

1 **Computation of the electroencephalogram (EEG) from network**
2 **models of point neurons**

3

4

5 Pablo Martínez-Cañada^{1,2,3}, Torbjørn V. Ness⁴, Gaute T. Einevoll^{4,5}, Tommaso
6 Fellin^{1,3}, Stefano Panzeri^{1,2*}

7

8

9 ¹ Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova, Italy

10 ² Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn,
11 Istituto Italiano di Tecnologia, Rovereto, Italy

12 ³ Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova,
13 Italy

14 ⁴ Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway

15 ⁵ Department of Physics, University of Oslo, Oslo, Norway

16

17

18 *Corresponding author

19 E-mail: stefano.panzeri@iit.it (S.P.)

20

21

22

23 Abstract

24 The electroencephalogram (EEG) is one of the main tools for non-invasively studying
25 brain function and dysfunction. To better interpret EEGs in terms of neural mechanisms, it is
26 important to compare experimentally recorded EEGs with the output of neural network models.
27 Most current neural network models use networks of simple point neurons. They capture
28 important properties of cortical dynamics, and are numerically or analytically tractable.
29 However, point neuron networks cannot directly generate an EEG, since EEGs are generated
30 by spatially separated transmembrane currents. Here, we explored how to compute an accurate
31 approximation of the EEG with a combination of quantities defined in point-neuron network
32 models. We constructed several different candidate approximations (or proxies) of the EEG
33 that can be computed from networks of leaky integrate-and-fire (LIF) point neurons, such as
34 firing rates, membrane potentials, and specific combinations of synaptic currents. We then
35 evaluated how well each proxy reconstructed a realistic ground-truth EEG obtained when the
36 synaptic input currents of the LIF network were fed into a three-dimensional (3D) network
37 model of multi-compartmental neurons with realistic cell morphologies. We found that a new
38 class of proxies, based on an optimized linear combination of time-shifted AMPA and GABA
39 currents, provided the most accurate estimate of the EEG over a wide range of network states
40 of the LIF point-neuron network. The new linear proxies explained most of the variance (85-
41 95%) of the ground-truth EEG for a wide range of cell morphologies, distributions of
42 presynaptic inputs, and position of the recording electrode. Non-linear proxies, obtained using
43 a convolutional neural network (CNN) to predict the EEG from synaptic currents, increased
44 proxy performance by a further 2-8%. Our proxies can be used to easily calculate a biologically
45 realistic EEG signal directly from point-neuron simulations and thereby allow a quantitative
46 comparison between computational models and experimental EEG recordings.

47

48 Author summary

49 Networks of point neurons are widely used to model neural dynamics. Their output,
50 however, cannot be directly compared to the electroencephalogram (EEG), which is one of the
51 most used tools to non-invasively measure brain activity. To allow a direct integration between
52 neural network theory and empirical EEG data, here we derived a new mathematical
53 expression, termed EEG proxy, which estimates with high accuracy the EEG based simply on
54 the variables available from simulations of point-neuron network models. To compare and
55 validate these EEG proxies, we computed a realistic ground-truth EEG produced by a network
56 of simulated neurons with realistic 3D morphologies that receive the same spikes of the simpler
57 network of point neurons. The new obtained EEG proxies outperformed previous approaches
58 and worked well under a wide range of simulated configurations of cell morphologies,
59 distribution of presynaptic inputs, and position of the recording electrode. The new proxies
60 approximated well both EEG spectra and EEG evoked potentials. Our work provides important
61 mathematical tools that allow a better interpretation of experimentally measured EEGs in terms
62 of neural models of brain function.

63

64

65 **Introduction**

66 Electroencephalography is a powerful and widely used technique for non-invasively
67 measuring neural activity, with important applications both in scientific research and in the
68 clinic [1]. Electroencephalography has played a key role in the study of how both neural
69 oscillations and stimulus-evoked activity relate to sensation, perception, cognitive and motor
70 functions [2-4]. The electroencephalogram (EEG), like its intracranial counterpart, the local
71 field potential (LFP), originates from the aggregation of all the electric fields generated by
72 transmembrane currents across the surfaces of all neurons sufficiently close to the electrode [5-
73 8]. The physics of how electromagnetic fields are generated from transmembrane currents are
74 well understood, and mathematically described by forward models [6]. Yet, how to interpret
75 changes in EEG across experimental conditions or diagnostic categories in terms of underlying
76 neural processes remains challenging [1].

77 One way to better understand the EEG in terms of neural circuit mechanisms and to
78 link theoretical models of brain functions to empirical EEG recordings is to compare EEG data
79 with quantitative predictions obtained from network models. Network models of recurrently
80 connected leaky-integrate-and-fire (LIF) point neurons are a current major tool in modelling
81 brain function [9-11]. These models reduce the morphology of neurons to a single point in
82 space and describe the neuron dynamics by a tractable set of coupled differential equations.
83 These models are sufficiently simple to be understood thoroughly, either with simulations that
84 are relatively light to implement, or by analytical approaches [12, 13]. Despite their simplicity,
85 they generate a wide range of network states and dynamics that resemble those observed in
86 cortical recordings. They have been employed to satisfactorily explain a broad spectrum of
87 different cortical mechanisms and cortical functions, such as sensory information coding [14,
88 15], working memory [16, 17], attention [18], propagating waves [19, 20], non-rhythmic
89 waking states [21, 22], or the emergence of up and down states [23]. It remains an open
90 question how to compute realistically EEGs from such widely used network models of simple
91 point neurons.

92 A major problem in achieving the above goal is that in such LIF point neurons all
93 transmembrane currents collapse into a single point in space and the resulting extracellular
94 potential is, therefore, zero [6]. Previous studies comparing the simulation output of networks
95 of simple model neurons without a spatial structure with measures of graded extracellular
96 potentials such as EEGs or LFPs have used ad-hoc approaches to estimate the EEG from
97 variables available from simulation of the network, including the average membrane potentials
98 [23-28], the average firing rate [29-31], the sum of all synaptic currents [13, 32, 33], or the sum
99 of absolute values of synaptic currents [14, 34]. However, the limitations and caveats of using
100 such ad-hoc simplifications to compute the EEG have been rarely considered and tested. As a
101 result, it is still unclear how best to compute EEGs directly from output from point-like neuron
102 network models [35, 36].

103 In order to generate extracellular potentials, spatially extended neuron models, i.e.,
104 multicompartment neuron models, are required [37, 38]. Previous studies have numerically
105 computed the compound extracellular potential as the linear superposition of all single-cell
106 distance-weighted transmembrane currents within a network of multicompartment neurons
107 [39-41]. This approach is however computationally cumbersome, and it does not allow an
108 easily tractable and exhaustive analysis of the dynamics of such networks. One alternative
109 could be using a hybrid scheme [30, 35, 42, 43] that projects the spike times generated by the

110 LIF point-neuron network onto morphologically detailed 3D neuron models and then
111 computing the electric field that the currents flowing through these 3D networks generate. This
112 scheme provides a simplification by separating the study of the network dynamics (described
113 by the point-neuron network model) from that of field generation (described by the
114 multicompartment neuron model), but still requires running cumbersome multicompartment
115 model simulations for each simulation of the LIF network.

116 In this article, we implemented a much simpler and lighter method to predict the EEG
117 based simply on the variables available directly from simulation of a point-neuron network
118 model (e.g., membrane potentials, spike times or synaptic currents of the neuron models). We
119 constructed several different candidate approximations (termed proxies) of the EEG that can
120 be computed from networks of LIF point neurons. We then evaluated how well each proxy
121 reconstructed a ground-truth EEG obtained when the synaptic input currents of the LIF network
122 were injected into an analogous three-dimensional (3D) network model of multi-
123 compartmental neurons with realistic cell morphologies. This approach was shown to perform
124 remarkably well in predicting the LFP [42], based on a specific weighted sum of synaptic
125 currents from the point-neuron network model, for a specific network state (i.e., asynchronous
126 irregular) of the LIF network model. However, the previously obtained LFP proxy did not
127 include a head model that approximates the different geometries and electrical conductivities
128 of the head necessary for computing a realistic EEG signal recorded by scalp electrodes. We
129 thus derived a new proxy for the EEG that was validated against detailed simulations of the
130 multicompartment model, investigating different cell morphologies, variations of distribution
131 of presynaptic inputs, and changes in position of the recording electrode. Unlike previous
132 studies which focused on approximations valid in specific network states [42], we also
133 validated our proxies across the repertoire of network states displayed by recurrent network
134 models, namely the asynchronous irregular (AI), synchronous irregular (SI), and synchronous
135 regular (SR) [12] states, with different patterns of global oscillations and individual cell
136 activity. We found that a new class of simple EEG proxies, based on a weighted sum of synaptic
137 currents, outperformed previous approaches, including those optimized for predicting LFPs
138 [14, 42]. The new EEG proxies closely captured both the temporal and spectral features of the
139 EEG. We also provided a non-linear refinement using a convolutional neural network to
140 estimate the EEG from synaptic currents, which yielded moderate improvements over the
141 linear proxy at the expense of increasing complexity of the EEG estimation model.

142

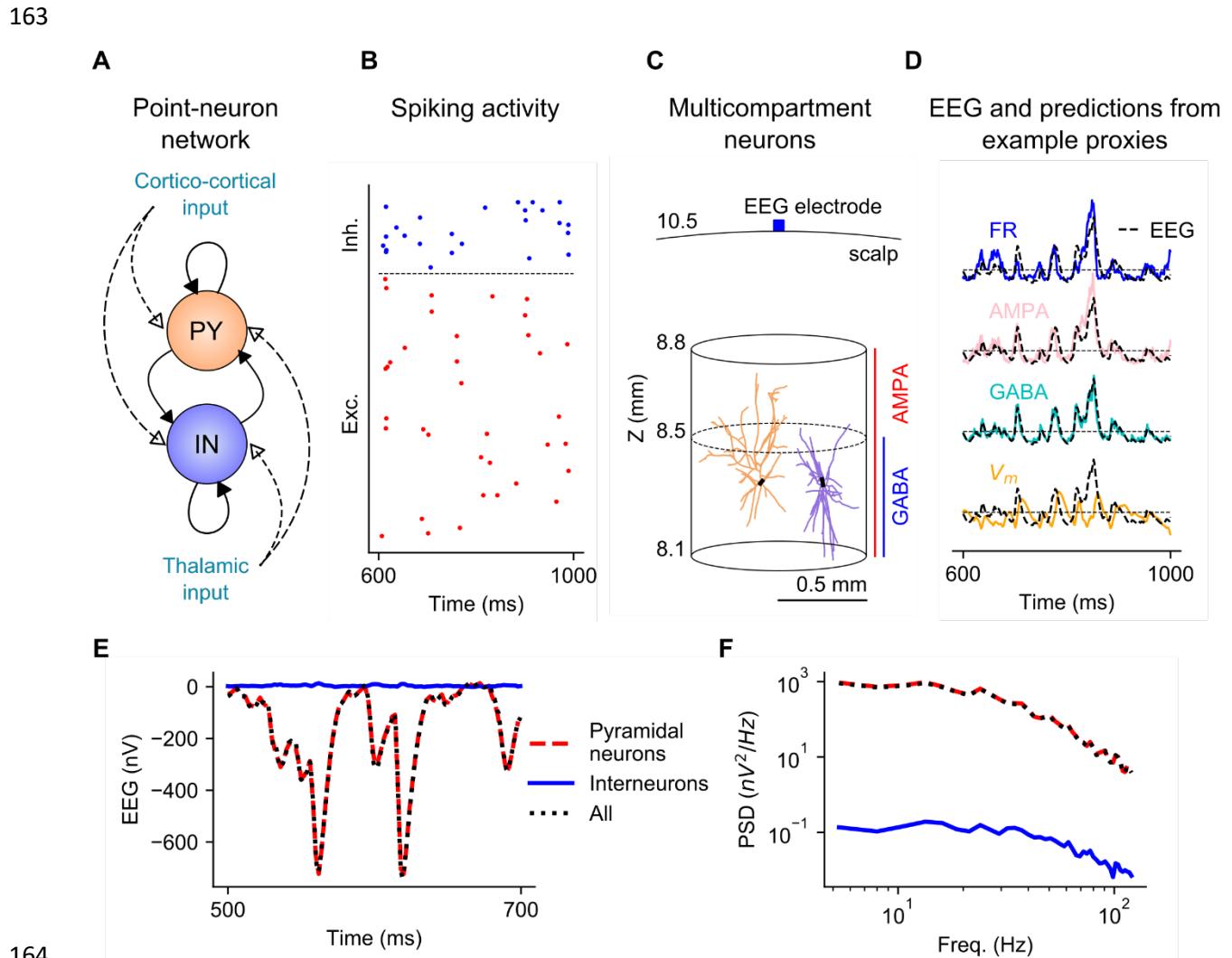
143 **Results**

144 **Computing the ground-truth EEG and EEG proxies**

145 We investigated how to compute a simple but accurate approximation of the EEG
146 (“EEG proxy” hereafter) that would be generated by the activity of a LIF point-neuron network
147 if its neurons had a realistic spatial structure. We therefore first simulated a well-established
148 model of a recurrent network of LIF point neurons. We then fed the spiking activity generated
149 by the LIF point-neuron network into a realistic three-dimensional multicompartmental
150 network model of a cortical layer and computed the EEG generated by this activity. We finally
151 studied how to approximate this EEG simply by using the variables directly available from the
152 simulation of the point-neuron network model.

153 The LIF point-neuron network was constructed using a well-established two-
154 population (one excitatory and one inhibitory) model of a recurrent cortical circuit [12],

155 illustrated in Fig 1 A. The network receives thalamic synaptic input that carry the sensory
 156 information and stimulus-unrelated inputs representing slow ongoing fluctuations of cortical
 157 activity. This network can generate a repertoire of different network states that map well into
 158 empirical observations of cortical dynamics [12, 44]. Fig 1 B shows, as an example, the
 159 asynchronous irregular spiking activity generated by a subset of the excitatory and inhibitory
 160 populations in response to a low firing rate of the thalamic input. We have shown in previous
 161 work that this model captured well (even more than 90% of the variance of empirical data) the
 162 dynamics of primary visual cortex under naturalistic stimulation [14, 34, 45].



164

165 **Fig 1. Overview of the network models and computation of proxies and EEG.** (A) Sketch of the
 166 point-neuron network with recurrent connections between two types of populations: excitatory cells
 167 (pyramidal cells, PY) and inhibitory cells (interneurons, IN). Each population receives two kinds of
 168 external inputs: global ongoing cortico-cortical activity and thalamic stimulation. (B) Raster plot of
 169 spiking activity from a subset of cells in each population. (C) Sketch of the multicompartment neuron
 170 models used for generation of the EEG. Two representative model neurons are depicted, a pyramidal
 171 cell on the left and an interneuron on the right, positioned within a cylinder of $r=0.5$ mm. While AMPA
 172 synapses are homogenously distributed over all compartments of both types of cells, GABA synapses
 173 on pyramidal cells are located only below $Z=8.5$ mm. The EEG recording electrode is situated on the
 174 surface of the scalp layer. (D) Comparison between example proxies calculated from the point-neuron
 175 network and the ground-truth EEG computed from the multicompartment neuron model network. (E)
 176 EEG generated in the multicompartment neuron network by all neurons (dotted black), only pyramidal

177 neurons (dashed red) or only interneurons (solid blue). (F) Corresponding power spectra for the three
178 sets depicted in (E).

179

180 We then computed a “ground-truth” EEG (referred to simply as “EEG” in the paper),
181 following the hybrid modelling scheme [30, 35, 42, 43], and used this ground-truth EEG to
182 compare the performance of the different proxies. To do so, we created a network of
183 unconnected multicompartment neuron models with realistic morphologies and homogeneous
184 distribution within the circular section of a cylinder of radius $r = 0.5$ mm (Fig 1 C), which
185 roughly approximates the spatial extension of a layer in a cortical column. We focused on
186 computing the EEG generated by neurons with somas positioned in layer 2/3, so that somas of
187 the multicompartment neurons are aligned in the Z-axis (150 μ m below the reference point Z
188 = 8.5 mm). We chose to position somas in layer 2/3 based on previous computational work
189 suggesting that this layer gives a large contribution to extracellular potentials [30, 35]. The
190 reference point Z = 8.5 mm was chosen to approximate the radial distance between the center
191 of a spherical rodent head model and the brain tissue [46]. In this specific set of simulations
192 performed for optimizing the proxies, we used the reconstructed morphology of a broad-tuft
193 layer-2/3 pyramidal cell from rat somatosensory cortex available in the Neocortical
194 Microcircuitry (NMC) portal [47, 48], referenced as *dend-C250500A-P3_axon-C260897C-P2-Clone_9* (see “Methods”). We chose this pyramidal-cell morphology because its open-field
195 geometry is expected to generate large extracellular potentials. Inhibitory cells of the model
196 were implemented using the morphology of L2/3 large basket cell interneurons (the most
197 numerous class in L2/3 [47]).

199 AMPA synapses were homogenously positioned along the Z-axis in both cell types,
200 representing uniformly distributed excitatory input. In our default setting, we assumed that all
201 inhibitory synapses are made by large basket cell interneurons of the model, which based on
202 their morphology would be principally located below the reference point Z = 8.5 mm. Thus,
203 all dendrites of inhibitory cells receive GABA synapses while only those dendrites of
204 excitatory cells below Z = 8.5 mm receive GABA synapses, representing perisomatic
205 inhibition.

