, SI and SR.

533
534  EEG estimation by CNN

535 The proxies considered above are all simple linear functions of the neural parameters
536  of the LIF point-neuron network model. Linear proxies have the advantage of simplicity and
537 interpretability. However, an alternative strategy for constructing an EEG proxy is training a
538  convolutional neural network (CNN) to learn complex and possibly non-linear relationships
539  between parameters of the LIF point-neuron network model, such as AMPA and GABA
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540 currents, and the EEG. This could potentially improve the estimation of linear proxies, at a
541  possible expense of increasing computational complexity and hindering interpretation. Instead
542  ofusing a deep neural network with many hidden layers that could largely increase complexity
543  and prevent us from making any type of analogy with results of linear proxies, we opted for a
544  simpler, shallow CNN architecture, with just one convolutional layer (Fig 7 A). This CNN
545  architecture was found to be sufficiently robust achieving a R’ value of 0.99 on the test dataset
546  (see Table 2). The network consists of one 1D convolutional layer (‘Conv1D’) with 50 filters
547  and a kernel of size 20, followed by a max pooling layer (‘MaxPooling1D’) of pool size 2, a
548 flatten layer and two fully connected layers of 200 units each one (marked as ‘Dense’ and
549  ‘Output’ respectively). The input of the CNN is constructed by stacking data chunks of 100 ms
550 (0.5 ms time resolution) extracted from the time series of AMPA and GABA currents, giving
551 a2 x 200 input layer.

552 The network was trained and tested on the same independent datasets (one for the
553  training of the proxies, the other for the validation/testing of their accuracy) generated for
554  optimization of parameters of the ERWSI and ERWSZ proxies, using a first-order gradient
555  descent method (Adam optimizer [52]) over 100 epochs (see Methods). In Fig 7 B, we observe
556  aquick convergence of the three metrics used to monitor training (R°, MAE and MSE) towards
557  optimal values (R’ = 1, MAE < 0.1 and MSE < 0.01). Accuracy of predictions of the trained
558  network, calculated on the test dataset, are shown in Fig 7 C-E. The probability distribution of
559 the prediction error is depicted in panel C. Here we define the prediction error as the difference
560  between amplitude values of the predicted and true EEG signals at a specific time step of the
561 simulation. As observed, the prediction error distribution approximates a normal distribution
562  with zero mean and standard deviation = 0.1. The scatter plot of true versus predicted values
563  (panel D) generally reflects a very accurate estimation of the EEG values with the swarm of
564  points showing a clear trend that closely follows the line of a perfect EEG estimator. In panel
565 E, we illustrate some examples of predictions of the EEG signal compared to the ground-truth
566  EEG for different network states. Interestingly, the best match between predicted and true EEG
567 traces is seen for the Sl state, although the other two states, Al and SR, produce also fairly good
568  estimations.

569 The performance of the CNN was evaluated, like for the other proxies, as the average
570  value of R? computed over all samples of the test dataset. As shown in Table 2 A, the CNN
571  clearly outperformed all other proxies on the test dataset and reached a very high performance
572  score (R’ = 0.99). We next assessed the performance of the CNN for the different
573  configurations of the multicompartment neuron network, i.e., cell morphologies, distribution
574  of presynaptic inputs and position of the recording electrode (Table 2 B-D). Compared to the
575  Dbest performing linear proxy, ERWSZ2, the CNN provided an increase of performance between
576 2 and 8 % in most scenarios.

577
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Fig 7. Overview of the convolutional neural network, train errors and accuracy of EEG
predictions. (A) Illustration of the different types of layers included in the processing pipeline of the
CNN architecture as well as the output shapes of each layer. Note that the 1D convolutional layer
(‘Conv1D’) uses 50 filters and a 1D convolutional window (kernel) of size = 20. The total number of
parameters of the entire CNN is 942450. (B) Training metrics collected during training: R°, Mean
Absolute Error (MAE) and Mean Squared Error (MSE). (C) Probability density function of the
prediction error calculated on the test dataset. (D) Predictions vs true values. Each dot of the scatter plot
corresponds to amplitude values of the predicted and real EEG signals at a specific time step of the
simulation. The continuous line represents a perfect EEG estimator. (E) Examples of predictions of the
CNN compared to the ground-truth EEGs for different network states.

Table 2. Performance (computed as R?) of the CNN in comparison with Y|I|, LRWS,
ERWS1 and ERWS2 proxies. The performance values shown for the test dataset (A) are
averaged over all samples of the test dataset, while performance values in panels B, C and
D are averaged over the samples of the different network states, i.e., AI, SI and SR.

A: Performance on the test dataset
Y| LRWS ERWS1 ERWS2 CNN
0.86 0.74 0.94 0.95 0.99

B: Morphologies

Cell model Y1 LRWS ERWS1 ERWS2 CNN
NMC L2/3PY,c.9 0.87 0.74 0.92 0.94 0.97
NMC L2/3PY,c.0 0.70 0.76 0.77 0.77 0.87
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ABA L2/3 PY 0.85 0.67 0.90 0.92 0.94
Distribution type Y| LRWS ERWS1 ERWS2 CNN
Asymmetric 0.87 0.74 0.92 0.94 0.97
Homogeneous 0.77 0.65 0.83 0.87 0.89

D: Position of the EE
Theta (rad) Y LRWS ERWS1 ERWS2 CNN
0 0.87 0.74 0.92 0.94 0.97
0.31 0.86 0.74 091 0.93 0.97
0.63 0.82 0.72 0.90 091 0.96
0.94 0.69 0.68 0.80 0.81 0.87

594

595

596 To gain insight into how AMPA and GABA inputs interact with layers of the network,

597  we inspected the weights learned by different filters of the convolutional layer, as illustrated in
598 Fig 8 for some examples of representative filters, depicted both in the time domain (panel A)
599 and frequency domain (panel B). We observed that the majority of filters perform a band-pass
600  and high-pass filtering of AMPA and GABA inputs and their peak frequencies are within the
601  range [10?, 10°] Hz. This indicates that the CNN primarily uses the fast dynamics of the current
602  inputs to construct an estimate of the EEG signal. We then asked whether we could disentangle
603  the different transformation functions applied by the CNN to each type of input current. In
604  signal processing, the impulse response of a linear system is typically used to understand the
605  type of transfer function implemented by the system. Although the convolution of the first
606  network layer is linear, subsequent network are non-linear. However, we could use a similar
607  methodology to characterize the transformation function of the CNN by collecting the network
608  responses to all possible combinations of unit impulses applied either to the AMPA or GABA
609 inputs (Fig 8 C). To extract a measure of the time shift applied by the network to AMPA and
610 GABA inputs, we computed, for each unit impulse, the difference between the time when the
611 impulse is applied and the time in which the absolute response of the network reaches its
612  maximum. The histogram of time shifts applied to AMPA and GABA inputs (Fig 8 D) shows
613  that the CNN generally estimated the EEG signal by time shifting AMPA and GABA currents
614  within the range [-2, 2] ms and the time shift could be either positive or negative.

615
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617  Fig 8. Learned filters of the convolutional layer and illustration of time shifts applied by the CNN
618 to AMPA and GABA input currents. Examples of weights learned by four filters of the convolutional
619  layer, depicted both in the time (A) and frequency domains (B) for the AMPA and GABA inputs. (C)
620  Examples of the CNN outputs in response to unit impulses applied either to the AMPA or GABA inputs.
621 (D) Histograms of time shifts applied to the AMPA and GABA inputs for all combinations of impulses.
622  Each time shift is computed as the difference between the time when the impulse is applied and the
623  time in which the absolute response of the CNN reaches its maximum.

624

625 Prediction of the stimulus-evoked EEG

626 Evoked potentials are a useful technique that measures the transient response of the
627  brain following presentation of a stimulus. Although the proxies we obtained have been
628  optimized on long stretches of steady-state network activity, we investigated how well the
629  proxies approximate an EEG evoked potential produced by a transient input. Fig 9 shows the
630  spiking activity of the point-neuron network (panel A) and the ground-truth EEG (panel B) in
631 response to a transient spike volley with a Gaussian rate profile applied to the thalamic input.
632  This transient input simulates the thalamic input that reaches cortex when an external sensory
633  stimulus is presented. A comparison of the performance obtained for all proxies is shown in
634  panel C, while the outputs of ERWS1, ERWSZ and the CNN are depicted in panel D, as an
635 example, overlapped with the ground-truth EEG. We found that most of the current-based
636  proxies approximated well the EEG when applying a transient burst of spikes of thalamic input,
637  inparticular Y |I|, ERWS1 and ERWS2 which reached a performance of R’ = 0.9. These results
638  suggest that these types of proxies could also be employed to predict the type of transient
639  response seen in evoked potentials.

