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Abstract 23 

The electroencephalogram (EEG) is one of the main tools for non-invasively studying 24 
brain function and dysfunction. To better interpret EEGs in terms of neural mechanisms, it is 25 
important to compare experimentally recorded EEGs with the output of neural network models. 26 
Most current neural network models use networks of simple point neurons. They capture 27 
important properties of cortical dynamics, and are numerically or analytically tractable. 28 
However, point neuron networks cannot directly generate an EEG, since EEGs are generated 29 
by spatially separated transmembrane currents. Here, we explored how to compute an accurate 30 
approximation of the EEG with a combination of quantities defined in point-neuron network 31 
models. We constructed several different candidate approximations (or proxies) of the EEG 32 
that can be computed from networks of leaky integrate-and-fire (LIF) point neurons, such as 33 
firing rates, membrane potentials, and specific combinations of synaptic currents. We then 34 
evaluated how well each proxy reconstructed a realistic ground-truth EEG obtained when the 35 
synaptic input currents of the LIF network were fed into a three-dimensional (3D) network 36 
model of multi-compartmental neurons with realistic cell morphologies. We found that a new 37 
class of proxies, based on an optimized linear combination of time-shifted AMPA and GABA 38 
currents, provided the most accurate estimate of the EEG over a wide range of network states 39 
of the LIF point-neuron network. The new linear proxies explained most of the variance (85-40 
95%) of the ground-truth EEG for a wide range of cell morphologies, distributions of 41 
presynaptic inputs, and position of the recording electrode. Non-linear proxies, obtained using 42 
a convolutional neural network (CNN) to predict the EEG from synaptic currents, increased 43 
proxy performance by a further 2-8%. Our proxies can be used to easily calculate a biologically 44 
realistic EEG signal directly from point-neuron simulations and thereby allow a quantitative 45 
comparison between computational models and experimental EEG recordings. 46 

 47 

Author summary 48 

Networks of point neurons are widely used to model neural dynamics. Their output, 49 
however, cannot be directly compared to the electroencephalogram (EEG), which is one of the 50 
most used tools to non-invasively measure brain activity. To allow a direct integration between 51 
neural network theory and empirical EEG data, here we derived a new mathematical 52 
expression, termed EEG proxy, which estimates with high accuracy the EEG based simply on 53 
the variables available from simulations of point-neuron network models. To compare and 54 
validate these EEG proxies, we computed a realistic ground-truth EEG produced by a network 55 
of simulated neurons with realistic 3D morphologies that receive the same spikes of the simpler 56 
network of point neurons. The new obtained EEG proxies outperformed previous approaches 57 
and worked well under a wide range of simulated configurations of cell morphologies, 58 
distribution of presynaptic inputs, and position of the recording electrode. The new proxies 59 
approximated well both EEG spectra and EEG evoked potentials. Our work provides important 60 
mathematical tools that allow a better interpretation of experimentally measured EEGs in terms 61 
of neural models of brain function.  62 

 63 
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 64 

Introduction 65 

Electroencephalography is a powerful and widely used technique for non-invasively 66 
measuring neural activity, with important applications both in scientific research and in the 67 
clinic [1]. Electroencephalography has played a key role in the study of how both neural 68 
oscillations and stimulus-evoked activity relate to sensation, perception, cognitive and motor 69 
functions [2-4]. The electroencephalogram (EEG), like its intracranial counterpart, the local 70 
field potential (LFP), originates from the aggregation of all the electric fields generated by 71 
transmembrane currents across the surfaces of all neurons sufficiently close to the electrode [5-72 
8]. The physics of how electromagnetic fields are generated from transmembrane currents are 73 
well understood, and mathematically described by forward models [6]. Yet, how to interpret 74 
changes in EEG across experimental conditions or diagnostic categories in terms of underlying 75 
neural processes remains challenging [1].  76 

One way to better understand the EEG in terms of neural circuit mechanisms and to 77 
link theoretical models of brain functions to empirical EEG recordings is to compare EEG data 78 
with quantitative predictions obtained from network models. Network models of recurrently 79 
connected leaky-integrate-and-fire (LIF) point neurons are a current major tool in modelling 80 
brain function [9-11]. These models reduce the morphology of neurons to a single point in 81 
space and describe the neuron dynamics by a tractable set of coupled differential equations. 82 
These models are sufficiently simple to be understood thoroughly, either with simulations that 83 
are relatively light to implement, or by analytical approaches [12, 13]. Despite their simplicity, 84 
they generate a wide range of network states and dynamics that resemble those observed in 85 
cortical recordings. They have been employed to satisfactorily explain a broad spectrum of 86 
different cortical mechanisms and cortical functions, such as sensory information coding [14, 87 
15], working memory [16, 17], attention [18], propagating waves [19, 20], non-rhythmic 88 
waking states [21, 22], or the emergence of up and down states [23]. It remains an open 89 
question how to compute realistically EEGs from such widely used network models of simple 90 
point neurons.  91 

A major problem in achieving the above goal is that in such LIF point neurons all 92 
transmembrane currents collapse into a single point in space and the resulting extracellular 93 
potential is, therefore, zero [6]. Previous studies comparing the simulation output of networks 94 
of simple model neurons without a spatial structure with measures of graded extracellular 95 
potentials such as EEGs or LFPs have used ad-hoc approaches to estimate the EEG from 96 
variables available from simulation of the network, including the average membrane potentials 97 
[23-28], the average firing rate [29-31], the sum of all synaptic currents [13, 32, 33], or the sum 98 
of absolute values of synaptic currents [14, 34]. However, the limitations and caveats of using 99 
such ad-hoc simplifications to compute the EEG have been rarely considered and tested. As a 100 
result, it is still unclear how best to compute EEGs directly from output from point-like neuron 101 
network models [35, 36].   102 

In order to generate extracellular potentials, spatially extended neuron models, i.e., 103 
multicompartment neuron models, are required [37, 38]. Previous studies have numerically 104 
computed the compound extracellular potential as the linear superposition of all single-cell 105 
distance-weighted transmembrane currents within a network of multicompartment neurons 106 
[39-41]. This approach is however computationally cumbersome, and it does not allow an 107 
easily tractable and exhaustive analysis of the dynamics of such networks. One alternative 108 
could be using a hybrid scheme [30, 35, 42, 43] that projects the spike times generated by the 109 
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LIF point-neuron network onto morphologically detailed 3D neuron models and then 110 
computing the electric field that the currents flowing through these 3D networks generate. This 111 
scheme provides a simplification by separating the study of the network dynamics (described 112 
by the point-neuron network model) from that of field generation (described by the 113 
multicompartment neuron model), but still requires running cumbersome multicompartment 114 
model simulations for each simulation of the LIF network.  115 

In this article, we implemented a much simpler and lighter method to predict the EEG 116 
based simply on the variables available directly from simulation of a point-neuron network 117 
model (e.g., membrane potentials, spike times or synaptic currents of the neuron models). We 118 
constructed several different candidate approximations (termed proxies) of the EEG that can 119 
be computed from networks of LIF point neurons. We then evaluated how well each proxy 120 
reconstructed a ground-truth EEG obtained when the synaptic input currents of the LIF network 121 
were injected into an analogous three-dimensional (3D) network model of multi-122 
compartmental neurons with realistic cell morphologies. This approach was shown to perform 123 
remarkably well in predicting the LFP [42], based on a specific weighted sum of synaptic 124 
currents from the point-neuron network model, for a specific network state (i.e., asynchronous 125 
irregular) of the LIF network model. However, the previously obtained LFP proxy did not 126 
include a head model that approximates the different geometries and electrical conductivities 127 
of the head necessary for computing a realistic EEG signal recorded by scalp electrodes. We 128 
thus derived a new proxy for the EEG that was validated against detailed simulations of the 129 
multicompartment model, investigating different cell morphologies, variations of distribution 130 
of presynaptic inputs, and changes in position of the recording electrode. Unlike previous 131 
studies which focused on approximations valid in specific network states [42], we also 132 
validated our proxies across the repertoire of network states displayed by recurrent network 133 
models, namely the asynchronous irregular (AI), synchronous irregular (SI), and synchronous 134 
regular (SR) [12] states, with different patterns of global oscillations and individual cell 135 
activity. We found that a new class of simple EEG proxies, based on a weighted sum of synaptic 136 
currents, outperformed previous approaches, including those optimized for predicting LFPs 137 
[14, 42]. The new EEG proxies closely captured both the temporal and spectral features of the 138 
EEG. We also provided a non-linear refinement using a convolutional neural network to 139 
estimate the EEG from synaptic currents, which yielded moderate improvements over the 140 
linear proxy at the expense of increasing complexity of the EEG estimation model.   141 

	142 

Results 143 

Computing the ground-truth EEG and EEG proxies  144 

We investigated how to compute a simple but accurate approximation of the EEG 145 
(“EEG proxy” hereafter) that would be generated by the activity of a LIF point-neuron network 146 
if its neurons had a realistic spatial structure. We therefore first simulated a well-established 147 
model of a recurrent network of LIF point neurons. We then fed the spiking activity generated 148 
by the LIF point-neuron network into a realistic three-dimensional multicompartmental 149 
network model of a cortical layer and computed the EEG generated by this activity. We finally 150 
studied how to approximate this EEG simply by using the variables directly available from the 151 
simulation of the point-neuron network model.  152 

The LIF point-neuron network was constructed using a well-established two- 153 
population (one excitatory and one inhibitory) model of a recurrent cortical circuit [12], 154 
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illustrated in Fig 1 A. The network receives thalamic synaptic input that carry the sensory 155 
information and stimulus-unrelated inputs representing slow ongoing fluctuations of cortical 156 
activity. This network can generate a repertoire of different network states that map well into 157 
empirical observations of cortical dynamics [12, 44]. Fig 1 B shows, as an example, the 158 
asynchronous irregular spiking activity generated by a subset of the excitatory and inhibitory 159 
populations in response to a low firing rate of the thalamic input. We have shown in previous 160 
work that this model captured well (even more than 90% of the variance of empirical data) the 161 
dynamics of primary visual cortex under naturalistic stimulation [14, 34, 45]. 162 

 163 

 164 

Fig 1. Overview of the network models and computation of proxies and EEG. (A) Sketch of the 165 
point-neuron network with recurrent connections between two types of populations: excitatory cells 166 
(pyramidal cells, PY) and inhibitory cells (interneurons, IN). Each population receives two kinds of 167 
external inputs: global ongoing cortico-cortical activity and thalamic stimulation. (B) Raster plot of 168 
spiking activity from a subset of cells in each population. (C) Sketch of the multicompartment neuron 169 
models used for generation of the EEG. Two representative model neurons are depicted, a pyramidal 170 
cell on the left and an interneuron on the right, positioned within a cylinder of r	= 0.5 mm. While AMPA 171 
synapses are homogenously distributed over all compartments of both types of cells, GABA synapses 172 
on pyramidal cells are located only below Z	= 8.5 mm. The EEG recording electrode is situated on the 173 
surface of the scalp layer. (D) Comparison between example proxies calculated from the point-neuron 174 
network and the ground-truth EEG computed from the multicompartment neuron model network. (E) 175 
EEG generated in the multicompartment neuron network by all neurons (dotted black), only pyramidal 176 
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neurons (dashed red) or only interneurons (solid blue). (F) Corresponding power spectra for the three 177 
sets depicted in (E). 178 

 179 

We then computed a “ground-truth” EEG (referred to simply as “EEG” in the paper),  180 
following the hybrid modelling scheme [30, 35, 42, 43], and used this ground-truth EEG to 181 
compare the performance of the different proxies. To do so, we created a network of 182 
unconnected multicompartment neuron models with realistic morphologies and homogeneous 183 
distribution within the circular section of a cylinder of radius r	= 0.5 mm (Fig 1 C), which 184 
roughly approximates the spatial extension of a layer in a cortical column. We focused on 185 
computing the EEG generated by neurons with somas positioned in layer 2/3, so that somas of 186 
the multicompartment neurons are aligned in the Z-axis (150 µm below the reference point Z 187 
= 8.5 mm). We chose to position somas in layer 2/3 based on previous computational work 188 
suggesting that this layer gives a large contribution to extracellular potentials [30, 35]. The 189 
reference point Z = 8.5 mm was chosen to approximate the radial distance between the center 190 
of a spherical rodent head model and the brain tissue [46]. In this specific set of simulations 191 
performed for optimizing the proxies, we used the reconstructed morphology of a broad-tuft 192 
layer-2/3 pyramidal cell from rat somatosensory cortex available in the Neocortical 193 
Microcircuitry (NMC) portal [47, 48], referenced as dend-C250500A-P3_axon-C260897C-P2-194 
Clone_9 (see “Methods”). We chose this pyramidal-cell morphology because its open-field 195 
geometry is expected to generate large extracellular potentials. Inhibitory cells of the model 196 
were implemented using the morphology of L2/3 large basket cell interneurons (the most 197 
numerous class in L2/3 [47]. 198 

AMPA synapses were homogenously positioned along the Z-axis in both cell types, 199 
representing uniformly distributed excitatory input. In our default setting, we assumed that all 200 
inhibitory synapses are made by large basket cell interneurons of the model, which based on 201 
their morphology would be principally located below the reference point Z = 8.5 mm. Thus, 202 
all dendrites of inhibitory cells receive GABA synapses while only those dendrites of 203 
excitatory cells below Z = 8.5 mm receive GABA synapses, representing perisomatic 204 
inhibition. 205 

