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Abstract 19 

The taxonomical structure of microbial community sample is highly habitat-specific, 20 

making it possible for source tracking niches where samples are originated. Current 21 

methods face challenges when the number of samples and niches are magnitudes 22 

more than current in use, under which circumstances they are unable to accurately 23 

source track samples in a timely manner, rendering them difficult in knowledge 24 

discovery from sub-million heterogeneous samples. Here, we introduce a deep 25 
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learning method based on Ontology-aware Neural Network approach, ONN4MST 26 

(https://github.com/HUST-NingKang-Lab/ONN4MST), which takes into 27 

consideration the ontology structure of niches and the relationship of samples from 28 

these ontologically-organized niches. ONN4MST’s superiority in accuracy, speed and 29 

robustness have been proven, for example with an accuracy of 0.99 and AUC of 0.97 30 

in a microbial source tracking experiment that 125,823 samples and 114 niches were 31 

involved. Moreover, ONN4MST has been utilized on several source tracking 32 

applications, showing that it could provide highly-interpretable results from samples 33 

with previously less-studied niches, detect microbial contaminants, and identify 34 

similar samples from ontologically-remote niches, with high fidelity. 35 

Keywords: Ontology-aware Neural Network (ONN), microbial source tracking 36 

(MST), deep learning, ultrafast, niches 37 

 38 

 39 

 40 

Introduction 41 

With the rapid accumulation of microbial community samples from various niches 42 

(biomes) around the world, as well as the huge volume of sequencing data deposited 43 

into public databases, such as those from the “Human Microbiome Project”1,2 and the 44 

“Earth Microbiome Project”3,4, knowledge about microbial communities and their 45 

influence on environment and human health has grown rapidly5,6. Such massive 46 

amount of microbial community samples provide the opportunity to study the 47 

inconspicuous evolution and ecological patterns among microbial communities, 48 

especially habitat-specific patterns. 49 

 50 

One key challenge faced with such a paramount number of heterogeneous samples is 51 

to track potential origin of a microbial community sample, as well as distinguishing 52 

samples from different health conditions or diverse environments, calling for fast and 53 
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accurate source tracking7-9. Taxonomical composition of a microbial community 54 

sample is usually represented by hierarchically-structured taxa and their relative 55 

abundances (also referred to as the community structure), and these taxa are 56 

functioning in concert to maintain the stability of the microbial community and its 57 

adaptation to the specific environment (also referred to as the niche or biome)10,11. 58 

Biomes are organized in an ontology structure with six different layers (simply 59 

referred to as the biome ontology). Layer one is the highest layer containing only one 60 

biome “Root” and layer six is the lowest (bottom) layer containing biomes such as 61 

“Fecal”. Biomes of lower layers such as “Human gut” belong to those of higher layers 62 

such as “Human digestive system”, whereby EBI MGnify currently contain the most 63 

up-to-date biome structure11 with more than one hundred biomes as of January 2020. 64 

In general, microbial community samples from the same biome tend to have similar 65 

community structures, while such similarities are highly dependent on the biome 66 

layers. Source tracking the microbial community samples, especially among a 67 

massive amount of samples, remains a challenging problem today. 68 

 69 

Several methods for microbial community source tracking have already been 70 

proposed9,12-15. They can generally be divided into two categories, namely 71 

distance-based methods such as Jensen-Shannon Divergence (JSD)16, Striped 72 

UniFrac13 and Meta-Prism17, and unsupervised machine learning methods such as 73 

SourceTracker based on Bayesian algorithm15 and FEAST based on 74 

Expected-Maximization algorithm9. However, the limitations of these methods are 75 

apparent: Firstly, due to the nature of distance-based method and unsupervised 76 

method, they are relatively slow, especially when the number of samples exceed tens 77 

of thousands9, hindering them from identifying potential source environments in a 78 

timely manner. Secondly, there is still a lack of method for accurate source tracking 79 

from more than a hundred biomes, largely due to the resolution limitation of both 80 

methods9,15. Thirdly, current methods are not suitable for knowledge discovery of 81 

samples from previously less studied or unknown biomes. 82 

 83 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364208doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364208
http://creativecommons.org/licenses/by-nc/4.0/


 

To address these limitations, we developed ONN4MST, an Ontology-aware Neural 84 

Network (ONN) computational model for microbial source tracking. It is a supervised 85 

learning method, and has utilized the biome ontology information. It has provided an 86 

ultrafast (less than 0.1 seconds) and accurate (AUC higher than 0.97 in most cases) 87 

solution for searching a sample against dataset containing more than a hundred 88 

potential biomes and sub-million samples, and also out-performed state-of-the-art 89 

methods in scalability and stability. The ability of ONN4MST on knowledge 90 

discovery is also demonstrated by utilization in various source tracking applications: 91 

it enables source tracking of samples whose niches are previously less studied or 92 

unknown, detection of microbial contaminants, as well as identification of similar 93 

samples from ontologically-remote biomes, showing the unique importance of 94 

ONN4MST in knowledge discovery from huge amount of microbial community 95 

samples of heterogeneous biomes. 96 

 97 

Results 98 

Ontology-aware Neural Network 99 

ONN4MST uses an Ontology-aware Neural Network (ONN) model for source 100 

tracking. When training the model, all training samples’ community structures are 101 

decoded, each converted to a matrix containing the taxa at different taxonomical 102 

levels and their relative abundances (simply referred to as the Matrix). The ONN 103 

model uses the Matrix as input and reshapes it into tensors which point to biomes at 104 

every different layer of the biome ontology. To fit the structure of biome ontology, the 105 

ONN model uses multiple ontology units, each belonging to one of the six specific 106 

layers of biome ontology (Fig. 1a). The conceptual modules, the training procedure 107 

and the evaluation procedure of the ONN model are illustrated in Supplementary Fig. 108 

1 and described in Methods. 109 

 110 

The source tracking procedure of ONN4MST is illustrated in Fig. 1b. Since 111 

ONN4MST is the first method available that could source track the samples at 112 
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different layers of biome ontology, the search scheme of ONN4MST is completely 113 

different from other methods (Fig. 1b). While ONN4MST goes through the biome 114 

ontology to find the best possible source along different layers, other methods such as 115 

FEAST and SourceTracker treat all biomes as anarchically equal. The overall scheme 116 

of building the ONN model and using ONN4MST for source tracking is illustrated in 117 