640
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642  Fig 9. Transient activation of thalamic input with a Gaussian pulse packet. (A) Raster plot of
643  spiking activity from a subset of cells in each population in response to a transient spike volley with a
644  Gaussian rate profile (c = 30 ms) centered at 1000 ms. (B) Ground-truth EEG at the top of the head
645  model. (C) Performance of proxies calculated between 850 and 1150 ms. (D) Outputs of ERWS1,
646  ERWSZ and the CNN compared to the ground-truth EEG.

647

648 Discussion

649 Understanding how to interpret experimental EEGs in terms of neural processes
650 ultimately requires being able to compute realistic EEGs from simple and tractable neural
651 network models, and then comparing the predictions of such models with data. Here we
652  contributed to the first goal by developing simple yet robust and accurate methods to compute
653  EEGs from recurrent networks of LIF point neurons, a model widely used to study cortical
654  dynamics. We developed new linear and non-linear proxies that estimate the EEG from simple
655  recurrent network models. A careful validation of these proxies revealed that they can give
656  particularly accurate reconstructions of both steady-state and transient EEGs over an extensive
657 range of network states, different morphologies, synaptic distributions and positions of the
658  EEG electrode. These proxies thus provide a well-validated and computationally efficient way
659  for computing a realistic EEG by simply using the output variables from simulation of point-
660  neuron network models.

661

662  Robustness and generality of the EEG proxies across network states, cell morphologies,
663  synaptic distributions, and electrode locations

664 In many neural models used to study EEGs and LFPs, such as neural mass models [26],
665  spiking network models [23, 29, 30] or dynamic causal models [25], extracellular potentials
666  are simply modeled as the average firing rate or average membrane potential of excitatory
667 neurons. While these assumptions are often reasonable, their effectiveness in describing the
668  EEG has not been systematically validated. Here we found that these two established ways of
669  computing the EEG worked reasonably well only under very specific conditions. However, in
670 agreement with previous results obtained for the LFP [14, 42], we found that, for the EEG,
671  proxies based on combinations of synaptic currents work much better and in more general
672  conditions than proxies based on firing rates or membrane potentials. This suggests that
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673  approximations of EEGs based on firing rates or membrane potentials should be discouraged,
674  and replaced with the use of synaptic currents, whenever possible.

675 Our focus has been on optimizing EEG proxies that are based on synaptic currents. The
676  main result has been the successful development of a new class of EEG proxies, based on either
677  an optimized linear (ERWS1 and ERWSZ2) or non-linear (CNN) combination of time-shifted
678 AMPA and GABA currents. We have systematically compared the performance of the new
679  proxies in approximating the EEG with that of previous proxies used in the literature, across a
680 range of network states, cell morphologies, synaptic distributions, and position of EEG
681 recording electrode.

682 We found that, unlike all previous proxies, our new optimized EEG proxies work
683 remarkably well for a whole range of network states which capture many patterns of
684  oscillations, synchronization, and firing regimes observed in neocortex [12]. Predicting well
685 the EEG over a wide range of states is important because, in many cases, EEGs are
686  experimentally used to monitor changes in brain states, and thus models used to interpret EEGs
687  must be able to work well over multiple states.

688 Our proxies were optimized using a specific pyramidal broad-dendritic-tuft
689  morphology that generates large electric dipoles. We, however, investigated how the proxies
690  perform when changing cell morphologies and distributions of presynaptic inputs. Our proxies
691 showed a high performance (~80% to 95% of variance explained) across all considered
692  scenarios, only marginally affected by changes in morphology or the distribution of GABA
693  synapses. This suggests that our work, even though it could still be improved by using larger
694  datasets of morphologies and synaptic distribution configurations, is already sufficiently
695  general to accurately capture the contribution to the EEG of some major types of pyramidal
696  neurons.

697 We also validated the performance of EEG proxies against changes in position of the
698  recording electrode, with respect to the position chosen to train the proxies. The performance
699  of proxies experienced only a moderate decrease as the position of the EEG electrode was
700  shifted from the top of the head because of the progressive reduction in EEG amplitude.
701  Nevertheless, the R’ value of ERWS2 was maintained above 0.9 for displacements of the
702 electrode smaller than 5 mm.

703 We finally demonstrated that our proxies, although trained on steady-state activity, can
704  approximate well EEG evoked potentials, capturing the transient dynamics in response to
705  stimuli and suggesting that our work could be relevant to model transient brain computations
706  such as the coding of individual stimuli or attentional modulations.

707  Previous work [42] used a similar approach based on optimizing a linear proxy to predict the
708  LFP. We extended this work by computing the EEG, rather than the LFP, and this implies that
709  we used a head model that approximates the different geometries and electrical conductivities
710  of the head, which was not necessary for the LFP proxy. Unlike the previous work, which
711  considered only a reduced regime of network dynamics within the asynchronous or weakly
712 synchronous states, we generated proxies trained and validated on a wider range of network
713  states. Our EEG proxies were also validated on different pyramidal-cell morphologies
714  reconstructed from experimental recordings, whereas the LFP proxy was validated on
715  synthetically generated morphologies. As a result, our new optimized EEG proxies predict well
716  the EEG over a wide range of states and different morphologies, unlike the LFP proxy, which
717  worked well only for a low-input-rate state and a specific morphology of pyramidal cells.
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718 In sum, our new optimized EEG proxies provide a simple way to compute EEGs from
719  point-neuron networks that is highly accurate, stable across network states and variations of
720  biophysical assumptions, and relatively invariant regarding position of the recording electrode.

721

722 Applications and impact of the new EEG proxies

723 Our work provides a key computational tool that enables applying tractable network models to
724  EEG data with significant implications in two main directions.

725

726  First, when studying computational models of brain function, our work allows quantitative
727  rather than qualitative comparison of how different models match EEG data, thereby leading
728  to better and more objective validations of different hypotheses about neural computations.
729

730  Second, our work represents a crucial step in enabling a reliable inference, from real EEG data,
731 of how different neural circuit parameters contribute to brain functions and brain pathologies.
732 Since the EEG conflates many circuit-level aggregate neural phenomena organized over a wide
733 range of frequencies, it is difficult to infer from its measure the value of key neural parameters,
734 such as for example the ratio between excitation and inhibition [1, 53]. Developing tractable
735  neural networks that include an explicit relationship between the EEG response and neural
736  network parameters is a way to address this issue. By fitting such models to real EEG data,
737  estimates of neural network parameters (such as the ratio between excitation and inhibition or
738  properties of network connectivity) can be obtained from EEG spectra or evoked potentials.
739  This approach could be used, for example, to test the influential theories of the excitation-
740  inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders
741 [54, 55], to empirically measure how this balance changes between patients with autistic
742  disorder syndrome and control subjects [53], or to individuate the neural correlates of diseases
743  that show alterations of EEG activity [56-60]. Thus, our EEG proxies have clear relevance for
744  connecting EEG in human experiments to cellular and network data in health and disease.

745

746 Although more work is needed to be able to interpret empirical EEGs in terms of network
747  models, there are several facts that indicate that our proxies can potentially help in this respect.
748  Recent attempts to infer neural parameters from EEGs or other non-invasive signals, based on
749  network models that use less accurate proxies than the ones developed here, are nevertheless
750  beginning to provide credible estimates of key parameters of underlying neural circuit such as
751  excitation-inhibition ratios [53, 61], as well as accurate descriptions of cortical dynamics. For
752  example, previous theoretical studies have modeled the LFP/EEG as the sum of absolute values
753  of synaptic currents [14, 15, 34, 45]. This type of proxy, though simplified, was shown to be
754  sufficient to explain quantitatively several important properties of cortical field potentials,
755  including the relationship between sensory stimuli and the spectral coding of LFPs [14], cross-
756  frequency and spike-field relationships [34], and LFP phase of firing information content [15].
757  We thus expect that the new EEG proxies can help building on these encouraging results and
758  further improve the biological plausibility and robustness of neural parameter estimation from
759  EEGs.

