

Ancient evolution of hepadnaviral paleoviruses and their impact on host genomes.

Spyros Lytras¹, Gloria Arriagada², Robert J. Gifford^{1*}

¹ MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.

² Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Spyros Lytras: MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, UK, G61 1QH (s.lytras.1@research.gla.ac.uk)

Gloria Arriagada: *Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Echaurren 183, Santiago, Chile. (gloria.arriagada@unab.cl)*

Robert J Gifford: MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, UK, G61 1QH (robert.gifford@glasgow.ac.uk)

*Correspondence: Robert J Gifford (robert.gifford@glasgow.ac.uk)

1 ABSTRACT

2 Hepadnaviruses (family *Hepadnaviridae*) are reverse-transcribing animal viruses that
3 infect vertebrates. Vertebrate genomes contain DNA sequences derived from ancient
4 hepadnaviruses, and these 'endogenous hepatitis B viruses' (eHBVs) reveal aspects of the long-
5 term coevolutionary relationship between hepadnaviruses and their vertebrate hosts. Here, we
6 use a novel, data-oriented approach to recover and analyse the complete repertoire of eHBV
7 elements in published animal genomes. We show that germline incorporation of hepadnaviruses
8 is exclusive to a single vertebrate group (Sauria) and that the eHBVs contained in saurian
9 genomes represent a far greater diversity of hepadnaviruses than previously recognised. Through
10 in-depth characterisation of eHBV elements we establish the existence of four distinct subgroups
11 within the genus *Avihepadnavirus* and trace their evolution through the Cenozoic Era.
12 Furthermore, we provide a completely new perspective on hepadnavirus evolution by showing
13 that the metahepadnaviruses (genus *Metahepadnavirus*) originated >300 million years ago in the
14 Paleozoic Era, and has historically infected a broad range of vertebrates. We also show that
15 eHBVs have been intra-genomically amplified in some saurian lineages, and that eHBVs located
16 at approximately equivalent genomic loci have been acquired in entirely distinct germline
17 integration events. These findings indicate that selective forces have favoured the accumulation
18 of hepadnaviral sequences at specific loci in the saurian germline. Our investigation provides a
19 range of new insights into the long-term evolutionary history of reverse-transcribing DNA viruses
20 and demonstrates that germline incorporation of hepadnaviruses has played an important role in
21 shaping the evolution of saurian genomes.

22

23 BACKGROUND

24 Hepadnaviruses (family *Hepadnaviridae*) are reverse-transcribing DNA viruses that infect
25 vertebrates. The type species - hepatitis B virus (HBV) - is estimated to infect ~300 million people
26 worldwide, causing substantial morbidity and mortality. Hepadnaviruses have enveloped,
27 spherical virions and a small, circular DNA genome ~3 kilobases (Kb) in length. The genome is
28 characterised by a highly streamlined organization incorporating extensive gene overlap - the
29 open reading frame (ORF) encoding the viral polymerase (P) protein occupies most of the
30 genome and typically overlaps at least one of the ORFs encoding the core (C), and surface (S)
31 proteins.

32 For decades only two hepadnavirus genera were known: genus *Orthohepadnavirus*, which
33 infects mammalian species, and genus *Avihepadnavirus*, which infects avian species. Since
34 2019, however, five hepadnavirus genera are recognised [1]. The three newly defined genera

1 include the herpetohepadnaviruses (genus *Herpetohepadnavirus*), which infect amphibians and
2 reptiles, as well as two highly distinct groups that infect fish - the metahepadnaviruses (genus
3 *Metahepadnavirus*) and the parahepadnaviruses (genus *Parahepadnavirus*) [2-4]. Unexpectedly,
4 phylogenetic analysis revealed that the metahepadnaviruses are more closely related to the
5 mammalian orthohepadnaviruses than to other hepadnaviral lineages, leading to proposals that
6 inter-class transmission of hepadnaviruses between fish and terrestrial vertebrates has occurred
7 in the past [3, 5].

8 Whole genome sequencing has revealed the presence of DNA sequences derived from
9 hepadnaviruses in some vertebrate genomes. These 'endogenous hepatitis B viruses' (eHBVs)
10 are thought to have originated via 'germline incorporation' events in which hepadnavirus DNA
11 sequences were integrated into chromosomal DNA of germline cells and subsequently inherited
12 as novel host alleles. Most eHBV sequences that arise in this way will be quickly purged from the
13 gene pool via drift and natural selection. Occasionally, however, some may persist long enough
14 to become genetically fixed in the germline of ancestral species. Fixed eHBVs are expected to
15 remain in the germline indefinitely unless removed by macrodeletion, but in the absence of
16 selective pressure their sequences will gradually degrade via neutral mutation.

17 Analysis of eHBVs has proven immensely informative with respect to the long-term
18 evolutionary history of the *Hepadnaviridae*. eHBV sequences are in some ways equivalent to
19 hepadnavirus 'fossils' in that they provide a source of retrospective information about the distant
20 ancestors of modern hepadnaviruses. Before ancient eHBV sequences provided a means of
21 calibrating the timeline of hepadnavirus evolution, the family was thought to have originated within
22 the past 100,000 years. However, the discovery of ancient eHBV sequences exhibiting
23 remarkable similarity to contemporary strains demonstrates that hepadnaviruses infected
24 vertebrate ancestors millions of years ago, during the Mesozoic and Cenozoic Eras [6-9]. All
25 eHBVs identified so far derive from viruses belonging to the *Avihepadnavirus* or
26 *Herpetohepadnavirus* genera.

27 Currently, the distribution and diversity of hepadnavirus-related sequences in animal
28 genomes remains incompletely characterized. Studies have shown that multiple additional,
29 lineage-specific eHBV insertions are present in some species [7, 10, 11]. However, progress in
30 characterising these elements has been hampered by the challenges inherent in analysing large
31 numbers of fragmentary and degenerated eHBV sequences. In this investigation we sought to
32 directly address these challenges and comprehensively map the distribution and diversity of
33 eHBV sequences in vertebrate genomes. Through comparative and phylogenetic analysis of the

1 eHBV sequences identified in our study, we derive a wide range of novel insights into the evolution
2 of hepadnaviruses and their impact on animal genomes.

3

4 **METHODS**

5 Genome screening in silico

6 We used the database-integrated genome screening (DIGS) tool [12] to derive a non-
7 redundant database of loci within published WGS assemblies that show similarity to
8 hepadnavirus-specific polypeptides. The DIGS tool is written using the PERL scripting language
9 and implements a ‘database-integrated’ genome screening framework by using the MySQL
10 relational database management system (RDBMS) to: (i) coordinate systematic screening and;
11 (ii) capture output data. Similarity searches are performed using the basic local alignment search
12 tool (BLAST) program suite [13]. The framework requires the collation of a reference sequence
13 library. This provides a source of ‘probes’ (for searching WGS data using the tBLASTn program).
14 Additionally, the set of sequences that is recovered via BLAST-based screening can be classified
15 via comparison to curated set of reference sequences (this time using the tBLASTx program). For
16 this project, we collated a library comprised of genome length sequences of representative
17 hepadnavirus species (**Table S1**) and previously characterised eHBVs (see **Table S2**). In
18 addition, we included the sequences of retroelements disclosing similarity to hepadnaviruses,
19 which could be expected to produce false positive matches to hepadnavirus probes [14]. Whole
20 genome sequence data were obtained from the National Center for Biotechnology Information
21 (NCBI) genome database resource. We obtained all vertebrate genomes available as of March
22 2020.

23 For all five hepadnavirus genera we generated a multiple sequence alignment (MSA) that
24 contained full-length sequences of all genus members (i.e. virus species and distinct eHBV
25 insertions). MSAs were generated using a combination of MUSCLE and a BLAST-based, codon
26 aware alignment method implemented in GLUE [15]. Genome length alignments were manually
27 inspected and adjusted to correct problematic regions associated with germline mutations and
28 insertions in eHBVs. The reference library was used to derive a set of polypeptide sequences as
29 probes and references in DIGS (**Table S1**). For eHBVs we translated putative ORFs (inferred
30 during the alignment process described above) to obtain representative polypeptide sequences.
31 Sequences disclosing similarity to hepadnaviral probes were classified via tBLASTx-based
32 comparison to this sequence set.

33 Via DIGS we generated a database of genomic sequences disclosing similarity to
34 hepadnaviruses. We extended the core schema of this database to incorporate additional tables

1 representing the taxonomic classifications of viruses, eHBVs and host species included in our
2 study. We used structured query language (SQL) to interrogate this database, filtering sequences
3 based on their similarity to reference sequences, the taxonomic properties of the closest related
4 reference sequence, and the taxonomic distribution of related sequences across hosts. Using this
5 approach we categorised sequences into: (i) putatively novel eHBV elements; (ii) orthologs of
6 previously characterised eHBVs (e.g. copies containing large indels); (iii) non-viral sequences
7 that cross-matched to hepadnavirus probes (e.g. retrotransposons). Sequences that did not
8 match to previously reported eHBVs were further investigated by incorporating them into our
9 genus-level, genome-length MSA along with all of our reference taxa and reconstructing
10 maximum likelihood phylogenies using RAxML (version 8) [16].

