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SUMMARY 27 

Genetic interactions (GIs), the joint impact of different genes or variants on a phenotype, are 28 

foundational to the genetic architecture of complex traits. However, identifying GIs through 29 

human genetics is challenging since it necessitates very large population sizes, while findings 30 

from model systems not always translate to humans. Here, we combined exome-sequencing and 31 

genotyping in the UK Biobank with combinatorial RNA-interference (coRNAi) screening to 32 

systematically test for pairwise GIs between 30 lipid GWAS genes. Gene-based protein-33 

truncating variant (PTV) burden analyses from 240,970 exomes revealed additive GIs for APOB 34 

with PCSK9 and LPL, respectively. Both, genetics and coRNAi identified additive GIs for 12 35 

additional gene pairs. Overlapping non-additive GIs were detected only for TOMM40 at the 36 

APOE locus with SORT1 and NCAN. Our study identifies distinct gene pairs that modulate both, 37 

plasma and cellular lipid levels via additive and non-additive effects and nominates drug target 38 

pairs for improved lipid-lowering combination therapies. 39 
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INTRODUCTION 41 

Genome-wide association studies (GWAS) have firmly established that changes in blood lipids 42 

and the risk of coronary artery disease (CAD) are heritable. Hundreds of genetic loci have been 43 

identified that reach genome-wide significant associations with plasma levels of low-density 44 

lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglycerides (TG), total 45 

cholesterol (TC) and CAD1–4. In rare instances, susceptibility to altered blood lipids can be 46 

attributed to mutations in individual genes such as LDLR, PCSK9 or APOB that lead to familial 47 

forms of disease. For the vast majority of dyslipidemic individuals, however, no single-gene 48 

mutation can be identified. Instead, recent evidence suggests that in these cases inherited 49 

susceptibility is caused by a cumulative effect of numerous common alleles within and across 50 

GWAS loci. Individually, such common alleles have only a minor effect, but when summarized in 51 

polygenic scores they can modify a phenotype to a similar extent as single high-impact 52 

mutations5, or further magnify the penetrance of individual mutations causing Mendelian 53 

disease6. The biological mechanisms behind the cumulative effect of risk alleles in different 54 

genes remain unclear. 55 

While the refined understanding of the polygenic nature of complex disease is starting to show 56 

promise for improved risk prediction and treatment decisions7,8, it has made it increasingly 57 

difficult to decide which individual genes could be the most suitable targets for developing new 58 

drugs. Drug development is traditionally focused on discrete targets with well-understood 59 

biology. For certain diseases, an additive therapeutic benefit has been demonstrated through 60 

combination therapies that simultaneously modulate two or more targets at once. For instance, 61 

combinations of statins, inhibitors of HMG-CoA-reductase (HMGCR), with distinct other 62 

cholesterol-lowering medications including NPC1L1, PCSK9 and APOB inhibitors have been 63 

demonstrated to lower LDL levels and CAD-risk further than statin-treatment alone9,10. Despite 64 

such successes, systematic strategies to predict that joint modulation of drug target pairs in 65 

combination therapies will show benefit beyond standard of care have yet to be explored. 66 

Genetic support for a drug target increases the probability that a medicine directed against the 67 

respective target will succeed by several fold11,12. We thus hypothesized that genetics might also 68 
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assist in nominating drug target pairs that, when addressed jointly, will have a higher probability 69 

to reach a desired therapeutic benefit. A particular attractive approach to prioritize optimal target 70 

pairs would be to leverage synergistic gene-gene interactions, where genetic variants in two 71 

disease risk genes induce a phenotype that is more pronounced than what would be expected 72 

from each of the variants’ individual effects. Non-additive genetic interactions (naGIs), or 73 

epistasis, have been extensively studied in model organisms and cell models with the aim to 74 

identify functional relationships among genes and gene products13,14. In humans, however, the 75 

contribution of naGIs to the architecture of complex traits has been controversial. While there is 76 

increasing evidence for modifier genes that modulate Mendelian phenotypes in non-additive 77 

manners15, most of the variance of complex traits appears to be explained by genes acting 78 

additively within or between loci (additive GIs, or aGIs)16. 79 

Here we systematically test for pairwise GIs regulating blood lipid levels by studying interactions 80 

between 30 genes prioritized based on known lipid-regulatory functions from GWAS loci using 81 

three complementary tools: protein-truncating variants (PTVs) identified through exome 82 

sequencing in the UK Biobank; reported GWAS lead SNPs genotyped or imputed in the UK 83 

Biobank; and combinatorial RNA-interference (coRNAi) screening measuring LDL-uptake into 84 

cultured cells. Our combined genetics and functional genomics approach establishes pairwise 85 

additive and non-additive GIs as foundational elements in controlling blood lipid levels and 86 

highlights distinct gene pairs as promising targets for lipid lowering combination therapies.  87 

 88 

RESULTS  89 

Study outline 90 

To explore pairwise interactions between genes in GWAS loci and how these impact plasma lipid 91 

levels and LDL-uptake into cultured cells, we followed three parallel approaches: First, we 92 

extracted protein-truncating variants (PTVs) from whole exome sequencing data of 200,654 93 

participants of the UK Biobank. Second, we utilized GWAS lead SNPs commonly used to 94 

construct polygenic risk scores from the full set of 378,033 unrelated participants of European 95 

ancestry in the UK Biobank. And third, we conducted systematic RNAi-based combinatorial 96 
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knockdown experiments in cells (Figure 1a). We focussed our analyses on 30 high-confidence 97 

candidate genes from 18 genomic regions associated with blood lipid levels or the risk for CAD 98 

(Table S1). Twenty-eight of these genes had scored as functional regulators of LDL-uptake, 99 

cellular levels of free cholesterol, or LDL-receptor (LDLR) mRNA or protein levels in an earlier 100 

study where we had functionally analysed 133 genes at 56 lipid and CAD GWAS loci through 101 

RNAi-based knockdown experiments17. Causality for several of these genes to drive GWAS 102 

associations was further supported through systematic colocalization of plasma LDL GWAS lead 103 

SNPs with GTEx liver eQTLs1 (2 genes), cis-pQTL signals18 (3 genes) and independently 104 

reported biological evidence for lipid-relevant functions (15 genes) (Table S2). To identify 105 

pairwise GIs, we applied four linear regression models (modified from Axelsson et al., 201119) to 106 

model the data.  For each gene pair, both the additive genetic interaction effect (aGI) (model 3), 107 

which measures the sum of effects from each gene or variant individually, as well as the non-108 

additive genetic interaction effect (naGI) (model 4), which measures the difference between the 109 

expected additive and the observed combined effect, were calculated, with a naGI being either 110 

synergistic or buffering (Figure 1a and Methods). Pairwise analyses were conducted for four 111 

plasma lipid parameters (LDL, HDL, TG, TC) and CAD as available from UK Biobank20 (see 112 

Methods). 113 

 114 

PTV burden tests in UK Biobank reveal additive genetic interactions for PCSK9-APOB and 115 

LPL-APOB 116 

We first studied pairwise modifier effects between the 30 candidate genes using high-impact 117 

protein-truncating variants (PTVs). PTVs are expected to cause loss-of-function and compared 118 

to other types of mutations are rare at the population level due to purifying selection21,22. We 119 

sequenced the exomes of 200,654 UK Biobank participants, annotated PTVs using Variant 120 

Effect Predictor v9623 and the LOFTEE plugin21, and identified 462,762 high-confidence PTVs in 121 

the canonical transcripts of 18,869 genes. Within the 30 lipid GWAS genes, we detected a total 122 

of 755 unique rare PTVs (Table S3). For instance, we discovered 29 different PTVs in LDLR, 47 123 

in PCSK9 and 102 in APOB. Most PTVs in these three genes were associated with strongly 124 
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abnormal plasma LDL levels in heterozygote carriers consistent with Familial 125 

Hypercholesterolemia, although only 32 of the PTVs were annotated as pathogenic or likely 126 

pathogenic in ClinVar24.  127 

Gene-based PTV-burden association analyses were conducted in a cohort of 161,508 unrelated 128 

UK Biobank participants of European ancestry. Single-gene PTV-burden testing identified three 129 

genes that were significantly associated (Bonferroni-corrected p<0.05) with both LDL and TC 130 

(APOB, PCSK9, LDLR), two with HDL (LPL, APOB) and two with TG (LPL, APOB), respectively 131 

(Table S4). Loss-of-function of these genes had already been identified earlier as associated 132 

with the respective lipid traits at the population level2. Next, we next expanded from these single 133 

gene PTV-burden analyses to study pairwise PTV-based GIs, which could be tested for 42 of the 134 

435 theoretically possible gene combinations (Table S5 and Methods). For the two gene pairs 135 

that met our stringent criteria to be classified as genetic interactions from this analysis, PCSK9-136 

APOB and LPL-APOB, we conducted replication analyses in an additional 79,462 UK Biobank 137 

exomes, bringing the total sample size available for PTV-based GI testing to 240,970 individuals 138 

(Table S6). PCSK9-APOB showed an aGI for both, LDL and TC, reflecting that joint loss-of-139 

function of both genes reduces these two lipid measures more than if only one of the two genes 140 

is truncated. For instance, PTVs in PCSK9 and APOB individually reduced mean plasma LDL by 141 

34.21 mg/dl and 69.42 mg/dl relative to individuals without PTVs in these genes, consistent with 142 

previous reports25–27. However, the three UK Biobank participants who carried both, PCSK9 and 143 

APOB PTVs, showed on average a further reduction in plasma LDL by 40.01 mg/dl compared to 144 

individuals with PTVs in only one of the two genes, and by 90.45 mg/dl compared to individuals 145 

with no PTV in either of the two genes (Figure 1b), suggesting considerable additional protection 146 

from CAD. Additive GIs were further identified between LPL and APOB for HDL and TG. 147 

Individuals who carried PTVs in both, LPL and APOB, showed consistently higher HDL and TG 148 

levels than individuals with no PTVs, or PTVs in only one gene (Figure 1c). No naGIs were 149 

identified through PTV-based burden tests in up to 240,970 exomes. Our results are consistent 150 

with the prediction that for rare variant-based burden analyses very large sample sizes are 151 

necessary to robustly detect GIs in the human population16,25. 152 
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 153 

Pairwise genetic interactions between GWAS loci modulate plasma lipid levels 154 

We next tested for GIs using 28 lipid/CAD GWAS lead SNPs representing the 30 loci in 378,033 155 

unrelated individuals of European ancestry in the UK Biobank20. Of a total of 1,890 pairwise 156 

