
An efficient and accurate frailty model approach for genome-wide survival association 

analysis controlling for population structure and relatedness in large-scale biobanks 

 
 

Rounak Dey1‡ ,Wei Zhou2,3,4‡, Tuomo Kiiskinen5,6, Aki Havulinna5,6, Amanda Elliott1,2,3, 

Juha Karjalainen2, 3,4,5, Mitja Kurki2,3,4,5, Ashley Qin1, FinnGen, Seunggeun Lee7, Aarno 

Palotie2,3,4,5, Benjamin Neale2,3,4*, Mark Daly2,3,4,5*, Xihong Lin1,3,8* 
1Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 

02115, USA 
2Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, 

Massachusetts, USA; 
3Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 

Cambridge, Massachusetts, USA; 
4Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 

Cambridge, Massachusetts, USA; 
5Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of 

Helsinki, Helsinki, Finland 
6 Finnish Institute for Health and Welfare, Helsinki, Finland. 
7Graduate School of Data Science, Seoul National University, Seoul, Korea 
8Department of Statistics, Harvard University, Cambridge, Massachusetts, USA 

 

 
‡These authors contributed equally to this work 
*These authors jointly supervised this work 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2020.10.31.358234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.31.358234
http://creativecommons.org/licenses/by/4.0/


Abstract 

With decades of electronic health records linked to genetic data, large biobanks provide 

unprecedented opportunities for systematically understanding the genetics of the 

natural history of complex diseases. Genome-wide survival association analysis can 

identify genetic variants associated with ages of onset, disease progression and 

lifespan. We developed an efficient and accurate frailty (random effects) model 

approach for genome-wide survival association analysis of censored time-to-event (TTE) 

phenotypes in large biobanks by accounting for both population structure and 

relatedness. Our method utilizes state-of-the-art optimization strategies to reduce the 

computational cost. The saddlepoint approximation is used to allow for analysis of 

heavily censored phenotypes (>90%) and low frequency variants (down to minor allele 

count 20). We demonstrated the performance of our method through extensive 

simulation studies and analysis of five TTE phenotypes, including lifespan, with heavy 

censoring rates (90.9% to 99.8%) on ~400,000 UK Biobank participants with white 

British ancestry and ~180,000 samples in FinnGen, respectively.  We further performed 

genome-wide association analysis for 871 TTE phenotypes in UK Biobank and 

presented the genome-wide scale phenome-wide association (PheWAS) results with 

the PheWeb browser.  
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Introduction 

Survival models, especially the Cox proportional hazard model1, have been widely used 

to analyze time-to-event (TTE) outcomes, both in biomedical research2-4, and in 

genome-wide association studies (GWAS)5-11. It has been shown that the proportional 

hazard model can increase the power to detect genetic variants associated with the 

age-of-onset of TTE phenotypes in cohort studies compared to modelling the disease 

status using a logistic regression model12-14. With the availability of detailed time-

stamped diagnosis data from Electronic Health Records (EHR), large biobanks, such as 

UK Biobank (UKBB)15 (� 400,000 individuals) and FinnGen (https://www.finngen.fi/en) 

( � 200,000  individuals), provide unprecedented opportunities to analyze TTE 

phenotypes to unravel the complex genetic architectures of disease onset, progression, 

and lifespan. Genome-wide scans of TTE phenotypes in large biobanks can potentially 

identify novel genetic variants associated with the onset of human diseases by 

leveraging both the disease status and the age-of-onset information. 

In GWAS analysis, population structure and sample relatedness are often key factors 

that need to be controlled for. Biobank cohorts often have substantial population 

structure and relatedness. For example, in the UK Biobank, 91,392 out of 408,582 

subjects with White British ancestry have at least one relative (up to 3rd degree) in the 

data. Several linear16-18 and logistic19,20 mixed effects models have been developed to 

account for relatedness in GWASs for quantitative and binary phenotypes. To account 

for related subjects in the proportional hazard model, frailty models, which are mixed 

effects survival models, have been proposed21,22, where event times are assumed to be 

independent conditional on unobserved random effects called “frailties”. The frailties are 

modeled based on the dependence and clustering structure of the observations. 

Previous research has extensively studied shared frailty models with Gamma-

distributed frailties21,23-27. However, the shared frailty model is limited in its scope to 

model more complicated dependency structures that arise in cohort-based association 

studies. To model complicated dependency structures, such as known familial 

structures and cryptic relatedness, the multivariate frailty model with Gaussian frailty 

was proposed28,29, and was later implemented in the R package COXME30, which, 

however, lacks scalability for GWASs. Recently the COXME method was further 
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improved in COXMEG31, which utilizes several computational optimization strategies to 

make it applicable in genetic association studies, but COXMEG still cannot handle 

biobank-scale genome-wide datasets. Based on our performance benchmarking, even 

for 20,000 subjects, COXMEG requires 3,356 CPU-hours to perform a GWAS of 46 

million variants, which means even with perfect parallelization on 30 CPUs, it would 

take over 4.6 days to complete the GWAS. 

In large-scale GWASs, the score test is particularly useful among different asymptotic 

tests, because it requires fitting the model only once under the null hypothesis of no 

association20. Score tests have also been implemented in the COXMEG package32. 

