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Abstract 32 

Tumors experience temporal and spatial fluctuations in oxygenation. Hypoxia inducible 33 

transcription factors (HIF-α) in tumor cells are stabilized in response to low levels of oxygen 34 

and induce angiogenesis to re-supply oxygen. HIF-α stabilization is typically facultative, 35 

induced by hypoxia and reduced by normoxia.  In some cancers, however, HIF-α stabilization 36 

becomes constitutive even under normoxia, a condition known as pseudohypoxia. Herein, we 37 

develop a mathematical model that predicts the effects of fluctuating levels of oxygen 38 

availability on stabilization of HIF-α and its client proteins based on fitness. The model shows 39 

that facultative regulation of HIF-α always promotes greater cell fitness than constitutive 40 

regulation. However, cell fitness is nearly identical regardless of HIF-α regulation strategy 41 

when there are rapid periodic fluctuations in oxygenation. Furthermore, the model predicts that 42 

stochastic changes in oxygenation favor facultative HIF-α regulation. We conclude that rapid 43 

and regular cycling of oxygenation levels selects for pseudohypoxia.  44 

 45 

 46 

Introduction 47 

Phenotypic plasticity, the production of alternative phenotypes in response to variable 48 

environments, is ubiquitous in nature1. Phenotypic plasticity confers flexibility that allows an 49 

organism to survive in the face of often unpredictable and rapid changes in its environment. Many 50 

organisms, from microbes to humans, vary gene expression facultatively. In this way phenotypic 51 

expression matches demand2,3. In contrast, when environments are constant, or are predictably 52 

variable, an intermediate and constitutive level of expression may be favored over facultative 53 

expression4,5. 54 

  55 

 Inducible or facultative defenses, such as defensive chemicals in plants, and spines and 56 

projections in zooplankton such as rotifers and cladocerans, include remarkably diverse and well-57 

studied examples of phenotypically plastic responses to biotic and abiotic threats or stressors. 58 

Biotic threats include herbivores, predators, pathogens and parasites. An important abiotic threat 59 

is hypoxia, a reduction in oxygen availability. Hypoxia may be either acute, intermittent, or 60 

chronic, and it may be experienced at the organismal, tissue, or cellular levels. Cells respond to 61 

hypoxia via stabilization of the Hypoxia-inducible Factor (HIF), an inducible defense against both 62 

acute and chronic hypoxia within the cellular environment. HIF is a heterodimeric transcription 63 

factor that induces expression of genes that lead to tissue re-oxygenation.  The evolution of 64 

inducible defenses, like HIF, appears to be favored by unpredictability of environmental 65 

conditions, reliable cues of those conditions, and a high cost of the defense6-8. 66 

 67 

Oxygen levels in normoxic or hypoxic tissues encompass a wide range of values depending 68 

on several factors, including gender, time of day, tissue type, and degree of vascularization9,10. In 69 

tumors, significant heterogeneity in oxygen levels result from both a dynamic ecosystem of blood 70 

vessels of varying functionality, and cancer cells with different tolerances to hypoxia. Within a 71 

nascent tumor ecosystem, cancer cells, which can somatically evolve, experience both acute and 72 

chronic hypoxia due to rapid growth, limited blood supply, and disorganized vascular delivery 73 

systems11.  This leads to complex cycles of oxygenation and hypoxia, characterized as “waves” 74 

and “tides”12-14. Thus, an intermittent or temporal instability in oxygen supply is a cardinal feature 75 

of tumors. We have proposed that this generates strong evolutionary selection pressures for more 76 

aggressive cancer cell phenotypes15. 77 
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 Like nearly all metazoan cells, cancer cells possess mechanisms to respond to 78 

heterogeneity in the supply of oxygen, including activation of a family of hypoxia-inducible 79 

transcription factors (HIF-1α, HIF-2α, and HIF-3α; hereafter HIF-α), cell cycle arrest, a 80 

coordinated decrease in oxidative phosphorylation with an increase in glycolysis (Pasteur Effect), 81 

and the secretion of angiogenic factors to promote blood vessel formation16-21. HIF-α is 82 

ubiquitously and continuously expressed in all cells. In well-oxygenated environments (normoxia), 83 

HIF-α is hydroxylated and ubiquitinated and is thus recognized and degraded by proteasomes19.  84 

In an oxygen-depleted state, hydroxylation and hence, degradation of HIF-α is inhibited, 85 

promoting the transcription of genes that regulate proliferation22,23, cellular metabolism19, 86 

angiogenesis24 and erythropoiesis25-26. If well-regulated, the recruitment of blood vessels to the 87 

site of HIF-α stabilization increases the supply of oxygen. Once O2 levels return to normal 88 

(normoxia), HIF-α returns to baseline levels. It has also been observed that aggressive cancers 89 

constitutively express hypoxia-related proteins (HRPs) even in the presence of oxygen, a condition 90 

known as pseudohypoxia27.  The most common manifestation of this phenotype is the fermentation 91 

of glucose under normoxia, known as “aerobic glycolysis” or the “Warburg Effect”28-30.   92 