760

761  Linear vs non-linear proxies

762 We optimized the EEG proxies by training either linear or non-linear EEG prediction
763  models based on synaptic currents. In particular, the linear proxies (ERWS1 and ERWSZ2) were
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764  based on an optimized linear combination of time-shifted AMPA and GABA currents.
765  Alternatively, we investigated the application of a shallow CNN that could capture more
766  complex interactions between synaptic currents to estimate the EEG. Compared to the best
767  performing linear proxy, ERWSZ2, the non-linear EEG proxy based on a convolutional network
768  provided a sizeable increase of performance (2 to 8 %, see Table 2) and it provided a very high
769  performance (>85%) in all conditions. The convolutional weights that we provide (see [62] and
770  Section “Data and Code Availability””) can be used to easily compute these non-linear EEGs
771  proxies using similar computational power as that employed for linear proxies. However, the
772  drawback of CNNs is that it is harder to infer direct relationships between synaptic currents
773  and the EEG, whereas these relationships are apparent and immediate to interpret with linear
774  proxies (see section below). However, we showed that this problem could be in part attenuated
775  when using tools to visualize the transformation function implemented by the CNN, which
776  allow an understanding of how synaptic currents are transformed by the non-linear proxy.

777

778  Limitations and future work

779 The present network modelling scheme involves several major assumptions with
780  respect to simplification of the multi-layered cortical column architecture, and combined use
781  of point-neuron and multicompartment networks.

782 Our proxies have been extensively validated for a model with one class of pyramidal
783  cells and are expected to be applied to models of any brain area in which the EEG is likely to
784  be generated by one dominant population. We chose to model a single cortical layer, layer 2/3,
785  based on previous computational work suggesting that this layer gives a large contribution to
786  extracellular potentials [30, 35]. Although we have shown that our proxies generalize well for
787  different L2/3 pyramidal-cell morphologies, it will be important to extend our work to quantify
788  contributions from other cortical laminae and cell morphologies to the generation of EEGs. In
789  this regard, it is important to note that electrical potentials in the brain tissue add linearly and
790  the superposition of individual contributions to the EEG is in principle straightforward to
791  compute if the amplitude of each laminar contribution is known. Thus, we could approximate
792  the total EEG by a suitable linear combination of individual proxies computed for each
793  population. We envisage future studies that address this issue by coupling multi-layer spiking
794  models of cortical circuits [30, 63, 64] with multi-layer multicompartment neuron models
795  within the hybrid modelling scheme.

796 The hybrid modelling approach [30] offers the advantage that we can vary parameters
797  of the EEG-generating model, e.g., cell morphologies or synaptic distribution, without
798 affecting the spiking dynamics. The disadvantage of this approach is, however, that the
799  multicompartment network does not match the point-neuron network in every respect. For
800 instance, even though the synaptic input conductances were identical in the two models, the
801 resulting soma potentials of multicompartmental neurons were not identical to those of the
802  point neurons because of passive dendritic filtering or the lack of a membrane-voltage reset
803 mechanism following spike, among other effects. This inconsistency could, at least partially,
804  be resolved by extracting the effective synaptic weight distributions from multicompartment
805 neurons and use them in the point-neuron network in order to make the two simulation
806  environments even more similar [65].

807  Calculation of EEG signals requires a head model, and here we have used the simple analytic
808  four-sphere head model. There are however many high-resolution, anatomically detailed, and
809  potentially personalized head models available, which for example take into account the folded
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810  cortical surface of the human brain [66-68]. Importantly, the EEG proxies developed here can
811  be easily used in combination with such complex head models. This is because the EEG signal
812  calculated at top of the head in the four-sphere head model, resulting from a current dipole
813  directly below the electrode, is in fact just a scaling of the dominant component (the component
814  aligned with the depth axis of the cortex) of the original current dipole [35]. This means that
815  our proxies developed for the EEG signal at the top of the head in the four-sphere model, are
816 in fact equally valid as proxies for the (normalized) dominant component of the population
817  current dipole moment, that is, the sum of all single-cell current dipole moments (Sup. Fig 1).
818  Such population current dipoles can be used directly in combination with existing detailed head
819  models to calculate EEG signals, see for example [35]. Further, note that in Fig 6, we tested
820 that the proxy for the EEG signal optimized for the top of the head worked well for other head
821  locations.

822  Insights gained from proxies about the neural contributions to the EEGs

823 Parameters of the linear proxies, and their variations over cortical states, allow
824  immediate postulations about how synaptic currents combine to generate an EEG. We showed
825 that the time shifts of ERWS1 and ERWSZ resulted from the optimization process have opposite
826  signs, indicating that the EEG signal depends on both causal and non-causal components of
827  AMPA and GABA currents. The presence of non-causal components in a proxy may appear at
828 first counterintuitive but as previously found for the LFP [6], this reflects the recurrent nature
829  of interactions within a cortical circuit, which makes it impossible to separate completely cause
830 and effects and leads to both causal and non-causal dependencies.

831 Importantly, the analysis of the best performing proxy, ERWSZ2, whose parameters
832 change as a function of the external input rate, revealed that the contribution of synaptic
833  currents to the EEG dynamically varies with the cortical state. Specifically, we found that time
834  shifts of AMPA and GABA currents, and the relative weighting between GABA and AMPA
835 currents depend on the network state. In particular, we observed a larger weight of GABA
836  currents for low values of the external input and the opposite effect, stronger weight of AMPA
837  currents, as the external rate increases. This suggests that the contribution of neural activity to
838 the EEG is a dynamic, rather than a static process, and underlies the importance of developing
839  EEG proxies, such as those developed here to capture these variations.

840

841 Methods

842  Overview of the approach for computing the proxies and the ground-truth EEG

843 Our focus is on computing an accurate prediction of the EEG (denoted as “proxy” in
844  the following) based simply on the variables available directly from the simulation of a point-
845 neuron network model. The point-neuron network was constructed following a well-
846  established configuration based on two populations of LIF point neurons, one excitatory and
847  other inhibitory, with recurrent connections between populations [12], as illustrated in Fig 1 A.
848  The network receives two types of external inputs: a thalamic synaptic input that carries the
849  sensory information and a stimulus-unrelated input representing slow ongoing fluctuations of
850  cortical activity.

851 The ground-truth EEG (referred to simply as “EEG” in the paper) with which to
852  compare the performance of the different proxies is here computed using the hybrid modelling
853  scheme [30, 35, 42, 43]. We created a network of unconnected multicompartment neuron
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854  models with realistic morphologies and distribute them within a cylinder of radius r= 0.5 mm
855  (Fig 1 C). We focused on computing the EEG generated by neurons with somas positioned in
856  one cortical layer so that the soma compartments of each cell are aligned in the Z-axis, 150 um
857  below the reference point Z= 8.5 mm, and homogenously distributed within the circular section
858  of the cylinder. In our default setting, all dendrites of inhibitory cells receive GABA synapses
859  while only those dendrites of excitatory cells below Z= 8.5 mm receive GABA synapses.
860  AMPA synapses are homogenously positioned along the Z-axis in both cell types.

861 EEGs were generated from multicompartment neurons in combination with a forward-
862 modelling scheme based on volume conduction theory [6]. From each multicompartment
863  neuron simulation the current dipole moment of the cell was extracted with LFPy [39]. Next,
864  these current dipole moments and the locations of the cells were used as input to the four-
865  sphere head model to calculate all single-cell EEG contribution. The ground-truth EEG signal
866 1is the sum of all such single-cell EEG contributions. To approximate the different geometries
867  and electrical conductivities of the head, we computed the EEG using the four-layered spherical
868  head model described in [49]. In this model, the different layers represent the brain tissue,
869  cerebrospinal fluid (CSF), skull, and scalp, with radii 9, 9.5, 10 and 10.5 mm respectively,
870  which approximate the dimensions of a rodent head model [46]. The values of the
871  conductivities chosen are the default values of 0.3, 1.5, 0.015 and 0.3 S/m. The EEG electrode
872  is located on the scalp surface, at the top of the head model (Fig 1 C).