However, score tests can lead to severe type I error inflation for phenotypes with heavy 

censoring, which is extremely common in biobank-based phenotypes. In the UK 

Biobank phenome that we built (see ONLINE METHODS), 871 TTE phenotypes have at 

least 500 events (cases), out of which 811 phenotypes have censoring rate more than 

95%. The inaccuracies of the score test in unbalanced case-control phenotypes have 

been previously shown for logistic regression and logistic mixed effects models19,33-35, 

and a saddlepoint approximation36 (SPA)-based adjustment has been proposed and 

successfully implemented19 to accurately calibrate the p-values in such scenarios.  

Recently, the SPACox11 method also used SPA to calibrate p-values for time-to-event 

phenotypes in unrelated samples. However, the SPACox method does not account for 

sample-relatedness. Through simulations, we show similar inaccuracies are also 

present in score tests in frailty models for analyzing heavily censored phenotypes. 

Here we propose a novel method for genome-wide survival analysis of TTE phenotypes, 

which accounts for both population structure and sample relatedness, controls type I 

error rates even for phenotypes with extremely heavy censoring, and is scalable for 

genome-wide scale PheWASs on biobank-scale data. Our method, Genetic Analysis of 

Time-to-Event phenotypes (GATE), transforms the likelihood of a multivariate Gaussian 

frailty model to a modified Poisson generalized linear mixed model (GLMM20,37) 

likelihood, employs several state-of-the-art optimization techniques to fit the modified 

GLMM under the null hypothesis, and then performs score tests calculated using the 

null model for each genetic variant. To obtain well-calibrated p-values for heavily 

censored phenotypes, GATE uses the SPA to estimate the null distribution of the score 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2020.10.31.358234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.31.358234
http://creativecommons.org/licenses/by/4.0/


statistic instead of the traditionally used normal approximation. Moreover, our method 

saves the memory requirement substantially by storing the raw genotypes in binary 

format and calculating the elements of the GRM on the fly instead of storing or inverting 

a large dimensional GRM.   

Through extensive simulations and analysis of TTE phenotypes from the UK Biobank 

data of 408,582 subjects with White British ancestry and the FinnGen study, we showed 

that GATE is scalable to biobank-scale GWASs of TTE phenotypes with type I error 

rates well controlled even for less frequent variants and heavily censored phenotypes. 

Benchmarking has shown that GATE can analyze 46 million variants in a GWAS with 

408,582 subjects in ∼ 14.5 hours using 30 CPUs with peak memory usage under 11 GB. 

 

Results 

Overview of Methods 

GATE consists of two main steps: 1) Fitting the null frailty model to estimate the 

variance component and other model parameters, and 2) performing a score statistic-

based test for association between each genetic variant and the phenotype. Step 1 

involves iteratively fitting the null frailty model using similar optimization strategies as 

described in GMMAT20 and SAIGE19, such as using the computationally efficient 

average information restricted maximum likelihood (AI-REML20,38) algorithm for 

estimating the variance component, and using pre-conditioned gradient descent (PCG39) 

method to solve linear systems to avoid inverting the NxN genetic relatedness matrix 

(GRM). GATE computes the elements of the GRM on-the-fly when needed using binary 

vectors of raw genotypes, and thus it doesn’t require to supply, store, or invert a pre-

computed GRM, which can be extremely time and memory-consuming for large sample 

sizes (N). For example, in UK Biobank data with � � 93,511 markers and � � 408,582 

subjects with White British ancestry, the memory requirement drops from 622 GB for 

storing a pre-computed GRM in floating point numbers, to only 8.9 GB for storing the 

raw genotypes in the binary format. 

Step 2 involves scanning the entire genome and testing each variant for association 

using the score statistic. Since the overall cost of computing the variance of the score 

statistic for all variants is extremely high because it involves operations on the large-
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dimensional GRM, in step 2, GATE uses a variance ratio approximation commonly used 

in existing LMM and GLMM-based methods such as GRAMMAR-Gamma17, BOLT-

LMM16, fastGWA18, and SAIGE19. The ratio of the variance of the score statistic with 

and without the random effects (and an attenuation factor due to estimating the baseline 

hazards) is computed using a subset of genetic markers. Previously, it was shown that 

this variance ratio remains approximately constant for variants with MAF � 20 for LMM 

and GLMMs. Through analytical derivations and simulation examples, we show this 

observation to hold for frailty models as well (Supplementary Note section 3 and 

Supplementary Figure 14). Therefore, when performing the genome-wide scan, the 

variance of the score statistic is computed without using the GRM and then calibrated 

using the variance ratio. 

Next, GATE uses the saddlepoint approximation36 (SPA) to approximate the null 

distribution of score statistics for association tests. SPA-based tests have been 

successfully used for logistic regression34 and logistic mixed models19 and provide more 

accurate p-values than traditional score tests under normal approximation for low-

frequency variants when the case-control ratio is unbalanced. In GATE,  we have 

implemented an efficient SPA-based test for frailty models that is similar to the fastSPA 

method in Dey et al.34. Through simulations and real data analysis, we show that SPA 

tests provide accurate and calibrated p-values, even for low-frequency variants when 

the censoring rate is high to 99%. 

