

1 Molecular mechanisms of LC3-associated phagocytosis in 2 the macrophage response to *Paracoccidioides* spp.

3

4 Getúlio Pereira de Oliveira Júnior^{1,2*}, Herdson Renney de Sousa^{3*}, Kaio César de Melo Gorgo-
5 nha³, Tatiana Karla dos Santos Borges³, Kellyanne Teixeira Rangel², Scott Fabricant³, Fernanda
6 Cristina Koser Gustavo³, Lucas Fraga Friaça³, Angelo Rossi Neto⁴, Fabián Andrés Hurtado⁵, Hugo
7 Costa Paes³, Arturo Casadevall⁶, Ildinete Silva-Pereira⁵, Patrícia Albuquerque⁷, Maria Sueli Soa-
8 res Felipe^{2,5}, André Moraes Nicola^{2,3*}.

9

10 ¹Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard
11 Medical School, Boston, MA, United States.

12 ²Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, DF, Bra-
13 zil.

14 ³Faculty of Medicine, University of Brasília, Brasília, DF, Brazil.

15 ⁴School of Medicine, Catholic University of Brasília, Brasília, DF, Brazil.

16 ⁵Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil.

17 ⁶Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

18 ⁷Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil.

19 *These authors have contributed equally and share first authorship.

20 *Correspondence: amnicola@unb.br

21

22 **Abstract:**

23 Paracoccidiomycosis is a systemic fungal infection that is endemic in Latin America. The etiologic
24 agents are thermodimorphic fungi from the *Paracoccidioides* genus, which are facultative intracellular
25 parasites of macrophages. LC3-associated phagocytosis (LAP), a noncanonical form of autophagy, is
26 important in the immune response to similar pathogens, so we sought to determine the role LAP
27 plays in the macrophage response to *Paracoccidioides* spp. By immunofluorescence, we found that LC3
28 was recruited to phagosomes containing *Paracoccidioides* spp. in both RAW264.7 and J774.16 cell lines
29 and in bone marrow-derived macrophages. Interference with autophagy using RNAi against ATG5
30 reduced the antifungal activity of J774.16 cells, showing that LC3 recruitment is important for proper
31 control of the fungus by macrophages. Finally, we used pharmacological Syk kinase and NAPH oxi-
32 dase inhibitors, which inhibit signalling pathways necessary for macrophage LAP against *Aspergillus*
33 *fumigatus* and *Candida albicans*, to dissect part of the signaling pathways that trigger LAP against *Par-*
34 *acoccidioides* spp. Interestingly, these inhibitors did not decrease LAP against *P. brasiliensis*, possibly
35 due to differences in the fungal cell surface compositions. These observations suggest a potential role
36 for autophagy as target for host-directed paracoccidiomycosis therapies.

37 **Keywords:** Autophagy, LC3 associated phagocytosis (LAP), macrophage, *Para-*
38 *coccidioides brasiliensis*, fluorescence microscopy.

39

40

41 **1. Introduction**

42 The genus *Paracoccidioides* includes several species of thermodimorphic fungi. In nature, it has been
43 isolated from the soil[1] and is commonly found in armadillo burrows[2]. Upon inhalation by hu-
44 mans, *Paracoccidioides* spp. can cause one of the most prevalent systemic mycoses in Latin America –
45 Paracoccidioidomycosis (PCM)[3]. Chronic PCM is characterized by an infection of the respiratory
46 tract, leading to significant morbidity due to lesions in the lung parenchima. Subsequently, the dis-
47 ease can disseminate to other organs and tissues, forming secondary lesions in the mucous mem-
48 branes, skin, lymph nodes and adrenal glands. Acute PCM, on the other hand, is characterized by
49 disseminated proliferation of fungi in the reticulo-endothelial system, with a high fungal burden in
50 lymph nodes and the spleen[4]. In a hyperendemic area, such as Rondônia state, Brazil, the mean
51 annual incidence was 9.4/100,000 people. The mean annual incidence in a Brazilian state with high
52 incidence was 9.4/100,000 people during 1997-2012, with a case-fatality rate of 10.2% and 9.9% dur-
53 ing 2001, and 2002, respectively[5].

54 The clinical course of PCM is associated with a deficient immune cell response modulated by the
55 balance of cytokines released by inflammatory cells in the microenvironment[6]. The presence of *P.*
56 *brasiliensis* stimulates monocytes to release pro- and anti-inflammatory cytokines, which trigger an
57 inflammatory granulomatous response characterized by the accumulation of macrophages and ef-
58 fector cells[7]. Macrophages can act in different ways, depending on the activation state of the mac-
59 rophage. Activated M1 macrophages are pro-inflammatory cells, responsible for phagocytosis and
60 microbe killing. M1 macrophages, activated by IFN-gamma, produce high levels of nitric oxide
61 (NO) and secrete large amounts of IL-12. In contrast, M2 macrophages reside in the tissue and pro-
62 duce high levels of arginase and anti-inflammatory cytokines[8].

63 PCM treatment usually lasts for six months to two years and many drugs are available. The most
64 commonly used drugs are sulfonamides, amphotericin B and azole derivatives[9]. Treatment is
65 time-consuming and often associated with complications and relapse. Drugs may have undesirable
66 side effects, and some of them are expensive, such as liposomal amphotericin B. Occasional re-
67 sistant strains have been reported and the search for more selective and efficient antifungals to treat
68 this and other mycoses continues[10]. Thus, the search for molecular targets involved in host pro-
69 tection against fungal invasion may be a viable alternative to the use of antifungal drugs.

70 Autophagy is an essential process, conserved in all eukaryotes, characterized by the lysosomal deg-
71 radation of cytoplasmic organelles or cytosolic components[11]. It is activated by nutrient depriva-
72 tion, hypoxia, oxidative stress, DNA damage, accumulation of protein aggregates or damaged orga-
73 nelles[12]. In addition to endogenous substrates, autophagy is activated in response to intracellular
74 pathogens and can degrade infectious particles and microbes, having a crucial role in resistance to
75 bacterial, viral and protozoan infection in metazoan organisms[13]. These immune functions of au-
76 tophagy are important against human pathogenic fungi, such as *Aspergillus fumigatus*[14], *Cryptococ-*
77 *cus neoformans* and *Candida albicans*[15], and in the suppression of immune responses to protect
78 hosts from possible collateral damage caused by overly active immunity[16].

79 Autophagy requires autophagy-related genes (ATG) for all steps of the process, from phagophore
80 initiation to fusion of the autophagosome with the lysosome. Among autophagy proteins, the Atg8
81 homolog microtubule-associated protein 1 light chain 3 (LC3) is considered a marker of autophago-
82 some vesicles and participates in a non-canonical autophagy process called LC3 associated phago-
83 cytosis (LAP[17]). More recent evidence shows that in the case of fungi, it appears to be LAP, rather
84 than canonical autophagy, that is triggered in response to these agents[18].

85 Given that the host response to *Paracoccidioides* spp. infection could be targeted for disease preven-
86 tion or therapy, it is important to understand how mammalian hosts respond to *Paracoccidioides* spp.
87 As LAP has been previously shown to be important in response to other fungi, our aim in this work

88 was to determine the molecular mechanisms involved in LC3 associated phagocytosis in the im-
89 mune response to *P. brasiliensis*.

