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19 Abstract

20  The taxonomical structure of microbial community sample is highly habitat-specific,
21 making it possible for source tracking niches where samples are originated. Current
22  methods face challenges when the number of samples and niches are magnitudes
23 more than current in use, under which circumstances they are unable to accurately
24  source track samples in a timely manner, rendering them difficult in knowledge

25 discovery from sub-million heterogeneous samples. Here, we introduce a deep
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26  learning method based on Ontology-aware Neural Network approach, ONN4MST
27  (https://github.com/HUST-NingKang-Lab/ONN4MST), which takes into
28  consideration the ontology structure of niches and the relationship of samples from
29  these ontologically-organized niches. ONN4M ST’s superiority in accuracy, speed and
30 robustness have been proven, for example with an accuracy of 0.99 and AUC of 0.97
31 inamicrobial source tracking experiment that 125,823 samples and 114 niches were
32 involved. Moreover, ONN4AMST has been utilized on several source tracking
33  applications, showing that it could provide highly-interpretable results from samples
34  with previously less-studied niches, detect microbial contaminants, and identify
35  dmilar samples from ontologically-remote niches, with high fidelity.

36 Keywords: Ontology-aware Neural Network (ONN), microbial source tracking
37  (MST), deep learning, ultrafast, niches

38
39
40

41 Introduction

42 With the rapid accumulation of microbial community samples from various niches
43  (biomes) around the world, as well as the huge volume of sequencing data deposited
44  into public databases, such as those from the “Human Microbiome Project”*? and the
45  “Earth Microbiome Project”®*, knowledge about microbia communities and their
46 influence on environment and human health has grown rapidly®>®. Such massive
47  amount of microbial community samples provide the opportunity to study the
48  inconspicuous evolution and ecological patterns among microbial communities,
49  especially habitat-specific patterns.

50

51 One key challenge faced with such a paramount number of heterogeneous samplesis
52  to track potentia origin of a microbial community sample, as well as distinguishing

53  samples from different health conditions or diverse environments, calling for fast and
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54  accurate source tracking”. Taxonomical composition of a microbia community
55 sample is usualy represented by hierarchically-structured taxa and their relative
56 abundances (also referred to as the community structure), and these taxa are
57  functioning in concert to maintain the stability of the microbial community and its
58  adaptation to the specific environment (also referred to as the niche or biome)'**.
59 Biomes are organized in an ontology structure with six different layers (simply
60 referred to as the biome ontology). Layer one is the highest layer containing only one
61  biome “Root” and layer six is the lowest (bottom) layer containing biomes such as
62 “Fecal”. Biomes of lower layers such as “Human gut” belong to those of higher layers
63  such as “Human digestive system”, whereby EBI MGnify currently contain the most
64  up-to-date biome structure™ with more than one hundred biomes as of January 2020.
65 In general, microbial community samples from the same biome tend to have similar
66  community structures, while such similarities are highly dependent on the biome
67 layers. Source tracking the microbial community samples, especially among a
68  massive amount of samples, remains a challenging problem today.

69

70 Severa methods for microbial community source tracking have aready been
71 proposed®*®™®. They can generally be divided into two categories, namely
72 distance-based methods such as Jensen-Shannon Divergence (JSD)™, Striped
73 UniFrac® and Meta-Prism'’, and unsupervised machine learning methods such as
74  SourceTracker based on Bayesan agorithm®™® and FEAST based on
75  Expected-Maximization algorithm®. However, the limitations of these methods are
76  apparent: Firstly, due to the nature of distance-based method and unsupervised
77  method, they are relatively slow, especially when the number of samples exceed tens
78  of thousands’, hindering them from identifying potential source environments in a
79  timely manner. Secondly, there is still a lack of method for accurate source tracking
80 from more than a hundred biomes, largely due to the resolution limitation of both
81  methods®™. Thirdly, current methods are not suitable for knowledge discovery of
82  samplesfrom previously less studied or unknown biomes.

83
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84  To address these limitations, we developed ONN4MST, an Ontology-aware Neural
85  Network (ONN) computational model for microbial source tracking. It is a supervised
86 learning method, and has utilized the biome ontology information. It has provided an
87  ultrafast (less than 0.1 seconds) and accurate (AUC higher than 0.97 in most cases)
88 solution for searching a sample against dataset containing more than a hundred
89  potential biomes and sub-million samples, and also out-performed state-of-the-art
90 methods in scalability and stability. The ability of ONN4MST on knowledge
91  discovery is aso demonstrated by utilization in various source tracking applications:
92 it enables source tracking of samples whose niches are previously less studied or
93  unknown, detection of microbial contaminants, as well as identification of similar
94 samples from ontologically-remote biomes, showing the unique importance of
95 ONN4MST in knowledge discovery from huge amount of microbial community
96  samples of heterogeneous biomes.

97

98 Reaults

99  Ontology-aware Neural Network

100  ONNA4MST uses an Ontology-aware Neural Network (ONN) model for source
101 tracking. When training the model, all training samples’ community structures are
102  decoded, each converted to a matrix containing the taxa at different taxonomical
103  levels and their relative abundances (simply referred to as the Matrix). The ONN
104  model uses the Matrix as input and reshapes it into tensors which point to biomes at
105  every different layer of the biome ontology. To fit the structure of biome ontology, the
106  ONN model uses multiple ontology units, each belonging to one of the six specific
107  layers of biome ontology (Fig. 1a). The conceptual modules, the training procedure
108  and the evaluation procedure of the ONN model are illustrated in Supplementary Fig.
109 1 and described in M ethods.

