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Abstract 
Motivation: Normalization to remove technical or experimental artifacts is critical in the analysis of single-cell RNA-
sequencing experiments, even those for which unique molecular identifiers (UMIs) are available. The majority of methods for 
normalizing single-cell RNA-sequencing data adjust average expression in sequencing depth, but allow the variance and 
other properties of the gene-specific expression distribution to be non-constant in depth, which often results in reduced power 
and increased false discoveries in downstream analyses. This problem is exacerbated by the high proportion of zeros present 
in most datasets. 
Results: To address this, we present Dino, a normalization method based on a flexible negative-binomial mixture model of 
gene expression. As demonstrated in both simulated and case study datasets, by normalizing the entire gene expression 
distribution, Dino is robust to shallow sequencing depth, sample heterogeneity, and varying zero proportions, leading to 
improved performance in downstream analyses in a number of settings. 
Availability and implementation: The R package, Dino, is available on GitHub at https://github.com/JBrownBiostat/Dino. 
Contact: brownj@biostat.wisc.edu,  kendzior@biostat.wisc.edu 
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1 Introduction  
Over the past decade, advances in single-cell RNA-sequencing 

(scRNA-seq) technologies have significantly increased the sensitivity and 
specificity with which scientific questions can be addressed (Wu et al., 
2017; Hwang et al., 2018; Bacher and Kendziorski, 2016; Haque et al., 
2017; Kolodziejczyk et al., 2015). The 10x Genomics Chromium (Zheng 
et al., 2017) platform, which utilizes a droplet-based, unique-molecular-
identifier (UMI) protocol, has become increasingly popular as it provides 
for rapid and cost effective gene expression profiling of hundreds to tens 
of thousands of cells. 

The use of UMIs has significantly reduced biases due to transcript 
length and PCR amplification (Tung et al., 2017; Grün et al., 2014; Islam 
et al., 2014; Zheng et al., 2017). However, technical variability in sequenc-
ing depth remains and, consequently, normalization to adjust for sequenc-
ing depth is required to ensure accurate downstream analyses (Fig. 1). As 
a result, a number of normalization methods have been developed to re-
move the effects of sequencing depth on average expression.  

The earliest methods for normalization were based on global scale fac-
tors which adjust all transcripts in a sample (here, a cell) uniformly. In 
transcripts per ten-thousand (TPT), implemented in the popular Seurat 
(Butler et al., 2018) pipeline, each transcript within a cell is scaled such 
that the sum of expression across transcripts within the cell equals ten thou-
sand; transcripts per million (TPM) is similar, but with the target sum equal 
to one million. Another widely used method, scran (Lun et al., 2016), pools 
counts across groups of cells to calculate scale factors which are more ro-
bust to low sequencing depths.  

Bacher et al. (Bacher et al., 2017) showed that different groups of genes 
require different scale factors, which compromises the performance of 
global scale factor based approaches. To address this, they proposed 
scNorm which estimates scale factors via quantile regression for groups of 
genes having similar relationships between expression and depth. While 
useful, their approach was developed for scRNA-seq data obtained via Flu-
idigm and similar protocols, and does not apply directly to UMI count data.  

Hafemeister and Satija recently demonstrated that analysis of UMI data 
also requires different distributional parameters for different groups of 
genes.  They approach normalization as a parametric regression problem 
and introduce scTransform (Hafemeister and Satija, 2019) which models 
counts using a negative-binomial generalized linear model (glm). In 
scTransform, parameter estimates are smoothed across genes such that 
genes with similar average expression also have similar model parameters. 
Normalized data is then given by Pearson residuals from the regression 
and, as a result, the normalized expression of a typical gene has mean zero 
and unit variance. The approach attenuates the dependence of both the 
mean and variance on sequencing depth, but maintains many of the depth-
dependent properties of the normalized expression distribution (Fig. 1), 
which impacts downstream analyses (Fig.2). 

To address this, we present Dino, an approach that utilizes a flexible 
mixture of negative binomials model of gene expression to reconstruct full 
gene-specific expression distributions which are independent of sequenc-
ing depth. By treating zeros as expected values, the negative binomial 
components are applicable to shallow sequencing. Additionally, the mix-
ture component is robust to cell heterogeneity as it accommodates multiple 
centers of gene expression in the distribution. By directly modeling (pos-
sibly heterogenous) gene-specific expression distributions, Dino outper-
forms competing approaches, especially for datasets in which the propor-
tion of zeros is high as is typical for modern, UMI based protocols. 

