

1 **Metabolomics shows the Australian dingo has a unique plasma profile**

2

3 Sonu Yadav^{1*}, Russell Pickford², Robert A. Zammit³, J. William O. Ballard¹

4

5 ¹School of Biotechnology and Biomolecular Science, University of New South Wales,

6 Sydney, NSW, 2052, Australia

7 ²Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW,

8 2052, Australia

9 ³Vineyard Veterinary Hospital, Windsor Rd, Vineyard, Sydney, NSW 2765, Australia

10

11

12 ***Corresponding author:**

13 Sonu Yadav

14 School of Biotechnology and Biomolecular Sciences, University of New South Wales,

15 Sydney, NSW 2052, Australia. E-mail: Sonu.yadav@unsw.edu.au

16

17

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 Dingoes have not been artificially selected in the past 3,500 years. They occupy a wide range
29 of the Australian mainland and play a crucial role as an apex predator with a generalist
30 omnivorous feeding behaviour. In contrast, humans have selected breed dogs for novel and
31 desirable traits. First, we explore whether the distinct evolutionary histories of dingoes and
32 domestic dogs can lead to plasma metabolomic differences. We study metabolite composition
33 differences between dingoes (n=15) and two domestic dog breeds (Basenji n= 9 and German
34 Shepherd Dog: GSD n=10). After accounting for within group variation, 62 significant
35 metabolite differences were detected between dingoes and domestic dogs, with a greater
36 number of differences in protein (n= 14) and lipid metabolites (n= 12). Most differences were
37 observed between dingoes and domestic dogs and fewest between the domestic dog breeds.
38 Second, we investigate variation between pure dingoes (n=10) and dingo-dog hybrids (n=10)
39 as hybridisation is common. We detected no significant differences in metabolite levels
40 between dingoes and dingo-dog hybrids after Bonferroni correction. However, power
41 analyses reported that increasing the sample size to 15 could result in differences in uridine
42 5'-diphosphogalactose (UDPGal) levels related to galactose metabolism. We suggest this may
43 be related to an increase in *Amylase 2B* copy number in hybrids. Our study illustrates that the
44 dingo metabolome is significantly different from domestic dog breeds and hybridisation is
45 likely to influence carbohydrate metabolism.

46

47 **Keywords**

48 Metabolomics, dingo, domestic dog, hybridisation, plasma metabolite
49

50 **Introduction**

51 Natural selection leads to the accumulation of traits that are optimal for fitness and health in
52 natural conditions as compared to artificial selection where organisms are selected for novel
53 and desirable traits by humans. The Australian dingo and domestic dogs have experienced
54 distinctive selection pressures. Dingoes arrived in Australia between 3,000- 5,000 years ago
55 (Savolainen et al., 2004), are ecologically, phenotypically and behaviourally distinct from
56 domestic dogs (Smith et al., 2019), and can survive in the wild without human interference
57 (Ballard and Wilson, 2019). The dingo maintains ecosystem balance by controlling
58 populations of introduced mesopredators and herbivores (Letnic et al., 2012, Letnic et al.,
59 2009). They are generalist predators and are widely distributed across mainland Australia
60 (Doherty et al., 2019). Here, we study plasma metabolite composition differences between
61 dingoes and two domestic dog breeds. We then investigate metabolic variation between pure
62 dingoes and dingo-dog hybrids. In Australia, there is extensive hybridization between
63 dingoes and domestic dog breeds (Stephens et al., 2015).

64

65 Artificial selection has led to the generation of more than 400 breeds worldwide that have a
66 diverse range of morphological, physiological and behavioural traits (Spady and Ostrander,
67 2008, Wayne, 2001). We include the Basenji and the German Shepherd Dog (GSD) as
68 representatives of domestic dogs. We selected these two breeds because the Basenji is an
69 ancient dog breed while the GSD has an intermediate position in the current dog phylogeny
70 and is not morphologically specialised (Parker et al., 2017) Historically, Basenjis were
71 indigenous to central Africa and were used for hunting and guarding domestic herds
72 (Johannes, 2004). Like dingoes, but not domestic dogs, Basenjis have an annual oestrus cycle
73 (Fuller, 1956). GSDs are derived from common livestock dogs in continental Europe and
74 were established as a unique breed in 1899 (Talenti et al., 2018). GSDs are a common

75 medium to large sized domestic dog breed, bred for their intelligence and for guarding
76 purposes (Field et al., 2020). As a result of artificial selection, specific changes have occurred
77 in genes involved in metabolism, behaviour and development (Pendleton et al., 2018). For
78 instance, the pancreatic amylase (*AMY2B*) copy number expansion in domestic breed dogs is
79 considered to be an outcome of feeding on the human provided starch rich diet (Freedman et
80 al., 2014, Arendt et al., 2016). Such dietary shifts and positive selection on metabolic genes
81 are expected to result in differences in the metabolite profile of canids and can be quantified.

82

83 Hybridisation between dingoes and domestic dogs has occurred since European settlement in
84 Australia (Stephens et al., 2015) and it has led to well-established morphological and coat
85 colour variations (Smith et al., 2019). Interspecific hybrids can have an altered metabolite
86 profile in their blood and urine likely as a result of genetic rearrangements and the difference
87 in the metabolic pathways (Beckmann et al., 2010, Clinquart et al., 1995, Viant et al., 2009).
88 Hybridisation is particularly common in canids with successful inter-species reproduction
89 and survival of fertile hybrids (Gopalakrishnan et al., 2018, Gottelli et al., 1994, Galov et al.,
90 2015, Adams et al., 2003). Such events can dilute the genetic pool of native populations and
91 are a key threat to their genetic integrity (Gottelli et al., 1994, Roy et al., 1996). Hybridisation
92 may not pose a threat on the genetic integrity of wild populations if it's restricted to a narrow
93 zone between geographically widespread species. However, in the case of endangered or rare
94 species, hybridisation can lead to genetic swamping of one population by the other, disrupt
95 adaptive gene complexes, and reduce fitness and reproductive opportunities (Rhymer and
96 Simberloff, 1996). Here, we investigate the effects of dingo hybridisation on the plasma
97 metabolome.

98

99 Metabolomics quantifies a large variety of small molecules from diverse pathways using
100 biological samples and offers a direct link between organisms' phenotypes and genotypes
101 (Fiehn, 2002). Metabolites regulate key cellular processes such as protein activity by
102 regulating post-translational modifications, energy source and storage, membrane
103 stabilization as well as nutrient and cell signalling (Johnson et al., 2016). Metabolite changes
104 are readily detectable in body fluids, and provide a more direct and meaningful biochemical
105 interpretation as compared to other 'omics' techniques (van Ravenzwaay et al., 2007). An
106 untargeted metabolomics approach detects the wide range of metabolites present in the
107 sample without *a priori* knowledge of the metabolome composition (Johnson et al., 2016).
108 Rapid untargeted metabolic profiling provides insights into diet associated changes in the
109 expression of a diverse range of small molecules (Hanhineva et al., 2015). The identified
110 metabolites (e.g., phospholipids, amino acids and vitamins) can also be used as biomarkers to
111 inform disease progression and efficacy of clinical treatments (Khamis et al., 2017, Mamas et
112 al., 2011, Ferlizza et al., 2020). The untargeted approach has been shown useful to
113 discriminate inter and intra-species/breed differences in domestic dogs (Colyer et al., 2011,
114 Lloyd et al., 2017, Beckmann et al., 2010, Carlos et al., 2020) and a single study has
115 investigated the chemical composition in dingo scat, urine and bedding (Carthey et al., 2017).
116 To date, no studies have explored plasma metabolite profiles in dingoes.
117
118 Blood metabolite profile between individuals and species can be shaped by genetic and by
119 environmental factors including dietary intake, physical condition and gut microflora
120 (Nicholson et al., 2011, Suhre and Gieger, 2012, Kettunen et al., 2012, Fujisaka et al., 2018).
121 For instance, in several domestic dog breeds, the difference in plasma lipidome is influenced
122 by diet under both controlled and uncontrolled dietary experiments (Lloyd et al., 2017,
123 Boretti et al., 2020). In this study, we detected significant metabolite differences between

124 dingo and domestic dog breeds using a non-targeted plasma metabolome technique.
125 Notably, dingo and domestic dogs differed in protein and lipid metabolites. Further,
126 metabolites related with galactose metabolism differed between pure dingo and dingo-dog
127 hybrids.

128

129 **Materials and methods**

130 *Sampling and plasma preparation*

131 To test for differences between dingo and the domestic breeds 34 individuals were
132 included. Ten dingo were collected from Bargo dingo sanctuary in south-eastern Australia.
133 Five additional dingo from diverse geographic localities throughout Australia were
134 included to test the generality of the results. For the domestic dogs, we included nine Basenjis
135 from two kennels, and 10 GSDs from two kennels. All kennels were in south-eastern
136 Australia (Table S1). The animals were between 1-10 years and closely matched for sex but
137 unmatched on diet to keep consistency with natural conditions.

138

139 To test for differences between pure dingo and dingo-dog hybrids a set of 10 pure and 10
140 hybrid dingo collected from the same locality (Table S2). All 20 canines were aged from 1-
141 12 years and maintained under same environmental conditions. The individuals were diet and
142 sex matched with equal numbers of males and females. Additional samples could not be
143 included without extreme bias of the sample design (age, purity and sex).

144

145 The purity of all dingo and hybrid dingo status was established using the 23 microsatellite
146 marker based dingo purity genetic test (Wilton, 2001). Basenjis and GSDs were purebred and
147 registered with the Australian Kennel Club.

148

149 *Metabolite extraction*

150 Blood samples were immediately stored in EDTA tubes to avoid clotting. Plasma was

151 separated from frozen and fresh whole blood by centrifuging at 2,000g for 10 min at 4 °C.

152 Immediately after centrifugation, plasma was transferred into clean microtubes and stored at -

153 80 °C for further processing.

154

155 Samples were extracted following Mackay et al. (2015). Briefly, 10µl of thawed plasma

156 samples were diluted 20-fold with cold extraction solvent (50% methanol, 30% acetonitrile,

157 20% water at approximately -20°C). To mix and remove any proteins, samples were vortexed

158 for 30s, and then centrifuged at 23,000g for 10 min at 4°C. The supernatants were transferred

159 to glass HPLC vials and kept at -80°C prior to LC-MS analysis. Pooled quality control

160 samples were created by combining 5µL of each sample. Process blanks were created by

161 following the extraction protocol without plasma.

162

163 LC-MS profiling was performed using Q-Exactive HF Mass Spectrometer with U3000

164 UHPLC system (ThermoFisher Scientific). Samples were analysed in both positive and

165 negative heated electrospray ionization as separate injections. Samples and blanks were

166 analysed in a random order (generated using Excel) with regular QC's inserted into the

167 sequence after randomisation.