Both GATE and COXMEG31 conduct genetic association tests for TTE phenotypes 

using the frailty model.  Besides the use of SPA-based tests, GATE uses the variance 

ratio approach to approximate the variances of the score statistics, while COXMEG 

calculates the variances using the GRM. Using simulation studies,  we have shown that 

GATE provides consistent association p-values to COXMEG (�� of -log10 P-values > 

0.99) for common variants (MAF > 5%) when the censoring rate is 50% 

(Supplementary Figure 1A) and has well controlled  type I error rates, even for less 

frequent variants and phenotypes with heavy censoring rates (Supplementary Figure 

1B). 
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Computation and Memory costs 

To assess the computational performance of GATE and the score test implemented in 

the COXMEG package (COXMEG-Score), we randomly sampled subsets of different 

sample sizes from 408,582 UK Biobank subjects with White British ancestry. We then 

benchmarked association tests for overall lifespan (16,375 events, 389,721 censored) 

adjusting for the top four ancestry principal components, birth year and sex using GATE 

and COXMEG-Score on 200,000 variants randomly selected from 46 million genetic 

variants with imputation info � 0.3  and MAC � 20 . In Step 1, 93,511 high-quality 

genotyped markers were used for the GRM. The projected overall computation time 

(Figure 1 and Supplementary Table 1) for GATE to analyze 46 million variants on 

� � 408,582  subjects was 318 CPU-hours, and the actual computation time on a 

machine with 30 cores was 14.5 hours. Step 2, which accounts for the majority of the 

computation time (95.4% for � � 408,582) requires substantially less memory (peak 

memory usage 0.85 GB) than Step 1 (peak memory usage 10.6 GB). However, even for 

20,000 subjects, the projected computation time and memory usage for COXMEG-

Score were 3,356 CPU-hours and 32.75 GB, compared to only 34 CPU-hours and 0.74 

GB required by GATE, achieving 99% and 97.7% reductions in computation time and 

memory, respectively. This means even with perfect parallelization on 30 CPUs, 

COXMEG-Score would require 4.6 days to complete the GWAS with only 20,000 

subjects. The observations also suggest that the computation time and memory 

requirements increase nearly linearly with the sample size for GATE, whereas they 

increase quadratically for COXMEG-Score. 

 

Phenome-wide GWAS of time-to-event phenotypes in the UK Biobank data. 

We have applied GATE to perform phenome-wide GWAS for 871 UKBB TTE 

phenotypes with at least 500 events, adjusting for top four PCs, birth year, and sex 

(except for 93 sex-specific phenotypes).  The TTE phenotypes were created based on 

the International Classification of Disease (ICD) codes version 9 and 10 mapped to the 

PheWAS code (PheCode40) definitions (See ONLINE METHODS) as well as their 

associated diagnosis dates in the UK Biobank electronic medical records.  For each 

phenotype, we analyzed approximately 46 million genetic markers imputed from the 
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Haplotype Reference Consortium41 panel and UK10K42 with imputation INFO score 

� 0.3 and MAC � 20.  Among the 408,582 UK Biobank subjects with White British 

ancestry, 91,392 had at least one relative up to third degree15. To account for the 

relatedness among the subjects, we used 93,511 high-quality genotyped markers with 

MAF � 0.01 to construct the GRM in Step 1. The same set of markers were used by the 

UK Biobank research group15 for estimating kinship among the samples because they 

are only weakly informative of the ancestry and therefore provide more accurate kinship 

estimates. We also performed a sensitivity analysis using a larger set of markers 

(245,745) for the four exemplary phenotypes discussed before (See Supplementary 

Note Section 7). We further applied SPA-based adjustment of the score test because 

to the censoring rates (Supplementary Figure 2) were extremely high for most of the 

TTE phenotypes in the UKBB (for example, 811 out of 871 have censoring rate more 

than 95%). The summary statistics for all 871 PheCodes analyzed using GATE are 

available to download from a public repository (see URL) and browsed in the PheWeb43 

(see URL). 

Here we discuss the association results using four phenotypes with different censoring 

rates as exemplars: ischemic heart disease (IHD: PheCode 411, N events=36,962, N 

censored=370,814, censoring rate=90.9%), female breast cancer (FBC, PheCode 174.1, 

N events=15,396, N censored=192,764, censoring rate=92.6%), glaucoma (PheCode 

365, N events=6,046, N censored=392,925, censoring rate=98.5%), and Alzheimer’s 

Disease (AD: PheCode 290.11, N events=822, N censored=342,059, censoring 

rate=99.8%). The Manhattan and QQ plots for the GWAS of these phenotypes using 

GATE with and without SPA are presented in Figure 2 and Figure 3, respectively. The 

results demonstrate that not adjusting for SPA greatly inflates the type I errors, 

especially for the low frequency variants, whereas the SPA-adjusted method shows well 

controlled type I error rates. In total, 114 loci have been identified for the four TTE 

phenotypes: 55 for IHD, 37 for FBC, 19 for glaucoma, and 3 for AD. We also applied 

GATE to these four phenotypes in the FinnGen study (see ONLINE METHODS) and 81 

out of the 114 loci were also tested in the FinnGen study, of which 78 had the same 

effect direction in both UKBB and FinnGen. 69 out of the 81 loci were successfully 

replicated in FinnGen with p-value < 0.05. The complete list of all significant loci and the 
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association results in the UKBB, FinnGen as well as the meta-analysis of the two data 

sets are reported in Supplementary Table 2. Overall, 99 out of the 114 significant loci 

have been previously reported to be associated with disease risk in case-control studies 

to the best of our knowledge. Several loci that are previously well known as associated 

with the risk of the diseases have been identified in our study. For example, the loci LPA 

and CELSR2 for IHD44,45, FGFR246 and CASC1647 for breast cancer, MYOC48 and 

TMCO149 for glaucoma, and APOE e4 variant for AD50. The age-varying predicted risk 

of disease onset based on the GATE method, and the age-varying disease-free 

probability by genotypes based on the Kaplan-Meier curve51 for the exemplary top hits 

were plotted in Figure 4 and Supplementary Figure 3, respectively. 