 
 

2 Methods 
Our proposed method for distributional normalization, Dino, recon-

structs gene-specific expression distributions and provides normalized es-
timates of expression by constrained sampling from those distributions. 
Specifically, Dino assumes a Poisson model on observed counts and mod-
els the distribution of Poisson means as a mixture of Gammas across cells, 
conditioned by sequencing depth. This Gamma-Poisson model is equiva-
lent to modeling counts as a mixture of Negative Binomials. Normalized 
expression is then sampled from cell-specific posterior distributions. The 
estimated distributions are constructed across cells and approximate the 
flexibility of a non-parametric approach in order to accommodate varying 
degrees of heterogeneity in the cell populations under study.  

2.1 Statistical model 
The count data produced by UMI sequencing protocols lend themselves 

naturally to a glm parameterized by sequencing depth (Anders and Huber, 
2010; Hafemeister and Satija, 2019); and the random sampling of barcoded 
molecules from a large pool for sequencing is theoretically well modeled 
by independent Poisson distributions on each gene (Townes et al., 2019). 
Furthermore, Poisson means are expected to scale proportionally with se-
quencing depth (Anders and Huber, 2010; Lun et al., 2016; Hafemeister 
and Satija, 2019; Townes et al., 2019), giving counts Ygj from gene g in 

Figure 1: Evaluation of gene-specific expression distributions following normal-
ization. Expression data in the PBMC68K_Pure dataset were normalized by Scran, 
scTransform, and Dino. Normalized expression is shown here for a homogeneous set 
of cells (CD4+/CD45RO+ memory cells) to minimize the effects of cell subpopula-
tion heterogeneity. a) Normalized expression from a typical gene (NME1) under 
Scran, scTransform, and Dino plotted against sequencing depth. Fitted regression 
lines (solid black) show generally constant means across methods. b) Histograms of 
expression from low and high depth cells (bold in panel a) show that the constant 
mean is maintained by balancing the changing proportions of zeros, or near zeros in 
the case of scTransform, with expression shifts in normalized non-zeros. c) Quantile-
quantile density plots comparing expression quantiles in the high-depth (x-coordi-
nate) and low-depth cells (y-coordinate) across genes. As in panel b, there are sys-
tematic shifts in the distributions. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.28.359901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359901
http://creativecommons.org/licenses/by/4.0/


cell j the distribution Ygj~Pois(λgjδj). Defining δj to be the cell-specific se-
quencing depth, λgj then represents the latent level of expression for gene 
g in cell j, corrected for depth. Note that λgj is cell dependent given that 
latent levels of expression for a gene may vary across cells due to popula-
tion heterogeneity. For convenience of interpretation on the λgj, estimated 
depths are scaled such that δjMed=1 where jMed indexes the median depth 
cell by default. 

The Dino algorithm defines the distribution of λgj across cells to be the 
gene-specific expression distribution of interest. If one assumes a Gamma 
distribution on the λgj, then the marginal distribution of the Ygj is Negative 
Binomial, the model assumption made by scTransform and DESeq2, as 
well as the dimension reduction method, ZINB-WaVE (Risso et al., 2018), 
and others. However, to increase the precision with which the full gene-
specific expression distribution may be estimated, Dino further assumes 
the λgj arise from a mixture of Gamma distributions, and defines normal-
ized expression as samples from the posterior distribution of the λgj.  

As distribution estimation and normalization are both performed at the 
gene level, the gene subscript is hereafter dropped, and it is noted that com-
putations are repeated across genes. This defines the final model as: 

𝑌! ∼ 𝑃𝑜𝑖𝑠'𝜆!𝛿!*; 	𝑤ℎ𝑒𝑟𝑒	𝜆! ∼1𝜋"
#

𝐺𝑎𝑚𝑚𝑎 6
𝜇"
𝜃 , 𝜃:	

for shape μk/θ, scale θ, and such that Σkπk=1. This parameterization is cho-
sen to define the distribution in terms of its mean, μk. K	is chosen to be 
sufficiently large to accommodate both cellular heterogeneity and within-
cell-type over-dispersion of the λj with respect to a single Gamma(sk,θ) 
mixture component. By default, K is the minimum of 200 and the square 
root of the number of Yj which are greater than zero. Since the negative 
binomial distribution can be alternately defined as the Gamma-Poisson 
distribution, this formulation has the reassuring additional interpretation of 
defining Yj as a mixture of Negative Binomials. 

