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Abstract

With decades of electronic health records linked to genetic data, large biobanks provide
unprecedented opportunities for systematically understanding the genetics of the
natural history of complex diseases. Genome-wide survival association analysis can
identify genetic variants associated with ages of onset, disease progression and
lifespan. We developed an efficient and accurate frailty (random effects) model
approach for genome-wide survival association analysis of censored time-to-event (TTE)
phenotypes in large biobanks by accounting for both population structure and
relatedness. Our method utilizes state-of-the-art optimization strategies to reduce the
computational cost. The saddlepoint approximation is used to allow for analysis of
heavily censored phenotypes (>90%) and low frequency variants (down to minor allele
count 20). We demonstrated the performance of our method through extensive
simulation studies and analysis of five TTE phenotypes, including lifespan, with heavy
censoring rates (90.9% to 99.8%) on ~400,000 UK Biobank participants with white
British ancestry and ~180,000 samples in FinnGen, respectively. We further performed
genome-wide association analysis for 871 TTE phenotypes in UK Biobank and
presented the genome-wide scale phenome-wide association (PheWAS) results with
the PheWeb browser.
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Introduction

Survival models, especially the Cox proportional hazard model*, have been widely used
to analyze time-to-event (TTE) outcomes, both in biomedical research®* and in
genome-wide association studies (GWAS)>*. It has been shown that the proportional
hazard model can increase the power to detect genetic variants associated with the
age-of-onset of TTE phenotypes in cohort studies compared to modelling the disease
status using a logistic regression model***. With the availability of detailed time-
stamped diagnosis data from Electronic Health Records (EHR), large biobanks, such as
UK Biobank (UKBB)™ (> 400,000 individuals) and FinnGen (https://www.finngen.fi/en)
( > 200,000 individuals), provide unprecedented opportunities to analyze TTE
phenotypes to unravel the complex genetic architectures of disease onset, progression,
and lifespan. Genome-wide scans of TTE phenotypes in large biobanks can potentially
identify novel genetic variants associated with the onset of human diseases by
leveraging both the disease status and the age-of-onset information.

In GWAS analysis, population structure and sample relatedness are often key factors
that need to be controlled for. Biobank cohorts often have substantial population
structure and relatedness. For example, in the UK Biobank, 91,392 out of 408,582
subjects with White British ancestry have at least one relative (up to 3" degree) in the

data. Several linear*®*® 19,20

and logistic mixed effects models have been developed to
account for relatedness in GWASs for quantitative and binary phenotypes. To account
for related subjects in the proportional hazard model, frailty models, which are mixed
effects survival models, have been proposed?:%, where event times are assumed to be
independent conditional on unobserved random effects called “frailties”. The frailties are
modeled based on the dependence and clustering structure of the observations.
Previous research has extensively studied shared frailty models with Gamma-
distributed frailties™?*?’. However, the shared frailty model is limited in its scope to
model more complicated dependency structures that arise in cohort-based association
studies. To model complicated dependency structures, such as known familial
structures and cryptic relatedness, the multivariate frailty model with Gaussian frailty

28,29
d

was propose , and was later implemented in the R package COXME?, which,

however, lacks scalability for GWASs. Recently the COXME method was further
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improved in COXMEG®, which utilizes several computational optimization strategies to
make it applicable in genetic association studies, but COXMEG still cannot handle
biobank-scale genome-wide datasets. Based on our performance benchmarking, even
for 20,000 subjects, COXMEG requires 3,356 CPU-hours to perform a GWAS of 46
million variants, which means even with perfect parallelization on 30 CPUs, it would
take over 4.6 days to complete the GWAS.

In large-scale GWASS, the score test is particularly useful among different asymptotic
tests, because it requires fitting the model only once under the null hypothesis of no
association®. Score tests have also been implemented in the COXMEG package®.
However, score tests can lead to severe type | error inflation for phenotypes with heavy
censoring, which is extremely common in biobank-based phenotypes. In the UK
Biobank phenome that we built (see ONLINE METHODS), 871 TTE phenotypes have at
least 500 events (cases), out of which 811 phenotypes have censoring rate more than
95%. The inaccuracies of the score test in unbalanced case-control phenotypes have
been previously shown for logistic regression and logistic mixed effects models'®3*%,
and a saddlepoint approximation®* (SPA)-based adjustment has been proposed and
successfully implemented®® to accurately calibrate the p-values in such scenarios.
Recently, the SPACox* method also used SPA to calibrate p-values for time-to-event
phenotypes in unrelated samples. However, the SPACox method does not account for
sample-relatedness. Through simulations, we show similar inaccuracies are also
present in score tests in frailty models for analyzing heavily censored phenotypes.

Here we propose a novel method for genome-wide survival analysis of TTE phenotypes,
which accounts for both population structure and sample relatedness, controls type |
error rates even for phenotypes with extremely heavy censoring, and is scalable for
genome-wide scale PheWASs on biobank-scale data. Our method, Genetic Analysis of
Time-to-Event phenotypes (GATE), transforms the likelihood of a multivariate Gaussian
frailty model to a modified Poisson generalized linear mixed model (GLMM?*?7)
likelihood, employs several state-of-the-art optimization techniques to fit the modified
GLMM under the null hypothesis, and then performs score tests calculated using the
null model for each genetic variant. To obtain well-calibrated p-values for heavily
censored phenotypes, GATE uses the SPA to estimate the null distribution of the score
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statistic instead of the traditionally used normal approximation. Moreover, our method
saves the memory requirement substantially by storing the raw genotypes in binary
format and calculating the elements of the GRM on the fly instead of storing or inverting
a large dimensional GRM.

Through extensive simulations and analysis of TTE phenotypes from the UK Biobank
data of 408,582 subjects with White British ancestry and the FinnGen study, we showed
that GATE is scalable to biobank-scale GWASs of TTE phenotypes with type | error
rates well controlled even for less frequent variants and heavily censored phenotypes.
Benchmarking has shown that GATE can analyze 46 million variants in a GWAS with

408,582 subjects in ~ 14.5 hours using 30 CPUs with peak memory usage under 11 GB.