 

GWAS of lifespan in the FinnGen Study and the UK Biobank 

We have also applied GATE to the overall lifespan in the FinnGen study (N events = 

15,152, N censored = 203,244), in which the age of death ranges from 7 years old to 

106 years old as shown in Supplementary Figure 4. We identified the previously 

reported APOE locus for lifespan52 in FinnGen, in which the most significant variant is 

the APOE-e4 missense variant rs429358 (MAF = 18.3%, p-value = 1.01 � 10���) and it 

is well-known to be associated with lifespan, cardiovascular diseases, stroke, and 

Alzheimer’s disease53-55. This locus has been replicated in UKBB (N events = 16,375 

and N censored = 389,721, see Supplementary Figure 5) with p-value 1.92 � 10�� and 

meta-analysis p-value 4.04 � 10��� (Supplementary Table 3 and Supplementary 

Figure 6).   The top hit in UKBB (rs157592, MAF = 18.7%, p-value = 1.87 � 10��) had 

LD �� � 0.7 with rs429358 as presented in the Supplementary Table 3. This variant is 

in the intergenic region and have no in-silico functions according to the FAVOR 

functional annotation online portal56 (See URL). 

 

Simulation Studies 

 

We investigated the type I error rates and power of GATE in presence of sample 

relatedness using 10,000 simulated samples. Due to computation burden, we used 

GATE-noSPA instead of COXMEG-Score for type I error evaluation as Supplementary 
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Figure 1C shows the two approaches provide consistent association p-values (�� of -

log10 p-values > 0.99). 

 

The type I error rates of GATE were evaluated based on association tests of 9.4x108 

simulated genetic markers on 10,000 samples, which contain 500 families and 5,000 

independent samples. Each family has 10 members, simulated based on the pedigree 

shown in Supplementary Figure 7. The variance component parameter τ is set to be 

0.1 and 0.25 (see ONLINE METHODS). The empirical type I error rates at the 

significance level α = 1x10-6 and 5x10-8 are shown in the Supplementary Table 4 and 

Supplementary Figure 8A. Our simulation results suggest that GATE has well 

controlled type I error rates even for low frequency variants (down to MAC = 20) when 

the phenotype is heavily censored (90%). However, without SPA, the score tests in 

GATE suffer from inflated type I error rates as the case-control ratios become more 

unbalanced and the frequency of variants decreases. We also evaluated type I error 

rates of GATE in a setting with cryptic sample relatedness by randomly selecting 10,000 

UKBB participants with white British ancestry. Phenotypes were simulated using the 

real genotypes to mimic the sample relatedness of a real-world dataset, and association 

tests were conducted on the imputed genetic markers in the UKBB (see ONLINE 

METHODS). Similarly, we observed that the type I error rates were well controlled in 

GATE in presence of cryptic sample relatedness with different censoring rates 

(Supplementary Table 5, Supplementary Figure 8B and 9).  

 

Next, we evaluated empirical power of GATE at α = 5x10-8 and compared to the power 

of COXMEG-Score. Supplementary Figure 10 shows the power curve by hazard ratios 

for variants with MAF 0.05 and 0.2 when τ =0.25 and the censoring rate = 50%. Both 

methods have nearly identical power in all simulation settings. We do not compare their 

powers in the presence of heavy censoring, in view of the inflated type I error rate of 

COXMEG-Score. 

Overall simulation studies show that GATE can control type I error rates even when 

censoring rate is high and has similar power for common variants as COXMEG-Score. 

In contrast, same as GATE-noSPA, COXMEG suffers type I error inflation and the 
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inflation is especially severe with low MAF and heavy censoring (Supplementary 

Figure 1B, 1C, 8 and 9).  

 

Discussion 

In this paper, we have proposed a novel method to perform scalable genome-wide 

survival association analysis of censored TTE phenotypes in large biobanks using an 

efficient implementation of the frailty model. Our method can adjust for population 

structure and sample relatedness and provide accurate p-values even in extreme cases 

of very low frequency variants and heavily censored phenotypes (incidence rate �

0.1% ). Applying this approach to the UK Biobank and the FinnGen study, we 

demonstrated that our method is scalable to the analysis of large biobank-scale 

datasets with � 400,000 subjects.  

Biobanks with genetic data linked to EHR records/survey questionnaires provide 

unprecedented opportunities for genetic association studies on TTE phenotypes to 

identify genetic risk factors that affect the onset and progression of diseases. However, 

biobanks pose challenges to such analysis because of the high computational and 

memory cost required to handle large data sets with extensive population structure and 

relatedness. Moreover, current methods artificially inflate associations when heavily 

censored phenotypes (e.g., censoring rate > 75%) and low frequency variants (MAF < 

1%) are involved. The proposed method, GATE performs a frailty model-based 

association analysis to account for both population structure and relatedness using 

score tests with SPA adjustment, which provides accurate p-values under heavy 

censoring. In addition, it implements several optimization techniques that were 

previously used in the context of linear and logistic mixed models in BOLT-LMM and 

SAIGE to make it computationally feasible to analyze large biobank cohorts. We have 

applied GATE to 871 TTE phenotypes in the UK Biobank data with White British 

ancestry, which were constructed based on PheCodes mapped to ICD codes and have 

at least 500 events. The genome-side summary statistics are available for public to 

download. We have also created a PheWeb43 for users to explore and visualize the 

PheWAS results. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2020.10.31.358234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.31.358234
http://creativecommons.org/licenses/by/4.0/


TTE phenotypes are particularly suited not only for studying disease onsets, but also for 

exploring other progression phenotypes such as times of surgery, recurrence, times of 

onset of secondary phenotypes after an initial diagnosis etc. Previously, the lack of 

scalable GWAS methods for TTE outcomes has hindered such investigations in 

massive scales. By facilitating large-scale GWAS of TTE phenotypes, GATE opens the 

door to such deeper investigations. 