 93 

Maintenance of HIF-α levels under cycling hypoxia involves tradeoffs. Under prolonged 94 

hypoxia without stabilization of HIF-α, cells die. In contrast, HIF-α stabilization under normoxia 95 

comes at a cost. Accumulation of HIF-α in well-oxygenated environments costs energy and 96 

resources for the synthesis of HIF-α client proteins that may not be necessary for survival, 97 

including activating energetically inefficient glycolysis and expression of the exofacial acidifying 98 

pH-stat, carbonic anhydrase isoform 9, CA-IX31. As seen in the development of some tumors, 99 

regulation of HIF-α switches from a facultative state, where the environment induces the changes 100 

in regulation, to a constitutive state, where HIF-α and/or HIF-α client proteins remain above 101 

baseline regardless of the environment15,27. As this phenotype is associated with cancer progression 102 

and aggressiveness, understanding the microenvironmental conditions that select for 103 

pseudohypoxia is fundamentally important. 104 

 105 

Here, we develop a mathematical model with the goal of determining a cancer cell’s 106 

optimal level of HIF-α expression with respect to differences in fluctuating levels of oxygen 107 

availability within tumor microenvironments. Specifically, we seek to determine what tumor 108 

conditions may cause the evolution of constitutive HIF-α regulation (“hard wired” HIF-α 109 

stabilization) from facultative regulation. To do so we compare the maximal expected payoff (net 110 

growth rate) between facultative and constitutive HIF-α regulation in environments with different 111 

oxygen profiles. We hypothesize that predictable and rapid cyclic fluctuations from normoxia to 112 

hypoxia will favor constitutive HIF-α stabilization based on similar ideas in optimal defense 113 

theory4,32.  114 

 115 

Our model investigates how cells may respond to changes in oxygenation with HIF-α 116 

expression. In a perfect world, cells would instantaneously optimize HIF-α levels in response to 117 

fluctuating oxygen concentrations. As the environment shifts from normoxia to hypoxia, cells 118 

would immediately accumulate HIF-α, and vice-versa. However, attaining the appropriate HIF-α 119 

level for the current environment is not immediate. There will be time lags in upregulating or down 120 

regulating HIF-α. HIF-α production and proteosomal degradation occur continuously18,27. When 121 

oxygenation levels decline, HIF-α degradation slows, and production permits HIF-α to increase at 122 

a relatively slow rate to counter the hypoxic conditions18.  Upon re-oxygenation, HIF-α can be 123 
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rapidly degraded.  We model cellular regulation of HIF-α as the concentration of oxygen within 124 

the tumor and surrounding microenvironment changes temporally – both with regular periodicity 125 

and stochastically. The model was informed by empirical evidence for the rates of HIF-α 126 

accumulation and degradation as the cells’ microenvironment shifts between normoxia and 127 

hypoxia, and vice-versa33-35. 128 

 129 

Results 130 

We compared how different HIF-α regulation strategies influence cell fitness under different 131 

oxygenation environments. Here, we define a cell’s fitness by its net proliferation rate, or “payoff”. 132 

In this model, we assume that the expected payoff depends on the base proliferation rate, the 133 

metabolic cost of expressing HIF-α, and the mortality risk of not expressing HIF-α during hypoxia. 134 

We use the following expression for a cancer cell’s payoff at time t, G(t): 135 

 136 

                                               𝐺(𝑡) = 𝑟 − 𝑐𝑢(𝑡) −
𝑚(1−𝑞)

𝑘+𝑏𝑢(𝑡)
 ,                                               (1) 137 

 138 

Parameter Description Units Values References 

r Baseline proliferation rate of a cell min-1 0.00048 Estimated 

c Cost to proliferation rate when using strategy u min-1 0.0001328 Calculated 

m Hypoxia induced cell death rate 
min-1 

0.00083 Guo et al. 

2009 

k 
Cell tolerance to hypoxia in the absence of HIF-𝛼 

stabilization 
unitless 1 

Set 

b 
Cell benefit in hypoxic environments due to HIF-𝛼 

stabilization  
unitless 4 

Guo et al. 

2009 

α0 Upregulation rate of HIF-𝛼 
min-1 

0.01155 Pagé et al. 

2002 

α1 Downregulation rate of HIF-𝛼 
min-1 

0.0462 Marxsen et 

al. 2004 

umin Baseline production of HIF-𝛼 unitless [0,1] Optimized 

umax Maximum production of HIF-𝛼 unitless [0,1] Optimized 

u HIF-𝛼 expression unitless [0,1] Calculated 

Y Level of oxygenation  unitless [0,1] Variable 

q Fraction of time the environment is fully oxygenated 

(Y=1) 
min-1 

[0,1] Variable 

 139 
Table 1. Definitions, units, and values of parameters used in the models. The terms Y and u are normalized and are therefore 140 
unitless. We normalize k to 1 because it appears as m/k when u=0 and appears as b/k in u*.  The value of c is calculated such that 141 
u* = 1 when the environment is hypoxic (q=0; c = 

𝑚

𝑏(1+
𝑘

𝑏
)

2).  142 

 143 
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where r is the baseline proliferation rate of a cancer cell, c is proliferation cost of using HIF-α 144 

strategy u at time t, m is the cell mortality when conditions are hypoxic, q is the fraction of time 145 

spent in normoxic conditions, k is a cell’s intrinsic tolerance to hypoxia in the absence of HIF-α 146 

stabilization, and b is the benefit of HIF-α expression u in reducing mortality when conditions 147 

are hypoxic. See Table 1 for definitions, units and values of all parameters used in the models. 148 

 149 

We compare three HIF-α strategies across a variety of oxygenation environments: 150 

perfect, constitutive, and facultative. A perfect strategy means instantaneous HIF-α switching in 151 

response to normoxic and hypoxic conditions.  While this strategy is idealized, it provides a 152 

useful point of comparison for the other strategies as a perfect strategy would yield the highest 153 

possible payoff.  A constitutive strategy assumes that the HIF-α level is constant over time, and a 154 

facultative strategy assumes that the HIF-α levels can change at a finite rate in response to 155 

oxygen levels. Representative examples of these strategies in a fluctuating environment are 156 

shown in the Methods (Fig. 7). 157 

 158 

The perfect strategy 159 

A perfect strategy does not mean perfect fitness in all environments. Mortality and the metabolic 160 

costs of HIF-α stabilization means that fitness declines with more time spent in hypoxic conditions. 161 

