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SUMMARY

Genetic interactions (Gls), the joint impact of different genes or variants on a phenotype, are
foundational to the genetic architecture of complex traits. However, identifying Gls through
human genetics is challenging since it necessitates very large population sizes, while findings
from model systems not always translate to humans. Here, we combined exome-sequencing and
genotyping in the UK Biobank with combinatorial RNA-interference (coRNAI) screening to
systematically test for pairwise Gls between 30 lipid GWAS genes. Gene-based protein-
truncating variant (PTV) burden analyses from 240,970 exomes revealed additive Gls for APOB
with PCSK9 and LPL, respectively. Both, genetics and coRNAI identified additive Gls for 12
additional gene pairs. Overlapping non-additive Gls were detected only for TOMM40 at the
APOE locus with SORT1 and NCAN. Our study identifies distinct gene pairs that modulate both,
plasma and cellular lipid levels via additive and non-additive effects and nominates drug target

pairs for improved lipid-lowering combination therapies.
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41 INTRODUCTION

42  Genome-wide association studies (GWAS) have firmly established that changes in blood lipids
43  and the risk of coronary artery disease (CAD) are heritable. Hundreds of genetic loci have been
44  identified that reach genome-wide significant associations with plasma levels of low-density
45  lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglycerides (TG), total
46  cholesterol (TC) and CAD™. In rare instances, susceptibility to altered blood lipids can be
47  attributed to mutations in individual genes such as LDLR, PCSK9 or APOB that lead to familial
48 forms of disease. For the vast majority of dyslipidemic individuals, however, no single-gene
49 mutation can be identified. Instead, recent evidence suggests that in these cases inherited
50 susceptibility is caused by a cumulative effect of numerous common alleles within and across
51 GWAS loci. Individually, such common alleles have only a minor effect, but when summarized in
52  polygenic scores they can modify a phenotype to a similar extent as single high-impact
53  mutations®, or further magnify the penetrance of individual mutations causing Mendelian
54 disease®. The biological mechanisms behind the cumulative effect of risk alleles in different
55  genes remain unclear.

56  While the refined understanding of the polygenic nature of complex disease is starting to show
57  promise for improved risk prediction and treatment decisions’®, it has made it increasingly
58 difficult to decide which individual genes could be the most suitable targets for developing new
59  drugs. Drug development is traditionally focused on discrete targets with well-understood
60 biology. For certain diseases, an additive therapeutic benefit has been demonstrated through
61 combination therapies that simultaneously modulate two or more targets at once. For instance,
62  combinations of statins, inhibitors of HMG-CoA-reductase (HMGCR), with distinct other
63  cholesterol-lowering medications including NPC1L1, PCSK9 and APOB inhibitors have been
64 demonstrated to lower LDL levels and CAD-risk further than statin-treatment alone®*°. Despite
65  such successes, systematic strategies to predict that joint modulation of drug target pairs in
66  combination therapies will show benefit beyond standard of care have yet to be explored.

67  Genetic support for a drug target increases the probability that a medicine directed against the
68 respective target will succeed by several fold**?. We thus hypothesized that genetics might also
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69  assist in nominating drug target pairs that, when addressed jointly, will have a higher probability
70  toreach a desired therapeutic benefit. A particular attractive approach to prioritize optimal target
71  pairs would be to leverage synergistic gene-gene interactions, where genetic variants in two
72  disease risk genes induce a phenotype that is more pronounced than what would be expected
73  from each of the variants’ individual effects. Non-additive genetic interactions (naGls), or
74  epistasis, have been extensively studied in model organisms and cell models with the aim to
75  identify functional relationships among genes and gene products™'. In humans, however, the
76  contribution of naGls to the architecture of complex traits has been controversial. While there is
77  increasing evidence for modifier genes that modulate Mendelian phenotypes in non-additive
78  manners'®, most of the variance of complex traits appears to be explained by genes acting
79  additively within or between loci (additive Gls, or aGls)™.

80 Here we systematically test for pairwise Gls regulating blood lipid levels by studying interactions
81 between 30 genes prioritized based on known lipid-regulatory functions from GWAS loci using
82 three complementary tools: protein-truncating variants (PTVs) identified through exome
83 sequencing in the UK Biobank; reported GWAS lead SNPs genotyped or imputed in the UK
84  Biobank; and combinatorial RNA-interference (CoRNAI) screening measuring LDL-uptake into
85  cultured cells. Our combined genetics and functional genomics approach establishes pairwise
86  additive and non-additive Gls as foundational elements in controlling blood lipid levels and
87  highlights distinct gene pairs as promising targets for lipid lowering combination therapies.

88

89 RESULTS

90  Study outline

91 To explore pairwise interactions between genes in GWAS loci and how these impact plasma lipid
92 levels and LDL-uptake into cultured cells, we followed three parallel approaches: First, we
93  extracted protein-truncating variants (PTVs) from whole exome sequencing data of 200,654
94  participants of the UK Biobank. Second, we utilized GWAS lead SNPs commonly used to
95  construct polygenic risk scores from the full set of 378,033 unrelated participants of European
96 ancestry in the UK Biobank. And third, we conducted systematic RNAi-based combinatorial
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97  knockdown experiments in cells (Figure 1la). We focussed our analyses on 30 high-confidence

98 candidate genes from 18 genomic regions associated with blood lipid levels or the risk for CAD

99 (Table S1). Twenty-eight of these genes had scored as functional regulators of LDL-uptake,
100  cellular levels of free cholesterol, or LDL-receptor (LDLR) mRNA or protein levels in an earlier
101  study where we had functionally analysed 133 genes at 56 lipid and CAD GWAS loci through
102  RNAi-based knockdown experiments'’. Causality for several of these genes to drive GWAS
103  associations was further supported through systematic colocalization of plasma LDL GWAS lead
104 SNPs with GTEx liver eQTLs" (2 genes), cis-pQTL signals® (3 genes) and independently
105 reported biological evidence for lipid-relevant functions (15 genes) (Table S2). To identify
106  pairwise Gls, we applied four linear regression models (modified from Axelsson et al., 2011%) to
107 model the data. For each gene pair, both the additive genetic interaction effect (aGl) (model 3),
108  which measures the sum of effects from each gene or variant individually, as well as the non-
109 additive genetic interaction effect (naGl) (model 4), which measures the difference between the
110  expected additive and the observed combined effect, were calculated, with a naGl being either
111  synergistic or buffering (Figure 1la and Methods). Pairwise analyses were conducted for four
112  plasma lipid parameters (LDL, HDL, TG, TC) and CAD as available from UK Biobank® (see
113  Methods).
114
115 PTV burden tests in UK Biobank reveal additive genetic interactions for PCSK9-APOB and
116 LPL-APOB
117  We first studied pairwise modifier effects between the 30 candidate genes using high-impact
118  protein-truncating variants (PTVs). PTVs are expected to cause loss-of-function and compared
119 to other types of mutations are rare at the population level due to purifying selection?*?%. We
120  sequenced the exomes of 200,654 UK Biobank participants, annotated PTVs using Variant
121  Effect Predictor v96® and the LOFTEE plugin®, and identified 462,762 high-confidence PTVs in
122  the canonical transcripts of 18,869 genes. Within the 30 lipid GWAS genes, we detected a total
123 of 755 unique rare PTVs (Table S3). For instance, we discovered 29 different PTVs in LDLR, 47
124  in PCSK9 and 102 in APOB. Most PTVs in these three genes were associated with strongly
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125 abnormal plasma LDL levels in heterozygote carriers consistent with Familial
126  Hypercholesterolemia, although only 32 of the PTVs were annotated as pathogenic or likely
127  pathogenic in Clinvar®.