11 Where phylogenetic analysis supported the existence of a novel eHBV insertion, we also
12 attempted to: (i) determine its genomic location relative to annotated genes in reference genomes;
13 and (ii) identify and align eHBV-host genome junctions and pre-integration insertion sites (see
14 below). Where these investigations revealed new information (e.g. by confirming the presence of
15 a previously uncharacterised eHBV insertion) we updated our reference library accordingly. This
16 in turn allowed us to reclassify all of the putative eHBV loci in our database and group sequences
17 more accurately into categories. By iterating this procedure we progressively resolved the majority
18 of eHBV sequences identified in our screen into groups of orthologous sequences derived from
19 the same initial germline incorporation event (**Table S3**). eHBV elements were given unique IDs
20 using a systematic approach, following a convention established for endogenous retroviruses
21 [17].

22

23 Comparative analysis of hepadnavirus and eHBV sequences

24 We used the GLUE software environment [15] to create a sequence data resource
25 ('Hepadnaviridae-GLUE') capable of supporting reproducible comparative investigations of
26 hepadnavirus genomes - including those that utilise host genomic data such as eHBVs (**Fig. 1a**).
27 We created a GLUE project that contains all of the data items associated with our investigation
28 (i.e. virus genome sequences, multiple sequence alignments, genome feature annotations, and
29 other sequence-associated data) and uses a relational database to represent the semantic
30 relationships between them. Representative genome sequences for hepadnavirus species
31 recognised by ICTV were obtained from GenBank. Sequences of recently described
32 hepadnaviruses not yet available in GenBank were obtained from study authors [4].

1 Hepadnavirus sequences were virtually ‘rotated’ within GLUE as required to represent
2 them within the same coordinate space (i.e. using the same genomic start position). Using GLUE
3 we implemented an automated process for constructing alignments of putatively orthologous
4 sequences and thereafter using these alignments to derive consensus sequences representing
5 each set of orthologs. Once the presence of a novel eHBV insertion was established, a consensus
6 sequence representing this insertion was incorporated into the appropriate genome-length MSAs
7 for the genus it derived from (this could usually be inferred via sequence similarity, but in marginal
8 cases was confirmed by phylogenetic analysis using a broader taxa set).

9 Because all aligned eHBV and virus sequence data held in our project have been adjusted
10 to occupy a standardised coordinate space (by default determined by our project master
11 reference, hepatitis B virus), we could use functions implemented within the GLUE software to
12 infer coverage relative to genus master reference genomes, and thereby infer the genomic
13 structure of consensus eHBV elements. In addition, all the alignments constructed in our study
14 were rationally linked to one another via a ‘constrained alignment tree’ data structure that links
15 multiple sequence alignments (MSAs) constructed at distinct taxonomic levels. This allowed us
16 to automate the reconstruction of evolutionary relationships between hepadnaviruses and eHBV
17 elements at different taxonomic levels (e.g. family, genus, ortholog), and using the standardised
18 coordinate space to select alignment partitions corresponding to specific genome features and
19 subdomains.

20

21 Genomic analysis

22 To confirm that the eHBV elements identified in our study were distinct from those
23 previously reported (i.e. they derive from a distinct germline incorporation event) we investigated
24 the locus surrounding each putatively novel eHBV. To identify flanking genes, we extracted 2kb
25 sequences flanking each eHBV hits (using utility scripts implemented within the DIGS tool). We
26 used BLASTn to identify the corresponding region in related species (i.e. a region that disclosed
27 the expected degree of homology to both the upstream and downstream flanking regions). By
28 viewing the region in the ENSEMBL genome browser, we obtained the unique identifiers of the
29 most closely located genes in the regions upstream and downstream of eHBV insertions.

30 To assess potential presence of transposable elements (TE) around eHBVs of interest
31 (**Fig 3a**) we extracted the 5kb sequences flanking the eHBV coordinates from the respective
32 genome assemblies, adjusting for reverse complementarity. These sequences were analysed for
33 TE presence using HMMER [28] against the Dfam HMM profile library [29].

1
2 Insertion dating
3 Dating of eHBV insertions presented in this study have been estimated by examining the most
4 distant host species sharing a particular eHBV and using these hosts' divergence date and
5 confidence intervals (CI) as reported in Timetree (ref: www.doi.org/10.1093/molbev/msx116).

6
7 **RESULTS**
8 Endogenisation of hepadnaviruses is unique to Saurian species

9 We screened all available WGS data for metazoan species and identified >930 sequences
10 disclosing similarity to hepadnaviruses (**Table 1**, **Table S3**). We found that *bona fide* eHBV
11 elements are only present in the genomes of saurian species. Furthermore, reconstruction of the
12 phylogenetic relationships between eHBVs and contemporary hepadnaviruses revealed that
13 saurian genomes contain a broader diversity of eHBV elements than previously recognised, with
14 elements derived from the metahepadnavirus-like elements being present, as well as elements
15 derived from the *Avihepadnavirus* and *Herpetohepadnavirus* genera (**Fig. 1a**, **Fig. S1a**).

16 Relatively large numbers of avihepadnavirus-derived eHBVs were identified in avian
17 genomes (**Table 1**), most of which represent only short, sub-genomic fragments. However, we
18 identified 17 that represented complete, or near complete viral genomes (**Fig. 2**). We also
19 identified previously unreported, herpetohepadnavirus-derived eHBVs in the genomes of a lizard
20 (superorder Lepidosauria) and in snakes (order Serpentes). The novel snake elements were
21 closely related to those previously reported in snake genomes [7] (**Fig 1a**, **Fig S1**), while the lizard
22 element was identified in the Komodo dragon (*Varanus komodoensis*). *Herpeto.6-Varanus* was
23 found to cluster robustly with skink hepatitis B virus (SkHBV) [4].

24 Notably, metahepadnavirus-like eHBV elements were identified in a wide range of saurian
25 species, including birds, turtles, a lizard - the ocelot gecko (*Paroedura pictus*) - and the tuatara
26 (*Sphenodon punctatus*). By contrast, herpetohepadnavirus-derived elements were only identified
27 in reptiles, and avihepadnavirus-derived elements were only detected in birds.

28
29 Several distinct avihepadnavirus lineages have circulated among birds during their evolution
30 Phylogenetic reconstructions demonstrate the presence of at least four distinct clades (I-
31 IV) within the *Avihepadnavirus* genus (**Fig. 1**). Clade IV contains a mixture of extant
32 avihepadnaviruses and eHBV insertions, while the remaining three clades are comprised
33 exclusively of eHBV sequences. Notably, all four clades are highly divergent from one another in
34 'variable region 2' (which spans most of the Pre-S protein and includes regions that encode

1 receptor-binding functions [18]), but within each clade these regions are relatively well conserved
2 (**Fig. 2, Fig. S2a**). The order of ancestral branching among *Avihepadnavirus* clades is unclear –
3 in phylogenies constructed using highly conserved regions of the P gene and rooted on
4 herpetohepadnaviruses, none is clearly basal or derived relative to the others (data not shown).
5 Notably, however, clade IV and clade II share a conserved, synapomorphic character: the
6 insertion of a valine (V) or isoleucine (I) residue in the P protein, between positions 203 and 204
7 (**Fig. 2, Fig. S2b**). This shared, conserved character indicates that these two clades are more
8 closely related to one another than they are to other hepadnaviruses - at least in the region around
9 the synapomorphy. Overall, germline incorporation events involving each of the four
10 avihepadnavirus clades seem to have occurred throughout the evolution of birds, with some
11 occurring prior to major divergences in the avian tree, and others being confined to specific avian
12 species or subgroups (**Table 1, Fig 1b**).

13 Near-complete insertions derived from clade I were identified in rose-necked parakeets
14 (*Avi.29-Psittacula*) and in Anna's hummingbird (*Calypte anna*) as well as two distinct elements in
15 songbirds (order Passeriformes). Among the two songbird elements, one was found only in
16 warblers (*Avi.37-Phylloscopus*) while another (*Avi.37-Passeriformes*) was found in five distinct
17 families within the superfamily Passeroidea, establishing that it integrated into the passeroid
18 germline >38 Mya (CI: 16-43 Mya). We also identified clade I-derived elements in parrots that
19 represent only fragments of a hepadnavirus genome. These elements, which appear to have been
20 intragenomically amplified (discussed below) and include some elements that are orthologous
21 across all parrots (order Psittaciformes), indicate that germline incorporation occurred >49 Mya
22 (CI: 29-71 Mya) prior to the divergence of the kea (*Nestor notabilis*) from other parrot lineages
23 [19].