SNP-SNP interactions tested, 195, 98, 124, 238 and 10 aGIs were identified for LDL, HDL, TG, 157 

TC and CAD, respectively (Figure 2a-e; Table S7). Interestingly, SNP-based analyses also 158 

suggested pairwise effects between GWAS loci that deviated from an additive model and were 159 

classified as naGIs. Specifically, we detected ten naGIs for LDL, one for HDL, six for TG, and 160 

nine for TC (Table 1). No naGI was detected for CAD. The strongest driver of interactions came 161 

from the 19q13.32 locus encompassing the CBLC/BCAM/PVRL2/TOMM40/APOE gene cluster 162 

that was contributing to 19 of the 26 naGIs identified across all traits. Fourteen naGIs were 163 

between lead SNPs from within the same GWAS region (“cis-naGI”, e.g., NCAN-TM6SF2, 164 

BCAM-APOE, ZNF259-SIK3) with nine of them being suggestive cis-effects of rs4420638 near 165 

APOE. However, naGIs were also identified between loci on different chromosomes (“trans-166 

naGIs”), such as between ZNF259 and APOE, or SORT1/CELSR2 and TOMM40 for LDL and 167 

TC, or between LPL and ZNF259, or LPL and SIK3 for TG. Overall, our data support the 168 

hypothesis that aGIs between GWAS loci are pervasive and individually small, yet if summed up 169 

across many loci in polygenic scores modulate complex traits5. Conversely, naGIs are 170 

considerably less prevalent, with the APOE locus being a potential contributor to naGIs for lipid 171 

traits. 172 

 173 

Genetic interactions between gene-based PTV-burden and GWAS loci or polygenic scores  174 

Next, we queried for GIs between different types of genetic variation. Pairwise interaction testing 175 

between gene-based PTV-burden and GWAS lead SNPs identified one naGI for LDL (LDLRPTV-176 

PVRL2SNP), one for HDL (APOBPTV-LPLSNP), three for TC (LDLRPTV-PVRL2SNP, LDLRPTV-SIK3SNP, 177 

LDLRPTV-PAFAH1B2SNP), and six for TG (LPLPTV-SIK3SNP, LPLPTV-ZNF259SNP, LPLPTV-178 

PAFAH1B2SNP, BAZ1BPTV-NCANSNP, BAZ1BPTV-TM6SF2SNP, BAZ1BPTV-PAFAH1B2SNP) (Table 179 

S8). Moreover, 56, 26, 54 and 31 aGIs were identified for LDL, HDL, TC and TG, respectively. 180 
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These results are consistent with the genetic architecture regulating plasma lipids being 181 

continuous between high-impact rare and low-impact common alleles4. 182 

A recent study6 proposed that the penetrance of Mendelian disease, including FH, can be 183 

substantially modulated by interactions between the respective mutant gene with common 184 

variants (minor allele frequency >0.01) of individually small effect size subsumed in polygenic 185 

risk scores (PRS). We created PRS for the four lipid species using PRS-CS26 (and Methods) and 186 

tested for GIs between PRS and PTV-burden for each of the 30 genes. Of all combinations 187 

tested, only PTV-burden in LPL, mostly driven by the frequent p.S447Ter variant, showed 188 

evidence for a naGI with the PRS for TG (p<1.13x10-15; beta=-0.04) (Figure 2f; Table S9). This 189 

supports the hypothesis that a high polygenic risk for elevated TG can be mitigated by a 190 

concomitant stop-gain mutation in LPL. Additionally, 10 aGIs were identified between APOBPTV 191 

with PRS for all four lipid species, LDLRPTV and PCSK9PTV with PRS for LDL and TC, and LPLPTV 192 

with PRS for LDL and HDL. 193 

 194 

RNAi identifies pairwise functional gene interactions modulating cellular LDL-uptake 195 

To gain insights into the functional consequences of GIs, we complemented our genetic 196 

analyses with systematic experiments in cells using combinatorial RNAi (coRNAi) (Figure 3a and 197 

Methods). We applied solid-phase reverse transfection to simultaneously knock down candidate 198 

gene pairs in cultured HeLa cells, which we have previously shown to reliably reflect various 199 

aspects of LDL biology and lipid homeostasis17,27,28. Each of the 30 lipid genes was profiled with 200 

a single siRNA that had previously been validated to significantly enhance or reduce cellular 201 

uptake of fluorescent-labelled LDL (DiI-LDL) or free cellular cholesterol levels, and/or to 202 

efficiently downregulate mRNA or protein levels of its respective target gene (Table S2)17. The 203 

impact of both, single and combinatorial gene knockdown on LDL-uptake per cell was measured 204 

and quantified from high-content microscopy images using automated image analysis routines 205 

as described (Figure S1)27,28. All pairwise knockdown combinations between the 30 lipid genes 206 

(435 gene pairs) were assayed in a total of 16,128 experiments (Figure 3b). Each combination 207 

was tested in at least seven biological replicates. Using BIC-model based robust linear 208 
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regression fitting analogous to the genetic interaction analyses, we identified 18 aGIs and 33 209 

naGIs to differentially impact cellular LDL-uptake (Table S10). A similar proportion of GIs was 210 

identified using robust linear model fitting and deriving p-values from the linear regression model 211 

term describing non-additive effects as an alternative statistical approach (see Methods). This 212 

identified 35 naGIs, with 31 naGIs overlapping between both analytical approaches (Table S11). 213 

The corresponding gene pairs were brought forward to independent liquid-phase based coRNAi 214 

replication experiments that validated 20 of these naGIs (Table 2, Table S12, Figure S2). Of the 215 

20 validated naGIs identified through coRNAi, seven were classified (according to Horlbeck et 216 

al., 201814) as synergistic, i.e., simultaneous knockdown of both genes magnified the effect size 217 

beyond expectations for an aGI; and thirteen naGIs were categorized as buffering, i.e., relative to 218 

an aGI the joint knockdown mitigated LDL-uptake into cells (Figure 3c). For instance, 219 

simultaneous knockdown of HMGCR and APOB enhanced cellular LDL-uptake beyond a mere 220 

additive effect expected from knockdown of either of the two genes, proposing a synergistic naGI 221 

(Figure 3d), that is most likely explained by a higher capacity of cells to bind and internalize LDL 222 

via increased availability of LDL-receptor at the cell surface (Figure S3). Conversely, knockdown 223 

of LDLR strongly inhibited, whereas partial knockdown of LDLRAP1 increased cellular LDL-224 

uptake under our experimental conditions. When silencing LDLR and LDLRAP1 jointly, the 225 

reduction of LDL-uptake was less attenuated than expected under an additive model, suggesting 226 

a buffering naGI (Figure 3e). Interestingly, reduction of LDL-uptake upon knockdown of LDLR 227 

was magnified when LDLR was jointly silenced with HAVCR1, a suggested LDL scavenger 228 

receptor that might contribute to maintain the potential of LDLR-depleted cells to internalize 229 

LDL29 (Figure 3f). Noteworthy, among the remaining validated coRNAi naGIs, simultaneous 230 

silencing of PCSK9 and TMEM57, as well as of SIK3 and PAFAH1B1 increased cellular LDL-231 

uptake to a similar extent as the simultaneous knockdown of HMGCR and APOB, although 232 

silencing of these genes individually had a significant, yet only modest impact on cellular LDL-233 

uptake. In summary, coRNAi identified aGIs and naGIs between established lipid-regulatory 234 

genes, but also proposed combinations of less well characterized genes as potentially important 235 

factors in maintaining cellular lipid levels. 236 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.360818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

 237 

Integrated analysis highlights GIs supported by both human genetics and cellular 238 

function 239 

In order to assess whether GIs identified through either PTV-based gene-burden tests, GWAS 240 

lead SNPs, or cell-based coRNAi overlapped, we integrated results from the three approaches 241 

(Figure 4; Table S13). LDLR-SIK3 showed an aGI both in coRNAi and PTV-SNP analyses for 242 

LDL (Figure 4a). Both, coRNAi screening (ΔBIC 16.87, pVal(FDR)=1.18E-07) and PTV-SNP 243 

analyses for LDL and TC proposed a naGI between LDLR and PVLR2 (Figure 4b), although this 244 

gene pair failed to score as naGI in the independent coRNAi validation experiments. Twelve of 245 

the 18 gene pairs nominated by coRNAi as aGIs also scored as aGIs in SNP-based interaction 246 

testing for LDL and TC, including LDLR-SIK3. Five aGIs involved HMGCR and four LDLRAP1 247 

(Figure 4c). Two gene pairs, SORT1-TOMM40 and NCAN-TOMM40, scored as naGIs both in 248 

the SNP-based as well as the coRNAi-based interaction testing (Figure 4d), with TOMM40 249 

exerting a buffering naGI in either gene pair (Figure 4e) that could not be explained by an off-250 

target effect of TOMM40 siRNAs on APOE as an adjacent gene in the 19q13.32 GWAS locus 251 

(Figure S4). In conclusion, integrating genetic with functional data validated 12 proposed aGIs 252 

and further substantiates a role of the APOE locus, and possibly TOMM40, as contributing to 253 

non-additive genetic interactions. 254 

 255 

DISCUSSION 256 

Here, we apply whole-exome sequencing, genotyping and coRNAi to systematically test for 257 

pairwise GIs between 30 lipid-regulatory genes at lipid and CAD GWAS loci. GIs are considered 258 

to be central constituents of biological pathways and complex traits, contributors to human 259 

disease, and promising starting points for therapy development13,15. Mapping GIs, and 260 

particularly non-additive epistasis, however, has been challenging. GI studies require very large 261 

population sizes in order to obtain sufficient statistical power, so that the large number of 262 

potential interactions to be evaluated quickly leads to a prohibitive number of statistical tests30. 263 

Together with most GI studies to date being limited to just a single datatype, the relative 264 
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contribution of GIs to variation in human complex traits has been controversial, and the 265 

relevance of epistasis potentially overestimated16. 266 

In our study, we have tried to overcome several of these challenges through a systematic 267 

approach to GI testing that integrates genetic with functional data and relies on the UK Biobank, 268 

a population cohort linking genetic with phenotype data at an unprecedented scale20. To protect 269 

against statistical penalties from multiple hypothesis testing we focused on pairwise interaction 270 

analyses between 30 candidate genes nominated through GWAS that functional or genetic 271 

follow-up studies have proposed as likely causal to confer associations with lipid traits or CAD17. 272 

