

1 Ontology-Aware Deep Learning Enables Ultrafast, Accurate and Interpretable

2 Source Tracking among Sub-Million Microbial Community Samples from

3 Hundreds of Niches

6 ¹Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of
7 Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and
8 Systems Biology, College of Life Science and Technology, Huazhong University of Science and
9 Technology, Wuhan 430074, Hubei, China

10 ²School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan
11 430074, Hubei, China

12 ³School of Computer Science and Technology, Shandong University, Qingdao 250101, Shandong,
13 China

¹⁴Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China

15 \$These authors contribute equally to this work

*Correspondence should be addressed to K.N (Email: ningkang@hust.edu.cn) and X.C (Email: xfcui@email.sdu.edu.cn)

18

19 Abstract

20 The taxonomical structure of microbial community sample is highly habitat-specific,
21 making it possible for source tracking niches where samples are originated. Current
22 methods face challenges when the number of samples and niches are magnitudes
23 more than current in use, under which circumstances they are unable to accurately
24 source track samples in a timely manner, rendering them difficult in knowledge
25 discovery from sub-million heterogeneous samples. Here, we introduce a deep

26 learning method based on Ontology-aware Neural Network approach, ONN4MST
27 (<https://github.com/HUST-NingKang-Lab/ONN4MST>), which takes into
28 consideration the ontology structure of niches and the relationship of samples from
29 these ontologically-organized niches. ONN4MST's superiority in accuracy, speed and
30 robustness have been proven, for example with an accuracy of 0.99 and AUC of 0.97
31 in a microbial source tracking experiment that 125,823 samples and 114 niches were
32 involved. Moreover, ONN4MST has been utilized on several source tracking
33 applications, showing that it could provide highly-interpretable results from samples
34 with previously less-studied niches, detect microbial contaminants, and identify
35 similar samples from ontologically-remote niches, with high fidelity.

36 **Keywords:** Ontology-aware Neural Network (ONN), microbial source tracking
37 (MST), deep learning, ultrafast, niches

38

39

40

41 **Introduction**

42 With the rapid accumulation of microbial community samples from various niches
43 (biomes) around the world, as well as the huge volume of sequencing data deposited
44 into public databases, such as those from the “Human Microbiome Project”^{1,2} and the
45 “Earth Microbiome Project”^{3,4}, knowledge about microbial communities and their
46 influence on environment and human health has grown rapidly^{5,6}. Such massive
47 amount of microbial community samples provide the opportunity to study the
48 inconspicuous evolution and ecological patterns among microbial communities,
49 especially habitat-specific patterns.

50

51 One key challenge faced with such a paramount number of heterogeneous samples is
52 to track potential origin of a microbial community sample, as well as distinguishing
53 samples from different health conditions or diverse environments, calling for fast and

54 accurate source tracking⁷⁻⁹. Taxonomical composition of a microbial community
55 sample is usually represented by hierarchically-structured taxa and their relative
56 abundances (also referred to as the community structure), and these taxa are
57 functioning in concert to maintain the stability of the microbial community and its
58 adaptation to the specific environment (also referred to as the niche or biome)^{10,11}.
59 Biomes are organized in an ontology structure with six different layers (simply
60 referred to as the biome ontology). Layer one is the highest layer containing only one
61 biome “Root” and layer six is the lowest (bottom) layer containing biomes such as
62 “Fecal”. Biomes of lower layers such as “Human gut” belong to those of higher layers
63 such as “Human digestive system”, whereby EBI MGnify currently contain the most
64 up-to-date biome structure¹¹ with more than one hundred biomes as of January 2020.
65 In general, microbial community samples from the same biome tend to have similar
66 community structures, while such similarities are highly dependent on the biome
67 layers. Source tracking the microbial community samples, especially among a
68 massive amount of samples, remains a challenging problem today.

69
70 Several methods for microbial community source tracking have already been
71 proposed^{9,12-15}. They can generally be divided into two categories, namely
72 distance-based methods such as Jensen-Shannon Divergence (JSD)¹⁶, Striped
73 UniFrac¹³ and Meta-Prism¹⁷, and unsupervised machine learning methods such as
74 SourceTracker based on Bayesian algorithm¹⁵ and FEAST based on
75 Expected-Maximization algorithm⁹. However, the limitations of these methods are
76 apparent: Firstly, due to the nature of distance-based method and unsupervised
77 method, they are relatively slow, especially when the number of samples exceed tens
78 of thousands⁹, hindering them from identifying potential source environments in a
79 timely manner. Secondly, there is still a lack of method for accurate source tracking
80 from more than a hundred biomes, largely due to the resolution limitation of both
81 methods^{9,15}. Thirdly, current methods are not suitable for knowledge discovery of
82 samples from previously less studied or unknown biomes.

83

84 To address these limitations, we developed ONN4MST, an Ontology-aware Neural
85 Network (ONN) computational model for microbial source tracking. It is a supervised
86 learning method, and has utilized the biome ontology information. It has provided an
87 ultrafast (less than 0.1 seconds) and accurate (AUC higher than 0.97 in most cases)
88 solution for searching a sample against dataset containing more than a hundred
89 potential biomes and sub-million samples, and also out-performed state-of-the-art
90 methods in scalability and stability. The ability of ONN4MST on knowledge
91 discovery is also demonstrated by utilization in various source tracking applications:
92 it enables source tracking of samples whose niches are previously less studied or
93 unknown, detection of microbial contaminants, as well as identification of similar
94 samples from ontologically-remote biomes, showing the unique importance of
95 ONN4MST in knowledge discovery from huge amount of microbial community
96 samples of heterogeneous biomes.

97

98 **Results**

99 **Ontology-aware Neural Network**

100 ONN4MST uses an Ontology-aware Neural Network (ONN) model for source
101 tracking. When training the model, all training samples' community structures are
102 decoded, each converted to a matrix containing the taxa at different taxonomical
103 levels and their relative abundances (simply referred to as the Matrix). The ONN
104 model uses the Matrix as input and reshapes it into tensors which point to biomes at
105 every different layer of the biome ontology. To fit the structure of biome ontology, the
106 ONN model uses multiple ontology units, each belonging to one of the six specific
107 layers of biome ontology (**Fig. 1a**). The conceptual modules, the training procedure
108 and the evaluation procedure of the ONN model are illustrated in **Supplementary Fig.**
109 **1** and described in **Methods**.

110

111 The source tracking procedure of ONN4MST is illustrated in **Fig. 1b**. Since
112 ONN4MST is the first method available that could source track the samples at

113 different layers of biome ontology, the search scheme of ONN4MST is completely
114 different from other methods (**Fig. 1b**). While ONN4MST goes through the biome
115 ontology to find the best possible source along different layers, other methods such as
116 FEAST and SourceTracker treat all biomes as anarchically equal. The overall scheme
117 of building the ONN model and using ONN4MST for source tracking is illustrated in
118 **Supplementary Fig. 2**. Note that the contributions of every known biome would be
119 estimated by the ONN model respectively.

120

121 **General model enables accurate source tracking with high scalability and**
122 **stability**

123 We constructed five datasets, representing sample collections with different numbers
124 of biomes and samples, covering more than 100,000 real microbial community
125 samples (**Supplementary Tables 1 and 2**). These five datasets contain samples from
126 different niches including “Host_associated”, “Environmental” and “Engineered” as
127 top biomes, which are representative of high-quality microbial community samples in
128 public resources (**Supplementary Table 2, Methods**). Since these five datasets were
129 designed to have varied complexities, each including different number of samples
130 from different number of biomes, they could serve well for the evaluation of
131 ONN4MST and other methods (**Fig. 2a**): The Combined dataset contains 125,823
132 samples and 114 biomes, which represents the largest datasets, as well as the largest
133 model (the general model), used in this study. The FEAST dataset contains only
134 10,270 samples and 3 biomes. While the Human dataset, Water dataset, Soil datasets
135 are respectively with moderate sample sizes (**Supplementary Tables 1**).

136

137 First and foremost, the performances of ONN4MST on all five datasets were
138 evaluated. Results showed that the predicted biomes by ONN4MST were very close
139 to the actual biomes, regardless of the datasets used for evaluation. For example,
140 ONN4MST could achieve an accuracy of 0.99 and AUC of 0.97 on searching the
141 Combined dataset with 125,823 samples from 114 biomes. When we applied
142 ONN4MST on Human, Soil, Water and FEAST datasets, the accuracy and AUC of

143 ONN4MST were also higher than 0.98 and 0.96 for these datasets (**Table 1**,
144 **Supplementary Fig. 3**).

145

146 ONN4MST based on selected features performed equally well or better than that
147 based on all features. There are 44,668 taxa (or features) in total used in ONN4MST,
148 while ONN4MST_FS (ONN4MST based on selected features) has utilized only 1,462
149 selected features (see **Methods** and **Supplementary Table 3**). Results showed that
150 based on 1,462 selected features, ONN4MST_FS could attain slightly higher accuracy
151 (0.997 vs. 0.995, on Combined dataset), AUC and F_{max} compared to ONN4MST
152 using all features (**Table 1, Supplementary Fig. 3**), which means that there is a
153 certain degree of redundancy among all 44,668 features, and we can achieve the same
154 accuracy with just 1,462 features compared with that using all 44,668 features. These
155 results have emphasized the scalability and stability of the general model built based
156 on the Combined dataset, either based on using all features, or using selected features.

157

158 Furthermore, we evaluated the universality of the general model built based on the
159 Combined dataset, by applying it directly on the Human, Water, Soil, and FEAST
160 datasets. It was found that the source tracking by using the general model was
161 successful on those datasets which are composed of samples mostly from the
162 Combined dataset's samples (**Supplementary Table 4**, results on Human, Water, Soil
163 datasets). However, when we applied the general model on datasets in which most of
164 the samples were not previously observed in the general model or have more detailed
165 biome ontology compared to the biome ontology used in general model, the general
166 model would not perform well (**Supplementary Table 4**, results on FEAST dataset).
167 Besides, results showed that it was unsuccessful when we applied the human model
168 (the model built based on Human dataset) for source tracking on Soil and Water
169 datasets (**Supplementary Table 5**).

170

171 **Comparison of ONN4MST and other source tracking methods**

172 We then compared all six source tracking methods on all five datasets with different

173 complexities (**Fig. 2a**). Results on all five datasets were evaluated separately (**Fig.**
174 **2b,d**). Among the four datasets excluding FEAST dataset, ONN4MST was superior to
175 other methods: ONN4MST reached an AUC of 0.97, while other methods only
176 reached a maximum of 0.89 (**Fig. 2d**). As for the FEAST dataset, ONN4MST reached
177 an AUC of 0.99, while other methods only reached a maximum of 0.96.

178

179 The performances of these methods on five datasets depend on the datasets'
180 complexities (**Fig. 2c**). While Soil dataset and Water dataset are among those with the
181 highest Shannon diversity, the AUCs on these two datasets are also lower than those
182 on Human dataset and Combined dataset. The high AUC on FEAST dataset is largely
183 due to the small number of biomes used in FEAST dataset (**Supplementary Table 1**).
184 On the other hand, the performance of ONN4MST on each dataset did not depend
185 heavily on the number of samples in that dataset (provided that there are at least
186 10,000 samples in the dataset) (**Fig. 2c, Supplementary Table 1**). Furthermore, the
187 prediction accuracies were not biased for certain biomes (provided that there are at
188 least 100 samples in each biome) (**Supplementary Table 6**).

189

190 We further analyzed ONN4MST's performances at different biome layers (**Fig. 2e,f**).
191 Since it is the only method available that could source track samples at different
192 layers of biome ontology, we have remolded other methods' search scheme into a
193 hierarchical prediction scheme (see **Methods**), so that their results are comparable to
194 ONN4MST's. Results have clearly shown that ONN4MST and ONN4MST_FS
195 reached an AUC of 0.97 in minimum at all layers for the Combined dataset and these
196 were noticeably superior to other methods (**Fig. 2e,f**). Thus, ONN4MST is not just the
197 only method available that could source track the samples at different layers, but also
198 the best method even when other methods were remoulded for such purpose.

199

200 **Running time and memory utilization benchmark**

201 We evaluated the time and memory cost of all methods using a computational
202 platform comprising Quadruplex E7-4809 v3 CPU with 315 GB RAM, Nvidia Tesla

203 K80 GPU with 12 GB RAM. For time cost comparison, all actual times (search time,
204 excluding I/O time) were converted to the equivalent time on a single core.

205

206 ONN4MST is superior to other methods in search time and memory utilization where
207 the superiority expands as the number of source samples increases (**Fig. 3**). First of all,
208 we tested the time cost by searching a single query against the five datasets
209 respectively. For the Combined dataset including 125,823 source samples,
210 ONN4MST and ONN4MST_FS took 0.18 seconds and 0.04 seconds, respectively,
211 while distance-based methods took at least 1 second for a query. And FEAST took
212 more than 100,000 seconds, and SourceTracker took even more time (**Fig. 3a**, on the
213 Combined dataset, as also verified in Shenhav *et al.*⁹). Interestingly, though the time
214 spent by FEAST and Source Tracker per thousand of source samples were both less
215 than those reported in Shenhav *et*
216 *al.*⁹, these two methods costed magnitudes more time than ONN4MST (**Fig. 3a**).
217 When we linearly extrapolated the number of source samples to one million in the
218 dataset to be searched, the advantage of ONN4MST over other methods still held (**Fig.**
219 **3a**, hollow bars). When searching different number of queries against the Combined
220 dataset, we observed the time cost follows this trend: supervised methods
221 (ONN4MST and ONN4MST_FS) \leq distance-based methods (JSD, Meta-Prism and
222 Striped UniFrac) $<$ unsupervised methods (FEAST and SourceTracker) (**Fig. 3b**).
223 Again, when we linearly extrapolated the number of queries to one million in a batch,
224 the advantage of ONN4MST over other methods still held (**Fig. 3b**, hollow bars).

225

226 When memory utilization was evaluated, we have also observed the superiority of
227 ONN4MST over most of the other methods. Specifically, when searching a single
228 query against the Combined dataset, ONN4MST and ONN4MST_FS needed 22 GB
229 and 2 GB of memory, respectively; while FEAST and SourceTracker needed 84 GB
230 and 18 GB of memory, respectively; and JSD needed 47 GB of memory. Striped
231 UniFrac and Meta-Prism (<https://github.com/HUST-NingKang-Lab/Meta-Prism-2.0>)
232 were comparable with ONN4MST_FS in memory utilization, since they have

233 optimized the data structure for sample comparison. When the number of queries in a
234 batch exceeded 10,000, or the size of dataset to be searched varies, ONN4MST and
235 ONN4MST_FS remain the ones that needed the least memory (**Fig. 3c,d**). Details
236 about running time and memory utilization are presented in **Supplementary Tables**
237 **7-10**.

238

239 **Utility of ONN4MST in various source tracking applications**

240 The objective of microbial community sample source tracking is knowledge discovery
241 from the huge amount of microbial community samples of heterogeneous sources.
242 Thus, we showcased the ability of ONN4MST in knowledge discovery from several
243 perspectives: firstly, it can ensure accurate and interpretable source tracking, even on
244 distinguishing samples from ontologically-close biomes; secondly, when samples'
245 biomes are previously less studied or unknown, ONN4MST could provide accurate
246 clues for possible biome at higher layers, supplementing the information about such
247 less-studies biome; thirdly, ONN4MST could help for accurate microbial contaminant
248 detection; finally, "open search" of sample among the source samples with almost all
249 possible biomes could identify similar samples from ontologically-remote biomes,
250 leading to novel knowledge discovery.

251

252 **Centenarians share similar gut microbiota with young individuals**

253 ONN4MST can distinguish samples from ontologically-close biomes, thus offers a
254 quantitative way to characterize the development of human gut microbial community.
255 In this context, we leveraged external sources of young individuals (30 years old on
256 average) to understand the unique properties of gut microbiota in centenarians
257 (persons over 100 years old). To demonstrate this capability, we first built a
258 self-defined ONN model with two layers of biome ontology: "human gut" as first
259 layer, while "Young human gut" and "Others or unknown" at second layer, through
260 using a training set which contains 5,000 randomly selected human gut samples from
261 the Combined dataset (**Supplementary Table 1**), together with 800 randomly selected
262 human gut samples from young individuals in published studies^{18,19}. Then, samples

263 from centenarians (30 from Italy, and 51 from China)^{18,19} were used as queries for
264 performing source tracking with the self-defined ONN model. Results revealed a
265 significantly larger “Young human gut” contribution (Wilcoxon-test, $p < 1e-3$) in
266 centenarians (**Supplementary Fig. 4**), regardless of the locations where these samples
267 were collected, which were consistent with the results of published studies^{18,19}. To
268 prove that these gut microbiota properties were unique in centenarians, we have
269 further collected 770 samples of normal seniors from another published study²⁰ as
270 queries for comparison. However, we could not observe the same phenomenon in
271 these normal seniors (**Supplementary Fig. 4**).

272

273 Several other case studies that distinguish samples from ontologically-close biomes
274 have also been conducted, with details in **Supplementary Note, Supplementary**
275 **Figures 5 and 6**.

276

277 **Detecting microbial contamination in built environment**

278 To validate ONN4MST's ability on microbial contamination detection, we analyzed
279 microbial community data collected by Lax *et al.*²¹ In this analysis, we investigated
280 microbial contamination at several indoor house surfaces. We used skin samples from
281 several body parts (skin, foot, hand and nose) and additional environmental, plants
282 and mammal samples from the Combined dataset (**Supplementary Table 1**) as source
283 samples, and samples from indoor house surfaces (“Bathroom Door Knob”, “Front
284 Door Knob”, “Kitchen Counter”, “Kitchen Floor” and “Kitchen Light Switch”) as
285 queries. Our analysis results by using ONN4MST have shown that microbial
286 communities on these surfaces mostly originated from humans (**Fig. 4a**), largely in
287 agreement with the original analyses of Lax *et al.*²¹ using SourceTracker, and differs
288 slightly from the results of Shenhav *et al.*⁹ These results were reasonable considering
289 the strong influence of skin microbial communities on indoor house surfaces²², while
290 they have again emphasized the challenge of source disambiguation for methods that
291 do not consider ontology structure of the biomes. That is, treating each individual
292 sample as an independent potential source would make differentiation of tiny sample

293 differences among ontologically-close biomes impossible, thus underestimating the
294 contributions of known sources at higher layers. We further investigated the
295 composition of the unknown sources existed in **Fig. 4a**. In addition to the contribution
296 of human, we found evidence for contributions from barley and bean product
297 (0.6-1.1%) and marine product (0.2-0.4%) for kitchen environments, and potential
298 evidence for contributions from agricultural (0.7-1.1%) and coastal (0.2-0.6%) for
299 door knobs (**Fig. 4b,c**).