One consideration while analyzing TTE phenotypes is the appropriate choice of the unit 

of time. To assess the impact of time-units on the GWAS results, we performed 

sensitivity analysis using the event and censoring times rounded to the nearest 1 month, 

3 months, 6 months and 12 month time-units for the four exemplary UK Biobank 

phenotypes presented in this paper, and compared the p-values across different time-

units (Supplementary Figure 11). The p-values were very similar across the four time-

units for all phenotypes, with more detailed time-units resulting in slightly more 

significant p-values. 

For the selection of number of markers to construct the GRM, there is a trade-off 

between computation cost and the accuracy of adjusting the sample relatedness. 

Increasing the number of markers (� ) included in the GRM linearly increases the 

computation time and memory requirement of step 1, whereas using too few markers 

may not be sufficient to capture the detailed familial and cryptic relatedness among the 

samples properly57. For the UK Biobank data analysis, we used � � 93,511 LD pruned 

high-quality genotyped markers which were used by the UK Biobank research group for 

estimating kinship among the samples15. We performed a sensitivity analysis (see 

Supplementary Note Section 7) by increasing the number of markers to � � 245,975 

pruned markers with MAF � 0.01. The results (Supplementary Figure 12 and 13) 

showed that the p-values were generally concordant, and the p-values using � �

245,975 markers were slightly larger than the p-values using � � 93,511 markers. 

There are several limitations to GATE. First, similar to other mixed model methods for 

genetic association tests, the computation time required for the algorithms to converge 

in step 1 can vary among different phenotypes and study samples because of the 

difference in heritability and the extent of sample relatedness. Second, GATE uses a 

score statistic-based test without fitting the model under the alternate hypothesis, which 
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can be computationally inefficient. Therefore, it does not provide accurate estimates of 

hazard ratios for the genetic variants. Following a similar approach as in several other 

mixed model-based methods16,17,19,58, GATE provides a hazard ratio estimate using the 

null model parameter estimates (see Supplementary Note Section 5). Third, the 

current implementation of GATE is targeted to perform single-variant association 

analysis, which can suffer from low power to detect associations in extremely rare 

variants. With whole genome and whole exome sequencing data available, a possible 

future extension of this method can allow for mask-based or region-based association 

tests to improve power for the rare variants56,59. Finally, the current version of GATE 

does not incorporate left-truncated data, which may not be valid for early-onset 

phenotypes in biobanks with relatively older participants. For example, the median age 

of UK Biobank’s participants is 59 years old and the earliest dates of health data 

available are around late 1990s, and assuming no left-censoring can reduce association 

power for early-onset diseases. The next work will extend GATE to allows for left-

truncated phenotypes. In summary, we have proposed a scalable and accurate method, 

GATE, to perform genome-wide PheWAS of TTE phenotypes on large biobank cohorts 

accounting for population structure, sample relatedness and heavy censoring. We 

demonstrated that it is possible to efficiently analyze the current largest biobank (UK 

Biobank) of � 400,000  subjects using GATE. Our method facilitates biobank-based 

PheWAS of TTE phenotypes which ultimately contributes towards identifying genetic 

components that affect the onset and progression of complex diseases. 

 

URLs 

 

GATE is implemented as an open-source R package available at 

https://github.com/weizhou0/GATE. The GWAS results for 871 time-to-event phenotypes 

in UK Biobank using GATE are currently available for public download at 

http://gate.genohub.org/. Manhattan plots, Q-Q plots, and regional association plots for 

each TTE phenotype as well as the PheWAS plots can be browsed at 

http://phewas.genohub.org/. The FAVOR56 portal is accessed through 

favor.genohub.org. 
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Figures 

 

Figure 1: Projected computation time (A) and memory usage (B) for GATE and COXMEG-Score 

as a function of sample size (N). The numerical data are provided in Supplementary Table 1. 

Benchmarking was performed for the GWAS of lifespan based on randomly subsampled data 

from UK Biobank White British ancestry subjects. Association tests were performed on 200,000 

randomly selected markers with imputation INFO ≥ 0.3, with the filtering criteria of MAC ≥ 20. 

The computation times were projected for testing 46 million variants with INFO ≥ 0.3 and MAC ≥ 

20. The reported run times are medians of five runs, each with randomly sampled subjects with 

different randomization seeds. The x and y axes are plotted in log10 scale. 
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Figure 2: Manhattan plots for GWAS of four time-to-event phenotypes with different censoring 

rates in the UK Biobank data with White British ancestry: GWAS results using GATE-noSPA (A) 

and GATE (B) are shown for ischemic heart disease (PheCode 411, N=407776, censoring 

rate=90.9%), female breast Cancer (PheCode 174.1, N=208160, censoring rate=92.6%), 

glaucoma (PheCode 365, N=398971, censoring rate=98.5%), and Alzheimer’s Disease 

(PheCode 290.11, N=342881, censoring rate=99.8%). 
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Figure 3: Quantile-quantile (QQ) plots for GWAS of four time-to-event phenotypes with different 

censoring rates in the UK Biobank data with White British ancestry: GWAS results using GATE-

noSPA (A) and GATE (B) are shown for ischemic heart disease (PheCode 411, N=407776, 

censoring rate=90.9%), female breast Cancer (PheCode 174.1, N=208160, censoring 

rate=92.6%), glaucoma (PheCode 365, N=398971, censoring rate=98.5%), and Alzheimer’s 