24 Clade II contains sequences derived from ducks (family Anatidae), red-throated divers
25 (*Gavia stellata*) and barn owls (*Tyto alba*). The insertion in ducks was incorporated >30 Mya (CI
26 26-35 Mya), prior to the divergence of mallards (*Anas platyrhynchos*) and ruddy ducks (*Oxyura*
27 *jamaicensis*). Notably, multiple, genome-length eHBV elements derived from this lineage were
28 often identified in the same species or species group. For example, multiple, clade II-derived
29 eHBVs were identified in both the *Tyto* (*Avi.11* and *Avi.22*) and *Gavia* (*Avi.14* and *Avi15*)
30 germlines. However, in-depth analysis of these sequences shows that each derives from distinct
31 germline incorporation events. Not only are they located in entirely distinct genomic loci (**Table**
32 **1**), they show higher divergence in the variable regions of their genome than in other more
33 conserved regions (**Fig. S3**) – this is consistent with them being separated by multiple rounds of
34 viral replication, rather than neutral divergence following an intragenomic duplication process.

1 Notably, the greatest extent of divergence was observed in the regions of the genome that encode
2 receptor binding functions.

3 Clade III includes the 'Avi.1-Neoaves' element (previous names include eAHBV-FRY [4]
4 and eZHBVc [7]), which is the first avihepadnavirus-derived eHBV element to be reported, and is
5 also the oldest. It is orthologous across the Neoaves clade, which includes all avian species
6 except the paleognathes (infraclass Paleognathae) and fowl (Galloanserae; ducks, chickens, and
7 allies). We identified additional eHBVs derived from this lineage in a broad range of avian groups.
8 Notably, clade I-derived insertions are present in the paleognathes germline: the genomes of white-
9 throated and Chilean tinamous contain orthologous eHBVs demonstrating that clade I
10 avihepadnaviruses circulated in paleognathes birds >49 Mya (CI 37-62 Mya). In addition, we
11 identified clade I-derived insertions in order Trogoniformes represented by the bar-tailed trogon
12 (bar-tailed trogon), in clade Strisores, represented by the swift (*Chaetura pelasgica*), and in clade
13 Australiaves, represented by the red-legged seriema (*Cariama cristata*). This broad distribution is
14 consistent with the demonstrably ancient origins of this lineage.

15 All clade IV-derived eHBVs group basal to the exogenous avihepadnaviruses, which
16 cluster together as a derived, crown group within this clade. We identified a full-length insertion in
17 the Eurasian skylark (*Alauda arvensis*) genome that shows a higher level of relatedness to
18 modern hepadnaviruses than does any previously reported eHBV (**Fig. 1a**). Notably, eHBV-
19 Avi.28-Alauda was the only avihepadnavirus-derived eHBV element found to exhibit similarity to
20 modern avihepadnaviruses in the variable region of the genome (**Fig. 2**, **Fig. S2a**). Some
21 phylogenetic trees support the inclusion of eHBV elements previously reported in the budgerigar
22 genome [11], and a newly identified element identified in the genome of the rhinoceros hornbill
23 (*Buceros rhinoceros*), within clade IV (**Fig. S1g**).

24

25 Avian genomes contain multicopy eHBV lineages

26 In addition to genome-length sequences, avian genomes contain multiple eHBV elements
27 that represent only fragments of an avihepadnaviral genome. Furthermore, some avian lineages
28 contain expanded sets of highly related eHBVs. Most strikingly, we identified >300 copies of a
29 highly duplicated eHBV element in cormorants and shags (order Suliformes). This lineage, named
30 Avi.27-Sulidae, appears to be derived from a single germline incorporation event involving an
31 ancient, clade II avihepadnavirus (**Fig. S1g**), and is comprised of fragments spanning a short
32 region at the 3' terminal end of the *pol* gene. Investigation of Avi.27 elements revealed that the
33 vast majority are flanked on both sides by transposable element (TE) sequences (**Fig. 3a**),
34 suggesting this multicopy lineage may have arisen in association with TE activity (i.e. integration

1 into a TE led to an eHBV-derived sequence being mobilised). Phylogenies indicate that the initial
2 germline incorporation event that gave rise to this multicopy eHBV lineage predates the
3 diversification of the four cormorant species in which it was identified, as evidenced by the
4 presence of multiple, multi-species sub-clusters in phylogenies (see **Fig. 3b**) and the presence of
5 multiple orthologous integration sites (data not shown).

6 We also identified apparently intragenomically amplified, avihepadnavirus-derived eHBV
7 elements in the genomes of parrots. In this case, the amplified elements appear to derive from an
8 ancient clade I avihepadnavirus. Although the elevated eHBV copy number found in certain avian
9 orders reflects intragenomic amplification, it is nonetheless clear that the rate of germline
10 incorporation is significantly higher in birds than in any other vertebrate group. We characterised
11 eHBV loci in saurian genomes by identifying the nearest annotated genes upstream and
12 downstream of EVE integration sites (**Table 1**). Excluding integrations that occurred as a result
13 of intragenomic amplification, we estimate that at least 57 distinct germline incorporation events
14 - each involving a distinct hepadnavirus progenitor - have occurred during avian evolution.

15

16 eHBV elements are enriched at specific loci in the saurian germline

17 Strikingly, our analysis of genes flanking eHBV insertions identified several pairs of
18 elements that are fixed at distinct, but nonetheless approximately equivalent genomic sites. We
19 identified six cases in which eHBV elements that appear to derive from distinct germline
20 incorporation events have been fixed at approximately equivalent genomic loci (**Table 2**). Almost
21 all involve avihepadnaviruses independently integrating at similar loci in avian genomes.
22 However, in most of these cases the two eHBV elements involved each derive from distinct clades
23 within the *Avihepadnavirus* genus. Furthermore, we also identified one case in which a
24 herpetohepadnavirus-derived element in snakes (*Herpeto.7*) is located at the same approximate
25 position as a member of the avihepadnavirus-derived Avi.23 lineage (**Fig 4a**).
26

27 Metahepadnaviruses circulated in the late Paleozoic Era

28 Most of the metahepadnavirus-like elements identified in our screen were comprised of
29 short fragments ~300-500 nucleotides (nt) in length. However, a group of orthologous,
30 metahepadnavirus-derived eHBV elements identified in birds contained some copies that
31 spanned a near-complete genome (**Fig. 2**). Furthermore, in-depth investigation of this insertion
32 demonstrates that it is clearly orthologous across a diverse range of avian species, including
33 eagles, implying that it originated >83 Mya (CI: 77-90 Mya). Even more remarkably, our
34 investigation revealed that an element identified in the tuatara is likely a member of the same

1 group of orthologous insertions. This implies that germline incorporation of the element - labelled
2 *eHBV-Meta.1-Sauria* – occurred prior to the divergence of the Lepidosauromorpha and
3 Archosauromorpha ~282 Mya [19]. Given that: (i) we found evidence for independent insertion
4 and fixation of eHBVs at approximately equivalent genomic loci (see above), and; (ii) due to
5 deletion of large regions of terminal eHBV sequence, none of the eHBV-genomic DNA junctions
6 are precisely equivalent on either side of the avian and lepidosaur orthologs, this finding has to
7 be interpreted with caution. However, in each of the pairs of insertions that we propose to have
8 been independently integrated (see **Fig. 4a**), insertions are only located at approximately similar
9 genomic sites. By contrast, the genomic flanks upstream and downstream of the tuatara and avian
10 elements show a strikingly similar arrangement of conserved non-coding sequences (**Fig. 4b**).
11 Since DNA loss is characteristic of Saurian evolution [20] the equivalent genomic region could
12 presumably have been deleted in other major clades descending from the Lepidosaur-Archosaur
13 ancestor.

14

15

16 DISCUSSION

17 Our investigation provides a range of new insights into the deep evolutionary history of
18 hepadnaviruses and their impact on animal genomes. Firstly, we show that germline incorporation
19 of hepadnavirus sequences is unique to saurians, despite the fact that hepadnaviruses are known
20 to infect a much broader range of vertebrate groups. It is unclear why germline incorporation is
21 restricted to saurian hosts, but access to germline cells is likely to be a key underlying factor. The
22 relatively high level of genome invasion might be related to specific aspects of transmission and
23 replication in this particular host-virus system (i.e. avi- or herpetohepadnavirus infections in
24 saurian hosts) - particularly as they relate to vertical transmission. Studies of avihepadnavirus
25 infections in domestic ducks show that virus is normally transmitted via vertical transmission *in*
26 *ovo* and this may be the case in other avian species [21]. Conceivably, herpeto-avi-
27 hepadnaviruses could have come to rely more on vertical transmission via infection of germline
28 cells than other hepadnaviruses, perhaps in relation to certain aspects of the saurian reproduction
29 system (e.g. internal fertilization and the shelled egg) and the way in which these evolved and
30 this has provided greatly increased opportunity for germline incorporation to occur.

31 We show that the diversity of hepadnavirus sequences contained within saurian genomes
32 is higher than has previously been appreciated. In particular, the high frequency of germline
33 incorporation in avian lineages allowed an extensive characterisation of ancient avihepadnavirus
34 diversity. Our analysis identified four major subclades within the *Avihepadnavirus* genus, each of

1 which has a relatively broad distribution among avian species. All appear to have circulated
2 throughout a large part, if not most of the Cenozoic Era. However, due to lack genome coverage
3 across avian species, we were only able to obtain an approximate timeline of evolution for each
4 of the four avihepatnaviral lineages. Conceivably, the existence of the four clades might reflect
5 the historical compartmentalisation of avian subpopulations (e.g. due to geographic isolation)
6 during certain periods of their evolution. Currently, we do not have a sufficient level of precision
7 to infer any association between the ancestral distribution of avihepatnavirus strains and the
8 evolutionary history of specific bird lineages. However, the upcoming publication of data from the
9 avian 10K genomes project [22] should allow a much more precise dating of eHBV elements.