110

111 The source tracking procedure of ONN4MST s illustrated in Fig. 1b. Since
112 ONN4MST is the first method available that could source track the samples at
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113  different layers of biome ontology, the search scheme of ONN4MST is completely
114  different from other methods (Fig. 1b). While ONN4MST goes through the biome
115  ontology to find the best possible source along different layers, other methods such as
116  FEAST and SourceTracker treat all biomes as anarchically equal. The overall scheme
117 of building the ONN model and using ONN4MST for source tracking is illustrated in
118  Supplementary Fig. 2. Note that the contributions of every known biome would be
119  estimated by the ONN model respectively.

120

121  General modd enables accurate source tracking with high scalability and
122 stability

123 We constructed five datasets, representing sample collections with different numbers
124  of biomes and samples, covering more than 100,000 real microbial community
125  samples (Supplementary Tables 1 and 2). These five datasets contain samples from
126  different niches including “Host_associated”, “Environmental” and “Engineered” as
127  top biomes, which are representative of high-quality microbial community samplesin
128  public resources (Supplementary Table 2, M ethods). Since these five datasets were
129  designed to have varied complexities, each including different number of samples
130 from different number of biomes, they could serve well for the evauation of
131 ONN4MST and other methods (Fig. 2a): The Combined dataset contains 125,823
132 samples and 114 biomes, which represents the largest datasets, as well as the largest
133  model (the general model), used in this study. The FEAST dataset contains only
134 10,270 samples and 3 biomes. While the Human dataset, Water dataset, Soil datasets
135  arerespectively with moderate sample sizes (Supplementary Tables 1).

136

137  First and foremost, the performances of ONN4MST on al five datasets were
138  evaluated. Results showed that the predicted biomes by ONN4MST were very close
139  to the actual biomes, regardless of the datasets used for evaluation. For example,
140  ONN4MST could achieve an accuracy of 0.99 and AUC of 0.97 on searching the
141  Combined dataset with 125,823 samples from 114 biomes. When we applied
142  ONN4MST on Human, Soil, Water and FEAST datasets, the accuracy and AUC of
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143  ONN4MST were also higher than 0.98 and 0.96 for these datasets (Table 1,
144  Supplementary Fig. 3).

145

146 ONNA4MST based on selected features performed equally well or better than that
147  based on all features. There are 44,668 taxa (or features) in total used in ONN4M ST,
148  while ONNAMST_FS (ONN4MST based on selected features) has utilized only 1,462
149  selected features (see Methods and Supplementary Table 3). Results showed that
150  based on 1,462 selected features, ONN4AMST _FS could attain slightly higher accuracy
151 (0.997 vs. 0.995, on Combined dataset), AUC and F,,, compared to ONN4MST
152 using all features (Table 1, Supplementary Fig. 3), which means that there is a
153  certain degree of redundancy among all 44,668 features, and we can achieve the same
154  accuracy with just 1,462 features compared with that using all 44,668 features. These
155  results have emphasized the scalability and stability of the general model built based
156  on the Combined dataset, either based on using all features, or using selected features.
157

158  Furthermore, we evauated the universality of the general model built based on the
159  Combined dataset, by applying it directly on the Human, Water, Soil, and FEAST
160 datasets. It was found that the source tracking by using the general model was
161  successful on those datasets which are composed of samples mostly from the
162  Combined dataset’'s samples (Supplementary Table 4, results on Human, Water, Soil
163  datasets). However, when we applied the general model on datasets in which most of
164  the samples were not previously observed in the general model or have more detailed
165  biome ontology compared to the biome ontology used in general model, the general
166  model would not perform well (Supplementary Table 4, results on FEAST dataset).
167  Besides, results showed that it was unsuccessful when we applied the human model
168  (the model built based on Human dataset) for source tracking on Soil and Water
169  datasets (Supplementary Table5).

170

171 Comparison of ONN4M ST and other sour ce tracking methods

172 We then compared all six source tracking methods on all five datasets with different
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173  complexities (Fig. 2a). Results on all five datasets were evaluated seperately (Fig.
174  2b,d). Among the four datasets excluding FEAST dataset, ONN4M ST was superior to
175 other methods. ONN4MST reached an AUC of 0.97, while other methods only
176  reached a maximum of 0.89 (Fig. 2d). Asfor the FEAST dataset, ONN4M ST reached
177  an AUC of 0.99, while other methods only reached a maximum of 0.96.

178

179  The performances of these methods on five datasets depend on the datasets
180  complexities (Fig. 2c). While Sail dataset and Water dataset are among those with the
181  highest Shannon diversity, the AUCs on these two datasets are also lower than those
182  on Human dataset and Combined dataset. The high AUC on FEAST dataset is largely
183  due to the small number of biomes used in FEAST dataset (Supplementary Table 1).
184  On the other hand, the performance of ONN4MST on each dataset did not depend
185  heavily on the number of samples in that dataset (provided that there are at least
186 10,000 samples in the dataset) (Fig. 2c, Supplementary Table 1). Furthermore, the
187  prediction accuracies were not biased for certain biomes (provided that there are at
188  least 100 samplesin each biome) (Supplementary Table 6).

189

190  We further analyzed ONN4M ST’s performances at different biome layers (Fig. 2ef).
191  Since it is the only method available that could source track samples a different
192  layers of biome ontology, we have remolded other methods' search scheme into a
193  hierarchical prediction scheme (see M ethods), so that their results are comparable to
194 ONN4MST’s. Results have clearly shown that ONN4MST and ONN4MST_FS
195 reached an AUC of 0.97 in minimum at all layers for the Combined dataset and these
196  were noticeably superior to other methods (Fig. 2e,f). Thus, ONN4M ST is not just the
197  only method available that could source track the samples at different layers, but also
198  the best method even when other methods were remoulded for such purpose.