300

301 **Source tracking of environmental samples from less studied biomes**

302 This investigation was based on searching 11 groundwater samples from another
303 published study²³ (the biome "Groundwater" is less studied, with a handful of samples
304 in the MGnify database, **Supplementary Table 2**) against the Combined dataset.
305 ONN4MST could successfully identify the actual biome for the majority of these
306 samples at different biome layers, such as "Aquatic" at the third layer and
307 "Freshwater" at the fourth layer (**Fig. 5a-c**) (results at the fifth and sixth layers were
308 shown in **Supplementary Fig. 7**). In contrast, FEAST and SourceTracker could not
309 identify any source near "Groundwater", while they only identified "Nutrient
310 (Wastewater)" with the meaning marginally related with groundwater (**Fig. 5d,e**).
311 Such differences in identification of actual biome are largely due to the fact that
312 ONN4MST could screen the whole biome ontology, and identify possible sources at
313 different layers, enabling it to at least identify the higher biome under which the
314 actual biome belongs to, with high fidelity. Whereas FEAST and SourceTracker were
315 designed without considering the biome ontology, they would assign "Unknown" for
316 many of these samples. These results indicated that when the actual biome of sample
317 was previously less studied, ONN4MST could provide accurate clues for possible
318 biome at higher layers in the biome ontology, and such clues would become valuable
319 assets in guiding the manual curation of these samples.

320

321 **Discovery of similar samples from ontologically-remote biomes**

322 Another advantage of ONN4MST in source tracking is its ability for "open search"

323 without any *a priori* knowledge about possible biomes where the query might be from,
324 enabling it for novel knowledge discovery. We tested ONN4MST’s “open search”
325 results, and found that it could discover similar samples among ontologically-remote
326 biomes “Engineered”, “Host_associated” and “Environmental” (**Supplementary**
327 **Table 11**). While some of the samples from the biome
328 “Root-Environmental-Aquatic-Marine-Intertidal_zone” share similar environments
329 (Baltic Sea) with the query sample from the biome
330 “Root-Engineered-Wastewater-Industrial_wastewater-Petrochemical”, the literature
331 has also verified that this query sample was marine-sourced “MGYS00005175” (from
332 MGnify database). Such examples were plentiful (**Supplementary Fig. 8**), and many
333 had very high contributions (> 0.8). However, there were also examples which might
334 indicate possible mis-annotation or possible contaminations of samples in the MGnify
335 database. For instance, more than 10 samples from the study “MGYS00001610”
336 (from MGnify database) with annotated biome
337 “Root-Engineered-Wastewater-Water_and_sludge” have been identified by
338 ONN4MST as from biome
339 “Root-Host_associated-Mammals-Digestive_system-Large_intestine-Fecal”
340 (**Supplementary Fig. 8**). These results have verified our hypothesis that open search
341 of sample among the source samples with almost all possible biomes could reveal
342 remotely-similar samples, leading to novel knowledge that is never identified or
343 interpreted before.

344

345 **Discussion**

346 ONN4MST was designed to address the urgent need for fast, accurate and
347 interpretable microbial community source tracking. It has been built based on an
348 Ontology-aware Neural Network model, which has provided a solution for source
349 tracking among sub-million samples and hundreds of biomes, outperforming
350 state-of-the-art methods, thus enabling knowledge discovery from these
351 heterogeneous samples. Microbial community sample source tracking has become

352 increasingly important, largely due to the needs of source tracking in multiple areas.
353 The requirements for high accuracy, high speed and high interpretability have thus
354 become critical considerations for a successful source tracking method, especially
355 when faced with the ever more complex situation where sub-million microbial
356 community samples from hundreds of biomes are provided as possible sources for
357 search.

358

359 The superiority of ONN4MST is established in several contexts. Firstly, ONN4MST
360 is very robust against dataset heterogeneity: from a dataset with the number of biomes
361 ranging from a handful to more than a hundred, as well as with the number of samples
362 ranging from a few thousand to sub-million, it always provides the highest accuracies
363 (AUC > 0.97) among state-of-the-art methods compared, making it the most scalable
364 source tracking method. Secondly, based on the Human, Water and Soil datasets, the
365 source tracking accuracies are all near-perfect (AUC > 0.97), indicating that
366 ONN4MST could provide reliable insights for downstream analysis on implicating
367 taxonomical or functional differences between healthy and diseased phenotypes, or on
368 illuminating tiny differences among environmental samples from even slightly
369 different niches. Furthermore, even when source tracking a sample against a database
370 of sub-million samples, only less than 0.1 seconds is needed when we conduct
371 ONN4MST search based on selected features, which is several orders of magnitude
372 faster than other contemporary methods. Finally, the ability of ONN4MST for ‘open
373 search’, without any *a priori* knowledge about possible biomes where the query might
374 be from, enables it for interpretable knowledge discovery.

375

376 The advantage of ONN4MST over other state-of-the-art source tracking methods is
377 essentially dependent on two technical advancements: the deep learning model, and
378 the ontology structure. Though the currently ongoing shift towards supervised
379 learning methods is not surprising for the source tracking research, the superior
380 performance of ONN4MST over existing methods is still quite pronounced.
381 ONN4MST’s advantage also stems from its consideration of the ontology structure of

382 the biomes: by embedding the ontology considerations into the ONN learning model,
383 ONN4MST naturally becomes suitable for solving the ontology relationships among
384 biomes.

385

386 ONN4MST is not without limitations. Most importantly, the accuracy of ONN4MST
387 is heavily dependent on the ONN model built based on existing biome ontology
388 information. If there comes a new biome ontology with more detailed biomes
389 involved (for example, if we need to refine the source tracking results to human gut
390 down, to differentiate niches such as adult's gut from infant's gut), or simply with
391 more biome relationships involved, then the ONN model should be re-trained for
392 accurate source tracking. Such biome ontology-wide scalability problem could
393 potentially be solved by Transfer Learning approaches.

394

395 In summary, ONN4MST is an ontology-aware deep learning method that has pushed
396 the envelope of microbial source tracking, enabling near-optimal accurate, ultrafast
397 and interpretable source tracking. ONN4MST has enabled in-depth pattern and
398 function discoveries among sub-million microbial community samples, allowing for
399 tracking the potential origin of microbial community with diverse niche background,
400 as well as distinguishing samples from different health conditions or diverse
401 environments. Thus, it could have a broader area of application, such as
402 contamination screening, novel or refined biome discovery, new functional
403 microbiome discovery, and even source tracking of biomes from which protein
404 sequences could be supplemented for computational protein 3D structure
405 prediction^{24,25}.

406

407 **References**

- 408 1 Turnbaugh, P. J. *et al.* The human microbiome project. *Nature* **449**, 804-810
409 (2007).
- 410 2 Proctor, L. M. *et al.* The Integrative Human Microbiome Project. *Nature* **569**,
411 641-648 (2019).
- 412 3 Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project:

413 successes and aspirations. *BMC Biol* **12**, 69-69 (2014).

414 4 Thompson, L. R. *et al.* A communal catalogue reveals Earth's multiscale
415 microbial diversity. *Nature* **551**, 457-463 (2017).

416 5 Dominguez-Bello, M. G. *et al.* Partial restoration of the microbiota of
417 cesarean-born infants via vaginal microbial transfer. *Nat Med* **22**, 250-253
418 (2016).

419 6 Thomas, S. *et al.* The Host Microbiome Regulates and Maintains Human
420 Health: A Primer and Perspective for Non-Microbiologists. *Cancer Res* **77**,
421 1783-1812 (2017).

422 7 Lladó, S., López-Mondéjar, R. & Baldrian, P. Drivers of microbial community
423 structure in forest soils. *Applied Microbiology and Biotechnology* **102**,
424 4331-4338 (2018).

425 8 Grond, K., Guilani, H. & Hird, S. M. Spatial heterogeneity of the shorebird
426 gastrointestinal microbiome. *R Soc Open Sci* **7**, 191609-191609 (2020).

427 9 Shenhav, L. *et al.* FEAST: fast expectation-maximization for microbial source
428 tracking. *Nature Methods* **16**, 627-632 (2019).

429 10 Tokeshi, M. Species Abundance Patterns and Community Structure. *advances
430 in ecological research* **24**, 111-186 (1993).

431 11 Mitchell, A. L. *et al.* MGnify: the microbiome analysis resource in 2020.
432 *Nucleic Acids Research* **48**, D570-D578 (2019).

433 12 Simpson, J. M., Santo Domingo, J. W. & Reasoner, D. J. Microbial Source
434 Tracking:□ State of the Science. *Environmental Science & Technology* **36**,
435 5279-5288 (2002).

436 13 Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for
437 comparing microbial communities. *Appl Environ Microbiol* **71**, 8228-8235
438 (2005).

439 14 Smith, A., Sterba-Boatwright, B. & Mott, J. Novel application of a statistical
440 technique, Random Forests, in a bacterial source tracking study. *Water
441 research* **44**, 4067-4076 (2010).

442 15 Knights, D. *et al.* Bayesian community-wide culture-independent microbial
443 source tracking. *Nature methods* **8**, 761-763 (2011).

444 16 Lin, J. Divergence measures based on the Shannon entropy. *IEEE
445 Transactions on Information Theory* **37**, 145-151 (1991).

446 17 Zhu, M., Kang, K. & Ning, K. Meta-Prism: Ultra-fast and highly accurate
447 microbial community structure search utilizing dual indexing and parallel
448 computation. *Briefings in bioinformatics* (2020).

449 18 Bian, G. *et al.* The Gut Microbiota of Healthy Aged Chinese Is Similar to That
450 of the Healthy Young. *mSphere* **2**, e00327-00317 (2017).

451 19 Biagi, E. *et al.* Through ageing, and beyond: gut microbiota and inflammatory
452 status in seniors and centenarians. *PLoS One* **5**, e10667-e10667 (2010).

453 20 Jeffery, I. B., Lynch, D. B. & O'Toole, P. W. Composition and temporal
454 stability of the gut microbiota in older persons. *The ISME Journal* **10**, 170-182
455 (2016).

456 21 Lax, S. *et al.* Longitudinal analysis of microbial interaction between humans

457 and the indoor environment. *Science* **345**, 1048-1052 (2014).

458 22 Timmis, K., Jebok, F., Rohde, M. & Molinari, G. Microbiome Yarns:
459 microbiome of the built environment, paranormal microbiology, and the power
460 of single cell genomics^{1,2,3,4}. *Microb Biotechnol* **11**, 575-587 (2018).

461 23 Alsalah, D., Al-Jassim, N., Timraz, K. & Hong, P.-Y. Assessing the
462 Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence
463 of Opportunistic Pathogens on Irrigated Food Produce. *Int J Environ Res
464 Public Health* **12**, 12391-12411 (2015).

465 24 Ovchinnikov, S. *et al.* Protein structure determination using metagenome
466 sequence data. *Science* **355**, 294-298 (2017).

467 25 Wang, Y. *et al.* Fueling ab initio folding with marine metagenomics enables
468 structure and function predictions of new protein families. *Genome Biol* **20**,
469 229-229 (2019).

470

471 **Methods**

472 **Datasets**

473 We evaluated the performances of ONN4MST and other source tracking methods
474 based on five different datasets (**Supplementary Table 1**). These five datasets
475 comprise samples from different niches, which are representative of high-quality
476 samples in public resources.

477

478 The “Combined dataset” consists of 125,823 microbial community samples collected
479 from EBI MGnify database (<https://www.ebi.ac.uk/metagenomics/>), accessed as of
480 January 2020 (**Supplementary Table 1**). This is a comprehensive dataset containing
481 samples from 114 biomes (**Supplementary Table 2**), and the 125,823 microbial
482 community samples represent more than half of the samples in EBI MGnify (as of
483 January 1st, 2020). These samples contain taxonomical information for 225 phyla,
484 6,232 families, 16,081 genera and 45,477 species.

485

486 The “Human dataset” consists of 53,553 microbial community samples selected from
487 the Combined dataset, representing a subset of samples from the human niches
488 (**Supplementary Table 1**). Specifically, these samples are collected under these
489 biomes: “Root-Host_associated-Human-Skin”,
490 “Root-Host_associated-Human-Circulatory_system”,
491 “Root-Host_associated-Human-Digestive_system” and
492 “Root-Host_associated-Human-Reproductive_system” (biomes at higher layer). This
493 dataset contains 53,553 samples from a total of 25 biomes. These samples contain
494 taxonomical information for 204 phyla, 2,801 families, 6,523 genera and 16,135
495 species.

496

497 The “Water dataset” consists of 27,667 microbial community samples selected from
498 the Combined dataset, representing a subset of samples from the water niches
499 (**Supplementary Table 1**). Specifically, these samples are collected under these

500 biomes: “Root-Environmental-Aquatic-Freshwater”,
501 “Root-Environmental-Aquatic-Marine” and
502 “Root-Environmental-Aquatic-Non-marine_Saline_and_Alkaline” (biomes at higher
503 layer). This dataset contains 27,667 samples from a total of 44 biomes. These samples
504 contain taxonomical information for 222 phyla, 6,040 families, 15,261 genera and
505 36,406 species.

506

507 The “Soil dataset” consists of 11,528 microbial community samples selected from the
508 Combined dataset, representing a subset of samples from the soil niches
509 (**Supplementary Table 1**). Specifically, these samples are collected under these
510 biomes: “Root-Environmental-Terrestrial-Soil”, and
511 “Root-Host_associated-Plants-Rhizosphere” (biomes at higher layer). This dataset
512 contains 11,528 samples from a total of 16 biomes. These samples contain
513 taxonomical information for 201 phyla, 2,962 families, 6,753 genera and 12,769
514 species.

515

516 These three datasets (Human, Water and Soil datasets) were designed with several
517 reasons in consideration. Firstly, these three datasets are representative enough and
518 frequently-used subsets¹¹ from the Combined dataset. Secondly, these three datasets
519 are also distinct, since the Alpha diversity of samples from each of these datasets is
520 significantly different from the other two: while samples from soil niches are
521 considered more complicated, those from human and water niches are considered less
522 so. Finally, samples from these niches are more comprehensively explored than other
523 less studied niches, and they are of relatively higher quality of samples from these
524 three niches.

525

526 The “FEAST dataset” consists of 10,270 microbial community samples selected from
527 the datasets used in the Lax *et al.*⁹ (**Supplementary Table 1**). Specifically, these
528 samples are all collected from three biomes (“Root-Host_associated-Human”,
529 “Root-Host_associated-Human-Digestive_system-Large_intestine-Fecal” and

530 “Root-Mixed”). These samples contain taxonomical information for 133 phyla, 1,118
531 families, 3,389 genera and 5,762 species. The “FEAST dataset” is the smallest dataset
532 used in this study, and it is the simplest dataset with regard to the number of biomes
533 involved. Yet it is a dataset of unique importance, as the source tracking methods
534 evaluated in this study could be benchmarked on this medium-sized and credible
535 human gut dataset^{9,15} for fair assessment of accuracy and efficiency.

536

537 **Data representation**

538 we generated the Matrix for each microbial community sample, so that the
539 abundances for all taxa at seven taxonomical levels including super-kingdom,
540 kingdom, phylum, class, order, family, and genus (simply referred to as “sk”, “k”, “p”,
541 “c”, “o”, “f”, and “g”) can be retained. The abundance of taxa at different levels were
542 filled in the Matrix (**Figure 1**). Within the Matrix, seven columns respectively
543 represent seven taxonomical levels. And 44,668 rows respectively represent relative
544 abundance for 44,668 taxa (also referred to as features). For a detailed description and
545 an example of the data representation, see **Supplementary Note** and **Supplementary**
546 **Table 3**.

547

548 **Feature selection**

549 To improve the efficiency and accuracy of ONN4MST, we conducted feature
550 selection by using a random forest regression model (Python-3.7.4 and
551 Scikit-learn-0.22.1). An abundance-based pre-filtering and an importance-based
552 selection were performed in sequential order. In doing so, we treated each row
553 (representing the abundances of a taxon, see **Supplementary Table 3**) of the Matrix
554 as a feature. Then, a series of adaptive thresholds ($C\bar{R}_l$ and $C\bar{I}_l$) were applied to
555 different taxon levels, in which \bar{R}_l and \bar{I}_l stand respectively for the relative
556 abundance and the feature importance. $level \in \{sk, k, p, c, o, f, g\}$ and the
557 coefficient C was set to 0.001. As a result, we have selected 1,462 features with
558 relative abundance and feature importance above the thresholds from all 44,668
559 features involved in this study.

560

561 **Biome ontology**

562 We constructed a comprehensive biome ontology using 114 biomes (**Supplementary**
563 **Table 2**) collected from EBI MGnify database
564 (<https://www.ebi.ac.uk/metagenomics/biomes>). In this process, we organized the
565 biome ontology as a tree, by treating a biome with multiple parent biomes in the
566 higher layer (e.g. “Human-Digestive_system” and “Mammal-Digestive_system”) as
567 separate biomes. Next, the ontology tree containing 6 layers and 133 nodes
568 (representing 114 biomes) was constructed, by using Python-3.7.4 and Treelib-1.5.5.
569 As a result, each biome was represented by at least one node in the ontology tree. The
570 ontology tree has “Root” at the first layer, biomes (nodes) including “Environmental”,
571 “Host_associated”, and “Engineered” at the second layer, and 7, 22, and 56 biomes
572 (nodes) at the third to fifth layers respectively, with 43 biomes (nodes) including
573 “Coral reef”, “Fecal” and “Saliva” at the bottom (sixth) layer (**Supplementary Table**
574 **2**).

575

576 **Sample Labeling**

577 In all experiments, we used microbial samples each with a label annotated by using
578 6-layers biome ontology to validate our model. For example, there are 22 samples
579 labeled as “Root-Host_associated-Human-Digestive_system-Oral-Throat” in the
580 Combined dataset (by separating different layers with the “-” symbol).

581

582 **Building ONN model**

583 We used Tensorflow-1.14²⁶ to build and train our Ontology-aware Neural Network
584 model. Our model was trained on a computational platform comprising Quadruplex
585 E7-4809 v3 CPU with 315 GB RAM and Nvidia Tesla K80 GPU with 12 GB RAM.

586

587 Ontology-aware Neural Network has four conceptual modules in total: a feature
588 extraction module for basic feature extraction, a feature encoding module for
589 layer-specific feature encoding, a feature integration module for inter-layer

590 information integration, and an ontology prediction module for ontology walk through
591 and source contribution calculation (**Supplementary Fig. 1a**). The feature extraction
592 module accepts a sample represented by the Matrix, extracts the feature information
593 from the Matrix and deliver them to the feature encoding module. The feature
594 encoding module consists of a series of fully-connected layers. It accepts the output of
595 feature extraction module, and encodes layer-specific feature information for each of
596 the six biome ontology layers. The feature integration module consists of several
597 fully-connected layers, which serves for inter-layer information integration. The
598 ontology prediction module consists of five sigmoid layers (corresponding to the 2nd,
599 3rd, 4th, 5th and 6th biome ontology layers), each sigmoid layer accepts the output of
600 feature encoding module and computes the contribution of all biome sources on its
601 corresponding biome ontology layer.