Results

Overview of Methods

GATE consists of two main steps: 1) Fitting the null frailty model to estimate the
variance component and other model parameters, and 2) performing a score statistic-
based test for association between each genetic variant and the phenotype. Step 1
involves iteratively fitting the null frailty model using similar optimization strategies as
described in GMMAT?® and SAIGE®, such as using the computationally efficient
average information restricted maximum likelihood (AI-REML?**) algorithm for
estimating the variance component, and using pre-conditioned gradient descent (PCG*)
method to solve linear systems to avoid inverting the NxN genetic relatedness matrix
(GRM). GATE computes the elements of the GRM on-the-fly when needed using binary
vectors of raw genotypes, and thus it doesn’t require to supply, store, or invert a pre-
computed GRM, which can be extremely time and memory-consuming for large sample
sizes (N). For example, in UK Biobank data with M = 93,511 markers and N = 408,582
subjects with White British ancestry, the memory requirement drops from 622 GB for
storing a pre-computed GRM in floating point numbers, to only 8.9 GB for storing the
raw genotypes in the binary format.

Step 2 involves scanning the entire genome and testing each variant for association
using the score statistic. Since the overall cost of computing the variance of the score

statistic for all variants is extremely high because it involves operations on the large-
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dimensional GRM, in step 2, GATE uses a variance ratio approximation commonly used
in existing LMM and GLMM-based methods such as GRAMMAR-Gamma®’, BOLT-
LMM™®, fastGWA'®, and SAIGE™. The ratio of the variance of the score statistic with
and without the random effects (and an attenuation factor due to estimating the baseline
hazards) is computed using a subset of genetic markers. Previously, it was shown that
this variance ratio remains approximately constant for variants with MAF > 20 for LMM
and GLMMs. Through analytical derivations and simulation examples, we show this
observation to hold for frailty models as well (Supplementary Note section 3 and
Supplementary Figure 14). Therefore, when performing the genome-wide scan, the
variance of the score statistic is computed without using the GRM and then calibrated
using the variance ratio.

Next, GATE uses the saddlepoint approximation® (SPA) to approximate the null
distribution of score statistics for association tests. SPA-based tests have been
successfully used for logistic regression®* and logistic mixed models®™ and provide more
accurate p-values than traditional score tests under normal approximation for low-
frequency variants when the case-control ratio is unbalanced. In GATE, we have
implemented an efficient SPA-based test for frailty models that is similar to the fastSPA
method in Dey et al.**. Through simulations and real data analysis, we show that SPA
tests provide accurate and calibrated p-values, even for low-frequency variants when
the censoring rate is high to 99%.

Both GATE and COXMEG?*! conduct genetic association tests for TTE phenotypes
using the frailty model. Besides the use of SPA-based tests, GATE uses the variance
ratio approach to approximate the variances of the score statistics, while COXMEG
calculates the variances using the GRM. Using simulation studies, we have shown that
GATE provides consistent association p-values to COXMEG (R? of -log10 P-values >
0.99) for common variants (MAF > 5%) when the censoring rate is 50%
(Supplementary Figure 1A) and has well controlled type | error rates, even for less
frequent variants and phenotypes with heavy censoring rates (Supplementary Figure
1B).
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Computation and Memory costs

To assess the computational performance of GATE and the score test implemented in
the COXMEG package (COXMEG-Score), we randomly sampled subsets of different
sample sizes from 408,582 UK Biobank subjects with White British ancestry. We then
benchmarked association tests for overall lifespan (16,375 events, 389,721 censored)
adjusting for the top four ancestry principal components, birth year and sex using GATE
and COXMEG-Score on 200,000 variants randomly selected from 46 million genetic
variants with imputation info > 0.3 and MAC > 20. In Step 1, 93,511 high-quality
genotyped markers were used for the GRM. The projected overall computation time
(Figure 1 and Supplementary Table 1) for GATE to analyze 46 million variants on
N = 408,582 subjects was 318 CPU-hours, and the actual computation time on a
machine with 30 cores was 14.5 hours. Step 2, which accounts for the majority of the
computation time (95.4% for N = 408,582) requires substantially less memory (peak
memory usage 0.85 GB) than Step 1 (peak memory usage 10.6 GB). However, even for
20,000 subjects, the projected computation time and memory usage for COXMEG-
Score were 3,356 CPU-hours and 32.75 GB, compared to only 34 CPU-hours and 0.74
GB required by GATE, achieving 99% and 97.7% reductions in computation time and
memory, respectively. This means even with perfect parallelization on 30 CPUs,
COXMEG-Score would require 4.6 days to complete the GWAS with only 20,000
subjects. The observations also suggest that the computation time and memory
requirements increase nearly linearly with the sample size for GATE, whereas they

increase quadratically for COXMEG-Score.

Phenome-wide GWAS of time-to-event phenotypes in the UK Biobank data.

We have applied GATE to perform phenome-wide GWAS for 871 UKBB TTE
phenotypes with at least 500 events, adjusting for top four PCs, birth year, and sex
(except for 93 sex-specific phenotypes). The TTE phenotypes were created based on
the International Classification of Disease (ICD) codes version 9 and 10 mapped to the
PheWAS code (PheCode®) definitions (See ONLINE METHODS) as well as their
associated diagnosis dates in the UK Biobank electronic medical records. For each

phenotype, we analyzed approximately 46 million genetic markers imputed from the
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Haplotype Reference Consortium* panel and UK10K* with imputation INFO score
> 0.3 and MAC > 20. Among the 408,582 UK Biobank subjects with White British
ancestry, 91,392 had at least one relative up to third degree™. To account for the
relatedness among the subjects, we used 93,511 high-quality genotyped markers with
MAF > 0.01 to construct the GRM in Step 1. The same set of markers were used by the
UK Biobank research group™ for estimating kinship among the samples because they
are only weakly informative of the ancestry and therefore provide more accurate kinship
estimates. We also performed a sensitivity analysis using a larger set of markers
(245,745) for the four exemplary phenotypes discussed before (See Supplementary
Note Section 7). We further applied SPA-based adjustment of the score test because
to the censoring rates (Supplementary Figure 2) were extremely high for most of the
TTE phenotypes in the UKBB (for example, 811 out of 871 have censoring rate more
than 95%). The summary statistics for all 871 PheCodes analyzed using GATE are
available to download from a public repository (see URL) and browsed in the PheWeb*?
(see URL).