90

91 **2. Materials and Methods**

92 **2.1. Cell lines, fungal strains, and growth conditions**

93 The Pb18 and Pb01 isolates of *P. brasiliensis* and *P. lutzii*, respectively, were maintained in
94 Fava-Netto's medium (1% w/v peptone, 0.5% w/v yeast extract 0.3% w/v proteose peptone, 0.5% w/v
95 beef extract, 0.5% w/v NaCl, 4% w/v glucose, and 1.4% w/v agar, pH 7.2), at 37 °C. Cultures no older
96 than five days from the last passage were used for experiments. For fungicidal activity experiments,
97 fungal CFUs were counted by plating in brain-heart infusion (BHI) agar supplemented with horse
98 serum and *P. brasiliensis* conditioned medium. All these culture conditions are conducive to the yeast
99 phenotype, which we used for all experiments.

100 **2.2. Cell lines**

101 The mouse macrophage cell lines RAW 264.7, and J774.16 were used for the detection of LC3-
102 associated phagocytosis (LAP) *in vitro*. HEK 293T, and J774.16 were used for transfection and trans-
103 duction assays, respectively. Cells were kept in 100-mm Petri dishes with Dulbecco's Modified Ea-
104 gle's Medium (DMEM), supplemented with non-essential amino-acid solution and 10% of fetal bo-
105 vine serum (FBS; Thermo Fisher), and incubated at 37 °C and 5% CO₂.

106 **2.3. Animals and primary cells**

107 C57BL/6 mice mice were bred at the Animal Center of the the University of Brasília Institute of Bio-
108 logical Sciences with food and water *ad libitum*. Bone marrow cells from mice six to twelve weeks
109 old were collected. All procedures were performed in accordance with national and institutional
110 guidelines for animal care and were approved by the university's Institutional Animal Care Use
111 Committee (Proc. UnB Doc 52657/2011). Bone marrow-derived macrophages (BMMs) were gener-
112 ated from bone marrow cells as previously described[19]. Briefly, 2 x 10⁶ bone marrow cells were
113 plated on non-treated 100-mm Petri dishes with RPMI 1640 supplemented with 10% heat-inacti-
114 vated fetal bovine serum (FBS; Thermo Fisher), 50 µg/mL gentamicin, 50 µM 2-mercaptoethanol
115 (Sigma-Aldrich) and 20 ng/mL recombinant GM-CSF (Peprotech). The cultures were incubated for 8
116 days at 37 °C in a humidified 5% CO₂ atmosphere. On day 3, 10 mL of fresh complete medium was
117 added to the culture. Half of the medium was removed at day 6 and new complete medium was
118 added. Attached BMMs were collected on day 8 with TrypLE™ Express (Thermo Fisher).

119 **2.4. Production of ATG5 shRNA lentiviral vectors**

120 For the transfection assay we used TAT, REV, GAG-POL and VSV-G vectors engineered from hu-
121 man immunodeficiency virus 1 (HIV-1) and vesicular stomatitis virus (VSV). Plasmid pLKO.1 was
122 used to clone shRNAs for RNA interference with murine ATG5 as target. Plasmid expansion was
123 performed in thermo-competent *Escherichia coli* (Omnimax T1 cells; Thermo Fisher) in lysogeny
124 broth (LB) with 100 µg/mL ampicillin. Plasmids were purified with the GenElute Plasmid DNA
125 Miniprep Kit (Sigma-Aldrich), quantified using the Qubit fluorometer (Thermo Fisher) and stored
126 at -20 °C.

127 HEK 293T cells were trypsinized and harvested at 90-95% confluence. Cells were reseeded at a con-
128 centration of 3.75 x 10⁵ mL⁻¹ onto a six-well plate containing 2 mL of DMEM +10% FBS per well. A
129 mix containing OptiMEM media, Lipofectamine 2000 (Invitrogen), and the assembly media contain-
130 ing the packing plasmids plus the pLKO.1 vectors encoding each shRNA were added to each well.

131 After six hours of incubation, 2 mL of DMEM + 10% FBS were added to the cells, and the superna-
132 tant was collected after 12 and 24 h. Supernatants were centrifuged at 200 x g for five minutes to re-
133 move dead cells and debris, and the resulting supernatant was centrifuged again at 20.000 x g for 90
134 min at 4 °C. Pellets containing lentivirus were resuspended and stored at -80 °C.

135 **2.5. J774.16 cell transduction with ATG5 shRNA lentivirus**

136 After J774.16 cells reached 95% confluence, they were harvested by trypsinization and counted. They
137 were reseeded onto a 96-well plate containing DMEM + 10% FBS, at 10⁴ cells/well. In the following
138 day, the cell culture medium was exchanged for DMEM + 10% FBS medium supplemented with 8
139 µl/mL hexadimethrine bromide (Polybrene), and 5, 50 or 100 µL of lentivirus harbouring each shRNA
140 were added to the cells. In the next day, the medium was exchanged for DMEM + 10% FBS, and after
141 one more day, transduced cells were selected with puromycin at 0.5 µg/mL (Thermo Fisher). After
142 48 h of selection, untransduced dead cells were removed from the supernatant. For the second round
143 of selection, transduced J774.16 cells were harvested and seeded onto a six-well plate with medium
144 supplemented with puromycin at 5 µg/mL. After reaching confluence, cells were harvested, and total
145 RNA was extracted using Trizol® (Thermo Fisher). RNA was analyzed by electrophoresis with 1%
146 agarose, and gene expression evaluated by qPCR.

147 **2.6. Fungal killing assay**

148 For CFU experiments, stably transduced J774.16 cells were seeded onto a 96-well plate at 2 x 10⁴ cells
149 per well in DMEM supplemented with 10% FBS and activated with murine IFN-γ at 200 U/mL plus
150 LPS at 1 µg/mL. After 24 h of activation and adhesion, the J774.16 cells were co-incubated with *P.*
151 *brasiliensis* suspensions. To prepare these fungal suspensions, *P. brasiliensis* yeast cells were scraped
152 from solid media and suspended in PBS. After vortexing with 2 – 4 mm glass beads for 30 s, large
153 clumps were removed by decanting and the suspension strained through a 40 µm cell strainer. The
154 viable cell density on the resulting suspension was counted in a hemocytometer using the vital dye
155 Phloxine B. J774.16 cells were co-incubated with *P. brasiliensis* for 24 h, with a multiplicity of infection
156 (MOI) of one. After this period, CFUs were counted by plating the same dilution for each well onto
157 BHI agar plates and incubating at 37 °C until colonies appeared (5 to 7 days). Controls included un-
158 transduced J774.16 cells and wells with no macrophages. The experiment was repeated inde-
159 pendently three times in different days, each with four or five wells per condition.

160 **2.7. Co-incubation of macrophages and *Paracoccidioides* spp. for LC3 immunofluorescence**

161 In different experiments, macrophages were either plated onto glass-bottom dishes (Mattek®) or on
162 24-well plates with sterile circular coverslips for 24 h. *P. brasiliensis* yeast cells were harvested from
163 five day old culture plates by scraping the surface of the fungal mat, vortexing the cell chunks in PBS,
164 passing the suspension through a 40-µm cell strainer and measuring cell density in a hemocytometer.
165 Fungal cells were inoculated onto the plated macrophages at a MOI of one. The dishes were incubated
166 for 12 to 24 h at 37 °C in the presence of 5% CO₂ to allow infection. Afterwards, the plates were
167 processed for immunofluorescence as described below. In some experiments, we added the Syk-se-
168 lective tyrosine kinase inhibitor piceatannol (at 10 or 30 µM) (Invivogen, San Diego, CA, catalog #
169 t1rl-pct) or the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI; at 10 or 20 µM)
170 (Sigma-Aldrich, Saint Louis, Missouri, catalog #D2926) to the dishes. Inhibitors were added 10 min
171 before stimulation and remained in culture for the duration of the experiments.