206 EEGs were then generated from transmembrane currents of multicompartment neurons
207 in combination with a forward-modelling scheme based on volume conduction theory [6]. To
208 approximate the different geometries and electrical conductivities of the head, we computed
209 the EEG using the four-layered spherical head model described in [35, 49]. In this model, the
210 different layers represent the brain tissue, cerebrospinal fluid (CSF), skull, and scalp, with radii
211 9, 9.5, 10 and 10.5 mm respectively, which approximate the dimensions of a rodent head model
212 [46]. The values of the chosen conductivities are the default values of 0.3, 1.5, 0.015 and 0.3
213 S/m. The simulated EEG electrode was placed on the scalp surface, at the top of the head model
214 (Fig 1 C).

215 The time series of spikes of individual point neurons were finally mapped to synapse
216 activation times on corresponding postsynaptic multicompartment neurons. Each
217 multicompartment neuron was randomly assigned to a unique neuron in the point-neuron
218 network and receives the same input spikes of the equivalent point neuron. Since the
219 multicompartment neurons were not connected to each other, they were not involved in the
220 network dynamics and their only role was to transform the spiking activity of the point-neuron
221 network into a realistic estimate of the EEG. The EEG computed from the multicompartment
222 neuron model network was then used as benchmark ground-truth data against which we
223 compared different candidate proxies (Fig 1 D).

224 Dynamic states of network activity of the point-neuron network model

225 The LIF point-neuron network model chosen to generate network dynamics is known
226 to generate a number of qualitatively different activity states [12, 44] with patterns of
227 variability of spike activity and network oscillations observed in cortical data. Since one of our
228 goals is to determine EEG proxies which work well under a wide range of different network
229 dynamics, we computed the different network states that the LIF point-neuron network can
230 generate and which are recapitulated here.

231 The states generated by the LIF neuron network can be mapped by systematically
232 varying across simulations the thalamic input (v_0) and the relative strength of inhibitory
233 synapses (g). We then use three different measures to describe the network dynamics:
234 synchrony, irregularity, and mean firing rate [12, 44].

235 In Fig 2 A, we plot these three descriptors as a function of g and v_0 . We individuated
236 3 different regions of the parameter space, each corresponding to a qualitatively different
237 network state, according to the criteria employed by Kumar and collaborators [44]. The
238 asynchronous irregular (AI) state is characterized by a low value of network synchrony (<
239 0.01), an irregularity level close to the value of a Poisson generator (> 0.8) and a very low
240 firing rate, below 2 spikes/s. The synchronous irregular (SI) state has a level of network
241 synchrony higher than that of the AI state (between 0.01 and 0.1), but with highly irregular
242 firing of individual neurons (irregularity above 0.8). In the SI, neurons spike at low rate (< 5
243 spikes/s). For the synchronous regular (SR) state, the network exhibits high synchronous
244 activity (> 0.1), a more regular single-cell spiking (irregularity below 0.8) and high spiking rate
245 (> 60 spikes/s). Spike raster plots of excitatory and inhibitory cell populations of representative
246 samples selected for each network state are shown in Fig 2 B.

247 Optimization and validation of proxies across different network states

248 We investigated how best to compute the proxy that combines the variables available
249 directly from the simulation of a LIF point-neuron network model for accurately predicting the
250 EEG over a wide range of network activity states. We explored different proxies that have been
251 commonly used in previous literature for estimating the extracellular signal from point-neuron
252 networks: (i) the average firing rate (FR), (ii) the average membrane potential (V_m), (iii) the
253 average sum of AMPA currents ($AMPA$), (iv) the average sum of GABA currents ($GABA$), (v)
254 the average sum of synaptic currents ($\sum I$) and (vi) the average sum of their absolute values
255 ($\sum |I|$). Furthermore, we propose here a new class of current-based proxies, (vii) the EEG
256 reference weighted sum 1 ($ERWS1$) and (viii) the EEG reference weighted sum 2 ($ERWS2$),
257 which are optimized linear combinations of time-delayed measures of AMPA and GABA
258 currents. Indeed, an optimized weighted sum of synaptic currents (defined here as $LRWS$) was
259 previously shown to be a robust proxy for the LFP [42]. The difference between $ERWS1$ and
260 $ERWS2$ is that parameters of $ERWS2$ adapt their values as a function of the strength of the
261 external thalamic input v_0 , whereas the parameters of $ERWS1$ are not dependent on v_0 (see
262 “Methods”).

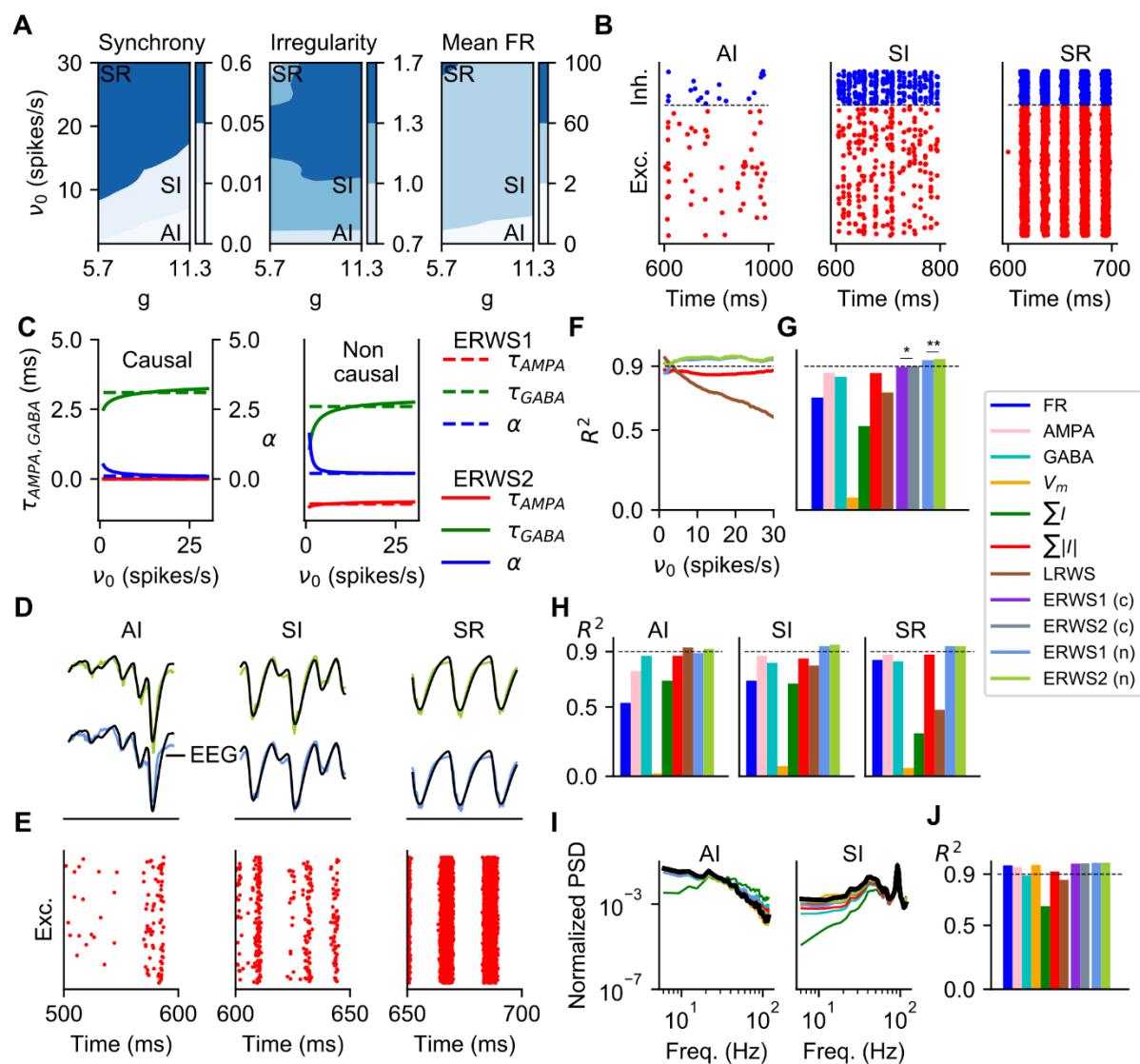
263 We only considered the transmembrane currents of pyramidal cells to generate the EEG (in the
264 multicompartiment neuron network) because the contribution of transmembrane currents of
265 interneurons to the EEG was shown to be negligible (Fig 1 E and F), in line with findings of
266 Refs. [35] for the EEG and [42] for the LFP. Interneurons, though, play an indirect role in
267 generating the EEG, since GABAergic currents in pyramidal cells depend on interneuronal

268 spikes. In a similar way, proxies of the LIF neuron network are computed only on excitatory
269 neurons.

270 The firing rate of inhibitory neurons might be expected to contribute as well to the *FR* proxy and, as a consequence, to the EEG, as observed in [30]. To keep consistency with
271 definition of the other proxies, we decided to compute the *FR* proxy based only on firing rates
272 of excitatory cells. We checked that using a proxy computed on firing rates of both excitatory
273 and inhibitory cells gave an EEG reconstruction accuracy considerably poorer than accuracy
274 of the proxies based on synaptic currents (from proxy *iii* to proxy *viii* above).

275
276 The first 6 proxies taken from previous literature are parameter-free. The two new ones,
277 *ERWS1* and *ERWS2* have 3 and 9 free parameters, respectively, which need to be optimized
278 (Eqs. 7-9). Following previous work [42], these parameters define the factor α describing the
279 relative ratio between the two currents and a specific delay for each type of current (τ_{AMPA} ,
280 τ_{GABA}). We computed the values of these parameters by a cross-validated optimization of
281 the predicted EEG across the different network states seen for the LIF network model.

282



283

284 **Fig 2. Optimization and validation of proxies for different sets of network parameters (v_0 , g).** (A)

285 Dynamic states of network activity defined by the control parameters g and v_0 . The labels AI
286 (asynchronous irregular), SI (synchronous irregular) and SR (synchronous regular) indicate the
287 combinations of parameters that have been selected as representative samples of each network state.
288 The synchrony and irregularity are unitless, the mean firing rate (FR) is measured in spikes/s. (B)
289 Spiking activity from a subset of cells of the excitatory and inhibitory populations for the same samples
290 shown in (A). (C) Optimized parameters of *ERWS1* and *ERWS2* (Eqs. 7-9) as a function of the thalamic
291 firing rate v_0 . We considered two alternative scenarios. In the causal version of the proxy, the output
292 depends only on present and past inputs so that the time constants (τ_{AMPA} and τ_{GABA}) are constrained to
293 be positive. In contrast, non-causal proxies can be indifferently assigned positive and negative time
294 constants. (D) Outputs of non-causal *ERWS1* (bottom row) and non-causal *ERWS2* (top row) proxies
295 for different network states compared to ground-truth EEGs. (E) Spiking activity for the same
296 simulation cases of panel D. (F) Average performance, evaluated by using the coefficient of
297 determination R^2 , of $\sum|I|$, *LRWS*, *ERWS1* (non-causal) and *ERWS2* (non-causal) calculated on the
298 validation dataset as a function of v_0 (same colors as shown in (G)). (G) Average R^2 of every proxy
299 across all network instantiations i of the validation dataset (c is causal, n is non-causal). The same colors
300 shown in this legend are used throughout the article to identify the different proxies. Tests for statistical
301 significance are computed only for the pair *ERWS1* (non-causal) and *ERWS2* (non-causal) and for the
302 pair *ERWS1* (causal) and *ERWS2* (causal). (H) R^2 across network states. (I) Power spectral density
303 (PSD) of the proxies and the EEG (in black). (J) Average R^2 applied to proxies' PSDs instead of their
304 temporal responses. R^2 is computed in the 5-200 Hz frequency range.

305

306 For optimization and validation of proxies we generated a large set of numerical
307 simulations (522 simulations) by systematically varying the values of g and v_0 over a wide
308 state range. In each simulation instantiation, we set a given value g and v_0 and used different
309 random initial conditions (e.g., recurrent connections of the point-neuron network or soma
310 positions of multicompartment neurons). The best-fit values of *ERWS1* and *ERWS2* were
311 calculated by minimizing the sum of square errors between the ground-truth EEG and the proxy
312 for all network instantiations of the optimization dataset (see "Methods", Eq. 11).

313 Fig 2 C shows the best parameters (α , τ_{AMPA} and τ_{GABA}) found by the optimization
314 algorithm for the two alternative scenarios considered here: causal and non-causal proxies (see
315 also Table 1). For causal proxies, the predicted EEG depended only on present and past values
316 of AMPA and GABA currents. Thus, the time delay parameters τ_{AMPA} and τ_{GABA} (quantifying
317 the delay by which the synaptic current contributes to the EEG) were constrained during
318 optimization to be non-negative. For non-causal proxies, time delay parameters can take
319 positive and negative values. Non-causal relationships between measured extracellular
320 potentials and neural activity at multiple sites may emerge because of closed-loop recurrent
321 interactions within the network [6]. The mathematical expressions of the optimized causal
322 proxies are:

323
$$ERWS1(t) = \sum_{exc.} AMPA(t) - 0.1(\sum_{exc.} GABA(t - 3.1 \text{ ms})) \quad (1)$$

324

325
$$ERWS2(t, v_0) = \sum_{exc.} AMPA(t) - (0.5v_0^{-0.5})(\sum_{exc.} GABA(t + 1.5v_0^{-0.2} \text{ ms} - 4 \text{ ms})) \quad (2)$$

327

328 Expressions of the optimized non-causal proxies (v_0 is unitless) are:

329
$$ERWS1(t) = \sum_{exc.} AMPA(t + 0.9 \text{ ms}) - 0.3(\sum_{exc.} GABA(t - 2.3 \text{ ms})) \quad (3)$$

330

331
$$ERWS2(t, v_0) = \sum_{exc.} AMPA(t + 0.6v_0^{-0.1} \text{ ms} + 0.4 \text{ ms}) - (1.4v_0^{-1.7} +$$

 332
$$0.2)(\sum_{exc.} GABA(t + 1.9v_0^{-0.6} \text{ ms} - 3 \text{ ms})) \quad (4)$$

333

334 We first show the best fits obtained from optimization of the two *ERSW* proxies (Fig 2
 335 C). For both *ERWS1* and *ERWS2*, in the non-causal versions, the time delay parameters were
 336 small (few milliseconds) but had opposite signs, τ_{GABA} was positive while τ_{AMPA} was negative.
 337 In the causal version of both proxies, we observed a similar trend but τ_{AMPA} was constrained to
 338 0 by the optimization. Thus, the best EEG proxies depend on past values of GABA synaptic
 339 currents and on current and future values of AMPA synaptic currents. These values are
 340 different from the optimal delays ($\tau_{GABA} = 0$ ms and $\tau_{AMPA} = 6$ ms) found for the LFP in [42].
 341 One reason for the observed difference between the previous LFP proxy and our new EEG
 342 proxies may relate to differences in spatial integration properties of the EEG signal and the
 343 LFP signal. Another probable cause of this difference is that in [42] the LFP proxy was
 344 optimized over a much smaller range of network states and external input rates ($v_0 < 6$ spikes/s).
 345 Indeed, our results for *ERWS2* show that optimal values of τ_{GABA} exhibit strong adaptation
 346 towards $\tau_{GABA} = 0$ ms within the low regime of the external rate v_0 . The parameter α , which
 347 expresses the ratio of the contribution to the EEG of GABA relative to AMPA synaptic
 348 currents, also exhibits a strong adaptation. The dependence of α on the value of input rate v_0 in
 349 Fig 2 C is particularly relevant because it reflects a larger weight of GABA currents for low
 350 values of v_0 and the opposite effect, stronger weight of AMPA currents, as the external rate
 351 increases.

352

353 **Table 1. Parameters of *ERWS1* and *ERWS2*.**

Proxy	Optimized values
<i>ERWS1</i> (causal)	$\tau_{AMPA} = 0$ ms, $\tau_{GABA} = 3.1$ ms, $\alpha = 0.1$
<i>ERWS2</i> (causal)	$a_1 = 0, b_1 = 0, c_1 = 0, a_2 = -1.5, b_2 = 0.2, c_2 = 4, a_3 = 0.5, b_3 = 0.5, c_3 = 0$
<i>ERWS1</i> (non-causal)	$\tau_{AMPA} = -0.9$ ms, $\tau_{GABA} = 2.3$ ms, $\alpha = 0.3$
<i>ERWS2</i> (non-causal)	$a_1 = -0.6, b_1 = 0.1, c_1 = -0.4, a_2 = -1.9, b_2 = 0.6, c_2 = 3, a_3 = 1.4, b_3 = 1.7, c_3 = 0.2$

354

355 To quantitatively evaluate the performance of all proxies, we computed for each proxy
 356 the coefficient of determination R^2 , which represents the fraction of the EEG variance
 357 explained. The average R^2 calculated on the validation dataset (Fig 2 G) shows a clear
 358 superiority of the new class of proxies. Both the causal and non-causal versions of *ERWS1* and
 359 *ERWS2* outperform all the other proxies, and the non-causal versions reach the best overall
 360 performance (*ERWS1*: $R^2 = 0.94$ and *ERWS2*: $R^2 = 0.95$). In agreement with previous results
 361 for the LFP [42], the three proxies that give the worst fits were *FR*, $\sum I$ and V_m .