The expected payoff of the perfect strategy (see Eq. (2) in Methods) is shown to decline linearly 162 

with the proportion of time spent in hypoxia (Fig. 1A). 163 

 164 

 165 

 166 

 167 

 168 

The constitutive strategy 169 

The optimal constitutive strategy can be found by maximizing the payoff for a constant HIF-α 170 

level, u* (see Eq. (3) in Methods). The expression for the payoff can then be analytically solved 171 

(see Eq. (4) in Methods). We found that the constitutive strategy payoff is always less than or 172 

equal to the perfect strategy payoff (Fig. 1A), being equal only when the environment is always 173 

hypoxic (q = 0) or always normoxic (q = 1). The payoff over different HIF-α regulation strategy 174 

values u for different fractions of time spent in normoxia q is plotted in Fig. 1B, along with the 175 

optimal constitutive values u*. As expected, we find that the payoff is highest when HIF-α 176 

 

Figure 1. Expected payoffs for 

perfect and constitutive 

strategies. A) The payoff (G) for 

perfect and optimal constitutive 

(u*) strategies for different 

fractions of time in normoxic 

conditions, q. B) The payoff 

versus HIF-𝛼 level, u, for  

different q’s. The lines represent 

all u values, while the red dots 

represent the optimal u 

expression (u*) for each q that 

maximizes the payoff. Parameter 

values are given in Table 1.  
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expression is lowest (u=0) under constant normoxic conditions. With constant normoxia, as u is 177 

increased, the payoff slightly decreases, showing the minor cost of unnecessarily producing HIF-178 

α. However, as conditions become more hypoxic with a low HIF-α expression, the mortality 179 

term dominates, and the payoff is drastically reduced into negative values where the cell cannot 180 

survive. With constant hypoxia, HIF-α needs to increase in order for G≥0 for survival. The 181 

optimal values u*, shown as red dots, reflect this for all values of q in between.  182 

 183 

Facultative expression of HIF-α  184 

With the facultative strategy, u changes over time according to Eq. (5) in the Methods. This 185 

expression allows u to increase in hypoxia and decrease in normoxia at the rates given in Table 1. 186 

The rates were based on empirical measurements33-35, which found that HIF-α down-regulation 187 

occurs about four times faster than HIF-α up-regulation. The optimal facultative strategy involves 188 

selecting a baseline umin and an upper bound umax that maximizes the expected payoff. For 189 

simulations we began with a period of normoxia and a starting value of HIF-α halfway between 190 

constitutive expression and the specified umax. For fixed cycle lengths, the expected payoff 191 

converges quickly to a steady state, and we use the payoff in Eq. (6) in the Methods to numerically 192 

solve for the optimal lower and upper bounds of u*min and an upper bound u*max.  193 

 194 

We compared the optimal facultative response between two different periodicities (either 195 

10 minute or 120 minute intervals) of full oxygenation followed by the same for deoxygenation (q 196 

= 0.5 in both cases). Initially we compared the payoffs of a constitutive strategy and facultative 197 

strategy in the same environment to determine the selection coefficient, which we defined as the 198 

fitness advantage for using a facultative strategy (details in the Methods). The selection 199 

coefficients over the full range of possible umin and umax are shown in Fig. 2A. For longer cycling 200 

periods, the facultative strategy has a larger selection coefficient for any given combination of umin 201 

and umax than for shorter cycle times. Under many circumstances the difference in the selection 202 

coefficients for the two strategies are so small as to be negligible.  Under such circumstances one 203 

might expect the constitutive strategy to prevail.  204 

 205 

We further explored HIF-α expression using the umin and umax combination that produced 206 

the greatest payoff. When the environment fluctuates with time intervals of 10 minutes, the cell’s 207 

payoff was optimized at u*min=0.540 and u*max=1. The fluctuation in HIF-α expression occurred 208 

rapidly and the u*min, while always less than, came close to the constitutive value, while u*max 209 

remained at 1 (Fig. 2B). By increasing time intervals to 120 minutes, the cell’s payoff was 210 

maximized at u*min=0.305 and u*max=1. The longer cycle times resulted in larger fluctuations in 211 

HIF-α expression and a greater superiority of the facultative strategy compared to the constitutive 212 

strategy.  With the longer cycle time, the optimal facultative strategy resulted in a lower value for 213 

u*min, while u*max always remained at 1.  214 

 215 
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 216 

Comparing over all strategies, we found that perfect matching of HIF-α expression to 217 

fluctuating levels of oxygenation always produces the highest cell payoff (Fig. 2C). However, for 218 

facultative and constitutive strategies that work on non-instantaneous time scales, we found that 219 

the superiority of the facultative over the constitutive strategy was low for short cycles and high 220 

for longer cycles. 221 

 222 

Figure 2. Comparison environments with fixed intervals of short (10 min) and long (120 min) periods of cycling hypoxia. A) 

Heatmap of the selection coefficients for the facultative strategy for all umin and umax combinations. Each star denotes the umin 

and umax combination that maximizes payoffs for the facultative strategy for each fixed interval time. B) HIF-α (u) levels over 

time using the optimal facultative strategy. The unshaded areas represent periods of full oxygenation while the shaded grey 

areas represent periods of hypoxia. C) Payoffs for separate strategies of HIF-α expression normalized to the perfect strategy. 