199

200 Running time and memory utilization benchmark

201 We evauated the time and memory cost of all methods using a computational
202  platform comprising Quadruplex E7-4809 v3 CPU with 315 GB RAM, Nvidia Tesla
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203 K80 GPU with 12 GB RAM. For time cost comparison, all actual times (search time,
204  excluding I/O time) were converted to the equivalent time on asingle core.

205

206 ONNA4MST is superior to other methods in search time and memory utilization where
207  the superiority expands as the number of source samplesincreases (Fig. 3). First of all,
208 we tested the time cost by searching a single query against the five datasets
209 respectively. For the Combined dataset including 125,823 source samples,
210  ONN4MST and ONN4MST_FS took 0.18 seconds and 0.04 seconds, respectively,
211 while distance-based methods took at least 1 second for a query. And FEAST took
212 more than 100,000 seconds, and SourceTracker took even more time (Fig. 3a, on the
213 Combined dataset, as also verified in Shenhav et al.®). Interestingly, though the time
214 gpent by FEAST and Source Tracker per thousand of source samples were both less
215  than those reported in Shenhav et
216  al.’, these two methods costed magnitudes more timethan ONN4MST  (Fig.  3a).
217  When we linearly extrapolated the number of source samples to one million in the
218  dataset to be searched, the advantage of ONN4M ST over other methods still held (Fig.
219  3a, hollow bars). When searching different number of queries against the Combined
220 dataset, we observed the time cost follows this trend: supervised methods
221 (ONN4MST and ONN4AMST_FS) < distance-based methods (JSD, Meta-Prism and
222  Striped UniFrac) < unsupervised methods (FEAST and SourceTracker) (Fig. 3b).
223 Again, when we linearly extrapolated the number of queriesto one million in abatch,
224  the advantage of ONN4AMST over other methods still held (Fig. 3b, hollow bars).

225

226  When memory utilization was evaluated, we have aso observed the superiority of
227  ONN4MST over most of the other methods. Specifically, when searching a single
228  query against the Combined dataset, ONNAMST and ONN4M ST _FS needed 22 GB
229 and 2 GB of memory, respectively; while FEAST and SourceTracker needed 84 GB
230 and 18 GB of memory, respectively; and JSD needed 47 GB of memory. Striped
231 UniFrac and Meta-Prism (https://github.com/HUST-NingKang-Lab/M eta-Prism-2.0)

232  were comparable with ONN4AMST_FS in memory utilization, since they have
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233  optimized the data structure for sample comparison. When the number of queriesin a
234  batch exceeded 10,000, or the size of dataset to be searched varies, ONN4MST and
235 ONN4MST_FS remain the ones that needed the least memory (Fig. 3c,d). Details
236  about running time and memory utilization are presented in Supplementary Tables
237  7-10.

238

239  Utility of ONN4M ST in various sour ce tracking applications

240  The objective of microbial community sample source tracking is knowledge discovery
241 from the huge amount of microbial community samples of heterogeneous sources.
242  Thus, we showcased the ability of ONN4MST in knowledge discovery from severa
243  perspectives: firstly, it can ensure accurate and interpretable source tracking, even on
244  digtinguishing samples from ontologically-close biomes; secondly, when samples’
245  biomes are previously less studied or unknown, ONN4MST could provide accurate
246  clues for possible biome at higher layers, supplementing the information about such
247  less-studies biome; thirdly, ONN4M ST could help for accurate microbia contaminant
248  detection; finaly, "open search" of sample among the source samples with almost al
249  possible biomes could identify similar samples from ontologically-remote biomes,
250 leading to novel knowledge discovery.

251
252  Centenarians share similar gut microbiota with young individuals
253 ONNA4MST can distinguish samples from ontologically-close biomes, thus offers a

254  quantitative way to characterize the development of human gut microbial community.
255 In this context, we leveraged externa sources of young individuals (30 years old on
256 average) to understand the unique properties of gut microbiota in centenarians
257  (persons over 100 years old). To demonstrate this capability, we first built a
258  self-defined ONN model with two layers of biome ontology: “human gut” as first
259  layer, while "Young human gut” and ”Others or unknown” at second layer, through
260 using atraining set which contains 5,000 randomly selected human gut samples from
261  the Combined dataset (Supplementary Table 1), together with 800 randomly selected

262  human gut samples from young individuals in published studies'®. Then, samples


https://doi.org/10.1101/2020.11.01.364208
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.01.364208; this version posted November 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

263  from centenarians (30 from Italy, and 51 from China)*®*® were used as queries for
264  performing source tracking with the self-defined ONN model. Results revealed a
265 dgnificantly larger “Young human gut” contribution (Wilcoxon-test, p < 1e-3) in
266  centenarians (Supplementary Fig. 4), regardless of the locations where these samples
267  were collected, which were consistent with the results of published studies'*. To
268 prove that these gut microbiota properties were unique in centenarians, we have
269  further collected 770 samples of normal seniors from another published study® as
270  queries for comparison. However, we could not observe the same phenomenon in
271 these normal seniors (Supplementary Fig. 4).

272

273  Severa other case studies that distinguish samples from ontologically-close biomes
274  have also been conducted, with details in Supplementary Note, Supplementary
275 Figures5and 6.