362 To understand if the performance of proxies depended on the specific state of network
 363 activity, we first examined the performance of the most interesting proxies ($\sum |I|$, *LRWS*,
 364 *ERWS1* (non-causal) and *ERWS2* (non-causal)) separately for different values of the input rate
 365 v_0 . We found that while *LRWS* performs well for low input rates (the range of external rates
 366 for which it was optimized [42]), its performance rapidly dropped with v_0 (Fig 2 F). The other
 367 three proxies maintained a high R^2 for the whole spectrum of firing rates studied here, with
 368 *ERWS1* and *ERWS2* performing notably better than $\sum |I|$. Note also that *ERWS2* is the only

369 proxy that yields a value of R^2 above 0.9 for all firing rates. We then computed the performance
370 of these proxies separately for different types of network states. We found that the new proxies
371 developed here, *ERWS1* and *ERWS2*, produced accurate fits of the EEG for all network states
372 (Fig 2 H), while accuracy of EEG approximations made by the other proxies was less uniform
373 across network states.

374 The above analyses quantified how well the proxies approximated the actual values of
375 the EEG in the time domain for each data point. We next examined how well the proxies
376 approximated the overall power spectrum of the EEG rather than all variations of the EEG time
377 series. In Fig 2 I we show power spectral density (PSD) functions of all the proxies for the AI
378 and SI states, compared to spectral responses of the EEG. In the whole frequency range
379 considered (5 – 200 Hz), all proxies provide a prominent good fit of the EEG power spectrum,
380 except ΣI , which attenuates low frequencies and amplifies high frequencies. In Fig 2 J we
381 report the average R^2 computed for the PSDs across all data points of the validation dataset,
382 confirming that all proxies gave an accurate approximation of the EEG power spectrum (except
383 ΣI).

384 In sum, while almost all proxies are good enough to capture the general properties of
385 the EEG power spectrum, *ERWS1* and *ERWS2* capture best the details of time variations of the
386 EEG.

387

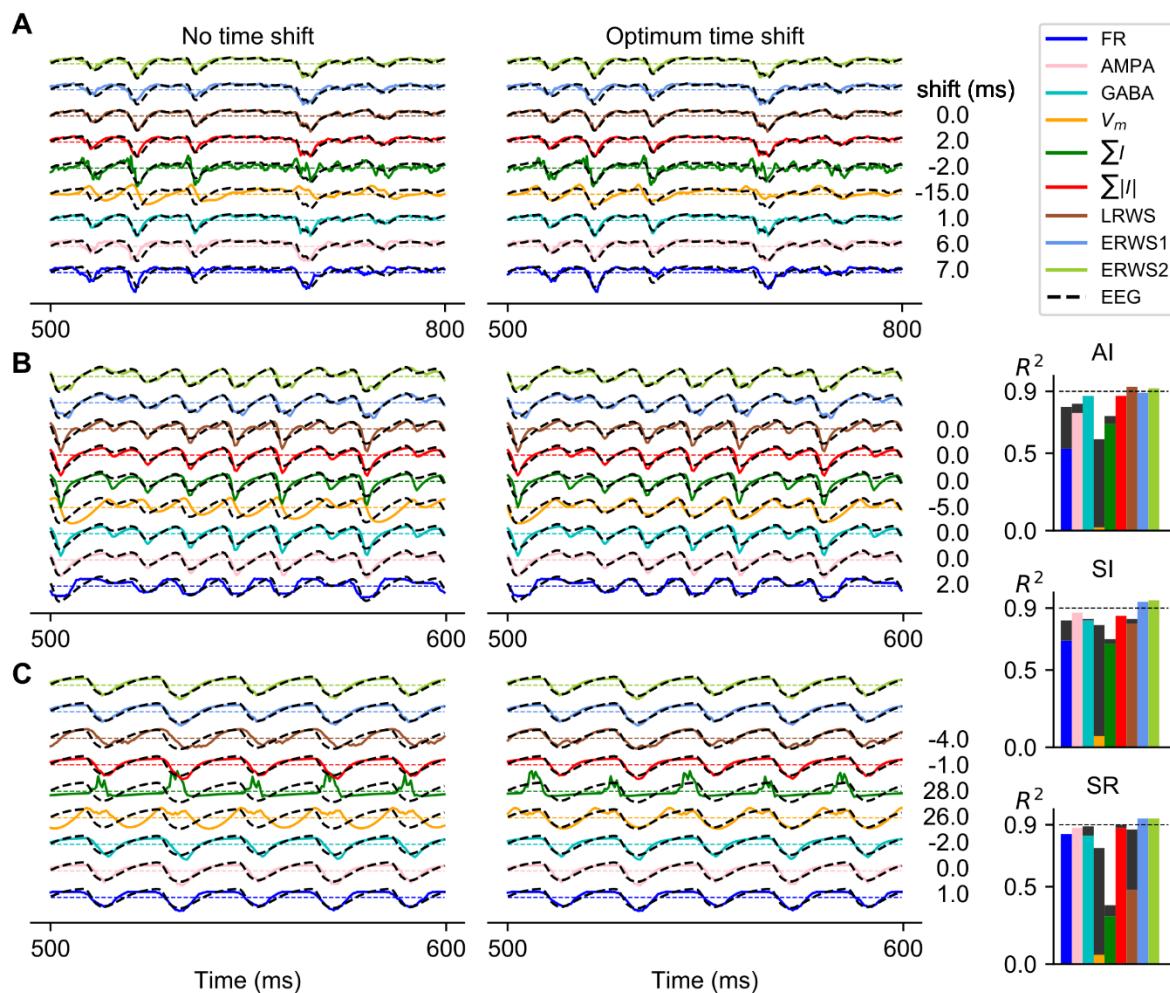
388 Time-shifted variants of proxies

389 The *ERSW* proxies were optimized for EEG prediction choosing optimal values for the
390 time shifts between neural activity and the EEG. It is thus possible that the superior
391 performance of the *ERWS* proxies over all others may have been due to the fact that the other
392 proxies were not optimally time shifted. To investigate this hypothesis, we generated optimized
393 time-shifted versions of all the other proxies by computing cross-correlation between the
394 ground-truth EEG and all other proxies and choosing the optimum time shift of each proxy as
395 the lag of the cross-correlation peak. We then compared the performance of the time-shifted
396 versions of proxies in predicting the EEG with the performance of the *ERWS* proxies.

397 In this analysis, we recomputed the optimum time shift of every proxy separately for
398 each network state, whereas the parameters of the *ERWS* proxies were jointly optimized (see
399 previous section) over the entire simulated EEG dataset spanning all possible network states.
400 Thus, this comparison was clearly favorable to the other proxies. Nevertheless, we still found
401 that the *ERWS* proxies outperformed all previous proxies for the majority of network states.
402 Only in the AI state, we observed that the *LRWS* proxy slightly outperformed *ERWS1* and
403 *ERWS2*. The *ERWS2* proxy was the only one providing remarkably good performance across
404 all states ($R^2 > 0.9$ over all states).

405 Further results came out of this analysis. Two proxies clearly improved the quality of
406 their fits after time shifting, *FR* and V_m , but presented opposed time shifts: while *FR* was
407 delayed, V_m was moved forward in time. A spike is a local and instantaneous event in time and,
408 as a result, a firing-rate proxy is expected to exhibit faster temporal changes than the EEG
409 signal. By contrast, integration of the postsynaptic soma membrane potentials following
410 presynaptic spiking is a slower process that might lead to a signal more low-pass filtered than
411 the EEG.

412 When comparing AMPA and GABA proxies, we observed that, in the AI state (Fig 3
413 A), temporal dynamics of the EEG signal were better approximated by the GABA proxy,
414 whereas AMPA currents showed a faster response. Indeed, the performance of the *AMPA* proxy
415 was improved after applying the corresponding time shift. As the firing rate of the external
416 input increased and switched the network state from AI to SI (Fig 3 B), the temporal evolution
417 of the EEG began to diverge from GABA currents and, instead, AMPA currents were seen to
418 better approximate the EEG.



420 **Fig 3. Optimum time shift of proxies that maximizes cross-correlation with the EEG.** Comparison
421 of the outputs of proxies and the ground-truth EEG before (left) and after (right) applying the optimum
422 time shift, with the optimum time shift for each proxy and network state indicated on the right. Note
423 that some proxies have positive time shifts for all network states (e.g., *FR*), while others (e.g., *GABA*)
424 change the sign of the time shift when passing from the AI to the SR state. The network states shown
425 are the following: AI in panel A, SI in panel B and SR in panel C. On the right: R^2 before (color bars)
426 and after (black bars) applying the optimum time shift. *ERWS1* and *ERWS2* are not time shifted.

427

428 **The performance of EEG proxies depends on the neuron morphology and distribution**
429 **of synapses**

430 Modelling studies have demonstrated that extracellular potentials generated by synaptic
431 input currents vary with the neurons' dendritic morphology and the positions of individual
432 synaptic inputs [6, 50]. For example, morphological types that display a so-called *open-field*
433 structure, such as pyramidal cells, have spatially separated current sources and current sinks
434 that generate a sizable current dipole. Synaptic inputs onto neurons that have a *closed-field*
435 configuration, such as interneurons, largely cancel out when they are superimposed so that the
436 net contribution to the current dipole is weak [35]. The hybrid modelling scheme [30, 35, 42,
437 43] gives us the opportunity to study, independently from the spiking dynamics of the point-
438 neuron network, how different parameters of the multicompartment neuron network (e.g.,
439 distribution of synapses or dendritic morphology) affect the EEG signal and, as a consequence,
440 modify the prediction capabilities of the proxies.

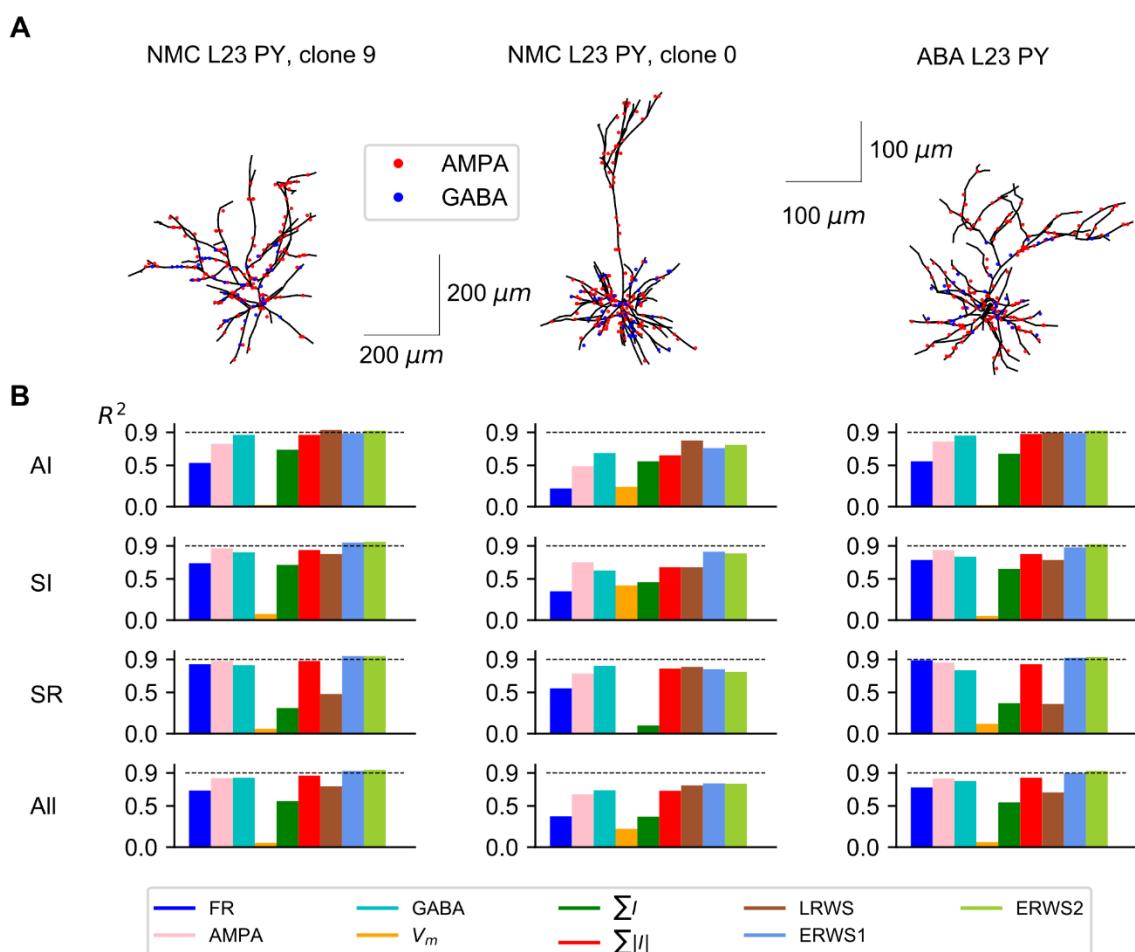
441 Above results (Figs. 2 and 3) were computed using a specific multicompartmental
442 model type of L2/3 pyramidal cell from rat somatosensory cortex (taken from the NMC
443 database [47, 48]) and referred as “NMC L2/3 PY, clone 9” (Table 5, Figure 4A). Here, we
444 studied whether the proxies derived for this morphology provided good approximations to the
445 EEG generated by different cell morphologies. We thus quantified how well our proxies
446 approximate the EEG generated by a different pyramidal-cell morphology taken also from rat
447 somatosensory cortex (“NMC L2/3 PY, clone 0”) and by a third morphology (“ABA L2/3
448 PY”), which is a L2/3 pyramidal cell from the mouse primary visual area [51]. It is important
449 to note that the parameter values of proxies optimized for the morphology “NMC L2/3 PY,
450 clone 9” were applied unchanged to the other morphologies across network states.

451 We found that *ERWS2* was the proxy with the highest prediction accuracy (Fig 4). It
452 approximated extremely well the EEG across all three types of morphology and across all
453 network states. The performance of both *ERWS* proxies in predicting the EEG generated by the
454 mouse pyramidal neuron morphology (“ABA L2/3 PY”, Fig 4, right column) was as good as
455 the performance for the “NMC L2/3 PY, clone 9” morphology (probably because they have
456 similar broad-tuft dendritic morphology, although different size). This suggests that the model
457 generalizes reasonably well across species (at least for EEG generated by broad-tuft dendritic
458 morphologies). *ERWS* proxies also performed well, though less compared to the morphology
459 they were optimized for, on the EEGs generated by the other rat somatosensory cortex
460 morphology (“NMC L2/3 PY, clone 0”, Fig 4, middle column). The small decrease in
461 performance was probably due to the fact that, unlike the broad dendritic tuft morphology used
462 to optimized the proxy, this morphology incorporates long apical dendrites that separates
463 AMPA synapses located in the tuft from GABA synapses more than 200 μ m. Analogously, the
464 similarity in performance of *LRWS* for the “NMC L2/3 PY, clone 0” morphology could be
465 understood in terms of similarity between the pyramidal-cell morphology used to develop the
466 *LRWS* proxy [42] and this morphology. The *LRWS* proxy [42] performed well across all
467 morphologies in the AI state but its performance decreased across other states and
468 morphologies. Other proxies performed poorly across different morphologies and/or states.