Supplementary Fig. 2. Note that the contributions of every known biome would be 118 

estimated by the ONN model respectively. 119 

 120 

General model enables accurate source tracking with high scalability and 121 

stability 122 

We constructed five datasets, representing sample collections with different numbers 123 

of biomes and samples, covering more than 100,000 real microbial community 124 

samples (Supplementary Tables 1 and 2). These five datasets contain samples from 125 

different niches including “Host_associated”, “Environmental” and “Engineered” as 126 

top biomes, which are representative of high-quality microbial community samples in 127 

public resources (Supplementary Table 2, Methods). Since these five datasets were 128 

designed to have varied complexities, each including different number of samples 129 

from different number of biomes, they could serve well for the evaluation of 130 

ONN4MST and other methods (Fig. 2a): The Combined dataset contains 125,823 131 

samples and 114 biomes, which represents the largest datasets, as well as the largest 132 

model (the general model), used in this study. The FEAST dataset contains only 133 

10,270 samples and 3 biomes. While the Human dataset, Water dataset, Soil datasets 134 

are respectively with moderate sample sizes (Supplementary Tables 1). 135 

 136 

First and foremost, the performances of ONN4MST on all five datasets were 137 

evaluated. Results showed that the predicted biomes by ONN4MST were very close 138 

to the actual biomes, regardless of the datasets used for evaluation. For example, 139 

ONN4MST could achieve an accuracy of 0.99 and AUC of 0.97 on searching the 140 

Combined dataset with 125,823 samples from 114 biomes. When we applied 141 

ONN4MST on Human, Soil, Water and FEAST datasets, the accuracy and AUC of 142 
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ONN4MST were also higher than 0.98 and 0.96 for these datasets (Table 1, 143 

Supplementary Fig. 3). 144 

 145 

ONN4MST based on selected features performed equally well or better than that 146 

based on all features. There are 44,668 taxa (or features) in total used in ONN4MST, 147 

while ONN4MST_FS (ONN4MST based on selected features) has utilized only 1,462 148 

selected features (see Methods and Supplementary Table 3). Results showed that 149 

based on 1,462 selected features, ONN4MST_FS could attain slightly higher accuracy 150 

(0.997 vs. 0.995, on Combined dataset), AUC and ����  compared to ONN4MST 151 

using all features (Table 1, Supplementary Fig. 3), which means that there is a 152 

certain degree of redundancy among all 44,668 features, and we can achieve the same 153 

accuracy with just 1,462 features compared with that using all 44,668 features. These 154 

results have emphasized the scalability and stability of the general model built based 155 

on the Combined dataset, either based on using all features, or using selected features. 156 

 157 

Furthermore, we evaluated the universality of the general model built based on the 158 

Combined dataset, by applying it directly on the Human, Water, Soil, and FEAST 159 

datasets. It was found that the source tracking by using the general model was 160 

successful on those datasets which are composed of samples mostly from the 161 

Combined dataset’s samples (Supplementary Table 4, results on Human, Water, Soil 162 

datasets). However, when we applied the general model on datasets in which most of 163 

the samples were not previously observed in the general model or have more detailed 164 

biome ontology compared to the biome ontology used in general model, the general 165 

model would not perform well (Supplementary Table 4, results on FEAST dataset). 166 

Besides, results showed that it was unsuccessful when we applied the human model 167 

(the model built based on Human dataset) for source tracking on Soil and Water 168 

datasets (Supplementary Table 5). 169 

 170 

Comparison of ONN4MST and other source tracking methods 171 

We then compared all six source tracking methods on all five datasets with different 172 
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complexities (Fig. 2a). Results on all five datasets were evaluated seperately (Fig. 173 

2b,d). Among the four datasets excluding FEAST dataset, ONN4MST was superior to 174 

other methods: ONN4MST reached an AUC of 0.97, while other methods only 175 

reached a maximum of 0.89 (Fig. 2d). As for the FEAST dataset, ONN4MST reached 176 

an AUC of 0.99, while other methods only reached a maximum of 0.96. 177 

 178 

The performances of these methods on five datasets depend on the datasets’ 179 

complexities (Fig. 2c). While Soil dataset and Water dataset are among those with the 180 

highest Shannon diversity, the AUCs on these two datasets are also lower than those 181 

on Human dataset and Combined dataset. The high AUC on FEAST dataset is largely 182 

due to the small number of biomes used in FEAST dataset (Supplementary Table 1). 183 

On the other hand, the performance of ONN4MST on each dataset did not depend 184 

heavily on the number of samples in that dataset (provided that there are at least 185 

10,000 samples in the dataset) (Fig. 2c, Supplementary Table 1). Furthermore, the 186 

prediction accuracies were not biased for certain biomes (provided that there are at 187 

least 100 samples in each biome) (Supplementary Table 6). 188 

 189 

We further analyzed ONN4MST’s performances at different biome layers (Fig. 2e,f). 190 

Since it is the only method available that could source track samples at different 191 

layers of biome ontology, we have remolded other methods’ search scheme into a 192 

hierarchical prediction scheme (see Methods), so that their results are comparable to 193 

ONN4MST’s. Results have clearly shown that ONN4MST and ONN4MST_FS 194 

reached an AUC of 0.97 in minimum at all layers for the Combined dataset and these 195 

were noticeably superior to other methods (Fig. 2e,f). Thus, ONN4MST is not just the 196 

only method available that could source track the samples at different layers, but also 197 

the best method even when other methods were remoulded for such purpose. 198 

 199 

Running time and memory utilization benchmark 200 

We evaluated the time and memory cost of all methods using a computational 201 

platform comprising Quadruplex E7-4809 v3 CPU with 315 GB RAM, Nvidia Tesla 202 
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K80 GPU with 12 GB RAM. For time cost comparison, all actual times (search time, 203 

excluding I/O time) were converted to the equivalent time on a single core. 204 

 205 

ONN4MST is superior to other methods in search time and memory utilization where 206 

the superiority expands as the number of source samples increases (Fig. 3). First of all, 207 

we tested the time cost by searching a single query against the five datasets 208 

respectively. For the Combined dataset including 125,823 source samples, 209 

ONN4MST and ONN4MST_FS took 0.18 seconds and 0.04 seconds, respectively, 210 

while distance-based methods took at least 1 second for a query. And FEAST took 211 

more than 100,000 seconds, and SourceTracker took even more time (Fig. 3a, on the 212 

Combined dataset, as also verified in Shenhav et al.9). Interestingly, though the time 213 

spent by FEAST and Source Tracker per thousand of source samples were both less 214 

than those reported in Shenhav et 215 

al.9, these two methods costed magnitudes more time than ONN4MST (Fig. 3a). 216 

When we linearly extrapolated the number of source samples to one million in the 217 

dataset to be searched, the advantage of ONN4MST over other methods still held (Fig. 218 