Here we discuss the association results using four phenotypes with different censoring
rates as exemplars: ischemic heart disease (IHD: PheCode 411, N events=36,962, N
censored=370,814, censoring rate=90.9%), female breast cancer (FBC, PheCode 174.1,
N events=15,396, N censored=192,764, censoring rate=92.6%), glaucoma (PheCode
365, N events=6,046, N censored=392,925, censoring rate=98.5%), and Alzheimer’'s
Disease (AD: PheCode 290.11, N events=822, N censored=342,059, censoring
rate=99.8%). The Manhattan and QQ plots for the GWAS of these phenotypes using
GATE with and without SPA are presented in Figure 2 and Figure 3, respectively. The
results demonstrate that not adjusting for SPA greatly inflates the type | errors,
especially for the low frequency variants, whereas the SPA-adjusted method shows well
controlled type | error rates. In total, 114 loci have been identified for the four TTE
phenotypes: 55 for IHD, 37 for FBC, 19 for glaucoma, and 3 for AD. We also applied
GATE to these four phenotypes in the FinnGen study (see ONLINE METHODS) and 81
out of the 114 loci were also tested in the FinnGen study, of which 78 had the same
effect direction in both UKBB and FinnGen. 69 out of the 81 loci were successfully

replicated in FinnGen with p-value < 0.05. The complete list of all significant loci and the
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association results in the UKBB, FinnGen as well as the meta-analysis of the two data
sets are reported in Supplementary Table 2. Overall, 99 out of the 114 significant loci
have been previously reported to be associated with disease risk in case-control studies
to the best of our knowledge. Several loci that are previously well known as associated
with the risk of the diseases have been identified in our study. For example, the loci LPA
and CELSR2 for IHD**, FGFR2* and CASC16*" for breast cancer, MYOC* and
TMCO1* for glaucoma, and APOE e4 variant for AD*°. The age-varying predicted risk
of disease onset based on the GATE method, and the age-varying disease-free
probability by genotypes based on the Kaplan-Meier curve® for the exemplary top hits

were plotted in Figure 4 and Supplementary Figure 3, respectively.

GWAS of lifespan in the FinnGen Study and the UK Biobank

We have also applied GATE to the overall lifespan in the FinnGen study (N events =
15,152, N censored = 203,244), in which the age of death ranges from 7 years old to
106 years old as shown in Supplementary Figure 4. We identified the previously
reported APOE locus for lifespan®? in FinnGen, in which the most significant variant is
the APOE-e4 missense variant rs429358 (MAF = 18.3%, p-value = 1.01 x 107**) and it
is well-known to be associated with lifespan, cardiovascular diseases, stroke, and
Alzheimer's disease®**°. This locus has been replicated in UKBB (N events = 16,375
and N censored = 389,721, see Supplementary Figure 5) with p-value 1.92 x 1075 and
meta-analysis p-value 4.04 x 1077 (Supplementary Table 3 and Supplementary
Figure 6). The top hit in UKBB (rs157592, MAF = 18.7%, p-value = 1.87 x 10~®) had
LD 2 = 0.7 with rs429358 as presented in the Supplementary Table 3. This variant is
in the intergenic region and have no in-silico functions according to the FAVOR
functional annotation online portal® (See URL).

Simulation Studies

We investigated the type | error rates and power of GATE in presence of sample
relatedness using 10,000 simulated samples. Due to computation burden, we used
GATE-noSPA instead of COXMEG-Score for type | error evaluation as Supplementary
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Figure 1C shows the two approaches provide consistent association p-values (R? of -

log10 p-values > 0.99).

The type | error rates of GATE were evaluated based on association tests of 9.4x10°
simulated genetic markers on 10,000 samples, which contain 500 families and 5,000
independent samples. Each family has 10 members, simulated based on the pedigree
shown in Supplementary Figure 7. The variance component parameter 7 is set to be
0.1 and 0.25 (see ONLINE METHODS). The empirical type | error rates at the
significance level a = 1x10° and 5x10°® are shown in the Supplementary Table 4 and
Supplementary Figure 8A. Our simulation results suggest that GATE has well
controlled type | error rates even for low frequency variants (down to MAC = 20) when
the phenotype is heavily censored (90%). However, without SPA, the score tests in
GATE suffer from inflated type | error rates as the case-control ratios become more
unbalanced and the frequency of variants decreases. We also evaluated type | error
rates of GATE in a setting with cryptic sample relatedness by randomly selecting 10,000
UKBB participants with white British ancestry. Phenotypes were simulated using the
real genotypes to mimic the sample relatedness of a real-world dataset, and association
tests were conducted on the imputed genetic markers in the UKBB (see ONLINE
METHODS). Similarly, we observed that the type | error rates were well controlled in
GATE in presence of cryptic sample relatedness with different censoring rates

(Supplementary Table 5, Supplementary Figure 8B and 9).

Next, we evaluated empirical power of GATE at a = 5x10® and compared to the power
of COXMEG-Score. Supplementary Figure 10 shows the power curve by hazard ratios
for variants with MAF 0.05 and 0.2 when 7 =0.25 and the censoring rate = 50%. Both
methods have nearly identical power in all simulation settings. We do not compare their
powers in the presence of heavy censoring, in view of the inflated type | error rate of
COXMEG-Score.

Overall simulation studies show that GATE can control type | error rates even when
censoring rate is high and has similar power for common variants as COXMEG-Score.
In contrast, same as GATE-noSPA, COXMEG suffers type | error inflation and the
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inflation is especially severe with low MAF and heavy censoring (Supplementary
Figure 1B, 1C, 8 and 9).

Discussion

In this paper, we have proposed a novel method to perform scalable genome-wide
survival association analysis of censored TTE phenotypes in large biobanks using an
efficient implementation of the frailty model. Our method can adjust for population
structure and sample relatedness and provide accurate p-values even in extreme cases
of very low frequency variants and heavily censored phenotypes (incidence rate <
0.1%). Applying this approach to the UK Biobank and the FinnGen study, we
demonstrated that our method is scalable to the analysis of large biobank-scale
datasets with > 400,000 subjects.