Disease (PheCode 290.11, N=342881, censoring rate=99.8%). QQ plots are color-coded based 

on different minor allele frequency categories. 
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Figure 4: Predicted risk of disease onset over-time by genotypes for loci LPA and CELSR2 for 

ischemic heart disease, FGFR2 and CASC16 for female breast cancer, MYOC and TMCO1 for 

glaucoma, and APOE e4 variant for AD. The red, green and blue lines represent the risk of 

disease onset for alternate allele counts zero, one and two, respectively for a female subject 

born in 1950 (median birth year in the UKBB data) with the top four PC coordinates each set at 

the mean level across the UK Biobank subjects with white British ancestry. 
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Online Methods 

Frailty model for Time-to-event phenotypes. 

Consider a study of � subjects, where for the �-th subject, we observe the data pair 

��� , ���, where �� is a censoring indicator, with �� � 1 if the �-th subject experiences an 

event during the study period, and �� � 0 otherwise, i.e., censored. Let �� denote the 

observed event or censoring time. For the �-th subject, let the � � 1 vector 
� denote the 

covariates, and �� � 0,1,2 denote the minor allele counts for the genetic variant of 

interest. Then, in a frailty model25,28,60, the conditional hazard function of subject � at 

time � given the covariates, genotype and random effect/frailty �� is modeled as 

����|��� � ����� ��� �
��� � ��� � ��� , 
where � and � are the regression coefficients of the covariates 
�  and the genotype �� 
respectively, and ����� is the baseline hazard function at time t, the frailty � � ���, … , ��� 
follows a multivariate normal distribution ��0, ���, with � being the Genetic Related 

Matrix (GRM). Unlike standard generalized linear mixed models, the covariate vector 
� 
in a frailty model does not include the intercept term, instead the baseline hazard ����� 

works as the intercept in a frailty model. We test the null hypothesis of no genetic 

association ��: � � 0 vs ��: � � 0. 

 

Estimating the variance component and other null model parameters (step 1). 

First, the likelihood for the observed event status-time pairs ��� , ��� under the frailty 

model is derived and expressed as a modified Poisson mixed effects model likelihood, 

with the mean function weighted by the cumulative baseline hazard (CBH) function 

����� �  ���!�"!�

�
. The CBH function is estimated by the Breslow’s estimator �#���� as 

a step function. Breslow61 showed that the maximum likelihood approach for the 

proportional hazard model (for unrelated subjects) that leads to the estimator �#����, is 

equivalent to maximizing the partial likelihood proposed by Cox1. In the Supplementary 

Note Section 6, we have shown that the same maximum likelihood approach holds for 

frailty models (related subjects) as well given the random effects. Then, using the 

penalized quasi-likelihood (PQL37) method and the AI-REML38 algorithm, the model 
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parameters under �� are estimated iteratively. To avoid storing large � � � GRMs, 

GATE only calculates the elements of the GRM when they are needed using raw binary 

format genotypes. For scalable computation of quantities of the form $��� that arises in 

the model fitting steps, where $ is a large matrix and � is a vector, GATE uses the PCG 

algorithm39, which has been previously used in BOLT-LMM16 and SAIGE19 to accurately 

compute quantities like % � $��� by solving the linear system of equations $% � �, 

instead of explicitly inverting the large matrix $. 

Once the null model parameters, random effects and cumulative baseline hazard 

functions &�#, �'� , �#�����( have been estimated, GATE estimates the variance ratio from a 

small number of markers. Denote the fitted means by )̂� � �#����� ��� +
���# � �'�, , and 

the weight matrix -. � "�/0�)̂�, … , )̂��. Then the score statistic, under ��: � � 0 is  

1 � ���� 2 )̂� � �3��� 2 )̂�, where � � ���, … , ���, � � ���, … , ���, )̂ � �)̂�, … , )̂��. The 

covariate-and-intercept-adjusted genotypes are denoted by �3 � � 2 
3+
3�-. 
3,��
3��, 

where 
3 � 41 
 5 is the augmented covariate matrix. Then, the variance of the score 

statistic under �� is given by �� � ��6'� � �3�6'�3, where 

6' � 7#�� 2 7#��
+
�7#��
,��
�7#��, 7# � +-. 2 8.,�� � �̂�. The expression of 8. is 

described in detail in the Supplementary Note Section 1.3. Unlike in the GLMMs, the 

term 8. appears in the variance of the score statistic due to the attenuation of 

information (additional variability) for estimating ������s. The variance ratio is then 

calculated as 9̂ � 	
���	


	
�
�	

. GATE calculates the variance ratio based on 30 randomly 

selected genotyped markers with MAC : 20 and computes the coefficient of variation 

(CV). If the CV of the variance ratios is smaller than 0.001, then the mean of the 

variance ratios is selected as 9̂, otherwise more markers are selected at an increment of 

10 markers, and the CV is recalculated until the CV becomes smaller than 0.001. 

Score test using SPA. 