873 The time series of spikes of individual point neurons were mapped to synapse activation
874  times on corresponding postsynaptic multicompartment neurons. Each multicompartment
875  neuron was randomly assigned to a unique neuron in the point-neuron network and received
876  the same input spikes of the equivalent point neuron. Since the multicompartment neurons were
877  not interconnected, they were not involved in the LIF network dynamics and their only role
878  was to transform the spiking activity of the point-neuron network into a realistic estimate of
879 the EEG. The EEG computed from the multicompartment neuron model network was then
880 used as benchmark ground-truth data against which we compare different candidate proxies
881 (Fig1 D).

882  Definition and computation of the proxies that approximate the ground-truth EEG

883 A proxy is defined as an estimation of the EEG based on the variables available from
884  the point neuron model over all excitatory neurons. Unless otherwise stated, we only
885  considered the contributions of pyramidal cells to generate the EEG (in both the point-neuron
886  and multicompartment neuron networks). The first six proxies that we tested were those used
887 in previous literature for predicting the EEG or the LFP from point-neuron networks. These
888  were: the average firing rate (FR), the average membrane potential (Vy,), the average sum of
8389 AMPA currents (AMPA), the average sum of GABA currents (GABA), the average sum of
890  synaptic currents ().]) and average sum of their absolute values (};|I]). Note that }'I and };|]|
891 are defined as the sum of both AMPA and GABA currents. Because of the opposite signs
892  assigned to the AMPA and GABA currents, ), |I| is equivalent to the difference between these
893  currents. Computation of the average FR was calculated with a temporal bin width of 1 ms, and
894  then filtered with a 5-ms rectangular window to produce a smoother output of the FR.

895 For several reasons (e.g., different rise and decay time constants or different peak
896  conductances), we expect that AMPA and GABA currents contribute differently to the EEG
897 and that the optimal combination of both types of currents could involve different time delays
898  between them. Following Mazzoni and colleagues [42], the new class of current-based proxies,
899  the weighted sum of currents (WS), was based on a linear combination of AMPA and GABA
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900 currents, with a factor a describing the relative ratio between the two currents and a specific
901 delay for each type of current (tampa, Tcaga):

902 WS(t) = Yexe. AMPA(t — Tampa) — @(Xexc. GABA(t — Tgapa)) (5
903
904 The optimal values of a, Tampa and tcapa were found to be 1.65, 6 ms and 0 ms for the

905 LFP, respectively [42]. As a result, the LFP reference weighted sum (LRWS) proxy was defined
906 as

907 LRWS(t) = Yore AMPA(t — 6ms) — 1.65(Zere GABA(Y))  (6)
908
909 Here we also introduced two new proxies derived from the WS formulation: the EEG

910 reference weighted sum 1 (ERWS1) and the EEG reference weighted sum 2 (ERWSZ), whose
911  parameters were optimized to fit the EEG under different network states of the point-neuron
912  network. While the concept of ERWS1 is similar to that of LRWS, with fixed optimal values of
913  a, Tampa and Tcapa, the parameters of the ERWSZ were defined as a power function of the firing
914  rate of the thalamic input (vo, unitless) to account for possible dependencies of the EEG with
915 the external rate:

916 ERWS1(t) = Yexc. AMPA(t — Tampacerws1)) — @erwst (Zexc. GABA(t — Tgaparwsy)))
917 7

918

919 ERWS2(t,v0) = Yexc. AMPA (t - TAMPA(ERWSZ)(UO)) — agrwsz (Vo) (Zexc. GABA (t -
920 TGABA(ERWSZ)(Uo))) (3)

921

-b
Tampacerws2) (Vo) = a1, * + ¢
-b
922 TeapaErws2) (Vo) = QaUy ° + ¢ )
-b
agrwsz(Vo) = azy, ° +c3

923

924 The total number of parameters to optimize was 3 for ERWS1 (aerws1, Tampaerws1) and
925  Teapaerwsn)) and 9 for ERWSZ2 (a, b1, c1, az, bz, ¢z, as, bz and c3). We experimented with other
926 classes of functions (e.g., exponential and polynomial functions) to describe the dependency

927  of parameters of ERWSZ2 with vy but the best performance results were found with a power
928  function.

929
930 Leaky integrate-and-fire point-neuron network

931 We implemented a recurrent network model of LIF point-neurons that was based on
932  the Brunel model [31] and the modified versions developed in subsequent publications [14, 15,
933 34,42, 45, 69]. These models have demonstrated to explain well and capture a large fraction
934  of the variance of the dynamics of neural activity in primary visual cortex during naturalistic
935 stimulation, including a wide range of cortical oscillations such as low-frequency (1-12 Hz)
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936 and gamma (30-100 Hz) oscillations. In particular, the network structure and model parameters
937 are the same ones used in [69] with conductance-based synapses (we refer the reader to this
938  publication for an in-depth technical description of the implementation). Briefly, the network
939  was composed of 5000 neurons, 4000 are excitatory (i.e., their projections onto other neurons
940 form AMPA-like excitatory synapses) and 1000 inhibitory (i.e., their projections form GABA-
941  like synapses). The neurons were randomly connected with a connection probability between
942  each pair of neurons of 0.2. This means that, on average, the number of incoming excitatory
943  and inhibitory connections onto each neuron was 800 and 200, respectively. Both populations
944  received two different types of excitatory external input: a thalamic input intended to carry the
945 information about the external stimuli and a stimulus-unrelated input representing slow
946  ongoing fluctuations of activity. Spike trains of the external inputs are generated by
947  independent Poisson processes. While the firing rate of every individual Poisson process for
948  the thalamic input was kept constant in each simulation (within the range [1.5, 30] spikes/s),
949 the firing rate of the cortico-cortical input was varied over time with slow dynamics, according
950 by an Ornstein-Uhlenbeck (OU) process with zero mean:

951 0 29 = —n(t) + ou(2T)n (@) (10)
952
953 Here o2 (0.16 spikes/s) is the variance of the noise, n(t) is a Gaussian white noise and

954 1, (16 ms), the time constant. The full network description is given in Tables 3 and 4, following
955 the guidelines indicated in [70].

956

957  Table 3. Description of the point-neuron network.

A: Model summar

Structure Excitatory-inhibitory (E-I) network
Populations Two: excitatory and inhibitory
Input 2 independent Poisson spike trains, one with a fixed rate and the other with

a time-varying rate generated by an OU process

Measurement | Spikes, membrane potential, AMPA and GABA currents

Neuron model | Cortex: leaky integrate-and-fire (LIF) with fixed threshold and fixed
absolute refractory time; external inputs: point process

Synapse model | Difference of exponential functions; conductance-based synapses

Topology None

Connectivity Random and sparse

Type Elements Size
Pyramidal cells LIF neurons 4000
Interneurons LIF neurons 1000
Thalamic input Poisson generator | 1
Cortico-cortical iniut Poisson ienerator 1
Name Source Target Pattern

AMPApy, pyr | Pyramidal Pyramidal | Random convergent (p = 0.2), weight gpyr pyr
AMPApy, ¢ | Pyramidal Interneuron | Random convergent (p = 0.2), weight gpyr ine
GABAt pyr | Interneuron | Pyramidal | Random convergent (p = 0.2), weight g pyr
GABAInt Int Interneuron | Interneuron | Random convergent (p = 0.2), weight gine it
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AMPAwma pyr | Thalamic Pyramidal | Fixed in-degree (800), weight geha pyr
AMPAna ¢ | Thalamic Interneuron | Fixed in-degree (800), weight gtha_ine
AMPAort pyr | Cortical Pyramidal | Fixed in-degree (800), weight gcort pyr

AMPA ot ¢ | Cortical Interneuron | Fixed in-degree (800), weight gcort int
D: Neuron model

Type Leaky integrate-and-fire

P av(t) Itor (£)
Description | ; == V(L) + Vipgye — o222,
YJleak

Lot () = 2N yppar. Tampa,e.®) + Xngapa. lcapa,,.(0) + Lampa,,, (),

E: Synapse model

Type Conductance-based synapse, difference of exponentials [31]
Description | I, (t) = gsynSsyn (O (V(t) — Esyn),

if a presynaptic spike occurs:

2o () e ()]
E— exp o exp -

F: Input

Type Description

Poisson generator | Thalamic input, time-constant input with rate vo; each neuron receives
800 independent thalamic inputs

Poisson generator | Cortico-cortical input, OU process with zero mean; each neuron receives

800 independent cortico-cortical inputs
G: Global simulation parameters

Ssyn (t) =

Simulation duration 3000 ms
Temporal resolution 0.05 ms
Startup transient 500 ms

958

959  Table 4. Parameters of the neuron models used in the point-neuron network.

A: Neuron model

Parameter Pyramidal cells Interneurons
Vieak (mV) -70 -70

Vinreshold (mV) -52 -52

Vresee (MV) -59 -59

Trefractory (ms) 2 1

Gieak (nS) 25 20

Cm (pF) 500 200

Tm (MS) 20 10
Parameter Pyramidal cells Interneurons
Eampa (mV) 0 0

Ecapsa (mV) -80 -80

Tr(ampa) (ms) 04 0.2

Tdampa) (ms) 2 1

Tr(GABA) (MS) 0.25 0.25

Td(6ABA) (MS) 5 5

7/ (ms) 1 1
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gamPA(rec) (nS) 0.178 0.233
gAamPA(tha) (nS) 0.234 0.317
gamPa(cort) (NS) 0.187 0.254
gcapa (nS) 2.01 2.7

960

961  Multicompartment-neuron network

962 The EEG was computed by projecting the spiking activity of the point-neuron network
963  onto a network of multicompartment neuron models in which every multicompartment neuron
964 is assigned a unique corresponding point neuron. A key factor for a successful representation
965 of the EEG is selection of proper morphologies of multicompartment neurons with detailed
966 and realistic dendritic compartments. Our focus was on computing the EEG for cortical layer
967  2/3 so that we acquired representative morphological reconstructions of L2/3 pyramidal cells
968 and interneurons from publicly available repositories: the Neocortical Microcircuitry (NMC)
969 portal [47, 48] based predominantly on the data released by Markram and collaborators [47],
970 and the Allen Brain Atlas (ABA) [51]. We also imposed our target animal model to be the
971  rodent model. In our simulations, we evaluated three different types of morphologies of L2/3
972  pyramidal cells and one morphology of a specific type of L2/3 interneuron, the large basket
973 cell interneuron (the most numerous class in L2/3 [47], represented as PY and LBC
974  respectively in Table 5. Unless otherwise stated, the default morphology file used for pyramidal
975  cells in our simulations is dend-C2505004-P3_axon-C260897C-P2-Clone 9.

976  Table 5. Morphologies types and file identifiers used in the multicompartment neuron
977  network model.

Cell type Animal species | File identifier Source
L2/3 PY Rat dend-C250500A-P3 axon-C260897C-P2-Clone 9 | NMC
L2/3 PY Rat dend-C260897C-P3 axon-C220797A-P3-Clone 0 | NMC
L2/3 PY Mouse Cux2-CreERT2, 1D:486262299 ABA
L2/3 LBC | Rat C250500A-14 Clone 0 NMC
978
979 Soma compartments of pyramidal cells and interneurons were randomly placed in a

980 cylindrical section of radius 0.5 mm, at Z= 8.35 mm. We assumed that GABA presynaptic
981 inputs could only be located on dendritic compartments below the reference point Z= 8.5 mm.
982 AMPA synapses were homogenously distributed along the Z-axis in both cell types with
983  random probability normalized to the membrane area of each segment. This configuration
984  resulted in an asymmetric distribution of AMPA and GABA synapses onto pyramidal cells
985  creating a stronger current dipole moment from these types of cells. Each multicompartment
986  neuron was modeled as a non-spiking neuron with a passive membrane [38]. Tables 6 and 7
987  summarize properties of the multicompartment neuron network.

988  Table 6. Description of the multicompartment neuron network.

A: Model summary

Structure Unconnected populations of multicompartment neurons

Populations Two: pyramidal cells and interneurons

Input Presynaptic spiking activity as modeled by the point-neuron network
Measurement EEG, current dipole moment

Neuron model Multicompartment neuron model based on the passive cable formalism
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Synapse model Difference of exponential functions; conductance-based synapses
Topology Cylindrical volume with radius r= 0.5 mm

Connectivity None

Type Populations of 4000 pyramidal cells and 1000 interneurons

Cell positions Soma compartments located at Z= 8.35 mm and randomly distributed
within the circular section of the cylinder

Fixed orientation with apical dendrites oriented along the Z-axis
Reconstructed morphologies from the NMC and ABA (Table 5); axons
removed if present

 C: Comnectivity . . |
No network connectivity, synaptic inputs are generated by the point-neuron network with the
same synaptic parameters (Table 4)

Type Multicompartment reconstructed morphologies

Description Non-spiking neurons based on the passive cable formalism (except in
subsection “The performance of EEG proxies depends on the neuron
morphology, distribution of synapses and the type of dendritic
conductances”), with membrane capacity cm, membrane resistivity rm,
axial resistivity rq and leak reversal potential E;.

E: Synapse model
Type Conductance-based synapse, difference of exponentials

Description Isyn(®) = GsynSsyn (O V() — Esyn),
Soyn(t) = A |exp (=) — exp (=),

r

where A is a normalization factor to iive a ieak conductance isiin

Cell orientations
Morphologies

Type Spike times of spiking neuron network (including thalamic and cortico-
cortical input spikes), no recurrent input
Description All dendrites of interneurons receive GABA synapses while only those

dendrites of pyramidal cells below Z= 8.5 mm receive GABA synapses;
AMPA synapses are homogenously positioned along the Z-axis in both
cell types; synapse locations are randomly assigned onto cell
compartments assuming a probability proportional to the compartment’s

surface area divided by the total surface area of the cell
G: Global simulation parameters

Simulation duration 3000 ms
Temporal resolution 0.05 ms
Startup transient 500 ms

989

990 Table 7. Parameters of multicompartment neurons.

991

Parameter Pyramidal cells Interneurons
cm (uF/cm?) 1 1

rm (kQcm?) 30 20

rq (Qcm) 100 100

EL (mV) -70 -70
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992  Optimization and validation of EEG proxies

993 We created two different simulated datasets, one for optimization of the ERWS1’s and
994  ERWSZ2’s parameters (Egs. 7-9), and the other dataset for validation of performance of all
995 proxies. The datasets were generated by varying the two parameters of the point-neuron
996 network commonly used for exploration of different network states [31, 44]: the rate of the
997  external input, vp, and the relative strength of inhibitory synapses, defined here as g =
998  gme pyr/gpyr pyr- We selected 58 values of vp within the range [1.5, 30] spikes/s and 3 values of
999 g (5.65, 8.5 and 11.3), which encompass the different network states: asynchronous irregular,
1000  synchronous irregular and synchronous regular [12]. For every pair (vo, g), we generated three
1001  simulations of the point-neuron and multicompartment-neuron networks with different random
1002  initial conditions (e.g., recurrent connections of the point-neuron network or soma positions of
1003  multicompartment neurons). The simulated outputs from two of these network instantiations
1004  were used for the optimization dataset and the other one for the validation dataset.

1005 Prior to comparing the EEG traces with the point-neuron model predictions, we z-
1006  scored the proxies and the EEG signal by subtracting their mean value and dividing by the
1007  standard deviation. The best parameters of ERWSI and ERWSZ were calculated by
1008  minimization of the sum of the square errors SSE between the ground-truth EEG and the proxy
1009 for all network instantiations i of the optimization dataset:

1010 SSE = ¥, S (EEG,(t) — proxy; ()" (11)
1011
1012 Time constants of proxies (Eqgs. 7-9) were restricted to be discrete variables as the

1013  simulation time is a discrete variable. This turns the optimization problem into a discrete
1014  optimization problem, which is harder to solve than a continuous optimization problem.
1015  However, the limited number of parameters that need to be optimized allowed us to run a
1016  simple brute-force parameter search.