EEGs were then generated from transmembrane currents of multicompartment neurons 206 
in combination with a forward-modelling scheme based on volume conduction theory [6]. To 207 
approximate the different geometries and electrical conductivities of the head, we computed 208 
the EEG using the four-layered spherical head model described in [35, 49]. In this model, the 209 
different layers represent the brain tissue, cerebrospinal fluid (CSF), skull, and scalp, with radii 210 
9, 9.5, 10 and 10.5 mm respectively, which approximate the dimensions of a rodent head model 211 
[46]. The values of the chosen conductivities are the default values of 0.3, 1.5, 0.015 and 0.3 212 
S/m. The simulated EEG electrode was placed on the scalp surface, at the top of the head model 213 
(Fig 1 C). 214 

The time series of spikes of individual point neurons were finally mapped to synapse 215 
activation times on corresponding postsynaptic multicompartment neurons. Each 216 
multicompartment neuron was randomly assigned to a unique neuron in the point-neuron 217 
network and receives the same input spikes of the equivalent point neuron. Since the 218 
multicompartment neurons were not connected to each other, they were not involved in the 219 
network dynamics and their only role was to transform the spiking activity of the point-neuron 220 
network into a realistic estimate of the EEG. The EEG computed from the multicompartment 221 
neuron model network was then used as benchmark ground-truth data against which we 222 
compared different candidate proxies (Fig 1 D).  223 
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Dynamic states of network activity of the point-neuron network model 224 

The LIF point-neuron network model chosen to generate network dynamics is known 225 
to generate a number of qualitatively different activity states [12, 44] with patterns of 226 
variability of spike activity and network oscillations observed in cortical data. Since one of our 227 
goals is to determine EEG proxies which work well under a wide range of different network 228 
dynamics, we computed the different network states that the LIF point-neuron network can 229 
generate and which are recapitulated here. 230 

The states generated by the LIF neuron network can be mapped by systematically 231 
varying across simulations the thalamic input (ν0) and the relative strength of inhibitory 232 
synapses (g). We then use three different measures to describe the network dynamics: 233 
synchrony, irregularity, and mean firing rate [12, 44]. 234 

In Fig 2 A, we plot these three descriptors as a function of g and ν0 . We individuated 235 
3 different regions of the parameter space, each corresponding to a qualitatively different 236 
network state, according to the criteria employed by Kumar and collaborators [44]. The 237 
asynchronous irregular (AI) state is characterized by a low value of network synchrony (< 238 
0.01), an irregularity level close to the value of a Poisson generator (> 0.8) and a very low 239 
firing rate, below 2 spikes/s. The synchronous irregular (SI) state has a level of network 240 
synchrony higher than that of the AI state (between 0.01 and 0.1), but with highly irregular 241 
firing of individual neurons (irregularity above 0.8). In the SI, neurons spike at low rate (< 5 242 
spikes/s). For the synchronous regular (SR) state, the network exhibits high synchronous 243 
activity (> 0.1), a more regular single-cell spiking (irregularity below 0.8) and high spiking rate 244 
(> 60 spikes/s). Spike raster plots of excitatory and inhibitory cell populations of representative 245 
samples selected for each network state are shown in Fig 2 B. 246 

Optimization and validation of proxies across different network states 247 

We investigated how best to compute the proxy that combines the variables available 248 
directly from the simulation of a LIF point-neuron network model for accurately predicting the 249 
EEG over a wide range of network activity states. We explored different proxies that have been 250 
commonly used in previous literature for estimating the extracellular signal from point-neuron 251 
networks: (i) the average firing rate (FR), (ii) the average membrane potential (Vm), (iii) the 252 
average sum of AMPA currents (AMPA), (iv) the average sum of GABA currents (GABA), (v) 253 
the average sum of synaptic currents (∑I) and (vi) the average sum of their absolute values 254 
(∑|I|). Furthermore, we propose here a new class of current-based proxies, (vii) the EEG 255 
reference weighted sum 1 (ERWS1) and (viii) the EEG reference weighted sum 2 (ERWS2), 256 
which are optimized linear combinations of time-delayed measures of AMPA and GABA 257 
currents. Indeed, an optimized weighted sum of synaptic currents (defined here as LRWS) was 258 
previously shown to be a robust proxy for the LFP [42]. The difference between ERWS1 and 259 
ERSW2 is that parameters of ERWS2 adapt theirs values as a function of the strength of the 260 
external thalamic input 𝜐!, whereas the parameters of ERWS1 are not dependent on 𝜐! (see 261 
“Methods”).  262 

We only considered the transmembrane currents of pyramidal cells to generate the EEG (in the 263 
multicompartment neuron network) because the contribution of transmembrane currents of 264 
interneurons to the EEG was shown to be negligible (Fig 1 E and F), in line with findings of 265 
Refs. [35] for the EEG and [42] for the LFP. Interneurons, though, play an indirect role in 266 
generating the EEG, since GABAergic currents in pyramidal cells depend on interneuronal 267 
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spikes. In a similar way, proxies of the LIF neuron network are computed only on excitatory 268 
neurons.  269 

The firing rate of inhibitory neurons might be expected to contribute as well to the FR 270 
proxy and, as a consequence, to the EEG, as observed in [30]. To keep consistency with 271 
definition of the other proxies, we decided to compute the FR proxy based only on firing rates 272 
of excitatory cells. We checked that using a proxy computed on firing rates of both excitatory 273 
and inhibitory cells gave an EEG reconstruction accuracy considerably poorer than accuracy 274 
of the proxies based on synaptic currents (from proxy iii to proxy viii above).  275 

The first 6 proxies taken from previous literature are parameter-free. The two new ones, 276 
ERWS1 and ERWS2	have	3 and 9 free parameters, respectively, which need to be optimized 277 
(Eqs. 7-9). Following previous work [42], these parameters define the factor α describing the 278 
relative ratio between the two currents and a specific delay for each type of current (τAMPA, 279 
τGABA). We	computed	the	values	of	these	parameters	by	a	cross-validated	optimization	of	280 
the	predicted	EEG	across the different network states seen for the LIF network model.   281 

 282 

 283 

Fig 2. Optimization and validation of proxies for different sets of network parameters (ν0, g). (A) 284 
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Dynamic states of network activity defined by the control parameters g and ν0. The labels AI 285 
(asynchronous irregular), SI (synchronous irregular) and SR (synchronous regular) indicate the 286 
combinations of parameters that have been selected as representative samples of each network state. 287 
The synchrony and irregularity are unitless, the mean firing rate (FR) is measured in spikes/s. (B) 288 
Spiking activity from a subset of cells of the excitatory and inhibitory populations for the same samples 289 
shown in (A). (C) Optimized parameters of ERWS1 and ERWS2 (Eqs. 7-9) as a function of the thalamic 290 
firing rate ν0. We considered two alternative scenarios. In the causal version of the proxy, the output 291 
depends only on present and past inputs so that the time constants (τAMPA and τGABA) are constrained to 292 
be positive. In contrast, non-causal proxies can be indifferently assigned positive and negative time 293 
constants. (D) Outputs of non-causal ERWS1 (bottom row) and non-causal ERWS2 (top row) proxies 294 
for different network states compared to ground-truth EEGs. (E) Spiking activity for the same 295 
simulation cases of panel D. (F) Average performance, evaluated by using the coefficient of 296 
determination R2, of ∑|I|, LRWS, ERWS1 (non-causal) and ERWS2 (non-causal) calculated on the 297 
validation dataset as a function of ν0 (same colors as shown in (G)). (G) Average R2 of every proxy 298 
across all network instantiations i of the validation dataset (c is causal, n is non-causal). The same colors 299 
shown in this legend are used throughout the article to identify the different proxies. Tests for statistical 300 
significance are computed only for the pair ERWS1 (non-causal) and ERWS2 (non-causal) and for the 301 
pair ERWS1 (causal) and ERWS2 (causal). (H) R2 across network states. (I) Power spectral density 302 
(PSD) of the proxies and the EEG (in black). (J) Average R2 applied to proxies’ PSDs instead of their 303 
temporal responses. R2 is computed in the 5-200 Hz frequency range. 304 

 305 

For optimization and validation of proxies we generated a large set of numerical 306 
simulations (522 simulations) by systematically varying the values of g and ν0 over a wide 307 
state range. In each simulation instantiation, we set a given value g and ν0 and used different 308 
random initial conditions (e.g., recurrent connections of the point-neuron network or soma 309 
positions of multicompartment neurons). The best-fit values of ERWS1 and ERWS2	were 310 
calculated by minimizing the sum of square errors between the ground-truth EEG and the proxy 311 
for all network instantiations of the optimization dataset (see “Methods”, Eq. 11).  312 

Fig 2 C shows the best parameters (α, τAMPA and τGABA) found by the optimization 313 
algorithm for the two alternative scenarios considered here: causal and non-causal proxies (see 314 
also Table 1). For causal proxies, the predicted EEG depended only on present and past values 315 
of AMPA and GABA currents. Thus, the time delay parameters τAMPA and τGABA (quantifying 316 
the delay by which the synaptic current contributes to the EEG) were constrained during 317 
optimization to be non-negative. For non-causal proxies, time delay parameters can take 318 
positive and negative values. Non-causal relationships between measured extracellular 319 
potentials and neural activity at multiple sites may emerge because of closed-loop recurrent 320 
interactions within the network [6]. The mathematical expressions of the optimized causal 321 
proxies are: 322 

ERWS1(𝑡) = ∑ 𝐴𝑀𝑃𝐴(𝑡) − 0.1(∑ 𝐺𝐴𝐵𝐴(𝑡 − 3.1	ms)!"#. )!"#.   (1) 323 

 324 

ERWS2(𝑡, 𝜐%) = ∑ 𝐴𝑀𝑃𝐴(𝑡) − <0.5𝜐%&%.'>(∑ 𝐺𝐴𝐵𝐴(𝑡 + 1.5𝜐%&%.(	𝑚𝑠 − 4	ms)!"#. )!"#.  325 
 (2) 326 

 327 

Expressions of the optimized non-causal proxies (ν0 is unitless) are: 328 

ERWS1(𝑡) = ∑ 𝐴𝑀𝑃𝐴(𝑡 + 0.9	𝑚𝑠) − 0.3(∑ 𝐺𝐴𝐵𝐴(𝑡 − 2.3	ms)!"#. )!"#.   (3) 329 

 330 
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ERWS2(𝑡, 𝜐%) = ∑ 𝐴𝑀𝑃𝐴(𝑡 + 0.6𝜐%&%.)	𝑚𝑠 + 0.4	𝑚𝑠) − (1.4𝜐%&).* +!"#.331 
0.2)(∑ 𝐺𝐴𝐵𝐴(𝑡 + 1.9𝜐%&%.+	𝑚𝑠 − 3	ms)!"#. )  (4) 332 

 333 

We first show the best fits obtained from optimization of the two ERSW proxies (Fig 2 334 
C). For both ERWS1 and ERWS2, in the non-causal versions, the time delay parameters were 335 
small (few milliseconds) but had opposite signs, τGABA was positive while τAMPA was negative. 336 
In the causal version of both proxies, we observed a similar trend but τAMPA was constrained to 337 
0 by the optimization. Thus, the best EEG proxies depend on past values of GABA synaptic 338 
currents and on current and future values of AMPA synaptic currents. These values are 339 
different from the optimal delays (τGABA = 0 ms and τAMPA = 6 ms) found for the LFP in [42]. 340 
One reason for the observed difference between the previous LFP proxy and our new EEG 341 
proxies may relate to differences in spatial integration properties of the EEG signal and the 342 
LFP signal. Another probable cause of this difference is that in [42] the LFP proxy was 343 
optimized over a much smaller range of network states and external input rates (ν0 < 6 spikes/s). 344 
Indeed, our results for ERWS2 show that optimal values of τGABA exhibit strong adaptation 345 
towards τGABA = 0 ms within the low regime of the external rate ν0. The parameter α, which 346 
expresses the ratio of the contribution to the EEG of GABA relative to AMPA synaptic 347 
currents, also exhibits a strong adaptation. The dependence of α on the value of input rate ν0 in 348 
Fig 2 C is particularly relevant because it reflects a larger weight of GABA currents for low 349 
values of ν0 and the opposite effect, stronger weight of AMPA currents, as the external rate 350 
increases.  351 

 352 

Table 1. Parameters of ERWS1 and ERWS2. 353 

Proxy  Optimized values 
ERWS1 (causal) τAMPA = 0 ms, τGABA = 3.1 ms, α = 0.1 
ERWS2 (causal) a1 = 0, b1 = 0, c1 = 0, a2 = -1.5, b2 = 0.2, c2 = 4, a3 = 0.5, b3 = 

0.5, c3	 = 0 
ERWS1 (non-causal) τAMPA = -0.9 ms, τGABA = 2.3 ms, α = 0.3 
ERWS2 (non-causal) a1 = -0.6, b1 = 0.1, c1 = -0.4, a2 = -1.9, b2 = 0.6, c2 = 3, a3 = 1.4, 

b3  = 1.7, c3	 = 0.2 
 354 

To quantitatively evaluate the performance of all proxies, we computed for each proxy 355 
the coefficient of determination R2, which represents the fraction of the EEG variance 356 
explained. The average R2 calculated on the validation dataset (Fig 2 G) shows a clear 357 
superiority of the new class of proxies. Both the causal and non-causal versions of ERWS1 and 358 
ERWS2 outperform all the other proxies, and the non-causal versions reach the best overall 359 
performance (ERWS1: R2 = 0.94 and ERWS2: R2 = 0.95). In agreement with previous results 360 
for the LFP [42], the three proxies that give the worst fits were FR, ∑I and Vm.  361 