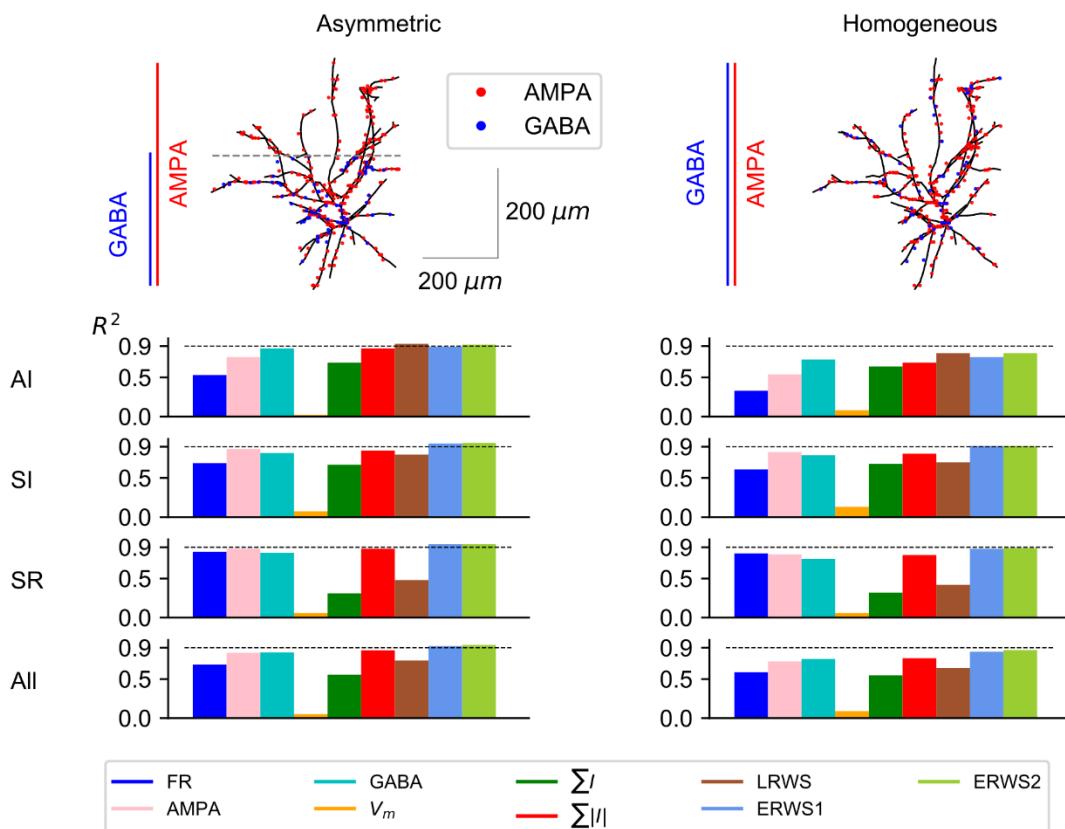
469 We next investigated how different spatial distributions of synapses on excitatory cells
470 affect the performance of proxies (Fig 5). More specifically, GABA synapses were distributed
471 on excitatory cells following two alternative approaches: located only on the lower part of the
472 cell, primarily on the soma and basal dendrites (“Asymmetric”) or homogeneously distributed
473 across all dendrites (“Homogeneous”). Note that the “Asymmetric” case (Fig 5, left column)

474 corresponds to default configuration shown in Fig 4 A, left column (“NMC L2/3 PY, clone 9”
 475 morphology). The most significant change observed when distributing GABA synapses
 476 homogeneously on excitatory cells was an overall decrease of the performance of all proxies
 477 (but see ΣI), most prominently for the AI. These findings are in agreement with previous
 478 results obtained for the LFP proxy [42] in which an homogenous distribution of AMPA and
 479 GABA synapses on pyramidal cells resulted in the worst approximation of LFPs. In all
 480 scenarios, except for the AI state, *ERWS1* and *ERWS2* provided the best performance and their
 481 average R^2 values across network states reflect their superiority in both the asymmetric and
 482 homogenous distributions.

483



484
 485 **Fig 4. Performance of proxies for different morphologies.** (A) Neuron reconstructions of L2/3
 486 pyramidal cells acquired from the Neocortical Microcircuitry (NMC) portal [47, 48] and the Allen Brain
 487 Atlas (ABA) [51] (Table 5). For visualization purposes, in the synaptic distribution of each morphology,
 488 only a subset of AMPA and GABA synapses are shown, drawn randomly from all presynaptic
 489 connections. (B) R^2 computed for each morphology (columns) and network state (rows). The label “All”
 490 indicates the average R^2 across the three network states.



491
492 **Fig 5. Influence of synaptic distributions on performance of proxies.** Outline of the two different
493 distributions of GABA synapses on excitatory cells: distributed only below the reference point $Z = 8.5$
494 mm (“Asymmetric”) or distributed homogeneously across all dendrites (“Homogeneous”). Each row
495 below the diagram of model cells shows the corresponding R^2 for a different network state. The label
496 “All” in the last row displays the average R^2 across the three network states.

497

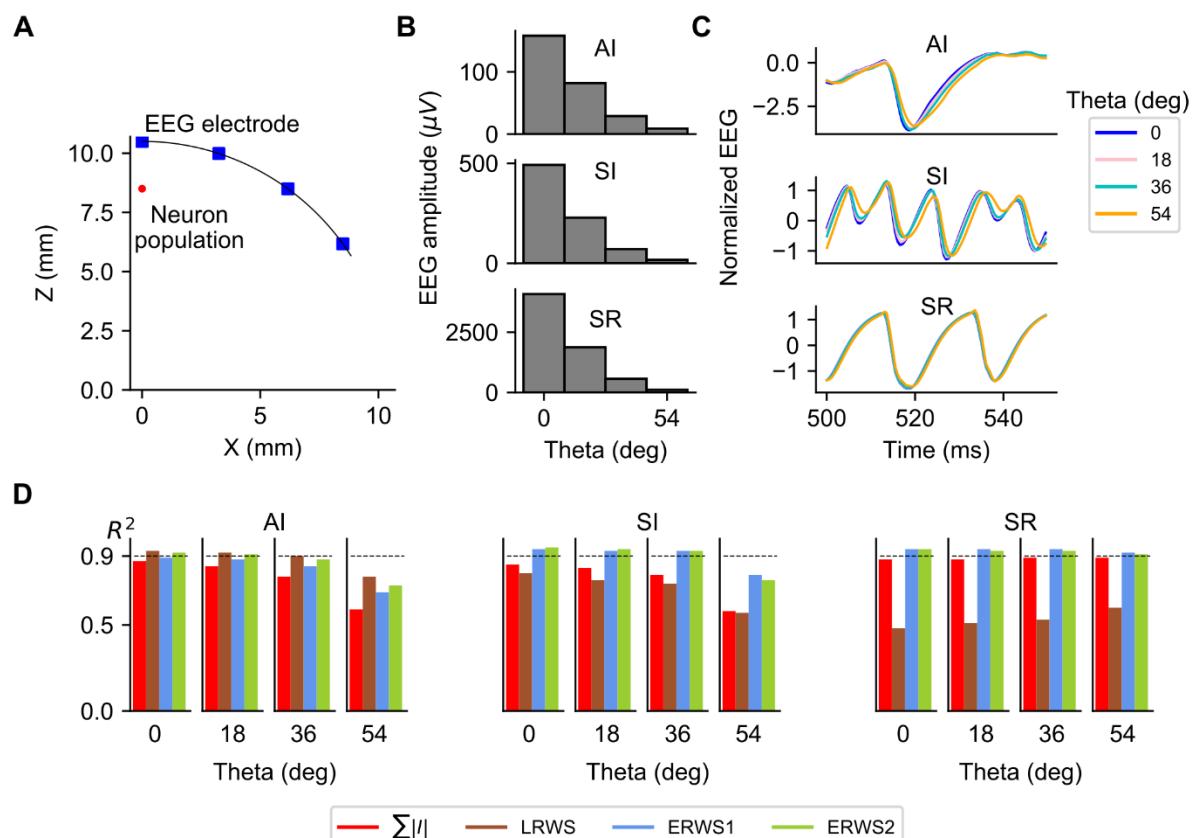
498 **Effects of the position of the electrode over the head model on the EEG and proxies**

499 To investigate the relationship between the position of the electrode and its effects on
500 the EEG and performance of proxies, we simulated the EEG at four different locations over
501 the head (Fig 6 A). Simulation results are shown as a function of the angle between the
502 electrode location and the Z-axis (Theta), computed for the three different network states: AI,
503 SI and SR. We first explored how properties of the EEG signal changed with the location of
504 the electrode. As expected, the EEG amplitude, defined as the standard deviation of the EEG
505 signal over time, decreased steeply when the electrode is moved away from the top of the head
506 (Fig 6 B). This decrease in EEG amplitude is consistent with previous simulation results of the
507 4-sphere head-model [35, 39], in which a moderate attenuation of the EEG scalp potentials was
508 observed when increasing the lateral distance from the center position along the head surface.
509 Although the EEG amplitude is larger in the SR state, the relative variations of amplitude as a
510 function of Theta were similar across network states. In contrast, we found (Fig 6C) sizeable
511 differences in the normalized time courses of the EEG at different network states: an increase
512 of Theta involved a delay of the EEG signal that is larger for the AI and SI states, but much
513 weaker for the SR state. These results could indicate that as the measurement point moves
514 toward the zero-region of the current dipole, where the EEG power is much smaller, the signal-
515 to-noise ratio is reduced and the influence of the high-frequency noise is more important. Since

516 the signal power is significantly larger for the SR state, the effects of the high-frequency noise
 517 are less evident for the SR state.

518 Variations of properties of the EEG signal when the electrode was shifted from the top
 519 of the head affected the performance of proxies. As depicted in Fig 6 D, the performance of
 520 $\sum|I|$, *LRWS*, *ERWS1* and *ERWS2* decreased when Theta was augmented in the AI and SI states.
 521 However, the performance of proxies is hardly modified by the position of the electrode in the
 522 SR state, or it even shows the opposite trend (an increase) in the case of the *LRWS* proxy. In
 523 any case, *ERWS1* and *ERWS2* give the best performance in most scenarios, particularly *ERWS2*
 524 whose R^2 value is above 0.9, provided that Theta is smaller than 36 degrees.

525



526
 527 **Fig 6. EEG and proxies as a function of the position of the electrode over the head model.** (A)
 528 Illustration of the scalp layer in the four-sphere head model and locations where the EEG is computed.
 529 Location of the center of soma positions of the multicompartment neurons is marked as “Neuron
 530 population”. (B) EEG amplitude, (C) normalized EEG and (D) performance of $\sum|I|$, *LRWS*, *ERWS1*
 531 and *ERWS2* as a function of the angle between the electrode location and the Z-axis (Theta), computed
 532 for the three different network states: AI, SI and SR.

533

534 **EEG estimation by CNN**

535 The proxies considered above are all simple linear functions of the neural parameters
 536 of the LIF point-neuron network model. Linear proxies have the advantage of simplicity and
 537 interpretability. However, an alternative strategy for constructing an EEG proxy is training a
 538 convolutional neural network (CNN) to learn complex and possibly non-linear relationships
 539 between parameters of the LIF point-neuron network model, such as AMPA and GABA

540 currents, and the EEG. This could potentially improve the estimation of linear proxies, at a
541 possible expense of increasing computational complexity and hindering interpretation. Instead
542 of using a deep neural network with many hidden layers that could largely increase complexity
543 and prevent us from making any type of analogy with results of linear proxies, we opted for a
544 simpler, shallow CNN architecture, with just one convolutional layer (Fig 7 A). This CNN
545 architecture was found to be sufficiently robust achieving a R^2 value of 0.99 on the test dataset
546 (see Table 2). The network consists of one 1D convolutional layer ('Conv1D') with 50 filters
547 and a kernel of size 20, followed by a max pooling layer ('MaxPooling1D') of pool size 2, a
548 flatten layer and two fully connected layers of 200 units each one (marked as 'Dense' and
549 'Output' respectively). The input of the CNN is constructed by stacking data chunks of 100 ms
550 (0.5 ms time resolution) extracted from the time series of AMPA and GABA currents, giving
551 a 2 x 200 input layer.

552 The network was trained and tested on the same independent datasets (one for the
553 training of the proxies, the other for the validation/testing of their accuracy) generated for
554 optimization of parameters of the *ERWS1* and *ERWS2* proxies, using a first-order gradient
555 descent method (Adam optimizer [52]) over 100 epochs (see Methods). In Fig 7 B, we observe
556 a quick convergence of the three metrics used to monitor training (R^2 , MAE and MSE) towards
557 optimal values ($R^2 \approx 1$, MAE < 0.1 and MSE < 0.01). Accuracy of predictions of the trained
558 network, calculated on the test dataset, are shown in Fig 7 C-E. The probability distribution of
559 the prediction error is depicted in panel C. Here we define the prediction error as the difference
560 between amplitude values of the predicted and true EEG signals at a specific time step of the
561 simulation. As observed, the prediction error distribution approximates a normal distribution
562 with zero mean and standard deviation ≈ 0.1 . The scatter plot of true versus predicted values
563 (panel D) generally reflects a very accurate estimation of the EEG values with the swarm of
564 points showing a clear trend that closely follows the line of a perfect EEG estimator. In panel
565 E, we illustrate some examples of predictions of the EEG signal compared to the ground-truth
566 EEG for different network states. Interestingly, the best match between predicted and true EEG
567 traces is seen for the SI state, although the other two states, AI and SR, produce also fairly good
568 estimations.

569 The performance of the CNN was evaluated, like for the other proxies, as the average
570 value of R^2 computed over all samples of the test dataset. As shown in Table 2 A, the CNN
571 clearly outperformed all other proxies on the test dataset and reached a very high performance
572 score ($R^2 = 0.99$). We next assessed the performance of the CNN for the different
573 configurations of the multicompartment neuron network, i.e., cell morphologies, distribution
574 of presynaptic inputs and position of the recording electrode (Table 2 B-D). Compared to the
575 best performing linear proxy, *ERWS2*, the CNN provided an increase of performance between
576 2 and 8 % in most scenarios.

577

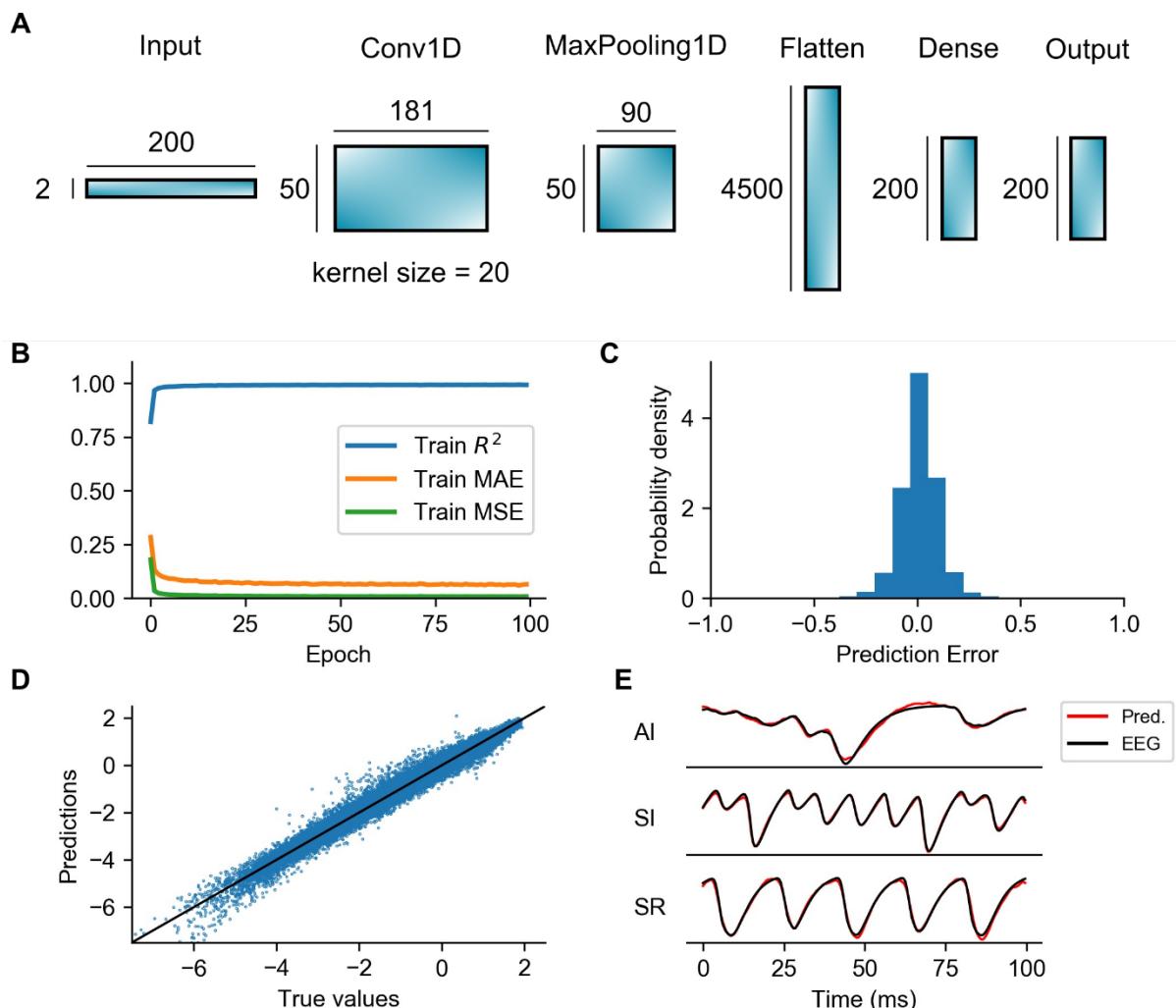


Fig 7. Overview of the convolutional neural network, train errors and accuracy of EEG predictions. (A) Illustration of the different types of layers included in the processing pipeline of the CNN architecture as well as the output shapes of each layer. Note that the 1D convolutional layer ('Conv1D') uses 50 filters and a 1D convolutional window (kernel) of size = 20. The total number of parameters of the entire CNN is 942450. (B) Training metrics collected during training: R^2 , Mean Absolute Error (MAE) and Mean Squared Error (MSE). (C) Probability density function of the prediction error calculated on the test dataset. (D) Predictions vs true values. Each dot of the scatter plot corresponds to amplitude values of the predicted and real EEG signals at a specific time step of the simulation. The continuous line represents a perfect EEG estimator. (E) Examples of predictions of the CNN compared to the ground-truth EEGs for different network states.

Table 2. Performance (computed as R^2) of the CNN in comparison with $\Sigma|I|$, LRWS, ERWS1 and ERWS2 proxies. The performance values shown for the test dataset (A) are averaged over all samples of the test dataset, while performance values in panels B, C and D are averaged over the samples of the different network states, i.e., AI, SI and SR.