168

169 A ZIC-pHILIC column (SeQuant, VWR, Lutterworth, Leics., UK) was employed to measure

170 a broad range of metabolites of different classes as it is suggested to give the broadest

171 coverage of metabolites with an adequate performance as compared to the other columns

172 (Zhang et al., 2012). 5µL of the sample was injected onto the column. Separation was

173 performed using a gradient of mobile phase A (20mM ammonium carbonate in MilliQ water,

174 adjusted to pH 9.4 with ammonium hydroxide) and mobile phase B (100% acetonitrile) at
175 200 μ L/min. The gradient was held at 80% B for 2 minutes, ramped to 20% B at 17 minutes
176 before returning to 80% B at 17.1 minutes and holding for re-equilibration until 25 minutes.
177 The mass spectrometer was operated in the data dependant analysis mode – automatically
178 acquiring MS/MS data. The instrument was scanned from 75-1000 at a resolution of 60K,
179 with MS/MS of the top 20 ions at 15K. Source conditions were spray voltage 4.5kV positive,
180 (3.5 kV negative), sheath gas 20 au, auxiliary gas 5 au. Heater temperature was 50°C and the
181 capillary temperature was 275°C. S-Lens was 50V. The instrument was calibrated
182 immediately prior to data acquisition and lock masses used to maintain optimal mass
183 accuracy.

184
185 Data analysis was performed using Compound Discoverer software (v3.1 Thermo, Waltham,
186 USA). The software was used to pick and integrate peaks, perform relative quantitation and
187 attempt identification using database searches against mzCloud and Chemspider databases.
188 The QC samples were used to correct chromatographic drift and the processed blanks used to
189 identify and filter out background components. Before statistical analysis the data was
190 filtered and only the most confident identifications (>50% score against mzCloud) were used.
191 Normalised area for each metabolite was exported to excel format and then used for further
192 statistical analysis. Metabolite classification and functions were determined using Human
193 Metabolome Database (HMDB) and PubChem databases.

194
195 *Statistical analysis*
196 All statistical analysis were performed in R v3.6.1 (Team and DC, 2019). An overall
197 significant difference in the metabolites between dingoes and domestic dogs (Basenji and
198 GSD) was determined by performing Type III ANOVA to account for within group variation.

199 To detect differences between the dingo, Basenji and GSD a Type II ANOVA was performed
200 using car R package (Fox et al., 2012). Following ANOVA we obtained the pairwise
201 difference between groups using *TukeyHSD* function in R. To identify metabolite difference
202 between pure and hybrid dingoes a Welch two sample t-test was performed. A post-hoc
203 power test was then performed using the *pwr.t.test* function in R (Champely et al., 2018) with
204 a significance at P=0.05 and power of 95%. All P values obtained from statistical tests were
205 Bonferroni (BF) corrected. All statistical analyses were performed on the combined positive
206 ion and negative ion data sets.

207

208 **Results**

209 *Dingo and domestic breed difference*

210 A total of 666 metabolites were detected by LC-MS for 34 individuals. The Type III
211 ANOVA test identified 62 significant differences between the dingo and domestic dog (Table
212 1). Out of 62 metabolites, a greater number of metabolite differences were detected for
213 protein derivatives (n=14) followed by lipid derivatives (n= 12), carbohydrates (n=4) (Table
214 1) and others (n=32) (Table S3). Overall, the majority of proteins (71%) and lipids (66%)
215 were lower in dingo than breed dogs while the reverse was true for carbohydrates (75%). For
216 proteins, 11/14 metabolites were classified as amino acids and derivatives and 3/14 as
217 peptides. The three protein metabolites that were most different between dingoes and
218 domestic dogs (lowest P values) were Glycylglutamic acid, gamma-Glu-Gly and L-Cystine
219 (Fig. 1A). Out of the 12 lipid differences, five were classified as phosphatidylcholines (PC)
220 and two lysophospholipids (LyP), indicating distinction in lipid metabolism and functionality
221 (Table 1). The three lipid metabolites with lowest P value were Linoleyl carnitine, PC
222 (16:0/22:5n3), and Oleoylcarnitine (Fig. 1 B). The three most different carbohydrate

223 metabolites included 1D-chiro-inositol, Istamycin C and 2,7-Anhydro-alpha-N-
224 acetylneuraminic acid (commonly known as sialic acid) (Fig. 1C).

225

226 Overall, ANOVA showed that 98 metabolites were significantly different between dingo,
227 Basenji, and GSD (Table S4). A greater number of metabolite differences were detected for
228 protein derivatives (n=28) followed by lipid derivatives (n= 14), carbohydrates (n=9) and
229 then others (n=47) (Table S4). The three most different protein metabolites were
230 Glycylglutamic acid, gamma-Glu-Gly and N-Acetylornithine (Fig 2A). The three lipid
231 metabolites with the greatest difference in levels were PC (18:3/18:3), 2-(2-Carboxyethyl)-4-
232 methyl-5-pentyl-3-furoic acid, and PC (16:0/22:5n3) (Fig. 2B). The top three carbohydrate
233 differences included Glucose-1-phosphate, UDP N-acetylglucosamine, and 1D-1-guanidino-
234 1-deoxy-3-dehydro-scyllo-inositol (Fig 2C).

235

236 Tukey's test showed significant pairwise metabolite differences between dingoes and
237 Basenjis (n=78), dingoes and GSDs (n=77), with fewer significant metabolite differences
238 between Basenjis and GSDs (n=44) (Fig. 3). Between dingoes and Basenjis there were 21
239 unique metabolites (Table S5), 20 between dingoes and GSDs (Table S6), and no unique
240 metabolites between Basenjis and GSDs. Comparing the dingo and Basenji, 10 lipid
241 metabolites differed and all were lower in dingoes. In contrast, the dingo and GSD differed in
242 11 protein metabolites, again all lower in the dingo.

243

244 *Pure and hybrid dingo differences*

245 A total of 143 metabolites were obtained from LC-MS analysis on 10 dingoes and 10 dingo-
246 dog hybrids. Out of these, uridine 5'-diphosphogalactose (UDPGal) ($t_{(17.7)} = -3.01$, P
247 uncorrected = 0.0075), trigonelline ($t_{(11.03)} = -2.37$, P uncorrected = 0.037), dulcitol ($t_{(15.3)} = -$

248 2.13, P uncorrected= 0.049), taurine ($t_{(17.52)} = -3.73$, P uncorrected= 0.002), and L-
249 Glutathione oxidized ($t_{(14.46)} = -2.33$, P uncorrected= 0.03) had significantly higher levels in
250 pure dingoes. BF correction, however, resulted in loss of significance in all cases. A post-hoc
251 power test indicated a sample size of 15, 24 and 29 individuals respectively would result in a
252 significant difference for UDPgal, trigonelline, and dulcitol (Fig. 4). Notably, UDPgal and
253 dulcitol are associated with galactose metabolism.

254

255 **Discussion**

256 Dingoes are Australia's apex predator and their natural history is extensively studied (Ballard
257 and Wilson, 2019). However, little is known about their cell biology or metabolic profile
258 (Carthey et al., 2017). Our study reveals significant differences in the plasma metabolite
259 composition between the dingo and domestic dogs. Of the 62 significant differences between
260 the dingo and domestic dogs 71% of proteins and 66% of lipids were lower in dingoes. Low
261 protein and lipid metabolite levels in dingoes may reflect genetic or dietary differences. We
262 support the former explanation as we included dingoes and breed dogs from multiple sources.
263 Comparing pure dingoes and dingo-dog hybrids, where animals were maintained in the same
264 environmental conditions, metabolites associated with galactose metabolism were higher in
265 pure dingoes. Our results provide insight into how the dingo and the domestic dog, with their
266 distinct evolutionary histories, show variations in the cellular and metabolic pathways.

267

268 Metabolic differences involved in crucial pathways such as immune functioning and
269 neurodevelopment indicate that the ~8000 years of divergence of the dingo from domestic
270 dogs have affected key genes and their metabolites essential for survival and fitness. Dingoes
271 are generalist predators and a large proportion of the dingo diet includes protein (Doherty et
272 al., 2019). A high protein diet may reinforce metabolites related to protein digestibility in the

273 dingo compared to the domestic dog, which consumes food with high starch and low animal
274 protein (Lyu et al., 2018). In our study comparing dingoes with domestic dogs, six protein
275 derivatives that differ between dingo and domestic dogs are derived from non-essential
276 amino acids, which are produced internally (Table 1). These protein derivative differences
277 support our hypothesis that there are underlying genetic differences between dingoes and
278 dogs. A recent study on the dingo reported that 50 candidate genes associated with digestion
279 and metabolism are under positive selection (Zhang et al., 2020).

280

281 We identified multiple metabolites that are associated with neurodevelopment and likely
282 linked with the process of domestication. The glutamate receptor agonist 2-Amino-3-
283 phosphonopropanoate is lower in dingoes. Critically, this agonist has been shown to
284 influence neurotransmission (Lee et al., 1995). The unsaturated fatty acid nervonic acid is
285 also lower in dingoes than domestic dogs. Nervonic acid is tightly linked with brain
286 development, improving memory, delaying brain aging and biosynthesis of nerve cells (Li et
287 al., 2019). The carbohydrate sialic acid is higher in dingoes and is essential for mediating
288 ganglioside distribution and structures in the brain (Schauer, 2000). Previously, Wang et al.
289 (2016) showed that six genes associated with the glutathione metabolism and 49 genes
290 associated with the neurological process and perception are under positive selection during
291 dog domestication.

292

293 In our study, we observed significantly different levels of three protein metabolites that are
294 associated with the bacterial community in the gastrointestinal track. Dingoes had lower
295 levels of protein N-acetyl-DL-tryptophan, and 2,6-Diaminoheptanedioic acid and higher
296 levels of D-pipecolic acid. N-acetyl-DL-tryptophan is a tryptophan catabolite converted by
297 gut microbiota (Pavlova et al., 2017). It is also a protein stabilizer and protects protein

298 molecules from oxidative degradation. 2,6-Diaminoheptanedioic acid is a lysine like
299 derivative and is a key component of the bacterial cell wall (Webster et al., 1990). It can be
300 found in the body fluids as a result of the enzymatic breakdown of gram-negative gut
301 microbes. D-pipecolic acid is produced from the metabolism of intestinal bacteria (Vranova
302 et al., 2013, Lin et al., 2018). We predict dingoes and domestic dogs will differ in their gut
303 microbiome composition and suggest future studies explore the microbial communities in
304 dingoes and domestic dogs raised on the same diet.