2.2 Sampling normalized values from the posterior 
The posterior distribution on λj is straightforward to compute: 

𝑝'𝜆!<𝑦! , 𝛿!* ∝ 𝑃𝑜𝑖𝑠$!%!'𝑦!*1𝜋"𝐺𝑎𝑚𝑚𝑎 6
𝜇"
𝜃 , 𝜃:

"

 

which reduces to 
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where τkj is the conditional likelihood that λj belongs to component k given 
yj and δj, and γ is a concentration parameter. Our testing (not shown) has 
demonstrated that strict resampling from the posterior distribution can lead 
to excessive variance which can obscure biological features of interest. 
Therefore, γ is added to both reduce the normalized variance and center 
normalized values around their corresponding scale-factor variants:	 

Default values of γ=25 have proven successful. This adjustment can be 
seen as a slight bias in the normalized values towards a scale-factor version 
of normalization, since, in the limit of γ, the results converge to yj/δj. A 
modified expectation-maximation (EM) algorithm (Jamshidian and 
Jennrich, 1997), described in detail in Supplementary Section S1.1, is used 
to estimate μk. Separate values of θ are estimated for each gene based on 
gamma kernel density estimation (Chen, 2000) as described in Supplemen-
tary Section S1.2. Adjustments to δj to accommodate slight deviation from 
strict expression scaling with depth are described in Supplementary Sec-
tion S1.3. Finally, parameter initialization relies on a modified application 

of quantile regression (Powell, 1984, 1986; Branham, R. L., 1982) and is 
described in Supplementary Section S1.4. 

2.3 Datasets 
Results from six publicly available datasets are evaluated: 

PBMC68K_Pure, PBMC5K_Prot, MaltTumor10K, MouseBrain, 
PBMC68K, and EMT. Where applicable, analyzed expression was derived 
from unfiltered gene-barcode matrices, with empty droplets removed by 
the tools in the R package DropletUtils (Lun et al., 2018). 

PBMC68K_Pure is a partner dataset to PBMC68K (Zheng et al., 2017) 
produced by fluorescence activated cell sorting (FACS) of peripheral 
blood mononuclear cells (PBMCs) into 10 cell types and separately se-
quencing each group. One group was then computationally separated into 
two resulting in 11 annotated cell-types. These cell-type annotations are 
considered here as ground truth when evaluating the effects of normaliza-
tion on downstream clustering, and for increased accuracy, the six most 
homogenous cell-types from visual inspection of tSNE plots (van der 
Maaten and Hinton, 2008; Van Der Maaten, 2014) were subset: CD4+ T 
Helper2, CD4+/CD25 T Reg, CD4+/CD45RA+/CD25- Naive T, 
CD4+/CD45RO+ Memory, CD56+ NK, and  CD8+/CD45RA+ Naive Cy-
totoxic. 

EMT is a dataset of 5,004 MCF10A mammary epithelial cells induced 
to undergo spontaneous endothelial to mesenchymal transitions (EMTs) 
through the cellular detection of neighboring unoccupied space (McFaline-
Figueroa et al., 2019). This spatial effect allowed the authors to dissect an 
inner region a priori expected to be primarily endothelial cells and an outer 
region a priori expected to be primarily mesenchymal cells which were 
then sequenced separately. From all the data published by the authors, the 
EMT dataset we consider is denoted “Mock” in the barcode metadata. In-
cluded in the initial publication, the authors describe eight gene sets from 
the Hallmark collection (Liberzon et al., 2015) which they consider to be 
significantly enriched for activity during EMT. We take this set of terms 
as a ground truth for assessing power of each normalization method. 

Results from the PBMC68K_Pure and EMT datasets are shown in the 
manuscript while results from other datasets are provided in the supple-
ment unless otherwise noted. Details on each of the datasets as well as their 
pre-processing are provided in Supplementary Section S2. 