A: Performance on the test dataset					
$\Sigma I $	LRWS	ERWS1	ERWS2	CNN	
0.86	0.74	0.94	0.95	0.99	
B: Morphologies					
Cell model	$\Sigma I $	LRWS	ERWS1	ERWS2	CNN
NMC L2/3 PY, c. 9	0.87	0.74	0.92	0.94	0.97
NMC L2/3 PY, c. 0	0.70	0.76	0.77	0.77	0.87

ABA L2/3 PY	0.85	0.67	0.90	0.92	0.94
C: Distribution of synapses					
Distribution type	ΣI	<i>LRWS</i>	<i>ERWS1</i>	<i>ERWS2</i>	CNN
Asymmetric	0.87	0.74	0.92	0.94	0.97
Homogeneous	0.77	0.65	0.83	0.87	0.89
D: Position of the EEG electrode					
Theta (rad)	ΣI	<i>LRWS</i>	<i>ERWS1</i>	<i>ERWS2</i>	CNN
0	0.87	0.74	0.92	0.94	0.97
0.31	0.86	0.74	0.91	0.93	0.97
0.63	0.82	0.72	0.90	0.91	0.96
0.94	0.69	0.68	0.80	0.81	0.87

594

595

596 To gain insight into how AMPA and GABA inputs interact with layers of the network,
 597 we inspected the weights learned by different filters of the convolutional layer, as illustrated in
 598 Fig 8 for some examples of representative filters, depicted both in the time domain (panel A)
 599 and frequency domain (panel B). We observed that the majority of filters perform a band-pass
 600 and high-pass filtering of AMPA and GABA inputs and their peak frequencies are within the
 601 range $[10^2, 10^3]$ Hz. This indicates that the CNN primarily uses the fast dynamics of the current
 602 inputs to construct an estimate of the EEG signal. We then asked whether we could disentangle
 603 the different transformation functions applied by the CNN to each type of input current. In
 604 signal processing, the impulse response of a linear system is typically used to understand the
 605 type of transfer function implemented by the system. Although the convolution of the first
 606 network layer is linear, subsequent network are non-linear. However, we could use a similar
 607 methodology to characterize the transformation function of the CNN by collecting the network
 608 responses to all possible combinations of unit impulses applied either to the AMPA or GABA
 609 inputs (Fig 8 C). To extract a measure of the time shift applied by the network to AMPA and
 610 GABA inputs, we computed, for each unit impulse, the difference between the time when the
 611 impulse is applied and the time in which the absolute response of the network reaches its
 612 maximum. The histogram of time shifts applied to AMPA and GABA inputs (Fig 8 D) shows
 613 that the CNN generally estimated the EEG signal by time shifting AMPA and GABA currents
 614 within the range [-2, 2] ms and the time shift could be either positive or negative.

615

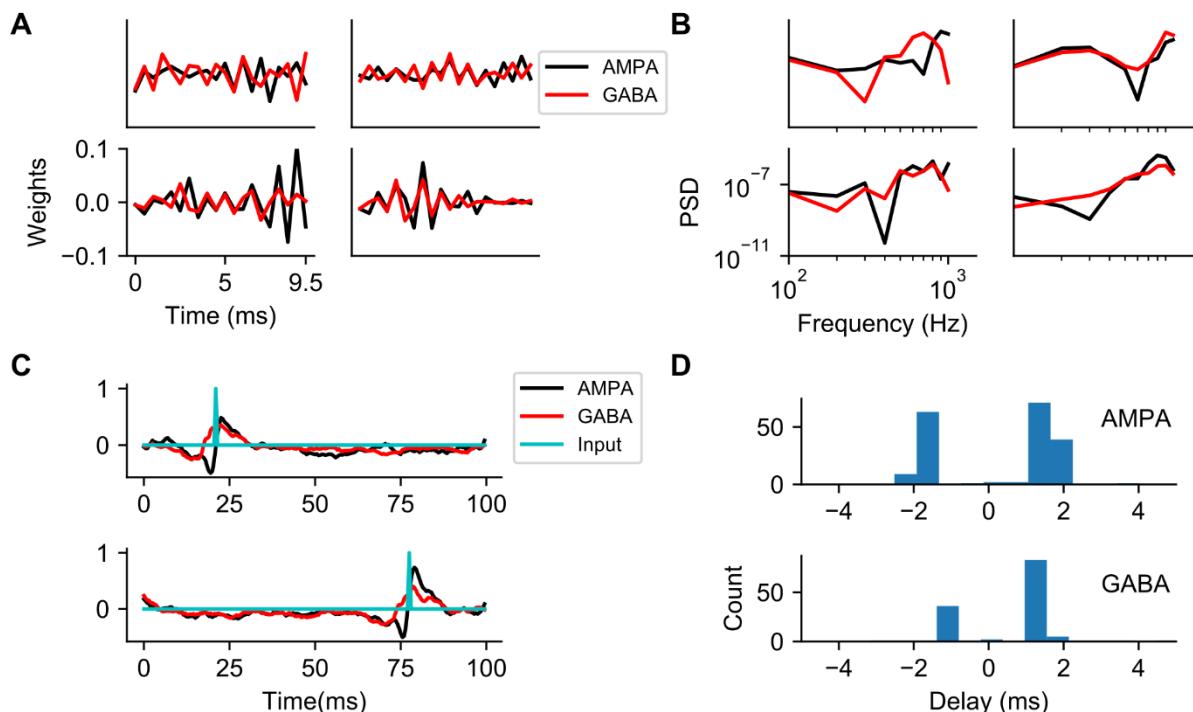


Fig 8. Learned filters of the convolutional layer and illustration of time shifts applied by the CNN to AMPA and GABA input currents. Examples of weights learned by four filters of the convolutional layer, depicted both in the time (A) and frequency domains (B) for the AMPA and GABA inputs. (C) Examples of the CNN outputs in response to unit impulses applied either to the AMPA or GABA inputs. (D) Histograms of time shifts applied to the AMPA and GABA inputs for all combinations of impulses. Each time shift is computed as the difference between the time when the impulse is applied and the time in which the absolute response of the CNN reaches its maximum.

625 Prediction of the stimulus-evoked EEG

626 Evoked potentials are a useful technique that measures the transient response of the
 627 brain following presentation of a stimulus. Although the proxies we obtained have been
 628 optimized on long stretches of steady-state network activity, we investigated how well the
 629 proxies approximate an EEG evoked potential produced by a transient input. Fig 9 shows the
 630 spiking activity of the point-neuron network (panel A) and the ground-truth EEG (panel B) in
 631 response to a transient spike volley with a Gaussian rate profile applied to the thalamic input.
 632 This transient input simulates the thalamic input that reaches cortex when an external sensory
 633 stimulus is presented. A comparison of the performance obtained for all proxies is shown in
 634 panel C, while the outputs of ERWS1, ERWS2 and the CNN are depicted in panel D, as an
 635 example, overlapped with the ground-truth EEG. We found that most of the current-based
 636 proxies approximated well the EEG when applying a transient burst of spikes of thalamic input,
 637 in particular $\sum|I|$, ERWS1 and ERWS2 which reached a performance of $R^2 = 0.9$. These results
 638 suggest that these types of proxies could also be employed to predict the type of transient
 639 response seen in evoked potentials.

640

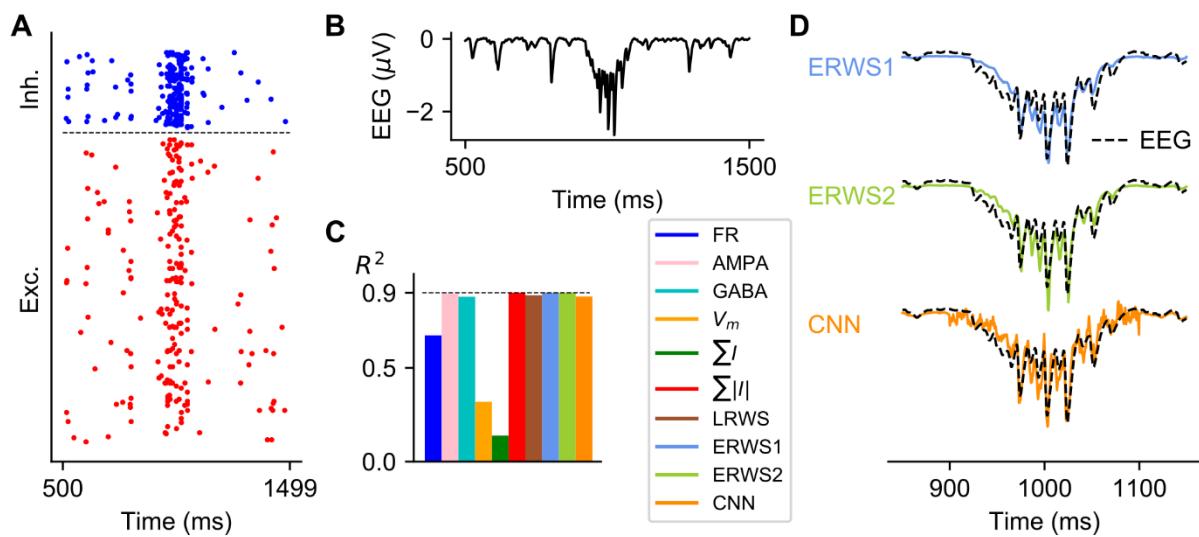


Fig 9. Transient activation of thalamic input with a Gaussian pulse packet. (A) Raster plot of spiking activity from a subset of cells in each population in response to a transient spike volley with a Gaussian rate profile ($\sigma = 30$ ms) centered at 1000 ms. (B) Ground-truth EEG at the top of the head model. (C) Performance of proxies calculated between 850 and 1150 ms. (D) Outputs of *ERWS1*, *ERWS2* and the CNN compared to the ground-truth EEG.

Discussion

Understanding how to interpret experimental EEGs in terms of neural processes ultimately requires being able to compute realistic EEGs from simple and tractable neural network models, and then comparing the predictions of such models with data. Here we contributed to the first goal by developing simple yet robust and accurate methods to compute EEGs from recurrent networks of LIF point neurons, a model widely used to study cortical dynamics. We developed new linear and non-linear proxies that estimate the EEG from simple recurrent network models. A careful validation of these proxies revealed that they can give particularly accurate reconstructions of both steady-state and transient EEGs over an extensive range of network states, different morphologies, synaptic distributions and positions of the EEG electrode. These proxies thus provide a well-validated and computationally efficient way for computing a realistic EEG by simply using the output variables from simulation of point-neuron network models.

Robustness and generality of the EEG proxies across network states, cell morphologies, synaptic distributions, and electrode locations

In many neural models used to study EEGs and LFPs, such as neural mass models [26], spiking network models [23, 29, 30] or dynamic causal models [25], extracellular potentials are simply modeled as the average firing rate or average membrane potential of excitatory neurons. While these assumptions are often reasonable, their effectiveness in describing the EEG has not been systematically validated. Here we found that these two established ways of computing the EEG worked reasonably well only under very specific conditions. However, in agreement with previous results obtained for the LFP [14, 42], we found that, for the EEG, proxies based on combinations of synaptic currents work much better and in more general conditions than proxies based on firing rates or membrane potentials. This suggests that

673 approximations of EEGs based on firing rates or membrane potentials should be discouraged,
674 and replaced with the use of synaptic currents, whenever possible.

675 Our focus has been on optimizing EEG proxies that are based on synaptic currents. The
676 main result has been the successful development of a new class of EEG proxies, based on either
677 an optimized linear (*ERWS1* and *ERWS2*) or non-linear (CNN) combination of time-shifted
678 AMPA and GABA currents. We have systematically compared the performance of the new
679 proxies in approximating the EEG with that of previous proxies used in the literature, across a
680 range of network states, cell morphologies, synaptic distributions, and position of EEG
681 recording electrode.

682 We found that, unlike all previous proxies, our new optimized EEG proxies work
683 remarkably well for a whole range of network states which capture many patterns of
684 oscillations, synchronization, and firing regimes observed in neocortex [12]. Predicting well
685 the EEG over a wide range of states is important because, in many cases, EEGs are
686 experimentally used to monitor changes in brain states, and thus models used to interpret EEGs
687 must be able to work well over multiple states.

688 Our proxies were optimized using a specific pyramidal broad-dendritic-tuft
689 morphology that generates large electric dipoles. We, however, investigated how the proxies
690 perform when changing cell morphologies and distributions of presynaptic inputs. Our proxies
691 showed a high performance (~80% to 95% of variance explained) across all considered
692 scenarios, only marginally affected by changes in morphology or the distribution of GABA
693 synapses. This suggests that our work, even though it could still be improved by using larger
694 datasets of morphologies and synaptic distribution configurations, is already sufficiently
695 general to accurately capture the contribution to the EEG of some major types of pyramidal
696 neurons.

697 We also validated the performance of EEG proxies against changes in position of the
698 recording electrode, with respect to the position chosen to train the proxies. The performance
699 of proxies experienced only a moderate decrease as the position of the EEG electrode was
700 shifted from the top of the head because of the progressive reduction in EEG amplitude.
701 Nevertheless, the R^2 value of *ERWS2* was maintained above 0.9 for displacements of the
702 electrode smaller than 5 mm.

703 We finally demonstrated that our proxies, although trained on steady-state activity, can
704 approximate well EEG evoked potentials, capturing the transient dynamics in response to
705 stimuli and suggesting that our work could be relevant to model transient brain computations
706 such as the coding of individual stimuli or attentional modulations.

707 Previous work [42] used a similar approach based on optimizing a linear proxy to predict the
708 LFP. We extended this work by computing the EEG, rather than the LFP, and this implies that
709 we used a head model that approximates the different geometries and electrical conductivities
710 of the head, which was not necessary for the LFP proxy. Unlike the previous work, which
711 considered only a reduced regime of network dynamics within the asynchronous or weakly
712 synchronous states, we generated proxies trained and validated on a wider range of network
713 states. Our EEG proxies were also validated on different pyramidal-cell morphologies
714 reconstructed from experimental recordings, whereas the LFP proxy was validated on
715 synthetically generated morphologies. As a result, our new optimized EEG proxies predict well
716 the EEG over a wide range of states and different morphologies, unlike the LFP proxy, which
717 worked well only for a low-input-rate state and a specific morphology of pyramidal cells.

718 In sum, our new optimized EEG proxies provide a simple way to compute EEGs from
719 point-neuron networks that is highly accurate, stable across network states and variations of
720 biophysical assumptions, and relatively invariant regarding position of the recording electrode.

721

722 Applications and impact of the new EEG proxies

723 Our work provides a key computational tool that enables applying tractable network models to
724 EEG data with significant implications in two main directions.

725

726 First, when studying computational models of brain function, our work allows quantitative
727 rather than qualitative comparison of how different models match EEG data, thereby leading
728 to better and more objective validations of different hypotheses about neural computations.

729

730 Second, our work represents a crucial step in enabling a reliable inference, from real EEG data,
731 of how different neural circuit parameters contribute to brain functions and brain pathologies.
732 Since the EEG conflates many circuit-level aggregate neural phenomena organized over a wide
733 range of frequencies, it is difficult to infer from its measure the value of key neural parameters,
734 such as for example the ratio between excitation and inhibition [1, 53]. Developing tractable
735 neural networks that include an explicit relationship between the EEG response and neural
736 network parameters is a way to address this issue. By fitting such models to real EEG data,
737 estimates of neural network parameters (such as the ratio between excitation and inhibition or
738 properties of network connectivity) can be obtained from EEG spectra or evoked potentials.
739 This approach could be used, for example, to test the influential theories of the excitation-
740 inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders
741 [54, 55], to empirically measure how this balance changes between patients with autistic
742 disorder syndrome and control subjects [53], or to individuate the neural correlates of diseases
743 that show alterations of EEG activity [56-60]. Thus, our EEG proxies have clear relevance for
744 connecting EEG in human experiments to cellular and network data in health and disease.

745

746 Although more work is needed to be able to interpret empirical EEGs in terms of network
747 models, there are several facts that indicate that our proxies can potentially help in this respect.
748 Recent attempts to infer neural parameters from EEGs or other non-invasive signals, based on
749 network models that use less accurate proxies than the ones developed here, are nevertheless
750 beginning to provide credible estimates of key parameters of underlying neural circuit such as
751 excitation-inhibition ratios [53, 61], as well as accurate descriptions of cortical dynamics. For
752 example, previous theoretical studies have modeled the LFP/EEG as the sum of absolute values
753 of synaptic currents [14, 15, 34, 45]. This type of proxy, though simplified, was shown to be
754 sufficient to explain quantitatively several important properties of cortical field potentials,
755 including the relationship between sensory stimuli and the spectral coding of LFPs [14], cross-
756 frequency and spike-field relationships [34], and LFP phase of firing information content [15].
757 We thus expect that the new EEG proxies can help building on these encouraging results and
758 further improve the biological plausibility and robustness of neural parameter estimation from
759 EEGs.