172 **2.8. LC3 immunolocalization**

173 After 12 or 24 hours of infection, the cells were fixed with ice-cold methanol for ten minutes and
174 washed with PBS. After that, they were incubated with a 1% BSA solution in 1X PBS containing pri-
175 mary antibody (rabbit polyclonal IgG against human LC3, 1:1000 dilution, Santa Cruz Biotechnology)

5 of 16

176 for one hour at 37 °C. They were then washed three times with PBS and incubated with the secondary
177 antibody (goat IgG against rabbit IgG conjugated with AlexaFluor® 488, Thermo Fisher Scientific)
178 diluted 1:2000 in the same conditions as the primary one. The cells were afterwards washed three
179 times with PBS and the glass-bottom dishes (or coverslips) were mounted with ProLong Gold Anti-
180 fade Mountant (Thermo Fisher Scientific). Samples were documented in a Zeiss Axio Observer Z1
181 epifluorescence microscope equipped with a 63x NA 1.4 oil immersion objective and a cooled CCD
182 camera. Image stacks were deconvolved with a constrained iterative algorithm on Zeiss ZEN and
183 then processed on ImageJ and Adobe Photoshop. No non-linear modifications were made.

184 **2.9. Statistical analysis**

185 For ATG5 knockdown, ANOVA and Dunnett's multiple comparison pos-hoc tests were performed
186 on Graphpad Prism. For LAP quantitative analysis, a Fisher's exact test was performed to compare
187 proportions of fungi on LC3-positive vacuoles on Graphpad Prism. For CFU analysis, a mixed-anal-
188 ysis ANOVA was used, with shRNA as a fixed effect and replicate as a random factor. Pairwise
189 comparisons were made using Tukey's HSD to correct for multiple comparisons. Analysis was per-
190 formed in R using the MultComp package[20].

191

192 **3. Results**

193 **3.1. LC3 is recruited to phagosomes containing *Paracoccidioides* spp. in murine macrophages**

194 To test whether macrophages use LAP against *Paracoccidioides* spp., we performed LC3 im-
195 munofluorescence experiments with different types of macrophages that had been infected with the
196 fungus. Controls for autofluorescence and non-specific secondary antibody binding were negative
197 (**Figure S1**). LC3 was detected in vacuoles containing *Paracoccidioides* spp. cells in all tested macro-
198 phages (RAW264.7, J774.16, and BMM) that had been incubated with *P. brasiliensis* or *P. lutzii* for 12
199 or 24 hours (**Figure 1A-C**). These experiments showed that LC3 recruitment does not occur in all
200 vacuoles containing *Paracoccidioides* spp., suggesting that this process might take more time for com-
201 pletion or that macrophages do not use LAP against all internalized fungi. Furthermore, we fre-
202 quently observed LC3 recruitment around daughter but not mother cells (**Figure 1B**). Interestingly,
203 we also detected LC3 around apparently extracellular *Paracoccidioides* spp. cells.

204

205 **3.2. LAP is important in the murine macrophage response to *P. brasiliensis***

206 After confirming the occurrence of LAP in murine macrophages incubated with *Paracoccidi-
207 oides* spp., we performed a loss-of-function experiment by knocking down the ATG5 gene in J774.16
208 macrophages. For that purpose, we produced five different lentiviral vectors containing different
209 shRNAs against ATG5. J774.16 cells were transduced with lentiviral particles and knockdown levels
210 of ATG5 were determined by quantitative PCR. The ATG5 knockdown efficacy varied greatly among
211 the vectors. Two (A, and B) were the most efficient in knocking the gene down, especially in the
212 lowest amount used (5 µL). Vectors A and B reduced ATG5 gene expression by approximately 97%
213 relative to the negative control EGFP shRNA (**Figure 2A**). Next, ATG5-silenced J774.16 cells were
214 incubated with *P. brasiliensis* and a fungal killing assay (CFU) was performed. When compared to the
215 EGFP control or non-transduced J774.16 cells, the fungal killing assay showed that ATG5 knockdown
216 significantly increased the survival of *P. brasiliensis* in macrophages (**Figure 2B**).

217

218 **3.3. Macrophages use a different mechanism to trigger LAP against *Paracoccidioides* spp. in com-**
219 **parison with *C. albicans***

220 The molecular mechanism of macrophage LAP against *C. albicans* and *Aspergillus fumigatus* has been
221 previously determined[21,22]. Two key steps in this mechanism are dependent on the Syk kinase
222 and the NADPH oxidase complex. To test if the same happened in macrophages infected with *Para-*
223 *coccidioides* spp., we used pharmacological inhibitors to block these well-described components of
224 autophagy pathways. Surprisingly, the inhibition of Syk by piceatannol led to a dose-dependent in-
225 crease in LC3-positive phagosomes containing *P. brasiliensis*, whereas inhibition of NADPH oxidase
226 by diphenyleneiodonium chloride (DPI) did not affect LAP (**Figure 3 and Table 1**). As a control, we
227 used the same inhibitors in macrophages infected with *C. albicans*. As described previously in the
228 literature[21], inhibition of Syk or NADPH oxidase in *C. albicans* leads to a decrease in LAP in
229 BMMs (**Figure S2 and Table 1**).

230

231 **4. Discussion**

232 About 1.5 million people die every year from systemic fungal infections[23]. Most of these
233 diseases can only be treated with a small number of drugs, which are often toxic, expensive or take a
234 long time to be effective. This is especially true for paracoccidioidomycosis, which in less severe cases
235 are usually treated with sulfonamides for 12 – 24 months and in more severe cases is treated with the
236 nephrotoxic amphotericin B or its expensive lipid formulations[24]. Even when therapy successfully
237 clears the fungal infection, as many as 40% of the patients have fibrotic sequelae as a result of pul-
238 monary inflammation[25,26]. Thus, host-targeted therapies that modulate the antifungal immune re-
239 sponse have a great potential in the therapy of PCM and other systemic mycoses. Our results suggest
240 that LAP might be one such possible target for host-directed therapies.

241 LAP is a form of non-canonical autophagy and plays important roles in the macrophage im-
242 mune response against microbes[27], including fungi[28]. It has been studied in the macrophage re-
243 sponse to *Histoplasma capsulatum*[29,30], *C. albicans*[15,31], *C. neoformans*[15,32], *Aspergillus fumi-*
244 *gatus*[14,22] and *Saccharomyces cerevisiae*-derived zymosan[33]. Our results show that LAP is also used
245 by different types of immortalized and primary murine macrophages against two species of the ge-
246 nus *Paracoccidioides*. LC3 accumulated differently around buds and mother cells and was only found
247 in part of the phagosomes containing *Paracoccidioides* spp. cells, which could suggest these fungi
248 might evade LAP. Such immune evasion has been observed in macrophages interacting with *A. fu-*
249 *migatus*, which use an outer layer of melanin to shield cell wall PAMPs from recognition by receptors
250 that trigger LAP[14].