We assessed these genes for GIs across the allelic spectrum, from rare PTVs ascertained from 273 

the exomes of more than 240,000 individuals, to common GWAS lead SNPs. Genetic GI-testing 274 

was complemented by functionally knocking down gene pairs with siRNAs and determining the 275 

consequence on LDL internalization into cells.   276 

Several of the GIs identified in our study can be expected to be high potential starting points for 277 

the development of advanced lipid-lowering combination therapies. Lowering LDL with statins is 278 

the first-line pharmacological strategy to treat or prevent CAD and ischaemic heart disease as its 279 

clinical manifestation. However, many patients do not reach their recommended goals of LDL-280 

lowering through statins alone, or they are intolerant against statins. For these, combination 281 

therapies have become available that aim to lower atherogenic lipid levels further. A motivation 282 

for this is that every 1 mmol/l (39 mg/dl) reduction in blood LDL is associated with a 19% 283 

reduction in coronary mortality and a 21% reduction in major vascular events, supporting that, at 284 

least for secondary prevention, the lower blood LDL levels, the better31. Among the options that 285 

lower atherogenic blood lipids the most successfully are therapeutics against drug targets that 286 

when mutated cause familial hypercholesterolemia (FH), such as NPC1L1, the target of 287 

ezetimibe, or PCSK99. Genetic analyses in extreme phenotypes have identified a small number 288 

of individuals with concomitant mutations in two distinct FH genes, such as LDLR and APOB32,33, 289 

LDLR and LDLRAP134,35 or APOB and PCSK936. However, due to the rarity of highly penetrant 290 

FH mutations such findings have thus far remained limited to individual families. Conversely, on 291 

a population level, a previous GI analysis based on common alleles from ~24,000 individuals 292 
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ascertained for lipid traits reported 14 replicated GIs between lipid GWAS loci, most notably, like 293 

in our study, with SNPs at the APOE locus being a key contributor37. Additional support for the 294 

relevance of GIs for modulating lipid traits comes from a recent study that includes a subset of 295 

the UK Biobank exomes analysed here and proposes an interplay of genetic variation across the 296 

allelic spectrum6. Notably, that study reports that carriers of monogenic CAD risk variants show 297 

an up to 12.6-fold higher risk to manifest disease if they are in the highest quintile of the 298 

polygenic risk distribution. 299 

Our analyses here propose distinct gene pairs that modulate plasma and cellular lipid levels via 300 

additive and non-additive GI effects. Among others, we identify GIs for several prominent 301 

cardiovascular risk genes that individually are established targets for lipid-lowering drugs. For 302 

instance, coRNAi proposed a synergistic, non-additive GI between HMGCR, the rate-limiting 303 

enzyme during cholesterol biosynthesis and target of statins, and APOB encoding apolipoprotein 304 

B, a critical constituent of LDL particles. Consistent with the known biological functions of these 305 

genes, joint knockdown increased levels of functional LDL-receptor on the cell surface and 306 

stimulated internalization of exogenous, fluorescent-labelled LDL. This observation is well in line 307 

with results from clinical trials showing that in patients with Familial Hypercholesterolemia and 308 

other hyperlipidemias a combination of statins with an antisense inhibitor of apolipoprotein B 309 

(mipomersen) efficiently reduces plasma LDL levels more strongly than high-intensity statin 310 

treatment alone38–41. Importantly, the additive GI identified from UK Biobank participants carrying 311 

PTVs in both, APOB and PCSK9 suggests that similarly beneficial effects can be expected when 312 

APOB antisense therapies are applied in combination with PSCK9 inhibitors. Recently, inclisiran, 313 

an siRNA targeting PCSK9 in individuals on maximally tolerated statin doses42 led to a 314 

persistent, highly significant lowering of LDL in treated individuals relative to placebo in a phase 315 

3 study43, introducing siRNAs as an attractive therapeutic modality for lipid-lowering therapies. 316 

Our results strongly propose that, on a population level, combination therapies inhibiting both 317 

PCSK9 and APOB may lower LDL-C levels and CAD-risk even more substantially than drugs 318 

targeting only one of the two genes. 319 
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APOB PTV-burden was associated not only with LDL and TC, but also HDL and TG, and our 320 

PTV-based GI tests propose that joint disruption of APOB together with LPL reduces TG and 321 

increases HDL, most likely in an additive manner. LPL encodes for lipoprotein lipase which 322 

hydrolyzes TG from apolipoprotein B containing lipoproteins, releasing fatty acids44. PTV-burden 323 

in LPL is dominated by the stop-gain variant p.Ser447Ter (c.1421G>C; rs328) which in our 324 

exome-sequenced UK Biobank sub-cohort showed an allele frequency of 9.95%. This variant is 325 

known to cause gain-of LPL activity leading to a 0.8-fold reduced risk for ischaemic heart 326 

disease45, an effect that is likely to be further enhanced by concomitant reduction of 327 

apolipoprotein B. The p.Ser447Ter allele was also the main driver behind the only naGI detected 328 

between PTV-burden and polygenic risk for plasma lipids and conferred that in LPL PTV-carriers 329 

polygenic risk for TG is reduced, with presumably non-additive effects being the most 330 

pronounced in the upper percentile range of the PRS distribution. 331 

A prominent driver of GIs in both our SNP- and coRNAi-based analyses was the 19q13.32 locus 332 

which includes APOE and apart from plasma lipids and CAD is associated with Alzheimer’s 333 

disease, longevity and macular degeneration among others18. Interestingly, our findings indicate 334 

that genes other than APOE at this locus might contribute to lipid GIs, which is consistent with 335 

our earlier findings that knock down of several genes at this locus independently modulate 336 

cellular LDL-uptake17. For instance, both SNP-based GI testing and coRNAi suggested buffering 337 

naGIs for TOMM40 with SORT1 and NCAN, respectively. Variants in TOMM40 have been 338 

hypothesized to modify onset of Alzheimer’s disease independently of and in conjunction with 339 

APOE45. Our analyses suggest TOMM40 might exert similar modifying effects on lipid 340 

phenotypes and CAD risk, which will need to be clarified in future studies. Another gene at the 341 

19q13.32 locus is PVRL2, for which both coRNAi and SNP-PTV analyses proposed GIs with 342 

LDLR. As a vascular cell adhesion molecule, PVRL2 protein regulates transendothelial migration 343 

of leukocytes. PVRL2 levels in the atherosclerotic arterial wall correlate with plasma cholesterol 344 

in CAD patients and Ldlr-deficient mice and have been linked to the progression of 345 

atherosclerosis46,47. It is thus tempting to speculate that the extensive pleiotropy of the 19q13.32 346 

locus can at least in part be explained through non-APOE related mechanisms45. 347 
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Both, genetic and functional analyses further revealed GIs between HAVCR1, NCAN and SIK3 348 

with HMGCR, nominating these poorly characterized genes to be explored as potentially 349 

attractive new targets for lipid-lowering therapies on top of statins. 350 

Consistent with previous assumptions16, our results show that for regulating plasma lipid levels, 351 

additive GIs between gene or variant pairs are common, while non-additive epistasis is rare. 352 

Indeed, despite a sample size of over 240,000 exomes, our gene-based PTV-burden GI 353 

analyses did not find evidence for pairwise naGIs between lipid genes disrupted by PTVs. 354 

Further increasing sample sizes might help uncover non-additive effects, however, at least for 355 

lipid traits, their contribution to the overall variance appears to be small. This is consistent with 356 

the existence of evolutionary mechanisms that suppress epistatic interactions13. Since pairwise 357 

naGIs can be expected to be identified the most easily for genes that are disrupted sufficiently 358 

frequently in a population by PTVs of large-enough effect size, sequencing of consanguineous or 359 

bottlenecked populations might improve the detection rate of naGIs22,48. Interestingly, as 360 

observed also here, naGIs seem to be more easily detectable in cell and animal models, for 361 

instance through synthetic lethality mapping14.  362 

Integration of population-scale genetics and functional coRNAi screening results yielded a total 363 

of twelve aGIs and three naGIs (one of them suggestive) that influence plasma and cellular lipid 364 

levels. Such validation via two systematic approaches substantially increases the confidence for 365 

committing to time and resource-intense follow-up analyses of such findings, e.g., when 366 

exploring the suitability of a gene pair to be jointly targeted in combination therapies. 367 

Interestingly, a significant number of GIs identified through genetics and coRNAi in our study do 368 

not yet overlap. This may be explained by several reasons: First, our functional analyses were 369 

limited to measuring LDL-uptake into cells, which reflects a relevant, yet only a partial aspect of 370 

the many possible mechanisms by which a gene can modulate plasma lipid levels. Second, 371 

siRNA-based gene knock down captures acute and rather severe functional effects, which may 372 

differ from the chronic and often compensated consequences upon lifelong modulation of a 373 

gene’s function through genetic variation. Third, despite the large number of samples used for 374 

genetics-based GI testing, the number of informative high-impact variants in the human germline 375 
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may still be too discrete to comprehensively identify GIs. Regardless, the availability and rapid 376 

development of advanced high-throughput microscopy technology joint with the constantly 377 

increasing cohort sizes for genetic analyses will allow up-scaling of the approach taken here in 378 

future studies and with a high probability validate further GIs.      379 

In conclusion, our study introduces and confirms a strategy to link large-scale genetic data from 380 

a population biobank with quantitative, cell-based coRNAi to map GIs that affect blood lipid 381 

levels and CAD, an approach that can be applied to other diseases and complex traits. Our 382 

unbiased analyses support that mechanisms exist through which multiple genes jointly help 383 

maintain blood lipid homeostasis. CAD and ischaemic heart disease remain a substantial global 384 

health burden, and doubling-down on lowering atherogenic plasma lipids remains one of the 385 

most promising therapeutic approaches. With the encouraging results from recent gene- and 386 

antisense-based clinical trials for CAD, our results help prioritize drug target pairs for the 387 

development of lipid-lowering combination therapies rooted in human genetics. 388 

389 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.360818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

REFERENCES 390 

1.         Willer, C., Arbor, A. & Mohlke, K. Discovery and Refinement of Loci Associated with Lipid 391 

Levels Supplementary Information. 1–104 (2013) doi:10.1038/ng.2797. 392 

2.         Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. 393 

Nature Genetics 49, 1758–1766 (2017). 394 

3.         Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the 395 

Million Veteran Program. Nature Genetics 50, 1514–1523 (2018). 396 

4.         Musunuru, K. & Kathiresan, S. Genetics of Common, Complex Coronary Artery Disease. 397 

Cell 177, 132–145 (2019). 398 

5.         Khera, A. v. et al. Genome-wide polygenic scores for common diseases identify 399 

individuals with risk equivalent to monogenic mutations. Nature Genetics 1 (2018) 400 

doi:10.1038/s41588-018-0183-z. 401 

6.         Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for 402 

tier 1 genomic conditions. Nature Communications 11, 1–9 (2020). 403 

7.         Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of 404 

polygenic risk scores. Nature Reviews Genetics 19, 581–590 (2018). 405 

8.         Mars, N. et al. Polygenic and clinical risk scores and their impact on age at onset and 406 

prediction of cardiometabolic diseases and common cancers. Nature Medicine 26, 549–407 