3a, hollow bars). When searching different number of queries against the Combined 219 

dataset, we observed the time cost follows this trend: supervised methods 220 

(ONN4MST and ONN4MST_FS) ≤ distance-based methods (JSD, Meta-Prism and 221 

Striped UniFrac) < unsupervised methods (FEAST and SourceTracker) (Fig. 3b). 222 

Again, when we linearly extrapolated the number of queries to one million in a batch, 223 

the advantage of ONN4MST over other methods still held (Fig. 3b, hollow bars). 224 

 225 

When memory utilization was evaluated, we have also observed the superiority of 226 

ONN4MST over most of the other methods. Specifically, when searching a single 227 

query against the Combined dataset, ONN4MST and ONN4MST_FS needed 22 GB 228 

and 2 GB of memory, respectively; while FEAST and SourceTracker needed 84 GB 229 

and 18 GB of memory, respectively; and JSD needed 47 GB of memory. Striped 230 

UniFrac and Meta-Prism (https://github.com/HUST-NingKang-Lab/Meta-Prism-2.0) 231 

were comparable with ONN4MST_FS in memory utilization, since they have 232 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364208doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364208
http://creativecommons.org/licenses/by-nc/4.0/


 

optimized the data structure for sample comparison. When the number of queries in a 233 

batch exceeded 10,000, or the size of dataset to be searched varies, ONN4MST and 234 

ONN4MST_FS remain the ones that needed the least memory (Fig. 3c,d). Details 235 

about running time and memory utilization are presented in Supplementary Tables 236 

7-10. 237 

 238 

Utility of ONN4MST in various source tracking applications 239 

The objective of microbial community sample source tracking is knowledge discovery 240 

from the huge amount of microbial community samples of heterogeneous sources. 241 

Thus, we showcased the ability of ONN4MST in knowledge discovery from several 242 

perspectives: firstly, it can ensure accurate and interpretable source tracking, even on 243 

distinguishing samples from ontologically-close biomes; secondly, when samples’ 244 

biomes are previously less studied or unknown, ONN4MST could provide accurate 245 

clues for possible biome at higher layers, supplementing the information about such 246 

less-studies biome; thirdly, ONN4MST could help for accurate microbial contaminant 247 

detection; finally, "open search" of sample among the source samples with almost all 248 

possible biomes could identify similar samples from ontologically-remote biomes, 249 

leading to novel knowledge discovery. 250 

 251 

Centenarians share similar gut microbiota with young individuals 252 

ONN4MST can distinguish samples from ontologically-close biomes, thus offers a 253 

quantitative way to characterize the development of human gut microbial community. 254 

In this context, we leveraged external sources of young individuals (30 years old on 255 

average) to understand the unique properties of gut microbiota in centenarians 256 

(persons over 100 years old). To demonstrate this capability, we first built a 257 

self-defined ONN model with two layers of biome ontology: “human gut” as first 258 

layer, while ”Young human gut” and ”Others or unknown” at second layer, through 259 

using a training set which contains 5,000 randomly selected human gut samples from 260 

the Combined dataset (Supplementary Table 1), together with 800 randomly selected 261 

human gut samples from young individuals in published studies18,19. Then, samples 262 
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from centenarians (30 from Italy, and 51 from China)18,19 were used as queries for 263 

performing source tracking with the self-defined ONN model. Results revealed a 264 

significantly larger “Young human gut” contribution (Wilcoxon-test, p < 1e-3) in 265 

centenarians (Supplementary Fig. 4), regardless of the locations where these samples 266 

were collected, which were consistent with the results of published studies18,19. To 267 

prove that these gut microbiota properties were unique in centenarians, we have 268 

further collected 770 samples of normal seniors from another published study20 as 269 

queries for comparison. However, we could not observe the same phenomenon in 270 

these normal seniors (Supplementary Fig. 4). 271 

 272 

Several other case studies that distinguish samples from ontologically-close biomes 273 

have also been conducted, with details in Supplementary Note, Supplementary 274 

Figures 5 and 6. 275 

 276 

Detecting microbial contamination in built environment 277 

To validate ONN4MST's ability on microbial contamination detection, we analyzed 278 

microbial community data collected by Lax et al.21 In this analysis, we investigated 279 

microbial contamination at several indoor house surfaces. We used skin samples from 280 

several body parts (skin, foot, hand and nose) and additional environmental, plants 281 

and mammal samples from the Combined dataset (Supplementary Table 1) as source 282 

samples, and samples from indoor house surfaces (“Bathroom Door Knob”, “Front 283 

Door Knob”, “Kitchen Counter”, “Kitchen Floor” and “Kitchen Light Switch”) as 284 

queries. Our analysis results by using ONN4MST have shown that microbial 285 

communities on these surfaces mostly originated from humans (Fig. 4a), largely in 286 

agreement with the original analyses of Lax et al.21 using SourceTracker, and differs 287 

slightly from the results of Shenhav et al.9 These results were reasonable considering 288 

the strong influence of skin microbial communities on indoor house surfaces22, while 289 

they have again emphasized the challenge of source disambiguation for methods that 290 

do not consider ontology structure of the biomes. That is, treating each individual 291 

sample as an independent potential source would make differentiation of tiny sample 292 
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differences among ontologically-close biomes impossible, thus underestimating the 293 

contributions of known sources at higher layers. We further investigated the 294 

composition of the unknown sources existed in Fig. 4a. In addition to the contribution 295 

of human, we found evidence for contributions from barley and bean product 296 

(0.6-1.1%) and marine product (0.2-0.4%) for kitchen environments, and potential 297 

evidence for contributions from agricultural (0.7-1.1%) and coastal (0.2-0.6%) for 298 

door knobs (Fig. 4b,c). 299 

 300 

Source tracking of environmental samples from less studied biomes 301 

This investigation was based on searching 11 groundwater samples from another 302 

published study23 (the biome "Groundwater" is less studied, with a handful of samples 303 

in the MGnify database, Supplementary Table 2) against the Combined dataset. 304 

ONN4MST could successfully identify the actual biome for the majority of these 305 

samples at different biome layers, such as "Aquatic" at the third layer and 306 

"Freshwater" at the fourth layer (Fig. 5a-c) (results at the fifth and sixth layers were 307 

shown in Supplementary Fig. 7). In contrast, FEAST and SourceTracker could not 308 

identify any source near "Groundwater", while they only identified "Nutrient 309 

(Wastewater)" with the meaning marginally related with groundwater (Fig. 5d,e). 310 