Parameters are given in Table 1. 
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HIF-α expression under stochastic fluctuations 223 

For stochastic oxygen fluctuations, we convert the cycle times to rates of switching and use these 224 

probabilities to create a timeline of stochastic fluctuations comparable to the fractions of time spent 225 

in each environment. Specifically, we let PN→H = 1/TN be the probability of switching from  226 

normoxia to hypoxia, and PH→N=1/TH be the probability of switching from hypoxia to normoxia, 227 

and we evaluated the facultative strategy in stochastic environments where PN→H = PH→N. 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

An example simulation with a high probability of switching (left) and a low probability of 266 

switching (right) is shown in Fig. 3A. When there is a high probability of switching oxygenation 267 

states, PN→H = PH→N = 0.1 min-1, the optimal facultative strategy occurs at u*min= 0.504 and u*max 268 

Figure 3.  HIF-α regulation under stochastic fluctuations in oxygenation. A) Optimal facultative HIF-α expression in 

stochastically hypoxic environment; r = 0.00048, α
0
=0.01155, α

1
=0.0462, m = 0.00083, b = 4, c = 0.0001328, and k=1. Left 

graph illustrates HIF-α stabilization when the probability of fluctuations in oxygenation states is high (P=0.1) and low 

(P=0.0083). B) Selection for a facultative strategy over a constitutive strategy for fixed interval and stochastic environments. 

Because selection is optimized numerically in fixed interval environments, selection gradient is continuous. Selection in 

stochastic environments is presented as the average of 10 simulation results. 
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= 1. Decreasing the probability of switching to 0.0083 min-1 leads to a decrease in u*min to 0.216, 269 

while u*max remains unchanged at 1. For comparison, when PN→H = PH→N, assuming q = 0.5, the 270 

optimal constitutive strategy is u*=0.634. All results for stochastic switching are reported as the 271 

mean values of u*min and u*max for 10 simulations insuring a small standard error (<0.01) for   u*min 272 

and u*max, respectively (Suppl. Fig. 1). 273 

 274 

Quantification of stabilization/de-stabilization times in vitro 275 

In the simulations above, we needed estimates for the rates of upregulation and downregulation of 276 

HIF-α. We used average rates based on values in the literature from both normal and cancer cell 277 

lines. Yet, such rates will vary with cell line and the values from the literature were not collected 278 

with our model in mind.  To compare to previous values and to our model, we empirically 279 

measured HIF-α upregulation and downregulation rates in two different ovarian cancer cell lines, 280 

TOV112D and A2780s. The kinetics of HIF-α stabilization were measured under 0.2% hypoxia in 281 

vitro. For TOV112D, HIF-α upregulation and stabilization required at least one hour and was 282 

maximal at 4 hours (Fig. 4A, left panel). For A2780s cells, stabilization required 4 hours (Fig. 4A, 283 

right panel). We then measured the length of time required for these cancer cell lines to return to 284 

normal HIF-α expression after being exposed to hypoxic conditions for 72 hours. After restoring 285 

normoxia, TOV112D returned to normal HIF-α expression in about one minute (Fig. 4B left), 286 

while A2780 cells returned to normal HIF-α expression in about five minutes (Fig. 4B right). These 287 

are significantly more rapid than prior reports (33-35). 288 

 289 

 290 
 291 

 We then estimated the upregulation (𝛼0) and downregulation (𝛼1) rates of HIF-α. Using 292 

Eqs. (S1) and (S2), and assuming that umax=1, umin=0, we estimated the rate of upregulation of HIF-293 

a by finding values of 𝛼0 that would allow HIF-α to increase to 90% of its maximum stabilization 294 

values (in arbitrary units) in 60 minutes and 240 minutes for TOV112D and A2780 cells, 295 

respectively. Similarly, we estimated the rate of HIF-α downregulation by finding values of 𝛼1 that 296 

allow HIF-a to decline to 10% of its maximum stabilization values within 1 minute and 5 minutes 297 

for TOV112D and A2780 cells, respectively. These yielded estimates for 𝛼0~0.038 min-1 for 298 

TOV112D and 𝛼0~0.01 min-1 for A2780 and estimates of 𝛼1~2.3 min-1 for TOV112D and 𝛼1~0.46 299 

min-1 for A2780.  We incorporated these experimentally derived rates into the model to compare 300 

the facultative and constitutive strategies in fixed interval environments. As with our previous 301 

results, we find greater selection for a facultative strategy in environments that remain in their 302 

current state of oxygenation or lack thereof for longer time periods. The superiority of the 303 

facultative strategy over the constitutive depends heavily on up- and down-regulation rates. 304 

 Figure 4. Quantification of HIF-1α 

stabilization/de-stabilization times in 

vitro. Using two ovarian cancer cell lines, 

HIF-1α expression is found in whole lysate 

by Western blot analysis. Tubulin is used 

as control of loading the same amount of 

proteins. A) To measure the stabilization 

time, cancer cells were cultured in separate 

dishes, incubated in hypoxia chambers, 

and collected at several time points. B) To 

measure the destabilization time, cancer 

cells were grown for 72h under hypoxia, 

and collected at several time points after 

switching to normoxic conditions. See 

Methods for more details. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.359018doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359018
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Decreasing the rate at which HIF-α accumulates reduces the advantage of being facultative over 305 

constitutive even in environments with longer cycles. In general, the model suggests that 306 

TOV112D cells should exhibit a facultative strategy and A2780 cells a constitutive (see Suppl. 307 

Fig. 2). 308 

 309 

Oxygen fluctuations in vivo  310 

Intra-tumoral fluctuations in oxygenation are key for empirically evaluating whether a constitutive 311 

strategy may be favored over a facultative one.  Furthermore, fluctuations within a tumor may vary 312 

spatially. Thus, different regions of a tumor may select for different HIF-α levels and strategies. 313 

To gain empirical insights, we measured spatio-temporal variation in oxygen delivery in different 314 

regions of a mouse pancreatic adenocarcinoma tumor. We used in vivo MR quantification of 315 

dynamic T2* changes. Significant heterogeneity was observed within the tumor both in the mean 316 