10 We identified several eHBV insertions derived from metahepatnavirus-like viruses, as well
11 as from avi- and herpetohepatnaviruses. These are, to the best of our knowledge, the first
12 metahepatnavirus EVEs to be reported and accordingly they provide a completely new
13 perspective on the evolution of the genus. Remarkably, analysis of the broader genomic
14 landscape surrounding one insertion (eHBV-Meta.1-Sauria) indicates that it was inserted into the
15 germline an estimated 280 MYA (CI: 273 - 286 MYA) (**Fig 5a**). This makes *eHBV-Meta.1-Sauria*
16 the oldest EVE described to date, and the first example of an EVE derived from a virus that
17 circulated in the Paleozoic Era (541-252 million years ago).

18 Metahepatnaviruses have only been identified very recently [5], and along with the
19 parahepatnaviruses (genus *Parahepatnavirus*) they are the first hepadnaviruses known to infect
20 fish. Whereas the parahepatnaviruses are only distantly related to other hepadnavirus genera,
21 phylogenetic analysis unexpectedly revealed that the *Metahepatnavirus* genus groups as a
22 relatively close sister taxon to the mammalian orthohepatnaviruses in phylogenies [23]. This has
23 been widely interpreted as evidence of cross-species transmission between fish and mammals
24 [3, 5]. However, the discovery that metahepatnaviruses infected ancestral vertebrates challenges
25 these conclusions. We identify metahepatnavirus-derived eHBV sequences derived in a turtle
26 and a lizard (**Table 1**, **Fig. 1**, **Fig. 2**) showing that these viruses not only circulated in saurian
27 ancestors, but also infected the reptile descendants of these organisms. Combined with ancient
28 age of the genus implied by the eHBVs identified in our study, this allows for a simpler explanation
29 of contemporary hepadnavirus distributions, wherein the *Hepadnaviridae* diverge into distinct
30 'Meta-Ortho' and 'Herpeto-Avi' lineages prior to the divergence of fish and tetrapods and then
31 subsequently co-diverged (broadly speaking) with their host groups (see **Fig. 5**). As outlined
32 elsewhere, this pattern of evolution does not necessarily preclude zoonotic transmission of related
33 hepadnaviruses (e.g. viruses from the same genus) between related groups of hosts, and
34 phylogenetic analysis does seem to suggest that interclass transmission of herpetohepatnaviruses

1 has occurred between reptiles and amphibians. In general, however, the greater the taxonomic
2 distance between hosts, the less likely a zoonotic jump is to be successful [24].

3 We show that eHBVs have been intra-genomically amplified in suliforme birds – most likely
4 in association with transposable element (TE) activity - and a large number of these insertions
5 have been fixed. We have previously reported a similar phenomenon for endogenous circoviral
6 elements in carnivore genomes [25], and it has also been described for endogenous retroviruses
7 (ERVs) in primates - for example, hominid genomes contain SVA elements that contain a portion
8 of HERV-K(HML2) [26]. More broadly, it seems that the sequences of certain mammalian
9 apparent LTR retrotransposon (MaLR) lineages, such as the HARLEQUIN elements found in the
10 human genome [27], comprise complex mosaics of ERV fragments. Possibly, the capture of EVE
11 sequences offers a selective advantage to TE lineages. Alternatively, TE sequences containing
12 hepadnavirus-derived DNA might, for some reason, be more likely to be fixed.

13 Consistent with the idea that germline incorporation of hepadnavirus sequences might, in
14 some cases, be favoured by selection at the level of the host, we identified multiple examples of
15 loci containing multiple fixed eHBV elements, each derived from a distinct germline colonisation
16 event (**Fig 4a**). In principle, the enrichment of eHBVs at specific loci could reflect natural selection
17 – i.e. eHBVs were integrated randomly into genomes, and those integrated at specific loci were
18 selected over time – for example, due to a favourable influence on gene regulation as has been
19 widely reported for TEs and ERVs in animal genomes [28, 29]. However, it could also reflect the
20 preferential integration of hepadnaviruses into these loci (e.g. because they are accessible in
21 embryonic cells).

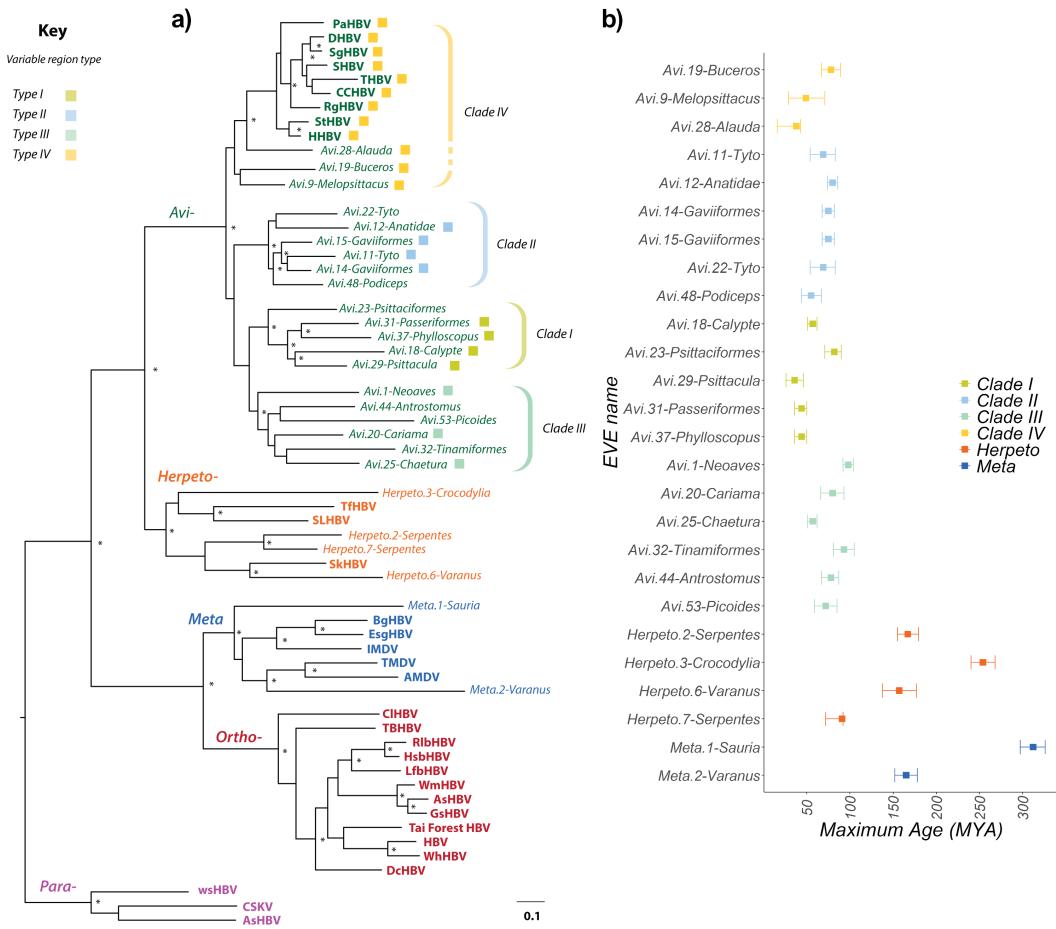
22 Comparative studies of eHBVs have been hampered by the challenges associated with
23 analysing these sequences, which are often highly degraded by germline mutation. This may
24 explain why – despite the fact that it has been clear for some time that additional, lineage-specific
25 eHBV insertions are present in some vertebrate species – progress in characterising and
26 analysing novel eHBV sequences has been quite slow. This likely reflects the manifold challenges
27 encountered in identifying and characterising eHBVs. Complicating factors include the
28 hepadnavirus genome structure: the overlapping reading frames and circular genome, both of
29 which can make recovering the ancestral structure of integrated eHBVs less straightforward than
30 it is for other kinds of endogenous viral element. Additional complications arise due to the intra-
31 genomic duplication and re-arrangement of eHBV sequences, and the fact that the hepadnaviral
32 polymerase, which occupies a large proportion of the hepadnavirus genome, shares distant
33 similarity with the reverse transcriptase genes encoded by certain retroelements. While all of
34 these contingencies can be dealt with in one way or another, this is usually done in an *ad hoc*

1 way that makes it difficult for other investigators to recapitulate or build on the work done by
2 previous investigators. In this study we sought to directly address these challenges by using a
3 novel data-orientated approach. This allowed us to publish our findings in the form of an online
4 resource that not only contains all of the data items associated with our investigation (i.e. virus
5 genome sequences, multiple sequence alignments, genome feature annotations, and other
6 sequence-associated data), but also represents the semantic relationships between these data
7 items. Furthermore, via the GLUE engine (a platform-independent software environment) [15] it
8 provides the means to recapitulate all of the analyses performed in our study.