276

277  Detecting microbial contamination in built environment

278  To validate ONN4MST's ability on microbial contamination detection, we analyzed
279  microbial community data collected by Lax et al.?* In this analysis, we investigated
280 microbial contamination at several indoor house surfaces. We used skin samples from
281  several body parts (skin, foot, hand and nose) and additional environmental, plants
282  and mammal samples from the Combined dataset (Supplementary Table 1) as source
283 samples, and samples from indoor house surfaces (“Bathroom Door Knob”, “Front
284  Door Knob”, “Kitchen Counter”, “Kitchen Floor” and “Kitchen Light Switch”) as
285 gueries. Our analysis results by using ONN4MST have shown that microbial
286  communities on these surfaces mostly originated from humans (Fig. 4a), largely in

287  agreement with the original analyses of Lax et al.**

using SourceTracker, and differs
288  dlightly from the results of Shenhav et al.” These results were reasonable considering
289  the strong influence of skin microbial communities on indoor house surfaces®, while
290 they have again emphasized the challenge of source disambiguation for methods that
291  do not consider ontology structure of the biomes. That is, treating each individual

292 sample as an independent potential source would make differentiation of tiny sample
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293 differences among ontologically-close biomes impossible, thus underestimating the
294  contributions of known sources at higher layers. We further investigated the
295  composition of the unknown sources existed in Fig. 4a. In addition to the contribution
296 of human, we found evidence for contributions from barley and bean product
297  (0.6-1.1%) and marine product (0.2-0.4%) for kitchen environments, and potential
298  evidence for contributions from agricultural (0.7-1.1%) and coastal (0.2-0.6%) for
299  door knobs (Fig. 4b,c).

300

301  Sourcetracking of environmental samplesfrom less studied biomes

302 This investigation was based on searching 11 groundwater samples from another
303 published study® (the biome "Groundwater" is less studied, with a handful of samples
304 in the MGnify database, Supplementary Table 2) against the Combined dataset.
305 ONNA4MST could successfully identify the actual biome for the majority of these
306 samples at different biome layers, such as "Aquatic’ at the third layer and
307 "Freshwater" at the fourth layer (Fig. 5a-c) (results at the fifth and sixth layers were
308 shown in Supplementary Fig. 7). In contrast, FEAST and SourceTracker could not
309 identify any source near "Groundwater", while they only identified "Nutrient
310  (Wastewater)" with the meaning marginally related with groundwater (Fig. 5d,e).
311 Such differences in identification of actual biome are largely due to the fact that
312  ONN4MST could screen the whole biome ontology, and identify possible sources at
313  different layers, enabling it to at least identify the higher biome under which the
314 actual biome belongs to, with high fidelity. Whereas FEAST and SourceTracker were
315  designed without considering the biome ontology, they would assign "Unknown" for
316  many of these samples. These results indicated that when the actual biome of sample
317  was previously less studied, ONN4MST could provide accurate clues for possible
318  biome at higher layers in the biome ontology, and such clues would become valuable
319  assetsin guiding the manual curation of these samples.

320

321  Discovery of similar samplesfrom ontologically-remote biomes

322  Another advantage of ONN4MST in source tracking is its ability for “open search”
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323  without any a priori knowledge about possible biomes where the query might be from,
324  enabling it for novel knowledge discovery. We tested ONN4MST's “open search”
325  results, and found that it could discover similar samples among ontologically-remote
326 biomes “Engineered’, “Host associated” and “Environmenta” (Supplementary
327 Table 11). While some of the samples from the biome
328  “Root-Environmental-Aquatic-Marine-Intertidal_zone” share similar environments

329 (Bdltic Sea) with the query sample from the biome
330 “Root-Engineered-Wastewater-Industrial_wastewater-Petrochemical”, the literature

331 hasalso verified that this query sample was marine-sourced “MGY S00005175” (from
332  MGnify database). Such examples were plentiful (Supplementary Fig. 8), and many
333  had very high contributions (> 0.8). However, there were also examples which might
334 indicate possible mis-annotation or possible contaminations of samples in the MGnify
335 database. For instance, more than 10 samples from the study “MGY S00001610”
336 (from M Gnify database) with annotated biome
337  “Root-Engineered-Wastewater-Water_and_sludge” have been identified by
338 ONN4MST as from biome
339 “Root-Host_associated-Mammals-Digestive_system-Large_intestine-Fecal”

340 (Supplementary Fig. 8). These results have verified our hypothesis that open search
341 of sample among the source samples with ailmost all possible biomes could reveal
342  remotely-similar samples, leading to novel knowledge that is never identified or
343  interpreted before.

344

345 Discussion

346 ONNAMST was designed to address the urgent need for fast, accurate and
347  interpretable microbial community source tracking. It has been built based on an
348  Ontology-aware Neural Network model, which has provided a solution for source
349 tracking among sub-million samples and hundreds of biomes, outperforming
350 state-of-the-art methods, thus enabling knowledge discovery from these

351  heterogeneous samples. Microbial community sample source tracking has become
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352 increasingly important, largely due to the needs of source tracking in multiple areas.
353  The requirements for high accuracy, high speed and high interpretability have thus
354  become critical considerations for a successful source tracking method, especially
355  when faced with the ever more complex situation where sub-million microbial
356  community samples from hundreds of biomes are provided as possible sources for
357  search.

358

359  The superiority of ONN4MST is established in several contexts. Firstly, ONN4MST
360 isvery robust against dataset heterogeneity: from a dataset with the number of biomes
361  ranging from a handful to more than a hundred, as well as with the number of samples
362  ranging from afew thousand to sub-million, it always provides the highest accuracies
363 (AUC > 0.97) among state-of-the-art methods compared, making it the most scalable
364  source tracking method. Secondly, based on the Human, Water and Soil datasets, the
365 source tracking accuracies are al near-perfect (AUC > 0.97), indicating that
366 ONNA4MST could provide reliable insights for downstream analysis on implicating
367 taxonomical or functional differences between healthy and diseased phenotypes, or on
368 illuminating tiny differences among environmental samples from even dlightly
369 different niches. Furthermore, even when source tracking a sample against a database
370 of sub-million samples, only less than 0.1 seconds is needed when we conduct
371  ONN4MST search based on selected features, which is several orders of magnitude
372 faster than other contemporary methods. Finally, the ability of ONN4MST for ‘open
373  search’, without any a priori knowledge about possible biomes where the query might
374  befrom, enablesit for interpretable knowledge discovery.