602

603 We chose 8-fold cross validation for model training and testing (**Supplementary Fig.**
604 **1c**). For each dataset, we randomly split it into 8 folds, each fold including a training
605 set (87.5%) and a testing set (12.5%). For each fold, the model was trained (in batches
606 of 512 samples) for 30,000 iterations or until training accuracy converged, and the
607 model with the highest accuracy on the training set was selected for testing. The
608 results on the testing set are organized in the form of a hierarchical prediction (with
609 prediction results from 2nd to 6th layers), which would then be evaluated.

610

611 **Other methods used in this study**

612 Three distance-based methods: JSD, Striped UniFrac and Meta-Prism, two
613 unsupervised machine learning methods: Expected-Maximization based method
614 FEAST and Bayesian based method SourceTracker; as well as our supervised deep
615 learning method (ONN4MST), were applied for microbial source tracking. In this
616 study, the source tracking results (predicted biomes) of multiple methods were
617 compared against the microbial community samples' actual source (actual biomes).

618

619 The distance-based methods are based on pair-wise calculation of sample distances,
620 and such methods depend heavily on the presence of species and their relative
621 abundance for individual samples, regardless of weighted or unweighted scoring
622 functions used. Among distance-based methods, JSD does not consider the
623 phylogenetic relationships among species, while methods such as Striped UniFrac and
624 Meta-Prism do (we have used Meta-Prism 2.0 for comparison in this study). However,
625 distance-based methods have a binomial increase in time cost with the increase of the
626 number of samples.

627

628 Unsupervised methods for microbial community sample comparison are based on
629 profile-based statistical models, either the Bayesian model used in the SourceTracker
630 method, or the Expected-Maximization (EM) model used in the FEAST method.
631 Unsupervised methods are typically more accurate than distance-based methods.
632 However, since unsupervised methods still do not consider the intricate but important
633 patterns of a set of samples from similar niches, their tolerance to noisy signals in
634 samples is not high, hence potentially would lead to biased mismatches. Details about
635 the source tracking methods other than ONN4MST used in this study are provided in
636

Supplementary Note.

637

638 **Hierarchical prediction**

639 In order to carry out comparison of ONN4MST against other methods at different
640 layers of biome ontology, all other methods were remolded, so that the prediction
641 results of these methods (excluding ONN4MST) at different layers could be produced.
642 Based on the source contributions of biomes at the sixth (bottom) layer, the source
643 contributions of biomes for other layers were computed using $P_f = \sum_{f_c \in C_f} P_{f_c}$. Where
644 P_f is a source contribution for f , C_f is a set of children biomes for biome source f
645 in the biome ontology. f_c is a child biome of f . We used NumPy-1.18.1 and
646 Treelib-1.5.5 in the process.

647

648 **Benchmarking measures**

649 To benchmark and compare the results based on ONN4MST and the other five
650 methods, we used these measures:

651

652 $TP_f(t) = \sum_i I(f \in P_i(t) \wedge f \in T_i)$ (1)

653 $TN_f(t) = \sum_i I(f \notin P_i(t) \wedge f \notin T_i)$ (2)

654 $FP_f(t) = \sum_i I(f \in P_i(t) \wedge f \notin T_i)$ (3)

655 $FN_f(t) = \sum_i I(f \notin P_i(t) \wedge f \in T_i)$ (4)

656 $TPR_f(t) = \frac{TP_f(t)}{TP_f(t) + FN_f(t)}$ (5)

657 $FPR_f(t) = \frac{FP_f(t)}{FP_f(t) + TN_f(t)}$ (6)

658 $TPR(t) = \frac{1}{F} \sum_{f=1}^F TPR_f(t)$ (7)

659 $FPR(t) = \frac{1}{F} \sum_{f=1}^F FPR_f(t)$ (8)

660 where f is a biome source, $P_i(t)$ is a set of predicted biomes for a microbial
661 community sample i and threshold $t \in [0,1]$ with a step size of 0.01, T_i is a set of
662 actual biomes for a sample i , F is the total number of biomes, and I is a logical
663 operation function, the value of I is 1 when the result of logical operation is TRUE,
664 else 0.

665

666 Four evaluation metrics (*Accuracy*, *Precision*, *Recall* and F_{max}) were introduced.

667 These evaluation metrics are computed with the following formulas:

668 $Accuracy(t) = \frac{TP_f(t) + TN_f(t)}{TP_f(t) + FP_f(t) + TN_f(t) + FN_f(t)}$ (9)

669 $Precision_f(t) = \frac{TP_f(t)}{TP_f(t) + FP_f(t)}$ (10)

670 $Recall_f(t) = \frac{TP_f(t)}{TP_f(t) + FN_f(t)}$ (11)

671 where TP is true positive, TN is true negative, FP is false positive, FN is false
672 negative. Subsequently, we compute $F1$ for threshold $t \in [0,1]$ with a step size of
673 0.01 by using the average precision and average recall for all actual biomes that we

674 predicted at least one time. Then, we select the maximum $F1$ as F_{max} . These
675 evaluation metrics are computed with the following formulas:

676
$$AvgPrecision(t) = \frac{1}{F} \sum_{f=1}^F Precision_f(t) \quad (12)$$

677
$$AvgRecall(t) = \frac{1}{F} \sum_{f=1}^F Recall_f(t) \quad (13)$$

678
$$F_{max} = \max_t \left\{ \frac{2 \cdot AvgPrecision(t) \cdot AvgRecall(t)}{AvgPrecision(t) + AvgRecall(t)} \right\} \quad (14)$$

679

680 Then, ROC (Receiver Operating Characteristic) curves, which are based on
681 contrasting the true positive rate (TPR) against the false positive rate (FPR), were
682 plotted. AUC (Area Under the Curve) reflects the ability of model to correctly predict
683 the biomes (sources) of microbial community samples. AUC is calculated with the
684 following formula:

685
$$AUC = \int_0^1 TPR(t) (-FPR'(t)) dt \quad (15)$$

686

687 **Data availability**

688 The selected samples from Combined dataset, which were assigned to Human dataset,
689 Water dataset, Soil dataset respectively, were annotated with their respective
690 assignments in **Supplementary Table 2**. Data download links are provided in
691 **Supplementary Table 12**.

692

693 **Code availability**

694 All source codes have been uploaded to the website at:
695 <https://github.com/HUST-NingKang-Lab/ONN4MST>. Detailed parameters of
696 software and package we used in this study are provided in **Supplementary Table 13**.

697

698 **References**

699 26 Abadi, M. *et al.* Tensorflow: a system for large-scale machine learning.
700 *Operating Systems Design and Implementation*, 265-283 (2016).

701

702 **Acknowledgments**

703 We are grateful to Chuanle Xiao, Jianyang Zeng and Qingyang Yu for insightful
704 discussions. This work was partially supported by National Science Foundation of
705 China grant 81774008, 81573702, 31871334 and 31671374, and the Ministry of
706 Science and Technology's national key research and development program grant (No.
707 2018YFC0910502).

708

709 **Author contributions**

710 KN conceived of and proposed the idea, and designed the study. YGZ, HC, HQ, KK,
711 YZD, ZXC performed the experiments and analyzed the data. YGZ, HC, KN and XC
712 contributed to editing and proof-reading the manuscript. All authors read and
713 approved the final manuscript.

714

715 **Competing interests**

716 The authors declare that they have no competing interests.

717

718 **Ethics approval and consent to participate**

719 Not applicable

720 **Figures**

721 **Figure 1**

722 **Fig. 1: Building and using the Ontology-aware Neural Network model for microbial source**

723 **tracking. a.** The sample data representation and training process of ONN model. **i.** Sample data
724 are transformed into the Matrix. With the Matrix, each column represents a taxonomical level and
725 each row represents a feature; **ii.** In parallel, samples are mapped to biome ontology according to
726 their niches; **iii.** The model is built and updated according to both samples' abundance matrices
727 and biome ontology information. More details about building, testing and using the ONN model
728 for source tracking are illustrated in **Supplementary Fig. 1** and **Supplementary Fig. 2**. **b.** An
729 illustrated example of microbial source tracking procedure using ONN4MST. **i.** The input is the
730 community structure of a real microbial community sample (this sample is from the biome
731 “Root-Host_associated-Human-Digestive_system-Oral-Saliva”) that has been preprocessed and
732 the Matrix has been provided into the model; **ii.** Source tracking process at different layers. The
733 red arrows indicate the search process from layer 1 to layer 6, accompanied with source
734 contribution annotated in red. To compare with the procedure of ONN4MST, the yellow and blue
735 arrows indicated the source tracking results (among the overall top 5 sources) of FEAST and
736 Source Tracker, together with their source contributions, respectively. The actual biome is
737 annotated by a red check mark; **iii.** The predicted biomes (with source contributions) by
738 ONN4MST, FEAST and SourceTracker.

739 **Figure 2**

740 **Fig. 2: ONN4MST's prediction accuracies are among the best on different datasets and**
741 **different biome layers, while the performance of ONN4MST does not depend heavily on the**
742 **number of biomes or number of samples in the dataset. a.** The five datasets with varied
743 complexities have provided source tracking tasks with different difficulties. **b.** The ROC curve of
744 ONN4MST and other methods on all five datasets. **c.** The number of samples, the Shannon
745 diversity and the source tracking results by different methods for the five datasets. The samples
746 involved in each dataset are shown with blue bars, the Shannon diversity of each dataset is shown
747 with red boxes, the AUC of several methods on each dataset is shown with dash lines. **d.** The AUC
748 of all methods on all five datasets. **e.** The number of biomes and the source tracking results by
749 different methods at different layers for the Combined dataset. The samples involved in each
750 biome ontology layer are shown with blue bars, the AUC of different methods on each layer is
751 shown with dash lines. **f.** The AUC of all methods at different layers. (**Abbreviations.**
752 ONN4MST_FS: ONN4MST using selected features).

753 **Figure 3**

754 **Fig. 3: ONN4MST is superior to other methods in search time and memory utilization. a.**

755 Running time of different methods when search one query against different datasets. **b.** Running

756 time of different methods when search queries of different sizes against Combined dataset. **c.**

757 Memory utilization of all methods when search one query against different datasets. **d.** Memory

758 utilization of all methods when search queries of different sizes against Combined dataset. **Note:** a

759 hollow bar means that the value represent by this bar is the result of linearly extrapolation, both

760 for running time and for memory utilization. (**Abbreviations.** ONN4MST_FS: ONN4MST using

761 selected features, 1M: Results of linearly extrapolation with one million samples in use).

762 **Figure 4**

763 **Fig. 4: The contribution of the unknown sources in indoor house surface samples using**

764 **ONN4MST. a.** Mean source contributions considering 4 human skin sources (hand, foot, nose and

765 skin-other across all inhabitants) using data from Lax *et al.*²¹ **b,c.**

766 Further decomposition of the unknown sources existed in **Fig. 4a** has revealed other microbial con

767 taminates in built environment.

768 **Figure 5**

769 **Fig. 5: Successful source tracking of environmental samples from a less studied biome by**
770 **using ONN4MST.** Results were based on using 11 samples from groundwater environment,
771 which represented a biome previously less studied. **a-c.** Source tracking results by using
772 ONN4MST at the second, third and fourth layers; **d.** Source tracking results by using FEAST; **e.**
773 Source tracking results by using SourceTracker. Actual biome of query sample:
774 “Root-Environmental-Aquatic-Freshwater-Groundwater”. A_1, A_2: two samples collected from a
775 single well; B_1, B_2: two samples collected from another single well; C_1, C_2: two samples
776 collected from the third single well; D-H: samples collected from other five wells, respectively.

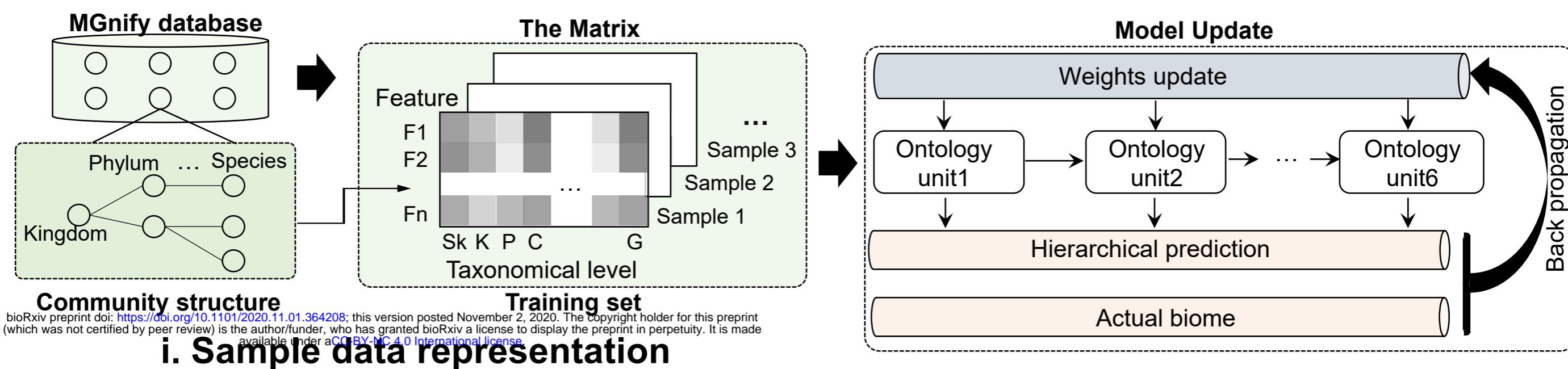
777 **Tables**

778 **Table 1**

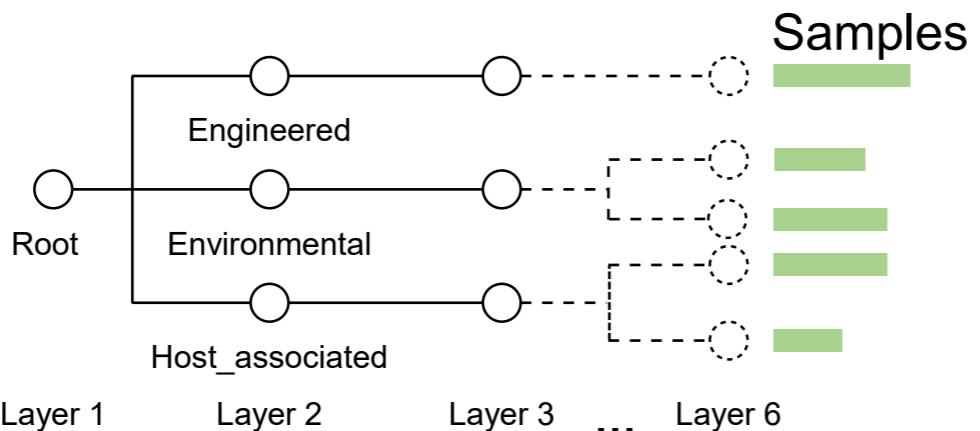
779 **Table 1. Evaluation of ONN4MST on all five datasets.** ONN4MST achieved the accuracy
780 higher than 0.98 for all five datasets, and the AUC higher than 0.97 for all five datasets. **Note:** For
781 each dataset, we used the model trained on that dataset for evaluation. The evaluation procedure of
782 the ONN model is illustrated in **Supplementary Fig. 1c** and described in **Methods**. ONN4MST
783 based on all features and selected features were both evaluated at the bottom (sixth) layer with a
784 threshold of 0.5. **(Abbreviations.** Pr: Precision, Rc: Recall, Acc: Accuracy).