Such differences in identification of actual biome are largely due to the fact that 311 

ONN4MST could screen the whole biome ontology, and identify possible sources at 312 

different layers, enabling it to at least identify the higher biome under which the 313 

actual biome belongs to, with high fidelity. Whereas FEAST and SourceTracker were 314 

designed without considering the biome ontology, they would assign "Unknown" for 315 

many of these samples. These results indicated that when the actual biome of sample 316 

was previously less studied, ONN4MST could provide accurate clues for possible 317 

biome at higher layers in the biome ontology, and such clues would become valuable 318 

assets in guiding the manual curation of these samples. 319 

 320 

Discovery of similar samples from ontologically-remote biomes 321 

Another advantage of ONN4MST in source tracking is its ability for “open search” 322 
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without any a priori knowledge about possible biomes where the query might be from, 323 

enabling it for novel knowledge discovery. We tested ONN4MST’s “open search” 324 

results, and found that it could discover similar samples among ontologically-remote 325 

biomes “Engineered”, “Host_associated” and “Environmental” (Supplementary 326 

Table 11). While some of the samples from the biome 327 

“Root-Environmental-Aquatic-Marine-Intertidal_zone” share similar environments 328 

(Baltic Sea) with the query sample from the biome 329 

“Root-Engineered-Wastewater-Industrial_wastewater-Petrochemical”, the literature 330 

has also verified that this query sample was marine-sourced “MGYS00005175” (from 331 

MGnify database). Such examples were plentiful (Supplementary Fig. 8), and many 332 

had very high contributions (> 0.8). However, there were also examples which might 333 

indicate possible mis-annotation or possible contaminations of samples in the MGnify 334 

database. For instance, more than 10 samples from the study “MGYS00001610” 335 

(from MGnify database) with annotated biome 336 

“Root-Engineered-Wastewater-Water_and_sludge” have been identified by 337 

ONN4MST as from biome 338 

“Root-Host_associated-Mammals-Digestive_system-Large_intestine-Fecal” 339 

(Supplementary Fig. 8). These results have verified our hypothesis that open search 340 

of sample among the source samples with almost all possible biomes could reveal 341 

remotely-similar samples, leading to novel knowledge that is never identified or 342 

interpreted before. 343 

 344 

Discussion 345 

ONN4MST was designed to address the urgent need for fast, accurate and 346 

interpretable microbial community source tracking. It has been built based on an 347 

Ontology-aware Neural Network model, which has provided a solution for source 348 

tracking among sub-million samples and hundreds of biomes, outperforming 349 

state-of-the-art methods, thus enabling knowledge discovery from these 350 

heterogeneous samples. Microbial community sample source tracking has become 351 
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increasingly important, largely due to the needs of source tracking in multiple areas. 352 

The requirements for high accuracy, high speed and high interpretability have thus 353 

become critical considerations for a successful source tracking method, especially 354 

when faced with the ever more complex situation where sub-million microbial 355 

community samples from hundreds of biomes are provided as possible sources for 356 

search. 357 

 358 

The superiority of ONN4MST is established in several contexts. Firstly, ONN4MST 359 

is very robust against dataset heterogeneity: from a dataset with the number of biomes 360 

ranging from a handful to more than a hundred, as well as with the number of samples 361 

ranging from a few thousand to sub-million, it always provides the highest accuracies 362 

(AUC > 0.97) among state-of-the-art methods compared, making it the most scalable 363 

source tracking method. Secondly, based on the Human, Water and Soil datasets, the 364 

source tracking accuracies are all near-perfect (AUC > 0.97), indicating that 365 

ONN4MST could provide reliable insights for downstream analysis on implicating 366 

taxonomical or functional differences between healthy and diseased phenotypes, or on 367 

illuminating tiny differences among environmental samples from even slightly 368 

different niches. Furthermore, even when source tracking a sample against a database 369 

of sub-million samples, only less than 0.1 seconds is needed when we conduct 370 

ONN4MST search based on selected features, which is several orders of magnitude 371 

faster than other contemporary methods. Finally, the ability of ONN4MST for ‘open 372 

search’, without any a priori knowledge about possible biomes where the query might 373 

be from, enables it for interpretable knowledge discovery. 374 

 375 

The advantage of ONN4MST over other state-of-the-art source tracking methods is 376 

essentially dependent on two technical advancements: the deep learning model, and 377 

the ontology structure. Though the currently ongoing shift towards supervised 378 

learning methods is not surprising for the source tracking research, the superior 379 

performance of ONN4MST over existing methods is still quite pronounced. 380 

ONN4MST’s advantage also stems from its consideration of the ontology structure of 381 
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the biomes: by embedding the ontology considerations into the ONN learning model, 382 

ONN4MST naturally becomes suitable for solving the ontology relationships among 383 

biomes. 384 

 385 

ONN4MST is not without limitations. Most importantly, the accuracy of ONN4MST 386 

is heavily dependent on the ONN model built based on existing biome ontology 387 

information. If there comes a new biome ontology with more detailed biomes 388 

involved (for example, if we need to refine the source tracking results to human gut 389 

down, to differentiate niches such as adult’s gut from infant’s gut), or simply with 390 

more biome relationships involved, then the ONN model should be re-trained for 391 

accurate source tracking. Such biome ontology-wide scalability problem could 392 

potentially be solved by Transfer Learning approaches. 393 

 394 

In summary, ONN4MST is an ontology-aware deep learning method that has pushed 395 

the envelope of microbial source tracking, enabling near-optimal accurate, ultrafast 396 

and interpretable source tracking. ONN4MST has enabled in-depth pattern and 397 

function discoveries among sub-million microbial community samples, allowing for 398 

tracking the potential origin of microbial community with diverse niche background, 399 

as well as distinguishing samples from different health conditions or diverse 400 

environments. Thus, it could have a broader area of application, such as 401 

contamination screening, novel or refined biome discovery, new functional 402 

microbiome discovery, and even source tracking of biomes from which protein 403 

sequences could be supplemented for computational protein 3D structure 404 

prediction24,25. 405 

 406 

References 407 

1 Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804-810 408 

(2007). 409 

2 Proctor, L. M. et al. The Integrative Human Microbiome Project. Nature 569, 410 

641-648 (2019). 411 

3 Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: 412 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364208doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364208
http://creativecommons.org/licenses/by-nc/4.0/


