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There is an ongoing debate as to whether fish body size will decrease with global warming 34 
and how body size changes may impact dispersal abilities and speciation rates. Although 35 
theory predicts that, when fish face warmer temperatures, they grow to smaller adult sizes, 36 
see a reduction in their ability to move, and increase their probability of speciation, 37 
evaluations of such predictions are hampered owing to the lack of empirical data spanning 38 
both wide temporal and geographical scales. Here, using phylogenetic methods, 39 
temperature, and 21,895 occurrences for 158 worldwide-distributed species of fish, we 40 
show that smaller fish have occurred in warmer waters for over 150 million years and 41 
across marine and freshwater realms. Smaller fish have historically moved the shortest 42 
distances and at low speeds. In addition, small fish display the lowest probability of giving 43 
rise to new species. Further, we found that species of fish that displayed high speeds of 44 
geographical movement and rates of size evolution experienced higher rates of 45 
temperature change in their lineage. Taking these results together, global warming 46 
predicts a future where smaller fish that have reduced ability to move over aquatic systems 47 
will be more prevalent, in turn, this will result in fewer species contributing global 48 
biodiversity. 49 
 50 
A great deal of scientific research seeks the impact of human-induced global warming on Earth’s 51 
biodiversity1–5. Compelling evidence suggests that global warming will increase species extinction 52 
risk6–8, but there are hints in the literature pointing to the idea that species have several alternative 53 
strategies which might enable them to survive such adversity2,3,9,10. Local adaptive changes to 54 
decrease body size or tracking of suitable environmental conditions over geographic space have 55 
emerged as common responses allowing species survival, especially in fish8,11–19. However, it is 56 
unknown to what extent fish get smaller with warming20 and how these climate-induced changes 57 
in size will impact their ability to track optimal environmental conditions over aquatic systems, i.e., 58 
dispersal abilities4,5,10. Furthermore, the consequences that the interaction between temperature, 59 
size, and dispersal may have on speciation is less explored, even though speciation is indeed the 60 
principal buffer preventing biodiversity loss in the face of species extinction. 61 
 62 
Based on previous knowledge, a positive association between fish size and dispersal abilities is 63 
expected given that bigger species are more efficient in consuming energy for long distance 64 
dispersals21. Moreover, population genetics theory postulates that organisms with high capacity 65 
to move will increase the gene flow within species and therefore predicts a low probability of 66 
population divergence and speciation22. Taking these predictions together, it is expected that the 67 
evolution of smaller fish under global warming (Fig. 1a) will decrease their dispersal abilities (Fig 68 
1b) but increase the rate at which they contribute with new species to biodiversity by local genetic 69 
differentiation (Fig. 1c and d). Nevertheless, there is a big gap between theoretical expectations 70 
and evidence owing to the lack of combined data on size evolution, temperature change, species 71 
dispersal abilities and speciation rates. This patchy evidence comes by virtue of the fact that, first, 72 
the relationships between size, dispersal, and temperature change have only been evaluated 73 
across small temporal scales (i.e. decades)12,13,17–20,23,24, where the process of speciation cannot 74 
be observed. Second, species movement is notoriously difficult to quantify25–27 so that most 75 
studies use data from extremely few individuals within species, measured in recent decades19. 76 
 77 
Here, for the first time, we test these predictions (and potential alternatives; Fig. 1) in Clupeiformes 78 
species - a highly diverse Order of fish with worldwide distribution, inhabiting the marine and 79 
freshwater realms28 (Supplementary Figure 1). Clupeiformes include some of the most important 80 
species for fisheries29, such as the anchovy (Engraulis ringens), atlantic herring (Clupea 81 
harengus), japanese pilchard (Sardinops melanostictus), pacific herring (Clupea pallasi), and the 82 
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south american pilchard (Sardinops sagax). We evaluated the relationship between water surface 83 