Using the estimated variance ratio  9̂, the variance-adjusted test statistic can be 

calculated as 1��� �  �3��� 2 )̂�/<9̂�3�-. �3 , which under the null hypothesis has mean 

zero and variance unity. The traditional score test then assumes asymptotic normality of 

the score statistic 1 (and thus 1��� as well) under ��, to calculate the p-value. However, 
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observations have been made before in the context of logistic mixed models that the 

asymptotic normality assumption of the score test statistic leads to severe Type I error 

inflation for low-frequency and rare variants when the case-control ratio is unbalanced19. 

We make the same observations in frailty models as well when the censoring rate is 

high. In order to provide well calibrated p-values in such situations, we used saddle 

point approximation (SPA) to approximate the null distribution of the score statistic, 

which has been shown to have better approximation error bounds compared to the 

normal approximation34,36,62,63, especially at the extremely small tail probability region of 

= � 5 � 10��. Contrary to the normal approximation which only utilizes the first two 

moments only to approximate, SPA utilizes the entire moment generating function 

(MGF). In fact, it uses the cumulant generating function (CGF), i.e., is the logarithm of 

the MGF, which for the frailty model, based on the modified Poisson mixed model 

likelihood, can be derived as ?�@� � ∑ )̂���	
��� 2 �3�B@ 2 1� �
��� , where B � +9̂�3�-. �3,��/�. 

Then, the distribution of 1��� can be calculated based on the SPA by C9+1��� D E,  F
G HI � �

�
JK0 &�

�
( L, and the p-value is given by � � C9+1��� D 2|E|,  � C9+1��� M |E|, , 

where 1��� � E is the observed adjusted score statistic, I � E�0N+@#,O2 &@#E 2 ?+@#,(, 

P � �̂O?��+@#,, @# is the solution to the equation ?�+@#, � E, and ?��@� and ?���@� are the 

first and second derivatives of the CGF ?�@�, respectively. 

Since the normal approximation works well around the mean, we use the normal 

approximation when 1��� is less than two standard deviations away from the mean for 

faster computation. In addition, a faster version of the SPA similar to Dey et al.34 is also 

implemented which reduces the computation time even further, from Q��� to Q����, 
where �� is the number of minor allele carriers.  

 

Data Simulation. 

We carried out a series of simulations to evaluate the performance of GATE, including 

the type I error rates and power. To evaluate whether GATE can control type I error 

rates in presence of sample relatedness, we randomly simulated a set of 1,000,000 

base-pair “pseudo” sequences, in which variants are independent to each other. Alleles 
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for each variant were randomly drawn from Binomial(n = 2, p = MAF). Then we 

performed the gene-dropping64 simulation using these sequences as founder 

haplotypes that were propagated through the pedigree of 10 family members shown in 

Supplementary Figure 7. We simulated genotypes of 150,000 genetic variants with 

MAF ≥ 1% for 5,000 independent samples and 500 families based on the pedigree to 

estimate the GRM on-the-fly in Step 1 of GATE and genotypes of 1.9 million genetic 

variants with MAC ≥ 20 for association tests in Step 2. MAFs were randomly sampled 

from the MAF spectrum in UK Biobank imputation data as shown in Supplementary 

Figure 9. For each subject � , the censoring time 1��  was randomly selected from 

exponential distribution with mean 1/ ��  and the underlying failure time 1��  was 

generated from a frailty model with the underlying exponential hazard function  1�� �
����� �!

"#$%�&�!
  , where 8� ~ uniform (0,1) and R�  is the linear predictor. Under the null 

hypothesis of no genetic effects,  R�  �  
���= � �� , where 
� is a covariate that was 

randomly drawn from ��0, 1�, = is the coefficient and is 0.5 and �� is the random effect 

simulated from ��0, τ T�  with τ � 0.1 and 0.25, respectively, which is the variance 

component parameter. The time for subject �  is ��  �  V�N�1��  , 1���  and �� � W+1��  X
 1���.   We selected �, the mean of the exponential hazard function, corresponding to 

different censoring rates  ∑ ��/� �
��� �  50%, 75% and 90%. We repeated the simulation 

for 500 times.  For each phenotype set, a null frailty model was fitted in Step 1 with the 

covariate 
� . In Step 2, we conducted single variant association tests on 1.9 million 

simulated genetic markers.  In totally, about 9.4x108 association tests were conducted. 

We evaluated the empirical type I error rates at the type I error rate α = 1x10-6 and 5x10-

8 as shown in Supplementary Table 4 and Supplementary Figure 8A. These results 

have indicated that GATE can produce well calibrated type I error rates in the presence 

of sample relatedness at the significance level, while GATE-no SPA (similar to 

COXMEG) has inflated type I error rates and inflation gets larger than censoring rates is 

higher (Supplementary Table 4). For example, GATE-no SPA has type I error rate 

8.9x10-6 at α = 5x10-8 when censoring rate is 75% and 2.8x10-5 when censoring rate is 