305

306 Additional metabolite differences between the dingo and domestic dog detected a suite of
307 metabolites that influence cell signalling and immune system functioning. Of interest, the
308 dipeptide gamma- Glu-Gly, is elevated in dingoes. Glu-Gly is an excitatory amino acid
309 receptor antagonist in the hippocampus (Sawada and Yamamoto, 1984). L-cystine, lower in
310 dingoes, is an oxidised form of cysteine and is linked with the immune system. L-cystine is
311 the preferred form of cysteine for the synthesis of glutathione in immune system cells such as
312 macrophages and astrocytes. The vitamin DL-alpha-tocopherol is lower in dingoes. It is
313 important for regulating immune function (Lewis et al., 2019). Immune responses are
314 expected to be higher in the dingo than the domestic dog because they are exposed to a range
315 of environments and there is relaxed selection for high immunity in domestic dogs due to
316 increased Veterinary intervention.

317

318 Among lipids, both LyP and all five PCs were lower in dingoes than domestic dogs (Table 1).
319 LyP are important for cell membrane biosynthesis, energy source and storage, and
320 intracellular signalling by acting on LPL-R lysophospholipid receptors (D'Arrigo and Servi,
321 2010). In addition, LyPs are involved in several fundamental processes such as reproduction,
322 nervous system function and immunity (Birgbauer and Chun, 2006, Hla et al., 2001). PCs are

323 the predominant component of mammalian cell membranes (Li and Vance, 2008) and are
324 involved in the regulation of lipid, lipoproteins, and energy metabolism (van der Veen et al.,
325 2017, Vance, 2008). Combined, the data presented in this study indicates that pure dingoes
326 have a distinct ecological role compared to feral domestic dogs.

327

328 The study comparing pure dingoes with hybrids suggests the significant difference can be
329 detected for UDPgal, dulcitol, and trigonelline after increasing the sample size. UDPgal and
330 dulcitol are produced from galactose metabolism (Segal, 1995). Both metabolites are higher
331 in pure dingoes than hybrids (Fig. 4), putatively a result of lower metabolic digestion of
332 galactose. Potentially, this could be linked with the low *Amy2B* copy number in pure dingoes
333 (Arendt et al., 2016). Domestic dogs are attracted to several sugars including sucrose,
334 glucose, lactose and fructose, and have a high carbohydrate metabolic potential (Hoenig,
335 2014, Bradshaw, 2006). Admixture between genes from domestic dog breeds in the dingo
336 can form new genetic combinations influencing the expression of genes involved in the
337 carbohydrate metabolism. It is expected to result in an increasing number of *Amy2B* copies.

338

339 Future studies including East Asian breed dogs and additional hybrids will test the
340 hypotheses presented here. Most recently, dingoes have been shown to form a monophyletic
341 clade with East Asian breed dogs (Surbakti et al., 2020). We do not know the history of the
342 hybrid dingoes included in this study. Including dingo-dogs hybrids with different levels of
343 distinct domestic breeds is needed to determine whether the differences in galactose
344 metabolism are due to increases on *Amy2B* copy number. Technically, positive controls
345 confirming the identity of key chemical differences would strengthen our confidence in the
346 characterization of the chemical detected.

347

348 **Conclusion**

349 Our findings demonstrate that plasma metabolite profiling can be used to capture
350 metabolome distinctions between the dingo and domestic dog breeds despite diet and
351 environmental variability. Our results are consistent with the expectation that the distinct
352 evolutionary history of dingoes and domestic dogs has played an important role in shaping
353 pathways linked with protein, lipid and carbohydrate metabolism. A greater number of
354 detected metabolite differences between dingoes and domestic dogs are involved in immune
355 system functioning and neurotransmission indicating differential selection pressure on
356 pathways crucial for fitness and survival. By comparing the pure and hybrid dingoes reared
357 under similar environmental conditions and food, we showed that hybridisation might lead to
358 significant differences in metabolites involved in the carbohydrate biochemical pathways.

359

360 **Acknowledgements**

361 We thank Lucille Ellem, Ivan & Sonya Pacek, Ethel Blair, Jennifer Power, and Tony Crocker
362 for providing samples for the study. William Donald (UNSW) provided constructive inputs.
363 Mass spectrometric results were obtained at the Bioanalytical Mass Spectrometry Facility
364 within the Mark Wainwright Analytical Centre of the University of New South Wales. This
365 work was undertaken using infrastructure provided by NSW Government co-investment in
366 the National Collaborative Research Infrastructure Scheme (NCRIS) subsidised access to this
367 facility is gratefully acknowledged. The project was funded by Australian Research Council
368 Discovery Project DP150102038.

369

370

371

372

373 **References**

374

375 ADAMS, J. R., LEONARD, J. A. & WAITS, L. P. 2003. Widespread occurrence of a
376 domestic dog mitochondrial DNA haplotype in southeastern US coyotes. *Molecular
377 Ecology*, 12, 541-546.

378 ARENDT, M., CAIRNS, K. M., BALLARD, J. W. O., SAVOLAINEN, P. & AXELSSON,
379 E. 2016. Diet adaptation in dog reflects spread of prehistoric agriculture. *Heredity*,
380 117, 301-306.

381 BALLARD, J. W. O. & WILSON, L. A. B. 2019. The Australian dingo: untamed or feral?
382 *Frontiers in Zoology*, 16.

383 BECKMANN, M., ENOT, D. P., OVERY, D. P., SCOTT, I. M., JONES, P. G., ALLAWAY,
384 D. & DRAPER, J. 2010. Metabolite fingerprinting of urine suggests breed-specific
385 dietary metabolism differences in domestic dogs. *British Journal of Nutrition*, 103,
386 1127-1138.

387 BIRGBAUER, E. & CHUN, J. 2006. New developments in the biological functions of
388 lysophospholipids. *Cellular and Molecular Life Sciences CMLS*, 63, 2695-2701.

389 BORETTI, F. S., BURLA, B., DEUEL, J., GAO, L., WENK, M. R., LIESEGANG, A. &
390 SIEBER-RUCKSTUHL, N. S. 2020. Serum lipidome analysis of healthy beagle dogs
391 receiving different diets. *Metabolomics*, 16, 1.

392 BRADSHAW, J. W. S. 2006. The evolutionary basis for the feeding behavior of domestic
393 dogs (*Canis familiaris*) and cats (*Felis catus*). *Journal of Nutrition*, 136, 1927s-1931s.

394 CARLOS, G., DOS SANTOS, F. P. & FROEHLICH, P. E. 2020. Canine metabolomics
395 advances. *Metabolomics*, 16.

396 CARTHEY, A. J. R., BUCKNALL, M. P., WIERUCKA, K. & BANKS, P. B. 2017. Novel
397 predators emit novel cues: a mechanism for prey naivety towards alien predators.
398 *Scientific Reports*, 7.

399 CHAMPELY, S., EKSTROM, C., DALGAARD, P., GILL, J., WEIBELZAH, S.,
400 ANANDKUMAR, A., FORD, C., VOLCIC, R., DE ROSARIO, H. & DE ROSARIO,
401 M. H. 2018. Package ‘pwr’. *R package version*, 1.

402 CLINQUART, A., VAN EENAEME, C., MAYOMBO, A., GAUTHIER, S. & ISTASSE, L.
403 1995. Plasma hormones and metabolites in cattle in relation to breed (Belgian Blue vs
404 Holstein) and conformation (double-muscled vs dual-purpose type). *Veterinary
405 research communications*, 19, 185-194.

406 COLYER, A., GILHAM, M. S., KAMLAGE, B., REIN, D. & ALLAWAY, D. 2011.
407 Identification of intra- and inter-individual metabolite variation in plasma metabolite
408 profiles of cats and dogs. *British Journal of Nutrition*, 106, S146-S149.

409 D'ARRIGO, P. & SERVI, S. 2010. Synthesis of lysophospholipids. *Molecules*, 15, 1354-
410 1377.

411 DOHERTY, T. S., DAVIS, N. E., DICKMAN, C. R., FORSYTH, D. M., LETNIC, M.,
412 NIMMO, D. G., PALMER, R., RITCHIE, E. G., BENSHEMESH, J., EDWARDS,
413 G., LAWRENCE, J., LUMSDEN, L., PASCOE, C., SHARP, A., STOKELD, D.,
414 MYERS, C., STORY, G., STORY, P., TRIGGS, B., VENOSTA, M., WYSONG, M.
415 & NEWSOME, T. M. 2019. Continental patterns in the diet of a top predator:
416 Australia's dingo. *Mammal Review*, 49, 31-44.

417 FERLIZZA, E., ISANI, G., DONDI, F., ANDREANI, G., VASYLYEVA, K., BELLEI, E.,
418 ALMEIDA, A. M. & MATZAPETAKIS, M. 2020. Urinary proteome and
419 metabolome in dogs (*Canis lupus familiaris*): The effect of chronic kidney disease.
420 *Journal of proteomics*, 222, 103795.

421 FIEHN, O. 2002. Metabolomics - the link between genotypes and phenotypes. *Plant
422 Molecular Biology*, 48, 155-171.