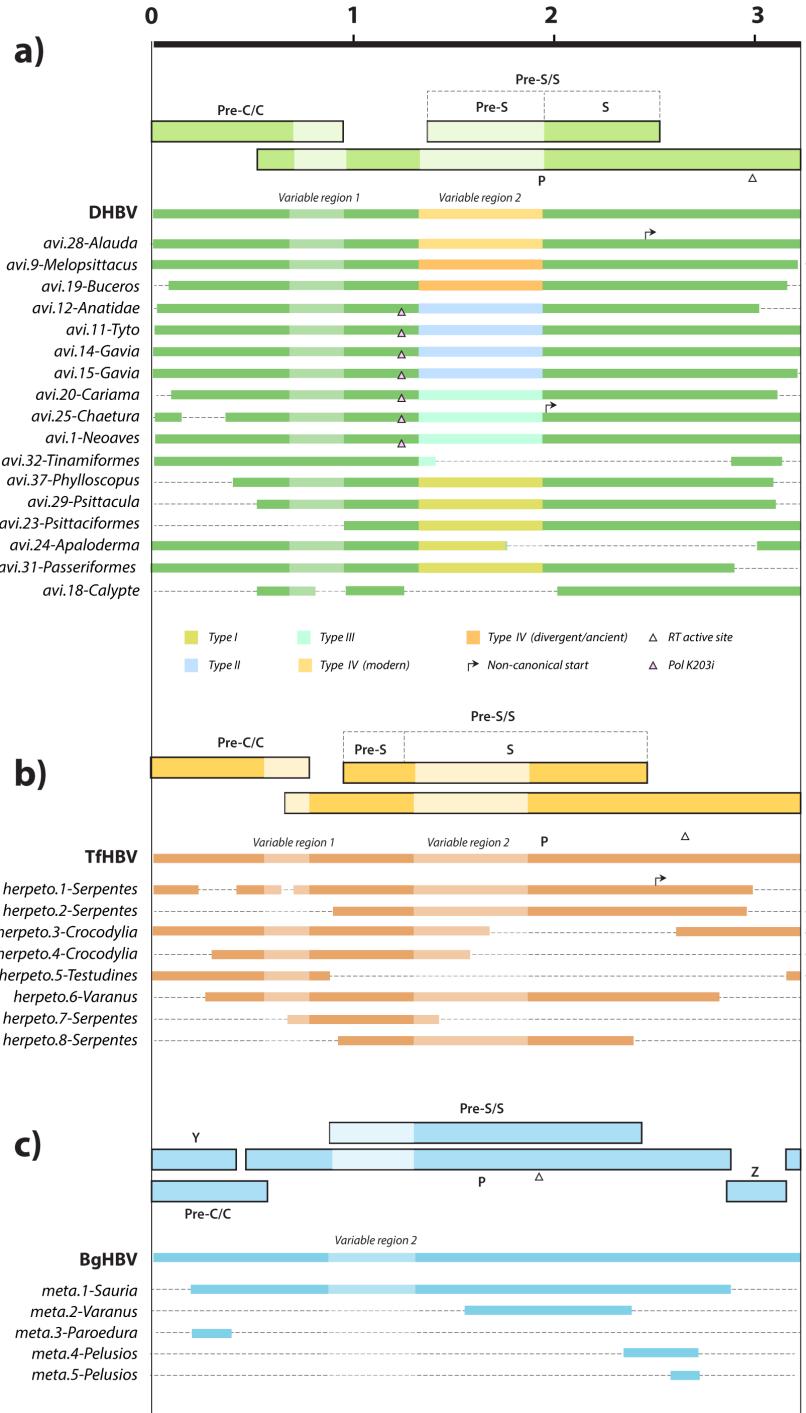
9

1 **Table 1. EHBV loci detected in vertebrate genomes**

eHBV element ID ^a	Virus Clade ^b	Num. Species ^c	Num. Seqs ^d	Flanking genes ^e		Min age ^f	Max age ^g
				Upstream	Downstream		
Metahepatnavirus							
Meta.1-Sauria		27	27	<i>KLF8</i>	<i>ENSAC</i>	280 (273-286)	312 (297-326)
Meta.2-Varanus		1	1	<i>NPVF</i>	<i>NFE2L3</i>	-	165 (152-178)
Meta.3-Paroedura		1	1	<i>n/k</i>	<i>n/k</i>	-	96 (83-98)
Meta.4-Pelusios		1	1	<i>LCP1</i>	<i>RUBCNL</i>	-	99 (70-128)
Meta.5-Pelusios		1	1	<i>KCNA5</i>	<i>NTF3</i>	-	99 (70-128)
Meta.6-Sphenodon		1	1	<i>n/k</i>	<i>n/k</i>	-	252 (241-263)
Herpetohepatnavirus							
Herpeto.1-Serpentes*	Snake	9	9	<i>TSHZ1</i>	<i>ZNF516</i>	62 (49-74)	91 (72-92)
Herpeto.2-Serpentes*	Snake	10	10	<i>NPFFR2</i>	<i>FTH1</i>	62 (49-74)	167 (155-179)
Herpeto.7-Serpentes	Snake	3	3	<i>ATP2A3</i>	<i>ZZF1</i>	9.2 (5.8-18.8)	91 (72-92)
Herpeto.8-Serpentes	Snake	5	5	<i>OB1</i>	<i>RBM26</i>	62 (49-74)	91 (72-92)
Herpeto.6-Varanus	Lizard	1	1	<i>WSCD2</i>	<i>WSCD2</i>	-	157 (138-177)
Herpeto.3-Crocodylia*	Croc.	1	1	<i>NUP210</i>	<i>IQSEC1</i>	44 (25-64)	254 (240-268)
Herpeto.4-Crocodylia*	Croc.	1	1	<i>SORT1</i>	<i>PPIL1</i>	26.7 (22-29)	254 (240-268)
Herpeto.5-Testudines*	Turtle	18	18	<i>GBE1</i>	<i>ROBO1</i>	184 (161-206)	254 (240-268)
Avihepatnavirus							
Avi.18-Calypte	I	1	1	<i>ENSSCUG00000017518</i>	<i>ENSSCUG00000017518</i>	-	57 (51-62)
Avi.23-Psittaciformes	I	11	71	<i>n/a</i>	<i>n/a</i>	49 (29-71)	82 (71-90)
Avi.29-Psittacula	I	1	1	<i>KIDINS220</i>	<i>KIDINS220</i>	-	36 (26-46)
Avi.31-Passeriformes [†]	I	7	7	<i>TIMM21</i>	<i>NETO1</i>	38 (16-43)	44 (36-50)
Avi.37-Phylloscopus	I	2	2	<i>EPHA3</i>	<i>ZNF654</i>	1.2	44 (36-50)
Avi.49-Psittaciformes	I	14	14	<i>GRID2</i>	<i>GRID2</i>	38 (30-50)	82 (71-90)
Avi.52-Melopsittacus	I	1	1	<i>LUZP2</i>	<i>ANO3</i>	-	38 (14-55)
Avi.11-Tyto	II	1	1	<i>NAV3</i>	<i>E2F7</i>	-	69 (54-83)
Avi.12-Anatidae	II	5	9	<i>CCDC58</i>	<i>CCDC58</i>	30 (26-35)	80 (74-86)
Avi.14-Gavia	II	1	1	<i>TAS1R3</i>	<i>DVL1</i>	-	75 (68-82)
Avi.15-Gavia	II	1	1	<i>TMEM182</i>	<i>TMEM182</i>	-	75 (68-82)
Avi.22-Tyto	II	1	1	<i>MYBL2</i>	<i>PTPRT</i>	-	69 (54-83)
Avi.24-Apaloderma	II	1	1	<i>CDH23</i>	<i>CDH23</i>	-	72 (59-85)
Avi.27-Sulidae	II	4	233	<i>n/a</i>	<i>n/a</i>	9.6	73 (59-87)
Avi.35-Calypte	II	1	1	<i>CYB5A</i>	<i>TIMM21</i>	-	57 (51-62)
Avi.46.Psittaciformes	II	10	10	<i>FMN1</i>	<i>RYR3</i>	49 (29-71)	82 (71-90)
Avi.48-Podiceps	II	1	1	<i>MATN1</i>	<i>PTPRU</i>	-	55 (44-67)
Avi.1-Neovates*	III	110	111	<i>FRY</i>	<i>FRY</i>	85 (77-94)	98 (92-104)
Avi.20-Cariama	III	1	1	<i>THBS1</i>	<i>KATNBL1</i>	-	80 (66-93)
Avi.25-Chaetura	III	1	1	<i>KCNV1</i>	<i>ENSTGUG00000027711</i>		57 (51-62)
Avi.32-Tinamiformes	III	2	2	<i>OLFM4</i>	<i>n/k</i>	49 (37-62)	93 (81-105)
Avi.34-Leptosomus	III	1	1	<i>LRRC7</i>	<i>LRRC7</i>	-	70 (58-82)
Avi.42-Passeriformes [†]	III	5	5	<i>HECA</i>	<i>HECA</i>	48 (33-50)	82 (75-90)
Avi.44-Antrostomus	III	1	1	<i>KCNV1</i>	<i>CSMD3</i>	-	78 (67-87)
Avi.53-Picoides	III	1	1	<i>TRIB2</i>	<i>LPIN1</i>	-	72 (59-85)
Avi.28-Alauda	IV	1	1	<i>EPHA6</i>	<i>NSUN3</i>	-	38 (16-43)
Avi.4-Passeriformes ^{††}	IV	9	9	<i>CDH23</i>	<i>CDH23</i>	38 (16-43)	82 (75-90)
Avi.5-Passeriformes ^{††}	IV	5	5	<i>LMO3</i>	<i>MGST1</i>	38 (16-43)	82 (75-90)
Avi.6-Estrildinae*	IV	2	2	<i>FOXD3</i>	<i>ATG4C</i>	10.1 (8.7 - 11.6)	11.8 (11-14)
Avi.8-Australiavies*	IV	18	28	<i>ATP2B2</i>	<i>ATP2B2</i>	-	82 (71-90)
Avi.38-Passeriformes	IV	8	8	<i>TGIF2</i>	<i>AAR2</i>	38 (16-43)	82 (75-90)
Avi.9-Melopsittacus*	IV	1	1	<i>CD109</i>	<i>CD109</i>	-	49 (29-71)
Avi.19-Buceros	IV	1	1	<i>PCDH18</i>	<i>PCDH10</i>	-	78 (67-89)
Avi.7-Passeriformes ^{†*}		6	6	<i>TMEM132E</i>	<i>LIG3</i>	38 (16-43)	82 (75-90)
Avi.13-Paleognathaea		8	8	<i>ENSDNVG00000017897</i>	<i>BCKDHB</i>	93 (81-105)	111 (105-118)
Avi.16-Turaco		1	1	<i>TMEM8B</i>	<i>ENSACUG00000013925</i>		74 (63-85)
Avi.21-Paleognathaea		8	8	<i>LMCD1</i>	<i>GRM7</i>	93 (81-105)	111 (105-118)
Avi.26-Psittaciformes		7	8	<i>NELL1</i>	<i>NELL1</i>	38 (14-55)	82 (71-90)
Avi.30-Anatidae		5	5	<i>ENSACDG00005009727</i>		<i>CCDC58</i>	30 (26-35)
Avi.39-Passeriformes [†]		9	9	<i>FXN</i>	<i>FXN</i>	38 (30-50)	82 (75-90)
Avi.41-Psittaciformes		4	4	<i>PHAX</i>	<i>KLF4</i>	38 (30-50)	82 (71-90)
Avi.43-Gallirallus		1	1	<i>DEND4A</i>	<i>DEND4A</i>	-	64 (52-75)
Avi.45-Psittaciformes		8	8	<i>RNF38</i>	<i>RNF38</i>	38 (30-50)	82 (71-90)