557 (2020). 408 

9.         Ray, K. K. et al. Effect of 1 or 2 Doses of Inclisiran on Low-Density Lipoprotein 409 

Cholesterol Levels: One-Year Follow-up of the ORION-1 Randomized Clinical Trial. JAMA 410 

Cardiology 4, 1067–1075 (2019). 411 

10.        Michos, E. D., McEvoy, J. W. & Blumenthal, R. S. Lipid management for the prevention 412 

of atherosclerotic cardiovascular disease. New England Journal of Medicine 381, 1557–413 

1567 (2019). 414 

11.        Nelson, M. R. et al. The support of human genetic evidence for approved drug 415 

indications. Nature Genetics 47, 856–860 (2015). 416 

12.        Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence of the 417 

plasma proteome on complex diseases. Nature Genetics (2020) doi:10.1038/s41588-020-418 

0682-6. 419 

13.        Mackay, T. F. C. Epistasis and quantitative traits: Using model organisms to study gene-420 

gene interactions. Nature Reviews Genetics 15, 22–33 (2014). 421 

14.        Horlbeck, M. A. et al. Mapping the Genetic Landscape of Human Cells. Cell 174, 953-422 

967.e22 (2018). 423 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.360818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

15.        Riordan, J. D. & Nadeau, J. H. From Peas to Disease: Modifier Genes, Network 424 

Resilience, and the Genetics of Health. American Journal of Human Genetics 101, 177–425 

191 (2017). 426 

16.        Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive 427 

genetic variance for complex traits. PLoS Genetics 4, (2008). 428 

17.        Blattmann, P., Schuberth, C., Pepperkok, R. & Runz, H. RNAi-Based Functional Profiling 429 

of Loci from Blood Lipid Genome-Wide Association Studies Identifies Genes with 430 

Cholesterol-Regulatory Function. PLoS Genetics 9, (2013). 431 

18.        Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 432 

(2018). 433 

19.        Axelsson, E. et al. Extracting quantitative genetic interaction phenotypes from matrix 434 

combinatorial RNAi. BMC bioinformatics 12, 342 (2011). 435 

20.        Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 436 

Nature 562, 203–209 (2018). 437 

21.        Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 438 

141,456 humans. Nature 581, 434–443 (2020). 439 

22.        Narasimhan, V. M. et al. Humans With Related Parents. Science 352, 474–477 (2016). 440 

23.        McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biology 17, 1–14 441 

(2016). 442 

24.        Landrum, M. J. et al. ClinVar: Improving access to variant interpretations and supporting 443 

evidence. Nucleic Acids Research 46, D1062–D1067 (2018). 444 

25.        Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: 445 

Genetic interactions create phantom heritability. Proceedings of the National Academy of 446 

Sciences 109, 1193–1198 (2012). 447 

26.        Ge, T., Chen, C. Y., Ni, Y., Feng, Y. C. A. & Smoller, J. W. Polygenic prediction via 448 

Bayesian regression and continuous shrinkage priors. Nature Communications 10, 1–10 449 

(2019). 450 

27.        Bartz, F. et al. Identification of Cholesterol-Regulating Genes by Targeted RNAi 451 

Screening. Cell Metabolism 10, 63–75 (2009). 452 

28.        Thormaehlen, A. S. et al. Systematic Cell-Based Phenotyping of Missense Alleles 453 

Empowers Rare Variant Association Studies: A Case for LDLR and Myocardial Infarction. 454 

PLOS Genetics 11, e1004855 (2015). 455 

29.        Ichimura, T. et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers 456 

a phagocytic phenotype on epithelial cells. Journal of Clinical Investigation 118, 1657–457 

1668 (2008). 458 

30.        Phillips, P. C. Epistasis - The essential role of gene interactions in the structure and 459 

evolution of genetic systems. Nature Reviews Genetics 9, 855–867 (2008). 460 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.360818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

31.        Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-461 

lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 462 

randomised trials of statins. The Lancet 366, 1267–1278 (2005). 463 

32.        Rauh, G. et al. Identification of a heterozygous compound individual with familial 464 

hypercholesterolemia and familial defective apolipoprotein B-100. Klinische Wochenschrift 465 

69, 320–324 (1991). 466 

33.        Benlian, P. et al. Phenotypic Expression in Double Heterozygotes for Familial 467 

Hypercholesterolemia and Familial Defective Apolipoprotein B-100. 340345, (1996). 468 

34.        Tada, H. et al. A novel type of familial hypercholesterolemia: Double heterozygous 469 

mutations in LDL receptor and LDL receptor adaptor protein 1 gene. Atherosclerosis 219, 470 

663–666 (2011). 471 

35.        Soufi, M., Rust, S., Walter, M. & Schaefer, J. R. A combined LDL receptor/LDL receptor 472 

adaptor protein 1 mutation as the cause for  severe familial hypercholesterolemia. Gene 473 

521, 200–203 (2013). 474 

36.        Elbitar, S. et al. New Sequencing technologies help revealing unexpected mutations in 475 

Autosomal Dominant Hypercholesterolemia. Scientific Reports 8, 1–10 (2018). 476 

37.        De, R. et al. Identifying gene–gene interactions that are highly associated with four 477 

quantitative lipid traits across multiple cohorts. Human Genetics 136, 165–178 (2017). 478 

38.        Akdim, F. et al. Effect of Mipomersen, an Apolipoprotein B Synthesis Inhibitor, on Low-479 

Density Lipoprotein Cholesterol in Patients With Familial Hypercholesterolemia. American 480 

Journal of Cardiology 105, 1413–1419 (2010). 481 

39.        Akdim, F. et al. Efficacy of apolipoprotein B synthesis inhibition in subjects with mild-to-482 

moderate hyperlipidaemia. European Heart Journal 32, 2650–2659 (2011). 483 

40.        McGowan, M. P. et al. Randomized, Placebo-Controlled Trial of Mipomersen in Patients 484 

with Severe Hypercholesterolemia Receiving Maximally Tolerated Lipid-Lowering 485 

Therapy. PLoS ONE 7, 1–10 (2012). 486 

41.        Fogacci, F. et al. Efficacy and Safety of Mipomersen: A Systematic Review and Meta-487 

Analysis of Randomized Clinical Trials. Drugs vol. 79 751–766 (2019). 488 

42.        Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. New England 489 

Journal of Medicine 376, 41–51 (2017). 490 

43.        Raal, F. J. et al. Inclisiran for the treatment of heterozygous familial 491 

hypercholesterolemia. New England Journal of Medicine 382, 1520–1530 (2020). 492 

44.        Merkel, M., Eckel, R. H. & Goldberg, I. J. Lipoprotein lipase: Genetics, lipid uptake, and 493 

regulation. Journal of Lipid Research 43, 1997–2006 (2002). 494 

45.        Roses, A. et al. Understanding the genetics of APOE and TOMM40 and role of 495 

mitochondrial structure and function in clinical pharmacology of Alzheimer’s disease. 496 

Alzheimer’s and Dementia 12, 687–694 (2016). 497 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.360818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

46.        Björkegren, J. L. M. et al. Plasma Cholesterol-Induced Lesion Networks Activated before 498 

Regression of Early, Mature, and Advanced Atherosclerosis. PLoS Genetics 10, (2014). 499 

47.        Rossignoli, A. et al. Poliovirus Receptor-Related 2: A Cholesterol-Responsive Gene 500 

Affecting Atherosclerosis Development by Modulating Leukocyte Migration. 501 

Arteriosclerosis, Thrombosis, and Vascular Biology 37, 534–542 (2017). 502 

48.        Locke, A. E. et al. Exome sequencing of Finnish isolates enhances rare-variant 503 

association power. Nature 572, 323–328 (2019). 504 

49.        van der Harst, P. & Verweij, N. Identification of 64 Novel Genetic Loci Provides an 505 

Expanded View on the Genetic Architecture of Coronary Artery Disease. Circulation 506 

Research 122, 433–443 (2018). 507 

50.        Kamat, M. A. et al. PhenoScanner V2: An expanded tool for searching human genotype-508 

phenotype associations. Bioinformatics 35, 4851–4853 (2019). 509 

51.        Burton, P. R. et al. The Wellcome Trust Case Control Consortium. Genome-wide 510 

association study of 14,000 cases of seven common diseases and 3,000 shared controls. 511 

Nature 447, 661–678 (2007). 512 

52.        Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics 45, 513 

580–585 (2013). 514 

53.        Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of Genetic 515 

Association Studies Using Summary Statistics. PLoS Genetics 10, (2014). 516 

54.        Hout, C. V. van et al. Whole exome sequencing and characterization of coding variation 517 

in 49,960 individuals in the UK Biobank. bioRxiv 572347 (2019) doi:10.1101/572347. 518 

55.        Schwarz, G. Estimating the Dimension of a Model. Ann. Statist. 6, 461–464 (1978). 519 

56.        Erfle, H. et al. Reverse transfection on cell arrays for high content screening microscopy. 520 

Nature protocols 2, 392–399 (2007). 521 

57.        Erfle, H. et al. Work flow for multiplexing siRNA assays by solid-phase reverse 522 

transfection in multiwell plates. Journal of biomolecular screening�: the official journal of 523 

the Society for Biomolecular Screening 13, 575–580 (2008). 524 

58.        Carpenter, A. E. et al. CellProfiler: Image analysis software for identifying and 525 

quantifying cell phenotypes. Genome Biology 7, (2006). 526 

59.        Gilbert, D. F., Meinhof, T., Pepperkok, R. & Runz, H. DetecTiff©: A novel image analysis 527 

routine for high-content screening microscopy. Journal of Biomolecular Screening 14, 528 

944–955 (2009). 529 

60.        Malo, N., Hanley, J. A., Cerquozzi, S., Pelletier, J. & Nadon, R. Statistical practice in 530 

high-throughput screening data analysis. Nature Biotechnology 24, 167–175 (2006). 531 

61.        Birmingham, A. et al. Interference Screens. Nature Methods 6, 569–575 (2010). 532 

62.        Raftery, A. E. Bayesian Model Selection in Social Research. Sociological Methodology 533 

25, 111 (1995). 534 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.360818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