128 Gene-based PTV-burden association analyses were conducted in a cohort of 161,508 unrelated
129 UK Biobank participants of European ancestry. Single-gene PTV-burden testing identified three
130 genes that were significantly associated (Bonferroni-corrected p<0.05) with both LDL and TC
131 (APOB, PCSK9, LDLR), two with HDL (LPL, APOB) and two with TG (LPL, APOB), respectively
132 (Table S4). Loss-of-function of these genes had already been identified earlier as associated
133 with the respective lipid traits at the population level’. Next, we next expanded from these single
134  gene PTV-burden analyses to study pairwise PTV-based Gls, which could be tested for 42 of the
135 435 theoretically possible gene combinations (Table S5 and Methods). For the two gene pairs
136  that met our stringent criteria to be classified as genetic interactions from this analysis, PCSK9-
137 APOB and LPL-APOB, we conducted replication analyses in an additional 79,462 UK Biobank
138  exomes, bringing the total sample size available for PTV-based Gl testing to 240,970 individuals
139 (Table S6). PCSK9-APOB showed an aGl for both, LDL and TC, reflecting that joint loss-of-
140  function of both genes reduces these two lipid measures more than if only one of the two genes
141 s truncated. For instance, PTVs in PCSK9 and APOB individually reduced mean plasma LDL by
142  34.21 mg/dl and 69.42 mg/dl relative to individuals without PTVs in these genes, consistent with
143  previous reports®2’. However, the three UK Biobank participants who carried both, PCSK9 and
144  APOB PTVs, showed on average a further reduction in plasma LDL by 40.01 mg/dl compared to
145  individuals with PTVs in only one of the two genes, and by 90.45 mg/dl compared to individuals
146  with no PTV in either of the two genes (Figure 1b), suggesting considerable additional protection
147  from CAD. Additive Gls were further identified between LPL and APOB for HDL and TG.
148 Individuals who carried PTVs in both, LPL and APOB, showed consistently higher HDL and TG
149 levels than individuals with no PTVs, or PTVs in only one gene (Figure 1c). No naGls were
150 identified through PTV-based burden tests in up to 240,970 exomes. Our results are consistent
151  with the prediction that for rare variant-based burden analyses very large sample sizes are

152  necessary to robustly detect Gls in the human population®?°.
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153

154  Pairwise genetic interactions between GWAS loci modulate plasma lipid levels

155  We next tested for Gls using 28 lipid/CAD GWAS lead SNPs representing the 30 loci in 378,033
156  unrelated individuals of European ancestry in the UK Biobank®. Of a total of 1,890 pairwise
157 SNP-SNP interactions tested, 195, 98, 124, 238 and 10 aGls were identified for LDL, HDL, TG,
158 TC and CAD, respectively (Figure 2a-e; Table S7). Interestingly, SNP-based analyses also
159  suggested pairwise effects between GWAS loci that deviated from an additive model and were
160 classified as naGls. Specifically, we detected ten naGls for LDL, one for HDL, six for TG, and
161 nine for TC (Table 1). No naGl was detected for CAD. The strongest driver of interactions came
162  from the 19913.32 locus encompassing the CBLC/BCAM/PVRL2/TOMM40/APOE gene cluster
163 that was contributing to 19 of the 26 naGls identified across all traits. Fourteen naGls were
164  between lead SNPs from within the same GWAS region (“cis-naGl”, e.g., NCAN-TM6SF2,
165 BCAM-APOE, ZNF259-SIK3) with nine of them being suggestive cis-effects of rs4420638 near
166 APOE. However, naGls were also identified between loci on different chromosomes (“trans-
167 naGls"), such as between ZNF259 and APOE, or SORT1/CELSR2 and TOMM40 for LDL and
168 TC, or between LPL and ZNF259, or LPL and SIK3 for TG. Overall, our data support the
169  hypothesis that aGls between GWAS loci are pervasive and individually small, yet if summed up
170 across many loci in polygenic scores modulate complex traits®. Conversely, naGls are
171  considerably less prevalent, with the APOE locus being a potential contributor to naGls for lipid
172  traits.

173

174  Genetic interactions between gene-based PTV-burden and GWAS loci or polygenic scores
175  Next, we queried for Gls between different types of genetic variation. Pairwise interaction testing
176  between gene-based PTV-burden and GWAS lead SNPs identified one naGl for LDL (LDLRpty-
177  PVRL2g\p), one for HDL (APOBpm-LPLsyp), three for TC (LDLRpmy-PVRL2gnp, LDLRp1y-SIK3snp,
178 LDLRp1v-PAFAH1B2snp), and six for TG (LPLptv-SIK3sne, LPLp1v-ZNF259snp, LPLpry-
179  PAFAH1B2syp, BAZ1Bpmy-NCANsnp, BAZ1Bpmy-TM6SF2syp, BAZ1Bpry-PAFAH1B2s\p) (Table
180  S8). Moreover, 56, 26, 54 and 31 aGls were identified for LDL, HDL, TC and TG, respectively.
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181 These results are consistent with the genetic architecture regulating plasma lipids being
182  continuous between high-impact rare and low-impact common alleles®.

183 A recent study® proposed that the penetrance of Mendelian disease, including FH, can be
184  substantially modulated by interactions between the respective mutant gene with common
185  variants (minor allele frequency >0.01) of individually small effect size subsumed in polygenic
186  risk scores (PRS). We created PRS for the four lipid species using PRS-CS? (and Methods) and
187 tested for Gls between PRS and PTV-burden for each of the 30 genes. Of all combinations
188 tested, only PTV-burden in LPL, mostly driven by the frequent p.S447Ter variant, showed
189 evidence for a naGl with the PRS for TG (p<1.13x10™°; beta=-0.04) (Figure 2f; Table S9). This
190 supports the hypothesis that a high polygenic risk for elevated TG can be mitigated by a
191 concomitant stop-gain mutation in LPL. Additionally, 10 aGls were identified between APOBpty
192  with PRS for all four lipid species, LDLRpty and PCSK9pty with PRS for LDL and TC, and LPLpry
193  with PRS for LDL and HDL.

194

195 RNAiI identifies pairwise functional gene interactions modulating cellular LDL-uptake

196 To gain insights into the functional consequences of Gls, we complemented our genetic
197  analyses with systematic experiments in cells using combinatorial RNAi (coRNAI) (Figure 3a and
198 Methods). We applied solid-phase reverse transfection to simultaneously knock down candidate
199 gene pairs in cultured Hela cells, which we have previously shown to reliably reflect various
200 aspects of LDL biology and lipid homeostasis'’?"%. Each of the 30 lipid genes was profiled with
201 a single siRNA that had previously been validated to significantly enhance or reduce cellular
202  uptake of fluorescent-labelled LDL (Dil-LDL) or free cellular cholesterol levels, and/or to
203 efficiently downregulate mRNA or protein levels of its respective target gene (Table S2)*". The
204  impact of both, single and combinatorial gene knockdown on LDL-uptake per cell was measured
205 and quantified from high-content microscopy images using automated image analysis routines
206  as described (Figure S1)*"8, All pairwise knockdown combinations between the 30 lipid genes
207 (435 gene pairs) were assayed in a total of 16,128 experiments (Figure 3b). Each combination
208 was tested in at least seven biological replicates. Using BIC-model based robust linear
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209 regression fitting analogous to the genetic interaction analyses, we identified 18 aGls and 33
210 naGls to differentially impact cellular LDL-uptake (Table S10). A similar proportion of Gls was
211  identified using robust linear model fitting and deriving p-values from the linear regression model
212 term describing non-additive effects as an alternative statistical approach (see Methods). This
213  identified 35 naGls, with 31 naGls overlapping between both analytical approaches (Table S11).
214  The corresponding gene pairs were brought forward to independent liquid-phase based coRNAI
215  replication experiments that validated 20 of these naGls (Table 2, Table S12, Figure S2). Of the
216 20 validated naGls identified through coRNAI, seven were classified (according to Horlbeck et
217  al., 2018') as synergistic, i.e., simultaneous knockdown of both genes magnified the effect size
218 beyond expectations for an aGl; and thirteen naGls were categorized as buffering, i.e., relative to
219 an aGl the joint knockdown mitigated LDL-uptake into cells (Figure 3c). For instance,
220  simultaneous knockdown of HMGCR and APOB enhanced cellular LDL-uptake beyond a mere
221  additive effect expected from knockdown of either of the two genes, proposing a synergistic naGl
222  (Figure 3d), that is most likely explained by a higher capacity of cells to bind and internalize LDL
223  viaincreased availability of LDL-receptor at the cell surface (Figure S3). Conversely, knockdown
224  of LDLR strongly inhibited, whereas partial knockdown of LDLRAPL1 increased cellular LDL-
225 uptake under our experimental conditions. When silencing LDLR and LDLRAP1 jointly, the
226  reduction of LDL-uptake was less attenuated than expected under an additive model, suggesting
227  a buffering naGl (Figure 3e). Interestingly, reduction of LDL-uptake upon knockdown of LDLR
228 was magnified when LDLR was jointly silenced with HAVCR1, a suggested LDL scavenger
229  receptor that might contribute to maintain the potential of LDLR-depleted cells to internalize
230 LDL?® (Figure 3f). Noteworthy, among the remaining validated coRNAi naGls, simultaneous
231 silencing of PCSK9 and TMEM57, as well as of SIK3 and PAFAH1B1 increased cellular LDL-
232  uptake to a similar extent as the simultaneous knockdown of HMGCR and APOB, although
233 silencing of these genes individually had a significant, yet only modest impact on cellular LDL-
234  uptake. In summary, coRNAI identified aGls and naGls between established lipid-regulatory
235 genes, but also proposed combinations of less well characterized genes as potentially important