(Fig. 5A) and the temporal variance (Fig. 5B) of T2* values, indicating areas of variable blood 317 

flow and oxygenation. The temporal profiles of fluctuations were distinct in different areas, and 318 

consistent with different blood vessels feeding these regions. Interestingly, while random, short 319 

fluctuations were observed in some areas (Fig. 5C), some displayed changes at much longer time 320 

scales (Fig. 5D) in both directions of normoxia to hypoxia and hypoxia to normoxia. We might 321 

expect a constitutive strategy to be favored in the former regions and facultative in the latter. 322 

 323 

 
 

 
Figure 5. Oxygen fluctuations in vivo. A) Mean T2* value and B) standard deviation of the T2* changes in time are shown 

for a representative slice. Small regions of interest, marked with red rectangles, were drawn to illustrate distinct temporal T2* 

kinetics in tumor, plotted in C (ROI 1) and D (ROI 2s and 3). 
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Discussion 324 

Facultative regulation of HIF-α in response to fluctuating levels of oxygenation is ancestral and 325 

highly conserved across phyla36-38. For this reason, the evolution of constitutive HIF-α regulation 326 

has drawn wide interest across many biological disciplines, including cancer. Herein, we 327 

developed a theoretical model to explore the conditions under which constitutive versus facultative 328 

HIF-α orchestration of the cellular response to temporal changes in oxygen supply will optimize a 329 

cell’s fitness, as measured by the net growth rate, or payoff. Our modeling indicates, 330 

unsurprisingly, that the perfect matching strategy for HIF-α regulation in response to fluctuating 331 

oxygenation levels always delivers a greater payoff than either the facultative or the constitutive 332 

strategies. However, cellular transcriptional and translational machinery has significant inertia and 333 

is unable to instantaneously respond to fluctuations in oxygenation and thus unable to provide a 334 

perfect match. Thus, it must respond either facultatively or constitutively. Under facultative 335 

regulation, the upper and lower bounds for rates of HIF accumulation are critical for calibrating 336 

the rate at which the cancer cells stabilize their oxygen environment. Our model predicts that the 337 

upper bound should be set very high to rapidly respond to hypoxia.  Conversely the lower bound 338 

insures a non-zero level of stabilization.  This increased baseline level of stabilization for the 339 

facultative strategy is only slightly below what would be expected with constitutive regulation of 340 

HIF-α. Importantly, this demonstrates the larger penalty of not upregulating HIF-α quickly enough 341 

when the environment becomes hypoxic than the cost incurred of needlessly stabilizing HIF-α 342 

during normoxia. Thus, cells constitutively expressing HIF-α may be at a selective advantage 343 

under some conditions, with little cost. 344 

 345 

 Our model indicates that facultative expression of HIF-α always promotes a greater payoff 346 

than constitutive expression. Importantly, however, the difference in the payoffs between 347 

facultative and constitutive HIF-α expression depends on the nature of the fluctuations between 348 

normoxia and hypoxia. With short cycling times, the difference between facultative and 349 

constitutive HIF-α stabilization is small and perhaps negligible, so facultative expression may be 350 

indistinguishable from constitutive regulation. In contrast, long cycling times or stochastic 351 

fluctuations favor facultative HIF-α regulation. 352 

 353 

Our modeling results match expectations from nature. For instance, plants rely on inducible 354 

(facultative) and/or constitutive defenses against herbivores or pathogens. Optimal defense theory 355 

(ODT)4,32 predicts deployment strategies for these plant defenses. ODT states that: (1) defenses 356 

should be preferentially invested in those tissues that most affect individual fitness, and (2) the 357 

reliance on an inducible defense should depend on the probability or predictability of attack (Fig. 358 

6). When the probability of attack is low, there should be greater reliance on inducible versus 359 

constitutive defense, and vice-versa when the probability of attack is high. Indeed, as the 360 

probability of attack nears 100%, ODT states that fitness is maximized when defenses are 361 

constitutive. 362 

 363 

Applying this reasoning to HIF-α expression under cyclic hypoxia, fixed periodicities with 364 

rapid fluctuations of oxygenation equate to a 100% certainty that a cell will experience hypoxia39.  365 

Hence, ODT predicts that cells should regulate HIF-α expression constitutively. In our simulations, 366 

when oxygenation states switch rapidly at fixed intervals, we found that payoffs are virtually 367 

identical between facultative and constitutive HIF-α regulation (Fig 2C).   When fluctuations are 368 
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 369 

fixed, and with short periods of normoxia interspersed between long periods of hypoxia, the 370 

selective advantage of facultative HIF-α regulation is only slightly greater than with constitutive 371 

HIF-α regulation (Fig. 3B). Under both scenarios, any mutation that results in constitutive HIF-α 372 

regulation (e.g. mutations in VHL ubiquitin ligase) will be selectively permissive, i.e. it will not 373 

be strongly selected against. We speculate that the loss of VHL observed in renal cell cancer 374 

implies a constitutive response strategy due to rapid fluctuations in oxygenation early in its 375 

development. Cells with a mutation that results in constitutive HIF-α regulation will thus be able 376 

to coexist with cells with facultative HIF-α regulation. This mirrors the case in many tumors, in 377 

which some cells express the wild-type (normal) HIF-α phenotype (facultative HIF regulation), 378 

and some cells express the Warburg phenotype (constitutive HIF-α regulation). Our modeling also 379 

suggests that cells evolving under rapid switches in oxygenation may retain facultative HIF-α 380 

regulation, but they may set their upper and lower bounds of HIF-α in a way that is effectively 381 

pseudohypoxic (Fig. 2B). Under these conditions, the distinction between facultative and 382 

constitutive HIF-α regulation becomes moot. 383 

 384 

 With stochastic fluctuations in oxygenation states, in contrast, the probability of hypoxia 385 

is less certain or predictable. Then, as predicted with ODT, facultative HIF-α regulation should be 386 

favored. In our simulations, stochastic changes in oxygenation always resulted in greater selection 387 