temperature (WST) and standard length (SL) across the nodes of the Clupeiformes phylogenetic 84 
tree spanning 150 Myr of evolutionary history, and across the full global distribution of these fish. 85 
To evaluate the relationship between WST, SL and the species ability to move over aquatic 86 
systems we inferred the historical distance and speed of fish historical movement in a three-87 
dimensional space, using a novel phylogenetic approach (the GeoModel30; Methods). This model 88 
estimates the posterior distribution of the estimated ancestral geographical locations for all nodes 89 
in a time-calibrated phylogenetic tree – allowing us to have a measure of the distance of 90 
movement per-time unit (speed). Then, we evaluated the effect of SL and dispersal abilities on 91 
Clupeiformes speciation rates. As our approach provides information on the rate of WST change 92 
over evolutionary history, we can uniquely seek to, not only, understand how species respond to 93 
the magnitude of climate change but also how they respond to the rate at which climate has 94 
changed (how fast) over long time scales. Studying species responses to the rate of climate 95 
change is now more pertinent than ever given the alarming accelerating-rates of heating of the 96 
oceans31 and because species and populations respond differently when faced with a fast or slow 97 
change in their environment32,33. 98 
 99 
If SL reductions under global warming decrease the ability to move and increase the probability  100 
of speciation (Fig. 1, Scenario 1), we expect to observe a negative relationship between SL and 101 
WST over both evolutionary history and across extant species (Fig. 1a); a positive relationship 102 
between dispersal abilities and SL (Fig. 1b); and a negative effect of SL on dispersal abilities and 103 
speciation rates (Fig. 1c and d). In opposition, if SL reductions under global warming increase the 104 
ability to move but decrease the probabilities of speciation (Fig. 1, Scenario 3), we expect to 105 
observe a negative relationship between dispersal abilities and SL (Fig. 1h); and a positive effect 106 
of SL and dispersal abilities on speciation rates (Fig. 1i and j). We cannot make any inference if 107 
there is no relationship between SL, dispersal abilities, and speciation rates (Fig. 1e – g, Scenario 108 
2). Finally, if the rate of climate change can additionally modulate species responses then we 109 
should find a significant effect of the rate of WST change on both the rate of SL evolution and the 110 
speed of species movement. 111 

 112 
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Figure 1. Size reductions under global warming can impact dispersal abilities and speciation rates 113 
in multiple ways. a, a negative relationship between standard length (SL) and water surface temperature 114 
(WST), across the phylogeny and the extant global distribution of fish, support the idea that warmer 115 
temperatures have selected small fish over million years and at wide geographical scales. b - d, if small 116 
fish are less likely to shift their geographic range but more prone to speciate we should observe (b) a 117 
positive relationship between dispersal ability and SL; (c, d)a negative effect of dispersal ability and SL on 118 
speciation rates. e – g, we cannot make any inference if there is no relationship between SL, dispersal 119 
abilities, and speciation rate. h - j, if small fish are more likely to shift their geographic range but less prone 120 
to speciate we should observe (h) a negative relationship between dispersal ability and SL; (h, j) a positive 121 
effect of dispersal ability and SL on speciation rates. 122 
 123 
SL and WST over current and historical time 124 
We studied the relationship between fish SL and WST over their extant geographic distribution 125 
using the phylogenetic variable rates regression model34 (Methods). This approach enables the 126 
simultaneous estimation of both an overall relationship between SL as a function of WST across 127 
extant species, and any significant shifts in the rate of SL evolution that apply to the 128 
phylogenetically structured residual variance in the relationship. We also included the type of 129 
migration (diadromous and non-diadromous) as an additional binary variable in the regression, 130 
as previous studies show that diadromous fish are larger on average29. We used a novel Bayesian 131 
approach that allows the estimation of regression coefficients while sampling the WST data within 132 
each species. With this approach we effectively evaluate the effect of WST on SL while 133 