 

successes and aspirations. BMC Biol 12, 69-69 (2014). 413 

4 Thompson, L. R. et al. A communal catalogue reveals Earth's multiscale 414 

microbial diversity. Nature 551, 457-463 (2017). 415 

5 Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of 416 

cesarean-born infants via vaginal microbial transfer. Nat Med 22, 250-253 417 

(2016). 418 

6 Thomas, S. et al. The Host Microbiome Regulates and Maintains Human 419 

Health: A Primer and Perspective for Non-Microbiologists. Cancer Res 77, 420 

1783-1812 (2017). 421 

7 Lladó, S., López-Mondéjar, R. & Baldrian, P. Drivers of microbial community 422 

structure in forest soils. Applied Microbiology and Biotechnology 102, 423 

4331-4338 (2018). 424 

8 Grond, K., Guilani, H. & Hird, S. M. Spatial heterogeneity of the shorebird 425 

gastrointestinal microbiome. R Soc Open Sci 7, 191609-191609 (2020). 426 

9 Shenhav, L. et al. FEAST: fast expectation-maximization for microbial source 427 

tracking. Nature Methods 16, 627-632 (2019). 428 

10 Tokeshi, M. Species Abundance Patterns and Community Structure. advances 429 

in ecological research 24, 111-186 (1993). 430 

11 Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. 431 

Nucleic Acids Research 48, D570-D578 (2019). 432 

12 Simpson, J. M., Santo Domingo, J. W. & Reasoner, D. J. Microbial Source 433 

Tracking:� State of the Science. Environmental Science & Technology 36, 434 

5279-5288 (2002). 435 

13 Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for 436 

comparing microbial communities. Appl Environ Microbiol 71, 8228-8235 437 

(2005). 438 

14 Smith, A., Sterba-Boatwright, B. & Mott, J. Novel application of a statistical 439 

technique, Random Forests, in a bacterial source tracking study. Water 440 

research 44, 4067-4076 (2010). 441 

15 Knights, D. et al. Bayesian community-wide culture-independent microbial 442 

source tracking. Nature methods 8, 761-763 (2011). 443 

16 Lin, J. Divergence measures based on the Shannon entropy. IEEE 444 

Transactions on Information Theory 37, 145-151 (1991). 445 

17 Zhu, M., Kang, K. & Ning, K. Meta-Prism: Ultra-fast and highly accurate 446 

microbial community structure search utilizing dual indexing and parallel 447 

computation. Briefings in bioinformatics (2020). 448 

18 Bian, G. et al. The Gut Microbiota of Healthy Aged Chinese Is Similar to That 449 

of the Healthy Young. mSphere 2, e00327-00317 (2017). 450 

19 Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory 451 

status in seniors and centenarians. PLoS One 5, e10667-e10667 (2010). 452 

20 Jeffery, I. B., Lynch, D. B. & O'Toole, P. W. Composition and temporal 453 

stability of the gut microbiota in older persons. The ISME Journal 10, 170-182 454 

(2016). 455 

21 Lax, S. et al. Longitudinal analysis of microbial interaction between humans 456 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364208doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364208
http://creativecommons.org/licenses/by-nc/4.0/


 

and the indoor environment. Science 345, 1048-1052 (2014). 457 

22 Timmis, K., Jebok, F., Rohde, M. & Molinari, G. Microbiome Yarns: 458 

microbiome of the built environment, paranormal microbiology, and the power 459 

of single cell genomics1,2,3,4. Microb Biotechnol 11, 575-587 (2018). 460 

23 Alsalah, D., Al-Jassim, N., Timraz, K. & Hong, P.-Y. Assessing the 461 

Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence 462 

of Opportunistic Pathogens on Irrigated Food Produce. Int J Environ Res 463 

Public Health 12, 12391-12411 (2015). 464 

24 Ovchinnikov, S. et al. Protein structure determination using metagenome 465 

sequence data. Science 355, 294-298 (2017). 466 

25 Wang, Y. et al. Fueling ab initio folding with marine metagenomics enables 467 

structure and function predictions of new protein families. Genome Biol 20, 468 

229-229 (2019). 469 

  470 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364208doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364208
http://creativecommons.org/licenses/by-nc/4.0/


 

Methods 471 

Datasets 472 

We evaluated the performances of ONN4MST and other source tracking methods 473 

based on five different datasets (Supplementary Table 1). These five datasets 474 

comprise samples from different niches, which are representative of high-quality 475 

samples in public resources. 476 

 477 

The “Combined dataset” consists of 125,823 microbial community samples collected 478 

from EBI MGnify database (https://www.ebi.ac.uk/metagenomics/), accessed as of 479 

January 2020 (Supplementary Table 1). This is a comprehensive dataset containing 480 

samples from 114 biomes (Supplementary Table 2), and the 125,823 microbial 481 

community samples represent more than half of the samples in EBI MGnify (as of 482 

January 1st, 2020). These samples contain taxonomical information for 225 phyla, 483 

6,232 families, 16,081 genera and 45,477 species. 484 

 485 

The “Human dataset” consists of 53,553 microbial community samples selected from 486 

the Combined dataset, representing a subset of samples from the human niches 487 

(Supplementary Table 1). Specifically, these samples are collected under these 488 

biomes: “Root-Host_associated-Human-Skin”, 489 

“Root-Host_associated-Human-Circulatory_system”, 490 

“Root-Host_associated-Human-Digestive_system” and 491 

“Root-Host_associated-Human-Reproductive_system” (biomes at higher layer). This 492 

dataset contains 53,553 samples from a total of 25 biomes. These samples contain 493 

taxonomical information for 204 phyla, 2,801 families, 6,523 genera and 16,135 494 

species. 495 

 496 

The “Water dataset” consists of 27,667 microbial community samples selected from 497 

the Combined dataset, representing a subset of samples from the water niches 498 

(Supplementary Table 1). Specifically, these samples are collected under these 499 
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biomes: “Root-Environmental-Aquatic-Freshwater”, 500 

“Root-Environmental-Aquatic-Marine” and 501 

“Root-Environmental-Aquatic-Non-marine_Saline_and_Alkaline” (biomes at higher 502 

layer). This dataset contains 27,667 samples from a total of 44 biomes. These samples 503 

contain taxonomical information for 222 phyla, 6,040 families, 15,261 genera and 504 

36,406 species. 505 

 506 

The “Soil dataset” consists of 11,528 microbial community samples selected from the 507 