236  factors in maintaining cellular lipid levels.
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237

238 Integrated analysis highlights Gls supported by both human genetics and cellular
239  function

240 In order to assess whether Gls identified through either PTV-based gene-burden tests, GWAS
241 lead SNPs, or cell-based coRNAI overlapped, we integrated results from the three approaches
242  (Figure 4; Table S13). LDLR-SIK3 showed an aGl both in coRNAi and PTV-SNP analyses for
243 LDL (Figure 4a). Both, coRNAI screening (ABIC 16.87, pVal(FDR)=1.18E-07) and PTV-SNP
244  analyses for LDL and TC proposed a naGl between LDLR and PVLR2 (Figure 4b), although this
245  gene pair failed to score as naGl in the independent coRNAI validation experiments. Twelve of
246  the 18 gene pairs nominated by coRNAI as aGls also scored as aGls in SNP-based interaction
247  testing for LDL and TC, including LDLR-SIK3. Five aGls involved HMGCR and four LDLRAP1
248  (Figure 4c). Two gene pairs, SORT1-TOMM40 and NCAN-TOMMA40, scored as naGls both in
249 the SNP-based as well as the coRNAi-based interaction testing (Figure 4d), with TOMM40
250 exerting a buffering naGl in either gene pair (Figure 4e) that could not be explained by an off-
251 target effect of TOMM40 siRNAs on APOE as an adjacent gene in the 19913.32 GWAS locus
252 (Figure S4). In conclusion, integrating genetic with functional data validated 12 proposed aGls
253  and further substantiates a role of the APOE locus, and possibly TOMM40, as contributing to
254  non-additive genetic interactions.

255

256 DISCUSSION

257  Here, we apply whole-exome sequencing, genotyping and coRNAI to systematically test for
258 pairwise Gls between 30 lipid-regulatory genes at lipid and CAD GWAS loci. Gls are considered
259 to be central constituents of biological pathways and complex traits, contributors to human

260 disease, and promising starting points for therapy development™*°,

Mapping Gls, and
261  particularly non-additive epistasis, however, has been challenging. Gl studies require very large
262  population sizes in order to obtain sufficient statistical power, so that the large number of
263  potential interactions to be evaluated quickly leads to a prohibitive number of statistical tests®.

264  Together with most Gl studies to date being limited to just a single datatype, the relative
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265 contribution of Gls to variation in human complex traits has been controversial, and the
266  relevance of epistasis potentially overestimated™.

267 In our study, we have tried to overcome several of these challenges through a systematic
268  approach to Gl testing that integrates genetic with functional data and relies on the UK Biobank,
269  a population cohort linking genetic with phenotype data at an unprecedented scale®. To protect
270  against statistical penalties from multiple hypothesis testing we focused on pairwise interaction
271 analyses between 30 candidate genes nominated through GWAS that functional or genetic
272  follow-up studies have proposed as likely causal to confer associations with lipid traits or CAD"".
273  We assessed these genes for Gls across the allelic spectrum, from rare PTVs ascertained from
274  the exomes of more than 240,000 individuals, to common GWAS lead SNPs. Genetic Gl-testing
275  was complemented by functionally knocking down gene pairs with siRNAs and determining the
276  consequence on LDL internalization into cells.

277  Several of the Gls identified in our study can be expected to be high potential starting points for
278  the development of advanced lipid-lowering combination therapies. Lowering LDL with statins is
279  the first-line pharmacological strategy to treat or prevent CAD and ischaemic heart disease as its
280 clinical manifestation. However, many patients do not reach their recommended goals of LDL-
281 lowering through statins alone, or they are intolerant against statins. For these, combination
282  therapies have become available that aim to lower atherogenic lipid levels further. A motivation
283  for this is that every 1 mmol/l (39 mg/dl) reduction in blood LDL is associated with a 19%
284  reduction in coronary mortality and a 21% reduction in major vascular events, supporting that, at
285 least for secondary prevention, the lower blood LDL levels, the better**. Among the options that
286 lower atherogenic blood lipids the most successfully are therapeutics against drug targets that
287 when mutated cause familial hypercholesterolemia (FH), such as NPCI1L1, the target of
288  ezetimibe, or PCSK9®. Genetic analyses in extreme phenotypes have identified a small number
289  of individuals with concomitant mutations in two distinct FH genes, such as LDLR and APOB3%%3,
290 LDLR and LDLRAP1*** or APOB and PCSK9*®. However, due to the rarity of highly penetrant
291  FH mutations such findings have thus far remained limited to individual families. Conversely, on
292  a population level, a previous Gl analysis based on common alleles from ~24,000 individuals

11


https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.360818; this version posted October 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

293  ascertained for lipid traits reported 14 replicated Gls between lipid GWAS loci, most notably, like
294 in our study, with SNPs at the APOE locus being a key contributor®”. Additional support for the
295  relevance of Gls for modulating lipid traits comes from a recent study that includes a subset of
296 the UK Biobank exomes analysed here and proposes an interplay of genetic variation across the
297  allelic spectrum®. Notably, that study reports that carriers of monogenic CAD risk variants show
298 an up to 12.6-fold higher risk to manifest disease if they are in the highest quintile of the
299  polygenic risk distribution.

300 Our analyses here propose distinct gene pairs that modulate plasma and cellular lipid levels via
301 additive and non-additive Gl effects. Among others, we identify Gls for several prominent
302 cardiovascular risk genes that individually are established targets for lipid-lowering drugs. For
303 instance, coRNAI proposed a synergistic, non-additive Gl between HMGCR, the rate-limiting
304  enzyme during cholesterol biosynthesis and target of statins, and APOB encoding apolipoprotein
305 B, a critical constituent of LDL particles. Consistent with the known biological functions of these
306 genes, joint knockdown increased levels of functional LDL-receptor on the cell surface and
307 stimulated internalization of exogenous, fluorescent-labelled LDL. This observation is well in line
308  with results from clinical trials showing that in patients with Familial Hypercholesterolemia and
309 other hyperlipidemias a combination of statins with an antisense inhibitor of apolipoprotein B
310 (mipomersen) efficiently reduces plasma LDL levels more strongly than high-intensity statin
311 treatment alone®**. Importantly, the additive Gl identified from UK Biobank participants carrying
312 PTVs in both, APOB and PCSK9 suggests that similarly beneficial effects can be expected when
313 APOB antisense therapies are applied in combination with PSCK9 inhibitors. Recently, inclisiran,
314 an siRNA targeting PCSK9 in individuals on maximally tolerated statin doses* led to a
315 persistent, highly significant lowering of LDL in treated individuals relative to placebo in a phase
316 3 study®, introducing siRNAs as an attractive therapeutic modality for lipid-lowering therapies.
317  Our results strongly propose that, on a population level, combination therapies inhibiting both
318 PCSK9 and APOB may lower LDL-C levels and CAD-risk even more substantially than drugs

319 targeting only one of the two genes.
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320 APOB PTV-burden was associated not only with LDL and TC, but also HDL and TG, and our
321 PTV-based Gl tests propose that joint disruption of APOB together with LPL reduces TG and
322 increases HDL, most likely in an additive manner. LPL encodes for lipoprotein lipase which
323  hydrolyzes TG from apolipoprotein B containing lipoproteins, releasing fatty acids*. PTV-burden
324 in LPL is dominated by the stop-gain variant p.Ser447Ter (c.1421G>C; rs328) which in our
325  exome-sequenced UK Biobank sub-cohort showed an allele frequency of 9.95%. This variant is
326 known to cause gain-of LPL activity leading to a 0.8-fold reduced risk for ischaemic heart
327 disease®™, an effect that is likely to be further enhanced by concomitant reduction of
328  apolipoprotein B. The p.Ser447Ter allele was also the main driver behind the only naGl detected
329 between PTV-burden and polygenic risk for plasma lipids and conferred that in LPL PTV-carriers
330 polygenic risk for TG is reduced, with presumably non-additive effects being the most
331 pronounced in the upper percentile range of the PRS distribution.