375

376  The advantage of ONN4MST over other state-of-the-art source tracking methods is
377  essentially dependent on two technical advancements. the deep learning model, and
378 the ontology structure. Though the currently ongoing shift towards supervised
379 learning methods is not surprising for the source tracking research, the superior
380 performance of ONN4MST over existing methods is still quite pronounced.

381 ONN4MST's advantage aso stems from its consideration of the ontology structure of
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382  the biomes: by embedding the ontology considerations into the ONN learning model,
383 ONN4MST naturally becomes suitable for solving the ontology relationships among
384  biomes.

385

386 ONN4MST is not without limitations. Most importantly, the accuracy of ONN4MST
387 is heavily dependent on the ONN model built based on existing biome ontology
388 information. If there comes a new biome ontology with more detailed biomes
389 involved (for example, if we need to refine the source tracking results to human gut
390 down, to differentiate niches such as adult’s gut from infant’s gut), or simply with
391  more biome relationships involved, then the ONN model should be re-trained for
392 accurate source tracking. Such biome ontology-wide scalability problem could
393  potentialy be solved by Transfer Learning approaches.

394

395  In summary, ONN4MST is an ontology-aware deep learning method that has pushed
396 the envelope of microbial source tracking, enabling near-optimal accurate, ultrafast
397 and interpretable source tracking. ONN4AMST has enabled in-depth pattern and
398  function discoveries among sub-million microbial community samples, allowing for
399 tracking the potential origin of microbial community with diverse niche background,
400 as well as distinguishing samples from different health conditions or diverse
401  environments. Thus, it could have a broader area of application, such as
402  contamination screening, novel or refined biome discovery, new functional
403  microbiome discovery, and even source tracking of biomes from which protein
404  sequences could be supplemented for computational protein 3D structure
405  prediction®*®,

406
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471  Methods

472  Datasets

473  We evauated the performances of ONN4MST and other source tracking methods
474  based on five different datasets (Supplementary Table 1). These five datasets
475 comprise samples from different niches, which are representative of high-quality
476  samplesin public resources.

477

478  The “Combined dataset” consists of 125,823 microbial community samples collected
479  from EBI MGnify database (https://www.ebi.ac.uk/metagenomics/), accessed as of
480  January 2020 (Supplementary Table 1). This is a comprehensive dataset containing
481  samples from 114 biomes (Supplementary Table 2), and the 125,823 microbial
482  community samples represent more than half of the samples in EBI MGnify (as of
483  January 1st, 2020). These samples contain taxonomical information for 225 phyla,
484 6,232 families, 16,081 genera and 45,477 species.

485

486  The “Human dataset” consists of 53,553 microbial community samples selected from
487 the Combined dataset, representing a subset of samples from the human niches
488 (Supplementary Table 1). Specificaly, these samples are collected under these
489  hiomes: “Root-Host_associated-Human-Skin”,
490 “Root-Host_associated-Human-Circulatory_system”,

491  “Root-Host_associated-Human-Digestive _system” and
492  “Root-Host_associated-Human-Reproductive_system” (biomes at higher layer). This
493  dataset contains 53,553 samples from a total of 25 biomes. These samples contain
494  taxonomical information for 204 phyla, 2,801 families, 6,523 genera and 16,135
495  gpecies.

496

497  The “Water dataset” consists of 27,667 microbial community samples selected from
498 the Combined dataset, representing a subset of samples from the water niches

499 (Supplementary Table 1). Specificaly, these samples are collected under these
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500  hiomes: “Root-Environmental-Aquati c-Freshwater”,
501  “Root-Environmental-Aquatic-Marine” and
502  “Root-Environmental-Aquatic-Non-marine_Saline_and_Alkaling’ (biomes at higher
503 layer). This dataset contains 27,667 samples from atotal of 44 biomes. These samples
504  contain taxonomica information for 222 phyla, 6,040 families, 15,261 genera and
505 36,406 species.

506

507 The “Soil dataset” consists of 11,528 microbial community samples selected from the
508 Combined dataset, representing a subset of samples from the soil niches
509 (Supplementary Table 1). Specificaly, these samples are collected under these
510  biomes: “Root-Environmental-Terrestrial-Sail”, and
511  “Root-Host_associated-Plants-Rhizosphere” (biomes at higher layer). This dataset
512  contains 11,528 samples from a total of 16 biomes. These samples contain
513  taxonomical information for 201 phyla, 2,962 families, 6,753 genera and 12,769
514  gpecies.

515

516  These three datasets (Human, Water and Soil datasets) were designed with several
517  reasons in consideration. Firstly, these three datasets are representative enough and
518  frequently-used subsets™ from the Combined dataset. Secondly, these three datasets
519  are aso distinct, since the Alpha diversity of samples from each of these datasets is
520 dgnificantly different from the other two: while samples from soil niches are
521  considered more complicated, those from human and water niches are considered less
522  so. Finally, samples from these niches are more comprehensively explored than other
523  less studied niches, and they are of relatively higher quality of samples from these
524  threeniches.

525

526  The “FEAST dataset” consists of 10,270 microbial community samples selected from
527  the datasets used in the Lax et al.® (Supplementary Table 1). Specifically, these
528 samples are al collected from three biomes (“Root-Host associated-Human”,

529  “Root-Host_associated-Human-Digestive system-Large intestine-Fecal” and
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530 “Root-Mixed”). These samples contain taxonomical information for 133 phyla, 1,118
531  families, 3,389 generaand 5,762 species. The “FEAST dataset” is the smallest dataset
532  used in this study, and it is the simplest dataset with regard to the number of biomes
533 involved. Yet it is a dataset of unique importance, as the source tracking methods
534  evaluated in this study could be benchmarked on this medium-sized and credible
535  human gut dataset®™ for fair assessment of accuracy and efficiency.