To understand if the performance of proxies depended on the specific state of network 362 
activity, we first examined the performance of the most interesting proxies (∑|I|, LRWS, 363 
ERWS1 (non-causal) and ERWS2 (non-causal)) separately for different values of the input rate 364 
ν0. We found that while LRWS performs well for low input rates (the range of external rates 365 
for which it was optimized [42]), its performance rapidly dropped with ν0 (Fig 2 F). The other 366 
three proxies maintained a high R2 for the whole spectrum of firing rates studied here, with 367 
ERWS1 and ERWS2 performing notably better than ∑|I|. Note also that ERWS2 is the only 368 
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proxy that yields a value of R2 above 0.9 for all firing rates. We then computed the performance 369 
of these proxies separately for different types of network states. We found that the new proxies 370 
developed here, ERWS1 and ERWS2, produced accurate fits of the EEG for all network states 371 
(Fig 2 H), while accuracy of EEG approximations made by the other proxies was less uniform 372 
across network states. 373 

The above analyses quantified how well the proxies approximated the actual values of 374 
the EEG in the time domain for each data point. We next examined how well the proxies 375 
approximated the overall power spectrum of the EEG rather than all variations of the EEG time 376 
series. In Fig 2 I we show power spectral density (PSD) functions of all the proxies for the AI 377 
and SI states, compared to spectral responses of the EEG. In the whole frequency range 378 
considered (5 – 200 Hz), all proxies provide a prominent good fit of the EEG power spectrum, 379 
except ∑I, which attenuates low frequencies and amplifies high frequencies. In Fig 2 J we 380 
report the average R2 computed for the PSDs across all data points of the validation dataset, 381 
confirming that all proxies gave an accurate approximation of the EEG power spectrum (except 382 
∑I).  383 

In sum, while almost all proxies are good enough to capture the general properties of 384 
the EEG power spectrum, ERWS1 and ERWS2	capture best the details of time variations of the 385 
EEG. 386 

 387 

Time-shifted variants of proxies 388 

 The ERSW proxies were optimized for EEG prediction choosing optimal values for the 389 
time shifts between neural activity and the EEG. It is thus possible that the superior 390 
performance of the ERWS proxies over all others may have been due to the fact that the other 391 
proxies were not optimally time shifted. To investigate this hypothesis, we generated optimized 392 
time-shifted versions of all the other proxies by computing cross-correlation between the 393 
ground-truth EEG and all other proxies and choosing the optimum time shift of each proxy as 394 
the lag of the cross-correlation peak. We then compared the performance of the time-shifted 395 
versions of proxies in predicting the EEG with the performance of the ERWS proxies.  396 

In this analysis, we recomputed the optimum time shift of every proxy separately for 397 
each network state, whereas the parameters of the ERWS proxies were jointly optimized (see 398 
previous section) over the entire simulated EEG dataset spanning all possible network states. 399 
Thus, this comparison was clearly favorable to the other proxies. Nevertheless, we still found 400 
that the ERWS proxies outperformed all previous proxies for the majority of network states. 401 
Only in the AI state, we observed that the LRWS proxy slightly outperformed ERWS1 and 402 
ERWS2. The ERWS2 proxy was the only one providing remarkably good performance across 403 
all states (R2 > 0.9 over all states).  404 

Further results came out of this analysis. Two proxies clearly improved the quality of 405 
their fits after time shifting, FR and Vm, but presented opposed time shifts: while FR was 406 
delayed, Vm was moved forward in time. A spike is a local and instantaneous event in time and, 407 
as a result, a firing-rate proxy is expected to exhibit faster temporal changes than the EEG 408 
signal. By contrast, integration of the postsynaptic soma membrane potentials following 409 
presynaptic spiking is a slower process that might lead to a signal more low-pass filtered than 410 
the EEG.  411 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.364802doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

When comparing AMPA and GABA proxies, we observed that, in the AI state (Fig 3 412 
A), temporal dynamics of the EEG signal were better approximated by the GABA proxy, 413 
whereas AMPA currents showed a faster response. Indeed, the performance of the AMPA proxy 414 
was improved after applying the corresponding time shift. As the firing rate of the external 415 
input increased and switched the network state from AI to SI (Fig 3 B), the temporal evolution 416 
of the EEG began to diverge from GABA currents and, instead, AMPA currents were seen to 417 
better approximate the EEG. 418 

 419 

Fig 3. Optimum time shift of proxies that maximizes cross-correlation with the EEG. Comparison 420 
of the outputs of proxies and the ground-truth EEG before (left) and after (right) applying the optimum 421 
time shift, with the optimum time shift for each proxy and network state indicated on the right. Note 422 
that some proxies have positive time shifts for all network states (e.g., FR), while others (e.g., GABA) 423 
change the sign of the time shift when passing from the AI to the SR state. The network states shown 424 
are the following: AI in panel A, SI in panel B and SR in panel C. On the right: R2 before (color bars) 425 
and after (black bars) applying the optimum time shift. ERWS1 and ERWS2 are not time shifted. 426 
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 427 

The performance of EEG proxies depends on the neuron morphology and distribution 428 
of synapses  429 

 Modelling studies have demonstrated that extracellular potentials generated by synaptic 430 
input currents vary with the neurons’ dendritic morphology and the positions of individual 431 
synaptic inputs [6, 50]. For example, morphological types that display a so-called open-field 432 
structure, such as pyramidal cells, have spatially separated current sources and current sinks 433 
that generate a sizable current dipole. Synaptic inputs onto neurons that have a closed-field 434 
configuration, such as interneurons, largely cancel out when they are superimposed so that the 435 
net contribution to the current dipole is weak [35]. The hybrid modelling scheme [30, 35, 42, 436 
43] gives us the opportunity to study, independently from the spiking dynamics of the point-437 
neuron network, how different parameters of the multicompartment neuron network (e.g., 438 
distribution of synapses or dendritic morphology) affect the EEG signal and, as a consequence, 439 
modify the prediction capabilities of the proxies.  440 

Above results (Figs. 2 and 3) were computed using a specific multicompartmental 441 
model type of L2/3 pyramidal cell from rat somatosensory cortex (taken from the NMC 442 
database [47, 48]) and referred as “NMC L2/3 PY, clone 9” (Table 5, Figure 4A). Here, we 443 
studied whether the proxies derived for this morphology provided good approximations to the 444 
EEG generated by different cell morphologies. We thus quantified how well our proxies 445 
approximate the EEG generated by a different pyramidal-cell morphology taken also from rat 446 
somatosensory cortex (“NMC L2/3 PY, clone 0”) and by a third morphology (“ABA L2/3 447 
PY”), which is a L2/3 pyramidal cell from the mouse primary visual area [51]. It is important 448 
to note that the parameter values of proxies optimized for the morphology “NMC L2/3 PY, 449 
clone 9” were applied unchanged to the other morphologies across network states.  450 

We found that ERWS2	was the proxy with the highest prediction accuracy (Fig 4). It 451 
approximated extremely well the EEG across all three types of morphology and across all 452 
network states. The performance of both ERWS	proxies	in predicting the EEG generated by the 453 
mouse pyramidal neuron morphology (“ABA L2/3 PY”, Fig 4, right column) was as good as 454 
the performance for the “NMC L2/3 PY, clone 9” morphology (probably because they have 455 
similar broad-tuft dendritic morphology, although different size). This suggests that the model 456 
generalizes reasonably well across species (at least for EEG generated by broad-tuft dendritic 457 
morphologies).	ERWS proxies also performed well, though less compared to the morphology 458 
they were optimized for, on the EEGs generated by the other rat somatosensory cortex 459 
morphology (“NMC L2/3 PY, clone 0”, Fig 4, middle column). The small decrease in 460 
performance was probably due to the fact that, unlike the broad dendritic tuft morphology used 461 
to optimized the proxy, this morphology incorporates long apical dendrites that separates 462 
AMPA synapses located in the tuft from GABA synapses more than 200 µm. Analogously, the 463 
similarity in performance of LRWS for the “NMC L2/3 PY, clone 0” morphology could be 464 
understood in terms of similarity between the pyramidal-cell morphology used to develop the 465 
LRWS proxy [42] and this morphology. The LRWS proxy [42] performed well across all 466 
morphologies in the AI state but its performance decreased across other states and 467 
morphologies. Other proxies performed poorly across different morphologies and/or states.  468 

We next investigated how different spatial distributions of synapses on excitatory cells 469 
affect the performance of proxies (Fig 5). More specifically, GABA synapses were distributed 470 
on excitatory cells following two alternative approaches: located only on the lower part of the 471 
cell, primarily on the soma and basal dendrites (“Asymmetric”) or homogeneously distributed 472 
across all dendrites (“Homogeneous”). Note that the “Asymmetric” case (Fig 5, left column) 473 
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corresponds to default configuration shown in Fig 4 A, left column (“NMC L2/3 PY, clone 9” 474 
morphology). The most significant change observed when distributing GABA synapses 475 
homogeneously on excitatory cells was an overall decrease of the performance of all proxies 476 
(but see ∑I), most prominently for the AI. These findings are in agreement with previous 477 
results obtained for the LFP proxy [42] in which an homogenous distribution of AMPA and 478 
GABA synapses on pyramidal cells resulted in the worst approximation of LFPs. In all 479 
scenarios, except for the AI state, ERWS1 and ERWS2 provided the best performance and their 480 
average R2 values across network states reflect their superiority in both the asymmetric and 481 
homogenous distributions.  482 

 483 

 484 
Fig 4. Performance of proxies for different morphologies. (A) Neuron reconstructions of L2/3 485 
pyramidal cells acquired from the Neocortical Microcircuitry (NMC) portal [47, 48] and the Allen Brain 486 
Atlas (ABA) [51] (Table 5). For visualization purposes, in the synaptic distribution of each morphology, 487 
only a subset of AMPA and GABA synapses are shown, drawn randomly from all presynaptic 488 
connections. (B) R2 computed for each morphology (columns) and network state (rows). The label “All” 489 
indicates the average R2 across the three network states.  490 
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 491 
Fig 5. Influence of synaptic distributions on performance of proxies. Outline of the two different 492 
distributions of GABA synapses on excitatory cells: distributed only below the reference point Z	= 8.5 493 
mm (“Asymmetric”) or distributed homogenously across all dendrites (“Homogeneous”). Each row 494 
below the diagram of model cells shows the corresponding R2 for a different network state. The label 495 
“All” in the last row displays the average R2 across the three network states. 496 

 497 

Effects of the position of the electrode over the head model on the EEG and proxies 498 

To investigate the relationship between the position of the electrode and its effects on 499 
the EEG and performance of proxies, we simulated the EEG at four different locations over 500 
the head (Fig 6 A). Simulation results are shown as a function of the angle between the 501 
electrode location and the Z-axis (Theta), computed for the three different network states: AI, 502 
SI and SR. We first explored how properties of the EEG signal changed with the location of 503 
the electrode. As expected, the EEG amplitude, defined as the standard deviation of the EEG 504 
signal over time, decreased steeply when the electrode is moved away from the top of the head 505 
(Fig 6 B). This decrease in EEG amplitude is consistent with previous simulation results of the 506 
4-sphere head-model [35, 39], in which a moderate attenuation of the EEG scalp potentials was 507 
observed when increasing the lateral distance from the center position along the head surface. 508 
Although the EEG amplitude is larger in the SR state, the relative variations of amplitude as a 509 
function of Theta were similar across network states. In contrast, we found (Fig 6C) sizeable 510 
differences in the normalized time courses of the EEG at different network states: an increase 511 
of Theta involved a delay of the EEG signal that is larger for the AI and SI states, but much 512 
weaker for the SR state. These results could indicate that as the measurement point moves 513 
toward the zero-region of the current dipole, where the EEG power is much smaller, the signal-514 
to-noise ratio is reduced and the influence of the high-frequency noise is more important. Since 515 
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the signal power is significantly larger for the SR state, the effects of the high-frequency noise 516 
are less evident for the SR state. 517 

Variations of properties of the EEG signal when the electrode was shifted from the top 518 
of the head affected the performance of proxies. As depicted in Fig 6 D, the performance of 519 
∑|I|, LRWS, ERWS1 and ERWS2	decreased when Theta was augmented in the AI and SI states. 520 
However, the performance of proxies is hardly modified by the position of the electrode in the 521 
SR state, or it even shows the opposite trend (an increase) in the case of the	LRWS	proxy. In 522 
any case, ERWS1 and ERWS2 give the best performance in most scenarios, particularly ERWS2 523 
whose R2 value is above 0.9, provided that Theta is smaller than 36 degrees. 524 

 525 

 526 
Fig 6. EEG and proxies as a function of the position of the electrode over the head model. (A) 527 
Illustration of the scalp layer in the four-sphere head model and locations where the EEG is computed. 528 
Location of the center of soma positions of the multicompartment neurons is marked as “Neuron 529 
population”. (B) EEG amplitude, (C) normalized EEG and (D) performance of ∑|I|, LRWS, ERWS1 530 
and ERWS2 as a function of the angle between the electrode location and the Z-axis (Theta), computed 531 
for the three different network states: AI, SI and SR. 532 