coefficients for facultative relative to constitutive HIF-α stabilization (Fig 3B). Under this 388 

scenario, cells with mutations that produce constitutive HIF-α regulation will be less fit than cells 389 

with facultative HIF-α regulation, and these cells would be eliminated or reduced to a minor 390 

population through competition. 391 

 392 

 The imaging results presented provide in vivo insight into the dynamics of tumor oxygen 393 

environment through indirect measurements of blood oxygen level changes in the local vascular 394 

network. The apparent fluctuations observed highlight the importance of understanding the cellular 395 

mechanisms of adaptation to dynamic conditions. In particular, the measured spatial heterogeneity 396 

of the temporal profiles suggests likely coexistence of the different HIF-α regulation strategies 397 

within one tumor. With intra-tumoral variation in oxygenation regimes, we expect not only to see 398 

variation in the level of HIF-α expression but also the coexistence of cancer cells exhibiting 399 

 

Figure 6. Optimal defense theory. 

Optimal defense theory predicts that 

tissues with a low probability of being 

attacked should rely primarily on 

inducible defenses, whereas those with 

a high probability of attack should rely 

primarily on constitutive defenses. 
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different HIF-α strategies. In the future, spatial relationships can be incorporated into our model 400 

to elucidate the nature of these interactions. 401 

 402 

 Our review of the literature on the dynamics of up- and down-regulation rates, and 403 

confirmed by our own experiments indicate that HIF-α response dynamics vary considerably 404 

between experimental cell lines (our results above)33-35. These differences may represent genetic, 405 

epigenetic, or phenotypically plastic differences among tissue types within organisms40,41 or 406 

evolved differences between species41,42. Such heterogeneity may reflect tissue-specific 407 

fluctuations in oxygenation, or fluctuations in oxygenation specific to the environments inhabited 408 

by different species. This means that cancers initiating from different cell types within different 409 

tissues may start with quite varied rates for upregulating and downregulating HIF-α; and these 410 

upregulation and downregulation strategies may vary with cancer cell evolution and progression. 411 

These differences may later influence the emergence of pseudohypoxia via constitutive HIF-α 412 

expression or epigenetic stabilization of downstream products of HIF-α such as CAIX.  Of note, 413 

though, is the near universality of pseudohypoxia (Warburg Effect) in malignant cancers, 414 

indicating that this provides a fitness advantage regardless of the trajectory used to acquire this 415 

phenotype27.   416 

 417 

 Previous mathematical models of hypoxia and HIF-α regulation fall into four general 418 

categories43: (1) understanding the switch-like behavior of the HIF-α response to fluctuating O2
44; 419 

(2) analysis of the role of molecular elements of the microenvironment during the HIF-α 420 

response45; (3) elaborating how asparaginyl hydroxylase factor inhibiting HIF-1 (FIH) affects the 421 

HIF-α response46-48); and (4) capturing the temporal dynamics of the HIF-α response46,48. All of 422 

these modeling studies have helped elucidate the core elements that shape the activity and the 423 

dynamics of the HIF-α response to cycling hypoxia. Our model, in contrast, addresses the 424 

conditions that select for the evolution of constitutive regulation of HIF-α from the ancestral 425 

facultative regulation. Our model examines the consequences of different HIF-α regulation 426 

strategies on cell fitness within the complex and dynamic tumor ecosystem. We find that 427 

constitutive HIF-α regulation is favored when the probability of hypoxia is high – a finding that is 428 

consistent with ecological models of defenses to biotic threats like predation and herbivory. 429 

 430 

 The current study is the first of its kind to apply ecological defense theory to the expression 431 

of stress responses (e.g. HIF) in cancer cells.  Hence, it is not without its limitations.  First, the 432 

endpoint for our simulations to model fitness was simply net growth rate, as represented by our 433 

payoff function.  There are many other components to fitness that were not considered in this 434 

study.  For example, the expression of some pseudohypoxic gene products, e.g. CAIX or VEGF, 435 

may confer upon cells additional selection advantages, such as an increased ability to invade and 436 

colonize adjacent tissues49, thus increasing the fitness of the pseudohypoxic phenotype.  A second 437 

limitation is that the study investigated only the kinetics of stabilizing HIF-1α.  There are at least 438 

two other HIF-α proteins, each with different activation kinetics and portfolios of client proteins.  439 

Moreover, the kinetics of the transcriptional and translational machinery induced by HIF-α are not 440 

known with certainty, and presumably do not respond instantaneously. Knowledge generated by 441 

investigating these limitations will improve subsequent models.  442 

 443 

 444 

 445 
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Methods 446 

Mathematical Model and Major Assumptions 447 

We modeled three different strategies by which a cell can respond to the presence or withdrawal 448 

of oxygen in an environment: perfect, constitutive, and facultative (Fig. 7). If a cell responds 449 

perfectly to an environment, the fluctuating oxygen profile would be matched by the cell 450 

instantaneously responding with the appropriate HIF-α expression. With constitutive regulation, 451 

HIF-α is constantly maintained at an above baseline level regardless of the O2 levels. With 452 

facultative regulation, HIF-α levels change in response to environmental fluctuations in oxygen at 453 

fixed rates of accumulation (slow) and degradation (fast).  It is important to note that we use “HIF-454 

α” to represent the constellation of cellular responses to hypoxia.  While the transcription factor 455 

HIF-1α is undoubtedly central to this, we do not wish to imply that its levels are solely responsible 456 

for a cell’s fitness under different conditions of oxygenation.   457 

 458 

Environment creation 459 

Let Y ∈ [0, 1], describe the level of oxygenation in the cell’s tumor microenvironment. In all 460 

scenarios, we assume that the environmental switch between fully oxygenated (Y=1) or 461 

deoxygenated (Y=0) is effectively instantaneous whereas the accumulation and degradation of 462 