3 **Footnote:** ^a eHBV elements were given unique IDs using a systematic approach, following a convention developed for endogenous
4 retroviruses [17]. Each is assigned a unique identifier (ID) constructed from three components. The first component (not shown here)
5 is the classifier 'eHBV' denoting an endogenous hepadnaviral element. The second component comprises: (i) the name of the
6 hepadnavirus genus the element derived from and; (ii) a numeric ID that uniquely identifies a specific integration locus, or for
7 multicopy lineages, a unique founding event. The final component denotes the taxonomic distribution of the element. * Previously
8 reported elements ^beHBVs distributed across unranked clades. ^bVirus taxonomic groups below genera level are shown where known.

9 ^cNumber of species in which the insertion/lineage was identified. ^dTotal number of orthologs/duplicated identified in screen. ^eNames
10 of annotated genes flanking each insertion. Intronic insertions are shown in bold. ENSEMBL gene IDs are shown for genes that do
11 not yet have names. n/k = not known; n/a = not applicable to multi-copy lineages; ^fMinimum age as determined via orthology and
12 based on divergence times provided by TimeTree [19]; ^gMaximum age based on presence of empty insertion site in a sister clade,
13 or other evidence (see Methods).


1 **Table 2. Pairs of apparently distinct EHBV insertions at adjacent loci**
2

Pair name	First member		Second member	
	Name	Genus (Clade) ^a	Name	Genus (Clade) ^a
1 (ZZEF)	Avi.23-Psittaciformes	Avi- (II)	Herpeto.7-Serpentes	Herpeto- (Snake)
2 (ANOS5)	Avi.52-Melopsittacus	Avi- (I)	Avi.26-Psittaciformes	Avi- (NK)
3 (CDH23 intronic)	Avi.20-Cariama	Avi- (III)	Avi.46-Psittaciformes	Avi- (II)
4 (CYB5A & TIMM21)	Avi.35-Calypte	Avi- (II)	Avi.31-Passeriformes	Avi- (I)
5 (FBXO15-NETO1)	Avi.24-Apaloderma	Avi- (II)	Avi.4-Passeriformes	Avi- (IV/V)
6 (CCDC58 intronic)	Avi.12-Anatidae	Avi- (I)	Avi.30-Anatidae	Avi- (NK)

4
5 **Footnote:** ^a Avi- = *Avihepatnavirus*; Herpeto- = *Herpetohepatnavirus*;
6

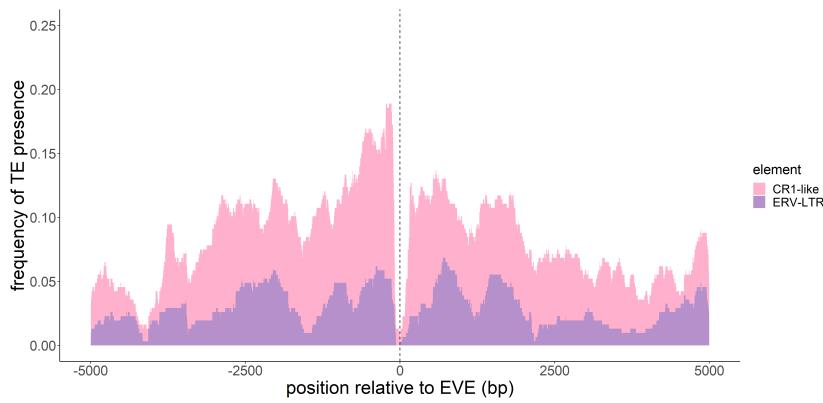


Figure 1. Recovery of paleovirus sequences reveals the evolutionary history of hepadnaviruses. Panel (a) shows a maximum likelihood phylogeny constructed using codons 355-440 and 500-781 of the polymerase (P) protein (Hepatitis B virus coordinates, GenBank reference sequence accession number: NC_003977). The phylogeny is rooted on the Parahepadnavirus genus, based on the basal position of this genus in trees constructed using the Nakednaviruses as an outgroup (Fig. S1). Virus names are shown in bold. IDs of endogenous hepatitis B viruses (eHBVs) are shown in italic. Taxon label colours correspond to viral genera as follows: purple=Parahepadnavirus; blue=Metahepadnavirus; red=Orthohepadnavirus; orange=Herpetohepadnavirus; green=Avihepadnavirus. Virus name abbreviations are as shown in Table S1. Brackets to the right indicate subclades within the avihepadnavirus genus. The dashed bracket for Clade IV denotes that grouping of eHBV elements 9, 19 and 28 does not have high support here, but is supported by other phylogenetic evidence. Coloured squares next to avihepadnavirus taxon labels variable region 'type' as indicated by the key. Some eHBV sequences do not span this region and thus cannot be assigned. Asterisks indicate nodes with bootstrap support ≥ 70 , based on 1000 replicates. The scale bar shows evolutionary distance in substitutions per site. The plot in panel (b) shows the window in geological time during which we estimated various eHBV insertions to have been generated, based on their distribution across vertebrate taxa. Abbreviations: MYA=Million years ago.