 533 

EEG estimation by CNN 534 

 The proxies considered above are all simple linear functions of the neural parameters 535 
of the LIF point-neuron network model. Linear proxies have the advantage of simplicity and 536 
interpretability. However, an alternative strategy for constructing an EEG proxy is training a 537 
convolutional neural network (CNN) to learn complex and possibly non-linear relationships 538 
between parameters of the LIF point-neuron network model, such as AMPA and GABA 539 
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currents, and the EEG. This could potentially improve the estimation of linear proxies, at a 540 
possible expense of increasing computational complexity and hindering interpretation. Instead 541 
of using a deep neural network with many hidden layers that could largely increase complexity 542 
and prevent us from making any type of analogy with results of linear proxies, we opted for a 543 
simpler, shallow CNN architecture, with just one convolutional layer (Fig 7 A). This CNN 544 
architecture was found to be sufficiently robust achieving a R2 value of 0.99 on the test dataset 545 
(see Table 2). The network consists of one 1D convolutional layer (‘Conv1D’) with 50 filters 546 
and a kernel of size 20, followed by a max pooling layer (‘MaxPooling1D’) of pool size 2, a 547 
flatten layer and two fully connected layers of 200 units each one (marked as ‘Dense’ and 548 
‘Output’ respectively). The input of the CNN is constructed by stacking data chunks of 100 ms 549 
(0.5 ms time resolution) extracted from the time series of AMPA and GABA currents, giving 550 
a 2 x 200 input layer.  551 

The network was trained and tested on the same independent datasets (one for the 552 
training of the proxies, the other for the validation/testing of their accuracy) generated for 553 
optimization of parameters of the ERWS1 and ERWS2 proxies, using a first-order gradient 554 
descent method  (Adam optimizer [52]) over 100 epochs (see Methods). In Fig 7 B, we observe 555 
a quick convergence of the three metrics used to monitor training (R2, MAE and MSE) towards 556 
optimal values (R2 ≈ 1, MAE < 0.1 and MSE < 0.01). Accuracy of predictions of the trained 557 
network, calculated on the test dataset, are shown in Fig 7 C-E. The probability distribution of 558 
the prediction error is depicted in panel C. Here we define the prediction error as the difference 559 
between amplitude values of the predicted and true EEG signals at a specific time step of the 560 
simulation. As observed, the prediction error distribution approximates a normal distribution 561 
with zero mean and standard deviation ≈ 0.1. The scatter plot of true versus predicted values 562 
(panel D) generally reflects a very accurate estimation of the EEG values with the swarm of 563 
points showing a clear trend that closely follows the line of a perfect EEG estimator. In panel 564 
E, we illustrate some examples of predictions of the EEG signal compared to the ground-truth 565 
EEG for different network states. Interestingly, the best match between predicted and true EEG 566 
traces is seen for the SI state, although the other two states, AI and SR, produce also fairly good 567 
estimations. 568 

The performance of the CNN was evaluated, like for the other proxies, as the average 569 
value of R2 computed over all samples of the test dataset. As shown in Table 2 A, the CNN 570 
clearly outperformed all other proxies on the test dataset and reached a very high performance 571 
score (R2 = 0.99).  We next assessed the performance of the CNN for the different 572 
configurations of the multicompartment neuron network, i.e., cell morphologies, distribution 573 
of presynaptic inputs and position of the recording electrode (Table 2 B-D). Compared to the 574 
best performing linear proxy, ERWS2, the CNN provided an increase of performance between 575 
2 and 8 % in most scenarios.  576 

 577 
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 578 
Fig 7. Overview of the convolutional neural network, train errors and accuracy of EEG 579 
predictions.  (A) Illustration of the different types of layers included in the processing pipeline of the 580 
CNN architecture as well as the output shapes of each layer. Note that the 1D convolutional layer 581 
(‘Conv1D’) uses 50 filters and a 1D convolutional window (kernel) of size = 20. The total number of 582 
parameters of the entire CNN is 942450. (B) Training metrics collected during training: R2, Mean 583 
Absolute Error (MAE) and Mean Squared Error (MSE). (C) Probability density function of the 584 
prediction error calculated on the test dataset. (D) Predictions vs true values. Each dot of the scatter plot 585 
corresponds to amplitude values of the predicted and real EEG signals at a specific time step of the 586 
simulation. The continuous line represents a perfect EEG estimator. (E) Examples of predictions of the 587 
CNN compared to the ground-truth EEGs for different network states. 588 
 589 

Table 2. Performance (computed as R2) of the CNN in comparison with ∑|I|,	 LRWS,	590 
ERWS1	and	ERWS2 proxies. The performance values shown for the test dataset (A) are 591 
averaged over all samples of the test dataset, while performance values in panels B, C and 592 
D are averaged over the samples of the different network states, i.e., AI, SI and SR.   593 

A: Performance on the test dataset 
∑|I| LRWS ERWS1 ERWS2 CNN 
0.86 0.74 0.94 0.95 0.99 

B: Morphologies 
Cell model ∑|I| LRWS ERWS1 ERWS2 CNN 
NMC L2/3 PY, c. 9 0.87 0.74 0.92 0.94 0.97 
NMC L2/3 PY, c. 0 0.70 0.76 0.77 0.77 0.87 
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ABA L2/3 PY 0.85 0.67 0.90 0.92 0.94 
C: Distribution of synapses 
Distribution type ∑|I| LRWS ERWS1 ERWS2 CNN 
Asymmetric 0.87 0.74 0.92 0.94 0.97 
Homogeneous 0.77 0.65 0.83 0.87 0.89 
D: Position of the EEG electrode 
Theta (rad) ∑|I| LRWS ERWS1 ERWS2 CNN 
0 0.87 0.74 0.92 0.94 0.97 
0.31 0.86 0.74 0.91 0.93 0.97 
0.63 0.82 0.72 0.90 0.91 0.96 
0.94 0.69 0.68 0.80 0.81 0.87 

 594 

 595 

To gain insight into how AMPA and GABA inputs interact with layers of the network, 596 
we inspected the weights learned by different filters of the convolutional layer, as illustrated in 597 
Fig 8 for some examples of representative filters, depicted both in the time domain (panel A) 598 
and frequency domain (panel B). We observed that the majority of filters perform a band-pass 599 
and high-pass filtering of AMPA and GABA inputs and their peak frequencies are within the 600 
range [102, 103] Hz. This indicates that the CNN primarily uses the fast dynamics of the current 601 
inputs to construct an estimate of the EEG signal. We then asked whether we could disentangle 602 
the different transformation functions applied by the CNN to each type of input current. In 603 
signal processing, the impulse response of a linear system is typically used to understand the 604 
type of transfer function implemented by the system. Although the convolution of the first 605 
network layer is linear, subsequent network are non-linear. However, we could use a similar 606 
methodology to characterize the transformation function of the CNN by collecting the network 607 
responses to all possible combinations of unit impulses applied either to the AMPA or GABA 608 
inputs (Fig 8 C). To extract a measure of the time shift applied by the network to AMPA and 609 
GABA inputs, we computed, for each unit impulse, the difference between the time when the 610 
impulse is applied and the time in which the absolute response of the network reaches its 611 
maximum. The histogram of time shifts applied to AMPA and GABA inputs (Fig 8 D) shows 612 
that the CNN generally estimated the EEG signal by time shifting AMPA and GABA currents 613 
within the range [-2, 2] ms and the time shift could be either positive or negative.  614 

 615 
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 616 
Fig 8. Learned filters of the convolutional layer and illustration of time shifts applied by the CNN 617 
to AMPA and GABA input currents.  Examples of weights learned by four filters of the convolutional 618 
layer, depicted both in the time (A) and frequency domains (B) for the AMPA and GABA inputs. (C) 619 
Examples of the CNN outputs in response to unit impulses applied either to the AMPA or GABA inputs. 620 
(D) Histograms of time shifts applied to the AMPA and GABA inputs for all combinations of impulses. 621 
Each time shift is computed as the difference between the time when the impulse is applied and the 622 
time in which the absolute response of the CNN reaches its maximum. 623 
 624 

Prediction of the stimulus-evoked EEG 625 

Evoked potentials are a useful technique that measures the transient response of the 626 
brain following presentation of a stimulus. Although the proxies we obtained have been 627 
optimized on long stretches of steady-state network activity, we investigated how well the 628 
proxies approximate an EEG evoked potential produced by a transient input. Fig 9 shows the 629 
spiking activity of the point-neuron network (panel A) and the ground-truth EEG (panel B) in 630 
response to a transient spike volley with a Gaussian rate profile applied to the thalamic input. 631 
This transient input simulates the thalamic input that reaches cortex when an external sensory 632 
stimulus is presented. A comparison of the performance obtained for all proxies is shown in 633 
panel C, while the outputs of ERWS1, ERWS2 and the CNN are depicted in panel D, as an 634 
example, overlapped with the ground-truth EEG. We found that most of the current-based 635 
proxies approximated well the EEG when applying a transient burst of spikes of thalamic input, 636 
in particular ∑|I|, ERWS1 and ERWS2 which reached a performance of R2 = 0.9. These results 637 
suggest that these types of proxies could also be employed to predict the type of transient 638 
response seen in evoked potentials. 639 

 640 
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 641 
Fig 9. Transient activation of thalamic input with a Gaussian pulse packet.  (A) Raster plot of 642 
spiking activity from a subset of cells in each population in response to a transient spike volley with a 643 
Gaussian rate profile (σ = 30 ms) centered at 1000 ms. (B) Ground-truth EEG at the top of the head 644 
model. (C) Performance of proxies calculated between 850 and 1150 ms. (D) Outputs of ERWS1, 645 
ERWS2 and the CNN compared to the ground-truth EEG. 646 

 647 

Discussion 648 

Understanding how to interpret experimental EEGs in terms of neural processes 649 
ultimately requires being able to compute realistic EEGs from simple and tractable neural 650 
network models, and then comparing the predictions of such models with data. Here we 651 
contributed to the first goal by developing simple yet robust and accurate methods to compute 652 
EEGs from recurrent networks of LIF point neurons, a model widely used to study cortical 653 
dynamics. We developed new linear and non-linear proxies that estimate the EEG from simple 654 
recurrent network models. A careful validation of these proxies revealed that they can give 655 
particularly accurate reconstructions of both steady-state and transient EEGs over an extensive 656 
range of network states, different morphologies, synaptic distributions and positions of the 657 
EEG electrode. These proxies thus provide a well-validated and computationally efficient way 658 
for computing a realistic EEG by simply using the output variables from simulation of point-659 
neuron network models.  660 

 661 

Robustness and generality of the EEG proxies across network states, cell morphologies, 662 
synaptic distributions, and electrode locations  663 

In many neural models used to study EEGs and LFPs, such as neural mass models [26], 664 
spiking network models [23, 29, 30] or dynamic causal models [25], extracellular potentials 665 
are simply modeled as the average firing rate or average membrane potential of excitatory 666 
neurons. While these assumptions are often reasonable, their effectiveness in describing the 667 
EEG has not been systematically validated. Here we found that these two established ways of 668 
computing the EEG worked reasonably well only under very specific conditions. However, in 669 
agreement with previous results obtained for the LFP [14, 42], we found that, for the EEG, 670 
proxies based on combinations of synaptic currents work much better and in more general 671 
conditions than proxies based on firing rates or membrane potentials. This suggests that 672 
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approximations of EEGs based on firing rates or membrane potentials should be discouraged, 673 
and replaced with the use of synaptic currents, whenever possible.   674 

Our focus has been on optimizing EEG proxies that are based on synaptic currents. The 675 
main result has been the successful development of a new class of EEG proxies, based on either 676 
an optimized linear (ERWS1 and ERWS2) or non-linear (CNN) combination of time-shifted 677 
AMPA and GABA currents. We have systematically compared the performance of the new 678 
proxies in approximating the EEG with that of previous proxies used in the literature, across a 679 
range of network states, cell morphologies, synaptic distributions, and position of EEG 680 
recording electrode.  681 

We found that, unlike all previous proxies, our new optimized EEG proxies work 682 
remarkably well for a whole range of network states which capture many patterns of 683 
oscillations, synchronization, and firing regimes observed in neocortex [12]. Predicting well 684 
the EEG over a wide range of states is important because, in many cases, EEGs are 685 
experimentally used to monitor changes in brain states, and thus models used to interpret EEGs 686 
must be able to work well over multiple states.   687 

 Our proxies were optimized using a specific pyramidal broad-dendritic-tuft 688 
morphology that generates large electric dipoles. We, however, investigated how the proxies 689 
perform when changing cell morphologies and distributions of presynaptic inputs. Our proxies 690 
showed a high performance (~80% to 95% of variance explained) across all considered 691 
scenarios, only marginally affected by changes in morphology or the distribution of GABA 692 
synapses. This suggests that our work, even though it could still be improved by using larger 693 
datasets of morphologies and synaptic distribution configurations, is already sufficiently 694 
general to accurately capture the contribution to the EEG of some major types of pyramidal 695 
neurons.  696 

We also validated the performance of EEG proxies against changes in position of the 697 
recording electrode, with respect to the position chosen to train the proxies. The performance 698 
of proxies experienced only a moderate decrease as the position of the EEG electrode was 699 
shifted from the top of the head because of the progressive reduction in EEG amplitude. 700 
Nevertheless, the R2 value of ERWS2 was maintained above 0.9 for displacements of the 701 
electrode smaller than 5 mm. 702 

We finally demonstrated that our proxies, although trained on steady-state activity, can 703 
approximate well EEG evoked potentials, capturing the transient dynamics in response to 704 
stimuli and suggesting that our work could be relevant to model transient brain computations 705 
such as the coding of individual stimuli or attentional modulations.  706 

Previous work [42] used a similar approach based on optimizing a linear proxy to predict the 707 
LFP. We extended this work by computing the EEG, rather than the LFP, and this implies that 708 
we used a head model that approximates the different geometries and electrical conductivities 709 
of the head, which was not necessary for the LFP proxy. Unlike the previous work, which 710 
considered only a reduced regime of network dynamics within the asynchronous or weakly 711 
synchronous states, we generated proxies trained and validated on a wider range of network 712 
states. Our EEG proxies were also validated on different pyramidal-cell morphologies 713 
reconstructed from experimental recordings, whereas the LFP proxy was validated on 714 
synthetically generated morphologies. As a result, our new optimized EEG proxies predict well 715 
the EEG over a wide range of states and different morphologies, unlike the LFP proxy, which 716 
worked well only for a low-input-rate state and a specific morphology of pyramidal cells.  717 
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In sum, our new optimized EEG proxies provide a simple way to compute EEGs from 718 
point-neuron networks that is highly accurate, stable across network states and variations of 719 
biophysical assumptions, and relatively invariant regarding position of the recording electrode.  720 