Dataset	#Biomes	#Samples	All features					Selected features				
			Pr	Rc	Acc	F_{max}	AUC	Pr	Rc	Acc	F_{max}	AUC
Combined	114	125,823	0.826	0.662	0.995	0.740	0.971	0.868	0.774	0.997	0.820	0.977
Human	25	53,553	0.822	0.521	0.984	0.695	0.972	0.894	0.826	0.991	0.863	0.984
Water	44	27,667	0.842	0.766	0.992	0.803	0.966	0.854	0.764	0.992	0.813	0.971
Soil	16	11,528	0.915	0.778	0.986	0.850	0.974	0.892	0.881	0.989	0.890	0.982
FEAST	3	10,270	0.793	0.795	0.984	0.803	0.980	0.895	0.812	0.989	0.862	0.991

785

a

i. Sample data representation



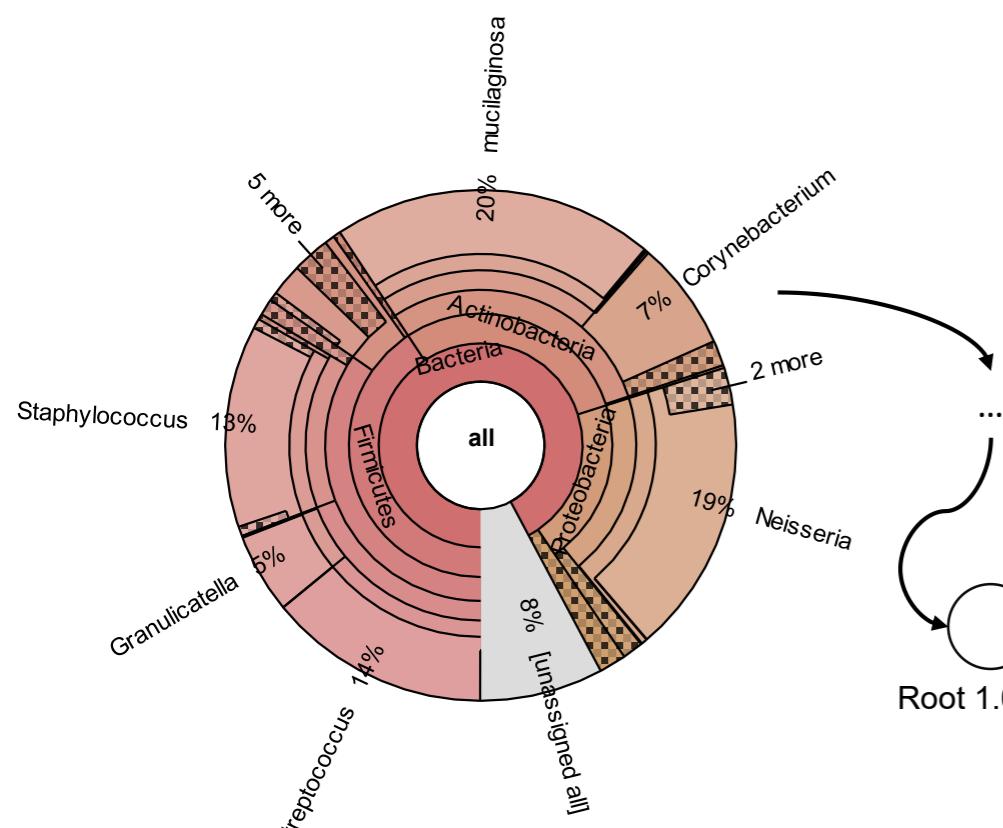
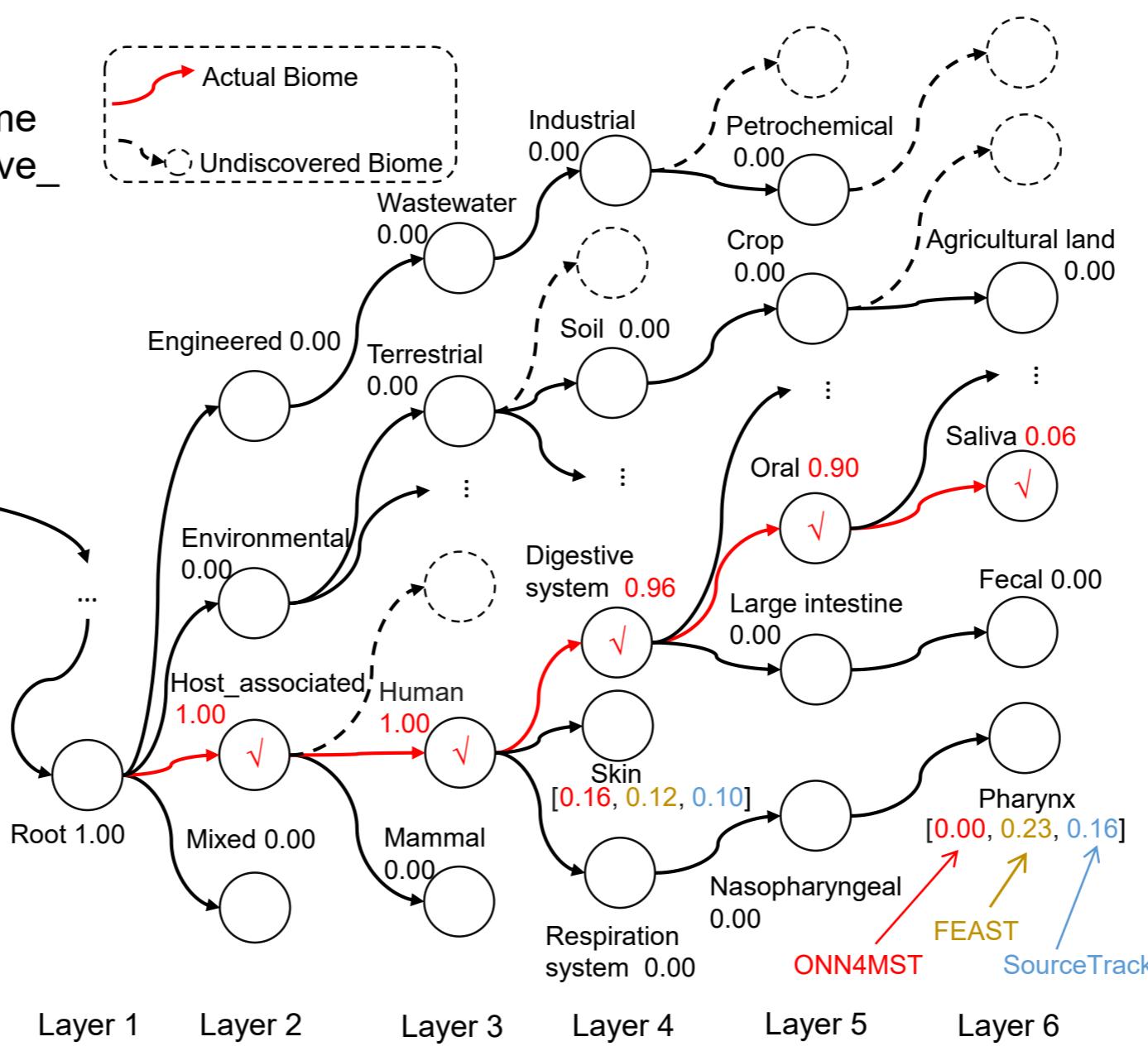
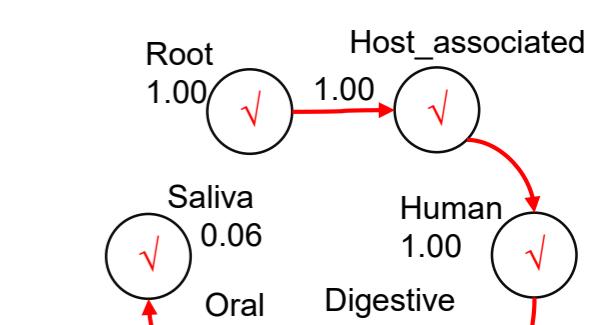
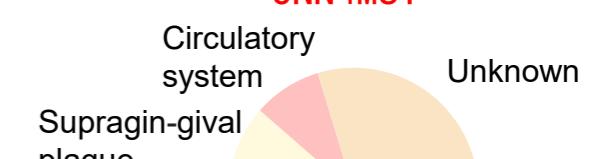
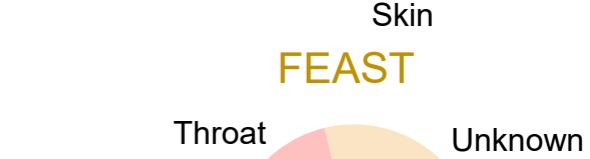
Model	Entity relationships	Biome
Ontology unit1	—	Ontology layer1
Ontology unit1	—	Ontology layer2
...
Ontology unit6	—	Ontology layer6

ii. Biome ontology (with samples mapped)

iii. Ontology-aware Neural Network

b

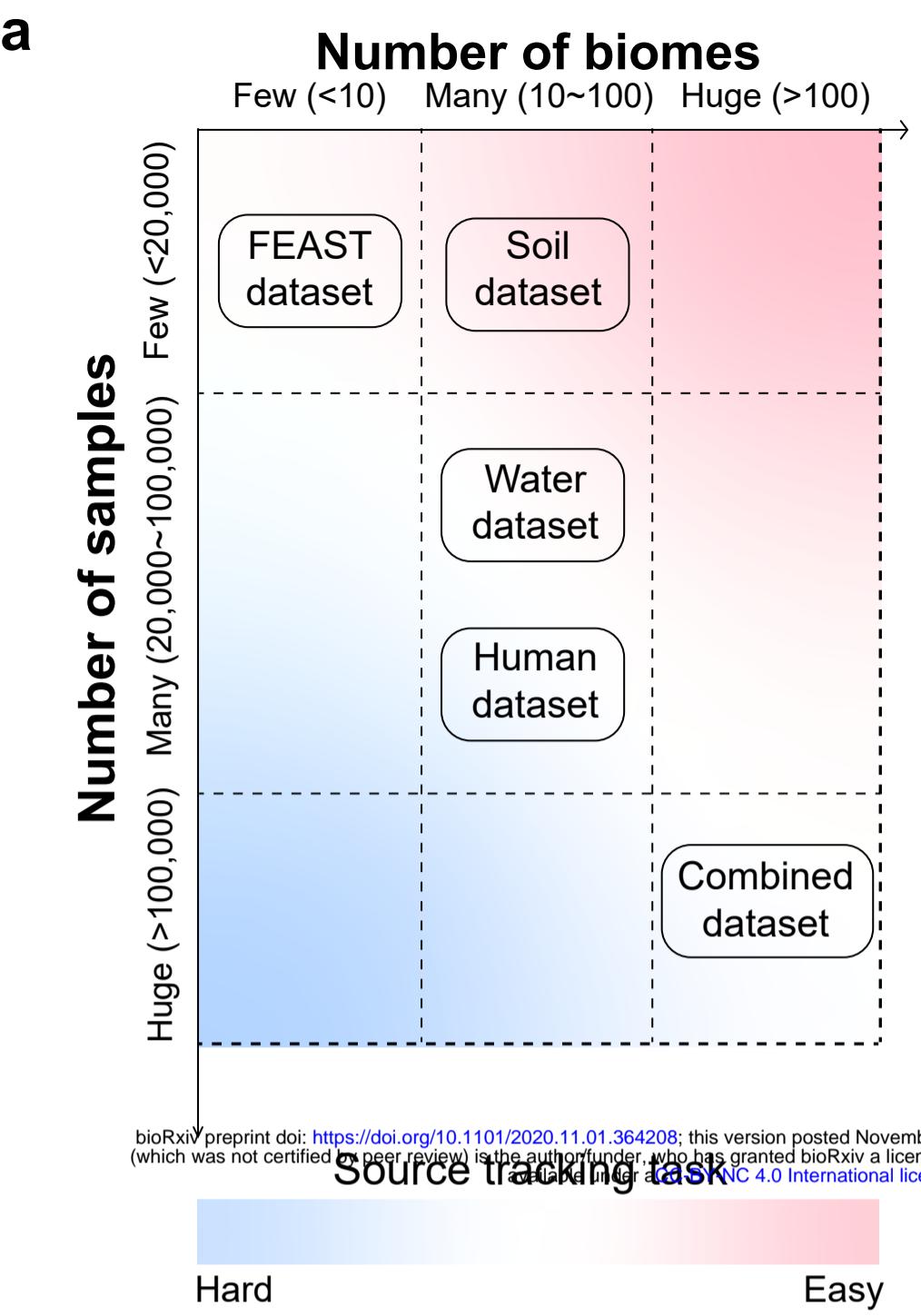
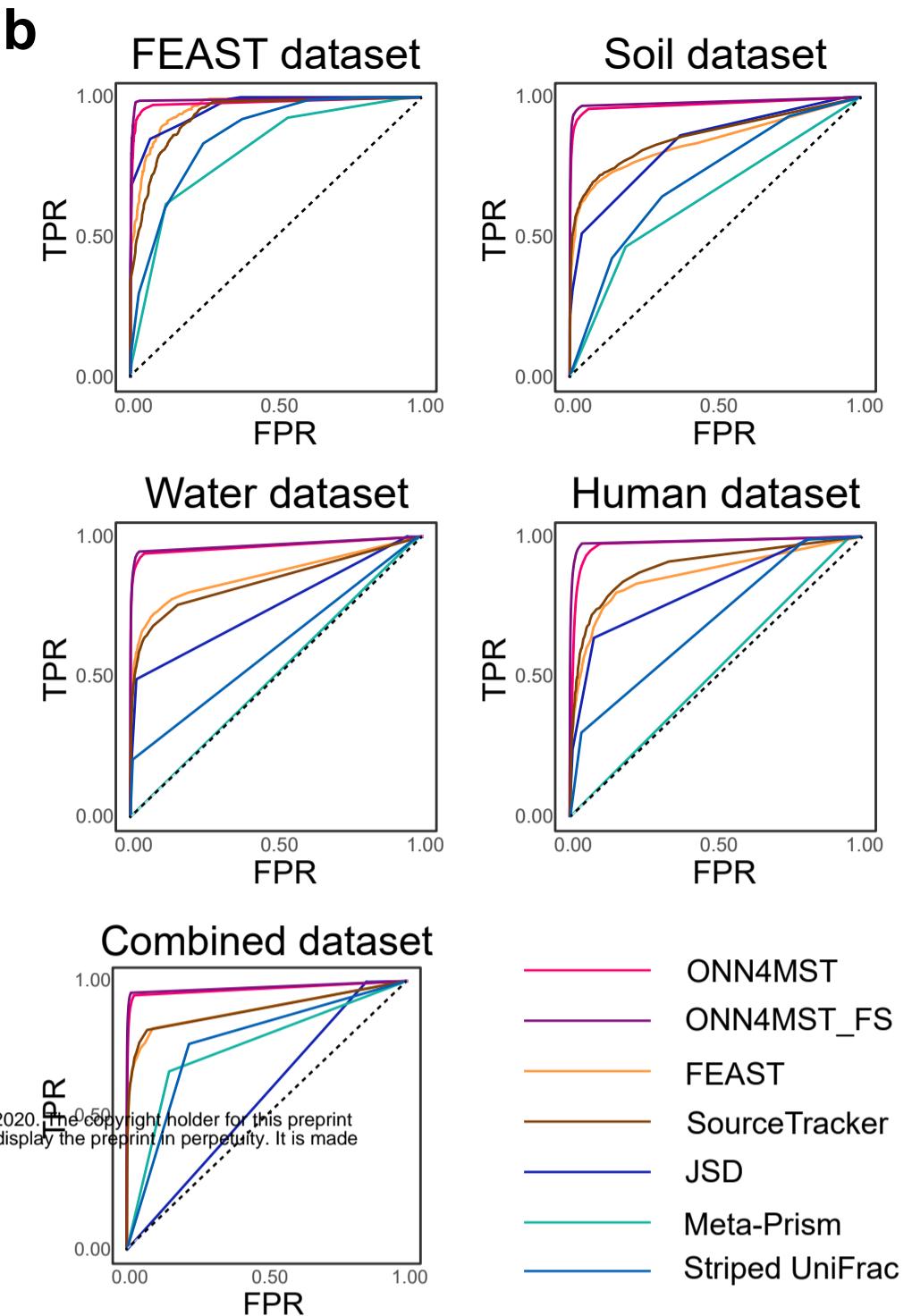
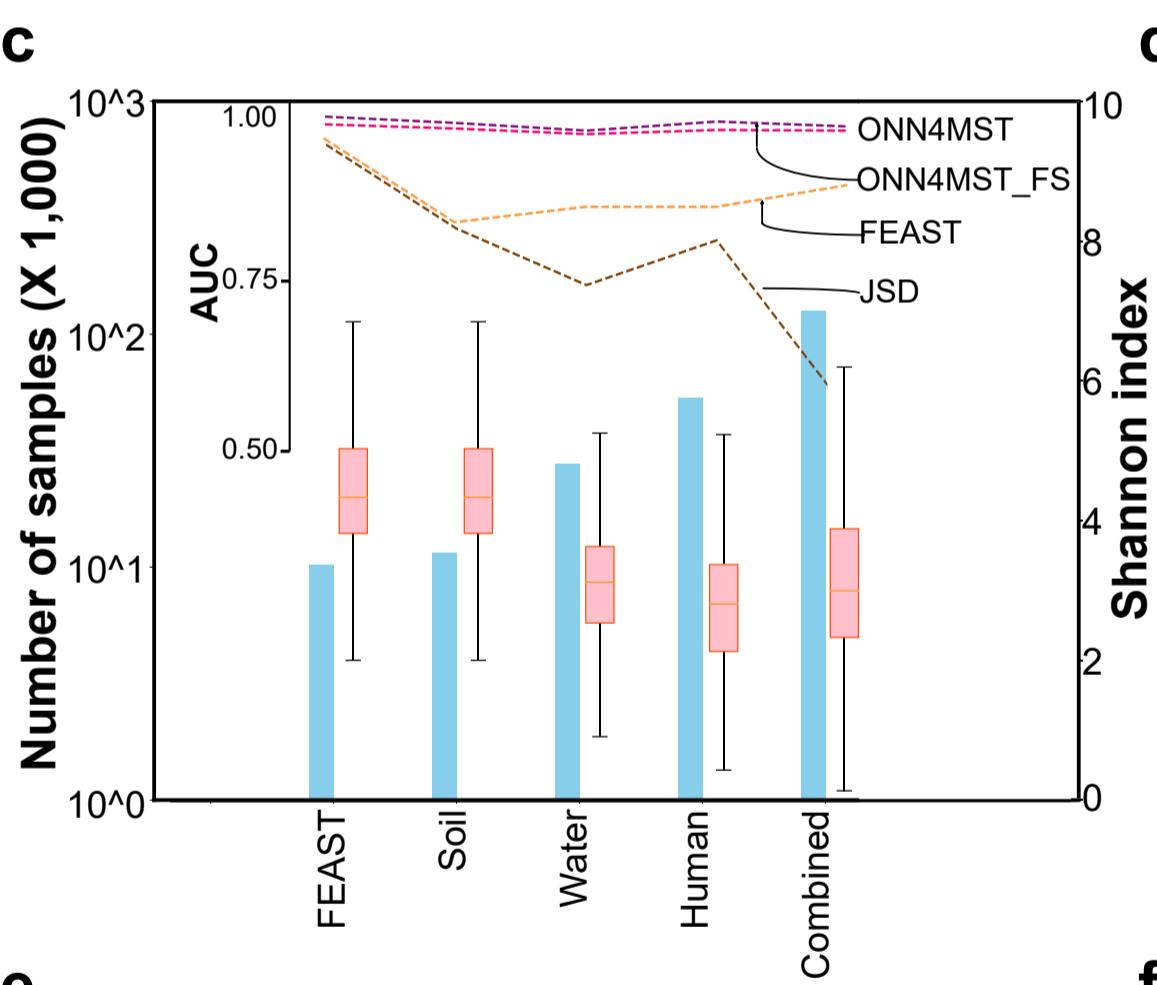
Microbial community sample from biome
“Root-Host_associated-Human-Digestive_system-Oral-Saliva”