251 This interpretation is also compatible with our findings with Syk kinase and NADPH oxidase
252 inhibitors. In macrophages that have ingested *C. albicans*[31], *A. fumigatus*[22] or *H. capsulatum*[29],
253 LC3 recruitment to phagosomes initiates after Dectin-1 recognition of β -glucans, followed by Syk
254 activation and NADPH oxidase-dependent generation of reactive oxygen species. On the other hand,
255 LAP has been found to be triggered by other pattern recognition receptors such as TLR2 [33] or even
256 phagocytic receptors such as those for Fc γ [34] or complement[35]. These different LAP pathways
257 may explain our observation of the opposing LAP effects of Syk and NADPH inhibitors in macro-
258 phages challenged with *P. brasiliensis* or *C. albicans*.

259 Our fungal killing assays with ATG5 shRNAs suggest the recruitment of LC3 to phagosomes
260 containing *Paracoccidioides* spp. seems to play a role in their proper antifungal activity. The absolute
261 differences in CFUs between control and ATG5-knockdown cells were not very large (16.8% for clone
262 A and 29.7% for clone B, in comparison with the EGFP control). However, these small differences
263 might be due to the overall limited antifungal effect of J774.16 cells, as indicated by the fact that the

7 of 16

264 EGFP control cells themselves only reduced the CFU counts by 31.3% in comparison with the wells
265 that contained fungi without macrophages. This host-protective role of autophagy *in vitro* is con-
266 sistent with results our group has obtained in an unrelated project (manuscript submitted). In that
267 work, we tested if there were differences in LAP between dendritic cells obtained from two mouse
268 strains, one of which resistant and the other susceptible to *P. brasiliensis* infection. The percentage of
269 LC3-positive phagosomes was higher in the resistant strain, which constitutes indirect evidence that
270 LAP might play a role in murine infections.

271 Despite the congruent evidence from our experiments *in vitro* and those with macrophages
272 and dendritic cells from susceptible and resistant mouse strains our group has done (manuscript
273 submitted), care is warranted in reaching strong conclusions regarding macrophage LAP in immu-
274 nity to *Paracoccidioides* spp. In macrophages infected with the closely related *H. capsulatum*, LAP is
275 actually detrimental to the host and exploited by the fungus to survive[30]. Moreover, the literature
276 on antifungal LAP in macrophages is ripe with apparent contradictions that highlight how complex
277 this mechanism is. In macrophages infected with *C. neoformans* *in vitro*, for instance, we found that
278 LAP was host-protective[15] but another group found it benefitted the pathogen[32,36]. In invasive
279 candidiasis models, we[15] and others[16,21,37] found that autophagy was host-protective, whereas
280 other experiments showed it was not necessary for proper responses to *C. albicans*[38]. As further
281 experiments with *Paracoccidioides* spp. and other fungi uncover more details on the mechanism that
282 triggers LAP and its role on immune effector functions, we might be able to rely on a new generation
283 of specific autophagy modulating compounds[39-42] for host-directed therapy in paracoccidioido-
284 mycosis.

285

286 **Author Contributions:** Conceptualization: A.M.N., A.C. and P.A.; writing—original draft preparation: G.P.O.J.,
287 H.R.S., K.C.M.G. and A.M.N; supervision: A.M.N., I.S.P. and M.S.S.F.; cell lines, and fungal strains maintenance:
288 H.C.P., I.S.P., P.A., M.S.S.F. and A.M.N.; production of ATG5 shRNA lentiviral vectors, transduction, transfec-
289 tion, and fungal killing assay: K.C.M.G., T.K.S.B., K.T.R., S.F., F.C.K.G., L.F.F., A.R.N. and H.C.P.; BMM produc-
290 tion: F.A.H.; co-incubation of macrophages and *Paracoccidioides* spp. for LC3 immunofluorescence: G.P.O.J. and
291 H.R.S.; LC3 immunolocalization: G.P.O.J., H.R.S., K.T.R. and F.C.K.G.; Statistical analysis of the data: G.P.O.J.,
292 H.R.S., S.F. and A.M.N.; Review: H.C.P., I.S.P., P.A. and M.S.S.F.; Funding acquisition: A.M.N., I.S.P., A.C. and
293 M.S.S.F. All authors have read and agreed to the published version of the manuscript.

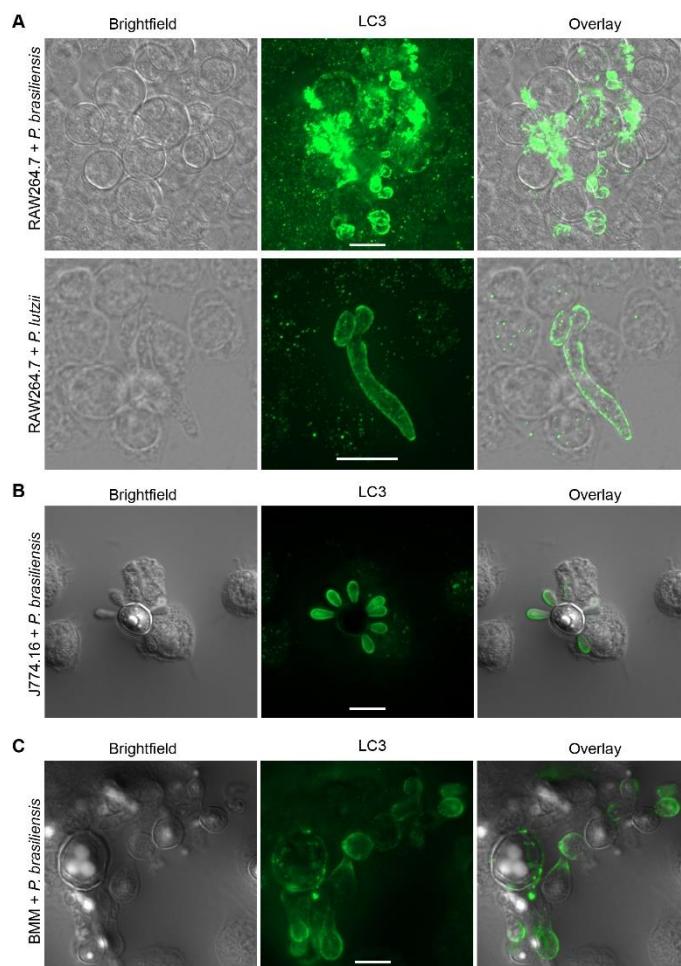
294

295 **Funding:** A.M.N was funded by FAP-DF awards 0193.001048/2015-0193.001561/2017 and the CNPq grant
296 437484/2018-1. M.S.S.F was supported by FAP-DF/PRONEX award 193.001.533/2016. G.P.J. was supported by a
297 scholarship from Capes – number 150510/2017-9.