332 A prominent driver of Gls in both our SNP- and coRNAIi-based analyses was the 19q13.32 locus
333  which includes APOE and apart from plasma lipids and CAD is associated with Alzheimer's
334 disease, longevity and macular degeneration among others®®. Interestingly, our findings indicate
335 that genes other than APOE at this locus might contribute to lipid Gls, which is consistent with
336  our earlier findings that knock down of several genes at this locus independently modulate
337  cellular LDL-uptake'’. For instance, both SNP-based Gl testing and coRNAi suggested buffering
338 naGls for TOMM40 with SORT1 and NCAN, respectively. Variants in TOMM40 have been
339 hypothesized to modify onset of Alzheimer’s disease independently of and in conjunction with
340 APOE®. Our analyses suggest TOMM40 might exert similar modifying effects on lipid
341 phenotypes and CAD risk, which will need to be clarified in future studies. Another gene at the
342  19913.32 locus is PVRL2, for which both coRNAi and SNP-PTV analyses proposed Gls with
343 LDLR. As a vascular cell adhesion molecule, PVRL2 protein regulates transendothelial migration
344  of leukocytes. PVRL2 levels in the atherosclerotic arterial wall correlate with plasma cholesterol
345 in CAD patients and Ldlr-deficient mice and have been linked to the progression of
346  atherosclerosis®®* . It is thus tempting to speculate that the extensive pleiotropy of the 19q13.32
347 locus can at least in part be explained through non-APOE related mechanisms*.
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348 Both, genetic and functional analyses further revealed Gls between HAVCR1, NCAN and SIK3
349 with HMGCR, nominating these poorly characterized genes to be explored as potentially
350 attractive new targets for lipid-lowering therapies on top of statins.

351 Consistent with previous assumptions®®, our results show that for regulating plasma lipid levels,
352  additive Gls between gene or variant pairs are common, while non-additive epistasis is rare.
353 Indeed, despite a sample size of over 240,000 exomes, our gene-based PTV-burden Gl
354 analyses did not find evidence for pairwise naGls between lipid genes disrupted by PTVs.
355  Further increasing sample sizes might help uncover non-additive effects, however, at least for
356 lipid traits, their contribution to the overall variance appears to be small. This is consistent with
357 the existence of evolutionary mechanisms that suppress epistatic interactions®. Since pairwise
358 naGls can be expected to be identified the most easily for genes that are disrupted sufficiently
359 frequently in a population by PTVs of large-enough effect size, sequencing of consanguineous or

360 bottlenecked populations might improve the detection rate of naGls®*“,

Interestingly, as
361 observed also here, naGls seem to be more easily detectable in cell and animal models, for
362 instance through synthetic lethality mapping™®.

363 Integration of population-scale genetics and functional coRNAI screening results yielded a total
364  of twelve aGls and three naGls (one of them suggestive) that influence plasma and cellular lipid
365 levels. Such validation via two systematic approaches substantially increases the confidence for
366 committing to time and resource-intense follow-up analyses of such findings, e.g., when
367 exploring the suitability of a gene pair to be jointly targeted in combination therapies.
368 Interestingly, a significant number of Gls identified through genetics and coRNAI in our study do
369 not yet overlap. This may be explained by several reasons: First, our functional analyses were
370 limited to measuring LDL-uptake into cells, which reflects a relevant, yet only a partial aspect of
371 the many possible mechanisms by which a gene can modulate plasma lipid levels. Second,
372  siRNA-based gene knock down captures acute and rather severe functional effects, which may
373  differ from the chronic and often compensated consequences upon lifelong modulation of a
374  gene’s function through genetic variation. Third, despite the large number of samples used for
375  genetics-based Gl testing, the number of informative high-impact variants in the human germline
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376  may still be too discrete to comprehensively identify Gls. Regardless, the availability and rapid
377 development of advanced high-throughput microscopy technology joint with the constantly
378 increasing cohort sizes for genetic analyses will allow up-scaling of the approach taken here in
379  future studies and with a high probability validate further Gls.

380 In conclusion, our study introduces and confirms a strategy to link large-scale genetic data from
381 a population biobank with quantitative, cell-based coRNAi to map Gls that affect blood lipid
382 levels and CAD, an approach that can be applied to other diseases and complex traits. Our
383 unbiased analyses support that mechanisms exist through which multiple genes jointly help
384  maintain blood lipid homeostasis. CAD and ischaemic heart disease remain a substantial global
385 health burden, and doubling-down on lowering atherogenic plasma lipids remains one of the
386 most promising therapeutic approaches. With the encouraging results from recent gene- and
387 antisense-based clinical trials for CAD, our results help prioritize drug target pairs for the

388 development of lipid-lowering combination therapies rooted in human genetics.

389
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567 METHODS

568 Gene Selection

569 We chose to study 30 candidate genes from 18 loci reported as associated through common-
570  variant genome-wide association studies (GWAS) as associated with plasma lipid levels and the
571 risk for CAD. Twenty-eight of these genes had been identified and validated as functional
572  regulators of LDL-uptake and/or cholesterol levels into cells in a previous RNAi-screen analysing
573 atotal of 133 genes in 56 lipid and CAD GWAS loci'’ (Table S1). Common-variant association
574  signals and published biological evidence for potential roles in lipid regulation were updated for

1-3,49

575 all 30 candidate genes based on the recent literature (e.g., ) and queries using the

576  PhenoScanner platform® (http://www.phenoscanner.medschl.cam.ac.uk/). Twenty eight genes

577  were validated to reside within loci that are associated at genome-wide significance (p<5e-8)
578  with plasma lipid levels or CAD. SNPs near FAM174A (rs383830) and SEZ6L (rs688034) had
579 originally been reported as associated with CAD®, but failed to replicate at genome-wide
580 significance in more recent meta-GWAS. However, since knockdown of both genes had scored
581 as significantly impacting lipid parameters in cells'’ the two genes were maintained for this
582  current study.

583

584 Colocalization Analysis

585 Colocalization analysis was performed between the 28 GWAS lead SNPs using summary
586  statistics from the 2013 Global Lipid Genetics Consortium GWAS!

587  (http://csqg.sph.umich.edu/willer/public/lipids2013/) and the GTEx liver cis-eQTL dataset

588  (N=153)°%. When a respective locus was associated with multiple lipid phenotypes, the SNP with
589 the lowest reported p-value association with LDL was chosen to be the lead SNP. There was no
590 GTEXx liver expression data for four genes (APOE, MYBPHL, NCAN, SEZ6L), therefore there
591 were no cis-eQTL for these genes to colocalize with. Colocalization analysis was conducted
592  following the methods in Giambartolomei et al., 2014% using the R ‘coloc’ package on a +/-500kb
593  window around each lead SNP against SNP-to-expression data of all neighbouring genes within
594 that locus. Positive colocalization between liver cis-eQTL and GWAS signal was defined as
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595  showing a posterior probability of sharing the same SNP (PP4) if larger than 0.8. A lead SNP at
596 the SORT1/CELSR?2 locus (rs629301) showed a positive colocalization signal, but the cis-eQTL
597  co-localized with both genes, so SNP-based Gls for these genes could not be analysed
598 separately.

599

600 UK Biobank lipid and CAD phenotypes

601 The UK Biobank is a prospective study of over 500,000 participants recruited at an age of 40-69
602  years from 2006-2010 in the United Kingdom. Participant data include health records, medication
603  history and self-reported survey information, together with imputed genome-wide genotypes and
604  biochemical measures®. Baseline biochemical measures including LDL cholesterol (LDL), HDL
605 cholesterol (HDL), triglycerides (TG), and serum total cholesterol (TC) had been obtained in UK
606 Biobank’s purpose-built facility in Stockport as described in the UK Biobank online data

607 showcase and protocol (www.ukbiobank.ac.uk). Demographic and other relevant phenotypic

608 information was obtained from standard questionnaire data. Individual lipid phenotypes (LDL,
609 HDL, TG and TC) were modelled as dependent variables using linear regression models against
610 covariates including age, sex, smoking, alcohol drinking status, and BMI. Lipid medication use
611 was obtained from self-reported questionnaire data (UK Biobank fields 6153 and 6177). CAD
612 cases were recognized based on both self-reported diagnosis and Hospital Episode Statistics
613 data in the UK Biobank with a code-based CAD definition as presented in the most recent CAD
614 GWAS that included UK Biobank®. In total, 30,125 CAD cases were identified and the cohort
615 was adjusted for age, sex, smoking status, alcohol drinking status, BMI and lipid medication use.
616  All phenotype data were derived from UK Biobank basket “ukb27390” released on March 11,
617  2019.