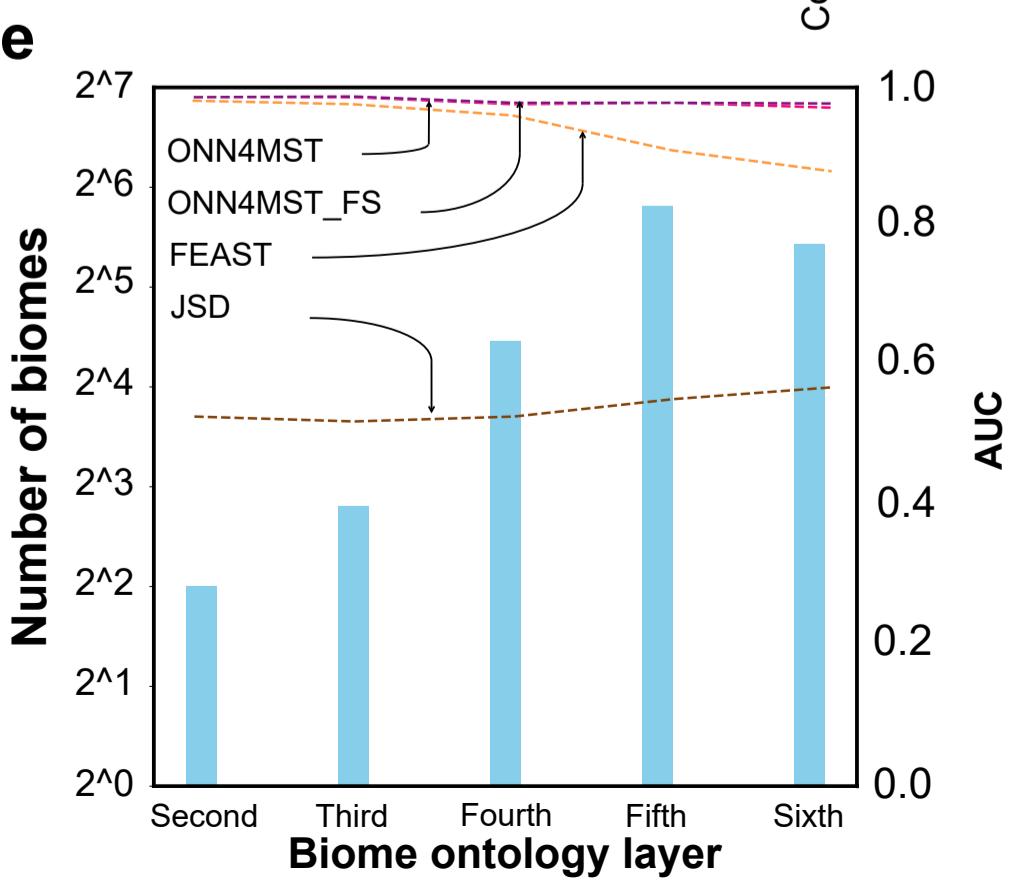
i. Input

ii. Source tracking process

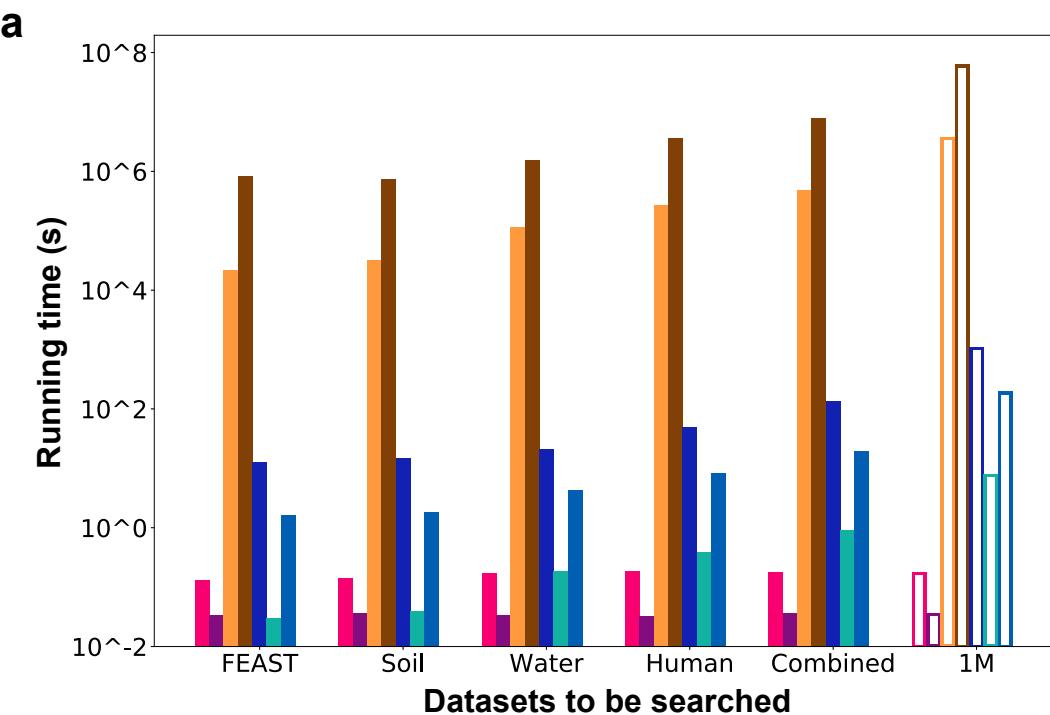
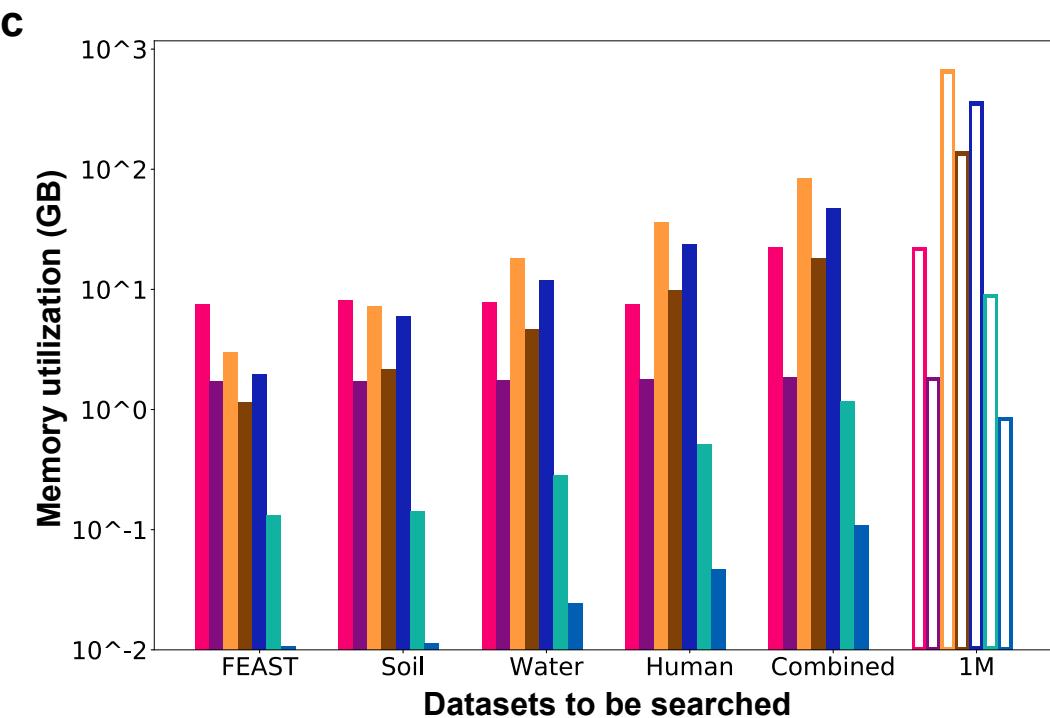
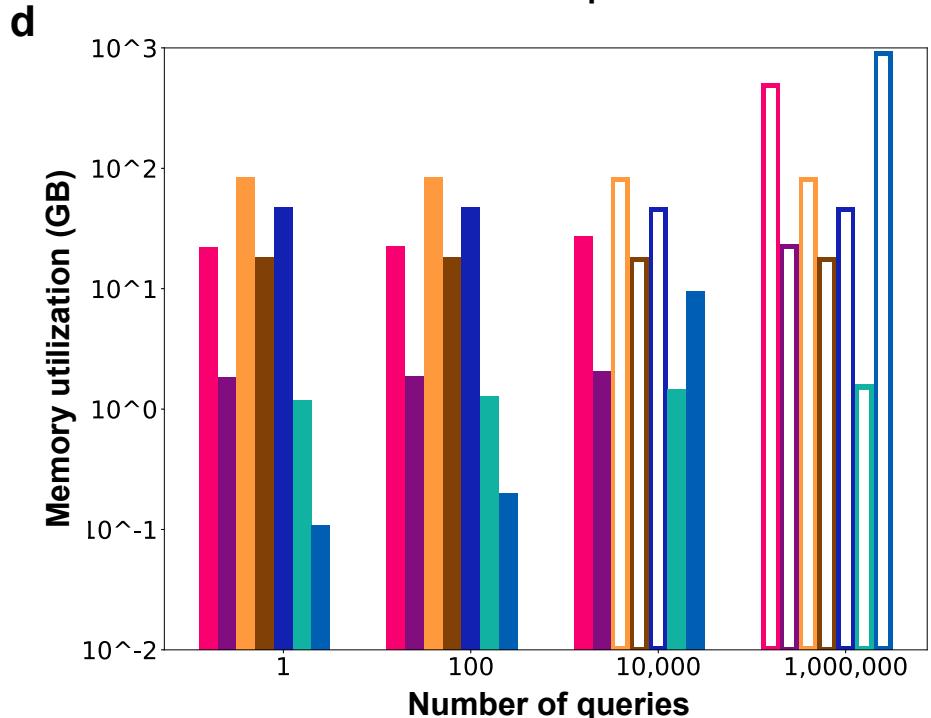
iii. Output



	FEAST	Soil	Water	Human	Combined
ONN4MST	0.980	0.974	0.966	0.972	0.971
ONN4MST_FS	0.991	0.982	0.971	0.984	0.977
FEAST	0.960	0.840	0.862	0.862	0.893
SourceTracker	0.937	0.862	0.841	0.893	0.894
JSD	0.962	0.831	0.750	0.814	0.571
Meta-Prism	0.807	0.638	0.508	0.519	0.757
Striped UniFrac	0.863	0.706	0.604	0.692	0.772

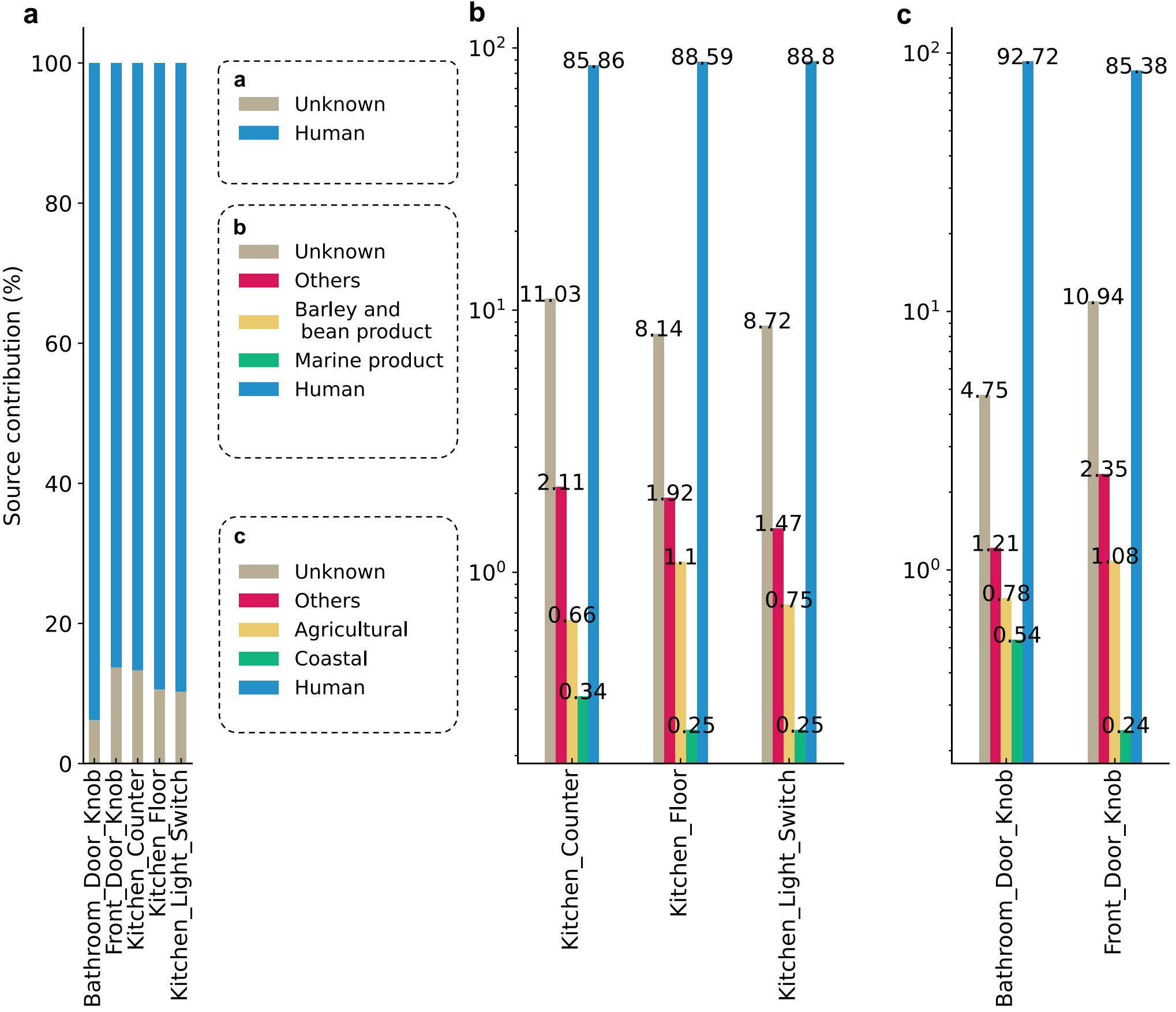


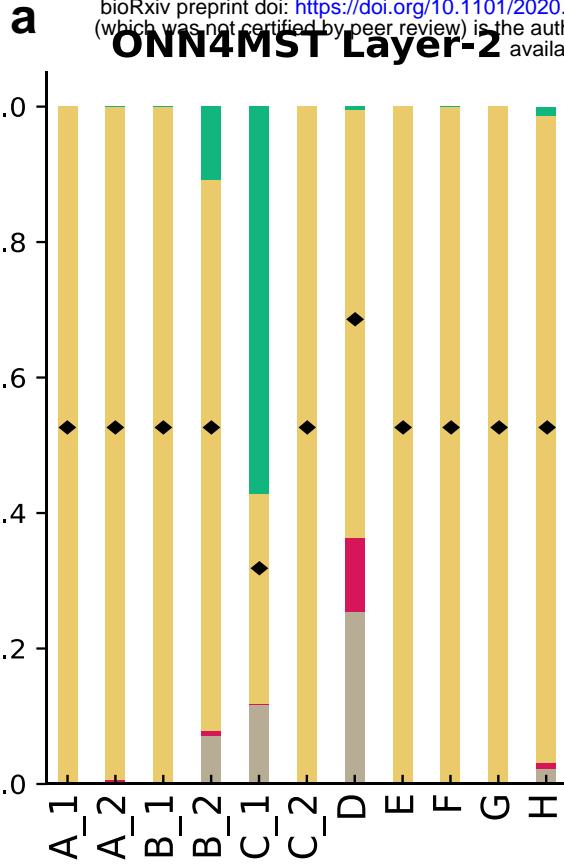
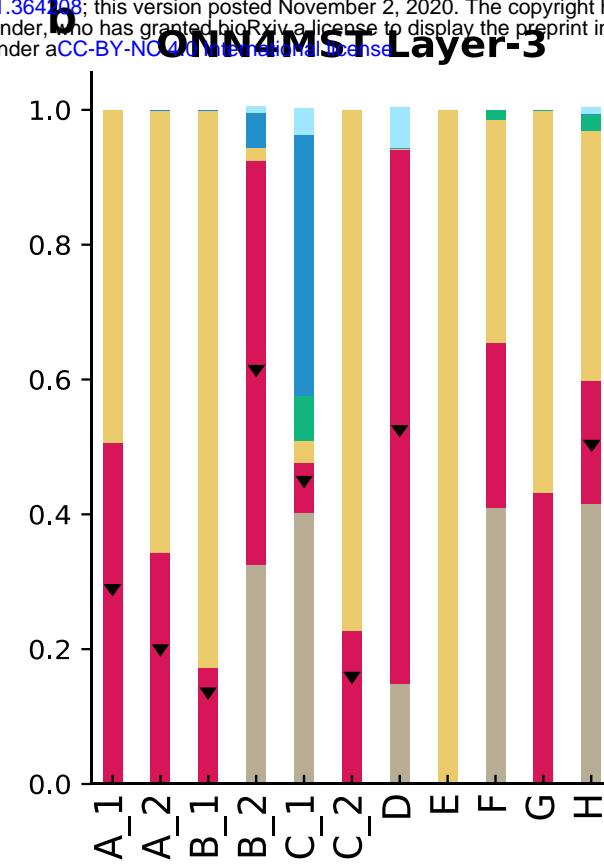
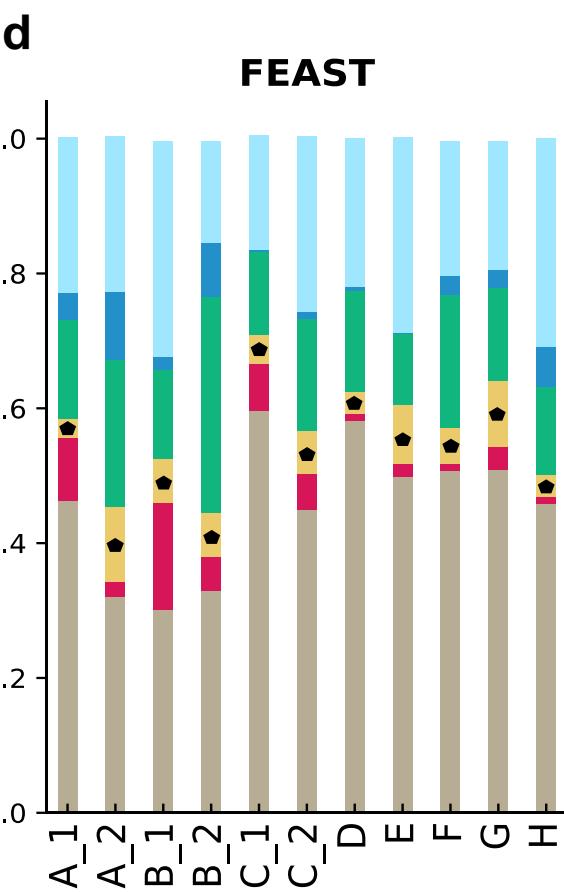
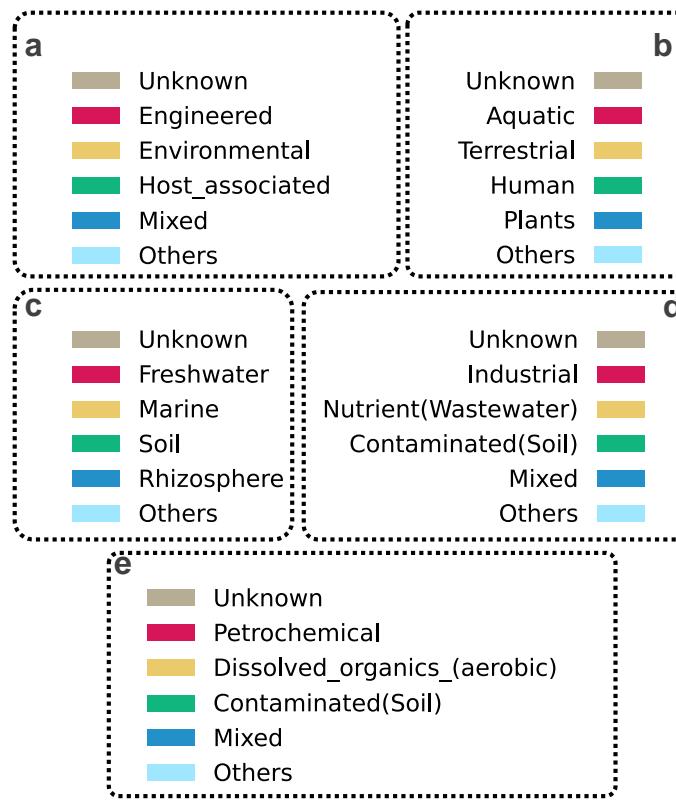
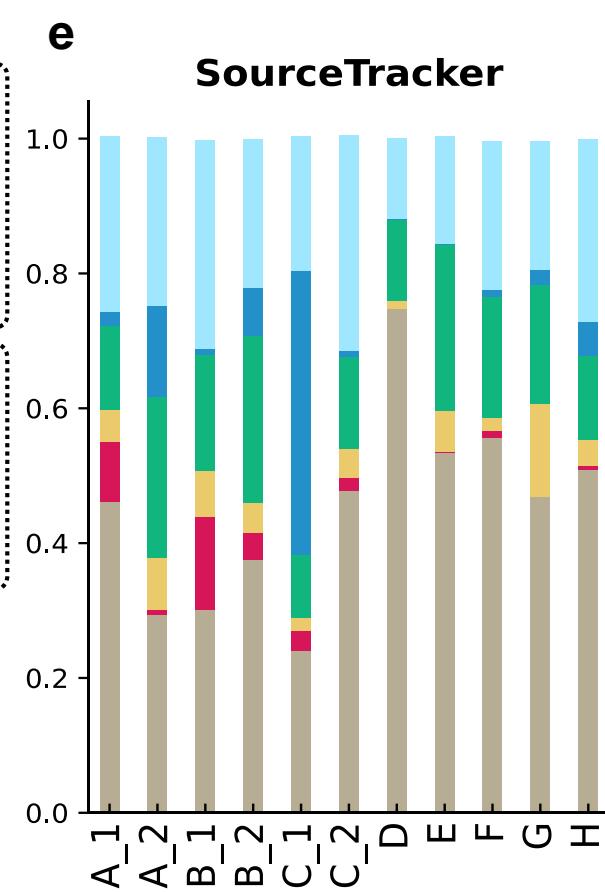
	Second	Third	Fourth	Fifth	Sixth
ONN4MST	0.986	0.986	0.976	0.978	0.971
ONN4MST_FS	0.986	0.987	0.978	0.978	0.977
FEAST	0.981	0.976	0.960	0.910	0.893
SourceTracker	0.872	0.926	0.900	0.908	0.894
JSD	0.529	0.522	0.529	0.554	0.571
Meta-Prism	0.549	0.526	0.587	0.684	0.757
Striped Unirac	0.558	0.539	0.604	0.698	0.772