90% with τ = 0.1.  
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To evaluate whether GATE can control type I error rates in presence of cryptic sample 

relatedness, we have randomly selected � �  10,000 samples with white British 

ancestry from UK Biobank and simulated TTE phenotypes based on the observed 

genotyped of these subjects in the approach described above for pedigree-based data 

sets, except that under the null hypothesis of no genetic effects, R�  �  
���= � ∑ �'���'
���  

and was simulated based on real genotypes of randomly selected L = 30,000 LD-

pruned (r2 < 0.2) markers from the odd chromosomes with MAF ≥ 1%. The real 

genotypes were used for simulating real sample relatedness in the null model. In 

particular,  
�is a covariate that was randomly drawn from ��0, 1�, = is the coefficient 

and is 1,  �()\   is the standardized genotype value for the jth marker of ith subject and � 

is the genetic effect size following ��0, �/]�, where �  = 0.25, which is the variance 

component parameter.  The time for subject �  is ��  �  V�N�1��  , 1���  and �� � W+1��  X
 1���.   We selected �, the mean of the exponential hazard function, corresponding to 

different censoring rates  ∑ ��/� �
��� �  50%, 75% and 90%. We repeated the simulation 

for 100 times.  For each phenotype set, a null frailty model was fitted in Step 1 with 

covariates including the first 4 genetic principal components, which were estimated for 

all White-British participants in the UK Biobank, and 
�. In Step 2, we conducted single 

variant association tests on genetic markers on the even chromosome. In totally, 

8.3x108 were conducted. We evaluated the empirical type I error rates at the type I error 

rate α = 1x10-6 and 5x10-8 as shown in Supplementary Table 5 and Supplementary 

Figure 8B, which suggests that GATE produces well calibrated type I error rates in the 

presence of cryptic relatedness at the corresponding significance levels. 

To evaluate the empirical power of GATE and compare the power to COXMEG, 

phenotypes were generated under the alternative hypothesis for 10,000 samples, which 

contain 500 families and 5,000 independent samples. The family pedigree is shown in 

the Supplementary Figure 7. We simulated 100 datasets with 10 genetic markers with 

different hazard ratios. Power was evaluated at α=5x10-8 with the censoring rate 50% 

for MAF 0.05 and 0.2 as presented in the Supplementary Figure 10.  
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Building the UK Biobank TTE Phenome. 

The time-to-event phenotypes for the UK Biobank were constructed as the disease 

phenotypes defined based on the hierarchical PheCodes40 that represent different 

disease groups. The ICD9 and ICD10 codes were mapped to PheCodes using a 

combination of available maps through the Unified Medical Language System (see 

URLs) and other sources, string matching, and manual review19,40. For each PheCode, 

the subjects who had the PheCode were regarded as having events, and the subjects 

who did not have the PheCode were regarded as censored. For each failed subject, the 

TTE (failure time) was calculated by subtracting the birth year from the earliest time of 

diagnosis of any of the PheCode-specific ICD codes, rounded to the nearest full month. 

To obtain the TTE (censoring time) for each censored subject, the birth year was 

subtracted from the time of the last non-imaging visit to any of the UK Biobank 

ascertainment centers, or the last time any ICD code was recorded for that subject, or 

the time of death if death was recorded during the course of the study, whichever is 

latest, rounded to the nearest full month. For lifespan, the subjects who had their death 

recorded, were assigned the failed status with the ages at death as the corresponding 

TTE, and the subjects who did not have their death recorded were assigned the 

censored status with the TTE defined as before. 

 

FinnGen 

FinnGen is a public-private partnership project combining genotype data from Finnish 

biobanks and digital health record data from Finnish health registries 

(https://www.finngen.fi/en). Release 5 analysis contains 218,792 samples after quality 

control with population outliers excluded via principal component analysis based on 

genetic data. TTE phenotypes were constructed from population registries and ICD10 

codes, and harmonizing definitions over ICD8 and ICD9, including ischemic heart 

disease (N events=30,952, N censored=187838, censoring rate=85.8%), female breast 

cancer (N events=8,401, N censored=114,878, censoring rate=93.2%), glaucoma (N 

events=8,591, N censored=210199, censoring rate=96.1%) and Alzheimer’s disease (N 

events=3,899, N censored = 207,324, censoring rate=98.2%). We conducted genome-
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wide survival analysis using GATE with the first ten genetic PCs, sex, genotyping batch 

and birth year as covariates and 240,000 pruned genetic markers for GRM estimation.  

Patients and control subjects in FinnGen provided informed consent for biobank 

research, based on the Finnish Biobank Act. Alternatively, older research cohorts, 

collected prior the start of FinnGen (in August 2017), were collected based on study-

specific consents and later transferred to the Finnish biobanks after approval by Fimea, 

the National Supervisory Authority for Welfare and Health. Recruitment protocols 

followed the biobank protocols approved by Fimea. The Coordinating Ethics Committee 

of the Hospital District of Helsinki and Uusimaa (HUS) approved the FinnGen study 

protocol Nr HUS/990/2017.  

The FinnGen study is approved by Finnish Institute for Health and Welfare (THL), 

approval number THL/2031/6.02.00/2017, amendments THL/1101/5.05.00/2017, 

THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019, 

THL/1721/5.05.00/2019, Digital and population data service agency VRK43431/2017-3, 

VRK/6909/2018-3, VRK/4415/2019-3 the Social Insurance Institution (KELA) KELA 

58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, and 

Statistics Finland TK-53-1041-17. The Biobank Access Decisions for FinnGen samples 

and data utilized in FinnGen Data Freeze 5 include: THL Biobank BB2017_55, 

BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, 

BB2019_8, BB2019_26, Finnish Red Cross Blood Service Biobank 7.12.2017, Helsinki 

Biobank HUS/359/2017, Auria Biobank AB17-5154, Biobank Borealis of Northern 

Finland_2017_1013,  Biobank of Eastern Finland 1186/2018, Finnish Clinical Biobank 

Tampere MH0004, Central Finland Biobank 1-2017, and Terveystalo Biobank STB 

2018001.  

 

 

Genome build. 

The genomic coordinates reported in this paper were based on NCBI Build 37/UCSC 

hg19. 
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