423 FIELD, M. A., ROSEN, B. D., DUDCHENKO, O., CHAN, E. K. F., MINOCHE, A. E.,
424 EDWARDS, R. J., BARTON, K., LYONS, R. J., TUIPULOTU, D. E., HAYES, V.
425 M., OMER, A. D., COLARIC, Z., KEILWAGEN, J., SKVORTSOVA, K.,
426 BOGDANOVIC, O., SMITH, M. A., AIDEN, E. L., SMITH, T. P. L., ZAMMIT, R.
427 A. & BALLARD, J. W. O. 2020. Canfam_GSD: De novo chromosome-length
428 genome assembly of the German Shepherd Dog (*Canis lupus familiaris*) using a
429 combination of long reads, optical mapping, and Hi-C. *Gigascience*, 9.
430 FOX, J., WEISBERG, S., ADLER, D., BATES, D., BAUD-BOVY, G., ELLISON, S.,
431 FIRTH, D., FRIENDLY, M., GORJANC, G. & GRAVES, S. 2012. Package ‘car’.
432 *Vienna: R Foundation for Statistical Computing*.
433 FREEDMAN, A. H., GRONAU, I., SCHWEIZER, R. M., ORTEGA-DEL VECCHYO, D.,
434 HAN, E. J., SILVA, P. M., GALAVERNI, M., FAN, Z. X., MARX, P., LORENTE-
435 GALDOS, B., BEALE, H., RAMIREZ, O., HORMOZDIARI, F., ALKAN, C.,
436 VILA, C., SQUIRE, K., GEFFEN, E., KUSAK, J., BOYKO, A. R., PARKER, H. G.,
437 LEE, C., TADIGOTLA, V., SIEPEL, A., BUSTAMANTE, C. D., HARKINS, T. T.,
438 NELSON, S. F., OSTRANDER, E. A., MARQUES-BONET, T., WAYNE, R. K. &
439 NOVEMBRE, J. 2014. Genome Sequencing Highlights the Dynamic Early History of
440 Dogs. *Plos Genetics*, 10.
441 FUJISAKA, S., AVILA-PACHECO, J., SOTO, M., KOSTIC, A., DREYFUSS, J. M., PAN,
442 H., USSAR, S., ALTINDIS, E., LI, N., BRY, L., CLISH, C. B. & KAHN, C. R. 2018.
443 Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites.
444 *Cell Reports*, 22, 3072-3086.
445 FULLER, J. L. 1956. Photoperiodic control of estrus in the Basenji. *Journal of Heredity*, 47,
446 179-180.
447 GALOV, A., FABBRI, E., CANIGLIA, R., ARBANASIC, H., LAPALOMBELLA, S.,
448 FLORIJANCIC, T., BOSKOVIC, I., GALAVERNI, M. & RANDI, E. 2015. First
449 evidence of hybridization between golden jackal (*Canis aureus*) and domestic dog
450 (*Canis familiaris*) as revealed by genetic markers. *Royal Society Open Science*, 2.
451 GOPALAKRISHNAN, S., SINDING, M.-H. S., RAMOS-MADRIGAL, J., NIEMANN, J.,
452 CASTRUITA, J. A. S., VIEIRA, F. G., CARØE, C., DE MANUEL MONTERO, M.,
453 KUDERNA, L. & SERRES, A. 2018. Interspecific gene flow shaped the evolution of
454 the genus *Canis*. *Current Biology*, 28, 3441-3449. e5.
455 GOTTELLI, D., SILLEROZUBIRI, C., APPLEBAUM, G. D., ROY, M. S., GIRMAN, D. J.,
456 GARCIAMORENO, J., OSTRANDER, E. A. & WAYNE, R. K. 1994. Molecular-
457 Genetics of the Most Endangered Canid - the Ethiopian Wolf *Canis-Simensis*.
458 *Molecular Ecology*, 3, 301-312.
459 HANHINEVA, K., LANKINEN, M. A., PEDRET, A., SCHWAB, U., KOLEHMAINEN,
460 M., PAANANEN, J., DE MELLO, V., SOLA, R., LEHTONEN, M., POUTANEN,
461 K., UUSITUPA, M. & MYKKANEN, H. 2015. Nontargeted metabolite profiling
462 discriminates diet-specific biomarkers for consumption of whole grains, fatty fish,
463 and bilberries in a randomized controlled trial. *Journal of Nutrition*, 145, 7-17.
464 HLA, T., LEE, M.-J., ANCELLIN, N., PAIK, J. H. & KLUK, M. J. 2001.
465 Lysophospholipids--receptor revelations. *Science*, 294, 1875-1878.
466 HOENIG, M. 2014. Carbohydrate metabolism and pathogenesis of diabetes mellitus in dogs
467 and cats. *Progress in molecular biology and translational science*. Elsevier.
468 JOHANNES, J. E. 2004. Basenji Origin and Migration: At Africa’s Doorstep. *The Official*
469 *Bulletin of the Basenji Club of America*, 38 (1), 18-19.
470 JOHNSON, C. H., IVANISEVIC, J. & SIUZDAK, G. 2016. Metabolomics: beyond
471 biomarkers and towards mechanisms. *Nature Reviews Molecular Cell Biology*, 17,
472 451-459.

473 KETTUNEN, J., TUKAINEN, T., SARIN, A. P., ORTEGA-ALONSO, A., TIKKANEN, E.,
474 LYYTIKAINEN, L. P., KANGAS, A. J., SOININEN, P., WURTZ, P., SILANDER,
475 K., DICK, D. M., ROSE, R. J., SAVOLAINEN, M. J., VIIKARI, J., KAHONEN, M.,
476 LEHTIMAKI, T., PIETILAINEN, K. H., INOUYE, M., MCCARTHY, M. I., JULIA,
477 A., ERIKSSON, J., RAITAKARI, O. T., SALOMAA, V., KAPRIO, J., JARVELIN,
478 M. R., PELTONEN, L., PEROLA, M., FREIMER, N. B., ALA-KORPELA, M.,
479 PALOTIE, A. & RIPATTI, S. 2012. Genome-wide association study identifies
480 multiple loci influencing human serum metabolite levels. *Nature Genetics*, 44, 269-
481 U65.

482 KHAMIS, M. M., ADAMKO, D. J. & EL-ANEED, A. 2017. Mass spectrometric based
483 approaches in urine metabolomics and biomarker discovery. *Mass spectrometry
484 reviews*, 36, 115-134.

485 LEE, R. K. K., WURTMAN, R. J., COX, A. J. & NITSCH, R. M. 1995. Amyloid Precursor
486 Protein Processing Is Stimulated by Metabotropic Glutamate Receptors. *Proceedings
487 of the National Academy of Sciences of the United States of America*, 92, 8083-8087.

488 LETNIC, M., CROWTHER, M. & KOCH, F. 2009. Does a top-predator provide an
489 endangered rodent with refuge from an invasive mesopredator? *Animal Conservation*,
490 12, 302-312.

491 LETNIC, M., RITCHIE, E. G. & DICKMAN, C. R. 2012. Top predators as biodiversity
492 regulators: the dingo *Canis lupus dingo* as a case study. *Biological Reviews*, 87, 390-
493 413.

494 LEWIS, E. D., MEYDANI, S. N. & WU, D. 2019. Regulatory role of vitamin E in the
495 immune system and inflammation. *IUBMB life*, 71, 487-494.

496 LI, Q., CHEN, J., YU, X. Z. & GAO, J. M. 2019. A mini review of nervonic acid: Source,
497 production, and biological functions. *Food Chemistry*, 301.

498 LI, Z. Y. & VANCE, D. E. 2008. Phosphatidylcholine and choline homeostasis. *Journal of
499 Lipid Research*, 49, 1187-1194.

500 LIN, C. H., WAN, J. J., SU, Y. & ZHU, W. Y. 2018. Effects of Early Intervention with
501 Maternal Fecal Microbiota and Antibiotics on the Gut Microbiota and Metabolite
502 Profiles of Piglets. *Metabolites*, 8.

503 LLOYD, A. J., BECKMANN, M., WILSON, T., TAILLIART, K., ALLAWAY, D. &
504 DRAPER, J. 2017. Ultra high performance liquid chromatography-high resolution
505 mass spectrometry plasma lipidomics can distinguish between canine breeds despite
506 uncontrolled environmental variability and non-standardized diets. *Metabolomics*, 13.

507 LYU, T., LIU, G., ZHANG, H., WANG, L., ZHOU, S., DOU, H., PANG, B., SHA, W. &
508 ZHANG, H. 2018. Changes in feeding habits promoted the differentiation of the
509 composition and function of gut microbiotas between domestic dogs (*Canis lupus
510 familiaris*) and gray wolves (*Canis lupus*). *Amb Express*, 8, 1-12.

511 MACKAY, G. M., ZHENG, L., VAN DEN BROEK, N. J. & GOTTLIEB, E. 2015. Analysis
512 of cell metabolism using LC-MS and isotope tracers. *Methods in enzymology*.
513 Elsevier.

514 MAMAS, M., DUNN, W. B., NEYSES, L. & GOODACRE, R. 2011. The role of
515 metabolites and metabolomics in clinically applicable biomarkers of disease. *Archives
516 of toxicology*, 85, 5-17.

517 NICHOLSON, G., RANTALAINEN, M., MAHER, A. D., LI, J. V., MALMODIN, D.,
518 AHMADI, K. R., FABER, J. H., HALLGRIMSDOTTIR, I. B., BARRETT, A.,
519 TOFT, H., KRESTYANINOVA, M., VIKSNA, J., NEOGI, S. G., DUMAS, M. E.,
520 SARKANS, U., SILVERMAN, B. W., DONNELLY, P., NICHOLSON, J. K.,
521 ALLEN, M., ZONDERVAN, K. T., LINDON, J. C., SPECTOR, T. D.,
522 MCCARTHY, M. I., HOLMES, E., BAUNSGAARD, D., HOLMES, C. C. &

CONSORTIUM, M. 2011. Human metabolic profiles are stably controlled by genetic and environmental variation. *Molecular Systems Biology*, 7.

PARKER, H. G., DREGER, D. L., RIMBAULT, M., DAVIS, B. W., MULLEN, A. B., CARPINTERO-RAMIREZ, G. & OSTRANDER, E. A. 2017. Genomic Analyses Reveal the Influence of Geographic Origin, Migration, and Hybridization on Modern Dog Breed Development. *Cell Reports*, 19, 697-708.

PAVLOVA, T., VIDOVA, V., BIENERTOVA-VASKU, J., JANKU, P., ALMASI, M., KLANOVA, J. & SPACIL, Z. 2017. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. *Analytica Chimica Acta*, 987, 72-80.

PENDLETON, A. L., SHEN, F. C., TARAVELLA, A. M., EMERY, S., VEERAMAH, K. R., BOYKO, A. R. & KIDD, J. M. 2018. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. *Bmc Biology*, 16.

RHYMER, J. M. & SIMBERLOFF, D. 1996. Extinction by hybridization and introgression. *Annual review of ecology and systematics*, 27, 83-109.

ROY, M. S., GEFFEN, E., SMITH, D. & WAYNE, R. K. 1996. Molecular genetics of pre-1940 red wolves. *Conservation Biology*, 10, 1413-1424.

SAVOLAINEN, P., LEITNER, T., WILTON, A. N., MATISOO-SMITH, E. & LUNDEBERG, J. 2004. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. *Proceedings of the National Academy of Sciences of the United States of America*, 101, 12387-12390.

SAWADA, S. & YAMAMOTO, C. 1984. Gamma-D-Glutamylglycine and Cis-2,3-Piperidine Dicarboxylate as Antagonists of Excitatory Amino-Acids in the Hippocampus. *Experimental Brain Research*, 55, 351-358.

SCHAUER, R. 2000. Achievements and challenges of sialic acid research. *Glycoconjugate journal*, 17, 485-499.

SEGAL, S. 1995. Defective galactosylation in galactosemia: is low cell UDPgalactose an explanation? *European journal of pediatrics*, 154, S65-S71.

SMITH, B. P., CAIRNS, K. M., ADAMS, J. W., NEWSOME, T. M., FILLIOS, M., DEAUX, E. C., PARR, W. C. H., LETNIC, M., VAN EEDEN, L. M., APPLEBY, R. G., BRADSHAW, C. J. A., SAVOLAINEN, P., RITCHIE, E. G., NIMMO, D. G., ARCHER-LEAN, C., GREENVILLE, A. C., DICKMAN, C. R., WATSON, L., MOSEBY, K. E., DOHERTY, T. S., WALLACH, A. D., MORRANT, D. S. & CROWTHER, M. S. 2019. Taxonomic status of the Australian dingo: the case for *Canis dingo* Meyer, 1793. *Zootaxa*, 4564, 173-197.