The case study datasets are also used to generate simulated datasets with 
expression profiles designed to closely mirror experimentally observed 
cells. In brief, for a given case study data set, unsupervised clustering is 
used to define clusters. Two cells with similar sequencing depths are sam-
pled from a cluster and expression is summed across the two cells to make 
a pseudo-cell. Expression from this pseudo-cell is then down-sampled us-
ing a binomial distribution to generate two new simulated cells which dif-
fer in sequencing depth, but otherwise have equivalent expression (EE) 
across all but 10 genes for which differential expression (DE) is induced. 
This process is repeated to generate a collection of cells with the same set 
of EE and DE genes; and the process is repeated again for other clusters to 
simulate subpopulation heterogeneity. These simulated datasets are then 
used to quantify power and false positive rates for DE testing following 
different normalization methods. Full simulation details are described in 
Supplementary Section S3.  

2.4 Application of normalization methods 
For each dataset considered, normalized estimates of expression were 

obtained from Dino (v0.6.0), scran (v1.16.0), scTransform (v0.2.1), TPM, 
and TPT. We also consider un-normalized UMIs for reference. Further in-
formation on package defaults, annotation versions, and other software is 
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given in Supplementary Section S4. The implementation of scTransform 
provides both normalized expression in terms of regression residuals (rec-
ommended for most analysis applications by the authors) and normalized 
expression in terms of a corrected UMI counts matrix. We consider both 
in this manuscript and refer to the residuals matrix as scTrans and the 
counts matrix as scTransCnt. 

2.5 Evaluation of gene-specific expression distributions 
   To evaluate the extent to which a given normalization method re-

moves the effect of sequencing depth on expression, we use linear regres-
sion to quantify the relationship between expression and depth.  We also 
compare the gene-specific expression distributions between low-depth 
cells (depth between the 5% and 25% quantiles) and high-depth cells 
(depth between the 75% and 95% quantiles).  

While such a comparison can be done visually for individual genes, to 
evaluate the extent to which there are shifts in these distributions across 
genes, we construct QQ plots aggregated across multiple genes. Within a 
cell type annotation, we sample genes from the bottom 90% of expression 
(geometric mean of un-normalized UMIs), omitting only the high ex-
pressors which perform similarly across normalization methods. For each 
gene, we compute a grid of quantiles from the cells in the low-depth group 
(defined above) and a corresponding grid of quantiles from the cells in the 
high-depth group. These vectors of quantiles define points on the QQ plot 
with the high-depth quantiles forming the x-coordinate and the low-depth 
quantiles defining the y-coordinate. Application of this procedure across 
genes builds a larger, representative set of points on the QQ plot which are 
then transformed into densities for visualization. 
 

2.6 Identification of differentially expressed genes and evalu-
ation of clusters 

Genes that are DE between two groups are identified using the Wil-
coxon rank sum test, which is the default in the Seurat pipeline at the time 
of writing. We also consider MAST (v1.14.1) (Finak et al., 2015) as im-
plemented in Seurat (v3.2.0). For each method, we define a list of genes 
with false discovery rate less than 1%. Specifically, a gene is defined as 
DE if its Benjamini and Hochberg adjusted p-value is less than 0.01 
(Benjamini and Hochberg, 1995). 

To identify genes that are DE over pseudo-time in the EMT data, we 
use a simplified analysis approach similar to that of the original authors. 
Highly variable genes define a pseudo-time ordering of cells using Mono-
cle2 (v2.16.0) (Trapnell et al., 2014; Qiu et al., 2017). DE genes are then 
defined as genes with a significant trend over pseudo-time. Significance is 
determined via a likelihood ratio test between a natural spline regressed 
against pseudo-time and an intercept only null model, implemented in 
Monocle2. As with the two-group case, we define a gene as DE if its Ben-
jamini and Hochberg adjusted p-value is less than 0.01. Full details are 
provided in Supplementary Section S4. 

To perform clustering analysis, clusters are estimated using 25,000 cells 
selected at random from each dataset; the same set of 25,000 cells is used 
for normalization by each method. After normalization, the top 1,000 high-
est variance genes are reduced to 25 principal components on the log scale 
with a +1 psuedo-count for all methods to stabilize the variance except for 
scTrans as it performs a similar variance stabilization internally. Louvain 
graph-based clustering, implemented in Seurat, is used to identify clusters. 
Cluster accuracy is quantified by computing the adjusted Rand index 
(ARI) between discovered clusters and annotations, and clusters are visu-
alized using tSNE dimension reduction. 