HIF-α is based on intrinsic rates. Let u(t) be the HIF-α response of a cell at time t whether it has a 463 

perfect, constitutive, or facultative response, where u ∈ [0, 1]. For the fixed interval environment, 464 

normoxic (Y=1) and hypoxic (Y= 0) periods switch back and forth at fixed time intervals. A 465 

perfect, constitutive, and facultative response to these changing oxygen profiles will exhibit 466 

different HIF-α expression levels. (Fig. 7). 467 

 468 

The perfect strategy   469 

With the perfect strategy, the switching response to the environment is instantaneous.  Therefore, 470 

u=0 during periods of normoxia and u=1 during periods of hypoxia. We can thus simply take the 471 

sum of the payoffs spent in each environment using Eq. (1), and expected payoff becomes: 472 

 473 

𝐺perfect = 𝑟0 − (1 − 𝑞) (𝑐 +
𝑚

𝑘+𝑏
)                 (2) 474 

 475 

 

 

Figure 7. Comparison of 3 HIF-α response 

strategies to changes in oxygen supply within 

the tumor (cell) microenvironment. The perfect 

strategy is instantaneous and used as an upper 

bound for comparison. Constitutive is constant 

over time, and facultative has a rate-limited 

response. The unshaded areas represent periods 

of full oxygenation while the shaded grey areas 

represent periods of hypoxia.  
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 476 

The constitutive strategy 477 

With the constitutive strategy, HIF-α levels remain constant and do not change in response to the 478 

temporal fluctuations in oxygen. When u is fixed, the expected payoff for the constitutive HIF-α 479 

strategy can be separated into the payoff during normoxia, GN(u) = r - cu, and the payoff during 480 

hypoxia, GH(u) = r - cu- m(1-q)/(k+bu), so that the total payoff is: 481 

 482 

                       𝐺 = 𝑞𝐺𝑁(𝑢) + (1 − 𝑞)𝐺𝐻(𝑢) = 𝑟 − 𝑐𝑢 −  
(1−𝑞)2𝑚

𝑘+𝑏𝑢
.                         483 

 484 

The optimal value for HIF-α expression depends only on the fraction of time spent in each state, 485 

q. Therefore, the optimal constitutive strategy value, u*, can be calculated analytically by 486 

maximizing expected G with respect to u. We take the first order necessary condition for this 487 

optimum, 
𝑑𝐺

𝑑𝑢
= 0, and solve for u*, resulting in: 488 

 489 

𝑢∗ = √
𝑚(1−𝑞)

𝑏𝑐
−

𝑘

𝑏
 .                              (3) 490 

 491 

 492 

The constitutive level of HIF-α production declines with its proliferation cost, c, the cell’s intrinsic 493 

tolerance to hypoxia in the absence of HIF-α stabilization, k, and the fraction of time spent 494 

normoxic, q. HIF-α production increases with cell mortality when conditions are hypoxic, m. The 495 

relationship between optimal HIF-α production and the benefit of HIF-α expression u in reducing 496 

mortality when conditions are hypoxic, b, is hump shaped. If HIF-α expression is ineffective (small 497 

b) then there is no point, and if HIF-α expression is extremely effective (large b) then little is 498 

needed.  The u* can then be substituted into the payoff G to determine the maximal payoff 499 

available to the constitutive strategy given the micro-environmental and fitness parameters: 500 

 501 

𝐺∗ = 𝑟0 − √1 − 𝑞 (𝑐 +
𝑚

𝑘+𝑏
) −

𝑐𝑘

𝑏
(√1 − 𝑞 − 1).                (4) 502 

 503 

The facultative strategy 504 

Under the facultative strategy, when the environment is depleted of oxygen, we assume that the 505 

cell accumulates HIF-α at a finite rate α0, and when the environment is fully oxygenated the cell 506 

degrades HIF-α at a finite rate α1 (1). We allow a baseline production of HIF-α (umin) even under 507 

normal oxygen conditions and assume that the cell targets a maximum accumulation of HIF-α 508 

(umax) in an oxygen-depleted environment (2).  We assume that the changes in expression occur 509 

at a rate proportional to the difference between some desired level and the current level, such 510 

that: 511 

 512 

𝑑𝑢

𝑑𝑡
= {

𝛼0(𝑢𝑚𝑎𝑥 − 𝑢)   if Y=0

−𝛼1(𝑢 − 𝑢𝑚𝑖𝑛) if Y=1 
                                              (5) 513 

 514 

For the facultative strategy, the dynamic u(t) requires that the expected payoff be calculated as the 515 

cumulative payoff over the normoxic and hypoxic periods, TN and TH, respectively. Because the 516 

HIF-α fluctuations become periodic, the total cumulative payoffs can be averaged over a cycle 517 

separated into the time spent in normoxia and the time spent in hypoxia: 518 
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 519 

          520 
The payoff can be analytically solved to: 521 

 522 

𝐺 =  𝑟 −
𝑐

𝑇
(𝑢𝑚𝑖𝑛𝑇𝑁 + 𝑢𝑚𝑎𝑥𝑇𝐻) +

𝑐𝛽𝑁𝛽𝐻(𝑢𝑚𝑎𝑥−𝑢𝑚𝑖𝑛)(𝛼1−𝛼0)

𝛼0𝛼1𝛽𝑇
 +                                                           523 

𝑚

𝛼0(𝑘+𝑏𝑢𝑚𝑎𝑥)𝑇
𝑙𝑛 |

𝑘𝛽+𝑏[𝑢𝑚𝑖𝑛𝛽𝑁+𝑢𝑚𝑎𝑥 𝛽𝐻𝑒−𝛼1𝑇𝑁]