Combined dataset, representing a subset of samples from the soil niches 508 

(Supplementary Table 1). Specifically, these samples are collected under these 509 

biomes: “Root-Environmental-Terrestrial-Soil”, and 510 

“Root-Host_associated-Plants-Rhizosphere” (biomes at higher layer). This dataset 511 

contains 11,528 samples from a total of 16 biomes. These samples contain 512 

taxonomical information for 201 phyla, 2,962 families, 6,753 genera and 12,769 513 

species. 514 

 515 

These three datasets (Human, Water and Soil datasets) were designed with several 516 

reasons in consideration. Firstly, these three datasets are representative enough and 517 

frequently-used subsets11 from the Combined dataset. Secondly, these three datasets 518 

are also distinct, since the Alpha diversity of samples from each of these datasets is 519 

significantly different from the other two: while samples from soil niches are 520 

considered more complicated, those from human and water niches are considered less 521 

so. Finally, samples from these niches are more comprehensively explored than other 522 

less studied niches, and they are of relatively higher quality of samples from these 523 

three niches. 524 

 525 

The “FEAST dataset” consists of 10,270 microbial community samples selected from 526 

the datasets used in the Lax et al.9 (Supplementary Table 1). Specifically, these 527 

samples are all collected from three biomes (“Root-Host_associated-Human”, 528 

“Root-Host_associated-Human-Digestive_system-Large_intestine-Fecal” and 529 
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“Root-Mixed”). These samples contain taxonomical information for 133 phyla, 1,118 530 

families, 3,389 genera and 5,762 species. The “FEAST dataset” is the smallest dataset 531 

used in this study, and it is the simplest dataset with regard to the number of biomes 532 

involved. Yet it is a dataset of unique importance, as the source tracking methods 533 

evaluated in this study could be benchmarked on this medium-sized and credible 534 

human gut dataset9,15 for fair assessment of accuracy and efficiency. 535 

 536 

Data representation 537 

we generated the Matrix for each microbial community sample, so that the 538 

abundances for all taxa at seven taxonomical levels including super-kingdom, 539 

kingdom, phylum, class, order, family, and genus (simply referred to as “sk”, “k”, “p”, 540 

“c”, “o”, “f”, and “g”) can be retained. The abundance of taxa at different levels were 541 

filled in the Matrix (Figure 1). Within the Matrix, seven columns respectively 542 

represent seven taxonomical levels. And 44,668 rows respectively represent relative 543 

abundance for 44,668 taxa (also referred to as features). For a detailed description and 544 

an example of the data representation, see Supplementary Note and Supplementary 545 

Table 3. 546 

 547 

Feature selection 548 

To improve the efficiency and accuracy of ONN4MST, we conducted feature 549 

selection by using a random forest regression model (Python-3.7.4 and 550 

Scikit-learn-0.22.1). An abundance-based pre-filtering and an importance-based 551 

selection were performed in sequential order. In doing so, we treated each row 552 

(representing the abundances of a taxon, see Supplementary Table 3) of the Matrix 553 

as a feature. Then, a series of adaptive thresholds (���
�  and  ���

�) were applied to 554 

different taxon levels, in which ��
�   and ��

�  stand respectively for the relative 555 

abundance and the feature importance. ��	�� 
 ��
, 
, �, �, �, �, ��  and the 556 

coefficient � was set to 0.001. As a result, we have selected 1,462 features with 557 

relative abundance and feature importance above the thresholds from all 44,668 558 

features involved in this study. 559 
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 560 

Biome ontology 561 

We constructed a comprehensive biome ontology using 114 biomes (Supplementary 562 

Table 2) collected from EBI MGnify database 563 

(https://www.ebi.ac.uk/metagenomics/biomes). In this process, we organized the 564 

biome ontology as a tree, by treating a biome with multiple parent biomes in the 565 

higher layer (e.g. “Human-Digestive_system” and “Mammal-Digestive_system”) as 566 

seperate biomes. Next, the ontology tree containing 6 layers and  133  nodes 567 

(representing 114 biomes) was constructed, by using Python-3.7.4 and Treelib-1.5.5. 568 

As a result, each biome was represented by at least one node in the ontology tree. The 569 

ontology tree has “Root” at the first layer, biomes (nodes) including “Environmental”, 570 

“Host_associated”, and “Engineered” at the second layer, and 7, 22, and 56 biomes 571 

(nodes) at the third to fifth layers respectively, with 43 biomes (nodes) including 572 

“Coral reef”, “Fecal” and “Saliva” at the bottom (sixth) layer (Supplementary Table 573 

2). 574 

 575 

Sample Labeling 576 

In all experiments, we used microbial samples each with a label annotated by using 577 

6-layers biome ontology to validate our model. For example, there are 22 samples 578 

labeled as “Root-Host_associated-Human-Digestive_system-Oral-Throat” in the 579 

Combined dataset (by separating different layers with the “-” symbol). 580 

 581 

Building ONN model 582 

We used Tensorflow-1.1426 to build and train our Ontology-aware Neural Network 583 

model. Our model was trained on a computational platform comprising Quadruplex 584 

E7-4809 v3 CPU with 315 GB RAM and Nvidia Tesla K80 GPU with 12 GB RAM. 585 

 586 

Ontology-aware Neural Network has four conceptual modules in total: a feature 587 

extraction module for basic feature extraction, a feature encoding module for 588 

layer-specific feature encoding, a feature integration module for inter-layer 589 
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information integration, and an ontology prediction module for ontology walk through 590 

and source contribution calculation (Supplementary Fig. 1a). The feature extraction 591 

module accepts a sample represented by the Matrix, extracts the feature information 592 

from the Matrix and deliver them to the feature encoding module. The feature 593 

encoding module consists of a series of fully-connected layers. It accepts the output of 594 

feature extraction module, and encodes layer-specific feature information for each of 595 

the six biome ontology layers. The feature integration module consists of several 596 

fully-connected layers, which serves for inter-layer information integration. The 597 

ontology prediction module consists of five sigmoid layers (corresponding to the 2nd, 598 

3rd, 4th, 5th and 6th biome ontology layers), each sigmoid layer accepts the output of 599 

feature encoding module and computes the contribution of all biome sources on its 600 

corresponding biome ontology layer. 601 

 602 

We chose 8-fold cross validation for model training and testing (Supplementary Fig. 603 

1c). For each dataset, we randomly split it into 8 folds, each fold including a training 604 

set (87.5%) and a testing set (12.5%). For each fold, the model was trained (in batches 605 

of 512 samples) for 30,000 iterations or until training accuracy converged, and the 606 

model with the highest accuracy on the training set was selected for testing. The 607 

results on the testing set are organized in the form of a hierarchical prediction (with 608 

prediction results from 2nd to 6th layers), which would then be evaluated. 609 

 610 

Other methods used in this study 611 

Three distance-based methods: JSD, Striped UniFrac and Meta-Prism, two 612 

unsupervised machine learning methods: Expected-Maximization based method 613 

FEAST and Bayesian based method SourceTracker; as well as our supervised deep 614 

learning method (ONN4MST), were applied for microbial source tracking. In this 615 

study, the source tracking results (predicted biomes) of multiple methods were 616 

compared against the microbial community samples’ actual source (actual biomes).  617 