Biobanks with genetic data linked to EHR records/survey questionnaires provide
unprecedented opportunities for genetic association studies on TTE phenotypes to
identify genetic risk factors that affect the onset and progression of diseases. However,
biobanks pose challenges to such analysis because of the high computational and
memory cost required to handle large data sets with extensive population structure and
relatedness. Moreover, current methods artificially inflate associations when heavily
censored phenotypes (e.g., censoring rate > 75%) and low frequency variants (MAF <
1%) are involved. The proposed method, GATE performs a frailty model-based
association analysis to account for both population structure and relatedness using
score tests with SPA adjustment, which provides accurate p-values under heavy
censoring. In addition, it implements several optimization techniques that were
previously used in the context of linear and logistic mixed models in BOLT-LMM and
SAIGE to make it computationally feasible to analyze large biobank cohorts. We have
applied GATE to 871 TTE phenotypes in the UK Biobank data with White British
ancestry, which were constructed based on PheCodes mapped to ICD codes and have
at least 500 events. The genome-side summary statistics are available for public to
download. We have also created a PheWeb* for users to explore and visualize the
PheWAS results.
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TTE phenotypes are particularly suited not only for studying disease onsets, but also for
exploring other progression phenotypes such as times of surgery, recurrence, times of
onset of secondary phenotypes after an initial diagnosis etc. Previously, the lack of
scalable GWAS methods for TTE outcomes has hindered such investigations in
massive scales. By facilitating large-scale GWAS of TTE phenotypes, GATE opens the
door to such deeper investigations.

One consideration while analyzing TTE phenotypes is the appropriate choice of the unit
of time. To assess the impact of time-units on the GWAS results, we performed
sensitivity analysis using the event and censoring times rounded to the nearest 1 month,
3 months, 6 months and 12 month time-units for the four exemplary UK Biobank
phenotypes presented in this paper, and compared the p-values across different time-
units (Supplementary Figure 11). The p-values were very similar across the four time-
units for all phenotypes, with more detailed time-units resulting in slightly more
significant p-values.

For the selection of number of markers to construct the GRM, there is a trade-off
between computation cost and the accuracy of adjusting the sample relatedness.
Increasing the number of markers (M) included in the GRM linearly increases the
computation time and memory requirement of step 1, whereas using too few markers
may not be sufficient to capture the detailed familial and cryptic relatedness among the
samples properly®’. For the UK Biobank data analysis, we used M = 93,511 LD pruned
high-quality genotyped markers which were used by the UK Biobank research group for
estimating kinship among the samples™. We performed a sensitivity analysis (see
Supplementary Note Section 7) by increasing the number of markers to M = 245,975
pruned markers with MAF > 0.01. The results (Supplementary Figure 12 and 13)
showed that the p-values were generally concordant, and the p-values using M =
245,975 markers were slightly larger than the p-values using M = 93,511 markers.
There are several limitations to GATE. First, similar to other mixed model methods for
genetic association tests, the computation time required for the algorithms to converge
in step 1 can vary among different phenotypes and study samples because of the
difference in heritability and the extent of sample relatedness. Second, GATE uses a

score statistic-based test without fitting the model under the alternate hypothesis, which
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can be computationally inefficient. Therefore, it does not provide accurate estimates of
hazard ratios for the genetic variants. Following a similar approach as in several other
mixed model-based methods*®*"**® GATE provides a hazard ratio estimate using the
null model parameter estimates (see Supplementary Note Section 5). Third, the
current implementation of GATE is targeted to perform single-variant association
analysis, which can suffer from low power to detect associations in extremely rare
variants. With whole genome and whole exome sequencing data available, a possible
future extension of this method can allow for mask-based or region-based association
tests to improve power for the rare variants®*°. Finally, the current version of GATE
does not incorporate left-truncated data, which may not be valid for early-onset
phenotypes in biobanks with relatively older participants. For example, the median age
of UK Biobank’s participants is 59 years old and the earliest dates of health data
available are around late 1990s, and assuming no left-censoring can reduce association
power for early-onset diseases. The next work will extend GATE to allows for left-
truncated phenotypes. In summary, we have proposed a scalable and accurate method,
GATE, to perform genome-wide PheWAS of TTE phenotypes on large biobank cohorts
accounting for population structure, sample relatedness and heavy censoring. We
demonstrated that it is possible to efficiently analyze the current largest biobank (UK
Biobank) of > 400,000 subjects using GATE. Our method facilitates biobank-based
PheWAS of TTE phenotypes which ultimately contributes towards identifying genetic
components that affect the onset and progression of complex diseases.

URLSs

GATE is implemented as an open-source R package available at
https://github.com/wei zhouO/GATE. The GWAS results for 871 time-to-event phenotypes
in UK Biobank using GATE are currently available for public download at
http://gate.genohub.org/. Manhattan plots, Q-Q plots, and regional association plots for
each TTE phenotype as well as the PheWAS plots can be browsed at
http://[phewas.genohub.org/.  The FAVOR® portal is accessed through

favor.genohub.org.
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Figures

Figure 1: Projected computation time (A) and memory usage (B) for GATE and COXMEG-Score
as a function of sample size (N). The numerical data are provided in Supplementary Table 1.
Benchmarking was performed for the GWAS of lifespan based on randomly subsampled data

from UK Biobank White British ancestry subjects. Association tests were performed on 200,000
randomly selected markers with imputation INFO = 0.3, with the filtering criteria of MAC = 20.
The computation times were projected for testing 46 million variants with INFO =0.3 and MAC =

20. The reported run times are medians of five runs, each with randomly sampled subjects with

different randomization seeds. The x and y axes are plotted in log10 scale.
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Figure 2: Manhattan plots for GWAS of four time-to-event phenotypes with different censoring
rates in the UK Biobank data with White British ancestry: GWAS results using GATE-noSPA (A)
and GATE (B) are shown for ischemic heart disease (PheCode 411, N=407776, censoring
rate=90.9%), female breast Cancer (PheCode 174.1, N=208160, censoring rate=92.6%),
glaucoma (PheCode 365, N=398971, censoring rate=98.5%), and Alzheimer’s Disease
(PheCode 290.11, N=342881, censoring rate=99.8%).
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Figure 3: Quantile-quantile (QQ) plots for GWAS of four time-to-event phenotypes with different
censoring rates in the UK Biobank data with White British ancestry: GWAS results using GATE-
noSPA (A) and GATE (B) are shown for ischemic heart disease (PheCode 411, N=407776,
censoring rate=90.9%), female breast Cancer (PheCode 174.1, N=208160, censoring
rate=92.6%), glaucoma (PheCode 365, N=398971, censoring rate=98.5%), and Alzheimer’s