 721 

Applications and impact of the new EEG proxies 722 

Our work provides a key computational tool that enables applying tractable network models to 723 
EEG data with significant implications in two main directions. 724 
 725 
First, when studying computational models of brain function, our work allows quantitative 726 
rather than qualitative comparison of how different models match EEG data, thereby leading 727 
to better and more objective validations of different hypotheses about neural computations.  728 
 729 
Second, our work represents a crucial step in enabling a reliable inference, from real EEG data, 730 
of how different neural circuit parameters contribute to brain functions and brain pathologies. 731 
Since the EEG conflates many circuit-level aggregate neural phenomena organized over a wide 732 
range of frequencies, it is difficult to infer from its measure the value of key neural parameters, 733 
such as for example the ratio between excitation and inhibition [1, 53]. Developing tractable 734 
neural networks that include an explicit relationship between the EEG response and neural 735 
network parameters is a way to address this issue. By fitting such models to real EEG data, 736 
estimates of neural network parameters (such as the ratio between excitation and inhibition or 737 
properties of network connectivity) can be obtained from EEG spectra or evoked potentials. 738 
This approach could be used, for example, to test the influential theories of the excitation-739 
inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders 740 
[54, 55], to empirically measure how this balance changes between patients with autistic 741 
disorder syndrome and control subjects [53], or to individuate the neural correlates of diseases 742 
that show alterations of EEG activity [56-60].  Thus, our EEG proxies have clear relevance for 743 
connecting EEG in human experiments to cellular and network data in health and disease. 744 
 745 
Although more work is needed to be able to interpret empirical EEGs in terms of network 746 
models, there are several facts that indicate that our proxies can potentially help in this respect. 747 
Recent attempts to infer neural parameters from EEGs or other non-invasive signals, based on 748 
network models that use less accurate proxies than the ones developed here, are nevertheless 749 
beginning to provide credible estimates of key parameters of underlying neural circuit such as 750 
excitation-inhibition ratios [53, 61], as well as accurate descriptions of cortical dynamics. For 751 
example, previous theoretical studies have modeled the LFP/EEG as the sum of absolute values 752 
of synaptic currents [14, 15, 34, 45].  This type of proxy, though simplified, was shown to be 753 
sufficient to explain quantitatively several important properties of cortical field potentials, 754 
including the relationship between sensory stimuli and the spectral coding of LFPs [14], cross-755 
frequency and spike-field relationships [34], and LFP phase of firing information content [15]. 756 
We thus expect that the new EEG proxies can help building on these encouraging results and 757 
further improve the biological plausibility and robustness of neural parameter estimation from 758 
EEGs.   759 
 760 

Linear vs non-linear proxies 761 

We optimized the EEG proxies by training either linear or non-linear EEG prediction 762 
models based on synaptic currents. In particular, the linear proxies (ERWS1 and ERWS2) were 763 
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based on an optimized linear combination of time-shifted AMPA and GABA currents. 764 
Alternatively, we investigated the application of a shallow CNN that could capture more 765 
complex interactions between synaptic currents to estimate the EEG. Compared to the best 766 
performing linear proxy, ERWS2, the non-linear EEG proxy based on a convolutional network 767 
provided a sizeable increase of performance (2 to 8 %, see Table 2) and it provided a very high 768 
performance (>85%) in all conditions. The convolutional weights that we provide (see [62] and 769 
Section “Data and Code Availability”) can be used to easily compute these non-linear EEGs 770 
proxies using similar computational power as that employed for linear proxies. However, the 771 
drawback of CNNs is that it is harder to infer direct relationships between synaptic currents 772 
and the EEG, whereas these relationships are apparent and immediate to interpret with linear 773 
proxies (see section below). However, we showed that this problem could be in part attenuated 774 
when using tools to visualize the transformation function implemented by the CNN, which 775 
allow an understanding of how synaptic currents are transformed by the non-linear proxy.  776 

 777 

Limitations and future work 778 

The present network modelling scheme involves several major assumptions with 779 
respect to simplification of the multi-layered cortical column architecture, and combined use 780 
of point-neuron and multicompartment networks. 781 

Our proxies have been extensively validated for a model with one class of pyramidal 782 
cells and are expected to be applied to models of any brain area in which the EEG is likely to 783 
be generated by one dominant population. We chose to model a single cortical layer, layer 2/3, 784 
based on previous computational work suggesting that this layer gives a large contribution to 785 
extracellular potentials [30, 35]. Although we have shown that our proxies generalize well for 786 
different L2/3 pyramidal-cell morphologies, it will be important to extend our work to quantify 787 
contributions from other cortical laminae and cell morphologies to the generation of EEGs. In 788 
this regard, it is important to note that electrical potentials in the brain tissue add linearly and 789 
the superposition of individual contributions to the EEG is in principle straightforward to 790 
compute if the amplitude of each laminar contribution is known. Thus, we could approximate 791 
the total EEG by a suitable linear combination of individual proxies computed for each 792 
population. We envisage future studies that address this issue by coupling multi-layer spiking 793 
models of cortical circuits [30, 63, 64] with multi-layer multicompartment neuron models 794 
within the hybrid modelling scheme. 795 

The hybrid modelling approach [30] offers the advantage that we can vary parameters 796 
of the EEG-generating model, e.g., cell morphologies or synaptic distribution, without 797 
affecting the spiking dynamics. The disadvantage of this approach is, however, that the 798 
multicompartment network does not match the point-neuron network in every respect. For 799 
instance, even though the synaptic input conductances were identical in the two models, the 800 
resulting soma potentials of multicompartmental neurons were not identical to those of the 801 
point neurons because of passive dendritic filtering or the lack of a membrane-voltage reset 802 
mechanism following spike, among other effects. This inconsistency could, at least partially, 803 
be resolved by extracting the effective synaptic weight distributions from multicompartment 804 
neurons and use them in the point-neuron network in order to make the two simulation 805 
environments even more similar [65].  806 

Calculation of EEG signals requires a head model, and here we have used the simple analytic 807 
four-sphere head model. There are however many high-resolution, anatomically detailed, and 808 
potentially personalized head models available, which for example take into account the folded 809 
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cortical surface of the human brain [66-68]. Importantly, the EEG proxies developed here can 810 
be easily used in combination with such complex head models. This is because the EEG signal 811 
calculated at top of the head in the four-sphere head model, resulting from a current dipole 812 
directly below the electrode, is in fact just a scaling of the dominant component (the component 813 
aligned with the depth axis of the cortex) of the original current dipole [35]. This means that 814 
our proxies developed for the EEG signal at the top of the head in the four-sphere model, are 815 
in fact equally valid as proxies for the (normalized) dominant component of the population 816 
current dipole moment, that is, the sum of all single-cell current dipole moments (Sup. Fig 1). 817 
Such population current dipoles can be used directly in combination with existing detailed head 818 
models to calculate EEG signals, see for example [35]. Further, note that in Fig 6, we tested 819 
that the proxy for the EEG signal optimized for the top of the head worked well for other head 820 
locations.  821 

Insights gained from proxies about the neural contributions to the EEGs 822 

Parameters of the linear proxies, and their variations over cortical states, allow 823 
immediate postulations about how synaptic currents combine to generate an EEG. We showed 824 
that the time shifts of ERWS1 and ERWS2 resulted from the optimization process have opposite 825 
signs, indicating that the EEG signal depends on both causal and non-causal components of 826 
AMPA and GABA currents. The presence of non-causal components in a proxy may appear at 827 
first counterintuitive but as previously found for the LFP [6], this reflects the recurrent nature 828 
of interactions within a cortical circuit, which makes it impossible to separate completely cause 829 
and effects and leads to both causal and non-causal dependencies.  830 

Importantly, the analysis of the best performing proxy, ERWS2,	whose parameters 831 
change as a function of the external input rate, revealed that the contribution of synaptic 832 
currents to the EEG dynamically varies with the cortical state. Specifically, we found that time 833 
shifts of AMPA and GABA currents, and the relative weighting between GABA and AMPA 834 
currents depend on the network state. In particular, we observed a larger weight of GABA 835 
currents for low values of the external input and the opposite effect, stronger weight of AMPA 836 
currents, as the external rate increases. This suggests that the contribution of neural activity to 837 
the EEG is a dynamic, rather than a static process, and underlies the importance of developing 838 
EEG proxies, such as those developed here to capture these variations. 839 

 840 

Methods 841 

Overview of the approach for computing the proxies and the ground-truth EEG 842 

Our focus is on computing an accurate prediction of the EEG (denoted as “proxy” in 843 
the following) based simply on the variables available directly from the simulation of a point-844 
neuron network model. The point-neuron network was constructed following a well-845 
established configuration based on two populations of LIF point neurons, one excitatory and 846 
other inhibitory, with recurrent connections between populations [12], as illustrated in Fig 1 A. 847 
The network receives two types of external inputs: a thalamic synaptic input that carries the 848 
sensory information and a stimulus-unrelated input representing slow ongoing fluctuations of 849 
cortical activity.  850 

The ground-truth EEG (referred to simply as “EEG” in the paper) with which to 851 
compare the performance of the different proxies is here computed using the hybrid modelling 852 
scheme [30, 35, 42, 43]. We created a network of unconnected multicompartment neuron 853 
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models with realistic morphologies and distribute them within a cylinder of radius r	= 0.5 mm 854 
(Fig 1 C). We focused on computing the EEG generated by neurons with somas positioned in 855 
one cortical layer so that the soma compartments of each cell are aligned in the Z-axis, 150 µm 856 
below the reference point Z	= 8.5 mm, and homogenously distributed within the circular section 857 
of the cylinder. In our default setting, all dendrites of inhibitory cells receive GABA synapses 858 
while only those dendrites of excitatory cells below Z	= 8.5 mm receive GABA synapses. 859 
AMPA synapses are homogenously positioned along the Z-axis in both cell types.  860 

EEGs were generated from multicompartment neurons in combination with a forward-861 
modelling scheme based on volume conduction theory [6]. From each multicompartment 862 
neuron simulation the current dipole moment of the cell was extracted with LFPy [39]. Next, 863 
these current dipole moments and the locations of the cells were used as input to the four-864 
sphere head model to calculate all single-cell EEG contribution. The ground-truth EEG signal 865 
is the sum of all such single-cell EEG contributions. To approximate the different geometries 866 
and electrical conductivities of the head, we computed the EEG using the four-layered spherical 867 
head model described in [49]. In this model, the different layers represent the brain tissue, 868 
cerebrospinal fluid (CSF), skull, and scalp, with radii 9, 9.5, 10 and 10.5 mm respectively, 869 
which approximate the dimensions of a rodent head model [46]. The values of the 870 
conductivities chosen are the default values of 0.3, 1.5, 0.015 and 0.3 S/m. The EEG electrode 871 
is located on the scalp surface, at the top of the head model (Fig 1 C). 872 

The time series of spikes of individual point neurons were mapped to synapse activation 873 
times on corresponding postsynaptic multicompartment neurons. Each multicompartment 874 
neuron was randomly assigned to a unique neuron in the point-neuron network and received 875 
the same input spikes of the equivalent point neuron. Since the multicompartment neurons were 876 
not interconnected, they were not involved in the LIF network dynamics and their only role 877 
was to transform the spiking activity of the point-neuron network into a realistic estimate of 878 
the EEG. The EEG computed from the multicompartment neuron model network was then 879 
used as benchmark ground-truth data against which we compare different candidate proxies 880 
(Fig 1 D).  881 

Definition and computation of the proxies that approximate the ground-truth EEG  882 

A proxy is defined as an estimation of the EEG based on the variables available from 883 
the point neuron model over all excitatory neurons. Unless otherwise stated, we only 884 
considered the contributions of pyramidal cells to generate the EEG (in both the point-neuron 885 
and multicompartment neuron networks). The first six proxies that we tested were those used 886 
in previous literature for predicting the EEG or the LFP from point-neuron networks. These 887 
were: the average firing rate (FR), the average membrane potential (Vm), the average sum of 888 
AMPA currents (AMPA), the average sum of GABA currents (GABA), the average sum of 889 
synaptic currents (∑I) and average sum of their absolute values (∑|I|). Note that ∑I and ∑|I| 890 
are defined as the sum of both AMPA and GABA currents. Because of the opposite signs 891 
assigned to the AMPA and GABA currents, ∑|I| is equivalent to the difference between these 892 
currents. Computation of the average FR was calculated with a temporal bin width of 1 ms, and 893 
then filtered with a 5-ms rectangular window to produce a smoother output of the FR.  894 

For several reasons (e.g., different rise and decay time constants or different peak 895 
conductances), we expect that AMPA and GABA currents contribute differently to the EEG 896 
and that the optimal combination of both types of currents could involve different time delays 897 
between them. Following Mazzoni and colleagues [42], the new class of current-based proxies, 898 
the weighted sum of currents (WS), was based on a linear combination of AMPA and GABA 899 
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currents, with a factor α describing the relative ratio between the two currents and a specific 900 
delay for each type of current (τAMPA, τGABA): 901 