1017 The performance of each proxy was evaluated by using the coefficient of determination
1018  RZ?, which is the fraction of the EEG variance explained by the proxy. R?is computed as the
1019  squared value of the correlation coefficient. The validation results were calculated based on the
1020  average R? of every proxy across all network instantiations 7 of the validation dataset.

1021

1022  Implementation of the convolutional neural network

1023 The processing pipeline of the CNN architecture, illustrated in Fig 7 A, was based on
1024  the machine-learning library Keras running on top of TensorFlow [71]. The CNN consists of a
1025  one-dimensional (1D) convolutional layer with 50 filters and a kernel of size 20, followed by
1026  a max pooling layer of pool size 2, a flatten layer and two fully connected layers of 200 units
1027  each (one of them is the output layer). The rectified linear unit (ReLU) function was used as
1028  the activation function for all layers, except for the output layer. To reduce overfitting, we
1029  applied L2 activity regularization (A = 0.001) to the convolutional layer. The amount by which
1030 filters shift, the strides, is set to 1 for the convolutional layer and 2 for the max pooling layer.
1031  The input layer was formed by two channels of 1D data that correspond to the AMPA and
1032  GABA time series simulated by the point-neuron network. Instead of using data of the whole
1033  simulation (3000 ms), we split time series into multiple chunks (i.e., samples) of 100 ms, a
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1034  window size that we found convenient to improve estimation accuracy of the CNN. Nodes of
1035  the output layer predict segments of the EEG signal at each 100-ms window.

1036 The CNN was trained by first-order gradient descent (Adam optimizer [52]) with
1037  default parameters as those provided in the original paper. We defined the loss function for
1038 training as the mean squared error (MSE) between the predicted and the true values of the EEG.
1039  To monitor training, we employed the MSE and also the mean absolute error (MAE) and the
1040  coefficient of determination, R?. The CNN is trained for a sufficiently large number of epochs,
1041 100 epochs, to ensure convergence of the error metrics. To train and test the CNN, we use the
1042  same datasets generated for optimizing parameters of the current-based proxies, as described
1043  above.

1044

1045  Analysis of network states

1046 To characterize the different network states of activity in the point-neuron network at
1047  the level of both single neurons and populations, we employed the descriptors developed by
1048  Kumar and collaborators for conductance-based point-neuron networks [44].

1049  Synchrony. We quantified the synchrony of the population activity in the network as the
1050 average pairwise spike-train correlation from a randomly selected subpopulation of 1000
1051  excitatory neurons. The spike trains were binned in non-overlapping time windows of 2 ms.

1052  Irregularity. Irregularity of individual spike trains was measured by the coefficient of
1053  variation (the ratio of the biased standard deviation to the mean) of the corresponding interspike
1054 interval (ISI) distribution. Low values indicate regular spiking; a value of 1 reflects Poisson-
1055  type behavior. The irregularity index was computed for all excitatory neurons.

1056  Mean firing rate. The mean firing rate was estimated by averaging the firing of all excitatory
1057  cells, and was calculated with a bin width of 1 ms.

1058

1059  Post-processing and spectral analysis

1060 The z-scored EEG signals and proxies are resampled by applying a fourth-order
1061  Chebyshev type I low-pass filter with critical frequency f. = 800 Hz and 0.05 dB ripple in the
1062  passband using a forward-backward linear filter operation and then selecting every 10th time
1063  sample. The estimate of the normalized power spectral density (normalized PSD) was
1064  computed using the Fast Fourier Transform with the Welch’s method, dividing the EEG z-
1065  scored data into eight overlapping segments with 50 % overlap.

1066

1067 Numerical implementation

1068 Here we summarize the details of the software and hardware used to generate the results
1069  presented in this study. Point-neuron network simulations were implemented using NEST
1070  v2.16.0 [72]. EEG signals were computed using LFPy v2.0 [39] and simulations of
1071  multicompartment model neurons using NEURON v7.6.5 [73]. The CNN is constructed based
1072 on the machine-learning library Keras v2.3. The source-code structure relies on the freely
1073  available, object-oriented programming language Python (v2.7.12). Every simulation was
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1074  parallelized using either a 60-CPU 256-GB server at the Istituto Italiano di Tecnologia (IIT) or
1075  the Stallo high-performance computing facilities (NOTUR, the Norwegian Metacenter for
1076  Computational Science). Simulations of the point-neuron network were performed based on
1077  thread parallelism implemented with the OpenMP library. Network simulations with
1078 NEURON used distributed computing built on the MPI interface. Computation time for
1079  completing simulations of both network models and the post-processing of results was 2 hours
1080  on average for each experimental condition. The source code to reproduce these results will be
1081  made publicly available upon final publication of this manuscript [62].

1082

1083  Acknowledgments

1084 We would like to thank M. Libera for his technical support.

1085

1086 Funding

1087 This project has received funding from the European Union’s Horizon 2020 research
1088  and innovation programme under the Marie Sktodowska-Curie grant agreement No 893825,
1089  the NIH Brain Initiative (grants U19NS107464 and NS108410), the Simons Foundation
1090 (SFARI Explorer 602849), the European Union Horizon 2020 Research and Innovation
1091  Programme under Grant Agreement No. 785907 and No. 945539 [Human Brain Project (HBP)
1092  SGA2 and SGA3], and the Norwegian Research Council (NFR) through NOTUR - NN4661K.

1093

1094 Data and Code availability:

1095 The code used to generate the simulations and to perform the analyses, as well as the
1096  weights of the optimized convolutional neural networks for the EEG are available from
1097  GitHub. Martinez-Caniada, P. Github source-code repository (2020). Available from:
1098  https://github.com/pablomc88/EEG_proxy from_network point neurons.

1099

1100  Author contributions

1101 Conceived project: P.M.C., S.P. Developed Methodology: all authors. Software
1102  implementation and data analysis: P.M.C. Wrote the paper (original draft): P.M.C., S.P.
1103  Wrote the paper (review and editing): all authors. Supervised project: S.P., T.F., G.T.E.
1104  Funding acquisition: S.P., T.F., P. M.C, G.T.E.

1105

1106 References

1107 1. Cohen MX. Where Does EEG Come From and What Does It Mean? Trends in Neurosciences.
1108 2017;40(4):208-18. doi: 10.1016/].tins.2017.02.004.
1109 2. Buzsaki G. Neuronal Oscillations in Cortical Networks. Science. 2004;304(5679):1926-9. doi:

1110  10.1126/science.1099745.

34


https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.364802; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1111 3. Hood DC, Zhang X. Multifocal ERG and VEP responses and visual fields: comparing disease-
1112 related changes. Doc Ophthalmol. 2000;100(2-3):115-37. Epub  2001/01/06. doi:
1113 10.1023/a:1002727602212. PubMed PMID: 11142742.

1114 4. Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions.
1115 Nature Reviews Neuroscience. 2012;13(2):121-34. doi: 10.1038/nrn3137.

1116 5. Buzsaki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents — EEG, ECoG,
1117 LFP and spikes. Nature Reviews Neuroscience. 2012;13(6):407-20. doi: 10.1038/nrn3241.

1118 6. Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials

1119  for studying the function of cortical circuits. Nature Reviews Neuroscience. 2013;14(11):770-85. doi:
1120  10.1038/nrn3599.

1121 7. Lopes da Silva F. EEG and MEG: Relevance to Neuroscience. Neuron. 2013;80(5):1112-28. doi:
1122 10.1016/j.neuron.2013.10.017.
1123 8. Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, et al. Investigating large-scale brain

1124  dynamics using field potential recordings: analysis and interpretation. Nature Neuroscience.
1125  2018;21(7):903-19. doi: 10.1038/s41593-018-0171-8.

1126 9, Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, et al. Simulation of
1127  networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience.
1128  2007;23(3):349-98. doi: 10.1007/s10827-007-0038-6.

1129 10. Einevoll GT, Destexhe A, Diesmann M, Grin S, Jirsa V, de Kamps M, et al. The Scientific Case
1130 for Brain Simulations. Neuron. 2019;102(4):735-44. doi: 10.1016/j.neuron.2019.03.027.

1131 11. Plesser HE, Eppler JM, Morrison A, Diesmann M, Gewaltig M-O. Efficient Parallel Simulation
1132 of Large-Scale Neuronal Networks on Clusters of Multiprocessor Computers. Euro-Par 2007 Parallel
1133 Processing. Lecture Notes in Computer Science2007. p. 672-81.