 618 
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The distance-based methods are based on pair-wise calculation of sample distances, 619 

and such methods depend heavily on the presence of species and their relative 620 

abundance for individual samples, regardless of weighted or unweighted scoring 621 

functions used. Among distance-based methods, JSD does not consider the 622 

phylogenetic relationships among species, while methods such as Striped UniFrac and 623 

Meta-Prism do (we have used Meta-Prism 2.0 for comparison in this study). However, 624 

distance-based methods have a binomial increase in time cost with the increase of the 625 

number of samples. 626 

 627 

Unsupervised methods for microbial community sample comparison are based on 628 

profile-based statistical models, either the Bayesian model used in the SourceTracker 629 

method, or the Expected-Maximization (EM) model used in the FEAST method. 630 

Unsupervised methods are typically more accurate than distance-based methods. 631 

However, since unsupervised methods still do not consider the intricate but important 632 

patterns of a set of samples from similar niches, their tolerance to noisy signals in 633 

samples is not high, hence potentially would lead to biased mismatches. Details about 634 

the source tracking methods other than ONN4MST used in this study are provided in 635 

Supplementary Note. 636 

 637 

Hierarchical prediction 638 

In order to carry out comparison of ONN4MST against other methods at different 639 

layers of biome ontology, all other methods were remolded, so that the prediction 640 

results of these methods (excluding ONN4MST) at different layers could be produced. 641 

Based on the source contributions of biomes at the sixth (bottom) layer, the source 642 

contributions of biomes for other layers were computed using �� � ∑ ���  �����
. Where 643 

��  is a source contribution for �, �� is a set of children biomes for biome source � 644 

in the biome ontology. ��  is a child biome of � . We used NumPy-1.18.1 and 645 

Treelib-1.5.5 in the process. 646 

 647 
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Benchmarking measures 648 

To benchmark and compare the results based on ONN4MST and the other five 649 

methods, we used these measures: 650 

 651 

 ����� !  ∑ ��� 
 ����  #  � 
  �� �  (1) 652 

 �$��� !  ∑ ��� % ����  #  � %  �� �  (2) 653 

 ����� !  ∑ ��� 
 ����  #  � %  �� �  (3) 654 

 �$��� !  ∑ ��� % ����  #  � 
  �� �  (4) 655 

 ������ !  �	�
��

�	�
��
 ���
��
 (5) 656 

 ������ !  �	�
��

�	�
��
 ���
��
 (6) 657 

 ����� !  �

�
∑ ������ �

���  (7) 658 

 ����� !  �

�
∑ ������ �

���  (8) 659 

where � is a biome source, ����  is a set of predicted biomes for a microbial 660 

community sample & and threshold � 
 '0,1( with a step size of 0.01, �� is a set of 661 

actual biomes for a sample &, � is the total number of biomes, and � is a logical 662 

operation function, the value of � is 1 when the result of logical operation is TRUE, 663 

else 0. 664 

 665 

Four evaluation metrics ()��*+,�-, �+��&�&�., ���,�� and ����) were introduced. 666 

These evaluation metrics are computed with the following formulas: 667 

 )��*+,�-�� !   �	�
��
 ���
��

�	�
��
 �	�
��
���
��
 ���
��
 (9) 668 

 �+��&�&�.��� !  �	�
��

�	�
��
 �	�
��
 (10) 669 

 ���,����� !   �	�
��

�	�
��
 ���
��
 (11) 670 

where �� is true positive, �$ is true negative, �� is false positive, �$ is false 671 

negative. Subsequently, we compute �1 for threshold � 
 '0,1( with a step size of 672 

0.01 by using the average precision and average recall for all actual biomes that we 673 
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predicted at least one time. Then, we select the maximum �1 as ���� . These 674 

evaluation metrics are computed with the following formulas: 675 

 )	��+��&�&�.�� !  �

�
∑ �+��&�&�.��� �

���  (12)
 

676 

 

)	����,���� !  �

�
∑ ���,����� �

���  (13) 677 

 ���� !  /,0� 1� · ���	��������
�� · ���������
��

���	��������
��
���������
��
2  (14) 678 

 679 

Then, ROC (Receiver Operating Characteristic) curves, which are based on 680 

contrasting the true positive rate (TPR) against the false positive rate (FPR), were 681 

plotted. AUC (Area Under the Curve) reflects the ability of model to correctly predict 682 

the biomes (sources) of microbial community samples. AUC is calculated with the 683 

following formula: 684 

 )3� !  4 ����� 56������ 78��

�
 

(15) 685 

 686 

Data availability 687 

The selected samples from Combined dataset, which were assigned to Human dataset, 688 

Water dataset, Soil dataset respectively, were annotated with their respective 689 

assignments in Supplementary Table 2. Data download links are provided in 690 

Supplementary Table 12. 691 

 692 

Code availability 693 

All source codes have been uploaded to the website at: 694 

https://github.com/HUST-NingKang-Lab/ONN4MST. Detailed parameters of 695 

software and package we used in this study are provided in Supplementary Table 13. 696 

 697 
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Figures 720 

Figure 1  721 

Fig. 1: Building and using the Ontology-aware Neural Network model for microbial source 722 

tracking. a. The sample data representation and training process of ONN model. i. Sample data 723 

are transformed into the Matrix. With the Matrix, each column represents a taxonomical level and 724 

each row represents a feature; ii. In parallel, samples are mapped to biome ontology according to 725 

their niches; iii. The model is built and updated according to both samples’ abundance matrices 726 

and biome ontology information. More details about building, testing and using the ONN model 727 

for source tracking are illustrated in Supplementary Fig. 1 and Supplementary Fig. 2. b. An 728 

illustrated example of microbial source tracking procedure using ONN4MST. i. The input is the 729 

community structure of a real microbial community sample (this sample is from the biome 730 

“Root-Host_associated-Human-Digestive_system-Oral-Saliva”) that has been preprocessed and 731 

the Matrix has been provided into the model; ii. Source tracking process at different layers. The 732 

red arrows indicate the search process from layer 1 to layer 6, accompanied with source 733 

contribution annotated in red. To compare with the procedure of ONN4MST, the yellow and blue 734 

arrows indicated the source tracking results (among the overall top 5 sources) of FEAST and 735 