536

537  Data representation

538 we generated the Matrix for each microbial community sample, so that the
539 abundances for al taxa at seven taxonomical levels including super-kingdom,
540  kingdom, phylum, class, order, family, and genus (simply referred to as “sk”, “k”, “p”,
541 “c”, "0, “f”, and “g") can be retained. The abundance of taxa at different levels were
542  filled in the Matrix (Figure 1). Within the Matrix, seven columns respectively
543  represent seven taxonomical levels. And 44,668 rows respectively represent relative
544  abundance for 44,668 taxa (also referred to as features). For a detailed description and
545  an example of the data representation, see Supplementary Note and Supplementary
546 Table3.

547

548  Feature selection

549 To improve the efficiency and accuracy of ONN4MST, we conducted feature
550 selection by using a random forest regression model (Python-3.7.4 and
551  Scikit-learn-0.22.1). An abundance-based pre-filtering and an importance-based
552  selection were performed in sequential order. In doing so, we treated each row
553  (representing the abundances of a taxon, see Supplementary Table 3) of the Matrix
554  as a feature. Then, a series of adaptive thresholds (CR, and CI;) were applied to
555  different taxon levels, in which R, and I, stand respectively for the relative
556 abundance and the feature importance. level € {sk,k,p,c,0,f,g} and the
557  coefficient ¢ was set to 0.001. As a result, we have selected 1,462 features with
558  relative abundance and feature importance above the thresholds from all 44,668

559  featuresinvolved in this study.
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560

561  Biome ontology

562  We constructed a comprehensive biome ontology using 114 biomes (Supplementary
563 Table 2) collected from EBI MGnify database
564  (https://www.ebi.ac.uk/metagenomics/biomes). In this process, we organized the
565 biome ontology as a tree, by treating a biome with multiple parent biomes in the
566  higher layer (e.g. “Human-Digestive_system” and “Mammal-Digestive_system”) as
567 seperate biomes. Next, the ontology tree containing 6 layers and 133 nodes
568  (representing 114 biomes) was constructed, by using Python-3.7.4 and Treelib-1.5.5.
569  Asaresult, each biome was represented by at least one node in the ontology tree. The
570  ontology tree has “Root” at the first layer, biomes (nodes) including “Environmental”,
571  “Host_associated’, and “Engineered” at the second layer, and 7, 22, and 56 biomes
572  (nodes) at the third to fifth layers respectively, with 43 biomes (nodes) including
573  “Coral reef”, “Fecal” and “Saliva’ at the bottom (sixth) layer (Supplementary Table
574  2).

575

576  SampleL abeling

577  In all experiments, we used microbial samples each with a label annotated by using
578  6-layers biome ontology to validate our model. For example, there are 22 samples
579 labeled as “Root-Host_associated-Human-Digestive_system-Oral-Throat” in the
580 Combined dataset (by separating different layers with the “-” symbal).

581

582  Building ONN mode

583  We used Tensorflow-1.14% to build and train our Ontology-aware Neural Network
584  model. Our model was trained on a computational platform comprising Quadruplex
585  E7-4809 v3 CPU with 315 GB RAM and Nvidia Tesla K80 GPU with 12 GB RAM.
586

587  Ontology-aware Neural Network has four conceptual modules in total: a feature
588  extraction module for basic feature extraction, a feature encoding module for

589 layer-specific feature encoding, a feature integration module for inter-layer
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590 information integration, and an ontology prediction module for ontology walk through
591  and source contribution calculation (Supplementary Fig. 1a). The feature extraction
592  module accepts a sample represented by the Matrix, extracts the feature information
593 from the Matrix and deliver them to the feature encoding module. The feature
594  encoding module consists of a series of fully-connected layers. It accepts the output of
595  feature extraction module, and encodes layer-specific feature information for each of
596 the six biome ontology layers. The feature integration module consists of several
597  fully-connected layers, which serves for inter-layer information integration. The
598 ontology prediction module consists of five sigmoid layers (corresponding to the 2™,
599 3 4™ 5™ and 6™ biome ontology layers), each sigmoid layer accepts the output of
600 feature encoding module and computes the contribution of all biome sources on its
601  corresponding biome ontology layer.

602

603  We chose 8-fold cross validation for model training and testing (Supplementary Fig.
604  1c). For each dataset, we randomly split it into 8 folds, each fold including a training
605  set (87.5%) and atesting set (12.5%). For each fold, the model was trained (in batches
606 of 512 samples) for 30,000 iterations or until training accuracy converged, and the
607 model with the highest accuracy on the training set was selected for testing. The
608  results on the testing set are organized in the form of a hierarchical prediction (with
609 prediction results from 2™ to 6" layers), which would then be evaluated.

610

611  Other methods used in this study

612 Three distance-based methods: JSD, Striped UniFrac and Meta-Prism, two
613  unsupervised machine learning methods: Expected-Maximization based method
614 FEAST and Bayesian based method SourceTracker; as well as our supervised deep
615  learning method (ONN4MST), were applied for microbial source tracking. In this
616  study, the source tracking results (predicted biomes) of multiple methods were
617  compared against the microbial community samples’ actual source (actual biomes).

618
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619  The distance-based methods are based on pair-wise calculation of sample distances,
620 and such methods depend heavily on the presence of species and their relative
621  abundance for individual samples, regardless of weighted or unweighted scoring
622 functions used. Among distance-based methods, JSD does not consider the
623  phylogenetic relationships among species, while methods such as Striped UniFrac and
624  Meta-Prism do (we have used Meta-Prism 2.0 for comparison in this study). However,
625  distance-based methods have a binomial increase in time cost with the increase of the
626  number of samples.