760

761 Linear vs non-linear proxies

762 We optimized the EEG proxies by training either linear or non-linear EEG prediction
763 models based on synaptic currents. In particular, the linear proxies (*ERWS1* and *ERWS2*) were

764 based on an optimized linear combination of time-shifted AMPA and GABA currents.
765 Alternatively, we investigated the application of a shallow CNN that could capture more
766 complex interactions between synaptic currents to estimate the EEG. Compared to the best
767 performing linear proxy, *ERWS2*, the non-linear EEG proxy based on a convolutional network
768 provided a sizeable increase of performance (2 to 8 %, see Table 2) and it provided a very high
769 performance (>85%) in all conditions. The convolutional weights that we provide (see [62] and
770 Section “Data and Code Availability”) can be used to easily compute these non-linear EEGs
771 proxies using similar computational power as that employed for linear proxies. However, the
772 drawback of CNNs is that it is harder to infer direct relationships between synaptic currents
773 and the EEG, whereas these relationships are apparent and immediate to interpret with linear
774 proxies (see section below). However, we showed that this problem could be in part attenuated
775 when using tools to visualize the transformation function implemented by the CNN, which
776 allow an understanding of how synaptic currents are transformed by the non-linear proxy.

777

778 **Limitations and future work**

779 The present network modelling scheme involves several major assumptions with
780 respect to simplification of the multi-layered cortical column architecture, and combined use
781 of point-neuron and multicompartment networks.

782 Our proxies have been extensively validated for a model with one class of pyramidal
783 cells and are expected to be applied to models of any brain area in which the EEG is likely to
784 be generated by one dominant population. We chose to model a single cortical layer, layer 2/3,
785 based on previous computational work suggesting that this layer gives a large contribution to
786 extracellular potentials [30, 35]. Although we have shown that our proxies generalize well for
787 different L2/3 pyramidal-cell morphologies, it will be important to extend our work to quantify
788 contributions from other cortical laminae and cell morphologies to the generation of EEGs. In
789 this regard, it is important to note that electrical potentials in the brain tissue add linearly and
790 the superposition of individual contributions to the EEG is in principle straightforward to
791 compute if the amplitude of each laminar contribution is known. Thus, we could approximate
792 the total EEG by a suitable linear combination of individual proxies computed for each
793 population. We envisage future studies that address this issue by coupling multi-layer spiking
794 models of cortical circuits [30, 63, 64] with multi-layer multicompartment neuron models
795 within the hybrid modelling scheme.

796 The hybrid modelling approach [30] offers the advantage that we can vary parameters
797 of the EEG-generating model, e.g., cell morphologies or synaptic distribution, without
798 affecting the spiking dynamics. The disadvantage of this approach is, however, that the
799 multicompartment network does not match the point-neuron network in every respect. For
800 instance, even though the synaptic input conductances were identical in the two models, the
801 resulting soma potentials of multicompartmental neurons were not identical to those of the
802 point neurons because of passive dendritic filtering or the lack of a membrane-voltage reset
803 mechanism following spike, among other effects. This inconsistency could, at least partially,
804 be resolved by extracting the effective synaptic weight distributions from multicompartment
805 neurons and use them in the point-neuron network in order to make the two simulation
806 environments even more similar [65].

807 Calculation of EEG signals requires a head model, and here we have used the simple analytic
808 four-sphere head model. There are however many high-resolution, anatomically detailed, and
809 potentially personalized head models available, which for example take into account the folded

810 cortical surface of the human brain [66-68]. Importantly, the EEG proxies developed here can
811 be easily used in combination with such complex head models. This is because the EEG signal
812 calculated at top of the head in the four-sphere head model, resulting from a current dipole
813 directly below the electrode, is in fact just a scaling of the dominant component (the component
814 aligned with the depth axis of the cortex) of the original current dipole [35]. This means that
815 our proxies developed for the EEG signal at the top of the head in the four-sphere model, are
816 in fact equally valid as proxies for the (normalized) dominant component of the population
817 current dipole moment, that is, the sum of all single-cell current dipole moments (Sup. Fig 1).
818 Such population current dipoles can be used directly in combination with existing detailed head
819 models to calculate EEG signals, see for example [35]. Further, note that in Fig 6, we tested
820 that the proxy for the EEG signal optimized for the top of the head worked well for other head
821 locations.

822 **Insights gained from proxies about the neural contributions to the EEGs**

823 Parameters of the linear proxies, and their variations over cortical states, allow
824 immediate postulations about how synaptic currents combine to generate an EEG. We showed
825 that the time shifts of *ERWS1* and *ERWS2* resulted from the optimization process have opposite
826 signs, indicating that the EEG signal depends on both causal and non-causal components of
827 AMPA and GABA currents. The presence of non-causal components in a proxy may appear at
828 first counterintuitive but as previously found for the LFP [6], this reflects the recurrent nature
829 of interactions within a cortical circuit, which makes it impossible to separate completely cause
830 and effects and leads to both causal and non-causal dependencies.

831 Importantly, the analysis of the best performing proxy, *ERWS2*, whose parameters
832 change as a function of the external input rate, revealed that the contribution of synaptic
833 currents to the EEG dynamically varies with the cortical state. Specifically, we found that time
834 shifts of AMPA and GABA currents, and the relative weighting between GABA and AMPA
835 currents depend on the network state. In particular, we observed a larger weight of GABA
836 currents for low values of the external input and the opposite effect, stronger weight of AMPA
837 currents, as the external rate increases. This suggests that the contribution of neural activity to
838 the EEG is a dynamic, rather than a static process, and underlies the importance of developing
839 EEG proxies, such as those developed here to capture these variations.

840

841 **Methods**

842 **Overview of the approach for computing the proxies and the ground-truth EEG**

843 Our focus is on computing an accurate prediction of the EEG (denoted as “proxy” in
844 the following) based simply on the variables available directly from the simulation of a point-
845 neuron network model. The point-neuron network was constructed following a well-
846 established configuration based on two populations of LIF point neurons, one excitatory and
847 other inhibitory, with recurrent connections between populations [12], as illustrated in Fig 1 A.
848 The network receives two types of external inputs: a thalamic synaptic input that carries the
849 sensory information and a stimulus-unrelated input representing slow ongoing fluctuations of
850 cortical activity.

851 The ground-truth EEG (referred to simply as “EEG” in the paper) with which to
852 compare the performance of the different proxies is here computed using the hybrid modelling
853 scheme [30, 35, 42, 43]. We created a network of unconnected multicompartment neuron

854 models with realistic morphologies and distribute them within a cylinder of radius $r = 0.5$ mm
855 (Fig 1 C). We focused on computing the EEG generated by neurons with somas positioned in
856 one cortical layer so that the soma compartments of each cell are aligned in the Z-axis, 150 μ m
857 below the reference point $Z = 8.5$ mm, and homogenously distributed within the circular section
858 of the cylinder. In our default setting, all dendrites of inhibitory cells receive GABA synapses
859 while only those dendrites of excitatory cells below $Z = 8.5$ mm receive GABA synapses.
860 AMPA synapses are homogenously positioned along the Z-axis in both cell types.

861 EEGs were generated from multicompartment neurons in combination with a forward-
862 modelling scheme based on volume conduction theory [6]. From each multicompartment
863 neuron simulation the current dipole moment of the cell was extracted with LFPy [39]. Next,
864 these current dipole moments and the locations of the cells were used as input to the four-
865 sphere head model to calculate all single-cell EEG contribution. The ground-truth EEG signal
866 is the sum of all such single-cell EEG contributions. To approximate the different geometries
867 and electrical conductivities of the head, we computed the EEG using the four-layered spherical
868 head model described in [49]. In this model, the different layers represent the brain tissue,
869 cerebrospinal fluid (CSF), skull, and scalp, with radii 9, 9.5, 10 and 10.5 mm respectively,
870 which approximate the dimensions of a rodent head model [46]. The values of the
871 conductivities chosen are the default values of 0.3, 1.5, 0.015 and 0.3 S/m. The EEG electrode
872 is located on the scalp surface, at the top of the head model (Fig 1 C).

873 The time series of spikes of individual point neurons were mapped to synapse activation
874 times on corresponding postsynaptic multicompartment neurons. Each multicompartment
875 neuron was randomly assigned to a unique neuron in the point-neuron network and received
876 the same input spikes of the equivalent point neuron. Since the multicompartment neurons were
877 not interconnected, they were not involved in the LIF network dynamics and their only role
878 was to transform the spiking activity of the point-neuron network into a realistic estimate of
879 the EEG. The EEG computed from the multicompartment neuron model network was then
880 used as benchmark ground-truth data against which we compare different candidate proxies
881 (Fig 1 D).

882 **Definition and computation of the proxies that approximate the ground-truth EEG**

883 A proxy is defined as an estimation of the EEG based on the variables available from
884 the point neuron model over all excitatory neurons. Unless otherwise stated, we only
885 considered the contributions of pyramidal cells to generate the EEG (in both the point-neuron
886 and multicompartment neuron networks). The first six proxies that we tested were those used
887 in previous literature for predicting the EEG or the LFP from point-neuron networks. These
888 were: the average firing rate (*FR*), the average membrane potential (V_m), the average sum of
889 AMPA currents (*AMPA*), the average sum of GABA currents (*GABA*), the average sum of
890 synaptic currents ($\sum I$) and average sum of their absolute values ($\sum |I|$). Note that $\sum I$ and $\sum |I|$
891 are defined as the sum of both AMPA and GABA currents. Because of the opposite signs
892 assigned to the AMPA and GABA currents, $\sum |I|$ is equivalent to the difference between these
893 currents. Computation of the average *FR* was calculated with a temporal bin width of 1 ms, and
894 then filtered with a 5-ms rectangular window to produce a smoother output of the *FR*.

895 For several reasons (e.g., different rise and decay time constants or different peak
896 conductances), we expect that AMPA and GABA currents contribute differently to the EEG
897 and that the optimal combination of both types of currents could involve different time delays
898 between them. Following Mazzoni and colleagues [42], the new class of current-based proxies,
899 the weighted sum of currents (*WS*), was based on a linear combination of AMPA and GABA

900 currents, with a factor α describing the relative ratio between the two currents and a specific
901 delay for each type of current (τ_{AMPA} , τ_{GABA}):

902
$$WS(t) = \sum_{exc.} AMPA(t - \tau_{AMPA}) - \alpha(\sum_{exc.} GABA(t - \tau_{GABA})) \quad (5)$$

903

904 The optimal values of α , τ_{AMPA} and τ_{GABA} were found to be 1.65, 6 ms and 0 ms for the
905 LFP, respectively [42]. As a result, the LFP reference weighted sum (*LRWS*) proxy was defined
906 as

907
$$LRWS(t) = \sum_{exc.} AMPA(t - 6ms) - 1.65(\sum_{exc.} GABA(t)) \quad (6)$$

908

909 Here we also introduced two new proxies derived from the *WS* formulation: the EEG
910 reference weighted sum 1 (*ERWS1*) and the EEG reference weighted sum 2 (*ERWS2*), whose
911 parameters were optimized to fit the EEG under different network states of the point-neuron
912 network. While the concept of *ERWS1* is similar to that of *LRWS*, with fixed optimal values of
913 α , τ_{AMPA} and τ_{GABA} , the parameters of the *ERWS2* were defined as a power function of the firing
914 rate of the thalamic input (v_0 , unitless) to account for possible dependencies of the EEG with
915 the external rate:

916
$$ERWS1(t) = \sum_{exc.} AMPA(t - \tau_{AMPA(ERWS1)}) - \alpha_{ERWS1}(\sum_{exc.} GABA(t - \tau_{GABA(ERWS1)})) \quad (7)$$

918

919
$$ERWS2(t, v_0) = \sum_{exc.} AMPA(t - \tau_{AMPA(ERWS2)}(v_0)) - \alpha_{ERWS2}(v_0)(\sum_{exc.} GABA(t - \tau_{GABA(ERWS2)}(v_0))) \quad (8)$$

921

922
$$\begin{aligned} \tau_{AMPA(ERWS2)}(v_0) &= a_1 v_0^{-b_1} + c_1 \\ \tau_{GABA(ERWS2)}(v_0) &= a_2 v_0^{-b_2} + c_2 \\ \alpha_{ERWS2}(v_0) &= a_3 v_0^{-b_3} + c_3 \end{aligned} \quad (9)$$

923

924 The total number of parameters to optimize was 3 for *ERWS1* (α_{ERWS1} , $\tau_{AMPA(ERWS1)}$ and
925 $\tau_{GABA(ERWS1)}$) and 9 for *ERWS2* (a_1 , b_1 , c_1 , a_2 , b_2 , c_2 , a_3 , b_3 and c_3). We experimented with other
926 classes of functions (e.g., exponential and polynomial functions) to describe the dependency
927 of parameters of *ERWS2* with v_0 but the best performance results were found with a power
928 function.

929

930 **Leaky integrate-and-fire point-neuron network**

931 We implemented a recurrent network model of LIF point-neurons that was based on
932 the Brunel model [31] and the modified versions developed in subsequent publications [14, 15,
933 34, 42, 45, 69]. These models have demonstrated to explain well and capture a large fraction
934 of the variance of the dynamics of neural activity in primary visual cortex during naturalistic
935 stimulation, including a wide range of cortical oscillations such as low-frequency (1-12 Hz)

936 and gamma (30-100 Hz) oscillations. In particular, the network structure and model parameters
 937 are the same ones used in [69] with conductance-based synapses (we refer the reader to this
 938 publication for an in-depth technical description of the implementation). Briefly, the network
 939 was composed of 5000 neurons, 4000 are excitatory (i.e., their projections onto other neurons
 940 form AMPA-like excitatory synapses) and 1000 inhibitory (i.e., their projections form GABA-
 941 like synapses). The neurons were randomly connected with a connection probability between
 942 each pair of neurons of 0.2. This means that, on average, the number of incoming excitatory
 943 and inhibitory connections onto each neuron was 800 and 200, respectively. Both populations
 944 received two different types of excitatory external input: a thalamic input intended to carry the
 945 information about the external stimuli and a stimulus-unrelated input representing slow
 946 ongoing fluctuations of activity. Spike trains of the external inputs are generated by
 947 independent Poisson processes. While the firing rate of every individual Poisson process for
 948 the thalamic input was kept constant in each simulation (within the range [1.5, 30] spikes/s),
 949 the firing rate of the cortico-cortical input was varied over time with slow dynamics, according
 950 by an Ornstein-Uhlenbeck (OU) process with zero mean:

$$951 \quad \tau_n \frac{dn(t)}{dt} = -n(t) + \sigma_n(\sqrt{2\tau_n})\eta(t) \quad (10)$$

952

953 Here σ_n^2 (0.16 spikes/s) is the variance of the noise, $\eta(t)$ is a Gaussian white noise and
 954 τ_n (16 ms), the time constant. The full network description is given in Tables 3 and 4, following
 955 the guidelines indicated in [70].

956

957 **Table 3. Description of the point-neuron network.**

A: Model summary			
Structure	Excitatory-inhibitory (E-I) network		
Populations	Two: excitatory and inhibitory		
Input	2 independent Poisson spike trains, one with a fixed rate and the other with a time-varying rate generated by an OU process		
Measurement	Spikes, membrane potential, AMPA and GABA currents		
Neuron model	Cortex: leaky integrate-and-fire (LIF) with fixed threshold and fixed absolute refractory time; external inputs: point process		
Synapse model	Difference of exponential functions; conductance-based synapses		
Topology	None		
Connectivity	Random and sparse		
B: Populations			
Type	Elements	Size	
Pyramidal cells	LIF neurons	4000	
Interneurons	LIF neurons	1000	
Thalamic input	Poisson generator	1	
Cortico-cortical input	Poisson generator	1	
C: Connectivity			
Name	Source	Target	Pattern
AMPA _{Pyr_Pyr}	Pyramidal	Pyramidal	Random convergent ($p = 0.2$), weight g_{Pyr_Pyr}
AMPA _{Pyr_Int}	Pyramidal	Interneuron	Random convergent ($p = 0.2$), weight g_{Pyr_Int}
GABA _{Int_Pyr}	Interneuron	Pyramidal	Random convergent ($p = 0.2$), weight g_{Int_Pyr}
GABA _{Int_Int}	Interneuron	Interneuron	Random convergent ($p = 0.2$), weight g_{Int_Int}

AMPA_{tha} Pyr	Thalamic	Pyramidal	Fixed in-degree (800), weight g_{tha_Pyr}
AMPA_{tha} Int	Thalamic	Interneuron	Fixed in-degree (800), weight g_{tha_Int}
AMPA_{cort} Pyr	Cortical	Pyramidal	Fixed in-degree (800), weight g_{cort_Pyr}
AMPA_{cort} Int	Cortical	Interneuron	Fixed in-degree (800), weight g_{cort_Int}
D: Neuron model			
Type	Leaky integrate-and-fire		
Description	$\tau_m \frac{dV(t)}{dt} = -V(t) + V_{leak} - \frac{I_{tot}(t)}{g_{leak}},$ $I_{tot}(t) = \sum_{N_{AMPA_{rec}}} I_{AMPA_{rec}}(t) + \sum_{N_{GABA_{rec}}} I_{GABA_{rec}}(t) + I_{AMPA_{ext}}(t),$		
E: Synapse model			
Type	Conductance-based synapse, difference of exponentials [31]		
Description	$I_{syn}(t) = g_{syn} s_{syn}(t)(V(t) - E_{syn}),$ if a presynaptic spike occurs: $s_{syn}(t) = \frac{\tau_m}{\tau_d - \tau_r} \left[\exp\left(\frac{-t - \tau_l}{\tau_d}\right) - \exp\left(\frac{-t - \tau_l}{\tau_r}\right) \right]$		
F: Input			
Type	Description		
Poisson generator	Thalamic input, time-constant input with rate ν_0 ; each neuron receives 800 independent thalamic inputs		
Poisson generator	Cortico-cortical input, OU process with zero mean; each neuron receives 800 independent cortico-cortical inputs		
G: Global simulation parameters			
Simulation duration	3000 ms		
Temporal resolution	0.05 ms		
Startup transient	500 ms		