𝑘𝛽𝑒𝛼0𝑇𝐻+𝑏[𝑢𝑚𝑖𝑛𝛽𝑁+𝑢𝑚𝑎𝑥𝛽𝐻𝑒𝛼0𝑇𝐻] 
| ,                              (6) 524 

 525 

where T=TN+TH, 𝛽 = 1 − 𝑒−𝛼0𝑇𝐻−𝛼1𝑇𝑁, 𝛽𝑁 = 1 − 𝑒−𝛼1𝑇𝑁, and 𝛽𝐻 = 1 − 𝑒−𝛼0𝑇𝐻. The derivation 526 

is provided in the supplemental material. 527 

 528 

The payoff for the facultative HIF-α strategy in a stochastic environment is calculated similarly. 529 

But, because the HIF-α dynamics cannot settle into a dynamic equilibrium, the payoff is calculated 530 

over discretized time intervals and then taken as an average over the entire simulation. 531 

 532 

Finding the optimal u*min and u*max for the facultative strategy 533 

Constrained optimization by linear approximation (COBYLA) was used to determine values of 534 

u*min and u*max that maximize a cell’s payoff. For stochastic environments, a search space was 535 

created by linearly separating 250 values between 0 and 1. These values were used to create 536 

combinations of umin and umax for which 0  umin < umax   1. After u(t) was computed for each 537 

combination of umin and umax, the payoff, G(u(t)), was calculated as an average of all payoff values 538 

at each time point. The combination of umin and umax that produced the maximum averaged payoff 539 

was considered optimal. For a given PN→H = PH→N, we ran 10 replicate runs for 2000 time units. 540 

With this number of time units, the estimated values of u*min and u*max were very similar across 541 

replicate runs (standard error of the mean < 0.01). 542 

 543 

Selection coefficient for facultative expression 544 

We define the selection coefficient (SC) as the fitness advantage for using a facultative rather than 545 

a constitutive strategy. We calculated the SC as the difference between the payoff for facultative 546 

expression, GF, and the payoff for constitutive expression, GC, normalized by the payoff for 547 

constitutive expression, SC=(GF-GC)/GC.   548 

 549 

Cell lines and Culture Conditions 550 

A2780s and TOV112D ovarian cancer cells were obtained through American Type Culture 551 

Collection (ATCC). Cells were grown in RPMI supplemented with 10% fetal bovine serum (FBS). 552 

For both normoxic and hypoxic treatment environments, all cells were grown in 5% CO2 and at 553 

37oC in a humidified atmosphere.  554 

 555 

Stabilization/degradation of HIF 556 

A Biospherix X-Vivo Hypoxia Chamber was used to incubate cells under hypoxic conditions. For 557 

hypoxic conditions, cells were incubated at 0.2% O2:94.8% N2:5% CO2. Reoxygenation was 558 

performed by transferring flasks or plates containing cells from the hypoxic chamber to an 559 

incubator under atmospheric conditions at 5% CO2. For time points shorter than 4 hours, media 560 
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pre-equilibrated under hypoxic conditions was used. Then, the hypoxic media was added to the 561 

cells inside a hypoxic (0.2% O2) working chamber within the Biospherix complex. 562 

 563 

Western blot analyses  564 

Western blots were performed on A2780 and TOV112D ovarian cancer cells to validate the 565 

expression of HIF at the protein level at different time points. Cells grown in hypoxic chambers 566 

were frozen at the time points mentioned in the results section and harvested all together by lysing 567 

in Radioimmunoprecipitation assay buffer (RIPA buffer) containing 1× protease inhibitor cocktail 568 

(Sigma-Aldrich). For each sample, a 30 μg aliquot was loaded onto pre-cast polyacrylamide-SDS 569 

gels from BioRAd that were then transferred onto nitrocellulose. Membranes were incubated with 570 

primary antibodies against HIF-1α (#610958, BD Biosciences), Tubulin (#2144, CST) or β-Actin 571 

(A5441, Sigma, 1:4000) overnight at 4o C, followed by fluorescent-conjugated secondary 572 

antibodies (IRDye® 800CW Goat anti-MouseIgG and IRDye® 8680CW Goat anti-rabbit IgG). An 573 

Odyssey chemiluminescence-fluorescence system was used for protein detection. Proteins 574 

detected ran at the expected molecular weights, as verified using molecular weight standard 575 

markers. 576 

 577 

MRI tumor imaging of hypoxia 578 

In vivo measurements of oxygenation fluctuations were obtained by Intrinsic Susceptibility 579 

Magnetic Resonance Imaging (IS-MRI)50. Panc02 mouse pancreatic adenocarcinoma cells were 580 

implanted subcutaneously into a C57BL/6 mouse. When the tumor reached a volume of 581 

~1500mm3, as measured by calipers, the animal underwent MR imaging with a 7T/30cm Bruker 582 

Biospec® imaging spectrometer as follows. Mice were anaesthetized using 3% isoflurane and 583 

subsequently maintained with 1.5-2% isoflurane mixed with 100% oxygen. Anatomical images 584 

were acquired using T2-weighted coronal and axial scans to identify the middle of the tumor and 585 

facilitate outlining the tumor. To capture the spatial and temporal dynamics of oxygenation, 586 

quantitative T2* mapping was then performed continuously every 55s for 18 series (Multi-587 

Gradient Echo, TR=270ms, 10xTE=2.5-47.5ms, flip angle 40 degrees, 5 slices, 1mm/1mm slice 588 

thickness/gap, 35mm FOV, 128x128 points).  A monoexponential function was fitted for each 589 

voxel at each time-point (MATLAB 2018b, Mathworks) to reconstruct the local T2* magnetic 590 

resonance time, which is modulated by changes in deoxyhaemoglobin levels in the blood, hence 591 

reflecting the fluctuations in blood oxygen level. 592 
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