considering the temperature variability over the entire native distributional range of each species 134 
(Methods). Results show that WST have a significant negative effect on SL across the current 135 
geographic distribution of Clupeiformes (Fig. 2a; PMCMC = 0.001). This reveal that smaller 136 
Clupeiformes are found in warmer WST, supporting the “temperature-size rule”35. Diadromous 137 
species were significantly larger than non-diadromous species on average (Supplementary Table; 138 
PMCMC = 0). Additionally, the variable rate regression did not detect any significant shifts in the 139 
rate of SL evolution, and fish SL was better explained by Brownian motion on the scaled  140 
phylogeny according to the Pagel’s Lambda (l) parameter (Fig. 2a Supplementary Table 1). 141 
 142 
To study the relationship between fish size and temperature in the deep past, we evaluated the 143 
relationship between the SL and WST of ancestral fish and their environments, which comprises 144 
a temporal window of ~150 Myr. To conduct this analysis we, firstly, inferred the ancestral states 145 
of SL across nodes of the l-scaled phylogeny (Fig. 2b; Methods). Secondly, we inferred the 146 
ancestral WST across nodes of the rate-scaled phylogeny (Fig. 2c) obtained from the variable 147 
rate regression between WST and absolute latitude across the 21,895 occurrence records 148 
(Methods; Supplementary Table 2). We found a significant negative association between the 149 
ancestral SL and WST (Fig. 2d; PMCMC = 0), which support that Clupeiformes evolved smaller sizes 150 
under warmer SWT for over 150 Myr (Fig. 2d). Finally, the variable rate regression for WST 151 
indicates that the lower rate of temperature change at which Clupeiformes have survived is 152 
0.00069 ºC Myr-1, while the upper rate is 0.36 ºC Myr-1 (6.9E-8 and 3.6E-6 ºC per decade, 153 
respectively). These historical rates of WST change, given our data and approach, are far lower 154 
than the average rates of global warming that the planet is experiencing in the last decades; 0.07 155 
ºC per decade since 1880 to 1981, and 0.18 ºC per decade since 1981 (according to the NOAA 156 
2019 Global Climate Summary). Understanding how fish have responded to these rates of 157 
historical temperature change can provide insight of the effect that the current increasing rates of 158 
global warming will have on fish biodiversity. 159 
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 160 
Figure 2. Clupeiformes evolved smaller size in warmer temperatures for million years and in recent 161 
times. a. Clupeiformes phylogenetic time tree with branches scaled according to (a) the l-model for SL, 162 
and (b) the variable rate regression for WST. Longer branches shows rates significantly higher than the 163 
constant-background rate (scaled in more than 95% of the posterior distribution). Branch colours show the 164 
ancestral states for SL and WST, estimated on the rate-scaled trees. c. Bayesian phylogenetic generalized 165 
least squares sustain that SL and WST are negatively correlated across extant species (PMCMC = 0.001; n 166 
= 158,000). The black line represents the posterior mean slope of the phylogenetic regression, which was 167 
estimated while sampling within species WST data. d. Bayesian generalized least squares shows a 168 
significant negative correlation between the ancestral SL and WST values across nodes (PMCMC = 0; n = 169 
157 phylogenetic nodes; black line). Fill point gradient colours represent size values and outline point 170 
gradient colours represent WST values.  171 
 172 
SL and dispersal abilities 173 
The geographic analyses support a model with significant variation in the speed of fish movement 174 
across phylogenetic branches (Supplementary Table 3). This implies that the current spatial 175 
diversity of Clupeiformes have been assembled by species dispersal at variable speeds over the 176 
oceans for over 150 Myr (Fig. 3a). The average total distances taken by Clupeiformes, from the 177 
location of the most recent common ancestor (MRCA), range from 8,745 km to 55,590 km. 178 
Moreover, the speed at which these species dispersed ranges from 71 km Myr-1 to 536 km Myr-1. 179 
We evaluated the effect of SL on the total distance moved for each species from the root of the 180 
phylogenetic tree (pathwise distance; Methods), and the median of the branch-specific speed of 181 
movement along the path that links the MRCA with extant species (pathwise speed; Methods). 182 
These relationships were evaluated using Bayesian phylogenetic regression models that include 183 