958

959 **Table 4. Parameters of the neuron models used in the point-neuron network.**

A: Neuron model		
Parameter	Pyramidal cells	Interneurons
V_{leak} (mV)	-70	-70
$V_{threshold}$ (mV)	-52	-52
V_{reset} (mV)	-59	-59
$\tau_{refractory}$ (ms)	2	1
g_{leak} (nS)	25	20
C_m (pF)	500	200
τ_m (ms)	20	10
B: Connection parameters		
Parameter	Pyramidal cells	Interneurons
E_{AMPA} (mV)	0	0
E_{GABA} (mV)	-80	-80
$\tau_{r(AMPA)}$ (ms)	0.4	0.2
$\tau_{d(AMPA)}$ (ms)	2	1
$\tau_{r(GABA)}$ (ms)	0.25	0.25
$\tau_{d(GABA)}$ (ms)	5	5
τ_l (ms)	1	1

$g_{AMPA}(rec.)$ (nS)	0.178	0.233
$g_{AMPA}(tha.)$ (nS)	0.234	0.317
$g_{AMPA}(cort.)$ (nS)	0.187	0.254
g_{GABA} (nS)	2.01	2.7

960

961 **Multicompartment-neuron network**

962 The EEG was computed by projecting the spiking activity of the point-neuron network
963 onto a network of multicompartment neuron models in which every multicompartment neuron
964 is assigned a unique corresponding point neuron. A key factor for a successful representation
965 of the EEG is selection of proper morphologies of multicompartment neurons with detailed
966 and realistic dendritic compartments. Our focus was on computing the EEG for cortical layer
967 2/3 so that we acquired representative morphological reconstructions of L2/3 pyramidal cells
968 and interneurons from publicly available repositories: the Neocortical Microcircuitry (NMC)
969 portal [47, 48] based predominantly on the data released by Markram and collaborators [47],
970 and the Allen Brain Atlas (ABA) [51]. We also imposed our target animal model to be the
971 rodent model. In our simulations, we evaluated three different types of morphologies of L2/3
972 pyramidal cells and one morphology of a specific type of L2/3 interneuron, the large basket
973 cell interneuron (the most numerous class in L2/3 [47], represented as PY and LBC
974 respectively in Table 5. Unless otherwise stated, the default morphology file used for pyramidal
975 cells in our simulations is *dend-C250500A-P3_axon-C260897C-P2-Clone_9*.

976 **Table 5. Morphologies types and file identifiers used in the multicompartment neuron**
977 **network model.**

Cell type	Animal species	File identifier	Source
L2/3 PY	Rat	<i>dend-C250500A-P3_axon-C260897C-P2-Clone_9</i>	NMC
L2/3 PY	Rat	<i>dend-C260897C-P3_axon-C220797A-P3-Clone_0</i>	NMC
L2/3 PY	Mouse	<i>Cux2-CreERT2, ID:486262299</i>	ABA
L2/3 LBC	Rat	<i>C250500A-I4_Clone_0</i>	NMC

978

979 Soma compartments of pyramidal cells and interneurons were randomly placed in a
980 cylindrical section of radius 0.5 mm, at $Z = 8.35$ mm. We assumed that GABA presynaptic
981 inputs could only be located on dendritic compartments below the reference point $Z = 8.5$ mm.
982 AMPA synapses were homogenously distributed along the Z-axis in both cell types with
983 random probability normalized to the membrane area of each segment. This configuration
984 resulted in an asymmetric distribution of AMPA and GABA synapses onto pyramidal cells
985 creating a stronger current dipole moment from these types of cells. Each multicompartment
986 neuron was modeled as a non-spiking neuron with a passive membrane [38]. Tables 6 and 7
987 summarize properties of the multicompartment neuron network.

988 **Table 6. Description of the multicompartment neuron network.**

A: Model summary	
Structure	Unconnected populations of multicompartment neurons
Populations	Two: pyramidal cells and interneurons
Input	Presynaptic spiking activity as modeled by the point-neuron network
Measurement	EEG, current dipole moment
Neuron model	Multicompartment neuron model based on the passive cable formalism

Synapse model	Difference of exponential functions; conductance-based synapses
Topology	Cylindrical volume with radius $r = 0.5$ mm
Connectivity	None
B: Populations	
Type	Populations of 4000 pyramidal cells and 1000 interneurons
Cell positions	Soma compartments located at $Z = 8.35$ mm and randomly distributed within the circular section of the cylinder
Cell orientations	Fixed orientation with apical dendrites oriented along the Z-axis
Morphologies	Reconstructed morphologies from the NMC and ABA (Table 5); axons removed if present
C: Connectivity	
No network connectivity, synaptic inputs are generated by the point-neuron network with the same synaptic parameters (Table 4)	
D: Neuron model	
Type	Multicompartment reconstructed morphologies
Description	Non-spiking neurons based on the passive cable formalism (except in subsection “The performance of EEG proxies depends on the neuron morphology, distribution of synapses and the type of dendritic conductances”), with membrane capacity c_m , membrane resistivity r_m , axial resistivity r_a and leak reversal potential E_L .
E: Synapse model	
Type	Conductance-based synapse, difference of exponentials
Description	$I_{syn}(t) = g_{syn} s_{syn}(t)(V(t) - E_{syn})$, $s_{syn}(t) = A \left[\exp\left(\frac{-t-\tau_l}{\tau_d}\right) - \exp\left(\frac{-t-\tau_l}{\tau_r}\right) \right]$, where A is a normalization factor to give a peak conductance g_{syn}
F: Input	
Type	Spike times of spiking neuron network (including thalamic and cortico-cortical input spikes), no recurrent input
Description	All dendrites of interneurons receive GABA synapses while only those dendrites of pyramidal cells below $Z = 8.5$ mm receive GABA synapses; AMPA synapses are homogenously positioned along the Z-axis in both cell types; synapse locations are randomly assigned onto cell compartments assuming a probability proportional to the compartment’s surface area divided by the total surface area of the cell
G: Global simulation parameters	
Simulation duration	3000 ms
Temporal resolution	0.05 ms
Startup transient	500 ms

989

990 **Table 7. Parameters of multicompartment neurons.**

Parameter	Pyramidal cells	Interneurons
c_m ($\mu\text{F}/\text{cm}^2$)	1	1
r_m ($\text{k}\Omega\text{cm}^2$)	30	20
r_a (Ωcm)	100	100
E_L (mV)	-70	-70

991

992 **Optimization and validation of EEG proxies**

993 We created two different simulated datasets, one for optimization of the *ERWS1*'s and
994 *ERWS2*'s parameters (Eqs. 7-9), and the other dataset for validation of performance of all
995 proxies. The datasets were generated by varying the two parameters of the point-neuron
996 network commonly used for exploration of different network states [31, 44]: the rate of the
997 external input, v_0 , and the relative strength of inhibitory synapses, defined here as $g =$
998 g_{Int_Pyr}/g_{Pyr_Pyr} . We selected 58 values of v_0 within the range [1.5, 30] spikes/s and 3 values of
999 g (5.65, 8.5 and 11.3), which encompass the different network states: asynchronous irregular,
1000 synchronous irregular and synchronous regular [12]. For every pair (v_0, g) , we generated three
1001 simulations of the point-neuron and multicompartment-neuron networks with different random
1002 initial conditions (e.g., recurrent connections of the point-neuron network or soma positions of
1003 multicompartment neurons). The simulated outputs from two of these network instantiations
1004 were used for the optimization dataset and the other one for the validation dataset.

1005 Prior to comparing the EEG traces with the point-neuron model predictions, we z-
1006 scored the proxies and the EEG signal by subtracting their mean value and dividing by the
1007 standard deviation. The best parameters of *ERWS1* and *ERWS2* were calculated by
1008 minimization of the sum of the square errors *SSE* between the ground-truth EEG and the proxy
1009 for all network instantiations i of the optimization dataset:

1010
$$SSE = \sum_i \sum_t (EEG_i(t) - proxy_i(t))^2 \quad (11)$$

1011

1012 Time constants of proxies (Eqs. 7-9) were restricted to be discrete variables as the
1013 simulation time is a discrete variable. This turns the optimization problem into a discrete
1014 optimization problem, which is harder to solve than a continuous optimization problem.
1015 However, the limited number of parameters that need to be optimized allowed us to run a
1016 simple brute-force parameter search.

1017 The performance of each proxy was evaluated by using the coefficient of determination
1018 R^2 , which is the fraction of the EEG variance explained by the proxy. R^2 is computed as the
1019 squared value of the correlation coefficient. The validation results were calculated based on the
1020 average R^2 of every proxy across all network instantiations i of the validation dataset.

1021

1022 **Implementation of the convolutional neural network**

1023 The processing pipeline of the CNN architecture, illustrated in Fig 7 A, was based on
1024 the machine-learning library Keras running on top of TensorFlow [71]. The CNN consists of a
1025 one-dimensional (1D) convolutional layer with 50 filters and a kernel of size 20, followed by
1026 a max pooling layer of pool size 2, a flatten layer and two fully connected layers of 200 units
1027 each (one of them is the output layer). The rectified linear unit (ReLU) function was used as
1028 the activation function for all layers, except for the output layer. To reduce overfitting, we
1029 applied L2 activity regularization ($\lambda = 0.001$) to the convolutional layer. The amount by which
1030 filters shift, the strides, is set to 1 for the convolutional layer and 2 for the max pooling layer.
1031 The input layer was formed by two channels of 1D data that correspond to the AMPA and
1032 GABA time series simulated by the point-neuron network. Instead of using data of the whole
1033 simulation (3000 ms), we split time series into multiple chunks (i.e., samples) of 100 ms, a

1034 window size that we found convenient to improve estimation accuracy of the CNN. Nodes of
1035 the output layer predict segments of the EEG signal at each 100-ms window.

1036 The CNN was trained by first-order gradient descent (Adam optimizer [52]) with
1037 default parameters as those provided in the original paper. We defined the loss function for
1038 training as the mean squared error (MSE) between the predicted and the true values of the EEG.
1039 To monitor training, we employed the MSE and also the mean absolute error (MAE) and the
1040 coefficient of determination, R^2 . The CNN is trained for a sufficiently large number of epochs,
1041 100 epochs, to ensure convergence of the error metrics. To train and test the CNN, we use the
1042 same datasets generated for optimizing parameters of the current-based proxies, as described
1043 above.

1044

1045 **Analysis of network states**

1046 To characterize the different network states of activity in the point-neuron network at
1047 the level of both single neurons and populations, we employed the descriptors developed by
1048 Kumar and collaborators for conductance-based point-neuron networks [44].

1049 **Synchrony.** We quantified the synchrony of the population activity in the network as the
1050 average pairwise spike-train correlation from a randomly selected subpopulation of 1000
1051 excitatory neurons. The spike trains were binned in non-overlapping time windows of 2 ms.

1052 **Irregularity.** Irregularity of individual spike trains was measured by the coefficient of
1053 variation (the ratio of the biased standard deviation to the mean) of the corresponding interspike
1054 interval (ISI) distribution. Low values indicate regular spiking; a value of 1 reflects Poisson-
1055 type behavior. The irregularity index was computed for all excitatory neurons.

1056 **Mean firing rate.** The mean firing rate was estimated by averaging the firing of all excitatory
1057 cells, and was calculated with a bin width of 1 ms.

1058

1059 **Post-processing and spectral analysis**

1060 The z-scored EEG signals and proxies are resampled by applying a fourth-order
1061 Chebyshev type I low-pass filter with critical frequency $f_c = 800$ Hz and 0.05 dB ripple in the
1062 passband using a forward-backward linear filter operation and then selecting every 10th time
1063 sample. The estimate of the normalized power spectral density (normalized PSD) was
1064 computed using the Fast Fourier Transform with the Welch's method, dividing the EEG z-
1065 scored data into eight overlapping segments with 50 % overlap.

1066

1067 **Numerical implementation**

1068 Here we summarize the details of the software and hardware used to generate the results
1069 presented in this study. Point-neuron network simulations were implemented using NEST
1070 v2.16.0 [72]. EEG signals were computed using LFPy v2.0 [39] and simulations of
1071 multicompartment model neurons using NEURON v7.6.5 [73]. The CNN is constructed based
1072 on the machine-learning library Keras v2.3. The source-code structure relies on the freely
1073 available, object-oriented programming language Python (v2.7.12). Every simulation was

1074 parallelized using either a 60-CPU 256-GB server at the Istituto Italiano di Tecnologia (IIT) or
1075 the Stallo high-performance computing facilities (NOTUR, the Norwegian Metacenter for
1076 Computational Science). Simulations of the point-neuron network were performed based on
1077 thread parallelism implemented with the OpenMP library. Network simulations with
1078 NEURON used distributed computing built on the MPI interface. Computation time for
1079 completing simulations of both network models and the post-processing of results was 2 hours
1080 on average for each experimental condition. The source code to reproduce these results will be
1081 made publicly available upon final publication of this manuscript [62].

1082

1083 **Acknowledgments**

1084 We would like to thank M. Libera for his technical support.

1085

1086 **Funding**

1087 This project has received funding from the European Union's Horizon 2020 research
1088 and innovation programme under the Marie Skłodowska-Curie grant agreement No 893825,
1089 the NIH Brain Initiative (grants U19NS107464 and NS108410), the Simons Foundation
1090 (SFARI Explorer 602849), the European Union Horizon 2020 Research and Innovation
1091 Programme under Grant Agreement No. 785907 and No. 945539 [Human Brain Project (HBP)
1092 SGA2 and SGA3], and the Norwegian Research Council (NFR) through NOTUR - NN4661K.

1093

1094 **Data and Code availability:**

1095 The code used to generate the simulations and to perform the analyses, as well as the
1096 weights of the optimized convolutional neural networks for the EEG are available from
1097 GitHub. Martínez-Cañada, P. Github source-code repository (2020). Available from:
1098 https://github.com/pablomc88/EEG_proxy_from_network_point_neurons.

1099

1100 **Author contributions**

1101 Conceived project: P.M.C., S.P. Developed Methodology: all authors. Software
1102 implementation and data analysis: P.M.C. Wrote the paper (original draft): P.M.C., S.P.
1103 Wrote the paper (review and editing): all authors. Supervised project: S.P., T.F., G.T.E.
1104 Funding acquisition: S.P., T.F., P. M.C, G.T.E.

1105

1106 **References**

- 1107 1. Cohen MX. Where Does EEG Come From and What Does It Mean? *Trends in Neurosciences*.
1108 2017;40(4):208-18. doi: 10.1016/j.tins.2017.02.004.
- 1109 2. Buzsaki G. Neuronal Oscillations in Cortical Networks. *Science*. 2004;304(5679):1926-9. doi:
1110 10.1126/science.1099745.

1111 3. Hood DC, Zhang X. Multifocal ERG and VEP responses and visual fields: comparing disease-
1112 related changes. *Doc Ophthalmol.* 2000;100(2-3):115-37. Epub 2001/01/06. doi:
1113 10.1023/a:1002727602212. PubMed PMID: 11142742.

1114 4. Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions.
1115 *Nature Reviews Neuroscience.* 2012;13(2):121-34. doi: 10.1038/nrn3137.

1116 5. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents — EEG, ECoG,
1117 LFP and spikes. *Nature Reviews Neuroscience.* 2012;13(6):407-20. doi: 10.1038/nrn3241.

1118 6. Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials
1119 for studying the function of cortical circuits. *Nature Reviews Neuroscience.* 2013;14(11):770-85. doi:
1120 10.1038/nrn3599.

1121 7. Lopes da Silva F. EEG and MEG: Relevance to Neuroscience. *Neuron.* 2013;80(5):1112-28. doi:
1122 10.1016/j.neuron.2013.10.017.

1123 8. Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, et al. Investigating large-scale brain
1124 dynamics using field potential recordings: analysis and interpretation. *Nature Neuroscience.*
1125 2018;21(7):903-19. doi: 10.1038/s41593-018-0171-8.

1126 9. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, et al. Simulation of
1127 networks of spiking neurons: A review of tools and strategies. *Journal of Computational Neuroscience.*
1128 2007;23(3):349-98. doi: 10.1007/s10827-007-0038-6.

1129 10. Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, et al. The Scientific Case
1130 for Brain Simulations. *Neuron.* 2019;102(4):735-44. doi: 10.1016/j.neuron.2019.03.027.

1131 11. Plessner HE, Eppler JM, Morrison A, Diesmann M, Gewaltig M-O. Efficient Parallel Simulation
1132 of Large-Scale Neuronal Networks on Clusters of Multiprocessor Computers. *Euro-Par 2007 Parallel
1133 Processing. Lecture Notes in Computer Science* 2007. p. 672-81.