63.        Yoav Benjamini & Yosef Hochberg. Controlling the False Discovery Rate: A Practical 535 

and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series 536 

B (Methodological) 57, 289–300 (1995). 537 

  538 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.360818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

ACKNOWLEDGEMENTS 539 

This research has been conducted using the UK Biobank resource under application number 540 

26041. We thank all the participants and researchers of UK Biobank for making these data open 541 

and accessible to the research community. AbbVie, Anylam Pharmaceuticals, AstraZeneca, 542 

Biogen, Bristol-Myers Squibb, Pfizer, Regeneron and Takeda are acknowledged for generation 543 

and initial quality control of the whole-exome sequencing data. We thank Eric Marshall, 544 

Yongsheng Huang and Frank Nothaft for infrastructure support for genetic data analyses. The 545 

EMBL Advanced Light Microscopy Facility is acknowledged for supporting high-content 546 

microscopic-based screening analyses. We are grateful to Brigitte Joggerst, Susanne Theiss and 547 

Miriam Reiss for excellent technical assistance. Support to the study came in part from the 548 

Transatlantic Networks of Excellence Program 10CVD03 from Fondation Leducq to HR and RP.  549 

MZ was supported by the EMBL EIPOD programme, AT and PB by the EMBL PhD programme. 550 

 551 

AUTHOR CONTRIBUTIONS 552 

Conceptualization, H.R. and R.P.; Methodology and Investigation, M.Z., Y.H., A.T., C.-YC., R.P. 553 

and H.R.; Formal Analysis and Validation, M.Z., Y.H., A.T., C.-Y.C., J.L., A.H., B.K., E.T. and 554 

H.R.; Resources and Data Curation, J.L., P.B., C.W., D.S., S.J., E.T., R.P. and H.R.; Writing – 555 

Original Draft, M.Z., A.T. and H.R; Writing – Review and Editing, M.Z., Y.H., P.B., E.T., R.P. and 556 

H.R.; Supervision, S.J., W.H., E.T., R.P. and H.R.; Project Administration and Funding 557 

Acquisition, S.J., R.P. and H.R. 558 

 559 

DECLARATION OF INTERESTS 560 

Y.H., C.-Y.C., J.L., C.W., D.S., S.J., and H.R. are full-time employees at Biogen, Inc. The funders 561 

had no role in study design, data collection and analysis, decision to publish, or preparation of 562 

the manuscript. 563 

 564 

Further information and requests for resources and reagents should be directed to and will be 565 

fulfilled by the Lead Contact, Heiko Runz (heiko.runz@gmail.com) 566 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.360818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

METHODS 567 

Gene Selection 568 

We chose to study 30 candidate genes from 18 loci reported as associated through common-569 

variant genome-wide association studies (GWAS) as associated with plasma lipid levels and the 570 

risk for CAD. Twenty-eight of these genes had been identified and validated as functional 571 

regulators of LDL-uptake and/or cholesterol levels into cells in a previous RNAi-screen analysing 572 

a total of 133 genes in 56 lipid and CAD GWAS loci17 (Table S1). Common-variant association 573 

signals and published biological evidence for potential roles in lipid regulation were updated for 574 

all 30 candidate genes based on the recent literature (e.g., 1–3,49) and queries using the 575 

PhenoScanner platform50 (http://www.phenoscanner.medschl.cam.ac.uk/). Twenty eight genes 576 

were validated to reside within loci that are associated at genome-wide significance (p<5e-8) 577 

with plasma lipid levels or CAD. SNPs near FAM174A (rs383830) and SEZ6L (rs688034) had 578 

originally been reported as associated with CAD51, but failed to replicate at genome-wide 579 

significance in more recent meta-GWAS. However, since knockdown of both genes had scored 580 

as significantly impacting lipid parameters in cells17 the two genes were maintained for this 581 

current study. 582 

 583 

Colocalization Analysis 584 

Colocalization analysis was performed between the 28 GWAS lead SNPs using summary 585 

statistics from the 2013 Global Lipid Genetics Consortium GWAS1 586 

(http://csg.sph.umich.edu/willer/public/lipids2013/) and the GTEx liver cis-eQTL dataset 587 

(N=153)52. When a respective locus was associated with multiple lipid phenotypes, the SNP with 588 

the lowest reported p-value association with LDL was chosen to be the lead SNP. There was no 589 

GTEx liver expression data for four genes (APOE, MYBPHL, NCAN, SEZ6L), therefore there 590 

were no cis-eQTL for these genes to colocalize with. Colocalization analysis was conducted 591 

following the methods in Giambartolomei et al., 201453 using the R ‘coloc’ package on a +/-500kb 592 

window around each lead SNP against SNP-to-expression data of all neighbouring genes within 593 

that locus. Positive colocalization between liver cis-eQTL and GWAS signal was defined as 594 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.360818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

showing a posterior probability of sharing the same SNP (PP4) if larger than 0.8. A lead SNP at 595 

the SORT1/CELSR2 locus (rs629301) showed a positive colocalization signal, but the cis-eQTL 596 

co-localized with both genes, so SNP-based GIs for these genes could not be analysed 597 

separately.  598 

 599 

UK Biobank lipid and CAD phenotypes 600 

The UK Biobank is a prospective study of over 500,000 participants recruited at an age of 40-69 601 

years from 2006-2010 in the United Kingdom. Participant data include health records, medication 602 

history and self-reported survey information, together with imputed genome-wide genotypes and 603 

biochemical measures20. Baseline biochemical measures including LDL cholesterol (LDL), HDL 604 

cholesterol (HDL), triglycerides (TG), and serum total cholesterol (TC) had been obtained in UK 605 

Biobank’s purpose-built facility in Stockport as described in the UK Biobank online data 606 

showcase and protocol (www.ukbiobank.ac.uk). Demographic and other relevant phenotypic 607 

information was obtained from standard questionnaire data. Individual lipid phenotypes (LDL, 608 

HDL, TG and TC) were modelled as dependent variables using linear regression models against 609 

covariates including age, sex, smoking, alcohol drinking status, and BMI. Lipid medication use 610 

was obtained from self-reported questionnaire data (UK Biobank fields 6153 and 6177). CAD 611 

cases were recognized based on both self-reported diagnosis and Hospital Episode Statistics 612 

data in the UK Biobank with a code-based CAD definition as presented in the most recent CAD 613 

GWAS that included UK Biobank49. In total, 30,125 CAD cases were identified and the cohort 614 

was adjusted for age, sex, smoking status, alcohol drinking status, BMI and lipid medication use. 615 

All phenotype data were derived from UK Biobank basket “ukb27390” released on March 11, 616 

2019.  617 

 618 

Pairwise gene-based PTV-burden interaction testing 619 

High-impact protein-truncating variants (PTVs) expected to disrupt protein functions were 620 

identified from 200,654 whole-exome sequencing (WES) data of UK Biobank participants to 621 

conduct pairwise interaction analyses. WES data was generated and quality controlled (QC-ed) 622 
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as described in Van Hout et al. at the Regeneron Genetics Center as part of a collaboration 623 

between AbbVie, Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer, 624 

Regeneron and Takeda and the UK Biobank consortium54. PTVs were called from a Regeneron 625 

QC-passing “Goldilocks” set of genetic variants using Variant Effect Predictor v9623 (McLaren et 626 

al., 2016) and the LOFTEE plugin21. We identified 462,762 high-confidence PTVs with a minor 627 

allele frequency of <1% in the canonical transcripts of 18,869 genes. This set included 755 rare 628 

PTVs in the 30 lipid genes analysed in this study. PTVs per gene were enumerated, and a PTV-629 

burden association analysis was conducted in 161,508 unrelated (>2nd degree relatedness) UK 630 

Biobank participants of European ancestry, as defined by principle components analysis of the 631 

genotyping data20. Replication analysis was conducted from an additional 101,827 samples, 632 

bringing the total sample size used for calling PTVs from UK Biobank exome sequencing data to 633 

302,634. Of these 101,827 samples, 79,462 fulfilled the criteria applied to the discovery cohort, 634 

so that an overall sample size of 240,970 exomes was available for replicating findings from the 635 

initial PTV-based GI analyses.    636 

For pairwise PTV-based interaction testing, QC-ed UK Biobank lipid phenotypes (HDL, LDL, TG 637 

and TC) were modelled as dependent variables using the following four linear regression models 638 

in R: 639 

Model 1 for gene1 PTV-burden only: lipids ~ PTV1 640 

Model 2 for gene2 PTV-burden only: lipids ~ PTV2 641 

Model 3 for gene1 PTV-burden and gene2 PTV burden (additive GI): lipids ~ PTV1 + PTV2  642 

Model 4 for gene1 PTV-burden and gene2 PTV burden (non-additive GI): lipids ~ PTV1 + PTV2 + 643 

PTV1 * PTV2 644 

Schwarz’s Bayesian Information Criterion (BIC)55 scoring was used to determine the best model 645 

to explain the data and goodness of fit, with the lowest BIC value indicating the best-fitting model 646 

describing each gene pair. Model 3 reflected additive genetic interactions (aGIs), Model 4 non-647 

additive gene interactions (naGIs). The model with the lowest BIC was chosen as describing 648 

most adequately the type of interaction between each corresponding gene pair. 649 

 650 
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Pairwise SNP interaction testing 651 

To assess whether GWAS lead SNPs modulate plasma lipid levels through joint effects within 652 

and across GWAS loci, we conducted pairwise SNP-SNP interaction analysis using genome-653 

wide genotyping data and biochemical measures of lipid species from the UK Biobank. Twenty-654 

eight lead SNPs mapped to the 30 lipid GWAS genes were extracted from genotyping data of 655 

378,033 unrelated (removed up to 2nd degree relatedness) participants of European ancestry. A 656 

total of 378 pairwise modifier effects were tested by conducting Robust Linear Model Fitting 657 

using R, running the following four linear regression models: 658 

Model 1 for SNP1 only: lipids ~ SNP1 659 

Model 2 for SNP2 only: lipids ~ SNP2 660 

Model 3 for SNP1 and SNP2 (additive GI): lipids ~ SNP1 + SNP2 661 

Model 4 for SNP1 and SNP2 (non-additive GI): lipids ~ SNP1 + SNP2 + SNP1 * SNP2 662 

Schwarz’s Bayesian Information Criterion (BIC) scoring was used to determine the best model to 663 

explain the data and goodness of fit, with the lowest BIC value indicating the best-fitting model 664 

describing each SNP pair. If Model 3 had the lowest BIC value, it reflected an aGI, and if Model 4  665 

had the lowest BIC value, it reflected a naGI. 666 

A similar strategy was applied for pair-wise interaction testing to explore potential joint effects 667 

between the 30 genes on CAD risk by running the following four logistic regression models 668 

adjusted for age, sex, smoking status, alcohol drinking status, BMI and lipid medication use: 669 