298

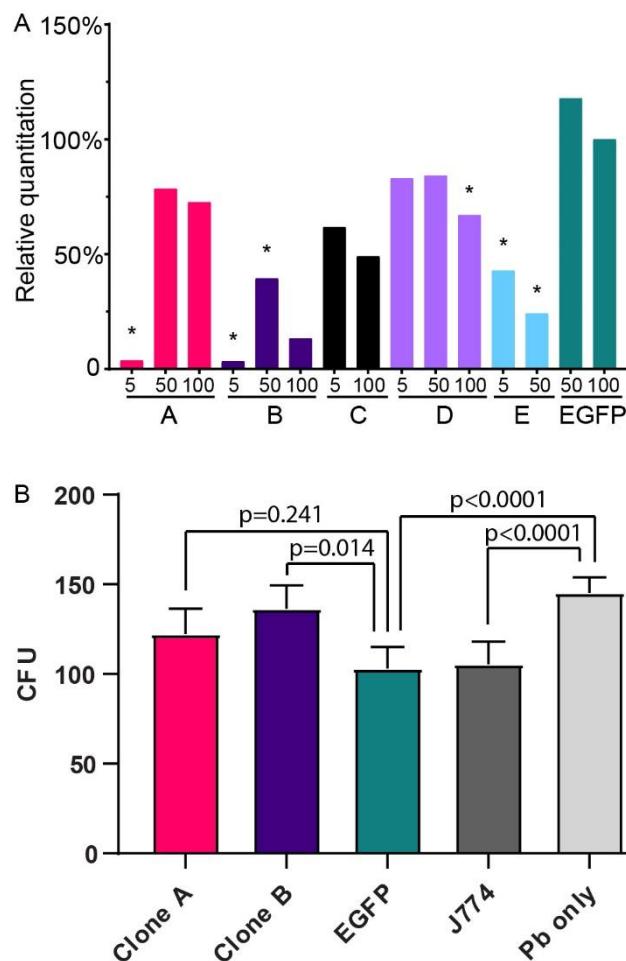
299 **Acknowledgments:** The authors would like to thank John Reidhaar-Olson, from the Albert Einstein College of
300 Medicine shRNA Core Facility, for the assistance with shRNA experiments.

301


302 **Conflicts of Interest:** The authors declare that they have no conflicts of interest.

303

304


305

306 **Figures**

308 **Figure 1 – LC3 associated phagocytosis (LAP) is activated in murine macrophages against *Paracoccidioides*
309 spp. (A) LAP was detected after 24 h in RAW264.7 incubated with *P. brasiliensis* and *P. lutzii*. (B) The same
310 phenomenon was confirmed after 12 h of the *P. brasiliensis* interaction with J774.16 and (C) bone marrow derived
311 macrophages (BMM), scale bars: 10 μ m. Experiments were repeated at least twice in different days and had
312 similar results.**

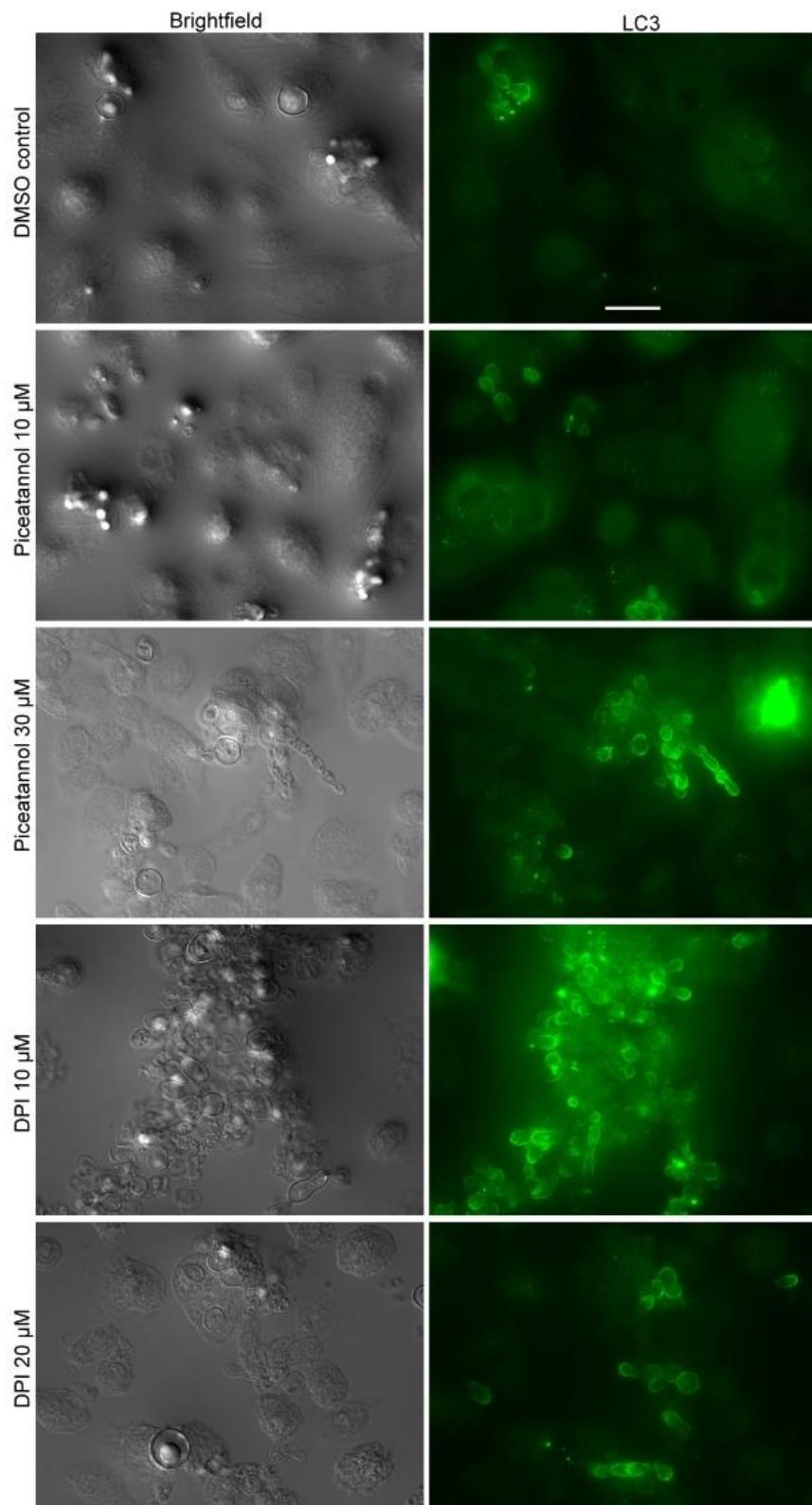
313

314

315 **Figure 2 – LC3 associated phagocytosis (LAP) is important for the death of *P. brasiliensis* phagocytized by**

316 *J774.16* murine macrophages. (A) Five microlitres of lentiviruses A and B knocked down ATG5 expression by

317 approximately 97% in *J774.16* relative to the scrambled EGFP knockdown controls, as measured by real-time


318 RT-PCR. Numbers on the X axis represent the volume of each lentiviral vector used in transduction. * represents

319 $p < 0.05$ compared to the scramble EGFP (ANOVA and Dunnet multiple comparison pos-hoc test). (B) Fungal

320 killing assay showing that ATG5 knockdown significantly increased the survival of *P. brasiliensis* (Pb) in macro-

321 phages, p-value from mixed-analysis ANOVA and Tukey's HSD multiple comparison pos-hoc test.