Clustering analysis is also performed in an environment of exaggerated 
differences in sequencing depth where half of the original 25,000 cells 
sampled from each dataset are randomly selected and down sampled to 
25% of their original depth. Normalization, clustering, and calculation of 
ARI are then performed as previously descried across all 25,000 cells. Full 
details are provided in Supplementary Section S4. 

3 Results 

3.1 Depth-dependent patterns in normalized data 
To compare Dino, scran, scTransform, TPM, and TPT, we normalized 

the PBMC68K_Pure data using each method. Given the purification done 
with FACS, cells within a given annotation should be largely homogene-
ous and, consequently, should exhibit little difference in expression among 
cells. Examination of the normalized expression between low-depth and 
high-depth CD4+/CD45RO+ memory cells shows that existing methods 
exhibit significant depth-dependent effects. As shown in Fig.1a, for a nor-
malized gene to maintain average expression that is relatively independent 
of depth, the higher proportion of zeros in the low-depth group is balanced 
by inflation of the non-zeros. This leads to shifts in the densities of the 
normalized non-zeros between low and high-depth cells, as shown in 
Fig.1b. To evaluate this effect across all genes, we compare the quantiles 
in low-depth and high-depth cells. Figure 1c. demonstrates systematic 
shifts in the normalized expression distributions. Normalized expression 

Figure 2: The effects of normalization on downstream DE and enrichment anal-
ysis. a) Expression data from the PBMC68K_Pure dataset were normalized and genes 
were tested for DE using a Wilcoxon rank sum test between low-depth and high-
depth cells within cell-type annotations. Box plots show DE genes; given cells only 
differ in depth, DE identifications are considered false positives.  b) Expression data 
from the EMT dataset were analyzed using Monocle2 to identify genes with signifi-
cantly variable expression over pseudo-time. (Left) Total numbers of significant 
genes. (Right) Significance values of enriched GO terms, colored for each normali-
zation method, for the subset of terms previously identified as defining expression 
shifts during endothelial mesenchymal transition. 
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from Dino mitigates these effects, producing more equivalent expression 
distributions across low and high depth cells. Similar results are shown for 
other case study datasets in Supplementary Figure S1. 

3.2 Effects of normalization on differential expression analy-
sis 

To evaluate the extent to which depth-dependent differences in the ex-
pression distributions affect downstream differential expression (DE) 
analysis, we used the Wilcoxon rank-sum test to identify DE genes be-
tween low and high-depth cells within each of the 6 annotated cell-types 
in the PBMC68K_Pure dataset, resulting in 6 separate measures of DE 
genes. Fig. 2a demonstrates that many DE genes are identified by most 
methods. As each cell-type is expected to be homogeneous, these identifi-
cations are considered false positives. Similar results are shown in Supple-
mentary Figure S2 for the MaltTumor10K and PBMC5K_Prot datasets. 
These datasets were considered as they have pseudo-annotations available 
(see Supplementary Section S2 for dataset details). 

To evaluate DE analysis in the positive case where DE genes are ex-
pected to exist, we consider a case study dataset of cells undergoing spon-
taneous endothelial to mesenchymal transitions (EMT dataset) (McFaline-
Figueroa et al., 2019). Cells along the primary branch of the differentiation 
tree are tested for DE, here defined as having a significant change in ex-
pression over pseudo-time.  

As with the negative control examples of Fig. 2a and S2, Dino discovers 
the fewest DE genes (Fig. 2b, left). Results from an enrichment analysis 
suggest that the reduction in the number of DE genes found by Dino is 
likely due to a reduction in false positives, as with the negative control, 
rather than an undesirable reduction in power. Specifically, we performed 
gene set enrichment analysis (GSEA) on the hallmark collection of gene 
sets (Liberzon et al., 2015). Enrichment significance values are plotted in 

the right panel of Fig. 2b for the set of terms identified by McFaline-
Figueroa et al. as significant markers of EMT activity. Dino normalization 
results in competitive significance in 3 of the 8 terms and shows the highest 
GSEA significance in 5 of the 8. Notably, Dino shows improved enrich-
ment results for the term defining endothelial mesenchymal transition; the 
Dino adjusted p-value (1.5e-4) is more than an order of magnitude more 
significant than the nearest alternate method (TPT, adjusted p=2.0e-3). 