Model 1 for SNP1 only: CAD ~ SNP1 670 

Model 2 for SNP2 only: CAD ~ SNP2 671 

Model 3 for SNP1 and SNP2 (additive GI): CAD ~ SNP1 + SNP2  672 

Model 4 for SNP1 and SNP2 (non-additive GI): CAD ~ SNP1 + SNP2 + SNP1 * SNP2 673 

As above, the model with the lowest BIC was chosen as describing most adequately the type of 674 

interaction between each corresponding SNP pair. 675 

 676 

PTV-SNP interaction testing 677 
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In order to conduct pairwise interaction analyses between GWAS lead SNPs and PTVs, we 678 

assessed the interaction of the 28 lead SNPs with rare PTV burden for each of the 30 genes. For 679 

SNP-PTV interaction testing, UK Biobank lipid phenotypes (HDL, LDL, TG and TC) were 680 

modelled as dependent variables using the following four linear regression models: 681 

Model 1 for gene1 lead SNP only: lipids ~ SNP1 682 

Model 2 for gene2 PTV-burden only: lipids ~ PTV2 683 

Model 3 for gene1 lead SNP and gene2 PTV burden (additive GI): lipids ~ SNP1 + PTV2  684 

Model 4 for gene1 lead SNP and gene2 PTV burden (non-additive GI): lipids ~ SNP1 + PTV2 + 685 

SNP1*PTV2 686 

As above, the model with the lowest BIC was chosen as describing most adequately the type of 687 

interaction between each corresponding SNP-gene pair. 688 

 689 

PTV-PRS interaction testing 690 

We assessed the interaction effects between polygenic risk score (PRS) and PTVs for each of 691 

the four lipid phenotypes. To construct PRS for UK Biobank samples, we first derived the PRS 692 

weights for each SNP across the genome using PRS-CS26, which is a Bayesian regression-693 

based algorithm, and publicly available summary statistics from lipid GWAS1. We applied derived 694 

PRS weights to imputed genotypes (with minor allele frequency >0.01 and imputation quality 695 

INFO >0.8) of UK Biobank samples and calculated PRS for each lipid, based on the 696 

corresponding PRS weights. Note that all SNPs in the gene of interest were excluded from the 697 

PRS when testing for PRS-PTV gene interaction. GIs were tested between PRS and PTV-698 

burden for each of the 30 genes by fitting the four linear regression models: 699 

Model 1 for PRS only: lipids ~ PRS 700 

Model 2 for gene PTV-burden only: lipids ~ PTV 701 

Model 3 for PRS and gene PTV burden (additive GI): lipids ~ PRS + PTV  702 

Model 4 for PRS and gene PTV burden (non-additive GI): lipids ~ PRS + PTV + PRS * PTV 703 

As above, the model with the lowest BIC was chosen as describing most adequately the type of 704 

interaction between each corresponding PRS-gene pair. 705 
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 706 

RNAi interaction testing 707 

Cells and reagents 708 

HeLa-Kyoto cells are a strongly adherent Hela isolate (gift from S. Narumiya, Kyoto University 709 

Japan) that, as we demonstrated earlier, enable reliable measurements of LDL-cholesterol 710 

uptake dynamics and show lipid homeostatic mechanisms similar to those described for liver-711 

derived cell models17,27,28. DiI-LDL (Life Technologies), DRAQ5 (Biostatus), Dapi (Molecular 712 

Probes), 2-hydroxy-propyl-beta-cyclodextrin (HPCD) (Sigma), Lipofectamine 2000 (Invitrogen) 713 

and Benzonase (Novagen) were purchased from the respective suppliers.  714 

 715 

siRNA selection and production of siRNA microarrays 716 

RNA-interference (RNAi) screening was conducted in glass-bottomed single-well chambered cell 717 

culture (Lab-Tek) slides with solid-phase reverse siRNA-transfection of cultured cells (“cell 718 

microarrays”) as described previously27,56. Each gene under study was targeted with a single 719 

siRNA (Silencer Select, Invitrogen) that had been selected with the EMBL-generated software 720 

tool bluegecko (J.K. Hériche, unpublished) based on the alignment to the reference genome, a 721 

maximal number of protein-coding transcripts per gene targeted and expected specificity for the 722 

target gene. The 28 siRNAs in this study had been validated earlier to significantly enhance or 723 

reduce cellular uptake of fluorescent-labelled LDL (DiI-LDL) or free cellular cholesterol levels17  724 

and were shown to efficiently downregulate mRNA or protein levels of their respective target 725 

genes (Table S2). siRNA sequences are provided in Blattmann et al., 2013 Supplementary 726 

Table 4. For the two genes not analysed in our earlier study (MYLIP, PAFAH1B2), siRNAs used 727 

in the current study were prioritized from 3 and 5 siRNAs per gene based on bluegecko in silico 728 

analyses, knockdown efficiency on target mRNA/protein levels (up to less than 10% residual 729 

levels) and/or efficiency to modulate cellular DiI-LDL uptake in preparatory individual single gene 730 

knock-down experiments (not shown). The 75% (12/16) of siRNAs that had scored as 731 

individually modulating cellular DiI-LDL uptake in our earlier study17 also met the more stringent 732 

criteria of our current study to score as LDL-uptake modulator when used either alone or 733 
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together with non-silencing control siRNA Neg9 (Figure 3b, CTRL column), thereby replicating 734 

our earlier results and validating experimental settings for this current study. 735 

To cover the total of 435 pairwise siRNA combinations including controls and replicas, five 736 

different cell microarrays with 384 spots/array were produced. Per array, the following negative 737 

controls were added: eight spots containing INCENP-siRNA (s7424) to control for transfection 738 

efficiency17; eight spots containing non-silencing control siRNA Neg1 (s229174), and eight spots 739 

containing non-silencing control siRNA (denoted as CTRL throughout the text) Neg9 (s444246). 740 

Furthermore, eight spots were added with siRNA targeting LDLR (s224006) as a positive control 741 

for LDL uptake, as well as eight spots with siRNA targeting NPC1 (s237198) knockdown of 742 

which increases free cellular cholesterol signals27. For pairwise combinatorial RNAi-screening, 743 

siRNAs against two genes were printed simultaneously on a respective siRNA-spot, with equal 744 

amounts (15 pmol/siRNA) of siRNA per gene. As positive controls, eight spots containing both, 745 

non-silencing control siRNA Neg9 (CTRL) (s444246) and siRNA targeting LDLR (s224006), and 746 

eight spots containing both, non-silencing control siRNA (CTRL) Neg9 (s444246) and siRNA 747 

targeting NPC1 (s237197) were included per array. For all genes, “single-gene knockdown” 748 

scenarios [siRNAgeneA+Neg9] were added on two spots per array. Each pairwise “combinatorial 749 

knockdown” scenario [siRNAgeneA+siRNAgeneB] was analyzed on one spot per array, with a single 750 

spot covering 50-100 informative cells28,57 (Figure S1).  751 

In order to confirm GIs identified with the coRNAi screen, we replicated our analyses with 752 

forward transfection in a liquid-phase format with Lipofectamine 2000 reagent in 12-well plates, 753 

according to the manufacturer’s instructions. Concentrations of the siRNAs were adjusted to 754 

mimic the single knockdown phenotypes from the screen (Table S2). 1μl of Lipofectamine 2000 755 

was used per each transfection. GIs that showed a statistically significant interaction effects 756 

(pfdr<10-2) in replication analyses and acted in the same direction (same directionality of 757 

interaction value) as in the coRNAi screen, were considered as validated (Table S12). 758 

 759 

Cell culture, transfection and LDL-uptake assay  760 

HeLa Kyoto cells were grown in DMEM medium (Gibco) supplemented with 10 % (w/v) fetal calf 761 
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serum (FCS)(PAA) and 2 mM L-glutamine (Sigma) at 37 °C with 5 % CO2 and saturated 762 

humidity. Cells were plated at a density of 6x104 per plate on the cell microarrays for solid-phase 763 

siRNA transfection56 and cultivated for 48 hours before performing the LDL-uptake assay. For 764 

liquid phase transfection-based validation experiments, cells were plated in 12-well plates the 765 

day prior to transfection, and siRNA-transfected cells were cultivated for 48 hours. The assays to 766 

monitor cellular uptake of fluorescently-labelled LDL (DiI-LDL) were performed as described in 767 

more detail in previous publications17,27,28. In brief, cells cultured in serum-free medium 768 

(DMEM/2mM L-glutamine/0.2 % (w/v) BSA) and exposed to 1% 2-hydroxy-propyl-beta-769 

cyclodextrin for 45min were labelled with 50 µg/ml DiI-LDL (Invitrogen) for 30 min at 4 °C. DiI-770 

LDL uptake was stimulated for 20 min at 37.0 °C before washing off non-internalized dye for 1 771 

min in acidic (pH 3.5) medium at 4 °C, fixation, and counterstaining for nuclei (Dapi) and cell 772 

outlines (DRAQ5). For RNAi-based gene interaction screening, each of the five cell microarrays 773 

was assayed in 7-10 biological replicas. 774 

 775 

Image acquisition and quality control 776 

Image acquisition was performed using an Olympus IX81 automated microscope with Scan^R 777 

software and an UPlanSApo 20x/NA 0.40 air objective as described17,28. Images from a total of 778 

42 cell microarrays were visually quality controlled. Arrays with insufficient knockdown efficiency 779 

where INCENP siRNA treated cells did not show the expected multinucleated phenotype in the 780 

DAPI channel were excluded. Also arrays with plate effects as evaluated through diagnostic 781 

plots with the splot function in R, and arrays where knockdown of LDLR, or LDLR together with 782 

negative control siRNA Neg9, did not show a significant difference from controls, were discarded 783 

as well. Following these QC criteria, 29 cell microarrays with a total of 11,047 image frames per 784 

channel were further analysed. The in-house developed tool HTM Explorer (Ch. Tischer; 785 

https://github.com/embl-cba/shinyHTM) was then used to select images fulfilling pre-defined 786 

criteria for cell number, image sharpness quality, and image background intensity, resulting in a 787 

total number of 9,539 (86.35%) QC-ed image frames that were used for subsequent analyses. 788 