Legend:

- ONN4MST (pink)
- ONN4MST_FS (purple)
- FEAST (orange)
- SourceTracker (brown)
- JSD (dark blue)
- Meta-Prism (teal)
- Striped UniFrac (blue)





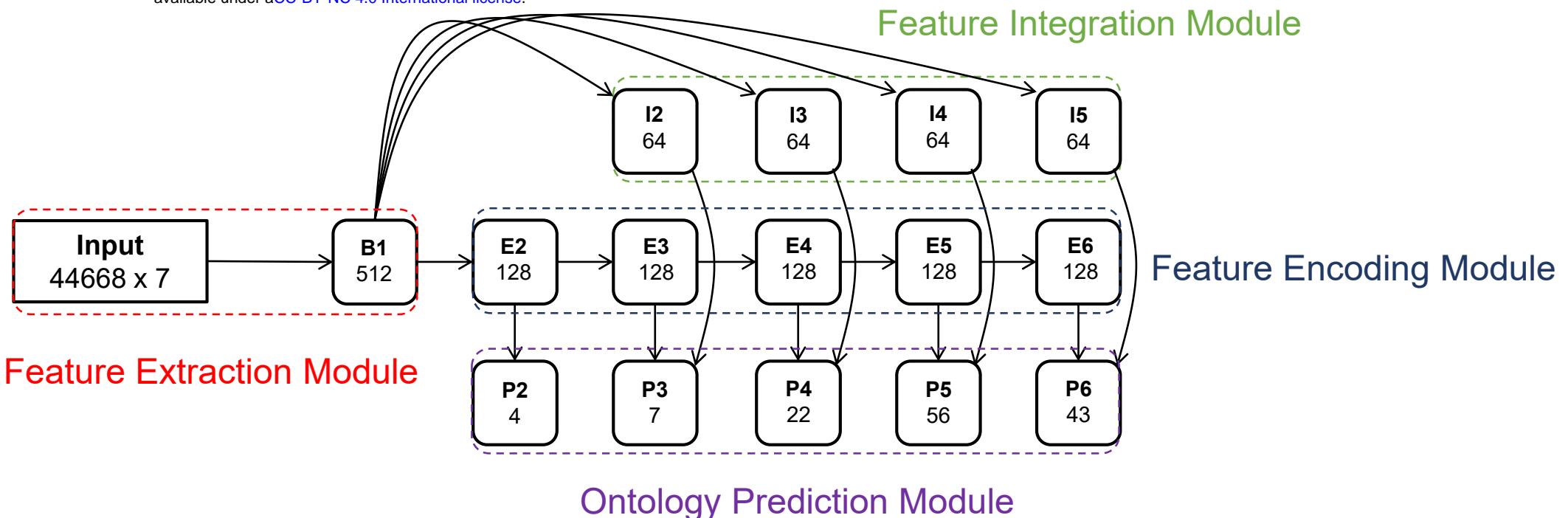
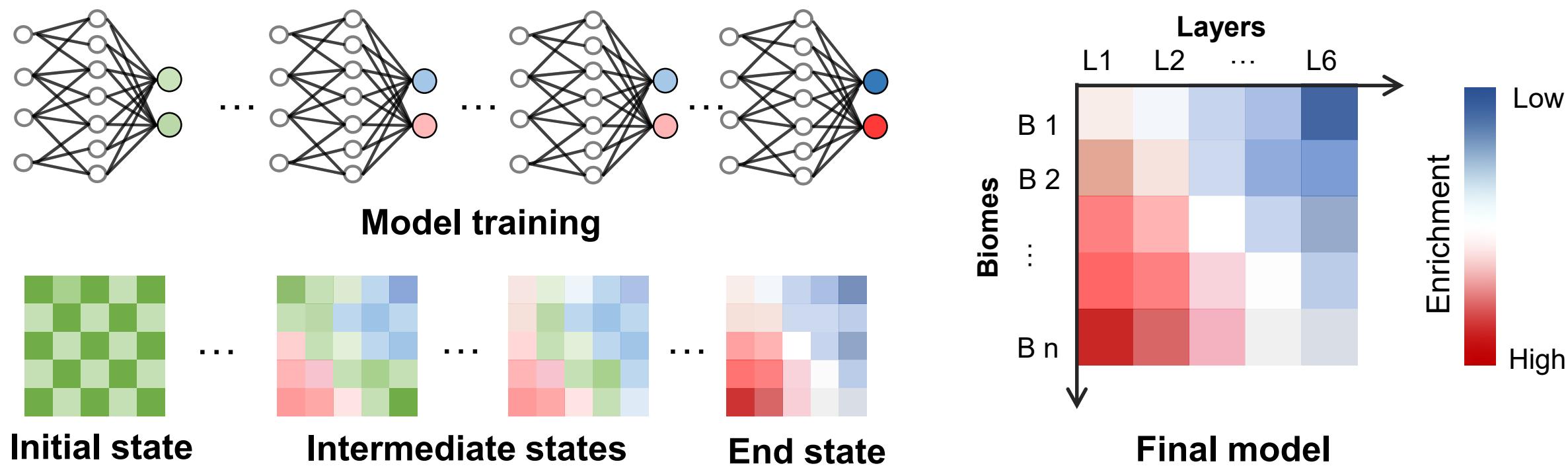
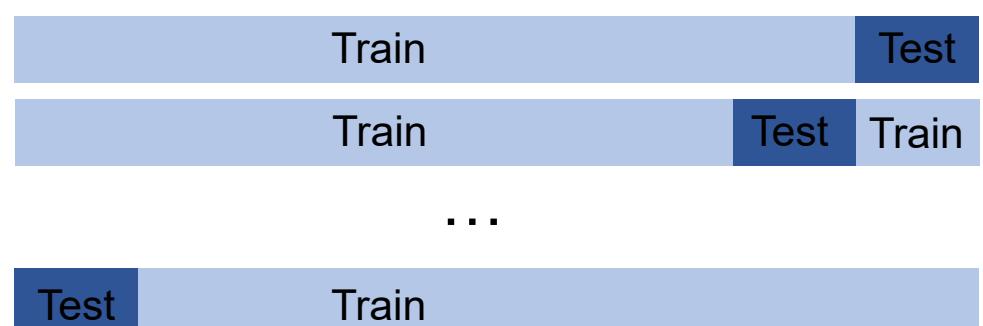
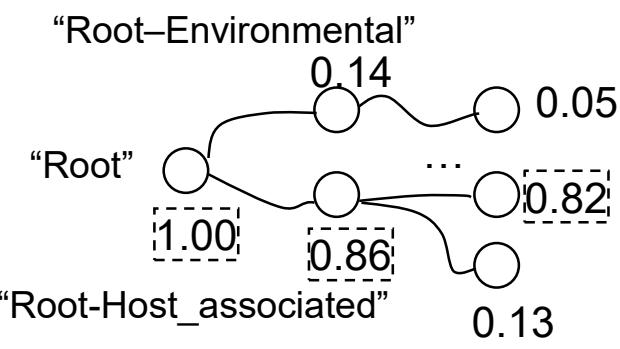
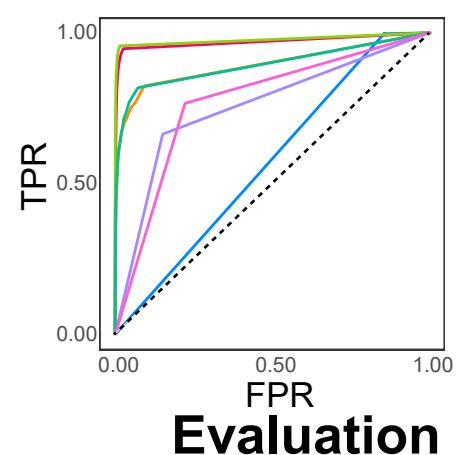
Actual biome: “Root-Environmental-Aquatic-Freshwater-Groundwater”

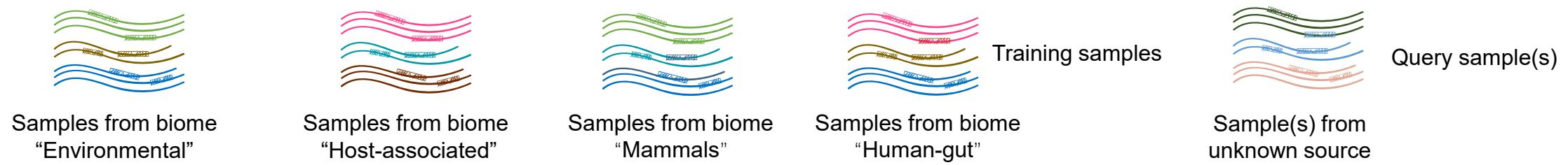
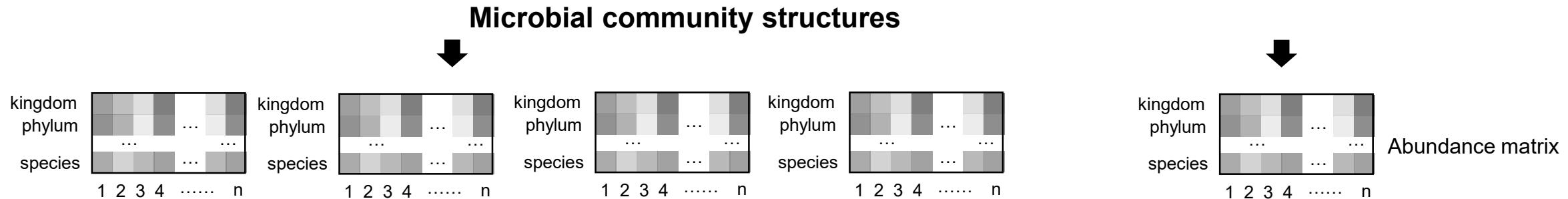
◆ Source: “Environmental”

★ Source: “Freshwater”

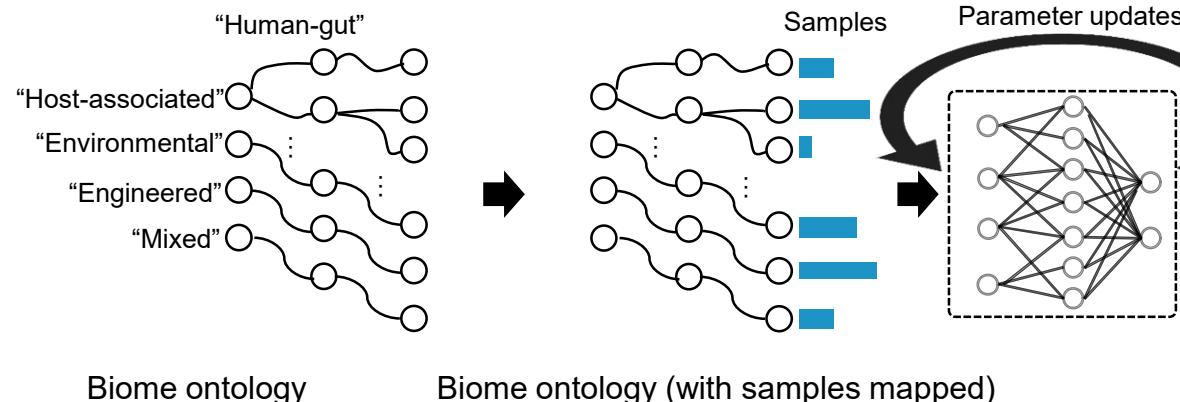
▼ Source: “Aquatic”

◆ Source: “Nutrient (Wastewater)”

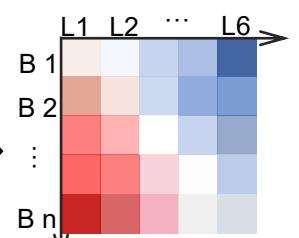
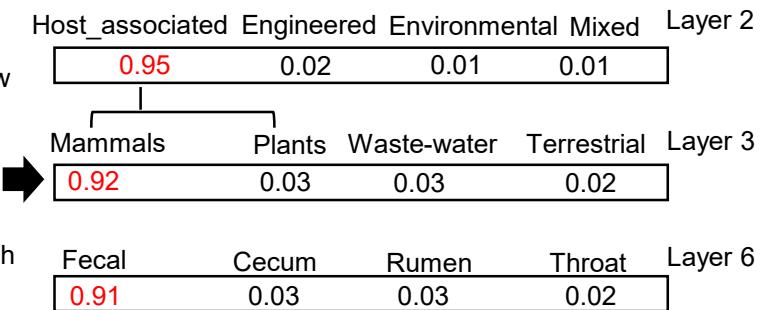
a**b****c****8-fold cross validation****Hierarchical predictions**