Simulated datasets provide further insights consistent with the case 
study results regarding DE. Specifically, we simulated heterogenous cell 
populations from experimentally observed expression with known DE and 
EE genes (see Supplementary section S3 for simulation details). Following 
normalization, DE genes are identified between cluster pairs by a Wil-
coxon rank sum test. Fig. 3 plots average ROC curves for each normaliza-
tion method where the average is taken over 50 datasets simulated from 
the PBMC68K_Pure dataset. Average true positive rates (TPR / Power) 
and false positive rates (FPR) are given in Supplementary Table S1 for 
simulations based on other case study datasets.  

In most cases it can be observed that high power is confounded by high 
FPRs. As with the negative control, however, Dino controls FPR to much 
lower levels. ROC curves across datasets are considered in Supplementary 
Figures S3 and S4, and Power and FPR for MAST tests are described in 
Supplementary Table S2. 

3.3 Effects of normalization on clustering 
The effect of normalization on clustering was evaluated by comparing 

clusters derived using data normalized by each method with the annota-
tions in the PBMC68K_Pure dataset using the adjusted Rand index (ARI). 
As shown in Fig. 4 for one sub-sample of cells, Dino, scran, and scTrans 
outperform other methods; Dino shows slightly although not significantly 
improved performance over scTrans and scran (Fig. 4a).   To exacerbate 

Figure 4: The effects of normalization on clustering. a) tSNE plots of normalized 
PBMC68K_Pure data, colored by 6 cell-type annotations, show similarly high accu-
racy between methods. b) The same clustering plots as in (a), but with half the data 
down-sampled prior to normalization to produce greater differences in sequencing 
depths. c) Boxplots of ARIs for multiple un-modified and down-sampled datasets. 

Figure 3: The effects of normalization on downstream DE analysis. Simulated 
data based on the PBMC68K_Pure dataset were normalized using each method. ROC 
curves colored by normalization method define the relationship between average 
TPR and average FPR for a Wilcoxon rank sum test, where the average is calculated 
across 50 simulated datasets. 
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the differences in sequencing depth, we randomly down-sampled half of 
the 25000 cells to 25% of their original sequencing depth. Fig. 4b shows 
the derived clusters with the down-sampled cells plotted bold compared to 
the unmodified cells. Some effect of depth is observed in the clustering, 
and ARIs for all normalization methods decreased, as expected. However, 
Dino normalized data retains a more accurate differentiation between cells 
with an ARI of 0.480 compared to 0.357 and 0.350 for scTrans and scran, 
respectively.  

Fig. 4c shows results from the analysis repeated across multiple samples 
of 25,000 cells. As with the sample shown in Figs. 4a, Dino and scran 
perform comparably (medians of 0.601 and 0.609 respectively), and uni-
formly better than scTrans (median of 0.591). In the down-sampled case, 
Dino performs significantly better than competing methods (p<2.2e-16 un-
der a t-test). Similar results are shown for the MaltTumor10K and 
PBMC5k_Prot datasets (Supplementary Figures S5 and S6). 

4 Discussion 
The 10x platform and similar protocols provide unprecedented cellular 

resolution in expression profiling. However, the use of UMIs does not re-
move the need for effective normalization in the analysis of such data, and 
the extreme sparsity of these high-throughput experiments introduces new 
challenges for depth correction. Dino adapts to these challenges by cor-
recting the entire expression distribution of each gene in depth, rather than 
only correcting mean expression as with most existing methods. This in-
creases both power and precision in down-stream analysis. 
    Dino normalizes observations by resampling from gene-specific ex-
pression distributions, conditional on observed expression and depth.  This 
resampling accommodates the varying proportions of zeros across depth 
induced, in large part, by technical artifacts. In addition, by resampling 
from the full gene-specific distribution, Dino produces greater homogene-
ity of normalized expression across sequencing depth within cell type, and 
therefore leads to more accurate downstream analyses that are robust to 
heterogeneous cell populations. 
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