 789 
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Image analysis 790 

Automated image analysis was performed using a specifically developed pipeline (available 791 

upon request) in the open source software CellProfiler58 http://www.cellprofiler.org as 792 

described17,28. In brief, areas of individual cells were approximated by stepwise dilation of masks 793 

on the DAPI (nuclei) and DRAQ5 (cell outlines) channels59. For each individual cell, DiI-LDL 794 

signal was determined from masks representing intracellular endosome-like vesicular areas that 795 

were determined by local adaptive thresholding according to predefined criteria for size and 796 

shape (Figure S1). Total fluorescence intensity of DiI-signal above local background per cell 797 

mask was quantified, and means were calculated from all cells per image. Then, for each siRNA, 798 

or siRNA combination (“treated”), signals from different images from the same biological replicate 799 

were averaged and a robust Z-score was calculated using the median fluorescence signal of all 800 

the negative control siRNAs per array (“median(controls)”) and by the median absolute deviation 801 

of these controls (“mad(controls)”) as follows:������ �	�
��� �
�������������	�
����

��
���

�������

��
���
 60,61. A 802 

median robust Z-score was calculated per treatment across all biological replicates and is 803 

represented on the plots. 804 

 805 

RNAi gene interaction testing 806 

To identify pairs of genes for which simultaneous knock-down results in an additive or non-807 

additive gene interaction effects on LDL uptake we conducted a Robust Linear Model fitting in R. 808 

RobustZScore values calculated from different biological replicates in the presence of single 809 

([siRNAgeneA+Neg9] and [siRNAgeneB+Neg9]) or double knock-downs ([siRNAgeneA+ siRNAgeneB]) 810 

were considered to be response variable value. Negative control values [Neg9] were included in 811 

each fitted dataset to correctly account for baseline LDL uptake. The full regression model 812 

considered in the study was 813 

y = β0 + βA* xA + βB* xB +βAB* xA*xB+ � 814 

which is equivalent to the short form of the statistical formula: 815 

y ~ xA + xB + xA*xB      816 
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In both formulas y corresponds to the robustZscore values of measured LDL uptake; xA, xB are 817 

encoded predictor variables, which are equal to 1 in case of presence of siRNAgeneA, siRNAgeneB, 818 

or both siRNAs accordingly and equal 0 otherwise. The � is a noise term, which is minimised 819 

during the fitting process. Model fitting provides estimates of β0, βA, βB and βAB values. β0 defines 820 

the effect of the negative control on robustZscore values and can be also denoted as an 821 

intercept of the linear fit. For our data β0 is always close to 0 because of the robustZscore 822 

definition. The βA and βB define individual effects of siRNAgeneA and siRNAgeneB accordingly. The 823 

βAB defines the interaction effect between genes A and B and represents the difference between 824 

the observed robustZscore values in case of double knockdown yAB and the expected additive 825 

effect of geneA and geneB knockdown (βAB = yAB - β0 - βA - βB).  826 

Subsequently, two strategies were used to evaluate functional interactions for each gene pair 827 

using defined statistical model: 828 

First, to determine gene pairs for which genetic interactions and additive effects observed upon 829 

combinatorial knockdowns, we compared fitting of the whole model to the fitting of reduced 830 

model versions. Following models were compared: 831 

Model 0 - (only baseline effect β0 in case of either single or double knockdown): y ~ 1 832 

Model 1 - effect of siRNAgeneA only: y ~ xA 833 

Model 2 - effect of siRNAgeneB only: y ~ xB 834 

Model 3 for additive effect of both siRNAs (additive GI): y ~ xA + xB 835 

Model 4 – full model including genetic interaction (non-additive GI): y ~ xA + xB + xA*xB. 836 

 837 

To determine the best model explaining the data for each gene pair we used Schwarz’s 838 

Bayesian Information Criterion (BIC). BIC score was calculated for each model fitted to the data, 839 

then the model with the lowest BIC value (BIC*) was selected as the best-fitting model. Co-840 

knockdown effects of each gene pair were classified as aGIs or naGIs when model 3 or model 4 841 

accordingly were defined to fit data best. Additionally, for the RNAi screen, we used the method 842 

published by Raftery, 1995 to define the strength of evidence for the respective model to be 843 

selected62. Namely, if the difference (ΔBIC) between the BIC value of the best fitting model (the 844 
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model with the lowest BIC value) and the BIC value of any other model is bigger than 2, then it 845 

would indicate a significant evidence for this model (with BIC*) to truly represent the data. In 846 

other words, if ΔBIC>2 then the model with lowest BIC value (BIC*) was considered as the one 847 

most correctly describing the data in comparison to other tested models. If the ΔBIC<2, then two 848 

models were considered as possible alternatives for representing the dataset. 849 

Secondly, to estimate statistical significance of gene interaction effect for each siRNA gene 850 

combination, we calculated a p-value from the t-value of the linear regression model term, 851 

describing genetic interaction (βAB) as pVal=2-2*pnorm(abs(tVal)). To correct for multiple 852 

comparisons, the p-values were adjusted using the false discovery rate (fdr) method63, and the 853 

fdr-corrected p-values < 10-2 were considered to correspond to significant GIs. 854 

 855 

RT-qPCR analysis 856 

Cell lysis and total RNA extraction was done using the RNease Mini Kit (Qiagen). Reverse-857 

transcription was performed with the SuperScript™ III First-Strand Synthesis SuperMix for RT-858 

qPCR (Invitrogen). RT-qPCR data was obtained from three biological replicates/siRNA 859 

treatment. Primers can be provided upon request. For each siRNA treatment target mRNA was 860 

normalized to that of GAPDH and compared to CTRL siRNA and the log2 of fold change (2-ΔΔCT) 861 

was calculated (see Figure S4). Results were considered as significant if p-values were below 862 

0.05 in a two-tailed Student’s t-test. 863 

 864 

Immunocytochemistry and confocal microscopy  865 

Cells were transfected and cultured as described above then fixed with 3% paraformaldehyde 866 

(PFA) at room temperature for 20 min, washed with PBS, incubated with 30mM glycine for 5 min 867 

and washed again with PBS. For LDLR staining cells were permeabilized with 0.05% Filipin III 868 

(Sigma #F4767) in 10% FCS for 30 min at room temperature. Primary antibody: rabbit 869 

monoclonal anti-LDLR (Fitzgerald #20R-LR002) was diluted in 5% FCS overnight at 4 °C. 870 

Secondary antibody: goat polyclonal goat anti-rabbit IgG Alexa 568 (Invitrogen #A11011) was 871 

diluted 1:400 in 5% FCS. Fixed cells were imaged using a Zeiss LSM 780 confocal microscope 872 
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using a 63x/NA 1.4 oil objective. 873 

874 
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FIGURE LEGENDS 875 

Figure 1 876 

PTV-burden tests in UK Biobank establish additive GIs for PCSK9-APOB and LPL-APOB 877 

(a) Workflow of the study. 30 high-confidence candidate genes for GI testing were chosen from 878 

18 GWAS regions associated with blood lipid traits or CAD risk based on colocalization analyses 879 

with eQTL/pQTL signals and previously reported lipid-regulatory functions (see Methods). 880 

Pairwise GI analyses were conducted from three complementary datasets: protein-truncating 881 

variants (PTVs) from exome sequencing in the UK Biobank; lipid/CAD GWAS lead SNPs; and 882 

combinatorial RNAi (coRNAi) experiments in cells. Robust linear model fitting was used to 883 

identify additive (aGI) and non-additive (naGI) GIs, and genetic and functional data were 884 

integrated. (b) Gene-based PTV-burden analyses from 161,508 exomes identified an additive GI 885 

(aGI) for LDL (and TC; not shown) between PSCK9 and APOB. (c) A suggestive non-additive GI 886 

(naGI) for HDL (and TG; not shown) between PTVs in LPL and APOB was validated as aGI for 887 

HDL, TG, and also LDL by replication analyses in an additional 79,462 UK Biobank exomes 888 

(Table S6). n, number of carriers. (-), predicted loss-of-function due to PTVs. 889 

 890 

Figure 2 891 

Pairwise GIs between lipid and CAD GWAS lead SNPs in 387,033 UK Biobank participants 892 

(a-e) Circos plots showing aGIs (grey) and naGIs (colored) between GWAS lead SNPs (blue) at 893 

the 28 selected lipid/CAD loci (red) for the four tested lipid species and CAD. (f) Tests for GIs 894 

between polygenic risk scores for the four lipid species and PTV-burden for each of the 30 lipid 895 

genes identified a naGI between PTV-burden in LPL and the PRS for TG. PRS distribution 896 

(mean±SD) for LPL-PTV carriers (pink) and non-carriers (blue) are plotted against mean 897 

normalized residual TG levels. Each dot reflects mean TG levels at a respective percentile. 898 

 899 

Figure 3 900 

Combinatorial RNAi identifies pairwise GIs modulating cellular LDL-uptake 901 
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(a) coRNAi screen workflow. Customized cell microarrays were generated by pairwise spotting of 902 

siRNAs against two different candidate genes on 384 spots/array for solid-phase reverse siRNA 903 

transfection of cultured HeLa cells. Cells challenged to internalize fluorescent-labelled LDL (DiI-904 

LDL) over a period of 20 min were imaged on a high-content microscope. Integrated 905 

fluorescence intensities for each cell individually were quantified by automated image analysis. 906 

Averaged signal intensities per gene pair were tested for GIs in multiple replica experiments per 907 

array. GIs suggested in the coRNAi screen as potentially non-additive were subsequently 908 

validated in customized experiments using fluid-phase transfection. (b) Heatmap visualizing 909 

median robust Z-score distribution upon coRNAi of 435 gene pairs assessed for their impact on 910 

cellular LDL-uptake. Red, increase. Blue, decrease. CTRL (top row and first column) reflects the 911 

relative impact on LDL-uptake when candidate genes were silenced individually (siRNAgeneAorB + 912 

negative control siRNA). (c) 20 gene pairs validated as either buffering or synergistic naGIs on 913 

cellular LDL-uptake in independent replica experiments, sorted according to effect size. 914 

Interaction Value (right graph) depicts the directionality and difference of the combined effect 915 

versus single knockdown effects. (d-f) Selected examples of single gene (siRNAgeneA + negative 916 

control siRNA) and gene pair (siRNAgeneA+siRNAgeneB) siRNA knockdown effects on relative 917 

fluorescently-labelled LDL (DiI-LDL) cellular uptake. CTRL, control siRNA. Boxplots represent 918 

values between 25th and 75th percentile, whiskers indicate largest value within 1.5 times 919 

interquartile range above 75th percentile. Median value is highlighted in the boxplot as a 920 

horizontal line. Dots represent robust Z-score values calculated for integrated DiI fluorescence 921 

intensities per cell (see Methods). Scale bar=10 μm. 922 

 923 

Figure 4 924 

Integrative analysis identifies pairwise GIs supported by both, genetic and functional data  925 