618

619 Pairwise gene-based PTV-burden interaction testing

620 High-impact protein-truncating variants (PTVs) expected to disrupt protein functions were
621 identified from 200,654 whole-exome sequencing (WES) data of UK Biobank participants to
622  conduct pairwise interaction analyses. WES data was generated and quality controlled (QC-ed)
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623  as described in Van Hout et al. at the Regeneron Genetics Center as part of a collaboration
624 between AbbVie, Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol-Myers Squibb, Pfizer,
625 Regeneron and Takeda and the UK Biobank consortium>*. PTVs were called from a Regeneron
626  QC-passing “Goldilocks” set of genetic variants using Variant Effect Predictor v96° (McLaren et
627  al., 2016) and the LOFTEE plugin®’. We identified 462,762 high-confidence PTVs with a minor
628 allele frequency of <1% in the canonical transcripts of 18,869 genes. This set included 755 rare
629  PTVs in the 30 lipid genes analysed in this study. PTVs per gene were enumerated, and a PTV-
630  burden association analysis was conducted in 161,508 unrelated (>2" degree relatedness) UK
631 Biobank participants of European ancestry, as defined by principle components analysis of the
632  genotyping data®. Replication analysis was conducted from an additional 101,827 samples,
633  bringing the total sample size used for calling PTVs from UK Biobank exome sequencing data to
634  302,634. Of these 101,827 samples, 79,462 fulfilled the criteria applied to the discovery cohort,
635  so that an overall sample size of 240,970 exomes was available for replicating findings from the
636 initial PTV-based Gl analyses.

637  For pairwise PTV-based interaction testing, QC-ed UK Biobank lipid phenotypes (HDL, LDL, TG
638 and TC) were modelled as dependent variables using the following four linear regression models
639 inR:

640  Model 1 for genel PTV-burden only: lipids ~ PTV;

641  Model 2 for gene2 PTV-burden only: lipids ~ PTV,

642  Model 3 for genel PTV-burden and gene2 PTV burden (additive Gl): lipids ~ PTV; + PTV,

643  Model 4 for genel PTV-burden and gene2 PTV burden (non-additive Gl): lipids ~ PTV; + PTV, +
644  PTV,*PTV;

645  Schwarz’s Bayesian Information Criterion (BIC)® scoring was used to determine the best model
646  to explain the data and goodness of fit, with the lowest BIC value indicating the best-fitting model
647  describing each gene pair. Model 3 reflected additive genetic interactions (aGls), Model 4 non-
648  additive gene interactions (naGls). The model with the lowest BIC was chosen as describing
649  most adequately the type of interaction between each corresponding gene pair.

650
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651 Pairwise SNP interaction testing

652  To assess whether GWAS lead SNPs modulate plasma lipid levels through joint effects within
653 and across GWAS loci, we conducted pairwise SNP-SNP interaction analysis using genome-
654  wide genotyping data and biochemical measures of lipid species from the UK Biobank. Twenty-
655 eight lead SNPs mapped to the 30 lipid GWAS genes were extracted from genotyping data of
656 378,033 unrelated (removed up to 2™ degree relatedness) participants of European ancestry. A
657 total of 378 pairwise modifier effects were tested by conducting Robust Linear Model Fitting
658  using R, running the following four linear regression models:

659  Model 1 for SNP1 only: lipids ~ SNP,

660  Model 2 for SNP2 only: lipids ~ SNP,

661 Model 3 for SNP1 and SNP2 (additive GI): lipids ~ SNP; + SNP,

662  Model 4 for SNP1 and SNP2 (non-additive Gl): lipids ~ SNP; + SNP, + SNP; * SNP,

663  Schwarz’'s Bayesian Information Criterion (BIC) scoring was used to determine the best model to
664  explain the data and goodness of fit, with the lowest BIC value indicating the best-fitting model
665  describing each SNP pair. If Model 3 had the lowest BIC value, it reflected an aGl, and if Model 4
666  had the lowest BIC value, it reflected a naGl.

667 A similar strategy was applied for pair-wise interaction testing to explore potential joint effects
668 between the 30 genes on CAD risk by running the following four logistic regression models
669  adjusted for age, sex, smoking status, alcohol drinking status, BMI and lipid medication use:

670 Model 1 for SNP1 only: CAD ~ SNP;

671  Model 2 for SNP2 only: CAD ~ SNP,

672  Model 3 for SNP1 and SNP2 (additive Gl): CAD ~ SNP; + SNP,

673  Model 4 for SNP1 and SNP2 (non-additive Gl): CAD ~ SNP; + SNP, + SNP; * SNP,

674  As above, the model with the lowest BIC was chosen as describing most adequately the type of
675 interaction between each corresponding SNP pair.

676

677  PTV-SNP interaction testing

25


https://doi.org/10.1101/2020.10.29.360818
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.360818; this version posted October 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

705

available under aCC-BY-NC-ND 4.0 International license.

In order to conduct pairwise interaction analyses between GWAS lead SNPs and PTVs, we
assessed the interaction of the 28 lead SNPs with rare PTV burden for each of the 30 genes. For
SNP-PTV interaction testing, UK Biobank lipid phenotypes (HDL, LDL, TG and TC) were
modelled as dependent variables using the following four linear regression models:

Model 1 for genel lead SNP only: lipids ~ SNP;

Model 2 for gene2 PTV-burden only: lipids ~ PTV,

Model 3 for genel lead SNP and gene2 PTV burden (additive GI): lipids ~ SNP; + PTV,

Model 4 for genel lead SNP and gene2 PTV burden (non-additive GlI): lipids ~ SNP; + PTV; +
SNP,*PTV,

As above, the model with the lowest BIC was chosen as describing most adequately the type of

interaction between each corresponding SNP-gene pair.

PTV-PRS interaction testing

We assessed the interaction effects between polygenic risk score (PRS) and PTVs for each of
the four lipid phenotypes. To construct PRS for UK Biobank samples, we first derived the PRS
weights for each SNP across the genome using PRS-CS®°, which is a Bayesian regression-
based algorithm, and publicly available summary statistics from lipid GWAS®. We applied derived
PRS weights to imputed genotypes (with minor allele frequency >0.01 and imputation quality
INFO >0.8) of UK Biobank samples and calculated PRS for each lipid, based on the
corresponding PRS weights. Note that all SNPs in the gene of interest were excluded from the
PRS when testing for PRS-PTV gene interaction. Gls were tested between PRS and PTV-
burden for each of the 30 genes by fitting the four linear regression models:

Model 1 for PRS only: lipids ~ PRS

Model 2 for gene PTV-burden only: lipids ~ PTV

Model 3 for PRS and gene PTV burden (additive GI): lipids ~ PRS + PTV

Model 4 for PRS and gene PTV burden (non-additive Gl): lipids ~ PRS + PTV + PRS * PTV

As above, the model with the lowest BIC was chosen as describing most adequately the type of
interaction between each corresponding PRS-gene pair.
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706

707  RNAI interaction testing

708 Cells and reagents

709  Hela-Kyoto cells are a strongly adherent Hela isolate (gift from S. Narumiya, Kyoto University
710 Japan) that, as we demonstrated earlier, enable reliable measurements of LDL-cholesterol
711  uptake dynamics and show lipid homeostatic mechanisms similar to those described for liver-
712 derived cell models'”?"?, Dil-LDL (Life Technologies), DRAQ5 (Biostatus), Dapi (Molecular
713  Probes), 2-hydroxy-propyl-beta-cyclodextrin (HPCD) (Sigma), Lipofectamine 2000 (Invitrogen)
714  and Benzonase (Novagen) were purchased from the respective suppliers.

715

716  siRNA selection and production of sSiRNA microarrays

717  RNA-interference (RNAI) screening was conducted in glass-bottomed single-well chambered cell
718  culture (Lab-Tek) slides with solid-phase reverse siRNA-transfection of cultured cells (“cell
719  microarrays”) as described previously?”*®. Each gene under study was targeted with a single
720  siRNA (Silencer Select, Invitrogen) that had been selected with the EMBL-generated software
721  tool bluegecko (J.K. Hériche, unpublished) based on the alignment to the reference genome, a
722  maximal number of protein-coding transcripts per gene targeted and expected specificity for the
723  target gene. The 28 siRNAs in this study had been validated earlier to significantly enhance or
724  reduce cellular uptake of fluorescent-labelled LDL (Dil-LDL) or free cellular cholesterol levels’
725 and were shown to efficiently downregulate mRNA or protein levels of their respective target
726  genes (Table S2). siRNA sequences are provided in Blattmann et al., 2013 Supplementary
727  Table 4. For the two genes not analysed in our earlier study (MYLIP, PAFAH1B2), siRNAs used
728 in the current study were prioritized from 3 and 5 siRNAs per gene based on bluegecko in silico
729  analyses, knockdown efficiency on target mRNA/protein levels (up to less than 10% residual
730 levels) and/or efficiency to modulate cellular Dil-LDL uptake in preparatory individual single gene
731  knock-down experiments (not shown). The 75% (12/16) of siRNAs that had scored as
732 individually modulating cellular Dil-LDL uptake in our earlier study'’ also met the more stringent
733  criteria of our current study to score as LDL-uptake modulator when used either alone or
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734  together with non-silencing control siRNA Neg9 (Figure 3b, CTRL column), thereby replicating
735  our earlier results and validating experimental settings for this current study.