𝑊𝑆(𝑡) = ∑ 𝐴𝑀𝑃𝐴(𝑡 − 𝜏,-.,) − 𝛼(∑ 𝐺𝐴𝐵𝐴(𝑡 − 𝜏/,0,)!"#. )!"#.  (5) 902 

 903 

The optimal values of α, τAMPA and τGABA were found to be 1.65, 6 ms and 0 ms for the 904 
LFP, respectively [42]. As a result, the LFP reference weighted sum (LRWS) proxy was defined 905 
as 906 

𝐿𝑅𝑊𝑆(𝑡) = ∑ 𝐴𝑀𝑃𝐴(𝑡 − 6𝑚𝑠) − 1.65(∑ 𝐺𝐴𝐵𝐴(𝑡)!"#. )!"#.  (6) 907 

 908 

Here we also introduced two new proxies derived from the WS formulation: the EEG 909 
reference weighted sum 1 (ERWS1) and the EEG reference weighted sum 2 (ERWS2), whose 910 
parameters were optimized to fit the EEG under different network states of the point-neuron 911 
network. While the concept of ERWS1 is similar to that of LRWS, with fixed optimal values of 912 
α, τAMPA and τGABA, the parameters of the ERWS2 were defined as a power function of the firing 913 
rate of the thalamic input (ν0, unitless) to account for possible dependencies of the EEG with 914 
the external rate: 915 

ERWS1(𝑡) = ∑ 𝐴𝑀𝑃𝐴<𝑡 − 𝜏,-.,(ERWS1)> − 𝛼ERWS1<∑ 𝐺𝐴𝐵𝐴<𝑡 − 𝜏/,0,(ERWS1)>!"#. >!"#.916 
 (7) 917 

 918 

ERWS2(𝑡, 𝜐%) = ∑ 𝐴𝑀𝑃𝐴 K𝑡 − 𝜏,-.,(ERWS2)(𝜐%)L − 𝛼ERWS2(𝜐%) K∑ 𝐺𝐴𝐵𝐴 K𝑡 −!"#.!"#.919 

𝜏/,0,(ERWS2)(𝜐%)LL (8) 920 

 921 

𝜏,-.,(ERWS2)(𝜐%) = 𝑎)𝜐%
&9: + 𝑐)

𝜏/,0,(ERWS2)(𝜐%) = 𝑎(𝜐%
&9; + 𝑐(

𝛼ERWS2(𝜐%) = 𝑎<𝜐%
&9= + 𝑐<

  (9) 922 

  923 

The total number of parameters to optimize was 3 for ERWS1 (αERWS1, τAMPA(ERWS1) and 924 
τGABA(ERWS1)) and 9 for ERWS2 (a1, b1, c1, a2, b2, c2, a3, b3 and c3). We experimented with other 925 
classes of functions (e.g., exponential and polynomial functions) to describe the dependency 926 
of parameters of ERWS2 with ν0 but the best performance results were found with a power 927 
function.  928 

 929 

Leaky integrate-and-fire point-neuron network 930 

We implemented a recurrent network model of LIF point-neurons that was based on 931 
the Brunel model [31] and the modified versions developed in subsequent publications [14, 15, 932 
34, 42, 45, 69]. These models have demonstrated to explain well and capture a large fraction 933 
of the variance of the dynamics of neural activity in primary visual cortex during naturalistic 934 
stimulation, including a wide range of cortical oscillations such as low-frequency (1-12 Hz) 935 
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and gamma (30-100 Hz) oscillations. In particular, the network structure and model parameters 936 
are the same ones used in [69] with conductance-based synapses (we refer the reader to this 937 
publication for an in-depth technical description of the implementation). Briefly, the network 938 
was composed of 5000 neurons, 4000 are excitatory (i.e., their projections onto other neurons 939 
form AMPA-like excitatory synapses) and 1000 inhibitory (i.e., their projections form GABA-940 
like synapses). The neurons were randomly connected with a connection probability between 941 
each pair of neurons of 0.2. This means that, on average, the number of incoming excitatory 942 
and inhibitory connections onto each neuron was 800 and 200, respectively. Both populations 943 
received two different types of excitatory external input: a thalamic input intended to carry the 944 
information about the external stimuli and a stimulus-unrelated input representing slow 945 
ongoing fluctuations of activity. Spike trains of the external inputs are generated by 946 
independent Poisson processes. While the firing rate of every individual Poisson process for 947 
the thalamic input was kept constant in each simulation (within the range [1.5, 30] spikes/s), 948 
the firing rate of the cortico-cortical input was varied over time with slow dynamics, according 949 
by an Ornstein-Uhlenbeck (OU) process with zero mean: 950 

𝜏>
?>(@)
?@

= −𝑛(𝑡) + 𝜎><Q2𝜏>>𝜂(𝑡) (10) 951 

  952 

 Here 𝜎>( (0.16 spikes/s) is the variance of the noise, η(t) is a Gaussian white noise and 953 
τn (16 ms), the time constant. The full network description is given in Tables 3 and 4, following 954 
the guidelines indicated in [70]. 955 

 956 

Table 3. Description of the point-neuron network. 957 

A: Model summary 
Structure Excitatory-inhibitory (E-I) network 
Populations Two: excitatory and inhibitory 
Input 2 independent Poisson spike trains, one with a fixed rate and the other with 

a time-varying rate generated by an OU process 
Measurement Spikes, membrane potential, AMPA and GABA currents 
Neuron model Cortex: leaky integrate-and-fire (LIF) with fixed threshold and fixed 

absolute refractory time; external inputs: point process 
Synapse model Difference of exponential functions; conductance-based synapses 
Topology None 
Connectivity Random and sparse 
B: Populations 
Type Elements Size 
Pyramidal cells LIF neurons 4000 
Interneurons LIF neurons 1000 
Thalamic input Poisson generator 1 
Cortico-cortical input Poisson generator 1 
C: Connectivity 
Name Source Target Pattern 
AMPAPyr_Pyr Pyramidal Pyramidal Random convergent (p = 0.2), weight gPyr_Pyr 
AMPAPyr_Int Pyramidal Interneuron Random convergent (p = 0.2), weight gPyr_Int 
GABAInt_Pyr Interneuron Pyramidal Random convergent (p = 0.2), weight gInt_Pyr 
GABAInt_Int Interneuron Interneuron Random convergent (p = 0.2), weight gInt_Int 
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AMPAtha_Pyr Thalamic Pyramidal Fixed in-degree (800), weight gtha_Pyr 
AMPAtha_Int Thalamic Interneuron Fixed in-degree (800), weight gtha_Int 
AMPAcort_Pyr Cortical Pyramidal Fixed in-degree (800), weight gcort_Pyr 
AMPAcort_Int Cortical Interneuron Fixed in-degree (800), weight gcort_Int 
D: Neuron model 
Type  Leaky integrate-and-fire  
Description 𝜏A

?B(@)
?@

= −𝑉(𝑡) + 𝑉C!DE −
FGHG(@)
IJKLM

, 
𝐼@N@(𝑡) = ∑ 𝐼,-.,OKP(𝑡) + ∑ 𝐼/,0,OKP(𝑡) + 𝐼,-.,KQG(𝑡)RSTUTOKPRTVWTOKP , 

E: Synapse model 
Type Conductance-based synapse, difference of exponentials [31]  
Description 𝐼XY>(𝑡) = 𝑔XY>𝑠XY>(𝑡)<𝑉(𝑡) − 𝐸XY>>, 

 
if a presynaptic spike occurs: 

𝑠XY>(𝑡) =
𝜏A

𝜏? − 𝜏Z
W𝑒𝑥𝑝 [

−𝑡 − 𝜏C
𝜏?

\ − 𝑒𝑥𝑝 [
−𝑡 − 𝜏C
𝜏Z

\] 

 
F: Input 
Type Description 
Poisson generator Thalamic input, time-constant input with rate ν0; each neuron receives 

800 independent thalamic inputs  
Poisson generator Cortico-cortical input, OU process with zero mean; each neuron receives 

800 independent cortico-cortical inputs 
G: Global simulation parameters 
Simulation duration 3000 ms 
Temporal resolution 0.05 ms 
Startup transient 500 ms 

 958 

Table 4. Parameters of the neuron models used in the point-neuron network. 959 

A: Neuron model 
Parameter Pyramidal cells Interneurons 
Vleak (mV) -70  -70  
Vthreshold (mV) -52  -52  
Vreset	(mV) -59  -59  
τrefractory (ms) 2  1  
gleak	(nS) 25  20  
Cm (pF) 500  200  
τm	(ms) 20  10  
B: Connection parameters 
Parameter Pyramidal cells Interneurons 
EAMPA (mV) 0  0  
EGABA (mV) -80  -80  
τr(AMPA) (ms) 0.4  0.2  
τd(AMPA) (ms) 2  1  
τr(GABA) (ms) 0.25  0.25  
τd(GABA)	(ms) 5  5  
τl	(ms) 1  1  
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gAMPA(rec.) (nS) 0.178 0.233 
gAMPA(tha.)	(nS) 0.234 0.317 
gAMPA(cort.) (nS) 0.187 0.254 
gGABA (nS) 2.01 2.7 

 960 

Multicompartment-neuron network 961 

The EEG was computed by projecting the spiking activity of the point-neuron network 962 
onto a network of multicompartment neuron models in which every multicompartment neuron 963 
is assigned a unique corresponding point neuron. A key factor for a successful representation 964 
of the EEG is selection of proper morphologies of multicompartment neurons with detailed 965 
and realistic dendritic compartments. Our focus was on computing the EEG for cortical layer 966 
2/3 so that we acquired representative morphological reconstructions of L2/3 pyramidal cells 967 
and interneurons from publicly available repositories: the Neocortical Microcircuitry (NMC) 968 
portal [47, 48] based predominantly on the data released by Markram and collaborators [47], 969 
and the Allen Brain Atlas (ABA) [51]. We also imposed our target animal model to be the 970 
rodent model. In our simulations, we evaluated three different types of morphologies of L2/3 971 
pyramidal cells and one morphology of a specific type of L2/3 interneuron, the large basket 972 
cell interneuron (the most numerous class in L2/3 [47], represented as PY and LBC 973 
respectively in Table 5. Unless otherwise stated, the default morphology file used for pyramidal 974 
cells in our simulations is dend-C250500A-P3_axon-C260897C-P2-Clone_9. 975 

Table 5. Morphologies types and file identifiers used in the multicompartment neuron 976 
network model.  977 

Cell type Animal species File identifier Source 
L2/3 PY Rat dend-C250500A-P3_axon-C260897C-P2-Clone_9 NMC 
L2/3 PY Rat dend-C260897C-P3_axon-C220797A-P3-Clone_0 NMC 
L2/3 PY Mouse Cux2-CreERT2, ID:486262299 ABA 
L2/3 LBC Rat C250500A-I4_Clone_0 NMC 

 978 

Soma compartments of pyramidal cells and interneurons were randomly placed in a 979 
cylindrical section of radius 0.5 mm, at Z = 8.35 mm. We assumed that GABA presynaptic 980 
inputs could only be located on dendritic compartments below the reference point Z = 8.5 mm. 981 
AMPA synapses were homogenously distributed along the Z-axis in both cell types with 982 
random probability normalized to the membrane area of each segment. This configuration 983 
resulted in an asymmetric distribution of AMPA and GABA synapses onto pyramidal cells 984 
creating a stronger current dipole moment from these types of cells. Each multicompartment 985 
neuron was modeled as a non-spiking neuron with a passive membrane [38]. Tables 6 and 7 986 
summarize properties of the multicompartment neuron network. 987 

Table 6. Description of the multicompartment neuron network. 988 

A: Model summary 
Structure Unconnected populations of multicompartment neurons 
Populations Two: pyramidal cells and interneurons 
Input Presynaptic spiking activity as modeled by the point-neuron network 
Measurement EEG, current dipole moment 
Neuron model Multicompartment neuron model based on the passive cable formalism 
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Synapse model Difference of exponential functions; conductance-based synapses 
Topology Cylindrical volume with radius r = 0.5 mm 
Connectivity None 
B: Populations 
Type Populations of 4000 pyramidal cells and 1000 interneurons 
Cell positions  Soma compartments located at Z = 8.35 mm and randomly distributed 

within the circular section of the cylinder 
Cell orientations Fixed orientation with apical dendrites oriented along the Z-axis 
Morphologies Reconstructed morphologies from the NMC and ABA (Table 5); axons 

removed if present 
C: Connectivity 
No network connectivity, synaptic inputs are generated by the point-neuron network with the 
same synaptic parameters (Table 4) 
D: Neuron model 
Type  Multicompartment reconstructed morphologies  
Description Non-spiking neurons based on the passive cable formalism (except in 

subsection “The performance of EEG proxies depends on the neuron 
morphology, distribution of synapses and the type of dendritic 
conductances”), with membrane capacity cm, membrane resistivity rm, 
axial resistivity ra and leak reversal potential EL. 