Disease (PheCode 290.11, N=342881, censoring rate=99.8%). QQ plots are color-coded based
on different minor allele frequency categories.
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Figure 4: Predicted risk of disease onset over-time by genotypes for loci LPA and CELSR2 for
ischemic heart disease, FGFR2 and CASC16 for female breast cancer, MYOC and TMCO1 for
glaucoma, and APOE e4 variant for AD. The red, green and blue lines represent the risk of
disease onset for alternate allele counts zero, one and two, respectively for a female subject
born in 1950 (median birth year in the UKBB data) with the top four PC coordinates each set at

the mean level across the UK Biobank subjects with white British ancestry.
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Online Methods
Frailty model for Time-to-event phenotypes.
Consider a study of N subjects, where for the i-th subject, we observe the data pair
(6;,t;), where §; is a censoring indicator, with §; = 1 if the i-th subject experiences an
event during the study period, and §; = 0 otherwise, i.e., censored. Let t; denote the
observed event or censoring time. For the i-th subject, let the p x 1 vector X; denote the
covariates, and G; = 0,1,2 denote the minor allele counts for the genetic variant of
interest. Then, in a frailty model>?®%, the conditional hazard function of subject i at
time t given the covariates, genotype and random effect/frailty b; is modeled as

A(tlb) = Ao (t) exp (X + Gy + by)
where f and y are the regression coefficients of the covariates X; and the genotype G;
respectively, and A,(t) is the baseline hazard function at time t, the frailty b = (b, ..., by)
follows a multivariate normal distribution N (0, V), with V being the Genetic Related
Matrix (GRM). Unlike standard generalized linear mixed models, the covariate vector X;
in a frailty model does not include the intercept term, instead the baseline hazard A,(t)
works as the intercept in a frailty model. We test the null hypothesis of no genetic

association Hy:y =0 vs H;:y # 0.

Estimating the variance component and other null model parameters (step 1).

First, the likelihood for the observed event status-time pairs (§;, t;) under the frailty
model is derived and expressed as a modified Poisson mixed effects model likelihood,
with the mean function weighted by the cumulative baseline hazard (CBH) function

A(t) = fot Ao(w)du. The CBH function is estimated by the Breslow’s estimator A,(t) as

a step function. Breslow® showed that the maximum likelihood approach for the
proportional hazard model (for unrelated subjects) that leads to the estimator A,(t), is
equivalent to maximizing the partial likelihood proposed by Cox*. In the Supplementary
Note Section 6, we have shown that the same maximum likelihood approach holds for
frailty models (related subjects) as well given the random effects. Then, using the
penalized quasi-likelihood (PQL*") method and the AI-REML®* algorithm, the model
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parameters under H, are estimated iteratively. To avoid storing large N X N GRMs,
GATE only calculates the elements of the GRM when they are needed using raw binary
format genotypes. For scalable computation of quantities of the form A~'x that arises in
the model fitting steps, where A is a large matrix and x is a vector, GATE uses the PCG
algorithm®®, which has been previously used in BOLT-LMM*® and SAIGE® to accurately
compute quantities like y = A~'x by solving the linear system of equations Ay = x,
instead of explicitly inverting the large matrix A.

Once the null model parameters, random effects and cumulative baseline hazard

functions (ﬁ’ b;, A, (tl-)) have been estimated, GATE estimates the variance ratio from a

small number of markers. Denote the fitted means by 2; = 4,(¢t;) exp (X;' B + b;) , and
the weight matrix W = diag(f,, ..., fiy)- Then the score statistic, under Hy:y = 0 is
T=G"(§—[)=G"(6 — ), where G = (Gy, ...,Gy), 8 = (84, ., 6y, 4 = (fy, ..., Ay). The
covariate-and-intercept-adjusted genotypes are denoted by G = G — X(X TVT/)?)_l)? TG,
where X = [1 X ] is the augmented covariate matrix. Then, the variance of the score
statistic under H, is given by V. = GT0G = GTQG, where

Q=31 —$X(X"831X) " X7$"1, § = (W - U) " +1V. The expression of U is
described in detail in the Supplementary Note Section 1.3. Unlike in the GLMMs, the

term U appears in the variance of the score statistic due to the attenuation of

information (additional variability) for estimating A,(t;)s. The variance ratio is then

T A
calculated as 7 = : M?/C; GATE calculates the variance ratio based on 30 randomly

selected genotyped markers with MAC > 20 and computes the coefficient of variation
(CV). If the CV of the variance ratios is smaller than 0.001, then the mean of the
variance ratios is selected as #, otherwise more markers are selected at an increment of
10 markers, and the CV is recalculated until the CV becomes smaller than 0.001.

Score test using SPA.

Using the estimated variance ratio 7, the variance-adjusted test statistic can be

calculated as T,q; = GT(6 — A)/N#GTWG , which under the null hypothesis has mean
zero and variance unity. The traditional score test then assumes asymptotic normality of

the score statistic T (and thus T,4; as well) under Hy, to calculate the p-value. However,
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observations have been made before in the context of logistic mixed models that the
asymptotic normality assumption of the score test statistic leads to severe Type | error
inflation for low-frequency and rare variants when the case-control ratio is unbalanced™®.
We make the same observations in frailty models as well when the censoring rate is
high. In order to provide well calibrated p-values in such situations, we used saddle
point approximation (SPA) to approximate the null distribution of the score statistic,
which has been shown to have better approximation error bounds compared to the

34366263 ‘agpecially at the extremely small tail probability region of

normal approximation
a =5 x 1078, Contrary to the normal approximation which only utilizes the first two
moments only to approximate, SPA utilizes the entire moment generating function
(MGF). In fact, it uses the cumulant generating function (CGF), i.e., is the logarithm of

the MGF, which for the frailty model, based on the modified Poisson mixed model
likelihood, can be derived as K(§) = ¥V, 4;(e%¢¢ — G;c& — 1), where ¢ = (f@TW§)_1/2.
Then, the distribution of T,;; can be calculated based on the SPA by Pr(T,4; <s) =

@ {w + % log (%) } and the p-value is given by p = Pr(T,q; < —Isl) + Pr(Taa; > Isl),

where T,4; = s is the observed adjusted score statistic, w = sign(é)\lz (?s - K(é))

v=_¢ /K”(f), £ is the solution to the equation K'(§) = s, and K'(¢) and K"’ (¢) are the

first and second derivatives of the CGF K(¢), respectively.
Since the normal approximation works well around the mean, we use the normal
approximation when T,,; is less than two standard deviations away from the mean for

1.3 is also

faster computation. In addition, a faster version of the SPA similar to Dey et a
implemented which reduces the computation time even further, from O(N) to O(N,.),

where N, is the number of minor allele carriers.

Data Simulation.