322

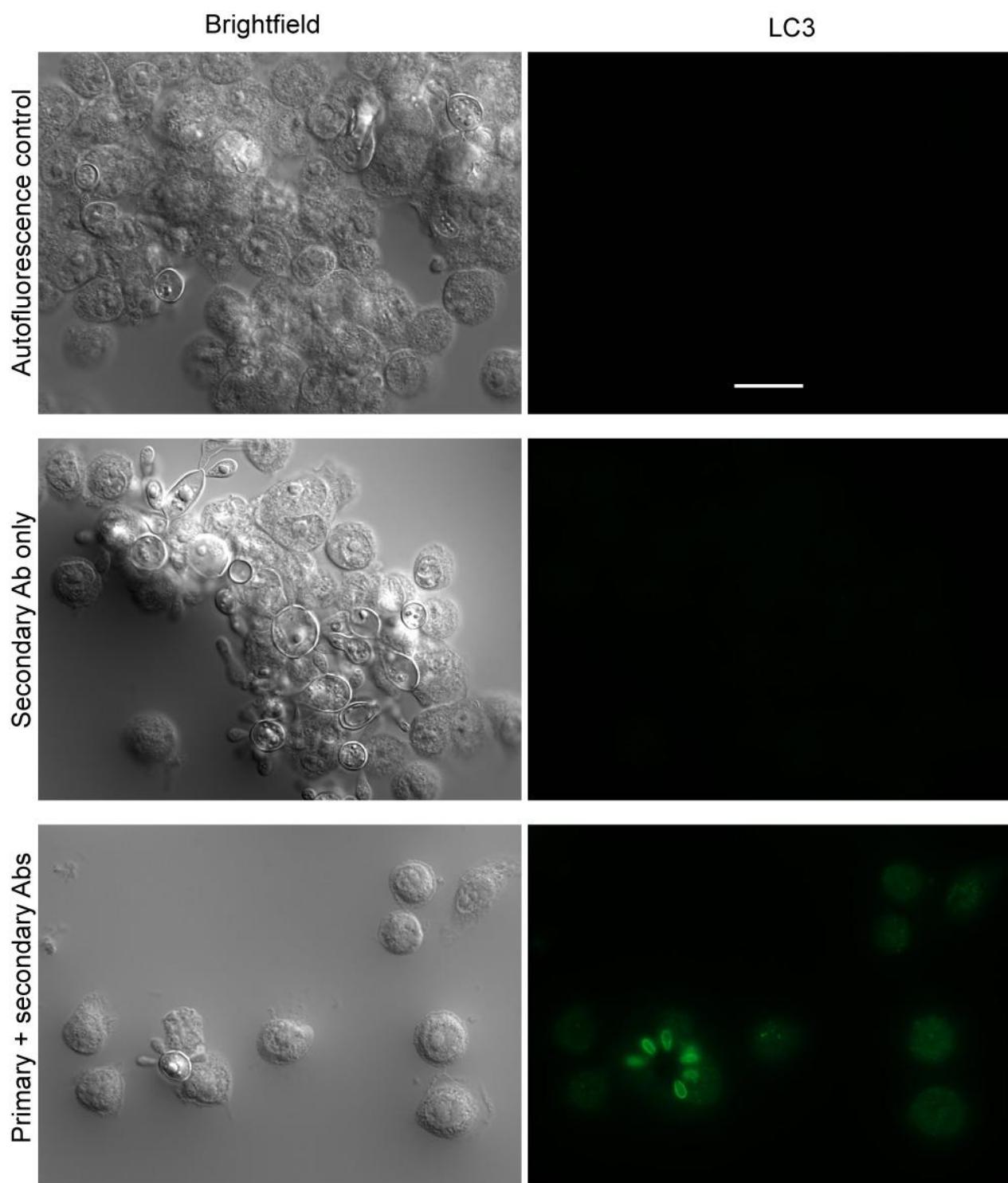
323

324 **Figure 3 – Effect of Syk and NADPH oxidase inhibition on bone marrow derived macrophages (BMM) LAP**
325 **against *P. brasiliensis*.** Piceatannol (10, 30 μ M) and diphenyleneiodonium chloride (DPI) (10, 20 μ M) were used
326 to inhibit Syk and NADPH oxidase, respectively. Syk inhibition led to a dose-dependent increase in LAP,
327 whereas NADPH oxidase inhibition did not seem to affect LAP. Scale bar: 20 μ m.
328

329 **Table 1. Recruitment of LC3 to vacuoles containing *P. brasiliensis* and *C. albicans* in primary macrophages.**
330 BMMs were infected with either fungi in the presence or absence of Syk and NADPH oxidase inhibitors and
331 processed for immunofluorescence microscopy as shown in Figure 3. The total number of ingested fungi and
332 the number of fungi on LC3-positive vacuoles was then counted.