Overlap of GIs identified through genetic analyses and coRNAi. Highlighted are gene pairs 926 

identified through either PTV-SNP (a, b) or SNP-SNP (c,d) GI testing for which pairwise siRNA-927 

knockdown showed corresponding effects on cellular LDL-uptake, validating these GIs as either 928 

aGI (a,c) or naGI (b,d). (e) TOMM40 as an example for which, consistent with SNP-SNP 929 
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analyses, siRNA knockdown revealed buffering naGIs when jointly silenced with SORT1 (left 930 

panel) or NCAN (right panel). Values on the graphs reflect robust Z-scores values calculated for 931 

total intensity of DiI-LDL per cell averaged per image (see Methods). Boxplots represent values 932 

between 25th and 75th percentile, whiskers indicate largest value within 1.5 times interquartile 933 

range above 75th percentile. Median value is highlighted in the boxplot as a horizontal line. Dots 934 

represent robust Z-score values calculated for integrated DiI fluorescence intensities per cell 935 

(see Methods). Scale bar= 10 μm. 936 
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TABLES 937 

Table 1.  938 

Non-additive GIs from pairwise PTV-burden and GWAS lead SNP-based GI testing in UK Biobank 939 

 940 

Trait Gene 1 Gene 2 
BIC_Best
_Model 

Lowest 
ΔBIC 

incl. 
19q13.32 

cis 
GI 

trans 
GI 

MAF 
(SNP1) | 
N_PTV1 
carriers 

MAF 
(SNP2)|
N_PTV2 
carriers 

          
LDL SNP-SNP GIs:         

LDL NCAN (rs2228603) TM6SF2 (rs58542926) 4 85.34 + 0.076 0.076 
LDL TM6SF2 (rs58542926) APOE (rs4420638) 4 63.34 + (+) 0.076 0.191 
LDL TM6SF2 (rs58542926) TOMM40 (rs2075650) 4 41.95 + (+) 0.076 0.147 
LDL BCAM (rs118147862) APOE (rs4420638) 4 34.25 + + 0.046 0.191 
LDL NCAN (rs2228603) APOE (rs4420638) 4 32.61 + (+) 0.076 0.191 
LDL NCAN (rs2228603) TOMM40 (rs2075650) 4 30.02 + (+) 0.076 0.147 
LDL BCAM (rs118147862) TOMM40 (rs2075650) 4 28.81 + + 0.046 0.147 
LDL ZNF259 (rs2075290) APOE (rs4420638) 4 4.68 + + 0.068 0.191 
LDL CBLC (rs3208856) APOE (rs4420638) 4 3.34 + + 0.036 0.191 
LDL SORT1/CELSR2 (rs629301) TOMM40 (rs2075650) 4 0.57 + + 0.222 0.147 

 
HDL SNP-SNP GIs: 

HDL BCAM (rs118147862) PVRL2 (rs7254892) 4 1.47 + 0.046 0.031 
 
TG SNP-SNP GIs: 

TG ZNF259 (rs2075290) SIK3 (rs6589574) 4 31.81 + 0.068 0.084 
TG BCAM (rs118147862) PVRL2 (rs7254892) 4 21.41 + + 0.046 0.031 
TG CBLC (rs3208856) BCAM (rs118147862) 4 20.45 + + 0.036 0.046 
TG ZNF259 (rs2075290) PAFAH1B2 (rs4936367) 4 17.82 + 0.068 0.1 
TG LPL (rs12678919) ZNF259 (rs2075290) 4 13.81 + 0.098 0.068 
TG LPL (rs12678919) SIK3 (rs6589574) 4 3.22 + 0.098 0.084 

 
TC SNP-SNP GIs: 

TC NCAN (rs2228603) TM6SF2 (rs58542926) 4 74.81 + 0.076 0.076 
TC TM6SF2 (rs58542926) APOE (rs4420638) 4 53.33 + (+) 0.076 0.191 
TC TM6SF2 (rs58542926) TOMM40 (rs2075650) 4 38.17 + (+) 0.076 0.147 
TC NCAN (rs2228603) APOE (rs4420638) 4 30.93 + + 0.076 0.191 
TC NCAN (rs2228603) TOMM40 (rs2075650) 4 28.59 + + 0.076 0.147 
TC BCAM (rs118147862) TOMM40 (rs2075650) 4 11.24 + + 0.046 0.147 
TC BCAM (rs118147862) APOE (rs4420638) 4 9.05 + + 0.046 0.191 
TC ZNF259 (rs2075290) APOE (rs4420638) 4 2.40 + + 0.147 0.191 
TC SORT1/CELSR2 (rs629301) TOMM40 (rs2075650) 4 0.31 + + 0.222 0.147 

 
LDL PTV-SNP GIs: 

LDL LDLR PVRL2 (rs7254892) 4 8.318 + + 33 0.031 
 
HDL PTV-SNP GIs: 

HDL APOB LPL (rs12678919) 4 1.601 + 222 0.098 
 
TC PTV-SNP GIs: 

TC LDLR PVRL2 (rs7254892) 4 18.014 + + 33 0.031 
TC LDLR SIK3 (rs6589574) 4 2.961 + 33 0.084 
TC LDLR PAFAH1B2 (rs4936367) 4 0.405 + 33 0.1 

 
TG PTV-SNP GIs 

TG LPL SIK3 (rs6589574) 4 8.4 + 31011 0.084 
TG BAZ1B PAFAH1B2 (rs4936367) 4 5.825 + 25 0.1 
TG LPL ZNF259 (rs2075290) 4 3.894 + 31011 0.147 
TG BAZ1B NCAN (rs2228603) 4 2.845 + 25 0.076 
TG LPL PAFAH1B2 (rs4936367) 4 1.648 + 31011 0.1 
TG BAZ1B TM6SF2 (rs58542926) 4 1.522 + 25 0.076 

 941 
Non-additive genetic interactions (naGIs) identified through GWAS lead SNP- and PTV-SNP-based GI analyses in the 942 

UK Biobank as described in Methods. BIC, Bayesian Information Criterion. A lowest ΔBIC of “4” indicates interaction 943 
model is most compatible with a non-additive interaction effect. MAF (minor allele frequency) estimates and numbers 944 
of rare protein-truncating variant (PTV) carriers are based on genotypes from 387,033 and exomes, respectively, from 945 
161,508 unrelated UK Biobank participants of European ancestry. (+) indicates possible cis-effects of rs4420638 in 946 
APOE on neighbouring genes on Chr.19q13.32. Trans GI indicates genes contributing to pairwise naGIs are located 947 
on different chromosomes. * represents data based on the replication study in additional 79,462 UK Biobank 948 
participants. 949 
 950 
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 951 

 952 

Table 2.  953 

Pairwise GIs identified and validated through coRNAi to impact LDL-uptake into cells 954 

 955 

Gene pairs identified and independently validated by combinatorial RNAi (coRNAi) as impacting the uptake of 956 
fluorescent-labelled LDL into cells in a non-additive manner. Both, BIC, Bayesian Information Criterion and RLMF, 957 
Robust Linear Model Fitting were applied for analysis of coRNAi-based GI-testing as described in Methods. *, gene 958 
pairs that both, genetic and coRNAi GI-testing identify as naGIs. 959 
 960 
 961 
 962 
 963 
 964 
 965 
 966 
 967 
 968 
 969 
 970 
 971 
 972 
 973 
 974 
 975 
 976 

GI Gene Pair Interaction 
type 

BIC-based GI 
testing 

RLMF-based GI testing Validation RNAi GI testing 

Gene1 Gene2  
Lowest 

ΔBIC 
Best 

Model 
Robust 
Zscore 

Interaction 
Value pVal(fdr) Robust 

Zscore 
Interaction 

Value pVal (fdr) 

APOB HMGCR 

S
yn

erg
istic 

4.62 2 2.8 2.18 4.05E-03 3.33 0.97 1.53E-03 

HAVCR1 LDLR 4.31 4 -2.18 -1.32 1.68-02 -2.24 -1.24 1.81E-10 

LDLR NCAN 2.36 4 -1.86 -1.28 7.64E-03 -1.23 -2.22 2.20E-11 

MYBPHL SIK3 2.27 4 2.17 1.59 6.59E-03 2.3 0.96 7.91E-03 

PAFAH1B1 SIK3 4.49 4 1.62 1.79 2.52E-03 3.3 2.44 8.37E-12 

PCSK9 TMEM57 3.82 4 1.46 1.76 2.37E-03 3.21 2.44 3.74E-11 

BCAM LDLRAP1 

B
u

fferin
g

 

4.70 4 -0.4 -1.83 3.58E-04 -0.05 -0.7 5.20E-03 

CELSR2 LPL 0.04 0/2 -1.4 -1.43 7.53E-03 -0.11 -0.86 8.70E-05 

CXCL12 PAFAH1B1 5.47 4 -2.17 -1.78 3.69E-04 1.32 -1.92 9.84E-13 

HAVCR1 LDLRAP1 13.70 4 -0.56 -2.16 1.03E-05 0.39 -0.73 5.40E-03 

HAVCR1 MLXIPL 13.55 4 -0.63 -2.31 1.03E-05 -0.12 -1.2 2.06E-05 

HAVCR1 SEZ6L 8.54 4 -1.19 -1.91 3.39E-04 -0.67 -0.77 2.90E-04 

HAVCR1 SORT1 11.66 4 -2.09 -2.24 9.34E-05 -0.63 -0.58 1.98E-03 

LDLR LDLRAP1 10.06 4 -2.44 -1.86 9.34E-05 -2.49 -0.92 2.36E-10 

LDLR MLXIPL 5.79 4 -2.03 -1.49 2.97E-03 -2.26 -0.78 4.19E-11 

LDLRAP1 SORT1 8.13 4 -1.11 -1.65 2.57E-03 -1.09 -0.95 3.89E-06 

MLXIPL TOMM40 18.73 4 -2.14 -2.67 1.03E-05 -1.94 -0.85 3.82E-08 

NCAN SEZ6L 5.08 4 -0.59 -1.6 5.54E-03 -0.08 -1.56 7.94E-12 

NCAN* TOMM40* 2.76 4 -1.4 -1.56 7.17E-03 -1.49 -1.34 1.75E-08 

SORT1* TOMM40* 5.80 0 0.77 1.84 3.90E-03 -2.48 1.77 0.00E+00 
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