1134 12. Brunel N. Phase diagrams of sparsely connected networks of excitatory and inhibitory spiking
1135 neurons. *Neurocomputing.* 2000;32-33:307-12. doi: 10.1016/s0925-2312(00)00179-x.

1136 13. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K. The dynamic brain: from spiking
1137 neurons to neural masses and cortical fields. *PLoS Comput Biol.* 2008;4(8):e1000092. Epub
1138 2008/09/05. doi: 10.1371/journal.pcbi.1000092. PubMed PMID: 18769680; PubMed Central PMCID:
1139 PMCPMC2519166.

1140 14. Mazzoni A, Panzeri S, Logothetis NK, Brunel N. Encoding of naturalistic stimuli by local field
1141 potential spectra in networks of excitatory and inhibitory neurons. *PLoS Comput Biol.*
1142 2008;4(12):e1000239. Epub 2008/12/17. doi: 10.1371/journal.pcbi.1000239. PubMed PMID:
1143 19079571; PubMed Central PMCID: PMCPMC2585056.

1144 15. Mazzoni A, Brunel N, Cavallari S, Logothetis NK, Panzeri S. Cortical dynamics during naturalistic
1145 sensory stimulations: experiments and models. *J Physiol Paris.* 2011;105(1-3):2-15. Epub 2011/09/13.
1146 doi: 10.1016/j.jphysparis.2011.07.014. PubMed PMID: 21907800.

1147 16. Compte A. Synaptic Mechanisms and Network Dynamics Underlying Spatial Working Memory
1148 in a Cortical Network Model. *Cerebral Cortex.* 2000;10(9):910-23. doi: 10.1093/cercor/10.9.910.

1149 17. Mongillo G, Barak O, Tsodyks M. Synaptic Theory of Working Memory. *Science.*
1150 2008;319(5869):1543-6. doi: 10.1126/science.1150769.

1151 18. Deco G, Thiele A. Cholinergic control of cortical network interactions enables feedback-
1152 mediated attentional modulation. *European Journal of Neuroscience.* 2011;34(1):146-57. doi:
1153 10.1111/j.1460-9568.2011.07749.x.

1154 19. Muller L, Reynaud A, Chavane F, Destexhe A. The stimulus-evoked population response in
1155 visual cortex of awake monkey is a propagating wave. *Nature Communications.* 2014;5(1). doi:
1156 10.1038/ncomms4675.

1157 20. Muller L, Chavane F, Reynolds J, Sejnowski TJ. Cortical travelling waves: mechanisms and
1158 computational principles. *Nature Reviews Neuroscience.* 2018;19(5):255-68. doi:
1159 10.1038/nrn.2018.20.

1160 21. Ostojic S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking
1161 neurons. *Nature Neuroscience.* 2014;17(4):594-600. doi: 10.1038/nn.3658.

1162 22. Zerlaut Y, Zucca S, Panzeri S, Fellin T. The Spectrum of Asynchronous Dynamics in Spiking
1163 Networks as a Model for the Diversity of Non-rhythmic Waking States in the Neocortex. *Cell Reports*.
1164 2019;27(4):1119-32.e7. doi: 10.1016/j.celrep.2019.03.102.

1165 23. Hill S, Tononi G. Modeling Sleep and Wakefulness in the Thalamocortical System. *Journal of*
1166 *Neurophysiology*. 2005;93(3):1671-98. doi: 10.1152/jn.00915.2004.

1167 24. Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HDI, Sejnowski TJ, et al. Model of
1168 Transient Oscillatory Synchronization in the Locust Antennal Lobe. *Neuron*. 2001;30(2):553-67. doi:
1169 10.1016/s0896-6273(01)00284-7.

1170 25. David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ. Dynamic causal modeling of
1171 evoked responses in EEG and MEG. *NeuroImage*. 2006;30(4):1255-72. doi:
1172 10.1016/j.neuroimage.2005.10.045.

1173 26. David O, Friston KJ. A neural mass model for MEG/EEG. *NeuroImage*. 2003;20(3):1743-55. doi:
1174 10.1016/j.neuroimage.2003.07.015.

1175 27. Ursino M, La Cara G-E. Travelling waves and EEG patterns during epileptic seizure: Analysis
1176 with an integrate-and-fire neural network. *Journal of Theoretical Biology*. 2006;242(1):171-87. doi:
1177 10.1016/j.jtbi.2006.02.012.

1178 28. Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a
1179 mathematical model of coupled cortical columns. *Biol Cybern*. 1995;73(4):357-66. Epub 1995/09/01.
1180 doi: 10.1007/BF00199471. PubMed PMID: 7578475.

1181 29. Buehlmann A, Deco G. Optimal information transfer in the cortex through synchronization.
1182 *PLoS Comput Biol*. 2010;6(9). Epub 2010/09/24. doi: 10.1371/journal.pcbi.1000934. PubMed PMID:
1183 20862355; PubMed Central PMCID: PMCPMC2940722.

1184 30. Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, van Albada SJ, et al. Hybrid Scheme
1185 for Modeling Local Field Potentials from Point-Neuron Networks. *Cerebral Cortex*. 2016;26(12):4461-
1186 96. doi: 10.1093/cercor/bhw237.

1187 31. Brunel N, Wang X-J. What Determines the Frequency of Fast Network Oscillations With
1188 Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance. *Journal of*
1189 *Neurophysiology*. 2003;90(1):415-30. doi: 10.1152/jn.01095.2002.

1190 32. Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J. Cellular and Network Mechanisms of
1191 Slow Oscillatory Activity (<1 Hz) and Wave Propagations in a Cortical Network Model. *Journal of*
1192 *Neurophysiology*. 2003;89(5):2707-25. doi: 10.1152/jn.00845.2002.

1193 33. Touboul J, Destexhe A. Can power-law scaling and neuronal avalanches arise from stochastic
1194 dynamics? *PLoS One*. 2010;5(2):e8982. Epub 2010/02/18. doi: 10.1371/journal.pone.0008982.
1195 PubMed PMID: 20161798; PubMed Central PMCID: PMCPMC2820096.

1196 34. Mazzoni A, Whittingstall K, Brunel N, Logothetis NK, Panzeri S. Understanding the
1197 relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local
1198 cortical network model. *NeuroImage*. 2010;52(3):956-72. doi: 10.1016/j.neuroimage.2009.12.040.

1199 35. Næss S, Halnes G, Hagen E, Hagler DJ, Dale AM, Einevoll GT, et al. Biophysically detailed
1200 forward modeling of the neural origin of EEG and MEG signals. *NeuroImage*. 2021;225. doi:
1201 10.1016/j.neuroimage.2020.117467.

1202 36. Daunizeau J, David O, Stephan KE. Dynamic causal modelling: a critical review of the
1203 biophysical and statistical foundations. *NeuroImage*. 2011;58(2):312-22. Epub 2009/12/08. doi:
1204 10.1016/j.neuroimage.2009.11.062. PubMed PMID: 19961941.

1205 37. Ness TV, Halnes G, Næss S, Pettersen KH, Einevoll GT. Computing extracellular electric
1206 potentials from neuronal simulations. *arXiv preprint arXiv:200616630*. 2020.

1207 38. De Schutter E, Van Geit W. Modeling complex neurons. Computational modeling methods for
1208 neuroscientists Cambridge: MIT. 2009:259-84.

1209 39. Hagen E, Næss S, Ness TV, Einevoll GT. Multimodal Modeling of Neural Network Activity:
1210 Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. *Frontiers in Neuroinformatics*. 2018;12.
1211 doi: 10.3389/fninf.2018.00092.

1212 40. Lindén H, Hagen E, Łęski S, Norheim ES, Pettersen KH, Einevoll GT. LFPy: a tool for biophysical
1213 simulation of extracellular potentials generated by detailed model neurons. *Frontiers in*
1214 *Neuroinformatics*. 2014;7. doi: 10.3389/fninf.2013.00041.

1215 41. Pettersen KH, Lindén H, Dale AM, Einevoll GT. Extracellular spikes and CSD. In: Destexhe A,
1216 Brette R, editors. *Handbook of Neural Activity Measurement*. Cambridge: Cambridge University Press;
1217 2012. p. 92-135.

1218 42. Mazzoni A, Linden H, Cuntz H, Lansner A, Panzeri S, Einevoll GT. Computing the Local Field
1219 Potential (LFP) from Integrate-and-Fire Network Models. *PLoS Comput Biol*. 2015;11(12):e1004584.
1220 Epub 2015/12/15. doi: 10.1371/journal.pcbi.1004584. PubMed PMID: 26657024; PubMed Central
1221 PMCID: PMC4682791.

1222 43. Skaar JW, Stasik AJ, Hagen E, Ness TV, Einevoll GT. Estimation of neural network model
1223 parameters from local field potentials (LFPs). *PLoS Comput Biol*. 2020;16(3):e1007725. Epub
1224 2020/03/11. doi: 10.1371/journal.pcbi.1007725. PubMed PMID: 32155141; PubMed Central PMCID:
1225 PMC7083334.

1226 44. Kumar A, Schrader S, Aertsen A, Rotter S. The High-Conductance State of Cortical Networks.
1227 *Neural Computation*. 2008;20(1):1-43. doi: 10.1162/neco.2008.20.1.1.

1228 45. Barbieri F, Mazzoni A, Logothetis NK, Panzeri S, Brunel N. Stimulus Dependence of Local Field
1229 Potential Spectra: Experiment versus Theory. *Journal of Neuroscience*. 2014;34(44):14589-605. doi:
1230 10.1523/jneurosci.5365-13.2014.

1231 46. Nowak K, Mix E, Gimza J, Strauss U, Sriperumbudur KK, Benecke R, et al. Optimizing a Rodent
1232 Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation.
1233 *Parkinson's Disease*. 2011;2011:1-19. doi: 10.4061/2011/414682.

1234 47. Markram H, Muller E, Ramaswamy S, Reimann Michael W, Abdellah M, Sanchez Carlos A, et
1235 al. Reconstruction and Simulation of Neocortical Microcircuitry. *Cell*. 2015;163(2):456-92. doi:
1236 10.1016/j.cell.2015.09.029.

1237 48. Ramaswamy S, Courcol J-D, Abdellah M, Adaszewski SR, Antille N, Arsever S, et al. The
1238 neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. *Frontiers in*
1239 *Neural Circuits*. 2015;9. doi: 10.3389/fncir.2015.00044.

1240 49. Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT, Wójcik DK. Corrected Four-Sphere Head
1241 Model for EEG Signals. *Frontiers in Human Neuroscience*. 2017;11. doi: 10.3389/fnhum.2017.00490.

1242 50. Murakami S, Okada Y. Contributions of principal neocortical neurons to
1243 magnetoencephalography and electroencephalography signals. *The Journal of Physiology*.
1244 2006;575(3):925-36. doi: 10.1113/jphysiol.2006.105379.

1245 51. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of
1246 gene expression in the adult mouse brain. *Nature*. 2006;445(7124):168-76. doi: 10.1038/nature05453.

1247 52. Kingma DP, Ba J. Adam: A method for stochastic optimization. *arXiv preprint arXiv:14126980*.
1248 2014.

1249 53. Trakoshis S, Martínez-Cañada P, Rocchi F, Canella C, You W, Chakrabarti B, et al. Intrinsic
1250 excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus
1251 women. *eLife*. 2020;9:e55684. doi: 10.7554/eLife.55684.

1252 54. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in
1253 key neural systems. *Genes, Brain and Behavior*. 2003;2(5):255-67. doi: 10.1034/j.1601-
1254 183X.2003.00037.x.

1255 55. Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating
1256 mechanisms in neuropsychiatric disorders. *Molecular Psychiatry*. 2019;24(9):1248-57. doi:
1257 10.1038/s41380-019-0426-0.

1258 56. Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism
1259 spectrum disorder risk. *BMC Medicine*. 2011;9(1). doi: 10.1186/1741-7015-9-18.

1260 57. Bosl WJ, Laddenkemper T, Nelson CA. Nonlinear EEG biomarker profiles for autism and
1261 absence epilepsy. *Neuropsychiatric Electrophysiology*. 2017;3(1). doi: 10.1186/s40810-017-0023-x.

1262 58. Gogolla N, LeBlanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK. Common circuit defect of
1263 excitatory-inhibitory balance in mouse models of autism. *Journal of Neurodevelopmental Disorders*.
1264 2009;1(2):172-81. doi: 10.1007/s11689-009-9023-x.

1265 59. Mäki-Marttunen T, Krull F, Bettella F, Hagen E, Næss S, Ness TV, et al. Alterations in
1266 Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. *Cerebral Cortex*.
1267 2019;29(2):875-91. doi: 10.1093/cercor/bhy291.

1268 60. Mäki-Marttunen T, Kaufmann T, Elvsåshagen T, Devor A, Djurovic S, Westlye LT, et al.
1269 Biophysical Psychiatry—How Computational Neuroscience Can Help to Understand the Complex
1270 Mechanisms of Mental Disorders. *Frontiers in Psychiatry*. 2019;10(534). doi:
1271 10.3389/fpsyg.2019.00534.

1272 61. Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field
1273 potentials. *NeuroImage*. 2017;158:70-8. doi: 10.1016/j.neuroimage.2017.06.078.

1274 62. Martínez-Cañada P. Github source-code repository 2020. Available from:
1275 https://github.com/pablomc88/EEG_proxy_from_network_point_neurons.

1276 63. Potjans TC, Diesmann M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and
1277 Activity in a Full-Scale Spiking Network Model. *Cerebral Cortex*. 2014;24(3):785-806. doi:
1278 10.1093/cercor/bhs358.

1279 64. Senk J, Hagen E, van Albada SJ, Diesmann M. Reconciliation of weak pairwise spike-train
1280 correlations and highly coherent local field potentials across space. *arXiv preprint arXiv:180510235*.
1281 2018.

1282 65. Rössert C, Pozzorini C, Chindemi G, Davison AP, Eroe C, King J, et al. Automated point-neuron
1283 simplification of data-driven microcircuit models. *arXiv preprint arXiv:160400087*. 2016.

1284 66. Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Analysis. *NeuroImage*. 1999;9(2):179-94.
1285 doi: 10.1006/nimg.1998.0395.

1286 67. Huang Y, Parra LC, Haufe S. The New York Head—A precise standardized volume conductor
1287 model for EEG source localization and tES targeting. *NeuroImage*. 2016;140:150-62. doi:
1288 10.1016/j.neuroimage.2015.12.019.

1289 68. Vorwerk J, Cho J-H, Rampp S, Hamer H, Knösche TR, Wolters CH. A guideline for head volume
1290 conductor modeling in EEG and MEG. *NeuroImage*. 2014;100:590-607. doi:
1291 10.1016/j.neuroimage.2014.06.040.

1292 69. Cavallari S, Panzeri S, Mazzoni A. Comparison of the dynamics of neural interactions between
1293 current-based and conductance-based integrate-and-fire recurrent networks. *Front Neural Circuits*.
1294 2014;8:12. Epub 2014/03/19. doi: 10.3389/fncir.2014.00012. PubMed PMID: 24634645; PubMed
1295 Central PMCID: PMCPMC3943173.

1296 70. Nordlie E, Gewaltig MO, Plesser HE. Towards reproducible descriptions of neuronal network
1297 models. *PLoS Comput Biol*. 2009;5(8):e1000456. Epub 2009/08/08. doi:
1298 10.1371/journal.pcbi.1000456. PubMed PMID: 19662159; PubMed Central PMCID:
1299 PMCPMC2713426.

1300 71. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. Tensorflow: Large-scale
1301 machine learning on heterogeneous distributed systems. *arXiv preprint arXiv:160304467*. 2016.

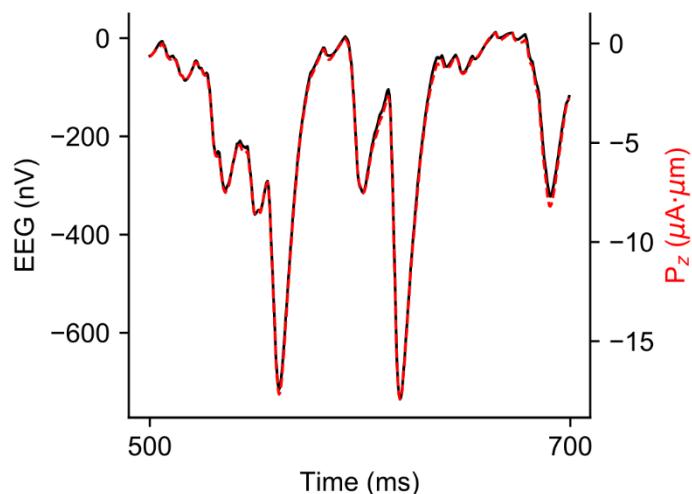
1302 72. Linssen C, Deepu R, Mitchell J, Lepperød ME, Garrido J, Spreizer S, et al. NEST 2.16. 0. Jülich
1303 Supercomputing Center, 2018.

1304 73. Hines M. NEURON and Python. *Frontiers in Neuroinformatics*. 2009;3. doi:
1305 10.3389/neuro.11.001.2009.

1306

1307 **Supplementary figures**

1308



1309

1310 **Supplementary Figure 1.** EEG (black line) and z-component (red dashed line) of the current dipole
1311 moment (P_z) calculated at the top of head model.

1312