E: Synapse model 
Type Conductance-based synapse, difference of exponentials 
Description 𝐼XY>(𝑡) = 𝑔XY>𝑠XY>(𝑡)<𝑉(𝑡) − 𝐸XY>>, 

𝑠XY>(𝑡) = 𝐴 ^𝑒𝑥𝑝 K&@&\J
\]

L − 𝑒𝑥𝑝 K&@&\J
\O

L_, 
where A is a normalization factor to give a peak conductance gsyn 

F: Input 
Type Spike times of spiking neuron network (including thalamic and cortico-

cortical input spikes), no recurrent input 
Description All dendrites of interneurons receive GABA synapses while only those 

dendrites of pyramidal cells below Z = 8.5 mm receive GABA synapses; 
AMPA synapses are homogenously positioned along the Z-axis in both 
cell types; synapse locations are randomly assigned onto cell 
compartments assuming a probability proportional to the compartment’s 
surface area divided by the total surface area of the cell 

G: Global simulation parameters 
Simulation duration 3000 ms 
Temporal resolution 0.05 ms 
Startup transient 500 ms 

 989 

Table 7. Parameters of multicompartment neurons. 990 

Parameter Pyramidal cells Interneurons 
cm (µF/cm2) 1 1 
rm (kΩcm2) 30 20 
ra (Ωcm) 100 100 
EL (mV) -70 -70 

 991 
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Optimization and validation of EEG proxies 992 

We created two different simulated datasets, one for optimization of the ERWS1’s and 993 
ERWS2’s parameters (Eqs. 7-9), and the other dataset for validation of performance of all 994 
proxies. The datasets were generated by varying the two parameters of the point-neuron 995 
network commonly used for exploration of different network states [31, 44]: the rate of the 996 
external input, ν0, and the relative strength of inhibitory synapses, defined here as g	 =	997 
gInt_Pyr/gPyr_Pyr. We selected 58 values of ν0	within the range [1.5, 30] spikes/s and 3 values of 998 
g (5.65, 8.5 and 11.3), which encompass the different network states: asynchronous irregular, 999 
synchronous irregular and synchronous regular [12]. For every pair (ν0, g), we generated three 1000 
simulations of the point-neuron and multicompartment-neuron networks with different random 1001 
initial conditions (e.g., recurrent connections of the point-neuron network or soma positions of 1002 
multicompartment neurons). The simulated outputs from two of these network instantiations 1003 
were used for the optimization dataset and the other one for the validation dataset. 1004 

Prior to comparing the EEG traces with the point-neuron model predictions, we z-1005 
scored the proxies and the EEG signal by subtracting their mean value and dividing by the 1006 
standard deviation. The best parameters of ERWS1 and ERWS2	 were calculated by 1007 
minimization of the sum of the square errors SSE between the ground-truth EEG and the proxy 1008 
for all network instantiations i of the optimization dataset: 1009 

𝑆𝑆𝐸 = ∑ ∑ <𝐸𝐸𝐺^(𝑡) − 𝑝𝑟𝑜𝑥𝑦^(𝑡)>
(

@^  (11) 1010 

 1011 

Time constants of proxies (Eqs. 7-9) were restricted to be discrete variables as the 1012 
simulation time is a discrete variable. This turns the optimization problem into a discrete 1013 
optimization problem, which is harder to solve than a continuous optimization problem. 1014 
However, the limited number of parameters that need to be optimized allowed us to run a 1015 
simple brute-force parameter search.  1016 

The performance of each proxy was evaluated by using the coefficient of determination 1017 
R2, which is the fraction of the EEG variance explained by the proxy. R2	is computed as the 1018 
squared value of the correlation coefficient. The validation results were calculated based on the 1019 
average R2 of every proxy across all network instantiations i of the validation dataset. 1020 

 1021 

Implementation of the convolutional neural network 1022 

 The processing pipeline of the CNN architecture, illustrated in Fig 7 A, was based on 1023 
the machine-learning library Keras running on top of TensorFlow [71]. The CNN consists of a 1024 
one-dimensional (1D) convolutional layer with 50 filters and a kernel of size 20, followed by 1025 
a max pooling layer of pool size 2, a flatten layer and two fully connected layers of 200 units 1026 
each (one of them is the output layer). The rectified linear unit (ReLU) function was used as 1027 
the activation function for all layers, except for the output layer. To reduce overfitting, we 1028 
applied L2 activity regularization (λ = 0.001) to the convolutional layer. The amount by which 1029 
filters shift, the strides, is set to 1 for the convolutional layer and 2 for the max pooling layer. 1030 
The input layer was formed by two channels of 1D data that correspond to the AMPA and 1031 
GABA time series simulated by the point-neuron network. Instead of using data of the whole 1032 
simulation (3000 ms), we split time series into multiple chunks (i.e., samples) of 100 ms, a 1033 
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window size that we found convenient to improve estimation accuracy of the CNN. Nodes of 1034 
the output layer predict segments of the EEG signal at each 100-ms window.  1035 

 The CNN was trained by first-order gradient descent (Adam optimizer [52]) with 1036 
default parameters as those provided in the original paper. We defined the loss function for 1037 
training as the mean squared error (MSE) between the predicted and the true values of the EEG. 1038 
To monitor training, we employed the MSE and also the mean absolute error (MAE) and the 1039 
coefficient of determination, R2. The CNN is trained for a sufficiently large number of epochs, 1040 
100 epochs, to ensure convergence of the error metrics. To train and test the CNN, we use the 1041 
same datasets generated for optimizing parameters of the current-based proxies, as described 1042 
above.  1043 

 1044 

Analysis of network states 1045 

To characterize the different network states of activity in the point-neuron network at 1046 
the level of both single neurons and populations, we employed the descriptors developed by 1047 
Kumar and collaborators for conductance-based point-neuron networks [44]. 1048 

Synchrony. We quantified the synchrony of the population activity in the network as the 1049 
average pairwise spike-train correlation from a randomly selected subpopulation of 1000 1050 
excitatory neurons. The spike trains were binned in non-overlapping time windows of 2 ms. 1051 

Irregularity. Irregularity of individual spike trains was measured by the coefficient of 1052 
variation (the ratio of the biased standard deviation to the mean) of the corresponding interspike 1053 
interval (ISI) distribution. Low values indicate regular spiking; a value of 1 reflects Poisson-1054 
type behavior. The irregularity index was computed for all excitatory neurons. 1055 

Mean firing rate. The mean firing rate was estimated by averaging the firing of all excitatory 1056 
cells, and was calculated with a bin width of 1 ms. 1057 

 1058 

Post-processing and spectral analysis 1059 

 The z-scored EEG signals and proxies are resampled by applying a fourth-order 1060 
Chebyshev type I low-pass filter with critical frequency fc = 800 Hz and 0.05 dB ripple in the 1061 
passband using a forward-backward linear filter operation and then selecting every 10th time 1062 
sample. The estimate of the normalized power spectral density (normalized PSD) was 1063 
computed using the Fast Fourier Transform with the Welch’s method, dividing the EEG z-1064 
scored data into eight overlapping segments with 50 % overlap.  1065 

 1066 

Numerical implementation 1067 

Here we summarize the details of the software and hardware used to generate the results 1068 
presented in this study. Point-neuron network simulations were implemented using NEST 1069 
v2.16.0 [72]. EEG signals were computed using LFPy v2.0 [39] and simulations of 1070 
multicompartment model neurons using NEURON v7.6.5 [73]. The CNN is constructed based 1071 
on the machine-learning library Keras v2.3. The source-code structure relies on the freely 1072 
available, object-oriented programming language Python (v2.7.12). Every simulation was 1073 
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parallelized using either a 60-CPU 256-GB server at the Istituto Italiano di Tecnologia (IIT) or 1074 
the Stallo high-performance computing facilities (NOTUR, the Norwegian Metacenter for 1075 
Computational Science). Simulations of the point-neuron network were performed based on 1076 
thread parallelism implemented with the OpenMP library. Network simulations with 1077 
NEURON used distributed computing built on the MPI interface. Computation time for 1078 
completing simulations of both network models and the post-processing of results was 2 hours 1079 
on average for each experimental condition. The source code to reproduce these results will be 1080 
made publicly available upon final publication of this manuscript [62]. 1081 

 1082 

Acknowledgments 1083 

We would like to thank M. Libera for his technical support.  1084 

 1085 

Funding 1086 

This project has received funding from the European Union’s Horizon 2020 research 1087 
and innovation programme under the Marie Skłodowska-Curie grant agreement No 893825, 1088 
the NIH Brain Initiative (grants U19NS107464 and NS108410), the Simons Foundation 1089 
(SFARI Explorer 602849), the European Union Horizon 2020 Research and Innovation 1090 
Programme under Grant Agreement No. 785907 and No. 945539 [Human Brain Project (HBP) 1091 
SGA2 and SGA3], and the Norwegian Research Council (NFR) through NOTUR - NN4661K. 1092 

 1093 

Data and Code availability: 1094 

The code used to generate the simulations and to perform the analyses, as well as the 1095 
weights of the optimized convolutional neural networks for the EEG are available from 1096 
GitHub. Martínez-Cañada, P. Github source-code repository (2020). Available from: 1097 
https://github.com/pablomc88/EEG_proxy_from_network_point_neurons. 1098 

 1099 

Author contributions 1100 

Conceived project: P.M.C., S.P. Developed Methodology: all authors. Software 1101 
implementation and data analysis: P.M.C. Wrote the paper (original draft): P.M.C., S.P. 1102 
Wrote the paper (review and editing): all authors. Supervised project: S.P., T.F., G.T.E. 1103 
Funding acquisition: S.P., T.F., P. M.C, G.T.E. 1104 

 1105 

References 1106 

1. Cohen MX. Where Does EEG Come From and What Does It Mean? Trends in Neurosciences. 1107 
2017;40(4):208-18. doi: 10.1016/j.tins.2017.02.004. 1108 
2. Buzsaki G. Neuronal Oscillations in Cortical Networks. Science. 2004;304(5679):1926-9. doi: 1109 
10.1126/science.1099745. 1110 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.364802doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

3. Hood DC, Zhang X. Multifocal ERG and VEP responses and visual fields: comparing disease-1111 
related changes. Doc Ophthalmol. 2000;100(2-3):115-37. Epub 2001/01/06. doi: 1112 
10.1023/a:1002727602212. PubMed PMID: 11142742. 1113 
4. Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. 1114 
Nature Reviews Neuroscience. 2012;13(2):121-34. doi: 10.1038/nrn3137. 1115 
5. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents — EEG, ECoG, 1116 
LFP and spikes. Nature Reviews Neuroscience. 2012;13(6):407-20. doi: 10.1038/nrn3241. 1117 
6. Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials 1118 
for studying the function of cortical circuits. Nature Reviews Neuroscience. 2013;14(11):770-85. doi: 1119 
10.1038/nrn3599. 1120 
7. Lopes da Silva F. EEG and MEG: Relevance to Neuroscience. Neuron. 2013;80(5):1112-28. doi: 1121 
10.1016/j.neuron.2013.10.017. 1122 
8. Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, et al. Investigating large-scale brain 1123 
dynamics using field potential recordings: analysis and interpretation. Nature Neuroscience. 1124 
2018;21(7):903-19. doi: 10.1038/s41593-018-0171-8. 1125 
9. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, et al. Simulation of 1126 
networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience. 1127 
2007;23(3):349-98. doi: 10.1007/s10827-007-0038-6. 1128 
10. Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, et al. The Scientific Case 1129 
for Brain Simulations. Neuron. 2019;102(4):735-44. doi: 10.1016/j.neuron.2019.03.027. 1130 
11. Plesser HE, Eppler JM, Morrison A, Diesmann M, Gewaltig M-O. Efficient Parallel Simulation 1131 
of Large-Scale Neuronal Networks on Clusters of Multiprocessor Computers.  Euro-Par 2007 Parallel 1132 
Processing. Lecture Notes in Computer Science2007. p. 672-81. 1133 
12. Brunel N. Phase diagrams of sparsely connected networks of excitatory and inhibitory spiking 1134 
neurons. Neurocomputing. 2000;32-33:307-12. doi: 10.1016/s0925-2312(00)00179-x. 1135 
13. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K. The dynamic brain: from spiking 1136 
neurons to neural masses and cortical fields. PLoS Comput Biol. 2008;4(8):e1000092. Epub 1137 
2008/09/05. doi: 10.1371/journal.pcbi.1000092. PubMed PMID: 18769680; PubMed Central PMCID: 1138 
PMCPMC2519166. 1139 
14. Mazzoni A, Panzeri S, Logothetis NK, Brunel N. Encoding of naturalistic stimuli by local field 1140 
potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol. 1141 
2008;4(12):e1000239. Epub 2008/12/17. doi: 10.1371/journal.pcbi.1000239. PubMed PMID: 1142 
19079571; PubMed Central PMCID: PMCPMC2585056. 1143 
15. Mazzoni A, Brunel N, Cavallari S, Logothetis NK, Panzeri S. Cortical dynamics during naturalistic 1144 
sensory stimulations: experiments and models. J Physiol Paris. 2011;105(1-3):2-15. Epub 2011/09/13. 1145 
doi: 10.1016/j.jphysparis.2011.07.014. PubMed PMID: 21907800. 1146 
16. Compte A. Synaptic Mechanisms and Network Dynamics Underlying Spatial Working Memory 1147 
in a Cortical Network Model. Cerebral Cortex. 2000;10(9):910-23. doi: 10.1093/cercor/10.9.910. 1148 
17. Mongillo G, Barak O, Tsodyks M. Synaptic Theory of Working Memory. Science. 1149 
2008;319(5869):1543-6. doi: 10.1126/science.1150769. 1150 
18. Deco G, Thiele A. Cholinergic control of cortical network interactions enables feedback-1151 
mediated attentional modulation. European Journal of Neuroscience. 2011;34(1):146-57. doi: 1152 
10.1111/j.1460-9568.2011.07749.x. 1153 
19. Muller L, Reynaud A, Chavane F, Destexhe A. The stimulus-evoked population response in 1154 
visual cortex of awake monkey is a propagating wave. Nature Communications. 2014;5(1). doi: 1155 
10.1038/ncomms4675. 1156 
20. Muller L, Chavane F, Reynolds J, Sejnowski TJ. Cortical travelling waves: mechanisms and 1157 
computational principles. Nature Reviews Neuroscience. 2018;19(5):255-68. doi: 1158 
10.1038/nrn.2018.20. 1159 
21. Ostojic S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking 1160 
neurons. Nature Neuroscience. 2014;17(4):594-600. doi: 10.1038/nn.3658. 1161 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.364802doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