627

628  Unsupervised methods for microbial community sample comparison are based on
629 profile-based statistical models, either the Bayesian model used in the SourceTracker
630 method, or the Expected-Maximization (EM) model used in the FEAST method.
631  Unsupervised methods are typically more accurate than distance-based methods.
632  However, since unsupervised methods still do not consider the intricate but important
633 patterns of a set of samples from similar niches, their tolerance to noisy signals in
634  samplesis not high, hence potentially would lead to biased mismatches. Details about
635  the source tracking methods other than ONN4M ST used in this study are provided in
636  Supplementary Note.

637

638 Hierarchical prediction

639 In order to carry out comparison of ONN4MST against other methods at different
640 layers of biome ontology, all other methods were remolded, so that the prediction
641  results of these methods (excluding ONN4M ST) at different layers could be produced.

642 Based on the source contributions of biomes at the sixth (bottom) layer, the source
643  contributions of biomes for other layers were computed using P; = ¥, Py, . Where
844 P isasource contribution for f, Cr is aset of children biomes for biome source f
645 in the biome ontology. f. is a child biome of f. We used NumPy-1.18.1 and

646  Treelib-1.5.5 in the process.
647
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648 Benchmarking measures
649 To benchmark and compare the results based on ONN4MST and the other five

650 methods, we used these measures:

651
652 TP(t) = X I(fEP(t) A fET) ey
653 TN:(t) = S I(f € Pi(t) A f & T) 2
654 FP(t) = X I(fEP(t) A f & Ty 3
655 FNe(t) = S 0(f € Pi(t) A fE T) 4
656 TPR(t) = Tpf%gvm (5)
657 FPR(t) = —pr(i - (th)vf(t) (6)
658 TPR(t) = %zglePRf(t) )
659 FPR(t) = %Z]"Z:lFPRf(t) )

660 where f is a biome source, P;(t) is a set of predicted biomes for a microbial
661  community sample i and threshold t € [0,1] with astep size of 0.01, T; is a set of
662  actual biomes for a sample i, F is the total number of biomes, and I is a logical
663  operation function, the value of I is 1 when the result of logical operation is TRUE,
664 €elseO.

665

666  Four evaluation metrics (Accuracy, Precision, Recall and E,,,) were introduced.

667  These evaluation metrics are computed with the following formulas:

TPf(t)+ TNf(t)

668 =
Accuracy(t) = 25 5 op TN, (©F FN,© ©)
.. TPf(t)
669 Precision(t) = W (10)
670 — T
Recalls(t) = TP N (12)

671 where TP is true positive, TN is true negative, FP is false positive, FN is fase
672  negative. Subsequently, we compute F1 for threshold t € [0,1] with a step size of
673  0.01 by using the average precision and average recall for all actual biomes that we
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674 predicted at least one time. Then, we select the maximum F1 as F,,,. These

675  evaluation metrics are computed with the following formulas:

676 AvgPrecision(t) = 12F= Precision,(t) 12
Fef=1 f
677 AvgRecall(t) = 2XE_, Recall,(t) (13)
F&f=1 f
678 _ 2 - AvgPrecision(t) - AvgRecall(t)
Fnax = maxt{ AvgPrecision(t)+AvgRecall(t) } (14)
679

680 Then, ROC (Recelver Operating Characteristic) curves, which are based on
681  contrasting the true positive rate (TPR) against the false positive rate (FPR), were
682 plotted. AUC (Area Under the Curve) reflects the ability of model to correctly predict
683  the biomes (sources) of microbial community samples. AUC is calculated with the

684  following formula
685 AUC = [} TPR(t)(~FPR'(¢t))dt (15)
686

687 Dataavailability

688  The selected samples from Combined dataset, which were assigned to Human dataset,
689 Water dataset, Soil dataset respectively, were annotated with their respective
690 assignments in Supplementary Table 2. Data download links are provided in
691  Supplementary Table 12.

692

693 Codeavailability

694 All source codes have been uploaded to the website at:
695  https://github.com/HUST-NingKang-Lab/ONN4MST.  Detalled parameters  of
696  software and package we used in this study are provided in Supplementary Table 13.
697
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720 Figures

721 Figurel

722  Fig. 1: Building and using the Ontology-aware Neural Network model for microbial source
723  tracking. a. The sample data representation and training process of ONN model. i. Sample data
724  aretransformed into the Matrix. With the Matrix, each column represents a taxonomical level and
725  each row represents a feature; ii. In parallel, samples are mapped to biome ontology according to
726  their niches; iii. The model is built and updated according to both samples’ abundance matrices
727  and biome ontology information. More details about building, testing and using the ONN model
728  for source tracking are illustrated in Supplementary Fig. 1 and Supplementary Fig. 2. b. An
729  illustrated example of microbia source tracking procedure using ONN4MST. i. The input is the
730  community structure of a real microbial community sample (this sample is from the biome
731  “Root-Host_associated-Human-Digestive system-Oral-Saliva’) that has been preprocessed and
732  the Matrix has been provided into the model; ii. Source tracking process at different layers. The
733  red arrows indicate the search process from layer 1 to layer 6, accompanied with source
734 contribution annotated in red. To compare with the procedure of ONN4MST, the yellow and blue
735  arrows indicated the source tracking results (among the overall top 5 sources) of FEAST and
736  Source Tracker, together with their source contributions, respectively. The actual biome is
737  annotated by a red check mark; iii. The predicted biomes (with source contributions) by