SPADY, T. C. & OSTRANDER, E. A. 2008. Canine behavioral genetics: pointing out the phenotypes and herding up the genes. *The American Journal of Human Genetics*, 82, 10-18.

STEPHENS, D., WILTON, A. N., FLEMING, P. J. & BERRY, O. 2015. Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. *Molecular Ecology*, 24, 5643-5656.

SUHRE, K. & GIEGER, C. 2012. Genetic variation in metabolic phenotypes: study designs and applications. *Nature Reviews Genetics*, 13, 759-769.

SURBAKTI, S., PARKER, H. G., MCINTYRE, J. K., MAURY, H. K., CAIRNS, K. M., SELVIG, M., PANGAU-ADAM, M., SAFONPO, A., NUMBERI, L., RUNTUBOI, D. Y. P., DAVIS, B. W. & OSTRANDER, E. A. 2020. New Guinea highland wild dogs are the original New Guinea singing dogs. *Proceedings of the National Academy of Sciences of the United States of America*, 117, 24369-24376.

TALENTI, A., DREGER, D. L., FRATTINI, S., POLLI, M., MARELLI, S., HARRIS, A. C., LIOTTA, L., COCCO, R., HOGAN, A. N. & BIGI, D. 2018. Studies of modern

572 Italian dog populations reveal multiple patterns for domestic breed evolution. *Ecology*
573 and *evolution*, 8, 2911-2925.

574 TEAM, R. C. & DC, R. 2019. A language and environment for statistical computing. Vienna,
575 Austria: R Foundation for Statistical Computing; 2012. URL <https://www.R-project.org>.

576

577 VAN DER VEEN, J. N., KENNELLY, J. P., WAN, S., VANCE, J. E., VANCE, D. E. &
578 JACOBS, R. L. 2017. The critical role of phosphatidylcholine and
579 phosphatidylethanolamine metabolism in health and disease. *Biochimica Et*
580 *Biophysica Acta-Biomembranes*, 1859, 1558-1572.

581 VAN RAVENZWAAY, B., CUNHA, G. C. P., LEIBOLD, E., LOOSER, R., MELLERT,
582 W., PROKOURDINE, A., WALK, T. & WIEMER, J. 2007. The use of metabolomics
583 for the discovery of new biomarkers of effect. *Toxicology Letters*, 172, 21-28.

584 VANCE, D. E. 2008. Role of phosphatidylcholine biosynthesis in the regulation of
585 lipoprotein homeostasis. *Current Opinion in Lipidology*, 19, 229-234.

586 VIANT, M. R., LUDWIG, C., RHODES, S., GUNTHER, U. L. & ALLAWAY, D. 2009.
587 Validation of a urine metabolome fingerprint in dog for phenotypic classification (vol
588 3, pg 453, 2007). *Metabolomics*, 5, 517-517.

589 VRANOVA, V., LOJKOVA, L., REJSEK, K. & FORMANEK, P. 2013. Significance of the
590 Natural Occurrence of L- Versus D-Pipecolic Acid: A Review. *Chirality*, 25, 823-
591 831.

592 WANG, G.-D., ZHAI, W., YANG, H.-C., WANG, L., ZHONG, L., LIU, Y.-H., FAN, R.-X.,
593 YIN, T.-T., ZHU, C.-L. & POYARKOV, A. D. 2016. Out of southern East Asia: the
594 natural history of domestic dogs across the world. *Cell research*, 26, 21-33.

595 WAYNE, R. K. 2001. Consequences of domestication: morphological diversity of the dog.
596 *The genetics of the dog*, 43-60.

597 WEBSTER, P., HOOVER, W. & MILLER, T. 1990. Determination of 2, 6 diaminopimelic
598 acid in biological materials using high performance liquid chromatography. *Animal*
599 *feed science and technology*, 30, 11-20.

600 WILTON, A. N. DNA methods of assessing dingo purity. A Symposium on the Dingo'.(Eds
601 CR Dickman and D. Lunney.) pp, 2001. 49-56.

602 ZHANG, S. J., WANG, G. D., MA, P. C., ZHANG, L. L., YIN, T. T., LIU, Y. H., OTECKO,
603 N. O., WANG, M., MA, Y. P., WANG, L., MAO, B. Y., SAVOLAINEN, P. &
604 ZHANG, Y. P. 2020. Genomic regions under selection in the feralization of the
605 dingoes. *Nature Communications*, 11.

606 ZHANG, T., CREEK, D. J., BARRETT, M. P., BLACKBURN, G. & WATSON, D. G.
607 2012. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic
608 interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic
609 studies of human urine. *Analytical chemistry*, 84, 1994-2001.

610

611

612

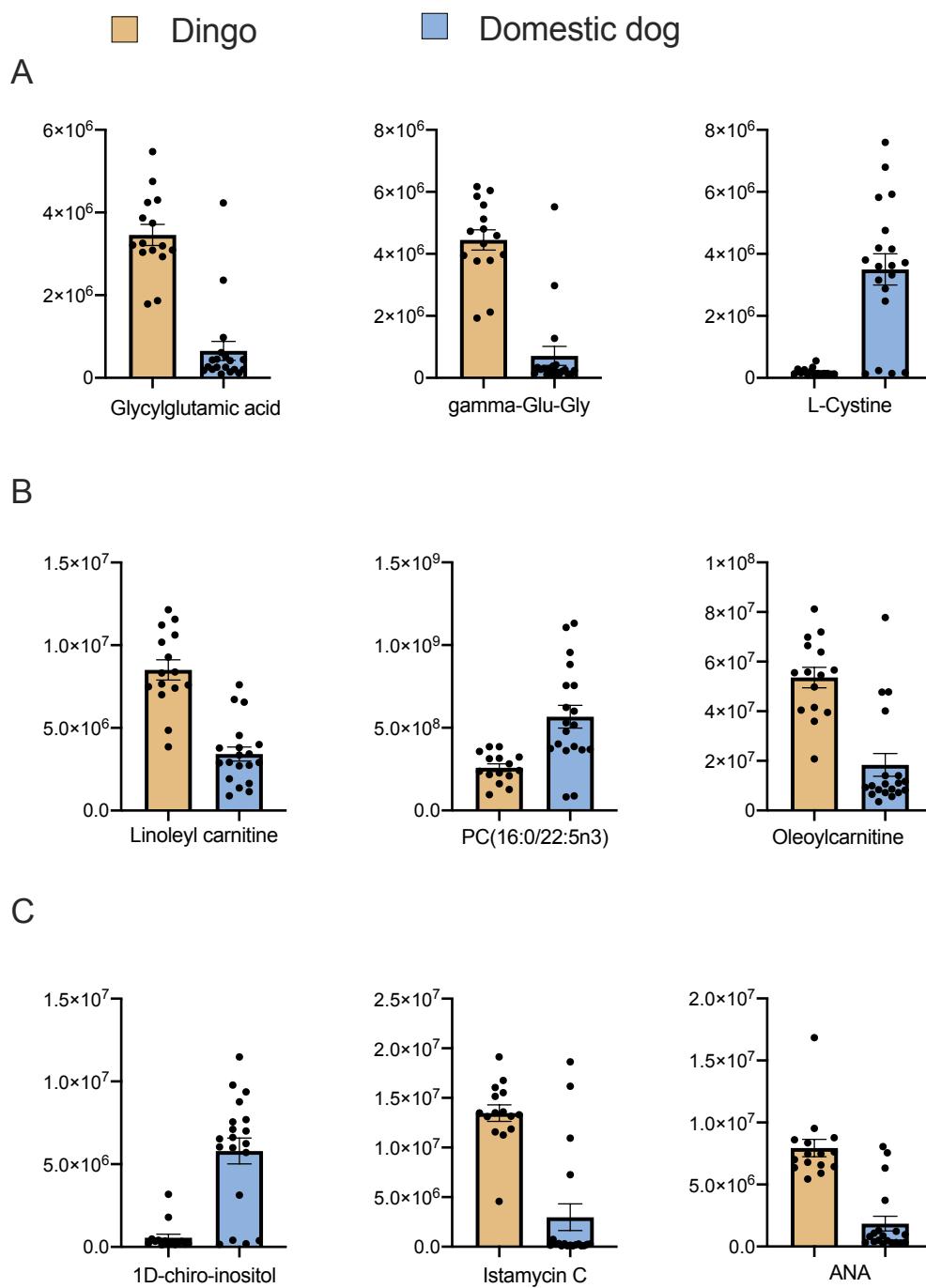
613

614

615 **Tables and Figures**

616

617 Table 1: Protein, lipid and carbohydrate differences observed between the dingo and
618 domestic dog using type III ANOVA. Non-essential amino acid derivatives and metabolites
619 are indicated by *.


620

Broad classification	P	Subclass
Protein		
Glycylglutamic acid	1.42E-08	Peptide
gamma-Glu-Gly	2.73E-07	Peptide
L-Cystine*	1.02E-06	Amino acid
N,N-Dimethylglycine*	1.32E-06	Amino acid derivative
D-(+)-Pipcolinic acid	2.24E-06	Amino acid metabolite
2-Amino-3-phosphonopropanoate	3.05E-06	Amino acid
Hexanoylglycine*	4.94E-06	Amino acid acylated
L-Cysteinylglycine disulfide	7.00E-06	Peptide
4-Methylene-L-glutamate*	1.10E-05	Amino acid derivative
N-Acetyl-L-leucine	1.25E-05	Amino acid derivative
2,6-Diaminoheptanedioic acid	2.43E-05	Amino acid derivative
N-acetyl-DL-tryptophan	3.38E-05	Amino acid derivative
N5-Ethyl-L-glutamine*	5.76E-05	Amino acid
Ophthalmic acid*	7.38E-05	Amino acid derivative
Lipid		
Linoleyl carnitine	1.51E-07	Carnitine derivative
PC (16:0/22:5n3)	2.96E-06	Phosphatidylcholine
MFCD22416941/Oleoylcarnitine	5.09E-06	Acylcarnitine
PC (32:2)	1.49E-05	Phosphatidylcholine
(2E)-hexadecenoylcarnitine	1.69E-05	Acylcarnitine
PC (18:3/18:3)	1.99E-05	Phosphatidylcholine
(24R_24'R)-Fucosterol epoxide	2.91E-05	Epoxy steroid
Nervonic acid	3.45E-05	Fatty acid
LPC (22:5)	3.93E-05	Lysophospholipid
LPC 22:6	4.48E-05	Lysophospholipid
PC (14:0/24:1)	4.64E-05	Phosphatidylcholine
PC (18:0/22:5)	5.94E-05	Phosphatidylcholine
Carbohydrate		
1D-chiro-inositol	4.37E-06	Sugar
Istamycin C	1.62E-05	Amino sugar
2,7-Anhydro-alpha-N-acetylneuraminic acid	4.19E-05	Sugar
N-Acetylneuraminic acid	5.51E-05	Amino sugar