We carried out a series of simulations to evaluate the performance of GATE, including
the type | error rates and power. To evaluate whether GATE can control type | error
rates in presence of sample relatedness, we randomly simulated a set of 1,000,000

base-pair “pseudo” sequences, in which variants are independent to each other. Alleles
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for each variant were randomly drawn from Binomial(n = 2, p = MAF). Then we
performed the gene-dropping®® simulation using these sequences as founder
haplotypes that were propagated through the pedigree of 10 family members shown in
Supplementary Figure 7. We simulated genotypes of 150,000 genetic variants with
MAF > 1% for 5,000 independent samples and 500 families based on the pedigree to
estimate the GRM on-the-fly in Step 1 of GATE and genotypes of 1.9 million genetic
variants with MAC > 20 for association tests in Step 2. MAFs were randomly sampled
from the MAF spectrum in UK Biobank imputation data as shown in Supplementary
Figure 9. For each subject i, the censoring time T, was randomly selected from
exponential distribution with mean 1/ 4, and the underlying failure time T;; was
generated from a frailty model with the underlying exponential hazard function Ty, =

—-log(Uy)

proea where U; ~ uniform (0,1) and n; is the linear predictor. Under the null

hypothesis of no genetic effects, n; = X, a + b;, where X,is a covariate that was
randomly drawn from N(0, 1), a is the coefficient and is 0.5 and b; is the random effect
simulated from N(0,t ) with Tt =0.1 and 0.25, respectively, which is the variance
component parameter. The time for subject i is t; = min(T,;,Ts;) and §; =I(Tﬁ <
T.;). We selected 4, the mean of the exponential hazard function, corresponding to
different censoring rates Y.\, 8;/N = 50%,75% and 90%. We repeated the simulation
for 500 times. For each phenotype set, a null frailty model was fitted in Step 1 with the
covariate X;. In Step 2, we conducted single variant association tests on 1.9 million
simulated genetic markers. In totally, about 9.4x10° association tests were conducted.
We evaluated the empirical type | error rates at the type | error rate a = 1x10°® and 5x10°
8 as shown in Supplementary Table 4 and Supplementary Figure 8A. These results
have indicated that GATE can produce well calibrated type | error rates in the presence
of sample relatedness at the significance level, while GATE-no SPA (similar to
COXMEG) has inflated type | error rates and inflation gets larger than censoring rates is
higher (Supplementary Table 4). For example, GATE-no SPA has type | error rate
8.9x10° at a = 5x10™® when censoring rate is 75% and 2.8x10™ when censoring rate is
90% with T =0.1.
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To evaluate whether GATE can control type | error rates in presence of cryptic sample
relatedness, we have randomly selected N = 10,000 samples with white British
ancestry from UK Biobank and simulated TTE phenotypes based on the observed
genotyped of these subjects in the approach described above for pedigree-based data
sets, except that under the null hypothesis of no genetic effects, n; = XJia + Z§=1 Gij,B
and was simulated based on real genotypes of randomly selected L = 30,000 LD-
pruned (r2 < 0.2) markers from the odd chromosomes with MAF > 1%. The real
genotypes were used for simulating real sample relatedness in the null model. In
particular, X,is a covariate that was randomly drawn from N(0,1), a is the coefficient
and is 1, E; is the standardized genotype value for the jth marker of ith subject and
is the genetic effect size following N(0,t/L), where t = 0.25, which is the variance
component parameter. The time for subject i is t; = min(T;;,Ts;) and §; = I(Tﬁ <
T.;). We selected 4, the mean of the exponential hazard function, corresponding to
different censoring rates Y.\, 8;/N = 50%,75% and 90%. We repeated the simulation
for 100 times. For each phenotype set, a null frailty model was fitted in Step 1 with
covariates including the first 4 genetic principal components, which were estimated for
all White-British participants in the UK Biobank, and X;. In Step 2, we conducted single
variant association tests on genetic markers on the even chromosome. In totally,
8.3x10° were conducted. We evaluated the empirical type | error rates at the type | error
rate a = 1x10° and 5x10°® as shown in Supplementary Table 5 and Supplementary
Figure 8B, which suggests that GATE produces well calibrated type | error rates in the
presence of cryptic relatedness at the corresponding significance levels.

To evaluate the empirical power of GATE and compare the power to COXMEG,
phenotypes were generated under the alternative hypothesis for 10,000 samples, which
contain 500 families and 5,000 independent samples. The family pedigree is shown in
the Supplementary Figure 7. We simulated 100 datasets with 10 genetic markers with
different hazard ratios. Power was evaluated at a=5x10® with the censoring rate 50%
for MAF 0.05 and 0.2 as presented in the Supplementary Figure 10.
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Building the UK Biobank TTE Phenome.

The time-to-event phenotypes for the UK Biobank were constructed as the disease
phenotypes defined based on the hierarchical PheCodes® that represent different
disease groups. The ICD9 and ICD10 codes were mapped to PheCodes using a
combination of available maps through the Unified Medical Language System (see
URLSs) and other sources, string matching, and manual review'*“°. For each PheCode,
the subjects who had the PheCode were regarded as having events, and the subjects
who did not have the PheCode were regarded as censored. For each failed subject, the
TTE (failure time) was calculated by subtracting the birth year from the earliest time of
diagnosis of any of the PheCode-specific ICD codes, rounded to the nearest full month.
To obtain the TTE (censoring time) for each censored subject, the birth year was
subtracted from the time of the last non-imaging visit to any of the UK Biobank
ascertainment centers, or the last time any ICD code was recorded for that subject, or
the time of death if death was recorded during the course of the study, whichever is
latest, rounded to the nearest full month. For lifespan, the subjects who had their death
recorded, were assigned the failed status with the ages at death as the corresponding
TTE, and the subjects who did not have their death recorded were assigned the
censored status with the TTE defined as before.

FinnGen

FinnGen is a public-private partnership project combining genotype data from Finnish
biobanks and digital health record data from Finnish health registries
(https://www.finngen.fi/en). Release 5 analysis contains 218,792 samples after quality
control with population outliers excluded via principal component analysis based on
genetic data. TTE phenotypes were constructed from population registries and ICD10
codes, and harmonizing definitions over ICD8 and ICD9, including ischemic heart
disease (N events=30,952, N censored=187838, censoring rate=85.8%), female breast
cancer (N events=8,401, N censored=114,878, censoring rate=93.2%), glaucoma (N
events=8,591, N censored=210199, censoring rate=96.1%) and Alzheimer’s disease (N

events=3,899, N censored = 207,324, censoring rate=98.2%). We conducted genome-
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wide survival analysis using GATE with the first ten genetic PCs, sex, genotyping batch
and birth year as covariates and 240,000 pruned genetic markers for GRM estimation.
Patients and control subjects in FinnGen provided informed consent for biobank
research, based on the Finnish Biobank Act. Alternatively, older research cohorts,
collected prior the start of FinnGen (in August 2017), were collected based on study-
specific consents and later transferred to the Finnish biobanks after approval by Fimea,
the National Supervisory Authority for Welfare and Health. Recruitment protocols
followed the biobank protocols approved by Fimea. The Coordinating Ethics Committee
of the Hospital District of Helsinki and Uusimaa (HUS) approved the FinnGen study
protocol Nr HUS/990/2017.