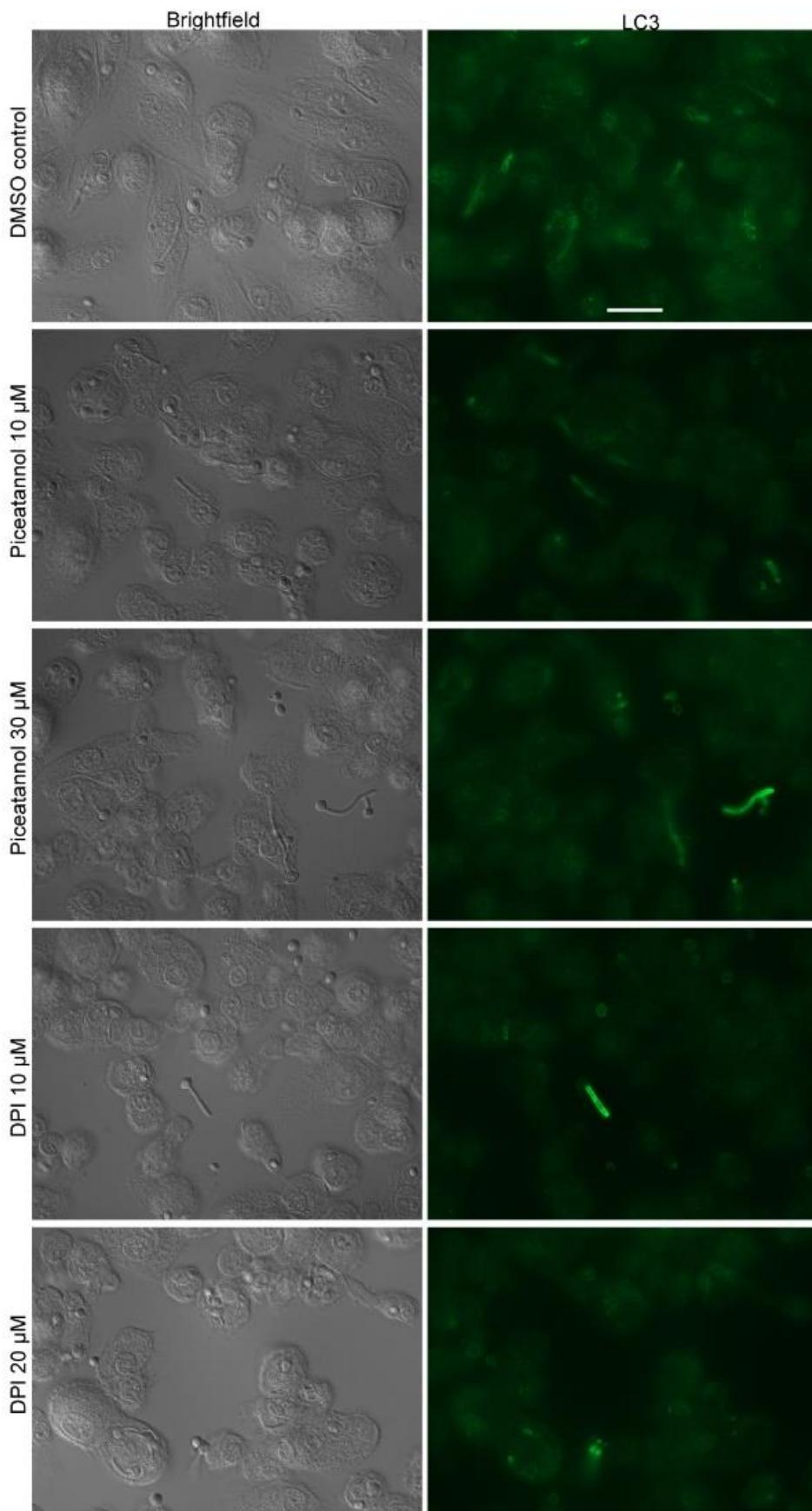
333

Fungus	Treatment	Number of macrophages with phagocytosed cells positives for LC3				
		Number of macrophages with phagocytosed cells	Number of macrophages with phagocytosed cells positives for LC3	Percentage (%) of phagocytosed cells positive for LC3	Fisher exact test	Odds ratio
<i>P. brasiliensis</i>	DMSO	218	39	17.89		
	Piceatannol 10µM	317	87	27.44	0.0429	1.534
	Piceatannol 30µM	208	62	29.81	0.0267	1.666
	DPI 10µM	231	46	19.91	0.7228	1.113
	DPI 20µM	222	47	21.17	0.4822	1.183
<i>C. albicans</i>	DMSO	103	58	56.31		
	Piceatannol 10µM	121	53	43.80	0.2973	0.778
	Piceatannol 30µM	75	30	40.00	0.2314	0.71
	DPI 10µM	84	21	25.00	0.006	0.444
	DPI 20µM	119	25	21.01	0.0003	0.373


334

335

12 of 16


336 **Supplementary Material:**

337

338

339 **Figure S1 – Immunofluorescence microscopy controls.** Autofluorescence and non-specific secondary antibody
340 binding controls were used to verify our LAP experiments. No fluorescence was identified in either control ex-
341 periments. The bottom panel is the whole field of figure 1B. Scale bar: 10 μ m.
342

343

344 **Figure S2 – Inhibition of Syk and NADPH in macrophages infected with *C. albicans*.** BMMs were infected
345 with *C. albicans* for 12 h in the presence of Syk and NADPH oxidase inhibitors. The cells were then used for LC3
346 immunofluorescence, showing a decrease in LAP. Scale bar: 20 µm
347

348 **References**

349

350 1. Silva-Vergara, M.; Martinez, R.; Chadu, A.; Madeira, M.; Freitas-Silva, G.; Leite Maffei, C. Isolation of a
351 Paracoccidioides brasiliensis strain from the soil of a coffee plantation in Ibiá, State of Minas Gerais,
352 Brazil. *Medical mycology* **1998**, *36*, 37-42.

353 2. Terçarioli, G.R.; Bagagli, E.; Reis, G.M.; Theodoro, R.C.; Bosco, S.D.M.G.; da Graça Macoris, S.A.;
354 Richini-Pereira, V.B. Ecological study of Paracoccidioides brasiliensis in soil: growth ability, conidia
355 production and molecular detection. *BMC microbiology* **2007**, *7*, 92.

356 3. Martinez, R. Paracoccidioidomycosis: the dimension of the problem of a neglected disease. *Revista da*
357 *Sociedade Brasileira de Medicina Tropical* **2010**, *43*, 480-480.

358 4. Marques, S.A. Paracoccidioidomycosis. *Clinics in dermatology* **2012**, *30*, 610-615.

359 5. Vieira, G.d.D.; Alves, T.d.C.; Lima, S.M.D.d.; Camargo, L.M.A.; Sousa, C.M.d. Paracoccidioidomycosis
360 in a western Brazilian Amazon State: clinical-epidemiologic profile and spatial distribution of the
361 disease. *Revista da Sociedade Brasileira de Medicina Tropical* **2014**, *47*, 63-68.

362 6. Benard, G. An overview of the immunopathology of human paracoccidioidomycosis. *Mycopathologia*
363 **2008**, *165*, 209-221.

364 7. Carli, M.L.; Miyazawa, M.; Nonogaki, S.; Shirata, N.K.; Oliveira, D.T.; Pereira, A.A.C.; Hanemann,
365 J.A.C. M2 macrophages and inflammatory cells in oral lesions of chronic paracoccidioidomycosis.
366 *Journal of Oral Pathology & Medicine* **2016**, *45*, 141-147.

367 8. Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. *Nature reviews*
368 *immunology* **2011**, *11*, 723-737.

369 9. da Mota Menezes, V.; Soares, B.G.; Fontes, C.J.F. Drugs for treating paracoccidioidomycosis. *The*
370 *Cochrane Library* **2006**.

371 10. Nicola, A.M.; Albuquerque, P.; Paes, H.C.; Fernandes, L.; Costa, F.F.; Kioshima, E.S.; Abadio, A.K.R.;
372 Bocca, A.L.; Felipe, M.S. Antifungal drugs: new insights in research & development. *Pharmacology &*
373 *therapeutics* **2019**, *195*, 21-38.

374 11. Mizushima, N.; Yoshimori, T.; Ohsumi, Y. The role of Atg proteins in autophagosome formation.
375 *Annual review of cell and developmental biology* **2011**, *27*, 107-132.

376 12. Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. *Molecular cell* **2010**,
377 *40*, 280-293.

378 13. Levine, B.; Mizushima, N.; Virgin, H.W. Autophagy in immunity and inflammation. *Nature* **2011**, *469*,
379 323-335.

380 14. Akoumianaki, T.; Kyrmizi, I.; Valsecchi, I.; Gresnigt, M.S.; Samonis, G.; Drakos, E.; Boumpas, D.;
381 Muszkieta, L.; Prevost, M.-C.; Kontoyiannis, D.P. Aspergillus cell wall melanin blocks LC3-associated
382 phagocytosis to promote pathogenicity. *Cell host & microbe* **2016**, *19*, 79-90.

383 15. Nicola, A.M.; Albuquerque, P.; Martinez, L.R.; Dal-Rosso, R.A.; Saylor, C.; De Jesus, M.; Nosanchuk,
384 J.D.; Casadevall, A. Macrophage autophagy in immunity to Cryptococcus neoformans and Candida
385 albicans. *Infection and immunity* **2012**, *80*, 3065-3076.

386 16. Kanayama, M.; Inoue, M.; Danzaki, K.; Hammer, G.; He, Y.-W.; Shinohara, M.L. Autophagy enhances
387 NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. *Nature*
388 *communications* **2015**, *6*.

389 17. Romao, S.; Münz, C. LC3-associated phagocytosis. *Autophagy* **2014**, *10*, 526-528.

390 18. Lai, S.-c.; Devenish, R.J. LC3-associated phagocytosis (LAP): connections with host autophagy. *Cells*
391 **2012**, *1*, 396-408.

392 19. Lutz, M.B.; Kukutsch, N.; Ogilvie, A.L.; Rößner, S.; Koch, F.; Romani, N.; Schuler, G. An advanced
393 culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow.
394 *Journal of immunological methods* **1999**, *223*, 77-92.

395 20. Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. *Biometrical
396 Journal: Journal of Mathematical Methods in Biosciences* **2008**, *50*, 346-363.

397 21. Tam, J.M.; Mansour, M.K.; Khan, N.S.; Seward, M.; Puranam, S.; Tanne, A.; Sokolovska, A.; Becker,
398 C.E.; Acharya, M.; Baird, M.A. Dectin-1-dependent LC3 recruitment to phagosomes enhances
399 fungicidal activity in macrophages. *The Journal of infectious diseases* **2014**, *210*, 1844-1854.