621

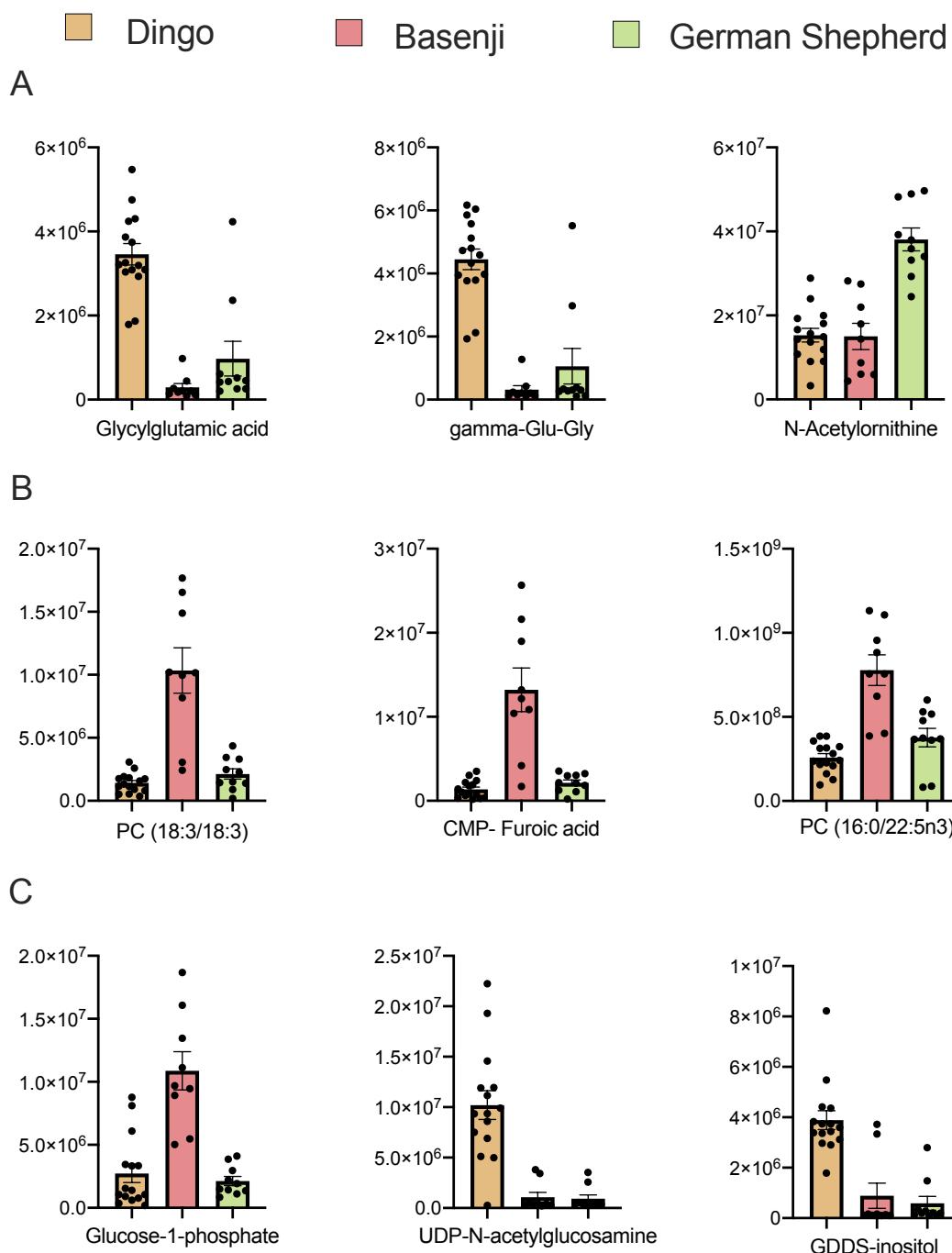
622

623

624
625

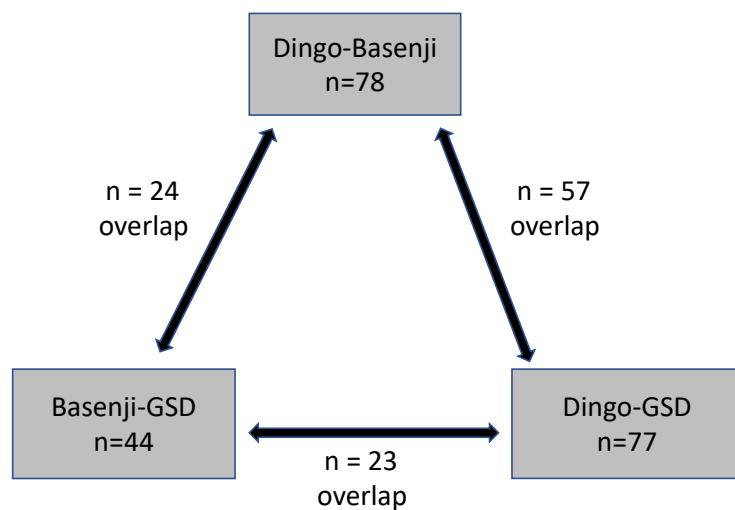
626 Figure 1: Metabolite differences between dingoes and domestic dog breeds jointly: A) Top
627 three protein metabolite differences based on the lowest P values, B) Top three lipid
628 metabolite differences, C) Top three carbohydrate metabolite differences. ANA: 2,7-
629 Anhydro-alpha-N-acetylneurameric acid (sialic acid). Y axis represents normalised area for
630 the metabolite. Plot show mean with SE.

631

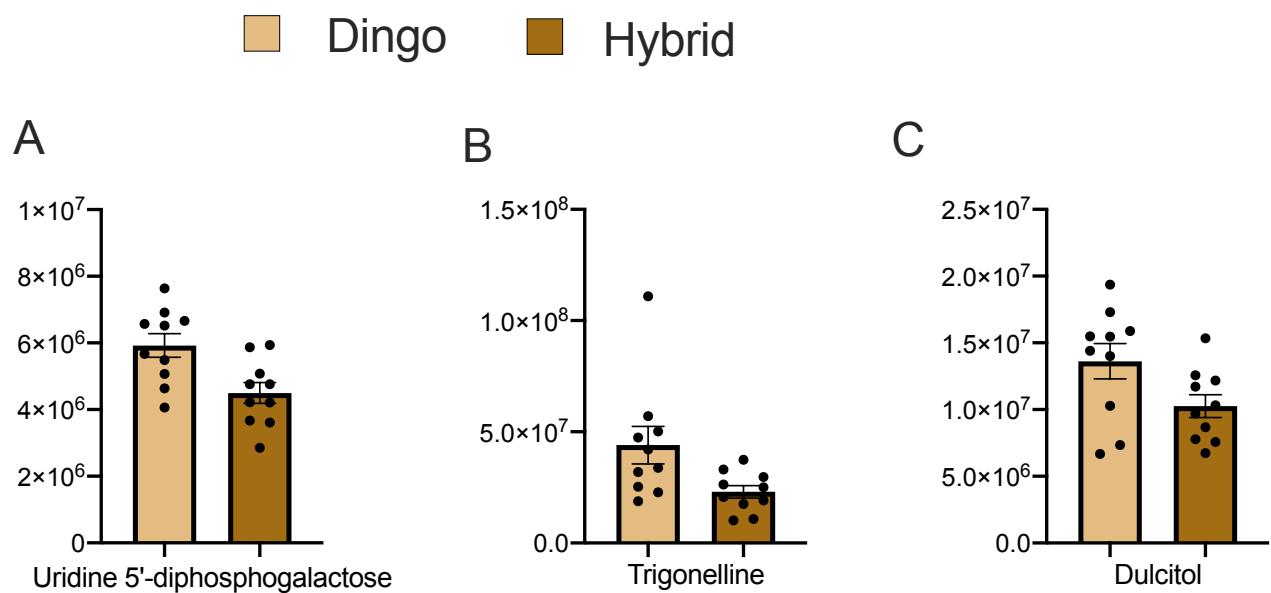

632

633

634


635

636



637
638
639
640
641
642
643
644
645
646

Figure 2: Metabolite differences between the dingo, Basenji and German Shepherd Dog: A) Top three protein metabolite differences between the three groups, B) Top three lipid metabolite differences, C) Top three carbohydrate metabolite differences. CMP- Furoic acid: 2-(2-Carboxyethyl)-4-methyl-5-pentyl-3-furoic acid, GDDS-inositol: 1D-1-guanidino-1-deoxy-3-dehydro-scyllo-inositol. Y axis represents normalised area for the metabolite. Plot show mean with SE.

647
648
649
650 Figure 3: An overview of metabolite differences between the dingo, Basenji and German
651 Shepherd Dog (GSD) detected using pairwise Tukey's test.
652

653
654 Figure 4: Metabolite difference between the dingo and dingo-domestic dog hybrid. Y axis
655 represents normalised area for the metabolite. Plot show mean with SE.
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

687 **Supplementary information for**

688

689 **Metabolomics shows the Australian dingo has a unique plasma profile**

690 Sonu Yadav^{1*}, Russell Pickford², Robert Zammit³, J. William O. Ballard¹

691

692 ¹School of Biotechnology and Biomolecular Science, University of New South Wales,

693 Sydney, NSW, 2052, Australia

694 ²Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW,

695 2052, Australia

696 ³Vineyard Veterinary Hospital, Windsor Rd, Vineyard, Sydney, NSW 2765, Australia

697

698 ***Corresponding author:**

699 Sonu Yadav

700 School of Biotechnology and Biomolecular Sciences, University of New South Wales,

701 Sydney, NSW 2052, Australia. E-mail: Sonu.yadav@unsw.edu.au

702

703

704

705

706

707

708

709

710

711

712

713
714
715
716

Table S1: Details of canines included to detect metabolite differences between dingoes and domestic breeds. NSW= New South Wales, WA= Western Australia, QLD = Queensland.