736  To cover the total of 435 pairwise siRNA combinations including controls and replicas, five
737  different cell microarrays with 384 spots/array were produced. Per array, the following negative
738  controls were added: eight spots containing INCENP-siRNA (s7424) to control for transfection
739 efficiency'’; eight spots containing non-silencing control SiRNA Negl (s229174), and eight spots
740  containing non-silencing control siRNA (denoted as CTRL throughout the text) Neg9 (s444246).
741  Furthermore, eight spots were added with siRNA targeting LDLR (s224006) as a positive control
742  for LDL uptake, as well as eight spots with siRNA targeting NPC1 (s237198) knockdown of
743  which increases free cellular cholesterol signals®’. For pairwise combinatorial RNAi-screening,
744  siRNAs against two genes were printed simultaneously on a respective siRNA-spot, with equal
745  amounts (15 pmol/siRNA) of siRNA per gene. As positive controls, eight spots containing both,
746  non-silencing control sSIRNA Neg9 (CTRL) (s444246) and siRNA targeting LDLR (s224006), and
747  eight spots containing both, non-silencing control siRNA (CTRL) Neg9 (s444246) and siRNA
748  targeting NPC1 (s237197) were included per array. For all genes, “single-gene knockdown”
749  scenarios [SiIRNAgenea+Neg9] were added on two spots per array. Each pairwise “combinatorial
750  knockdown” scenario [SiRNAgeneatSiRNAgenes] Was analyzed on one spot per array, with a single
751  spot covering 50-100 informative cells?®*’ (Figure S1).

752 In order to confirm Gls identified with the coRNAi screen, we replicated our analyses with
753  forward transfection in a liquid-phase format with Lipofectamine 2000 reagent in 12-well plates,
754  according to the manufacturer’s instructions. Concentrations of the siRNAs were adjusted to
755  mimic the single knockdown phenotypes from the screen (Table S2). 1ul of Lipofectamine 2000
756  was used per each transfection. Gls that showed a statistically significant interaction effects
757  (p<10) in replication analyses and acted in the same direction (same directionality of
758 interaction value) as in the coRNAI screen, were considered as validated (Table S12).

759

760  Cell culture, transfection and LDL-uptake assay

761  Hela Kyoto cells were grown in DMEM medium (Gibco) supplemented with 10 % (w/v) fetal calf
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762  serum (FCS)(PAA) and 2 mM L-glutamine (Sigma) at 37 °C with 5 % CO, and saturated
763  humidity. Cells were plated at a density of 6x10* per plate on the cell microarrays for solid-phase
764  siRNA transfection® and cultivated for 48 hours before performing the LDL-uptake assay. For
765 liguid phase transfection-based validation experiments, cells were plated in 12-well plates the
766  day prior to transfection, and siRNA-transfected cells were cultivated for 48 hours. The assays to
767  monitor cellular uptake of fluorescently-labelled LDL (Dil-LDL) were performed as described in

768 more detail in previous publications®’?"?,

In brief, cells cultured in serum-free medium
769 (DMEM/2mM L-glutamine/0.2 % (w/v) BSA) and exposed to 1% 2-hydroxy-propyl-beta-
770  cyclodextrin for 45min were labelled with 50 pg/ml Dil-LDL (Invitrogen) for 30 min at 4 °C. Dil-
771  LDL uptake was stimulated for 20 min at 37.0 °C before washing off non-internalized dye for 1
772  min in acidic (pH 3.5) medium at 4 °C, fixation, and counterstaining for nuclei (Dapi) and cell
773  outlines (DRAQ5). For RNAIi-based gene interaction screening, each of the five cell microarrays
774  was assayed in 7-10 biological replicas.

775

776  Image acquisition and quality control

777  Image acquisition was performed using an Olympus IX81 automated microscope with Scan”R
778  software and an UPlanSApo 20x/NA 0.40 air objective as described'’?®. Images from a total of
779 42 cell microarrays were visually quality controlled. Arrays with insufficient knockdown efficiency
780  where INCENP siRNA treated cells did not show the expected multinucleated phenotype in the
781  DAPI channel were excluded. Also arrays with plate effects as evaluated through diagnostic
782  plots with the splot function in R, and arrays where knockdown of LDLR, or LDLR together with
783  negative control siRNA Neg9, did not show a significant difference from controls, were discarded
784  as well. Following these QC criteria, 29 cell microarrays with a total of 11,047 image frames per
785 channel were further analysed. The in-house developed tool HTM Explorer (Ch. Tischer;

786  https://github.com/embl-cba/shinyHTM) was then used to select images fulfilling pre-defined

787  criteria for cell number, image sharpness quality, and image background intensity, resulting in a
788  total number of 9,539 (86.35%) QC-ed image frames that were used for subsequent analyses.
789
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790 Image analysis
791 Automated image analysis was performed using a specifically developed pipeline (available

792 upon request) in the open source software CellProfiler® http://www.cellprofiler.org as

793  described'”%. In brief, areas of individual cells were approximated by stepwise dilation of masks
794  on the DAPI (nuclei) and DRAQ5 (cell outlines) channels®. For each individual cell, Dil-LDL
795  signal was determined from masks representing intracellular endosome-like vesicular areas that
796  were determined by local adaptive thresholding according to predefined criteria for size and
797  shape (Figure S1). Total fluorescence intensity of Dil-signal above local background per cell
798 mask was quantified, and means were calculated from all cells per image. Then, for each siRNA,
799  or siRNA combination (“treated”), signals from different images from the same biological replicate
800 were averaged and a robust Z-score was calculated using the median fluorescence signal of all

801 the negative control siRNAs per array (“median(controls)”) and by the median absolute deviation

Iptreated—medianip(controls) go,61 A

802  of these controls (“mad(controls)”) as follows:robust Z—score =
madlig(controls)

803 median robust Z-score was calculated per treatment across all biological replicates and is
804 represented on the plots.

805

806 RNAI gene interaction testing

807 To identify pairs of genes for which simultaneous knock-down results in an additive or non-
808  additive gene interaction effects on LDL uptake we conducted a Robust Linear Model fitting in R.
809 RobustZScore values calculated from different biological replicates in the presence of single
810  ([siRNAgeneatNeg9] and [SiRNAgeneg+Neg9]) or double knock-downs ([SiRNAgeneat SIRNAgenes])
811 were considered to be response variable value. Negative control values [Neg9] were included in
812 each fitted dataset to correctly account for baseline LDL uptake. The full regression model
813  considered in the study was

814  y =R+ Ba* Xa + Bs* Xg +Bas* Xa*Xg+ [

815 which is equivalent to the short form of the statistical formula:

816 y~Xa+Xg+ Xa*Xp
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817  In both formulas y corresponds to the robustZscore values of measured LDL uptake; Xa, Xg are
818 encoded predictor variables, which are equal to 1 in case of presence of SiRNAgenea, SIRNAgenee,
819  or both siRNAs accordingly and equal O otherwise. The [ is a noise term, which is minimised
820 during the fitting process. Model fitting provides estimates of By, Ba, Bs and Bag values. B, defines
821 the effect of the negative control on robustZscore values and can be also denoted as an
822  intercept of the linear fit. For our data B, is always close to 0 because of the robustZscore
823  definition. The Ba and Bg define individual effects of SIRNAgenea and siRNAgenes accordingly. The
824  Bas defines the interaction effect between genes A and B and represents the difference between
825 the observed robustZscore values in case of double knockdown y,s and the expected additive
826  effect of geneA and geneB knockdown (Bas = Yas - Bo - Ba - Bs)-

827  Subsequently, two strategies were used to evaluate functional interactions for each gene pair
828  using defined statistical model:

829  First, to determine gene pairs for which genetic interactions and additive effects observed upon
830 combinatorial knockdowns, we compared fitting of the whole model to the fitting of reduced
831 model versions. Following models were compared:

832  Model 0 - (only baseline effect By in case of either single or double knockdown): y ~ 1

833  Model 1 - effect of SIRNAgenea ONly: Y ~ Xa

834  Model 2 - effect of SIRNAgenes ONlY: y ~ Xz

835  Model 3 for additive effect of both siRNAs (additive GI): y ~ Xa + Xz

836  Model 4 — full model including genetic interaction (non-additive Gl): y ~ Xa + Xg + Xa*Xz.

837

838 To determine the best model explaining the data for each gene pair we used Schwarz’'s
839  Bayesian Information Criterion (BIC). BIC score was calculated for each model fitted to the data,
840 then the model with the lowest BIC value (BIC*) was selected as the best-fitting model. Co-
841 knockdown effects of each gene pair were classified as aGls or naGls when model 3 or model 4
842  accordingly were defined to fit data best. Additionally, for the RNAi screen, we used the method
843 published by Raftery, 1995 to define the strength of evidence for the respective model to be
844  selected®®. Namely, if the difference (ABIC) between the BIC value of the best fitting model (the
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845  model with the lowest BIC value) and the BIC value of any other model is bigger than 2, then it
846  would indicate a significant evidence for this model (with BIC*) to truly represent the data. In
847  other words, if ABIC>2 then the model with lowest BIC value (BIC*) was considered as the one
848 most correctly describing the data in comparison to other tested models. If the ABIC<2, then two
849 models were considered as possible alternatives for representing the dataset.

850 Secondly, to estimate statistical significance of gene interaction effect for each siRNA gene
851 combination, we calculated a p-value from the t-value of the linear regression model term,
852 describing genetic interaction (Bag) as pva=2-2*pnorm(abs(tva)). To correct for multiple
853  comparisons, the p-values were adjusted using the false discovery rate (fdr) method®, and the
854  fdr-corrected p-values < 107 were considered to correspond to significant Gls.

855

856 RT-qPCR analysis

857  Cell lysis and total RNA extraction was done using the RNease Mini Kit (Qiagen). Reverse-
858  transcription was performed with the SuperScript™ Il First-Strand Synthesis SuperMix for RT-
859 gPCR (Invitrogen). RT-gPCR data was obtained from three biological replicates/siRNA
860 treatment. Primers can be provided upon request. For each siRNA treatment target mMRNA was
861 normalized to that of GAPDH and compared to CTRL siRNA and the log2 of fold change (24°T)
862 was calculated (see Figure S4). Results were considered as significant if p-values were below
863  0.05in a two-tailed Student’s t-test.

864

865 Immunocytochemistry and confocal microscopy

866 Cells were transfected and cultured as described above then fixed with 3% paraformaldehyde
867  (PFA) at room temperature for 20 min, washed with PBS, incubated with 30mM glycine for 5 min
868 and washed again with PBS. For LDLR staining cells were permeabilized with 0.05% Filipin IlI
869 (Sigma #F4767) in 10% FCS for 30 min at room temperature. Primary antibody: rabbit
870 monoclonal anti-LDLR (Fitzgerald #20R-LR002) was diluted in 5% FCS overnight at 4 °C.
871  Secondary antibody: goat polyclonal goat anti-rabbit IgG Alexa 568 (Invitrogen #A11011) was
872  diluted 1:400 in 5% FCS. Fixed cells were imaged using a Zeiss LSM 780 confocal microscope
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873  using a 63x/NA 1.4 oil objective.

874
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875 FIGURE LEGENDS

876 Figurel

877  PTV-burden tests in UK Biobank establish additive Gls for PCSK9-APOB and LPL-APOB
878 (a) Workflow of the study. 30 high-confidence candidate genes for Gl testing were chosen from
879 18 GWAS regions associated with blood lipid traits or CAD risk based on colocalization analyses
880 with eQTL/pQTL signals and previously reported lipid-regulatory functions (see Methods).
881 Pairwise Gl analyses were conducted from three complementary datasets: protein-truncating
882 variants (PTVs) from exome sequencing in the UK Biobank; lipid/CAD GWAS lead SNPs; and
883 combinatorial RNAi (coRNAI) experiments in cells. Robust linear model fitting was used to
884 identify additive (aGl) and non-additive (naGl) Gls, and genetic and functional data were
885 integrated. (b) Gene-based PTV-burden analyses from 161,508 exomes identified an additive Gl
886 (aGl) for LDL (and TC; not shown) between PSCK9 and APOB. (c) A suggestive non-additive Gl
887  (naGl) for HDL (and TG; not shown) between PTVs in LPL and APOB was validated as aGl for
888 HDL, TG, and also LDL by replication analyses in an additional 79,462 UK Biobank exomes
889 (Table S6). n, number of carriers. (-), predicted loss-of-function due to PTVs.

890

891 Figure 2

892  Pairwise Gls between lipid and CAD GWAS lead SNPs in 387,033 UK Biobank participants
893 (a-e) Circos plots showing aGls (grey) and naGls (colored) between GWAS lead SNPs (blue) at
894  the 28 selected lipid/CAD loci (red) for the four tested lipid species and CAD. (f) Tests for Gls
895  between polygenic risk scores for the four lipid species and PTV-burden for each of the 30 lipid
896 genes identified a naGl between PTV-burden in LPL and the PRS for TG. PRS distribution
897 (meanzSD) for LPL-PTV carriers (pink) and non-carriers (blue) are plotted against mean
898 normalized residual TG levels. Each dot reflects mean TG levels at a respective percentile.

899

900 Figure 3

901 Combinatorial RNAi identifies pairwise Gls modulating cellular LDL-uptake
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902  (a) coRNAI screen workflow. Customized cell microarrays were generated by pairwise spotting of
903 siRNAs against two different candidate genes on 384 spots/array for solid-phase reverse siRNA
904 transfection of cultured HelLa cells. Cells challenged to internalize fluorescent-labelled LDL (Dil-
905 LDL) over a period of 20 min were imaged on a high-content microscope. Integrated
906 fluorescence intensities for each cell individually were quantified by automated image analysis.
907  Averaged signal intensities per gene pair were tested for Gls in multiple replica experiments per
908 array. Gls suggested in the coRNAIi screen as potentially non-additive were subsequently
909 validated in customized experiments using fluid-phase transfection. (b) Heatmap visualizing
910 median robust Z-score distribution upon coRNAI of 435 gene pairs assessed for their impact on
911  cellular LDL-uptake. Red, increase. Blue, decrease. CTRL (top row and first column) reflects the
912 relative impact on LDL-uptake when candidate genes were silenced individually (SiRNAgenenors +
913 negative control siRNA). (c) 20 gene pairs validated as either buffering or synergistic naGls on
914  cellular LDL-uptake in independent replica experiments, sorted according to effect size.
915 Interaction Value (right graph) depicts the directionality and difference of the combined effect
916 versus single knockdown effects. (d-f) Selected examples of single gene (SiRNAgenea + Negative
917  control siRNA) and gene pair (SiIRNAgenea+SiIRNAgenes) SIRNA knockdown effects on relative
918 fluorescently-labelled LDL (Dil-LDL) cellular uptake. CTRL, control siRNA. Boxplots represent
919 values between 25" and 75" percentile, whiskers indicate largest value within 1.5 times
920 interquartile range above 75™ percentile. Median value is highlighted in the boxplot as a
921 horizontal line. Dots represent robust Z-score values calculated for integrated Dil fluorescence
922 intensities per cell (see Methods). Scale bar=10 pm.