Source Tracker, together with their source contributions, respectively. The actual biome is 736 

annotated by a red check mark; iii. The predicted biomes (with source contributions) by 737 

ONN4MST, FEAST and SourceTracker.  738 
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Figure 2 739 

Fig. 2: ONN4MST’s prediction accuracies are among the best on different datasets and 740 

different biome layers, while the performance of ONN4MST does not depend heavily on the 741 

number of biomes or number of samples in the dataset. a. The five datasets with varied 742 

complexities have provided source tracking tasks with different difficulties. b. The ROC curve of 743 

ONN4MST and other methods on all five datasets. c. The number of samples, the Shannon 744 

diversity and the source tracking results by different methods for the five datasets. The samples 745 

involved in each dataset are shown with blue bars, the Shannon diversity of each dataset is shown 746 

with red boxes, the AUC of several methods on each dataset is shown with dash lines. d. The AUC 747 

of all methods on all five datasets. e. The number of biomes and the source tracking results by 748 

different methods at different layers for the Combined dataset. The samples involved in each 749 

biome ontology layer are shown with blue bars, the AUC of different methods on each layer is 750 

shown with dash lines. f. The AUC of all methods at different layers. (Abbreviations. 751 

ONN4MST_FS: ONN4MST using selected features).  752 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364208doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364208
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 3 753 

Fig. 3: ONN4MST is superior to other methods in search time and memory utilization. a. 754 

Running time of different methods when search one query against different datasets. b. Running 755 

time of different methods when search queries of different sizes against Combined dataset. c. 756 

Memory utilization of all methods when search one query against different datasets. d. Memory 757 

utilization of all methods when search queries of different sizes against Combined dataset. Note: a 758 

hollow bar means that the value represent by this bar is the result of linearly extrapolation, both 759 

for running time and for memory utilization. (Abbreviations. ONN4MST_FS: ONN4MST using 760 

selected features, 1M: Results of linearly extrapolation with one million samples in use). 761 
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Figure 4 762 

Fig. 4: The contribution of the unknown sources in indoor house surface samples using 763 

ONN4MST. a. Mean source contributions considering 4 human skin sources (hand, foot, nose and 764 

skin-other across all inhabitants) using data from Lax et al.21 b,c. 765 

Further decomposition of the unknown sources existed in Fig. 4a has revealed other microbial con766 

taminates in built environment.  767 
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Figure 5 768 

Fig. 5: Successful source tracking of environmental samples from a less studied biome by 769 

using ONN4MST. Results were based on using 11 samples from groundwater environment, 770 

which represented a biome previously less studied. a-c. Source tracking results by using 771 

ONN4MST at the second, third and fourth layers; d. Source tracking results by using FEAST; e. 772 

Source tracking results by using SourceTracker. Actual biome of query sample: 773 

“Root-Environmental-Aquatic-Freshwater-Groundwater”. A_1, A_2: two samples collected from a 774 

single well; B_1, B_2:  two samples collected from another single well; C_1, C_2: two samples 775 

collected from the third single well; D-H: samples collected from other five wells, respectively. 776 
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Tables 777 

Table 1 778 

Table 1. Evaluation of ONN4MST on all five datasets. ONN4MST achieved the accuracy 779 

higher than 0.98 for all five datasets, and the AUC higher than 0.97 for all five datasets. Note: For 780 

each dataset, we used the model trained on that dataset for evaluation. The evaluation procedure of 781 

the ONN model is illustrated in Supplementary Fig. 1c and described in Methods. ONN4MST 782 

based on all features and selected features were both evaluated at the bottom (sixth) layer with a 783 

threshold of 0.5. (Abbreviations. Pr: Precision, Rc: Recall, Acc: Accuracy). 784 

Dataset #Biomes #Samples 
All features Selected features 

Pr Rc Acc Fmax AUC Pr Rc Acc Fmax AUC 

Combined 114 125,823 0.826 0.662 0.995 0.740 0.971 0.868 0.774 0.997 0.820 0.977 

Human 25 53,553 0.822 0.521 0.984 0.695 0.972 0.894 0.826 0.991 0.863 0.984 

Water 44 27,667 0.842 0.766 0.992 0.803 0.966 0.854 0.764 0.992 0.813 0.971 

Soil 16 11,528 0.915 0.778 0.986 0.850 0.974 0.892 0.881 0.989 0.890 0.982 

FEAST 3 10,270 0.793 0.795 0.984 0.803 0.980 0.895 0.812 0.989 0.862 0.991 

 785 
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Intestine

Sample ID: MGYS00001248-SRR2761086
Actual biome:“Root-Host-associated-Human-Digestive_system-Large_intestine” 

ONN4MST : {Layer2 | “Root-Host_associated”: 0.999, 
             Layer3 | “Root-Host_associated-Human”: 0.999, 
           Layer4 | “Root-Host_associated-Human-Digestive_system”: 0.999, 
           Layer5 | “Root-Host_associated-Human-Digestive_system-Large_intestine”: 0.968      

FEAST :      {“Root-Host-associated-Human-Skin”: 0.163, 
           “Unknown”: 0.837}

a

Possible remote similarities
Sink        &   Source
Intestine X   Skin 
Intestine X   Respiratory_system
Intestine X   Reproductive_system
    ......      X     ......
Oral         X   Circulatory_system
    ......      X     ......

 ONN4MST FEAST 

  Layer2  Layer3  Layer4  Layer5    

40 0.977 0.963 0.963 0.716 0.597 

70 0.957 0.913 0.923 0.583 0.350 

90 0.933 0.867 0.830 0.403 0.150 

 

Cutoff

Method
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Root-Engineered-Wastewater-Industrial_wastewater-Petrochemical Root-Environmental-Aquatic-Marine-Intertidal_zoneActual biome: Predicted biome:

MGYS00005175-SRR6319590Sink ID: Represent Source ID: MGYS00002650-SRR3589592

Root-Engineered-Wastewater-Industrial_wastewater-Agricultural_wastewater Root-Environmental-Aquatic-Marine-Intertidal_zoneActual biome: Predicted biome:

MGYS00004521-SRR6901946Sink ID: Represent Source ID: MGYS00002650-SRR3589534

Root-Engineered-Wastewater-Water_and_sludgeActual biome: Predicted biome:

MGYS00001610-ERR982889Sink ID: Represent Source ID: MGYS00004714-ERR3258060

a

b

c
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Root-Host_associated-Mammals-Digestive_system-Large_intestine-Fecal
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