Local ID	Group	Sex	Age	Location
W0381	Dingo	F	4	Bargo dingo sanctuary, NSW
W0380	Dingo	M	4	Bargo dingo sanctuary, NSW
W0378	Dingo	F	3	Bargo dingo sanctuary, NSW
W0379	Dingo	F	3	Bargo dingo sanctuary, NSW
X3170	Dingo	M	8	Bargo dingo sanctuary, NSW
W0235	Dingo	M	4	Bargo dingo sanctuary, NSW
W0302	Dingo	M	5	Bargo dingo sanctuary, NSW
W0363	Dingo	M	1	Bargo dingo sanctuary, NSW
W0383	Dingo	F	3	Bargo dingo sanctuary, NSW
X3172	Dingo	M	3	Bargo dingo sanctuary, NSW
W0296	Dingo	F	4	Pure dingo sanctuary, NSW
W0330	Dingo	F	4	Pure dingo sanctuary, NSW
W0349	Dingo	F	1	Crossroads Dingo Rescue, WA
W0351	Dingo	F	>1	RSPCA, Victoria
W0358	Dingo	M	2	Mandurah, WA
BAS06	Basenji	F	2.5	Basenji breed network, QLD
BAS07	Basenji	M	6.8	Basenji breed network, QLD
BAS22	Basenji	M	6.7	Zanzipow Basenji club, NSW
BAS23	Basenji	F	4	Zanzipow Basenji club, NSW
BAS24	Basenji	F	4	Zanzipow Basenji club, NSW
BAS25	Basenji	F	10	Zanzipow Basenji club, NSW
BAS26	Basenji	M	5.7	Zanzipow Basenji club, NSW
BAS27	Basenji	F	10	Zanzipow Basenji club, NSW
BAS28	Basenji	M	7	Zanzipow Basenji club, NSW
BAS29	Basenji	F	2.6	Zanzipow Basenji club, NSW
GSD03	German Shepherd	M	2	Allendelle Kennel, NSW
GSD06	German Shepherd	F	1.8	Kingsvale Kennel, NSW
GSD07	German Shepherd	F	1.8	Kingsvale Kennel, NSW
GSD08	German Shepherd	F	3.6	Kingsvale Kennel, NSW
GSD 11	German Shepherd	M	2.2	Kingsvale Kennel, NSW
GSD12	German Shepherd	F	2.1	Kingsvale Kennel, NSW
GSD14	German Shepherd	M	5.6	Kingsvale Kennel, NSW
GSD15	German Shepherd	F	4.1	Kingsvale Kennel, NSW
GSD16	German Shepherd	M	4	Kingsvale Kennel, NSW
GSD 17	German Shepherd	F	>1	Kingsvale Kennel, NSW

717
718
719
720

721
722
723

Table S2: Details of dingo-dog hybrids and pure dingoes. NSW= New South Wales

Local ID	Group	Sex	Age	Location
W0439	Hybrid dingo	F	1	Western NSW
W0431	Hybrid dingo	M	6	Western NSW
W0446	Hybrid dingo	F	4	Western NSW
W0442	Hybrid dingo	F	3	Western NSW
W0456	Hybrid dingo	M	2	Western NSW
W0445	Hybrid dingo	F	1	Western NSW
W0458	Hybrid dingo	M	2	Western NSW
W0429	Hybrid dingo	M	8	Western NSW
W0427	Hybrid dingo	M	8	Western NSW
W0457	Hybrid dingo	F	1	Western NSW
W0435	Pure dingo	M	12	Western NSW
W0437	Pure dingo	F	4	Western NSW
W0449	Pure dingo	M	10	Western NSW
W0454	Pure dingo	M	3	Western NSW
W0450	Pure dingo	M	8	Western NSW
W0440	Pure dingo	F	1	Western NSW
W0448	Pure dingo	F	1	Western NSW
W0453	Pure dingo	F	3	Western NSW
W0433	Pure dingo	M	1	Western NSW
W0452	Pure dingo	F	1	Western NSW

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

747 Table S3: Metabolite differences between the dingo and domestic dog detected using Type III
 748 ANOVA analysis.
 749

Broad classification		
Other	P	Subclass
Pseudouridine	3.35E-05	Nucleoside and nucleotide analogues
Orotidine	5.93E-05	Pyrimidine nucleoside
3',5'-Cyclic IMP	2.17E-06	Nucleotide
Cangrelor	9.71E-06	Nucleoside triphosphate analogue
3'-Adenosine monophosphate (3'-AMP)	5.31E-05	Nucleotide
Arabinosylhypoxanthine	1.14E-06	Purine nucleoside
2-Aminonicotinic acid - Vitamin	1.50E-07	Vitamin B3 derivative
DL- α -Tocopherol/ Vitamin E	1.29E-07	Tocopherol
Mebutamate	1.19E-06	Synthetic
PEG n10/Polyethylene glycol (PEG)	1.98E-05	Synthetic polyether
Amfepramone	1.94E-09	Synthetic, Drug
Ethylenediaminetetraacetic acid	1.87E-06	EDTA synthetic
4-Amino-5-hydroxymethyl-2-methylpyrimidine	2.64E-05	Aminopyrimidine
6-Methoxyquinoline	3.94E-05	Aromatic Ether and quinoline
Nitrilotriacetic acid	2.43E-07	Carboxylic acid derivative
N-(6-Oxo-6H-dibenzo[b,d]pyran-3-yl)maleamic acid	5.96E-05	Coumarin member
Carpropamid	8.81E-06	Cyclopropylcarboxamide
3-Hydroxy-3-[(3-methylbutanoyl)oxy]-4-(trimethylammonio)butanoate	6.05E-05	Derived from by product of leucine degradation pathway
Taxifolin	2.79E-05	Flavonoid
Benzimidazole	4.69E-06	Imidazole derivative
1D-1-Guanidino-1-deoxy-3-dehydro-scyllo-inositol	6.15E-05	Inositol derivative-sugar
Triadimefon	6.50E-07	Triazoles member
N-Nitrosoguvacoline	4.30E-05	N-nitrosamine
4-(3-Hydroxybutyl)-2-methoxyphenyl hydrogen sulfate	1.36E-05	Phenylsulfates
Hexahydroxydiphenic acid	1.60E-05	Polyphenol
1-{{[5-(2-Hydroxyethoxy)-4-oxopentanoyl]oxy}-2,5-pyrrolidinedione	6.31E-05	Secondary amine
[FAoxo_amino(6:0)]3-oxo-5S-amino-hexanoicacid	7.28E-07	Keto acids and derivative
Unknown		
6-[(5-Amino-1-carboxypentyl)amino]-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid	2.10E-07	Unknown
(1R,9S)-11-[(Methylsulfanyl)acetyl]-3-(2-thienyl)-7,11-diazatricyclo[7.3.1.02,7]trideca-2,4-dien-6-one	2.67E-06	Unknown
5-(2,6-Dichlorobenzyl)-6-methyl-2-(2-pyridyl)pyrimidin-4-ol	3.60E-05	Unknown
5,5'-Dihydroxy-4,4',8',8'-tetramethyl-4,5-dihydro-2'H,3H-spiro[furan-2,6'-[7]oxabicyclo[3.2.1]oct[3]en]-2'-one	5.94E-05	Unknown
X7028	5.39E-07	Unnamed

Table S4: Table showing 98 metabolite differences between the dingo, Basenji and German Shepherd Dog (GSD) using type II ANOVA and pairwise differences between groups obtained from Tukey's test.

Metabolite	P	Dingo_vs_Basenji	Dingo_vs_GSD	GSD_vs_Basenji
Protein				
4-Hydroxyphenylacetylglycine	7.74E-06	8.59E-05	6.26E-05	0.998951932
L.Cystine	8.23E-06	0.000805194	1.41E-05	0.490665829
X2.Amino.3.phosphonopropoanoate	9.38E-06	3.44E-05	0.000252339	0.721165446
4-Methylene-L-glutamate	2.04E-05	6.81E-05	0.000477632	0.731297732
L(+)-Citrulline	3.68E-05	0.35783856	2.46E-05	0.004463141
N5-Ethyl-L-glutamine	4.11E-05	0.13272287	2.39E-05	0.017329319
Hypoglycin A	4.33E-05	7.58E-05	0.996775377	0.000290317
Hexanoylglycine	1.16E-05	0.011702382	8.16E-06	0.078400491
N-Acetylornithine	6.29E-08	0.996027099	1.81E-07	1.31E-06
2_6 Diaminoheptanedioic acid	2.76E-06	0.222246263	1.73E-06	0.00102609
L.Homocitrulline	3.69E-06	0.589745147	3.33E-06	0.000296742
N,N-Dimethylglycine	4.15E-06	0.007140673	2.88E-06	0.057509905
(3S)-3_6-Diaminohexanoate	7.43E-06	0.547636654	6.22E-06	0.000610986
2.Methylserine	1.29E-05	1.09E-05	0.006095366	0.089699004
N-Acetyl-L-leucine	1.83E-05	0.042032494	1.09E-05	0.032230509
N(5)-(L-1-carboxyethyl)-L-ornithine	3.49E-05	0.608533237	2.92E-05	0.001788435
Ophthalmic acid	6.35E-05	0.000260737	0.000758569	0.885432446
D-(+)-Pipcolinic acid	8.02E-06	0.000208132	3.15E-05	0.891670479
6-Acetamido-3-aminohexanoate	2.09E-05	0.078925629	1.20E-05	0.018403719
L-Alanyl-L-proline	4.99E-06	0.891892444	6.75E-06	0.000139746
Glycylglutamic acid	8.88E-09	3.37E-08	1.90E-06	0.294404999
gamma-Glu Gly	9.55E-09	5.01E-08	1.19E-06	0.439644045

L-Glutathione (reduced)	3.69E-06	4.20E-05	3.59E-05	0.994421806
gamma-Glu gln	1.42E-05	0.622704423	9.86E-05	3.98E-05
val glu	1.98E-05	0.000477733	6.52E-05	0.870971035
L-Cysteinylglycine disulfide	2.61E-05	0.00999075	2.12E-05	0.156976629
Gly Pro Glycylproline	2.92E-05	0.266403734	1.83E-05	0.005607749
pro gln	5.37E-05	3.22E-05	0.201280392	0.00777949
Lipid				
Cytidine	3.48E-06	4.33E-06	0.000963264	0.164723235
(2E)-hexadecenoylcarnitine	3.30E-06	0.000363231	6.38E-06	0.499863217
MFCD22416941	2.35E-05	9.84E-05	0.000388888	0.835205992
2-(2-Carboxyethyl)-4-methyl-5-pentyl-3-furoic acid	1.87E-07	2.95E-07	0.888601613	4.63E-06
Diallyl adipate	1.21E-06	4.81E-06	0.891189447	6.01E-06
Nervonic acid	1.69E-06	1.05E-06	0.203753158	0.000389254
14(Z)-Eicosenoic acid	1.91E-06	2.95E-06	0.93026158	3.07E-05
cis-5,8,11,14,17-Eicosapentaenoic acid	4.99E-06	0.000132903	0.219642801	5.39E-06
Docosahexaenoic acid	1.05E-05	4.80E-05	0.799514938	3.13E-05
Linoleyl carnitine	4.63E-07	3.16E-06	1.42E-05	0.79647335
LysoPC (22:1(13Z))	1.63E-06	3.34E-06	0.995669677	1.72E-05
1,2-di-[(9Z,12Z,15Z)-octadecatrienoyl]-sn-glycero-3-phosphocholine	5.67E-08	8.36E-08	0.818406692	2.00E-06
1-hexadecanoyl-2-[(7Z,10Z,13Z,16Z,19Z)-docosapentaenoyl]-sn-glycero-3-phosphocholine	4.00E-07	2.73E-07	0.248090621	8.26E-05
LPC(22:6)	2.21E-05	1.30E-05	0.167938946	0.004632365
Carbohydrate				
N-Acetylneurameric acid	4.00E-07	0.000119183	6.89E-07	0.317317543
Glucose-1-phosphate	3.18E-07	1.37E-06	0.878691883	1.78E-06
Istamycin C	3.09E-06	0.000204367	8.06E-06	0.659697612
Benzoyl glucuronide (Benzoicacid)	7.29E-06	0.781717133	8.05E-06	0.000284895