The FinnGen study is approved by Finnish Institute for Health and Welfare (THL),
approval number THL/2031/6.02.00/2017, amendments THL/1101/5.05.00/2017,
THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019,
THL/1721/5.05.00/2019, Digital and population data service agency VRK43431/2017-3,
VRK/6909/2018-3, VRK/4415/2019-3 the Social Insurance Institution (KELA) KELA
58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, and
Statistics Finland TK-53-1041-17. The Biobank Access Decisions for FinnGen samples
and data utilized in FinnGen Data Freeze 5 include: THL Biobank BB2017_55,
BB2017_111, BB2018 19, BB 2018 34, BB 2018 67, BB2018 71, BB2019 7,
BB2019 8, BB2019 26, Finnish Red Cross Blood Service Biobank 7.12.2017, Helsinki
Biobank HUS/359/2017, Auria Biobank AB17-5154, Biobank Borealis of Northern
Finland_2017_1013, Biobank of Eastern Finland 1186/2018, Finnish Clinical Biobank
Tampere MHO0004, Central Finland Biobank 1-2017, and Terveystalo Biobank STB
2018001.

Genome build.
The genomic coordinates reported in this paper were based on NCBI Build 37/UCSC
hg19.


https://doi.org/10.1101/2020.10.31.358234
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.31.358234; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

1. Cox, D.R. Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B
(Methodological) 34, 187-220 (1972).

2. Lee, E. & Go, O. Survival analysis in public health research. Annual Review of Public Health 18,
105-34 (1997).

3. Dg, A, Bl De, S., Sh, L. & Ka, S. Review of survival analyses published in cancer journals. British
Journal of Cancer 72, 511 (1995).

4. Kasza, J., Wraith, D., Lamb, K. & Wolfe, R. Survival analysis of time-to-event data in respiratory
health research studies. Vol. 19 483-492 (2014).

5. He, L. et al. Genome-wide time-to-event analysis on smoking progression stages in a family-
based study. Brain and Behavior 6, nfa-n/a (2016).

6. Phipps, A.l. et al. Common genetic variation and survival after colorectal cancer diagnosis: a
genome-wide analysis. Carcinogenesis 37, 87-95 (2016).

7. lohnson, D.C. et al. Genome-wide association study identifies variation at 6g25.1 associated
with survival in multiple myeloma. Nature Communications 7(2016).

8. Kulminski, A.M. et al. Pleiotropic Associations of Allelic Variants in a 2g22 Region with Risks of
Major Human Diseases and Mortality.(Research Article)(Report). PLoS Genetics 12, 1006314
(2016).

9. Wu, C. et al. Genome-wide association study of survival in patients with pancreatic
adenocarcinoma. Gut 63, 152 (2014).

10. Lee, S. & Lim, H. Review of statistical methods for survival analysis using genomic data.

Genomics & informatics 17, e41-e41 (2019).
11. Bi, W., Fritsche, L.G., Mukherjee, B., Kim, S. & Lee, S. A Fast and Accurate Method for Genome-
Wide Time-to-Event Data Analysis and Its Application to UK Biobank. Am J Hum Genet 107, 222-

233 (2020).

12. Green, M.S. & Symons, M.J. A comparison of the logistic risk function and the proportional
hazards model in prospective epidemiologic studies. Journal of Chronic Diseases 36, 715-723
(1983).

13. Callas, P., Pastides, H. & Hosmer, D. Empirical comparisons of proportional hazards, Poisson, and

logistic regression modeling of occupational cohort data. American Journal of Industrial
Medicine 33, 33-47 (1998).

14. Staley, J.R. et al. A comparison of Cox and logistic regression for use in genome-wide association
studies of cohort and case-cohort design. European journal of human genetics : EJHG 25, 854-
862 (2017).

15. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature
562, 203-209 (2018).

16. Loh, P.R. et al. Efficient Bayesian mixed-model analysis increases association power in large

cohorts. Nat Genet 47, 284-90 (2015).

17. Svishcheva, G.R., Axenovich, T.I., Belonogova, N.M., van Duijn, C.M. & Aulchenko, Y.S. Rapid
variance components-based method for whole-genome association analysis. Nat Genet 44,
1166-70 (2012).

18. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data.
Nature Genetics 51, 1749-2 (2019).


https://doi.org/10.1101/2020.10.31.358234
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.31.358234; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

19. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-
scale genetic association studies. Nat Genet 50, 1335-1341 (2018).

20. Chen, H. et al. Control for Population Structure and Relatedness for Binary Traits in Genetic
Association Studies via Logistic Mixed Models. The American Journal of Human Genetics 98, 653-
666 (2016).

21. Vaupel, J., Manton, K. & Stallard, E. The impact of heterogeneity in individual frailty on the
dynamics of mortality. Demography 16, 439-454 (1979).
22. Hougaard, P. Frailty models for survival data. Lifetime data analysis 1, 255-273 (1995).

23. Clayton, D. & Cuzick, J. Multivariate Generalizations of the Proportional Hazards Model. Journal
of the Royal Statistical Society: Series A (General) 148, 82-108 (1985).
24, Klein, J.P. Semiparametric estimation of random effects using the Cox model based on the EM

algorithm. Biometrics 48, 795-806 (1992).

25. McGilchrist, C.A. REML estimation for survival models with frailty. Biometrics 49, 221-5 (1993).

26. Petersen, J.H., Andersen, P.K. & Gill, R.D. Variance components models for survival data.
Statistica Neerlandica 50, 193-211 (1996).

27. Korsgaard, |.R. & Andersen, A.H. The Additive Genetic Gamma Frailty Model. Scandinavian
Journal of Statistics 25, 225-269 (1998).