1134  12. Brunel N. Phase diagrams of sparsely connected networks of excitatory and inhibitory spiking
1135 neurons. Neurocomputing. 2000;32-33:307-12. doi: 10.1016/s0925-2312(00)00179-x.

1136 13. Deco G, lJirsa VK, Robinson PA, Breakspear M, Friston K. The dynamic brain: from spiking
1137  neurons to neural masses and cortical fields. PLoS Comput Biol. 2008;4(8):e1000092. Epub
1138 2008/09/05. doi: 10.1371/journal.pcbi.1000092. PubMed PMID: 18769680; PubMed Central PMCID:
1139  PMCPMC(C2519166.

1140 14. Mazzoni A, Panzeri S, Logothetis NK, Brunel N. Encoding of naturalistic stimuli by local field
1141  potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol.
1142  2008;4(12):e1000239. Epub 2008/12/17. doi: 10.1371/journal.pcbi.1000239. PubMed PMID:
1143 19079571; PubMed Central PMCID: PMCPMC2585056.

1144 15. Mazzoni A, Brunel N, Cavallari S, Logothetis NK, Panzeri S. Cortical dynamics during naturalistic
1145  sensory stimulations: experiments and models. J Physiol Paris. 2011;105(1-3):2-15. Epub 2011/09/13.
1146  doi: 10.1016/j.jphysparis.2011.07.014. PubMed PMID: 21907800.

1147 16. Compte A. Synaptic Mechanisms and Network Dynamics Underlying Spatial Working Memory
1148 in a Cortical Network Model. Cerebral Cortex. 2000;10(9):910-23. doi: 10.1093/cercor/10.9.910.
1149 17. Mongillo G, Barak O, Tsodyks M. Synaptic Theory of Working Memory. Science.
1150  2008;319(5869):1543-6. doi: 10.1126/science.1150769.

1151 18. Deco G, Thiele A. Cholinergic control of cortical network interactions enables feedback-
1152 mediated attentional modulation. European Journal of Neuroscience. 2011;34(1):146-57. doi:
1153  10.1111/j.1460-9568.2011.07749.x.

1154  19. Muller L, Reynaud A, Chavane F, Destexhe A. The stimulus-evoked population response in
1155  visual cortex of awake monkey is a propagating wave. Nature Communications. 2014;5(1). doi:
1156 10.1038/ncomms4675.

1157 20. Muller L, Chavane F, Reynolds J, Sejnowski TJ. Cortical travelling waves: mechanisms and
1158  computational  principles.  Nature  Reviews  Neuroscience.  2018;19(5):255-68.  doi:
1159  10.1038/nrn.2018.20.

1160  21. Ostojic S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking
1161 neurons. Nature Neuroscience. 2014;17(4):594-600. doi: 10.1038/nn.3658.

35


https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.364802; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1162  22. Zerlaut Y, Zucca S, Panzeri S, Fellin T. The Spectrum of Asynchronous Dynamics in Spiking
1163 Networks as a Model for the Diversity of Non-rhythmic Waking States in the Neocortex. Cell Reports.
1164  2019;27(4):1119-32.e7. doi: 10.1016/j.celrep.2019.03.102.

1165  23. Hill S, Tononi G. Modeling Sleep and Wakefulness in the Thalamocortical System. Journal of
1166  Neurophysiology. 2005;93(3):1671-98. doi: 10.1152/jn.00915.2004.

1167 24. Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HDI, Sejnowski TJ, et al. Model of
1168  Transient Oscillatory Synchronization in the Locust Antennal Lobe. Neuron. 2001;30(2):553-67. doi:
1169  10.1016/s0896-6273(01)00284-7.

1170 25. David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ. Dynamic causal modeling of
1171  evoked responses in EEG and MEG. Neurolmage. 2006;30(4):1255-72. doi:
1172 10.1016/j.neuroimage.2005.10.045.

1173 26. David O, Friston KJ. A neural mass model for MEG/EEG. Neurolmage. 2003;20(3):1743-55. doi:
1174 10.1016/j.neuroimage.2003.07.015.

1175  27. Ursino M, La Cara G-E. Travelling waves and EEG patterns during epileptic seizure: Analysis
1176  with an integrate-and-fire neural network. Journal of Theoretical Biology. 2006;242(1):171-87. doi:
1177  10.1016/].jtbi.2006.02.012.

1178  28. Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a
1179 mathematical model of coupled cortical columns. Biol Cybern. 1995;73(4):357-66. Epub 1995/09/01.
1180  doi: 10.1007/BF00199471. PubMed PMID: 7578475.

1181  29. Buehlmann A, Deco G. Optimal information transfer in the cortex through synchronization.
1182 PLoS Comput Biol. 2010;6(9). Epub 2010/09/24. doi: 10.1371/journal.pcbi.1000934. PubMed PMID:
1183  20862355; PubMed Central PMCID: PMCPMC2940722.

1184 30. Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, van Albada SJ, et al. Hybrid Scheme
1185  for Modeling Local Field Potentials from Point-Neuron Networks. Cerebral Cortex. 2016;26(12):4461-
1186  96. doi: 10.1093/cercor/bhw237.

1187  31. Brunel N, Wang X-J. What Determines the Frequency of Fast Network Oscillations With
1188 Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance. Journal of
1189 Neurophysiology. 2003;90(1):415-30. doi: 10.1152/jn.01095.2002.

1190 32. Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J. Cellular and Network Mechanisms of
1191  Slow Oscillatory Activity (<1 Hz) and Wave Propagations in a Cortical Network Model. Journal of
1192 Neurophysiology. 2003;89(5):2707-25. doi: 10.1152/jn.00845.2002.

1193  33. Touboul J, Destexhe A. Can power-law scaling and neuronal avalanches arise from stochastic
1194 dynamics? PLoS One. 2010;5(2):e8982. Epub 2010/02/18. doi: 10.1371/journal.pone.0008982.
1195  PubMed PMID: 20161798; PubMed Central PMCID: PMCPMC2820096.

1196 34. Mazzoni A, Whittingstall K, Brunel N, Logothetis NK, Panzeri S. Understanding the
1197  relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local
1198  cortical network model. Neurolmage. 2010;52(3):956-72. doi: 10.1016/j.neuroimage.2009.12.040.
1199 35. Naess S, Halnes G, Hagen E, Hagler DJ, Dale AM, Einevoll GT, et al. Biophysically detailed
1200 forward modeling of the neural origin of EEG and MEG signals. Neurolmage. 2021;225. doi:
1201 10.1016/j.neuroimage.2020.117467.

1202  36. Daunizeau J, David O, Stephan KE. Dynamic causal modelling: a critical review of the
1203  biophysical and statistical foundations. Neuroimage. 2011;58(2):312-22. Epub 2009/12/08. doi:
1204  10.1016/j.neuroimage.2009.11.062. PubMed PMID: 19961941.

1205 37. Ness TV, Halnes G, Nass S, Pettersen KH, Einevoll GT. Computing extracellular electric
1206  potentials from neuronal simulations. arXiv preprint arXiv:200616630. 2020.
1207  38. De Schutter E, Van Geit W. Modeling complex neurons. Computational modeling methods for

1208 neuroscientists Cambridge: MIT. 2009:259-84.

1209 39. Hagen E, Naess S, Ness TV, Einevoll GT. Multimodal Modeling of Neural Network Activity:
1210 Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. Frontiers in Neuroinformatics. 2018;12.
1211  doi: 10.3389/fninf.2018.00092.

36


https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.364802; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1212 40. Lindén H, Hagen E, teski S, Norheim ES, Pettersen KH, Einevoll GT. LFPy: a tool for biophysical
1213  simulation of extracellular potentials generated by detailed model neurons. Frontiers in
1214 Neuroinformatics. 2014;7. doi: 10.3389/fninf.2013.00041.

1215 41. Pettersen KH, Lindén H, Dale AM, Einevoll GT. Extracellular spikes and CSD. In: Destexhe A,
1216  Brette R, editors. Handbook of Neural Activity Measurement. Cambridge: Cambridge University Press;
1217  2012.p.92-135.