a**b**

Ontology-aware profiles

c

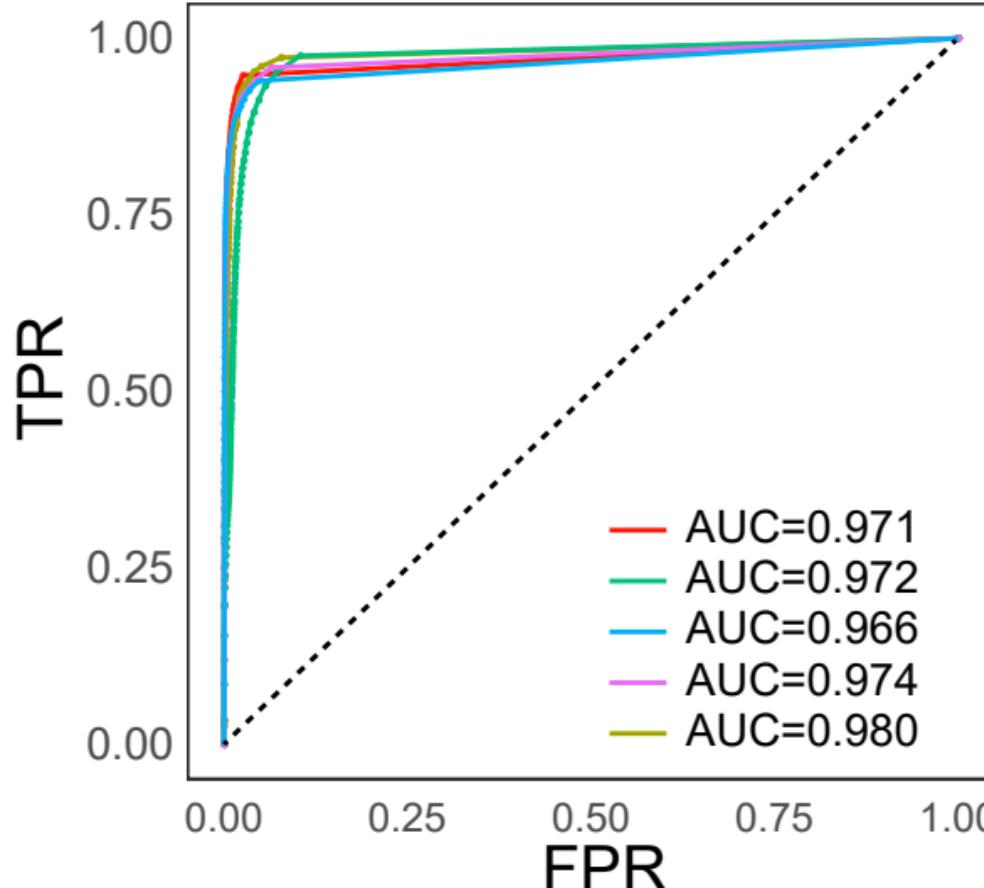
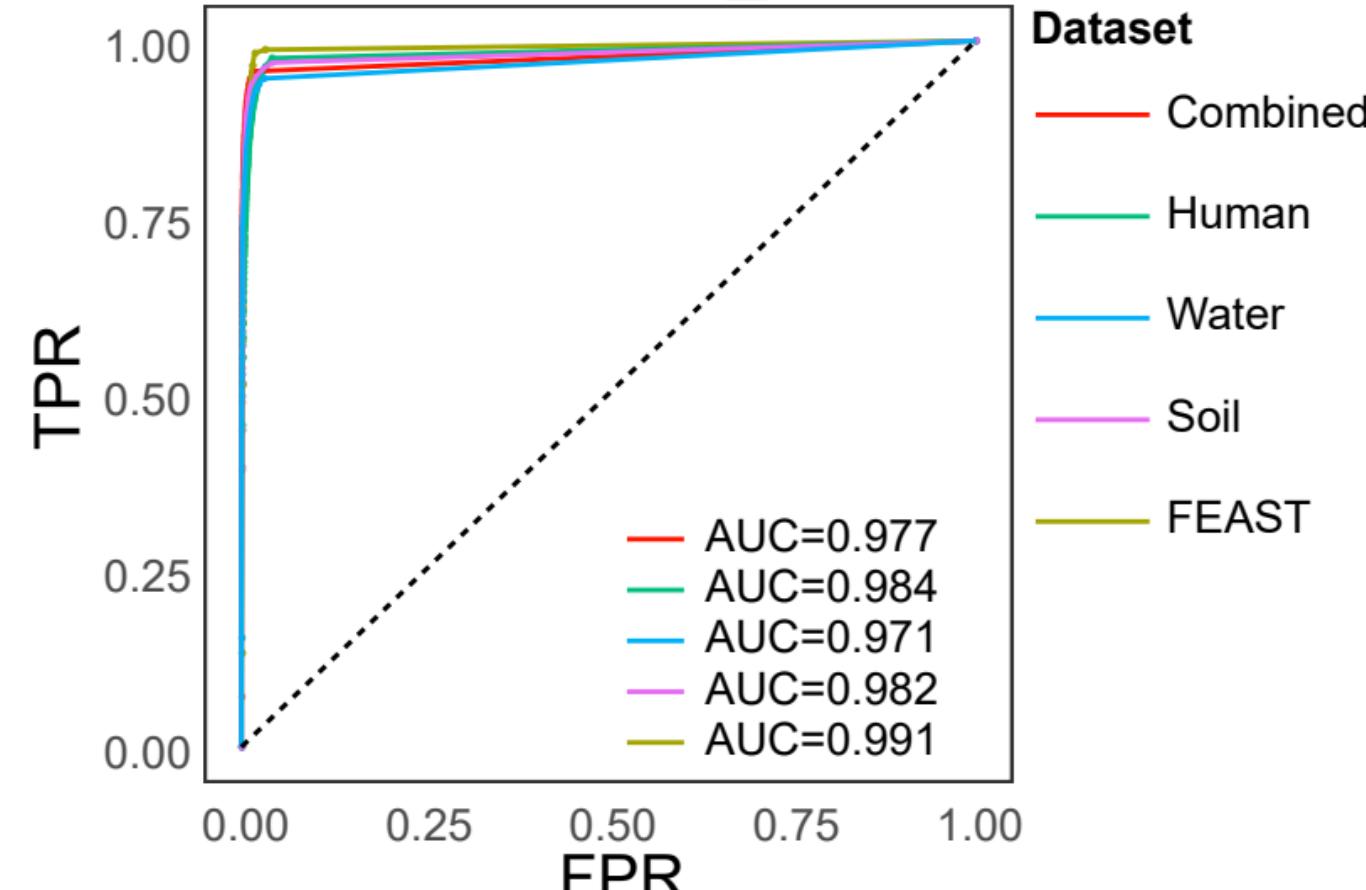
Building the ONN prediction model

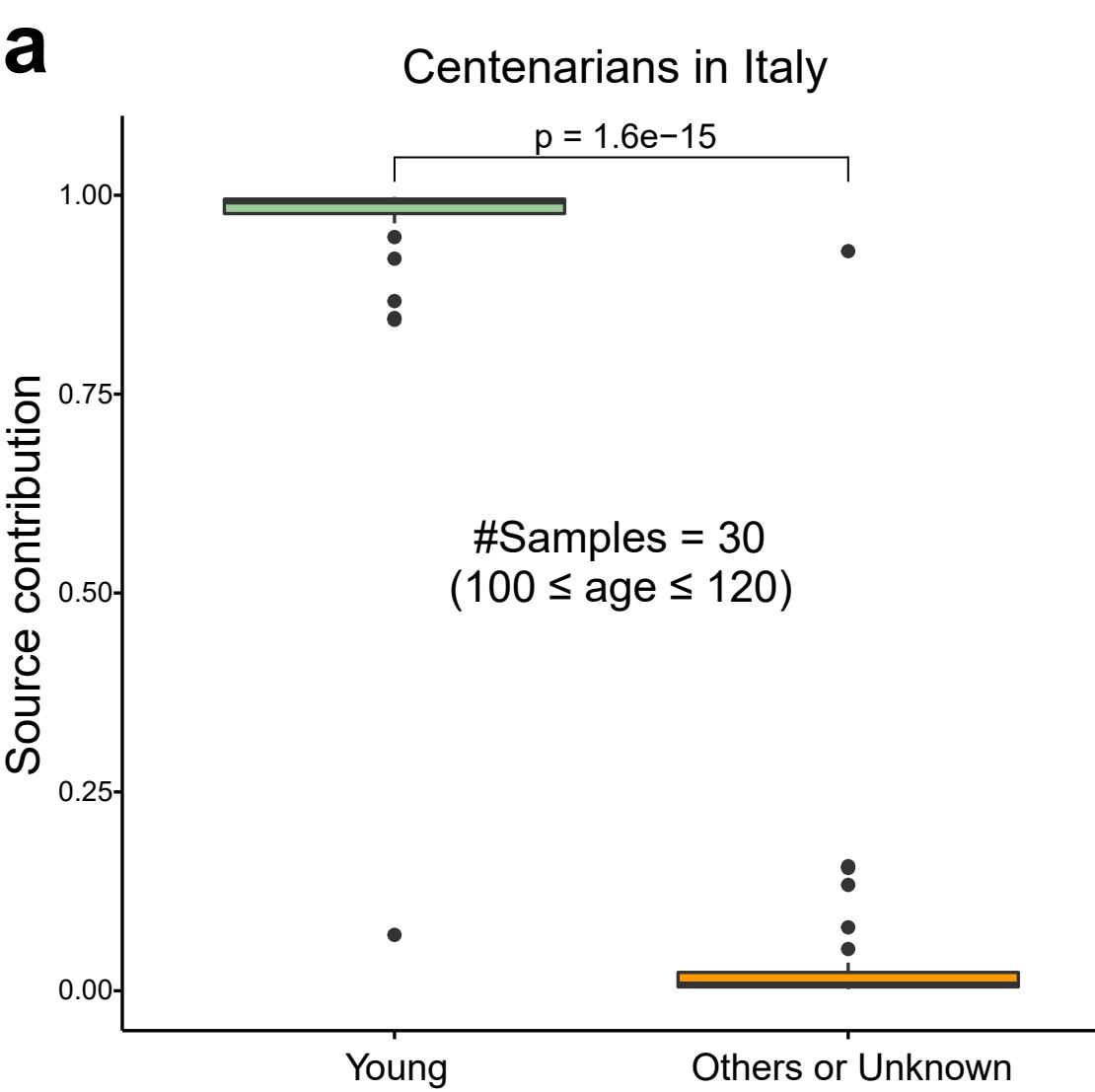
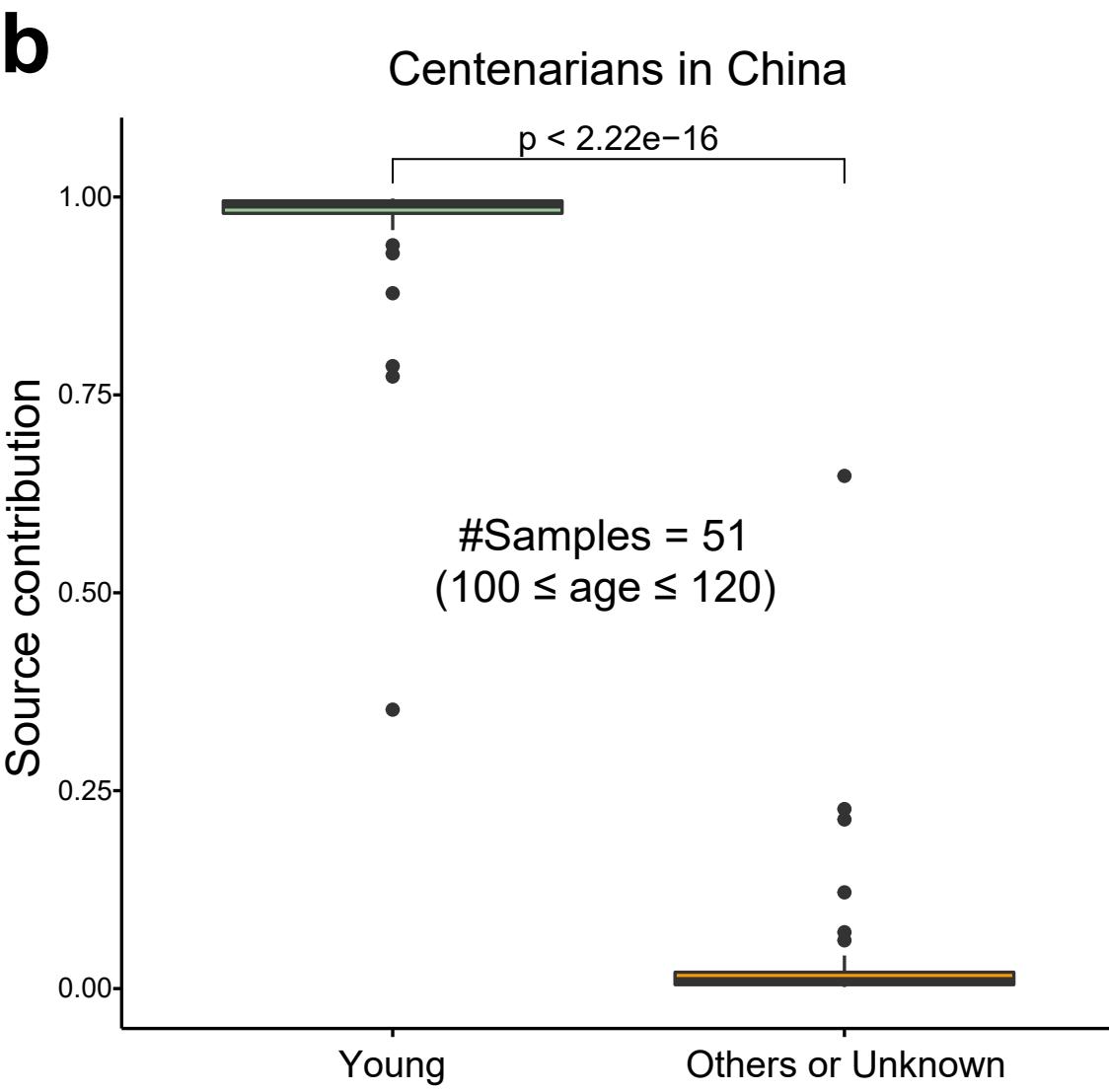
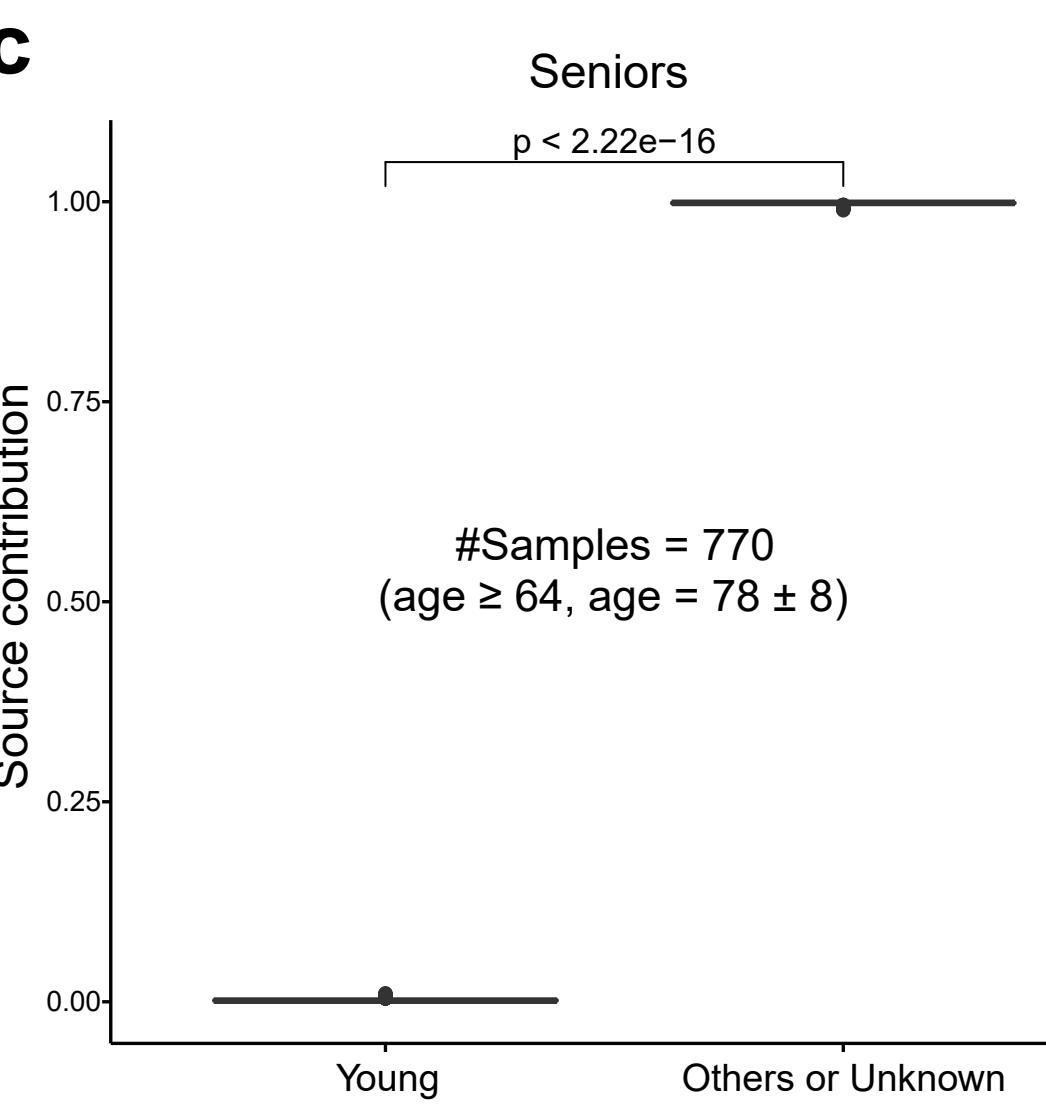
d**e**

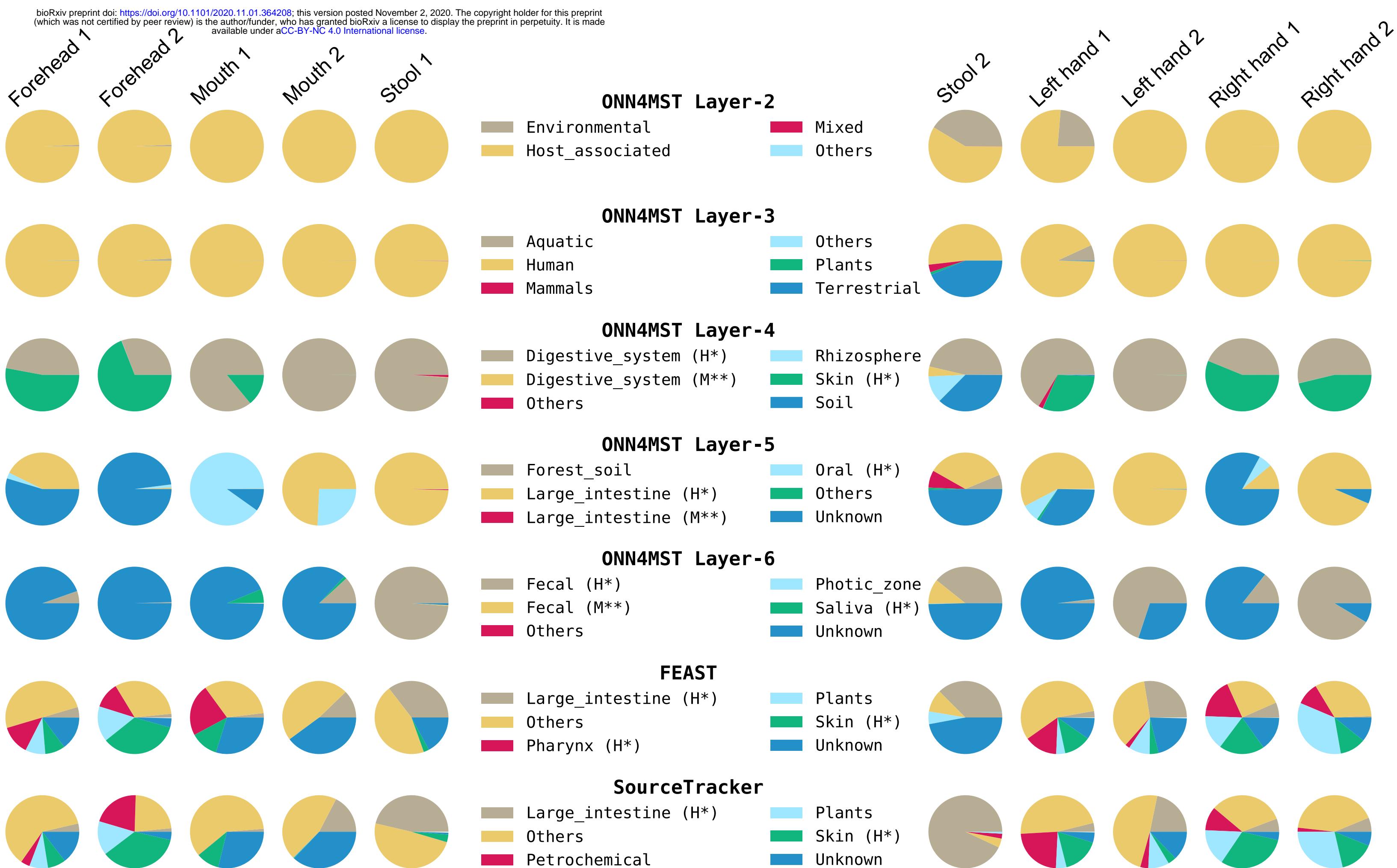
Query sample(s) from "Root-Host_associated-Mammals-.....-Fecal"