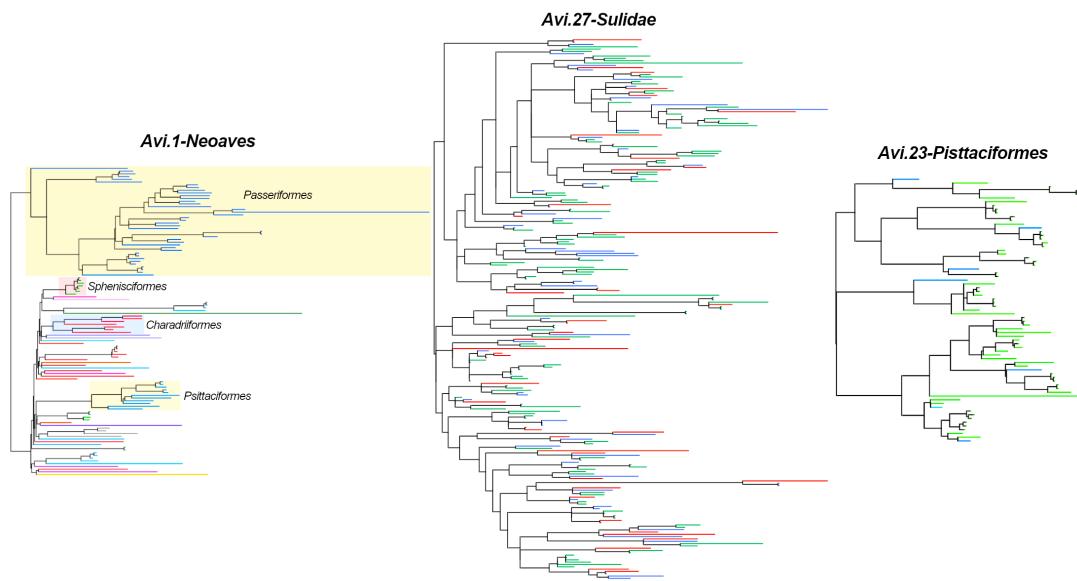
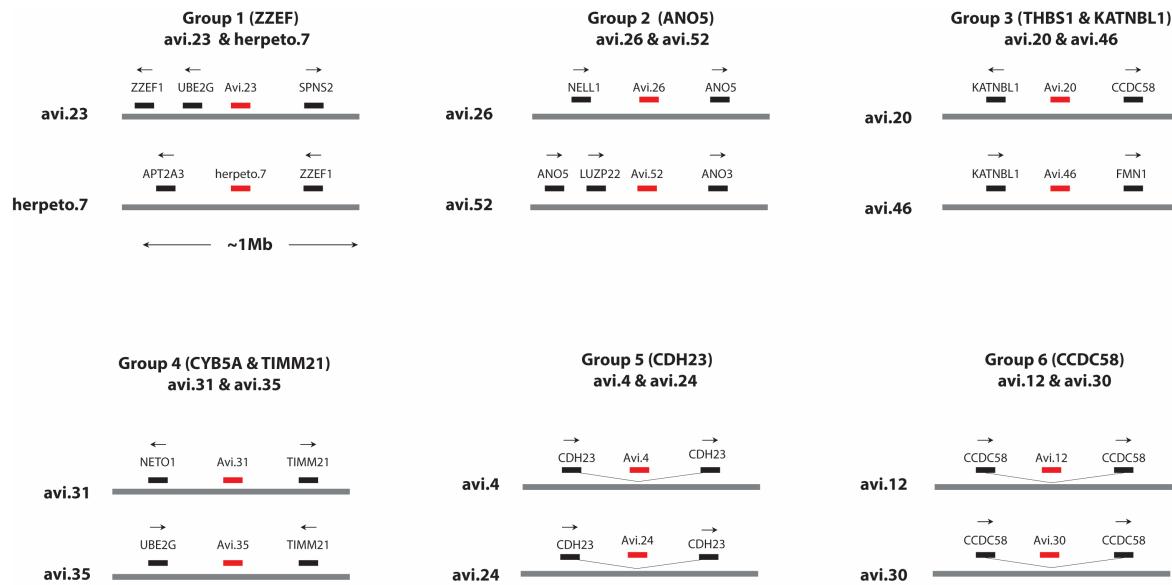


Figure 2. Genomic organisation of selected endogenous hepadnaviral element (eHBV) sequences identified in this study. eHBV structures are shown relative to the genomes of prototype virus species from the corresponding genus. Virus names are shown in bold, eHBV names are shown in italic. Thinner bars represent nucleic acid sequences. Thicker bars represent open reading frames in viral sequence. Asterisks indicate sequences that have been reported previously. Scale bar indicates sequence length in kilobases. Key shows relationships between symbols/shading and genome features. Abbreviations: DHBV (duck hepadnavirus); TfHBV (Tibetan frog hepadnavirus); BgHBV (bluegill hepadnavirus); Pre-C/C (Pre-Core/Core); P (Polymerase); Pre-S/S (Pre-Surface /Surface);

a)


b)

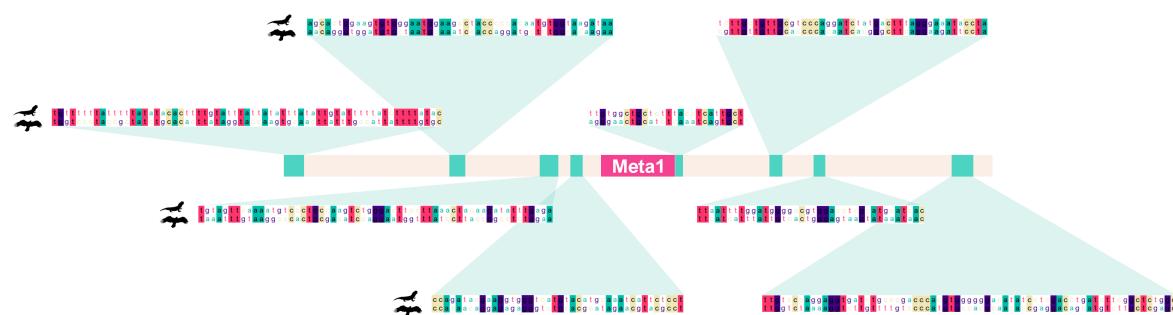
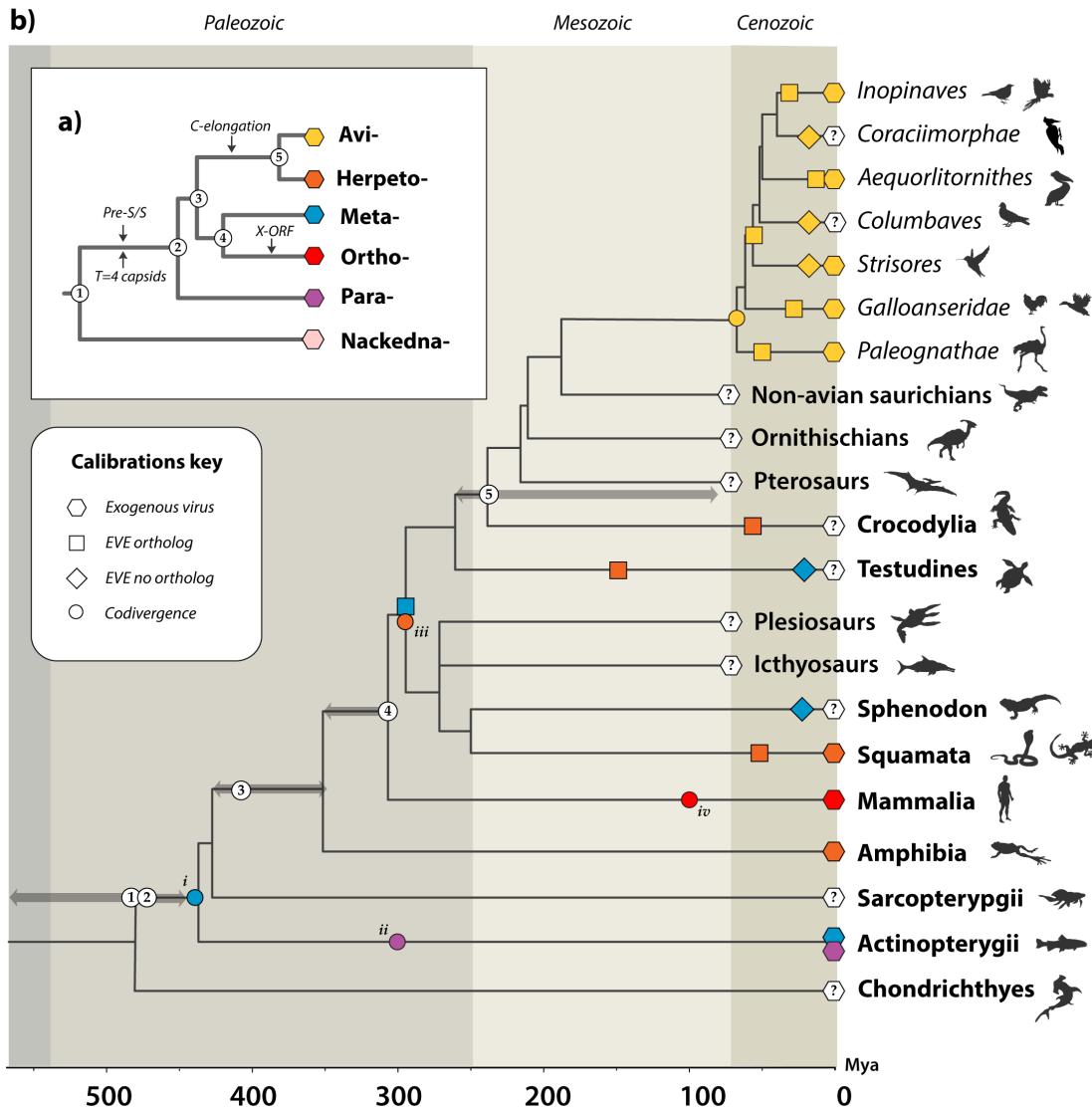

Figure 3. Genomic characteristics of multicity eHBV lineages. (a) The plot shows the frequency with which specific transposable element (TE) sequences were detected in 5kb regions flanking 307 distinct members of the multicity eHBV lineage Avi.27-Sulidae. Sequences were analysed for the presence of transposable elements (TE) using HMMER [30] against the Dfam HMM profile library [31]. Based on their descriptions, TEs detected in flanking sequences were divided into two categories: (i) related to the chicken repeat 1 group of retrotransposons (CR1) (shown in pink); (ii) related to endogenous retrovirus (ERV) long terminal repeat (LTR) (shown in purple); (b) Phylogenies of multicity element lineages. (i) Avi.1.Neoaves; (ii) Avi.27.Sulidae; (iii) Avi.23.Psittaciformes. The terminal branches of all tips in the phylogenies are coloured based on their hosts' taxonomic classification. The Avi.1.Neoaves phylogeny is labelled on the order level, Avi.27.Sulidae on the genus level and Avi.23.Psittaciformes on the family level. The order names of clear clades with multiple representatives are annotated on the Avi1.Neoaves phylogeny.