1218 42. Mazzoni A, Linden H, Cuntz H, Lansner A, Panzeri S, Einevoll GT. Computing the Local Field
1219 Potential (LFP) from Integrate-and-Fire Network Models. PLoS Comput Biol. 2015;11(12):e1004584.
1220 Epub 2015/12/15. doi: 10.1371/journal.pcbi.1004584. PubMed PMID: 26657024; PubMed Central
1221 PMCID: PMCPMC4682791.

1222 43, Skaar JW, Stasik AJ, Hagen E, Ness TV, Einevoll GT. Estimation of neural network model
1223  parameters from local field potentials (LFPs). PLoS Comput Biol. 2020;16(3):e1007725. Epub
1224 2020/03/11. doi: 10.1371/journal.pcbi.1007725. PubMed PMID: 32155141; PubMed Central PMCID:
1225 PMCPMC7083334.

1226 44, Kumar A, Schrader S, Aertsen A, Rotter S. The High-Conductance State of Cortical Networks.
1227 Neural Computation. 2008;20(1):1-43. doi: 10.1162/neco0.2008.20.1.1.

1228 45, Barbieri F, Mazzoni A, Logothetis NK, Panzeri S, Brunel N. Stimulus Dependence of Local Field
1229 Potential Spectra: Experiment versus Theory. Journal of Neuroscience. 2014;34(44):14589-605. doi:
1230  10.1523/jneurosci.5365-13.2014.

1231 46. Nowak K, Mix E, Gimsa J, Strauss U, Sriperumbudur KK, Benecke R, et al. Optimizing a Rodent
1232 Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation.
1233 Parkinson's Disease. 2011;2011:1-19. doi: 10.4061/2011/414682.

1234 47. Markram H, Muller E, Ramaswamy S, Reimann Michael W, Abdellah M, Sanchez Carlos A, et
1235 al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 2015;163(2):456-92. doi:
1236  10.1016/j.cell.2015.09.029.

1237 48, Ramaswamy S, Courcol J-D, Abdellah M, Adaszewski SR, Antille N, Arsever S, et al. The
1238  neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Frontiers in
1239 Neural Circuits. 2015;9. doi: 10.3389/fncir.2015.00044.

1240 49, Naess S, Chintaluri C, Ness TV, Dale AM, Einevoll GT, Wdjcik DK. Corrected Four-Sphere Head
1241 Model for EEG Signals. Frontiers in Human Neuroscience. 2017;11. doi: 10.3389/fnhum.2017.00490.
1242  50. Murakami S, Okada Y. Contributions of principal neocortical neurons to
1243  magnetoencephalography and electroencephalography signals. The Journal of Physiology.
1244  2006;575(3):925-36. doi: 10.1113/jphysiol.2006.105379.

1245 51. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of
1246 gene expression in the adult mouse brain. Nature. 2006;445(7124):168-76. doi: 10.1038/nature05453.
1247  52. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980.
1248  2014.

1249 53. Trakoshis S, Martinez-Cafiada P, Rocchi F, Canella C, You W, Chakrabarti B, et al. Intrinsic
1250  excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus
1251 women. elLife. 2020;9:e55684. doi: 10.7554/elife.55684.

1252 54, Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in
1253 key neural systems. Genes, Brain and Behavior. 2003;2(5):255-67. doi: 10.1034/j.1601-
1254  183X.2003.00037.x.

1255  55. Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating
1256  mechanisms in neuropsychiatric disorders. Molecular Psychiatry. 2019;24(9):1248-57. doi:
1257 10.1038/s41380-019-0426-0.

1258  56. Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism
1259 spectrum disorder risk. BMC Medicine. 2011;9(1). doi: 10.1186/1741-7015-9-18.

1260 57. Bosl WJ, Loddenkemper T, Nelson CA. Nonlinear EEG biomarker profiles for autism and
1261  absence epilepsy. Neuropsychiatric Electrophysiology. 2017;3(1). doi: 10.1186/s40810-017-0023-x.

37


https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.364802; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1262 58. Gogolla N, LeBlanc JJ, Quast KB, Siidhof TC, Fagiolini M, Hensch TK. Common circuit defect of
1263  excitatory-inhibitory balance in mouse models of autism. Journal of Neurodevelopmental Disorders.
1264  2009;1(2):172-81. doi: 10.1007/s11689-009-9023-x.

1265 59. Maki-Marttunen T, Krull F, Bettella F, Hagen E, Naess S, Ness TV, et al. Alterations in
1266  Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. Cerebral Cortex.
1267  2019;29(2):875-91. doi: 10.1093/cercor/bhy291.

1268 60. Maki-Marttunen T, Kaufmann T, Elvsashagen T, Devor A, Djurovic S, Westlye LT, et al.
1269 Biophysical Psychiatry—How Computational Neuroscience Can Help to Understand the Complex
1270  Mechanisms of Mental Disorders. Frontiers in  Psychiatry. 2019;10(534). doi:
1271  10.3389/fpsyt.2019.00534.

1272  61. Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field
1273 potentials. Neurolmage. 2017;158:70-8. doi: 10.1016/j.neuroimage.2017.06.078.

1274  62. Martinez-Caflada P. Github  source-code repository 2020. Available from:
1275  https://github.com/pablomc88/EEG proxy from network point neurons.

1276  63. Potjans TC, Diesmann M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and
1277  Activity in a Full-Scale Spiking Network Model. Cerebral Cortex. 2014;24(3):785-806. doi:
1278 10.1093/cercor/bhs358.

1279 64. Senk J, Hagen E, van Albada SJ, Diesmann M. Reconciliation of weak pairwise spike-train
1280  correlations and highly coherent local field potentials across space. arXiv preprint arXiv:180510235.
1281  2018.

1282 65. Rossert C, Pozzorini C, Chindemi G, Davison AP, Eroe C, King J, et al. Automated point-neuron
1283  simplification of data-driven microcircuit models. arXiv preprint arXiv:160400087. 2016.

1284 66. Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Analysis. Neurolmage. 1999;9(2):179-94.
1285  doi: 10.1006/nimg.1998.0395.

1286 67. Huang Y, Parra LC, Haufe S. The New York Head—A precise standardized volume conductor
1287 model for EEG source localization and tES targeting. Neurolmage. 2016;140:150-62. doi:
1288 10.1016/j.neuroimage.2015.12.019.

1289 68. Vorwerk J, Cho J-H, Rampp S, Hamer H, Kndsche TR, Wolters CH. A guideline for head volume
1290 conductor modeling in  EEG and MEG. Neurolmage. 2014;100:590-607. doi:
1291 10.1016/j.neuroimage.2014.06.040.

1292 69. Cavallari S, Panzeri S, Mazzoni A. Comparison of the dynamics of neural interactions between
1293  current-based and conductance-based integrate-and-fire recurrent networks. Front Neural Circuits.
1294  2014;8:12. Epub 2014/03/19. doi: 10.3389/fncir.2014.00012. PubMed PMID: 24634645; PubMed
1295  Central PMCID: PMCPM(C3943173.

1296  70. Nordlie E, Gewaltig MO, Plesser HE. Towards reproducible descriptions of neuronal network
1297 models. PLoS Comput Biol. 2009;5(8):e1000456. Epub 2009/08/08. doi:
1298 10.1371/journal.pcbi.1000456. PubMed PMID: 19662159; PubMed Central PMCID:
1299  PMCPMC(C2713426.

1300 71. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. Tensorflow: Large-scale
1301  machine learning on heterogeneous distributed systems. arXiv preprint arXiv:160304467. 2016.

1302 72. Linssen C, Deepu R, Mitchell J, Leppergd ME, Garrido J, Spreizer S, et al. NEST 2.16. 0. Jiilich
1303 Supercomputing Center, 2018.

1304 73. Hines M. NEURON and Python. Frontiers in Neuroinformatics. 2009;3. doi:
1305  10.3389/neuro.11.001.2009.

38


https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.364802; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1306

1307 Supplementary figures

1308
01 -0
-200 A L -5
< £
2 2
£ . P
Q) -400 - L 10 =
o Q"
-600 L 15
500 700
Time (ms)
1309

1310  Supplementary Figure 1. EEG (black line) and z-component (red dashed line) of the current dipole
1311  moment (P,) calculated at the top of head model.
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