28. Ripatti, S. & Palmgren, J. Estimation of multivariate frailty models using penalized partial
likelihood. Biometrics 56, 1016-22 (2000).

29. Therneau, T.M., Grambsch, P.M. & Pankratz, V.S. Penalized Survival Models and Frailty. Journal
of computational and graphical statistics 12, 156-175 (2003).

30. Therneau, T.M. coxme: Mixed Effects Cox Models. (2019).

31. He, L. & Kulminski, A.M. Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset
Traits Using Cox Mixed-Effects Models. Genetics 215, 41-58 (2020).

32. He, L. coxmeg: Cox Mixed-Effects Models for Genome-Wide Association Studies. (2020).

33. Ma, C., Blackwell, T., Boehnke, M., Scott, L.J. & Go, T.D.i. Recommended joint and meta-analysis
strategies for case-control association testing of single low-count variants. Genet Epidemiol 37,
539-50 (2013).

34. Dey, R., Schmidt, E.M., Abecasis, G.R. & Lee, S. A Fast and Accurate Algorithm to Test for Binary
Phenotypes and Its Application to PheWAS. Am J Hum Genet 101, 37-49 (2017).

35. Dey, R. et al. Robust meta-analysis of biobank-based genome-wide association studies with
unbalanced binary phenotypes. Genet Epidemiol 43, 462-476 (2019).

36. Daniels, H.E. Saddlepoint Approximations in Statistics. Ann. Math. Statist. 25, 631-650 (1954).

37. Breslow, N.E. & Clayton, D.G. Approximate Inference in Generalized Linear Mixed Models.
Journal of the American Statistical Association 88, 9-25 (1993).

38. Gilmour, A.R., Thompson, R. & Cullis, B.R. Average Information REML: An Efficient Algorithm for
Variance Parameter Estimation in Linear Mixed Models. Biometrics 51, 1440-1450 (1995).

39. Tsuruta, S., Misztal, |. & Stranden, |. Use of the preconditioned conjugate gradient algorithm as a
generic solver for mixed-model equations in animal breeding applications. J Anim Sci 79, 1166-
72 (2001).

40. Denny, J.C. et al. Systematic comparison of phenome-wide association study of electronic
medical record data and genome-wide association study data. Nat Biotechnol 31, 1102-10
(2013).

41. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nature
Genetics 48, 1279-1283 (2016).

42. Walter, K. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82-
90 (2015).


https://doi.org/10.1101/2020.10.31.358234
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.31.358234; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

43. Gagliano Taliun, S.A. et al. Exploring and visualizing large-scale genetic associations by using
PheWeb. Nature Genetics 52, 550-552 (2020).

44. Nelson, C.P. et al. Association analyses based on false discovery rate implicate new loci for
coronary artery disease. Nature Genetics 49, 1385-1391 (2017).

45, Deloukas, P. et al. Large-scale association analysis identifies new risk loci for coronary artery

disease. Nature genetics 45, 25-33 (2012).

46. Meyer, Kerstin B. et al. Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative
Functional Variants Differentially Bind FOXA1 and E2F1. American journal of human genetics 93,
1046-1060 (2013).

47. Udler, M.S. et al. Fine scale mapping of the breast cancer 16q12 locus. Human molecular
genetics 19, 2507-2515 (2010).

48. Stone, E.M. Identification of a Gene That Causes Primary Open Angle Glaucoma. Science
(American Association for the Advancement of Science) 275, 668-670 (1997).

49, Burdon, K.P. et al. Genome-wide association study identifies susceptibility loci for open angle
glaucoma at TMCO1 and CDKN2B-AS1. Nature genetics 43, 574-578 (2011).

50. Moreno-Grau, S. et al. Genome-wide association analysis of dementia and its clinical

endophenotypes reveal novel loci associated with Alzheimer's disease and three causality
networks: The GR@ACE project. Alzheimers Dement 15, 1333-1347 (2019).

51. Kaplan, E.L. & Meier, P. Nonparametric Estimation from Incomplete Observations, (Springer New
York, 1992).

52. Wolters, F. et al. The impact of APOE genotype on survival: Results of 38,537 participants from
six population-based cohorts (E2-CHARGE). PLoS ONE 14, e0219668 (2019).

53. Rovio, S. et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's
disease. Lancet Neurol 4, 705-11 (2005).

54. Schuit, A.J., Feskens, E.J., Launer, L.J. & Kromhout, D. Physical activity and cognitive decline, the
role of the apolipoprotein e4 allele. Med Sci Sports Exerc 33, 772-7 (2001).

55. Smith, J.C., Nielson, K.A., Woodard, J.L., Seidenberg, M. & Rao, S.M. Physical activity and brain
function in older adults at increased risk for Alzheimer's disease. Brain Sci 3, 54-83 (2013).

56. Li, X. et al. Dynamic incorporation of multiple in silico functional annotations empowers rare
variant association analysis of large whole-genome sequencing studies at scale. Nature Genetics
52, 969-983 (2020).

57. Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M. & Price, A.L. Advantages and pitfalls in the
application of mixed-model association methods. Nature genetics 46, 100-106 (2014).

58. Kang, H.M. et al. Variance component model to account for sample structure in genome-wide
association studies. Nature genetics 42, 348-354 (2010).
59. Wu, Michael C. et al. Rare-Variant Association Testing for Sequencing Data with the Sequence

Kernel Association Test. American journal of human genetics 89, 82-93 (2011).

60. Therneau, T.M., Grambsch, P.M. & SpringerLink (Online service). Modeling Survival Data:
Extending the Cox Model. (Springer New York : Imprint: Springer, New York, NY, 2000).

61. Breslow, N.E. Discussion of the paper by D. R. Cox. Journal of the Royal Statistical Society. Series
B (Methodological) 34, 216-217 (1972).

62. Barndorff-Nielsen, O.E. Approximate Interval Probabilities. Journal of the Royal Statistical
Society. Series B (Methodological) 52, 485-496 (1990).

63. Kuonen, D. Saddlepoint Approximations for Distributions of Quadratic Forms in Normal
Variables. Biometrika 86, 929-935 (1999).

64. Abecasis, G.R., Cherny, S.S., Cookson, W.0. & Cardon, L.R. Merlin—rapid analysis of dense
genetic maps using sparse gene flow trees. Nature genetics 30, 97-101 (2001).


https://doi.org/10.1101/2020.10.31.358234
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.31.358234; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.


https://doi.org/10.1101/2020.10.31.358234
http://creativecommons.org/licenses/by/4.0/