Figure 4

a)



b)

Figure 4. (a) Loci containing multiple fixed eHBV elements. Schematic representation six genomic loci where eHBV lineages originating in independent germline colonisation events have been fixed at adjacent positions. Grey bars represent genomic DNA. Black bars represent genes or exons with arrows showing the direction of transcription. Red bars represent eHBV elements. **(b)** Schematic representation of the *Sphenodon punctatus* copy of the *Meta1*-*Sauropsida* (Meta1) genomic region including 1kb flanking regions to each side of the EVE. The sequence homology between the *S. punctatus* (top) and the *A. chrysaetos canadensis* (bottom) genome is highlighted in representative subregions around the orthologous EVE, labelled in green.

Figure 5.

Figure 5. Timeline of hepadnavirus evolution. The inset panel (a) shows a schematic phylogeny depicting the established evolutionary relationships between hepadnaviral genera, with black arrows indicating the most parsimonious periods of major evolutionary innovations (after Lauber [4]). Internal nodes are numbered in reference to the time-calibrated phylogeny of vertebrates that is shown in panel (b). Panel (b) shows a time calibrated vertebrate phylogeny. Geological eras are indicated by background shading. Scale bar shows time in millions of years before present. Colours indicate hepadnaviral genera as shown in panel (a). Shapes on branches indicate four kinds of calibrations as shown in the key. Note that the identification of EVEs that lack orthologous copies (indicated by diamonds) does not allow dates to be inferred, but nonetheless indicates the presence of hepadnavirus in the ancestral members of a given lineage. Numbers in white circles show the putative locations of nodes on the hepadnavirus tree in relation to the timeline of vertebrate evolution. Calibrations based on the assumption of codivergence, as follows: (i) metahepadnaviruses found in fish and saurians; (ii) parahepadnaviruses (found in all teleosts [4]); (iii) herpetohepadnaviruses (assuming that TfHBV originated via interclass transfer from saurians to amphibians); (iv) avihepadnaviruses present in all avian lineages as viruses and/or EVEs. Grey arrows flanking numbered nodes on the host tree indicate time range in which the corresponding virus divergence is estimated to have occurred. Abbreviations: C=Core. S=Surface; EVE=endogenous viral element. Mya=Million years ago.

DECLARATIONS

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

The datasets generated and/or analysed during the current study are [publicly available](#) via GitHub.

Competing interests

The authors declare that they have no competing interests

Funding

RJG and SL were funded by the Medical Research Council of the United Kingdom (MC_UU_12014/12). GA is funded by ANID FONDECYT 1180705. The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data, or in writing the manuscript.

Authors' contributions

Conceptualization, G.A and R.J.G.; methodology, S.L and R.J.G.; validation, S.L. and R.J.G.; formal analysis, S.L. and R.J.G.; writing—original draft preparation, S.L. and R.J.G.; writing—review and editing, S.L. and R.J.G.; visualization, S.L. and R.J.G.; supervision, R.J.G.; project administration, R.J.G.; data curation, R.J.G. All authors have read and agreed to the published version of the manuscript.

References

1. Magnius, L., et al., *ICTV Virus Taxonomy Profile: Hepadnaviridae*. *J Gen Virol*, 2020. **101**(6): p. 571-572.
2. Hahn, C.M., et al., *Characterization of a Novel Hepadnavirus in the White Sucker (Catostomus commersonii) from the Great Lakes Region of the United States*. *J Virol*, 2015. **89**(23): p. 11801-11.
3. Dill, J.A., et al., *Distinct Viral Lineages from Fish and Amphibians Reveal the Complex Evolutionary History of Hepadnaviruses*. *J Virol*, 2016. **90**(17): p. 7920-33.
4. Lauber, C., et al., *Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses*. *Cell Host Microbe*, 2017. **22**(3): p. 387-399.e6.
5. Geoghegan, J.L., S. Duchene, and E.C. Holmes, *Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families*. *PLoS Pathog*, 2017. **13**(2): p. e1006215.
6. Suh, A., et al., *Early mesozoic coexistence of amniotes and hepadnaviridae*. *PLoS Genet*, 2014. **10**(12): p. e1004559.
7. Suh, A., et al., *The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses*. *Nat Commun*, 2013. **4**: p. 1791.
8. Katzourakis, A. and R.J. Gifford, *Endogenous viral elements in animal genomes*. *PLoS Genet*, 2010. **6**(11): p. e1001191.
9. Gilbert, C. and C. Feschotte, *Genomic fossils calibrate the long-term evolution of hepadnaviruses*. *PLoS Biol*, 2010. **8**(9).
10. Cui, J., et al., *Low frequency of paleoviral infiltration across the avian phylogeny*. *Genome Biol*, 2014. **15**(12): p. 539.
11. Liu, W., et al., *The first full-length endogenous hepadnaviruses: identification and analysis*. *J Virol*, 2012. **86**(17): p. 9510-3.
12. Zhu, H., et al., *Database-integrated genome screening (DIGS): exploring genomes heuristically using sequence similarity search tools and a relational database*. *bioRxiv*, 2018.
13. Altschul, S.F., et al., *Gapped BLAST and PSI-BLAST: a new generation of protein database search programs*. *Nuc. Acids Res.*, 1997. **25**: p. 3389-3402.
14. Gong, Z. and G.Z. Han, *Insect retroelements provide novel insights into the origin of hepatitis B viruses*. *Mol Biol Evol*, 2018.
15. Singer, J.B., et al., *GLUE: a flexible software system for virus sequence data*. *BMC Bioinformatics*, 2018. **19**(1): p. 532.
16. Stamatakis, A., *RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies*. *Bioinformatics*, 2014. **30**(9): p. 1312-3.
17. Gifford, R.J., et al., *Nomenclature for endogenous retrovirus (ERV) loci*. *Retrovirology*, 2018. **15**(1): p. 59.
18. Glebe, D. and S. Urban, *Viral and cellular determinants involved in hepadnaviral entry*. *World J Gastroenterol*, 2007. **13**(1): p. 22-38.
19. Kumar, S., et al., *TimeTree: A Resource for Timelines, Timetrees, and Divergence Times*. *Molecular Biology and Evolution*, 2017. **34**(7): p. 1812-1819.
20. Kapusta, A., A. Suh, and C. Feschotte, *Dynamics of genome size evolution in birds and mammals*. *Proc Natl Acad Sci U S A*, 2017. **114**(8): p. E1460-e1469.
21. Jilbert, A.R., G.Y. Reaiche-Miller, and C.A. Scougall, *Avian Hepadnaviruses*, in *Reference Module in Life Sciences*. 2019, Elsevier.
22. Zhang, G., *Bird sequencing project takes off*. *Nature*, 2015. **522**(7554): p. 34-34.
23. Geoghegan, J.L., et al., *Hidden diversity and evolution of viruses in market fish*. *Virus Evol*, 2018. **4**(2): p. vey031.

24. Holmes, E.C., *The evolution and emergence of RNA viruses*. Oxford Series in Ecology and Evolution, ed. P.H. Harvey and R.M. May. 2009, Oxford: Oxford Univ. Press.
25. Dennis, T.P.W., et al., *The evolution, distribution and diversity of endogenous circoviral elements in vertebrate genomes*. Virus Res, 2019. **262**: p. 15-23.
26. Wang, H., et al., *SVA elements: a hominid-specific retroposon family*. J Mol Biol, 2005. **354**(4): p. 994-1007.
27. Vargiu, L., et al., *Classification and characterization of human endogenous retroviruses; mosaic forms are common*. Retrovirology, 2016. **13**: p. 7.
28. Enriquez-Gasca, R., P.A. Gould, and H.M. Rowe, *Host Gene Regulation by Transposable Elements: The New, the Old and the Ugly*. Viruses, 2020. **12**(10).
29. Chuong, E.B., N.C. Elde, and C. Feschotte, *Regulatory activities of transposable elements: from conflicts to benefits*. Nat Rev Genet, 2017. **18**(2): p. 71-86.
30. Eddy, S.R., *A new generation of homology search tools based on probabilistic inference*. Genome Inform, 2009. **23**(1): p. 205-11.
31. Hubley, R., et al., *The Dfam database of repetitive DNA families*. Nucleic Acids Res, 2016. **44**(D1): p. D81-9.