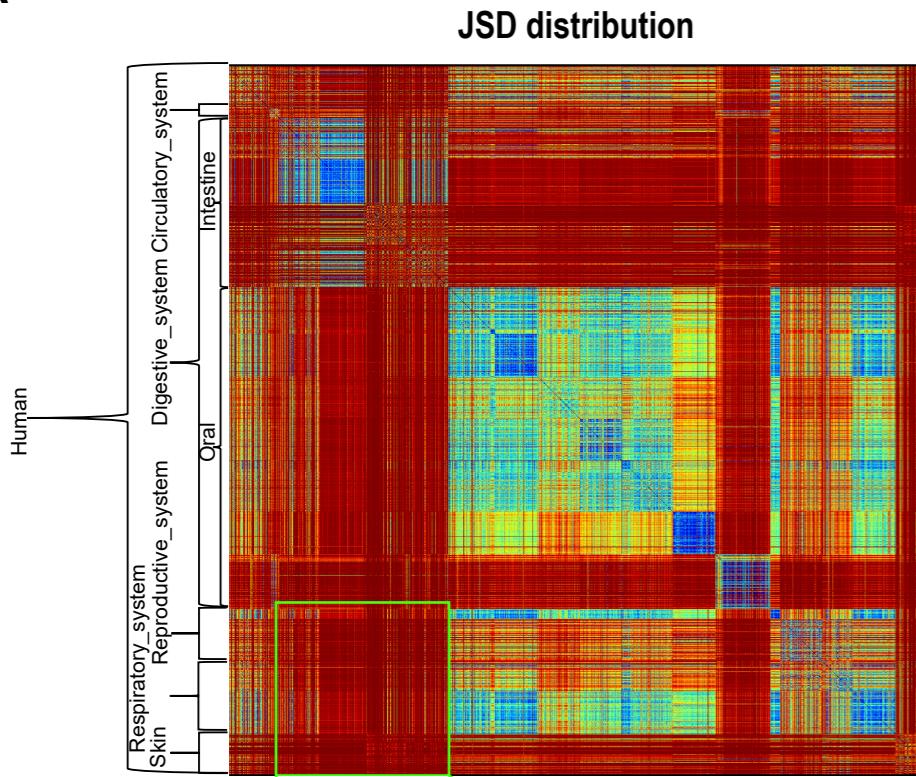
Source tracking model

Hierarchical predictions

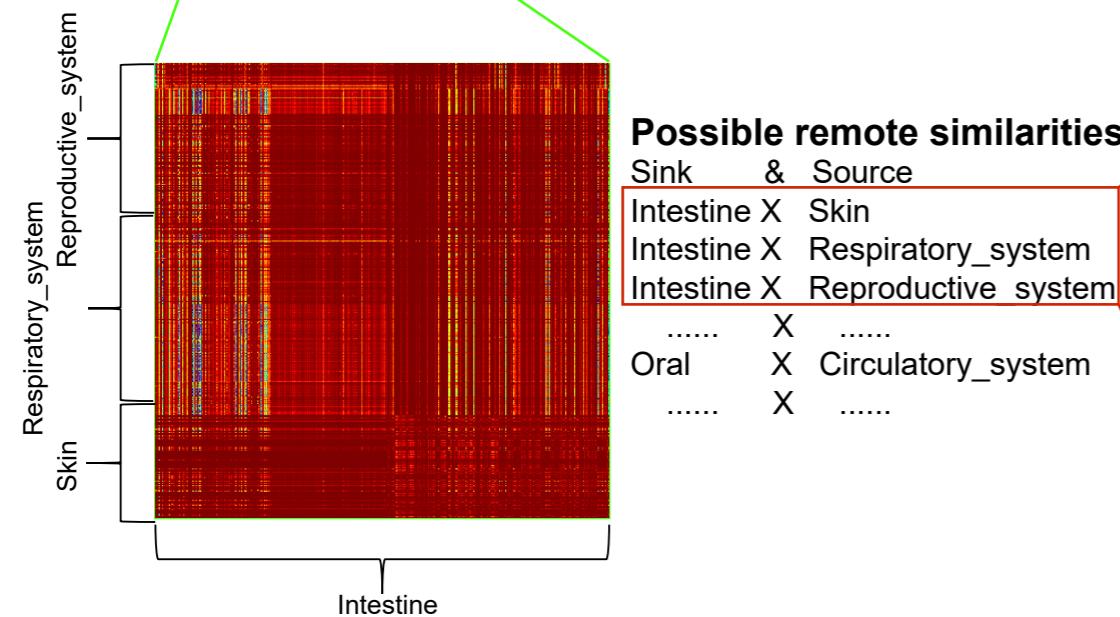
a**ONN4MST****b****ONN4MST_FS**





a**c**

Method	ONN4MST					FEAST	
	Cutoff	Layer2	Layer3	Layer4	Layer5		
40	0.977	0.963	0.963	0.716	0.597		
70	0.957	0.913	0.923	0.583	0.350		
90	0.933	0.867	0.830	0.403	0.150		

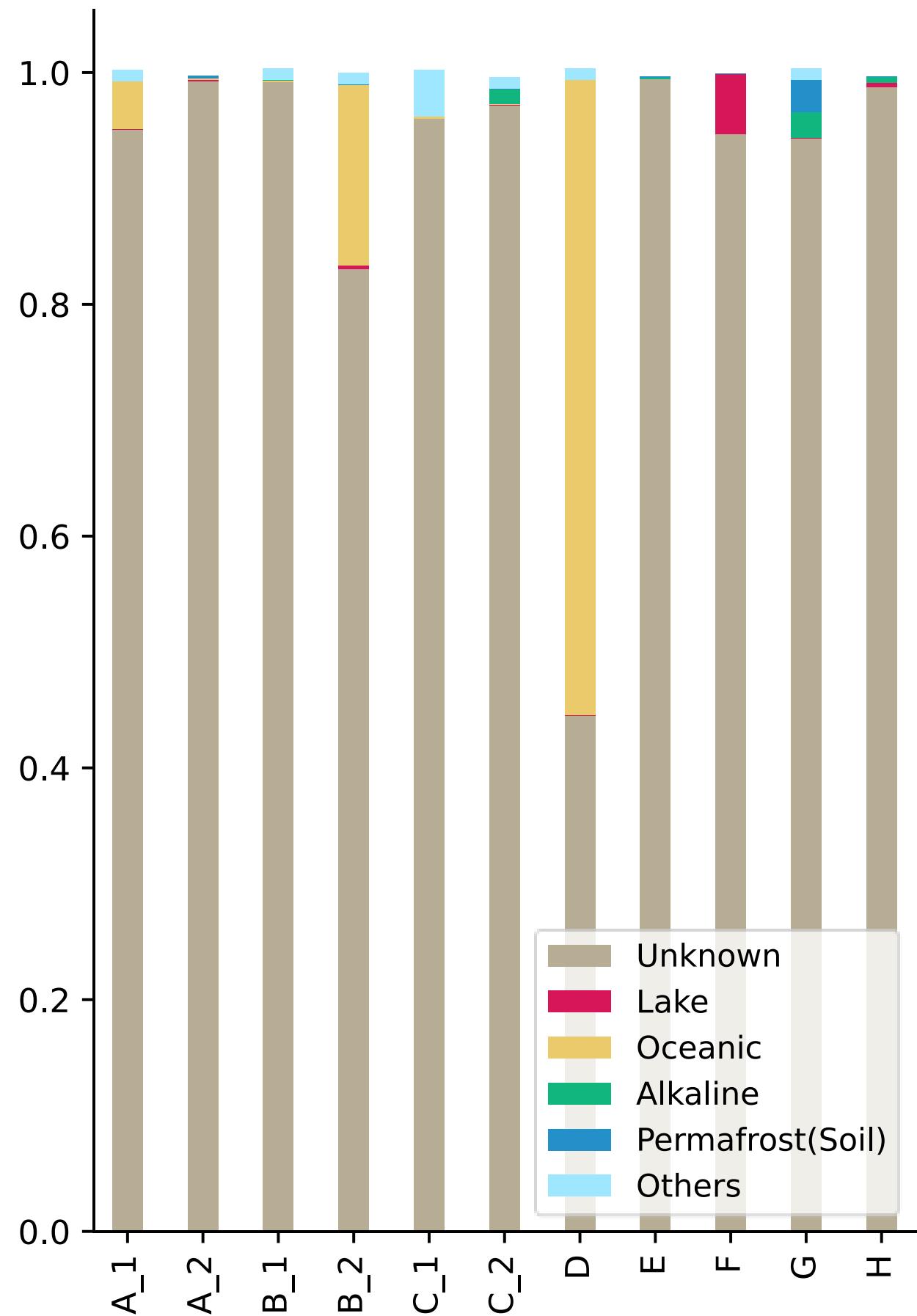
b**d**

Sample ID: MGYS00001248-SRR2761086
 Actual biome: "Root-Host-associated-Human-Digestive_system-Large_intestine"

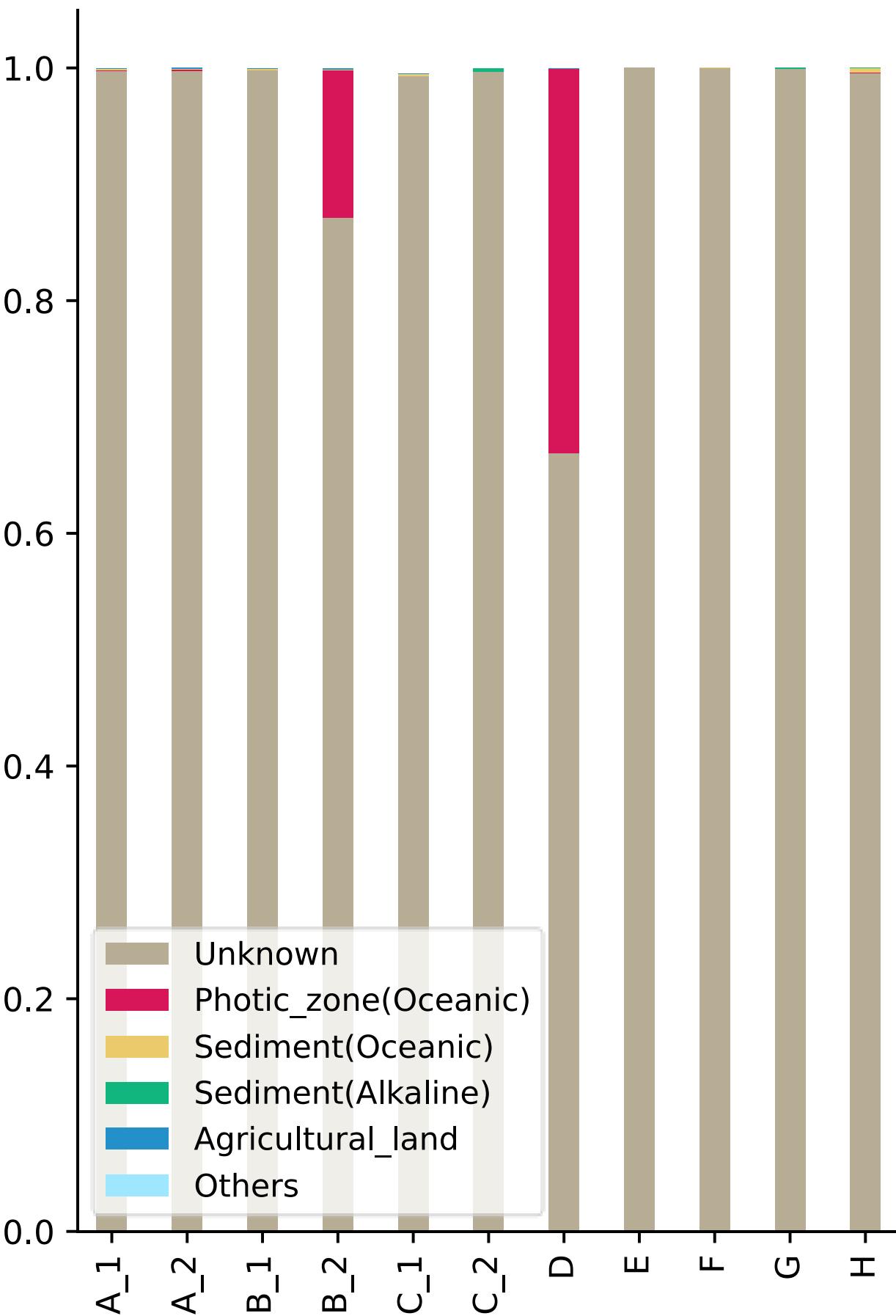
ONN4MST : {Layer2 | "Root-Host_associated": 0.999, ✓
 Layer3 | "Root-Host_associated-Human": 0.999, ✓
 Layer4 | "Root-Host_associated-Human-Digestive_system": 0.999, ✓
 Layer5 | "Root-Host_associated-Human-Digestive_system-Large_intestine": 0.968 ✓}

FEAST : {"Root-Host-associated-Human-Skin": 0.163,
 "Unknown": 0.837}

ONN4MST Layer-5



ONN4MST Layer-6



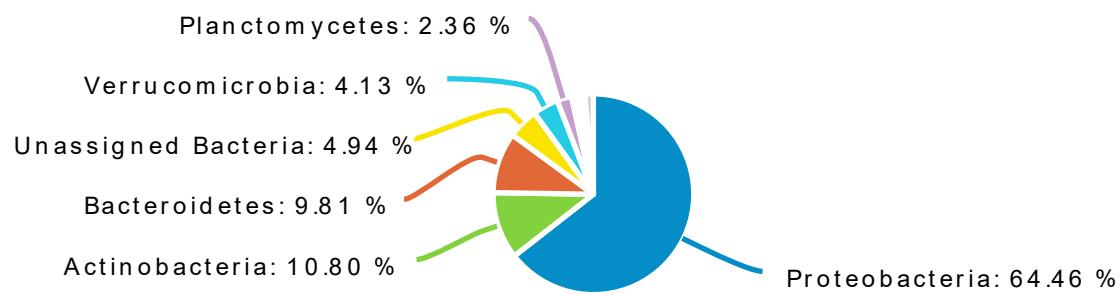
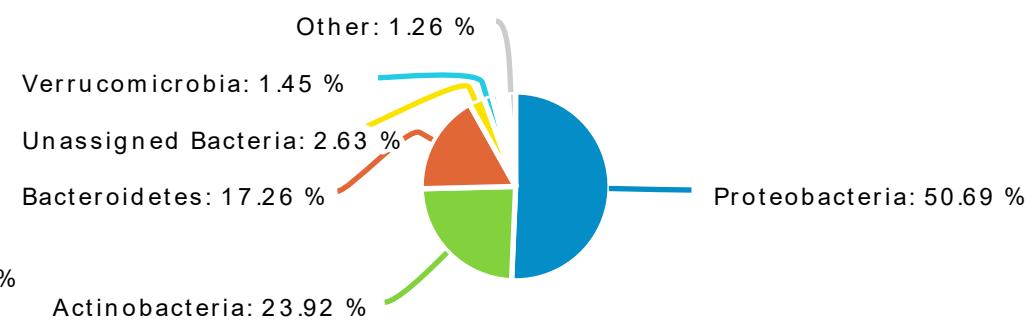
a

Sink ID: MGYS00005175-SRR6319590

Actual biome: Root-Engineered-Wastewater-Industrial_wastewater-Petrochemical

Represent Source ID: MGYS00002650-SRR3589592

Predicted biome: Root-Environmental-Aquatic-Marine-Intertidal_zone

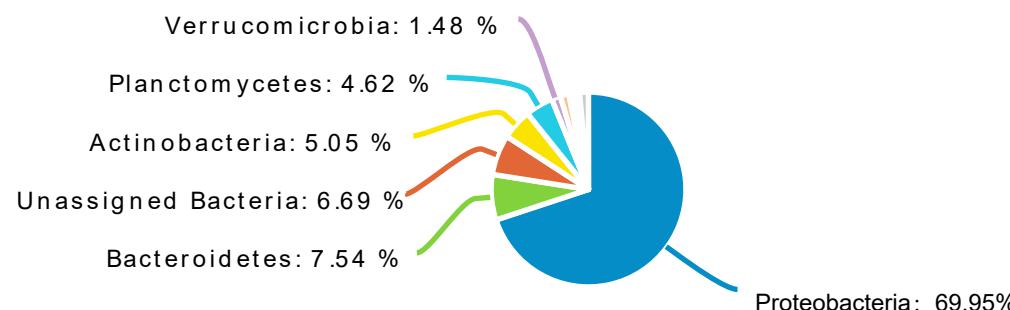
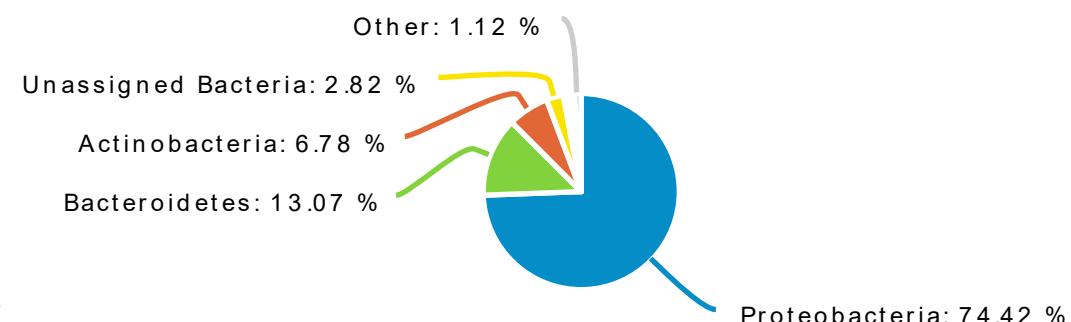
**b**

Sink ID: MGYS00004521-SRR6901946

Actual biome: Root-Engineered-Wastewater-Industrial_wastewater-Agricultural_wastewater

Represent Source ID: MGYS00002650-SRR3589534

Predicted biome: Root-Environmental-Aquatic-Marine-Intertidal_zone

**c**

Sink ID: MGYS00001610-ERR982889

Actual biome: Root-Engineered-Wastewater-Water_and_sludge

Represent Source ID: MGYS00004714-ERR3258060

Predicted biome: Root-Host_associated-Mammals-Digestive_system-Large_intestine-Fecal