22. Zerlaut Y, Zucca S, Panzeri S, Fellin T. The Spectrum of Asynchronous Dynamics in Spiking 1162 
Networks as a Model for the Diversity of Non-rhythmic Waking States in the Neocortex. Cell Reports. 1163 
2019;27(4):1119-32.e7. doi: 10.1016/j.celrep.2019.03.102. 1164 
23. Hill S, Tononi G. Modeling Sleep and Wakefulness in the Thalamocortical System. Journal of 1165 
Neurophysiology. 2005;93(3):1671-98. doi: 10.1152/jn.00915.2004. 1166 
24. Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HDI, Sejnowski TJ, et al. Model of 1167 
Transient Oscillatory Synchronization in the Locust Antennal Lobe. Neuron. 2001;30(2):553-67. doi: 1168 
10.1016/s0896-6273(01)00284-7. 1169 
25. David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ. Dynamic causal modeling of 1170 
evoked responses in EEG and MEG. NeuroImage. 2006;30(4):1255-72. doi: 1171 
10.1016/j.neuroimage.2005.10.045. 1172 
26. David O, Friston KJ. A neural mass model for MEG/EEG. NeuroImage. 2003;20(3):1743-55. doi: 1173 
10.1016/j.neuroimage.2003.07.015. 1174 
27. Ursino M, La Cara G-E. Travelling waves and EEG patterns during epileptic seizure: Analysis 1175 
with an integrate-and-fire neural network. Journal of Theoretical Biology. 2006;242(1):171-87. doi: 1176 
10.1016/j.jtbi.2006.02.012. 1177 
28. Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a 1178 
mathematical model of coupled cortical columns. Biol Cybern. 1995;73(4):357-66. Epub 1995/09/01. 1179 
doi: 10.1007/BF00199471. PubMed PMID: 7578475. 1180 
29. Buehlmann A, Deco G. Optimal information transfer in the cortex through synchronization. 1181 
PLoS Comput Biol. 2010;6(9). Epub 2010/09/24. doi: 10.1371/journal.pcbi.1000934. PubMed PMID: 1182 
20862355; PubMed Central PMCID: PMCPMC2940722. 1183 
30. Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, van Albada SJ, et al. Hybrid Scheme 1184 
for Modeling Local Field Potentials from Point-Neuron Networks. Cerebral Cortex. 2016;26(12):4461-1185 
96. doi: 10.1093/cercor/bhw237. 1186 
31. Brunel N, Wang X-J. What Determines the Frequency of Fast Network Oscillations With 1187 
Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance. Journal of 1188 
Neurophysiology. 2003;90(1):415-30. doi: 10.1152/jn.01095.2002. 1189 
32. Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J. Cellular and Network Mechanisms of 1190 
Slow Oscillatory Activity (<1 Hz) and Wave Propagations in a Cortical Network Model. Journal of 1191 
Neurophysiology. 2003;89(5):2707-25. doi: 10.1152/jn.00845.2002. 1192 
33. Touboul J, Destexhe A. Can power-law scaling and neuronal avalanches arise from stochastic 1193 
dynamics? PLoS One. 2010;5(2):e8982. Epub 2010/02/18. doi: 10.1371/journal.pone.0008982. 1194 
PubMed PMID: 20161798; PubMed Central PMCID: PMCPMC2820096. 1195 
34. Mazzoni A, Whittingstall K, Brunel N, Logothetis NK, Panzeri S. Understanding the 1196 
relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local 1197 
cortical network model. NeuroImage. 2010;52(3):956-72. doi: 10.1016/j.neuroimage.2009.12.040. 1198 
35. Næss S, Halnes G, Hagen E, Hagler DJ, Dale AM, Einevoll GT, et al. Biophysically detailed 1199 
forward modeling of the neural origin of EEG and MEG signals. NeuroImage. 2021;225. doi: 1200 
10.1016/j.neuroimage.2020.117467. 1201 
36. Daunizeau J, David O, Stephan KE. Dynamic causal modelling: a critical review of the 1202 
biophysical and statistical foundations. Neuroimage. 2011;58(2):312-22. Epub 2009/12/08. doi: 1203 
10.1016/j.neuroimage.2009.11.062. PubMed PMID: 19961941. 1204 
37. Ness TV, Halnes G, Næss S, Pettersen KH, Einevoll GT. Computing extracellular electric 1205 
potentials from neuronal simulations. arXiv preprint arXiv:200616630. 2020. 1206 
38. De Schutter E, Van Geit W. Modeling complex neurons. Computational modeling methods for 1207 
neuroscientists Cambridge: MIT. 2009:259-84. 1208 
39. Hagen E, Næss S, Ness TV, Einevoll GT. Multimodal Modeling of Neural Network Activity: 1209 
Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. Frontiers in Neuroinformatics. 2018;12. 1210 
doi: 10.3389/fninf.2018.00092. 1211 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.364802doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

40. Lindén H, Hagen E, Łęski S, Norheim ES, Pettersen KH, Einevoll GT. LFPy: a tool for biophysical 1212 
simulation of extracellular potentials generated by detailed model neurons. Frontiers in 1213 
Neuroinformatics. 2014;7. doi: 10.3389/fninf.2013.00041. 1214 
41. Pettersen KH, Lindén H, Dale AM, Einevoll GT. Extracellular spikes and CSD. In: Destexhe A, 1215 
Brette R, editors. Handbook of Neural Activity Measurement. Cambridge: Cambridge University Press; 1216 
2012. p. 92-135. 1217 
42. Mazzoni A, Linden H, Cuntz H, Lansner A, Panzeri S, Einevoll GT. Computing the Local Field 1218 
Potential (LFP) from Integrate-and-Fire Network Models. PLoS Comput Biol. 2015;11(12):e1004584. 1219 
Epub 2015/12/15. doi: 10.1371/journal.pcbi.1004584. PubMed PMID: 26657024; PubMed Central 1220 
PMCID: PMCPMC4682791. 1221 
43. Skaar JW, Stasik AJ, Hagen E, Ness TV, Einevoll GT. Estimation of neural network model 1222 
parameters from local field potentials (LFPs). PLoS Comput Biol. 2020;16(3):e1007725. Epub 1223 
2020/03/11. doi: 10.1371/journal.pcbi.1007725. PubMed PMID: 32155141; PubMed Central PMCID: 1224 
PMCPMC7083334. 1225 
44. Kumar A, Schrader S, Aertsen A, Rotter S. The High-Conductance State of Cortical Networks. 1226 
Neural Computation. 2008;20(1):1-43. doi: 10.1162/neco.2008.20.1.1. 1227 
45. Barbieri F, Mazzoni A, Logothetis NK, Panzeri S, Brunel N. Stimulus Dependence of Local Field 1228 
Potential Spectra: Experiment versus Theory. Journal of Neuroscience. 2014;34(44):14589-605. doi: 1229 
10.1523/jneurosci.5365-13.2014. 1230 
46. Nowak K, Mix E, Gimsa J, Strauss U, Sriperumbudur KK, Benecke R, et al. Optimizing a Rodent 1231 
Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation. 1232 
Parkinson's Disease. 2011;2011:1-19. doi: 10.4061/2011/414682. 1233 
47. Markram H, Muller E, Ramaswamy S, Reimann Michael W, Abdellah M, Sanchez Carlos A, et 1234 
al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 2015;163(2):456-92. doi: 1235 
10.1016/j.cell.2015.09.029. 1236 
48. Ramaswamy S, Courcol J-D, Abdellah M, Adaszewski SR, Antille N, Arsever S, et al. The 1237 
neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Frontiers in 1238 
Neural Circuits. 2015;9. doi: 10.3389/fncir.2015.00044. 1239 
49. Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT, Wójcik DK. Corrected Four-Sphere Head 1240 
Model for EEG Signals. Frontiers in Human Neuroscience. 2017;11. doi: 10.3389/fnhum.2017.00490. 1241 
50. Murakami S, Okada Y. Contributions of principal neocortical neurons to 1242 
magnetoencephalography and electroencephalography signals. The Journal of Physiology. 1243 
2006;575(3):925-36. doi: 10.1113/jphysiol.2006.105379. 1244 
51. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of 1245 
gene expression in the adult mouse brain. Nature. 2006;445(7124):168-76. doi: 10.1038/nature05453. 1246 
52. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 1247 
2014. 1248 
53. Trakoshis S, Martínez-Cañada P, Rocchi F, Canella C, You W, Chakrabarti B, et al. Intrinsic 1249 
excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus 1250 
women. eLife. 2020;9:e55684. doi: 10.7554/eLife.55684. 1251 
54. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in 1252 
key neural systems. Genes, Brain and Behavior. 2003;2(5):255-67. doi: 10.1034/j.1601-1253 
183X.2003.00037.x. 1254 
55. Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating 1255 
mechanisms in neuropsychiatric disorders. Molecular Psychiatry. 2019;24(9):1248-57. doi: 1256 
10.1038/s41380-019-0426-0. 1257 
56. Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism 1258 
spectrum disorder risk. BMC Medicine. 2011;9(1). doi: 10.1186/1741-7015-9-18. 1259 
57. Bosl WJ, Loddenkemper T, Nelson CA. Nonlinear EEG biomarker profiles for autism and 1260 
absence epilepsy. Neuropsychiatric Electrophysiology. 2017;3(1). doi: 10.1186/s40810-017-0023-x. 1261 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.364802doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

58. Gogolla N, LeBlanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK. Common circuit defect of 1262 
excitatory-inhibitory balance in mouse models of autism. Journal of Neurodevelopmental Disorders. 1263 
2009;1(2):172-81. doi: 10.1007/s11689-009-9023-x. 1264 
59. Mäki-Marttunen T, Krull F, Bettella F, Hagen E, Næss S, Ness TV, et al. Alterations in 1265 
Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. Cerebral Cortex. 1266 
2019;29(2):875-91. doi: 10.1093/cercor/bhy291. 1267 
60. Mäki-Marttunen T, Kaufmann T, Elvsåshagen T, Devor A, Djurovic S, Westlye LT, et al. 1268 
Biophysical Psychiatry—How Computational Neuroscience Can Help to Understand the Complex 1269 
Mechanisms of Mental Disorders. Frontiers in Psychiatry. 2019;10(534). doi: 1270 
10.3389/fpsyt.2019.00534. 1271 
61. Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field 1272 
potentials. NeuroImage. 2017;158:70-8. doi: 10.1016/j.neuroimage.2017.06.078. 1273 
62. Martínez-Cañada P. Github source-code repository 2020. Available from: 1274 
https://github.com/pablomc88/EEG_proxy_from_network_point_neurons. 1275 
63. Potjans TC, Diesmann M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and 1276 
Activity in a Full-Scale Spiking Network Model. Cerebral Cortex. 2014;24(3):785-806. doi: 1277 
10.1093/cercor/bhs358. 1278 
64. Senk J, Hagen E, van Albada SJ, Diesmann M. Reconciliation of weak pairwise spike-train 1279 
correlations and highly coherent local field potentials across space. arXiv preprint arXiv:180510235. 1280 
2018. 1281 
65. Rössert C, Pozzorini C, Chindemi G, Davison AP, Eroe C, King J, et al. Automated point-neuron 1282 
simplification of data-driven microcircuit models. arXiv preprint arXiv:160400087. 2016. 1283 
66. Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Analysis. NeuroImage. 1999;9(2):179-94. 1284 
doi: 10.1006/nimg.1998.0395. 1285 
67. Huang Y, Parra LC, Haufe S. The New York Head—A precise standardized volume conductor 1286 
model for EEG source localization and tES targeting. NeuroImage. 2016;140:150-62. doi: 1287 
10.1016/j.neuroimage.2015.12.019. 1288 
68. Vorwerk J, Cho J-H, Rampp S, Hamer H, Knösche TR, Wolters CH. A guideline for head volume 1289 
conductor modeling in EEG and MEG. NeuroImage. 2014;100:590-607. doi: 1290 
10.1016/j.neuroimage.2014.06.040. 1291 
69. Cavallari S, Panzeri S, Mazzoni A. Comparison of the dynamics of neural interactions between 1292 
current-based and conductance-based integrate-and-fire recurrent networks. Front Neural Circuits. 1293 
2014;8:12. Epub 2014/03/19. doi: 10.3389/fncir.2014.00012. PubMed PMID: 24634645; PubMed 1294 
Central PMCID: PMCPMC3943173. 1295 
70. Nordlie E, Gewaltig MO, Plesser HE. Towards reproducible descriptions of neuronal network 1296 
models. PLoS Comput Biol. 2009;5(8):e1000456. Epub 2009/08/08. doi: 1297 
10.1371/journal.pcbi.1000456. PubMed PMID: 19662159; PubMed Central PMCID: 1298 
PMCPMC2713426. 1299 
71. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. Tensorflow: Large-scale 1300 
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:160304467. 2016. 1301 
72. Linssen C, Deepu R, Mitchell J, Lepperød ME, Garrido J, Spreizer S, et al. NEST 2.16. 0. Jülich 1302 
Supercomputing Center, 2018. 1303 
73. Hines M. NEURON and Python. Frontiers in Neuroinformatics. 2009;3. doi: 1304 
10.3389/neuro.11.001.2009. 1305 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.364802doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.364802
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

 1306 

Supplementary figures 1307 
 1308 

 1309 
Supplementary Figure 1. EEG (black line) and z-component (red dashed line) of the current dipole 1310 
moment (Pz) calculated at the top of head model. 1311 
 1312 
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