400 22. Kyrmizi, I.; Gresnigt, M.S.; Akoumianaki, T.; Samonis, G.; Sidiropoulos, P.; Boumpas, D.; Netea, M.G.;
401 Van De Veerdonk, F.L.; Kontoyiannis, D.P.; Chamilos, G. Corticosteroids block autophagy protein
402 recruitment in *Aspergillus fumigatus* phagosomes via targeting dectin-1/Syk kinase signaling. *The
403 Journal of Immunology* **2013**, *191*, 1287-1299.

404 23. Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal
405 diseases—estimate precision. *Journal of fungi* **2017**, *3*, 57.

406 24. De Oliveira, H.C.; Assato, P.A.; Marcos, C.M.; Scorzoni, L.; de Paula E Silva, A.C.; Da Silva, J.D.F.;
407 Singulani, J.d.L.; Alarcon, K.M.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J. Paracoccidioides-host
408 interaction: an overview on recent advances in the paracoccidioidomycosis. *Frontiers in microbiology*
409 **2015**, *6*, 1319.

410 25. Tobón, A.; Agudelo, C.; Osorio, M.; Alvarez, D.; Arango, M.; Cano, L.; Restrepo, A. Residual pulmonary
411 abnormalities in adult patients with chronic paracoccidioidomycosis: prolonged follow-up after
412 itraconazole therapy. *Clinical infectious diseases* **2003**, *37*, 898-904.

413 26. González, Á. The Therapy of Pulmonary Fibrosis in Paracoccidioidomycosis: What Are the New
414 Experimental Approaches? *Journal of Fungi* **2020**, *6*, 217.

415 27. Upadhyay, S.; Philips, J.A. LC3-associated phagocytosis: host defense and microbial response. *Current
416 Opinion in Immunology* **2019**, *60*, 81-90.

417 28. Nicola, A.M.; Fabricant, S.A.; Albuquerque, P.; Felipe, M.S.S.; Casadevall, A. Host Autophagy in
418 Antifungal Immunity. In *Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and
419 Aging*, Elsevier; 2016; pp. 317-330.

420 29. Huang, J.-H.; Liu, C.-Y.; Wu, S.-Y.; Chen, W.-Y.; Chang, T.-H.; Kan, H.-W.; Hsieh, S.-T.; Ting, J.P.-Y.;
421 Wu-Hsieh, B.A. NLRX1 facilitates *Histoplasma capsulatum*-induced LC3-associated phagocytosis for
422 cytokine production in macrophages. *Frontiers in immunology* **2018**, *9*, 2761.

423 30. Friedrich, D.; Zapf, D.; Lohse, B.; Fecher, R.A.; Deepe, G.S.; Rupp, J. The HIF-1 α /LC3-II axis impacts
424 fungal immunity in human macrophages. *Infection and immunity* **2019**, *87*, e00125-00119.

425 31. Ma, J.; Becker, C.; Lowell, C.A.; Underhill, D.M. Dectin-1 triggered recruitment of LC3 to phagosomes
426 facilitates MHC class II presentation of fungal-derived antigens. *Journal of Biological Chemistry* **2012**, *jbc*.
427 M112. 382812.

428 32. Qin, Q.-M.; Luo, J.; Lin, X.; Pei, J.; Li, L.; Ficht, T.A.; de Figueiredo, P. Functional analysis of host factors
429 that mediate the intracellular lifestyle of *Cryptococcus neoformans*. *PLoS Pathog* **2011**, *7*, e1002078.

430 33. Sanjuan, M.A.; Dillon, C.P.; Tait, S.W.; Moshiach, S.; Dorsey, F.; Connell, S.; Komatsu, M.; Tanaka, K.;
431 Cleveland, J.L.; Withoff, S. Toll-like receptor signalling in macrophages links the autophagy pathway
432 to phagocytosis. *Nature* **2007**, *450*, 1253-1257.

433 34. Huang, J.; Lam, G.Y.; Steinberg, B.E.; Dinauer, M.C.; Magalhaes, M.A.; Glogauer, M.; Grinstein, S.;
434 Brumell, J.H. Activation of antibacterial autophagy by NADPH oxidases. *Proceedings of the national
435 academy of sciences* **2009**, *106*, 6226-6231.

436 35. Wang, J.; Meng, M.; Li, M.; Guan, X.; Liu, J.; Gao, X.; Sun, Q.; Li, J.; Ma, C.; Wei, L. Integrin $\alpha 5\beta 1$, as a
437 Receptor of Fibronectin, Binds the FbaA Protein of Group A Streptococcus To Initiate Autophagy
438 during Infection. *Mbio* **2020**, *11*.

439 36. Pandey, A.; Ding, S.L.; Qin, Q.-M.; Gupta, R.; Gomez, G.; Lin, F.; Feng, X.; da Costa, L.F.; Chaki, S.P.;
440 Katepalli, M. Global reprogramming of host kinase signaling in response to fungal infection. *Cell host
441 & microbe* **2017**, *21*, 637-649. e636.

442 37. Shroff, A.; Sequeira, R.; Patel, V.; Reddy, K. Knockout of autophagy gene, ATG5 in mice vaginal cells
443 abrogates cytokine response and pathogen clearance during vaginal infection of *Candida albicans*.
444 *Cellular immunology* **2018**, *324*, 59-73.

445 38. Smeekens, S.P.; Malireddi, R.; Plantinga, T.S.; Buffen, K.; Oosting, M.; Kullberg, B.; Perfect, J.; Scott, W.;
446 Van De Veerdonk, F.; Xavier, R. Autophagy is redundant for the host defense against systemic *Candida
447 albicans* infections. *European journal of clinical microbiology & infectious diseases* **2014**, *33*, 711-722.

448 39. Shoji-Kawata, S.; Sumpter, R.; Leveno, M.; Campbell, G.R.; Zou, Z.; Kinch, L.; Wilkins, A.D.; Sun, Q.;
449 Pallauf, K.; MacDuff, D. Identification of a candidate therapeutic autophagy-inducing peptide. *Nature
450* **2013**, *494*, 201-206.

451 40. Robke, L.; Laraia, L.; Carnero Corrales, M.A.; Konstantinidis, G.; Muroi, M.; Richters, A.; Winzker, M.;
452 Engbring, T.; Tomassi, S.; Watanabe, N. Phenotypic identification of a novel autophagy inhibitor
453 chemotype targeting lipid kinase VPS34. *Angewandte Chemie* **2017**, *129*, 8265-8269.

454 41. Akin, D.; Wang, S.K.; Habibzadegah-Tari, P.; Law, B.; Ostrov, D.; Li, M.; Yin, X.-M.; Kim, J.-S.;
455 Horenstein, N.; Dunn Jr, W.A. A novel ATG4B antagonist inhibits autophagy and has a negative impact
456 on osteosarcoma tumors. *Autophagy* **2014**, *10*, 2021-2035.

457 42. Zhang, L.; Qiang, P.; Yu, J.; Miao, Y.; Chen, Z.; Qu, J.; Zhao, Q.; Chen, Z.; Liu, Y.; Yao, X. Identification
458 of compound CA-5f as a novel late-stage autophagy inhibitor with potent anti-tumor effect against non-
459 small cell lung cancer. *Autophagy* **2019**, *15*, 391-406.

460