Aminoimidazole ribotide	3.47E-05	0.00141857	0.142093067	2.67E-05
Uridine 5'-diphosphogalactose	3.52E-05	0.000477691	0.000154309	0.970738845
1D-chiro-inositol	1.00E-05	3.09E-05	0.000337774	0.643049757
2,7-Anhydro-alpha-N-acetylneuraminic acid	2.62E-05	0.000423394	0.000108177	0.950466643
1D-1-Guanidino-1-deoxy-3-dehydro-scyllo-inositol	5.14E-07	2.14E-05	2.70E-06	0.877081894
Other				
beta-Nicotinamide mononucleotide	3.25E-06	7.73E-05	1.71E-05	0.942992496
Pseudouridine	6.80E-05	0.007362303	7.34E-05	0.35442431
Cangrelor	7.02E-05	0.000577774	0.000389073	0.999994364
3'-Adenosine monophosphate (3'-AMP)	2.87E-07	6.15E-05	6.13E-07	0.407389452
3',5'-Cyclic IMP	4.81E-06	1.36E-05	0.000241288	0.545320856
Uric acid	7.42E-05	4.56E-05	0.068308965	0.034132044
Arabinosylhypoxanthine	8.71E-09	1.45E-07	2.53E-07	0.920912441
Orotidine	8.21E-06	0.000480318	1.87E-05	0.648886247
N4-Acetylcytidine;N-Acetyl-Cytidine	1.58E-05	1.76E-05	0.81265826	0.000298371
UDP N-acetylglucosamine	4.84E-07	1.01E-05	4.54E-06	0.996112259
DL- α -Tocopherol - Vitamin	2.44E-06	2.60E-05	2.84E-05	0.981836759
2 Aminonicotinic acid - Vitamin	1.40E-08	7.57E-09	0.001664877	0.000644166
N-((4-AMINO-2-METHYL-5-PYRIMIDINYL)METHYL)FORMAMIDE	4.33E-05	0.369376643	2.91E-05	0.004855688
4-Amino-5-hydroxymethyl-2-methylpyrimidine	5.13E-06	0.218698958	3.17E-06	0.001762667
6-Methoxyquinoline	3.38E-08	8.06E-08	0.992551967	5.71E-07
6-Hydroxypseudooxynicotine	2.51E-06	0.657465888	2.49E-06	0.000172797
D-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid	1.27E-05	0.617956701	1.12E-05	0.000760747
Nitrilotriacetic acid	2.48E-06	3.80E-06	0.000486335	0.224327011
Carpropamid	6.47E-06	1.08E-05	0.000726789	0.312753332
Nitrendipine	1.14E-06	1.15E-05	1.75E-05	0.953528123
Amfepramone	1.52E-11	1.00E-09	3.43E-10	0.992159831

Dimetridazole	5.56E-07	5.47E-06	0.528480577	1.39E-06
Propamocarb	2.16E-06	0.970446103	6.31E-06	2.17E-05
Ethylenediaminetetraacetic acid	4.13E-06	1.95E-05	0.000104162	0.776963989
Taxifolin	3.99E-05	5.89E-05	0.002742279	0.367511144
8-Hydroxyalanylclavam	4.42E-05	3.21E-05	0.020184768	0.076069401
5-Nonyl-2-oxotetrahydro-3-furancarboxylic acid	1.84E-05	1.15E-05	0.248428052	0.002435442
Benzimidazole	1.79E-06	7.64E-05	6.98E-06	0.820353547
Methylimidazoleacetic.acid	1.25E-07	0.792591801	6.90E-07	1.01E-06
[FAoxo_amino(6:0)]3-oxo-5S-amino-hexanoicacid	1.19E-07	0.003567317	6.76E-08	0.005863915
2-Amino-5-[2-(4-formylphenyl)hydrazino]-5-oxopentanoic acid	5.91E-05	0.000386701	0.000432653	0.985539878
N.Nitrosoguvacoline	5.66E-07	7.02E-07	0.000324815	0.103479511
4-(3-Hydroxybutyl)-2-methoxyphenyl hydrogen sulfate	2.38E-05	3.12E-05	0.002601555	0.278201571
X3..4.Methoxyphenyl.propyl.hydrogen.sulfate	3.46E-05	2.55E-05	0.471927573	0.001669411
Hexahydroxydiphenic acid	2.14E-05	0.000231309	0.000132199	0.998957001
1-Amino-1-deoxy-scyllo-inositol 4-phosphate	1.52E-05	0.001136197	2.63E-05	0.538383024
1-{[5-(2-Hydroxyethoxy)-4-oxopentanoyl]oxy}-2,5-pyrrolidinedione	1.86E-06	2.99E-05	1.57E-05	0.998823833
Mebutamate	4.99E-06	0.000156316	1.91E-05	0.86279313
N-(3,5-Dichlorophenyl)-N'-ethylthiourea	1.07E-05	0.195227498	6.41E-06	0.0037323
Maleic hydrazide	4.59E-05	0.001618216	9.50E-05	0.711421166
PEG n10	1.71E-05	0.067539046	9.78E-06	0.018632454
Triadimefon	1.27E-06	5.80E-06	4.90E-05	0.684905095
5,5'-Dihydroxy-4,4',8',8'-tetramethyl-4,5-dihydro-2'H,3H-spiro[furan-2,6'-[7]oxabicyclo[3.2.1]oct[3]en]-2'-one	2.61E-08	4.58E-08	0.897229466	7.54E-07
(1R,9S)-11-[(Methylsulfanyl)acetyl]-3-(2-thienyl)-7,11-diazatricyclo[7.3.1.02,7]trideca-2,4-dien-6-one	2.85E-07	1.06E-05	1.86E-06	0.923751101
5-(2,6-Dichlorobenzyl)-6-methyl-2-(2-pyridyl)pyrimidin-4-ol	4.60E-07	1.03E-05	4.08E-06	0.991315512
6-[(5-Amino-1-carboxypentyl)amino]-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (non-preferred name)	1.60E-06	5.07E-05	7.97E-06	0.904041259

X7028	4.02E-06	2.18E-05	8.60E-05	0.829557536
-------	----------	----------	----------	-------------

1
2 Table S5: A total of 21 unique metabolite differences were observed between the dingo and
3 Basenji using type II ANOVA.
4

Broad classification	P	Subclass
Lipid		
cis-5,8,11,14,17-Eicosapentaenoic acid	0.0001329	Fatty acid
Diallyl adipate	4.81E-06	Fatty acid
Docosahexaenoic acid	4.80E-05	Fatty acid
Nervonic acid	1.05E-06	Fatty acid
14(Z)-Eicosenoic acid	2.95E-06	Fatty acid
2-(2-Carboxyethyl)-4-methyl-5-pentyl-3-furoic acid	2.95E-07	Fatty acid
LysoPC (22:1(13Z))	3.34E-06	Lysophospholipid
LPC (22:6)	1.30E-05	Phosphatidylcholine
PC (18:3/18:3)	8.36E-08	Phosphatidylcholine
PC (16:0/22:5n3)	2.73E-07	Phosphatidylcholine
Protein		
Hypoglycin A	7.58E-05	Amino acid
Pro-Gln	3.22E-05	Dipeptide
Carbohydrate		
Aminoimidazole ribotide	0.00141857	Carbohydrate
Glucose-1-phosphate	1.37E-06	Carbohydrate
Other		
Uric acid	4.56E-05	Purine derivative
N4-Acetylcytidine	1.76E-05	Pyrimidine nucleoside
Dimetridazole	5.47E-06	Drug
3-(4-Methoxyphenyl)propyl hydrogen sulfate	2.55E-05	Phenylsulfates
5-Nonyl-2-oxotetrahydro-3-furancarboxylic acid	1.15E-05	Gamma butyrolactones
6-Methoxyquinoline	8.06E-08	Aromatic ether
5,5'-Dihydroxy-4,4',8',8'-tetramethyl-4,5-dihydro-2'H,3H-spiro[furan-2,6'-[7]oxabicyclo[3.2.1]oct[3]en]-2'-one	4.58E-08	Unknown

5
6
7
8
9
10
11
12
13
14
15
16
17
18

19 Table S6: A total of 20 unique metabolite differences were observed between the dingo and
20 German Shepherd Dog using type II ANOVA.
21

Broad classification	P	Subclass
Protein		
gamma-Glu-gln	9.86E-05	Dipeptide
Gly-Pro(Glycylproline)	1.83E-05	Dipeptide
L-Alanyl-L-proline	6.75E-06	Dipeptide
(3S)-3_6-Diaminohexanoate	6.22E-06	Amino acid derivative
2_6-Diaminoheptanedioic acid	1.73E-06	Amino acid derivative
N5-(L-1-Carboxyethyl)-L-ornithine	2.92E-05	Amino acid
N5-Ethyl-L-glutamine	2.39E-05	Amino acid analogue
6-Acetamido-3-aminohexanoate	1.20E-05	Beta-amino acids
L (+)-Citrulline	2.46E-05	Amino acid
L-Homocitrulline	3.33E-06	Amino acid derivative
N-Acetylornithine	1.81E-07	Amino acid
Carbohydrate		
Benzoyl glucuronide (Benzoicacid)	8.05E-06	Carbohydrate
Other		
N-(3,5-Dichlorophenyl)-N'-ethylthiourea	6.41E-06	Synthetic
PEG n10	9.78E-06	Synthetic polyether
Propamocarb	6.31E-06	Drug
4-Amino-5-hydroxymethyl-2-methylpyrimidine	3.17E-06	Pyrimidine
6-Hydroxypseudooxynicotine	2.49E-06	Aryl alkyl ketones
D-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid	1.12E-05	Carboxylic acid
Methylimidazoleacetic acid	6.90E-07	Imidazolyl carboxylic acids
N-((4-Amino-2-methyl-5-Pyrimidinyl) methyl) formamide	2.91E-05	Amino pyrimidine

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40