738 ONN4M ST, FEAST and SourceTracker.
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739 Figure?2

740  Fig. 22 ONN4MST'’s prediction accuracies are among the best on different datasets and
741  different biome layers, while the performance of ONN4M ST does not depend heavily on the
742  number of biomes or number of samples in the dataset. a. The five datasets with varied
743  complexities have provided source tracking tasks with different difficulties. b. The ROC curve of
744  ONN4MST and other methods on al five datasets. ¢c. The number of samples, the Shannon
745  diversity and the source tracking results by different methods for the five datasets. The samples
746  involved in each dataset are shown with blue bars, the Shannon diversity of each dataset is shown
747  with red boxes, the AUC of several methods on each dataset is shown with dash lines. d. The AUC
748  of dl methods on all five datasets. e. The number of biomes and the source tracking results by
749  different methods at different layers for the Combined dataset. The samples involved in each
750  biome ontology layer are shown with blue bars, the AUC of different methods on each layer is
751 shown with dash lines. f. The AUC of al methods at different layers. (Abbreviations.

752  ONNAMST_FS: ONN4AMST using selected features).
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753  Figure3

754  Fig. 3: ONN4MST is superior to other methods in search time and memory utilization. a.
755  Running time of different methods when search one query against different datasets. b. Running
756  time of different methods when search queries of different sizes against Combined dataset. c.
757  Memory utilization of all methods when search one query againgt different datasets. d. Memory
758  tilization of all methods when search queries of different sizes against Combined dataset. Note: a
759  hollow bar means that the value represent by this bar is the result of linearly extrapolation, both
760  for running time and for memory utilization. (Abbreviations. ONN4AMST_FS: ONN4MST using

761 selected features, 1M: Results of linearly extrapolation with one million samplesin use).
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762  Figure4

763  Fig. 4: The contribution of the unknown sources in indoor house surface samples using
764  ONN4MST. a. Mean source contributions considering 4 human skin sources (hand, foot, nose and
765  skin-other across al  inhabitants) using data from Lax etal? b
766  Further decomposition of the unknown sources existed in Fig. 4a has revealed other microbial con

767  taminatesin built environment.
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768  Figure5

769  Fig. 5: Successful source tracking of environmental samples from a less studied biome by
770  using ONN4MST. Results were based on using 11 samples from groundwater environment,
771 which represented a biome previoudy less studied. a-c. Source tracking results by using
772  ONNAMST at the second, third and fourth layers; d. Source tracking results by using FEAST; e.
773  Source tracking results by wusing SourceTracker. Actual biome of query sample:
774  “Root-Environmental-Aquatic-Freshwater-Groundwater”. A_1, A_2: two samples collected from a
775 single well; B_1, B_2: two samples collected from another single well; C_1, C_2: two samples

776  collected from the third single well; D-H: samples collected from other five wells, respectively.


https://doi.org/10.1101/2020.11.01.364208
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.01.364208; this version posted November 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

777 Tables

778 Tablel

779  Table 1. Evaluation of ONN4MST on all five datasets. ONN4MST achieved the accuracy
780  higher than 0.98 for all five datasets, and the AUC higher than 0.97 for all five datasets. Note: For
781  each dataset, we used the model trained on that dataset for evaluation. The evaluation procedure of
782  the ONN model isillustrated in Supplementary Fig. 1c and described in M ethods. ONN4M ST
783  based on all features and selected features were both evaluated at the bottom (sixth) layer with a

784  threshold of 0.5. (Abbreviations. Pr: Precision, Rc: Recall, Acc: Accuracy).

All features Selected features

Dataset  #Biomes #Samples
Rc Acc  Fpax AUC Pr Rc Acc  Fpax AUC

Combined 114 125823 0826 0.662 0.995 0740 0971 0868 0.774 0997 0.820 0.977

Human 25 53553 0822 0521 0984 0695 0972 0894 0826 0991 0.863 0.984
Water 44 27667 0842 0.766 0992 0803 0966 0854 0.764 0.992 0813 0971

Soil 16 11,528 0915 0.778 0986 0.850 0974 0892 0881 0.989 0.890 0.982
FEAST 3 10,270 0793 0.795 0.984 0.803 0980 0.895 0.812 0.989 0.862 0.991

785
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Unassigned Bacteria: 2.63 %’\‘
Bacteroidetes: 17.26 % /
\ Proteobacteria: 64.46 %

Actinobacteria: 23.92 %

Sink ID:  MGYS00004521-SRR6901946 Represent Source ID:  MGYS00002650-SRR3589534

Actual biome: Root-Engineered-Wastewater-Industrial_wastewater-Agricultural_wastewater = Predicted biome:  Root-Environmental-Aquatic-Marine-Intertidal_zone

Verrucomicrobia: 1.48 % Other:1.12 %
Planctomycetes: 4.62 % \ Unassigned Bacteria: 2.82 %/\
Actinobacteria: 5.05 % /l \ Actinobacteria: 6.78 % \

Unassigned Bacteria: 6.69 % Bacteroidetes: 13.07 %

Bacteroidetes: 7.54 %

AN

Proteobacteria: 69.95% Proteobacteria: 74.42 %

Sink ID: MGYS00001610-ERR982889 Represent Source ID:  MGYS00004714-ERR3258060
Actual biome: Root-Engineered-Wastewater-Water_and_sludge Predicted biome: Root-Host_associated-Mammals-Digestive_system-Large_intestine-Fecal
Other: 3.99 % Other:2.47 %

Deltaproteobacteria: 1.72 % \

Bacilli: 5.75 % '\

Bacteroidia: 11.06 %

Kiritimatiellaeota: 2.13 % \
\

Proteobacteria: 2.52 %/\\

T Unassigned: 5421 % Verrucomicrobia: 541 %

=~ Firmicutes: 5447 %

Bacteroidetes: 27.11 %
Clostridia: 18.85 %
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