923

924  Figure 4

925 Integrative analysis identifies pairwise Gls supported by both, genetic and functional data
926 Overlap of Gls identified through genetic analyses and coRNAi. Highlighted are gene pairs
927  identified through either PTV-SNP (a, b) or SNP-SNP (c,d) Gl testing for which pairwise siRNA-
928 knockdown showed corresponding effects on cellular LDL-uptake, validating these Gls as either
929 aGl (a,c) or naGl (b,d). () TOMM40 as an example for which, consistent with SNP-SNP
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930 analyses, siRNA knockdown revealed buffering naGls when jointly silenced with SORT1 (left
931 panel) or NCAN (right panel). Values on the graphs reflect robust Z-scores values calculated for
932 total intensity of Dil-LDL per cell averaged per image (see Methods). Boxplots represent values
933  between 25" and 75" percentile, whiskers indicate largest value within 1.5 times interquartile
934 range above 75" percentile. Median value is highlighted in the boxplot as a horizontal line. Dots
935  represent robust Z-score values calculated for integrated Dil fluorescence intensities per cell

936  (see Methods). Scale bar= 10 pm.
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937 TABLES
938 Table 1.
939  Non-additive Gls from pairwise PTV-burden and GWAS lead SNP-based Gl testing in UK Biobank
940
MAF MAF
(SNP1) | (SNP2)|
BIC_Best Lowest incl. cis trans N_PTV1 N_PTV2
Trait Gene 1 Gene 2 _Model ABIC 19q13.32 Gl Gl carriers carriers
LDL SNP-SNP Gls:
LDL NCAN (rs2228603) TM6SF2 (rs58542926) 4 85.34 + 0.076 0.076
LDL TM6SF2 (rs58542926) APOE (rs4420638) 4 63.34 + o) 0.076 0.191
LDL TM6SF2 (rs58542926) TOMMA40 (rs2075650) 4 41.95 + (+) 0.076 0.147
LDL BCAM (rs118147862) APOE (rs4420638) 4 34.25 + + 0.046 0.191
LDL NCAN (rs2228603) APOE (rs4420638) 4 32.61 + ) 0.076 0.191
LDL NCAN (rs2228603) TOMMA40 (rs2075650) 4 30.02 + ) 0.076 0.147
LDL BCAM (rs118147862) TOMMA40 (rs2075650) 4 28.81 + + 0.046 0.147
LDL ZNF259 (rs2075290) APOE (rs4420638) 4 4.68 + + 0.068 0.191
LDL CBLC (rs3208856) APOE (rs4420638) 4 3.34 + + 0.036 0.191
LDL SORT1/CELSR2 (rs629301) TOMMA40 (rs2075650) 4 0.57 + + 0.222 0.147
HDL SNP-SNP Gls:
HDL BCAM (rs118147862) PVRL2 (rs7254892) 4 1.47 + 0.046 0.031
TG SNP-SNP Gls:
TG ZNF259 (rs2075290) SIK3 (rs6589574) 4 31.81 + 0.068 0.084
TG BCAM (rs118147862) PVRL2 (rs7254892) 4 21.41 + + 0.046 0.031
TG CBLC (rs3208856) BCAM (rs118147862) 4 20.45 + + 0.036 0.046
TG ZNF259 (rs2075290) PAFAH1B2 (rs4936367) 4 17.82 + 0.068 0.1
TG LPL (rs12678919) ZNF259 (rs2075290) 4 13.81 + 0.098 0.068
TG LPL (rs12678919) SIK3 (rs6589574) 4 3.22 + 0.098 0.084
TC SNP-SNP Gls:
TC NCAN (rs2228603) TM6SF2 (rs58542926) 4 74.81 + 0.076 0.076
TC TM6SF2 (rs58542926) APOE (rs4420638) 4 53.33 + (+) 0.076 0.191
TC TM6SF2 (rs58542926) TOMMA40 (rs2075650) 4 38.17 + (+) 0.076 0.147
TC NCAN (rs2228603) APOE (rs4420638) 4 30.93 + + 0.076 0.191
TC NCAN (rs2228603) TOMMA40 (rs2075650) 4 28.59 + + 0.076 0.147
TC BCAM (rs118147862) TOMMA40 (rs2075650) 4 11.24 + + 0.046 0.147
TC BCAM (rs118147862) APOE (rs4420638) 4 9.05 + + 0.046 0.191
TC ZNF259 (rs2075290) APOE (rs4420638) 4 2.40 + + 0.147 0.191
TC SORT1/CELSR2 (rs629301) TOMMA40 (rs2075650) 4 0.31 + + 0.222 0.147
LDL PTV-SNP Gls:
LDL LDLR PVRL2 (rs7254892) 4 8.318 + + 33 0.031
HDL PTV-SNP Gls:
HDL APOB LPL (rs12678919) 4 1.601 + 222 0.098
TC PTV-SNP Gls:
TC LDLR PVRL2 (rs7254892) 4 18.014 + + 33 0.031
TC LDLR SIK3 (rs6589574) 4 2.961 + 33 0.084
TC LDLR PAFAH1B2 (rs4936367) 4 0.405 + 33 0.1
TG PTV-SNP Gls
TG LPL SIK3 (rs6589574) 4 8.4 + 31011 0.084
TG BAZ1B PAFAH1B2 (rs4936367) 4 5.825 + 25 0.1
TG LPL ZNF259 (rs2075290) 4 3.894 + 31011 0.147
TG BAZ1B NCAN (rs2228603) 4 2.845 + 25 0.076
TG LPL PAFAH1B2 (rs4936367) 4 1.648 + 31011 0.1
TG BAZ1B TM6SF2 (rs58542926) 4 1.522 + 25 0.076
941
942 Non-additive genetic interactions (naGls) identified through GWAS lead SNP- and PTV-SNP-based Gl analyses in the
943 UK Biobank as described in Methods. BIC, Bayesian Information Criterion. A lowest ABIC of “4” indicates interaction
944 model is most compatible with a non-additive interaction effect. MAF (minor allele frequency) estimates and numbers
945 of rare protein-truncating variant (PTV) carriers are based on genotypes from 387,033 and exomes, respectively, from
946 161,508 unrelated UK Biobank participants of European ancestry. (+) indicates possible cis-effects of rs4420638 in
947 APOE on neighbouring genes on Chr.19q13.32. Trans Gl indicates genes contributing to pairwise naGls are located
948 on different chromosomes. * represents data based on the replication study in additional 79,462 UK Biobank
949  participants.
950
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951

952

953 Table 2.

Gl Gene Pair Intetryegcéion BICt-;)Sa:isneg Gl RLMF-based Gl testing Validation RNAI Gl testing

St | Bobust RO g | SIS ESION v an
APOB HMGCR 4.62 2 2.8 2.18 4.05E-03 3.33 0.97 1.53E-03
HAVCR1 LDLR o 4.31 4 -2.18 -1.32 1.68-02 -2.24 -1.24 1.81E-10
LDLR NCAN é 2.36 4 -1.86 -1.28 7.64E-03 -1.23 -2.22 2.20E-11
MYBPHL SIK3 % 2.27 4 2.17 1.59 6.59E-03 2.3 0.96 7.91E-03
PAFAH1B1 SIK3 ° 4.49 4 1.62 1.79 2.52E-03 3.3 2.44 8.37E-12
PCSK9 TMEM57 3.82 4 1.46 1.76 2.37E-03 3.21 2.44 3.74E-11
BCAM LDLRAP1 4.70 4 -0.4 -1.83 3.58E-04 -0.05 -0.7 5.20E-03
CELSR2 LPL 0.04 0/2 -1.4 -1.43 7.53E-03 -0.11 -0.86 8.70E-05
CXCL12 PAFAH1B1 5.47 4 -2.17 -1.78 3.69E-04 1.32 -1.92 9.84E-13
HAVCR1 LDLRAP1 13.70 4 -0.56 -2.16 1.03E-05 0.39 -0.73 5.40E-03
HAVCR1 MLXIPL 13.55 4 -0.63 -2.31 1.03E-05 -0.12 -1.2 2.06E-05
HAVCR1 SEZ6L 8.54 4 -1.19 -1.91 3.39E-04 -0.67 -0.77 2.90E-04
HAVCR1 SORT1 g 11.66 4 -2.09 -2.24 9.34E-05 -0.63 -0.58 1.98E-03
LDLR LDLRAP1 é' 10.06 4 -2.44 -1.86 9.34E-05 -2.49 -0.92 2.36E-10
LDLR MLXIPL 5.79 4 -2.03 -1.49 2.97E-03 -2.26 -0.78 4.19E-11
LDLRAP1 SORT1 8.13 4 -1.11 -1.65 2.57E-03 -1.09 -0.95 3.89E-06
MLXIPL TOMM40 18.73 4 -2.14 -2.67 1.03E-05 -1.94 -0.85 3.82E-08
NCAN SEZ6L 5.08 4 -0.59 -1.6 5.54E-03 -0.08 -1.56 7.94E-12
NCAN* TOMM40* 2.76 4 -1.4 -1.56 7.17E-03 -1.49 -1.34 1.75E-08
SORT1* TOMM40* 5.80 0 0.77 1.84 3.90E-03 -2.48 1.77 0.00E+00

954  Pairwise Gls identified and validated through coRNAI to impact LDL-uptake into cells

955

956 Gene pairs identified and independently validated by combinatorial RNAi (coRNAI) as impacting the uptake of
957 fluorescent-labelled LDL into cells in a non-additive manner. Both, BIC, Bayesian Information Criterion and RLMF,
958 Robust Linear Model Fitting were applied for analysis of coRNAi-based Gl-testing as described in Methods. *, gene
959  pairs that both, genetic and coRNAI GlI-testing identify as naGls.
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