a sample of 1,000 pathwise distances and speeds for each species in the estimation of regression 184 
coefficients (Methods). Results show that SL correlates positively with both the pathwise 185 
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distances and the pathwise speed of movement (Fig. 3b and c; Supplementary Table 4 and 5, 186 
respectively). There were no significant differences in either the mean pathwise distances nor the 187 
pathwise speed of movement travelled by diadromous and non-diadromous species 188 
(Supplementary Table 4 and 5). These results demonstrate that smaller fish have had a reduced 189 
ability to disperse through water bodies over their evolutionary history. Therefore, smaller fish 190 
may find it hard to track suitable temperatures over geological time, thus making them more prone 191 
to extinction. 192 
 193 

  194 
Figure 3. Fish dispersal abilities depend of their size. a. Clupeiformes phylogenetic tree with branches 195 
coloured according to the speed of movement. b. Bayesian phylogenetic generalized least squares show 196 
that pathwise distance correlates positively with SL (Bayes Factor > 5; n = 157,000). c. SL has also a 197 
significant positive effect on pathwise speed of movement (Bayes Factor > 10; n = 157,000). Lighter lines 198 
represent the posterior distribution of phylogenetic slopes and the darker lines the posterior mean. 199 
 200 
Fish response to the historical rate of WST change 201 
We evaluated the effect that the rates of WST change may have on both the rates of SL evolution 202 
and the speed of movement across all branches of the Clupeiformes phylogeny, using Bayesian 203 
GLS regressions (Methods). All branchwise rates were estimated by dividing the scaled branches 204 
(with l-model for SL, the variable rate regression model for WST, and the variable rate Geo Model 205 
for speed) with original branch lengths measured in time. The rate of WST change had a positive 206 
effect on both the rate of SL evolution and the speed of fish movement (PMCMC = 0, Fig. 4a, b), 207 
meaning that the SL of Clupeiformes have evolved rapidly, and they have dispersed faster when 208 
the temperature of the oceans have changed at higher rates. 209 
 210 
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 211 
Figure 4. Clupeiformes have evolved rapidly and moved faster when temperature changed at higher 212 
rates. a. Bayesian generalized least squares support that the branchwise rates of SL evolution are 213 
positively correlated with the branchwise rates of WST change (PMCMC = 0; n = 312 phylogenetic branches). 214 
b. The branchwise speed of fish movement are also positively correlated with the branchwise rates of WST 215 
change (PMCMC = 0; n = 312 phylogenetic branches). Point fill colours represent the branchwise rates of SL 216 
evolution and the branchwise speed of species movement. Point outline colours represent the branchwise 217 
rates of WST change. 218 
 219 
Effect of SL and dispersal abilities on speciation rates 220 
We evaluated the relationship between speciation rates and the dispersal ability and SL of 221 
Clupeiformes. We used Bayesian phylogenetic regressions models that include the uncertainty in 222 
parameter estimation and samples of dispersal abilities within species (Methods). Our results 223 
show that the independent additive effect of pathwise distance and pathwise speed were 224 
significant (PMCMC = 0.01 and 0 respectively; Supplementary Table 6) – species that move longer 225 
distances and faster were more likely to originate new species. SL did not have a significant  effect 226 
on speciation, when its independent additive effect or their interaction with dispersal ability was 227 
evaluated (Supplementary Table 6). These results suggest that fish SL, by its positive association 228 
with dispersal ability, has an indirect effect on speciation rates. The speciation rates of smaller 229 
fish that move slowly are lower than the speciation rates of their larger counterparts that moved 230 
faster and larger distances. A scenario of smaller fish under global warming may cause the loss 231 
of fish attributes that promotes the generation of biodiversity. 232 
 233 
 234 
  235 
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 236 
Figure 5. Clupeiformes with lower dispersal abilities have lower probabilities of originate new 237 
species. a - b. The Bayesian phylogenetic generalized least squares show that the pathwise distance of 238 
movement and the pathwise speed of movement has a positive effect on speciation (PMCMC = 0.01 and 0, 239 
respectively; n = 157,000). Lighter lines show the posterior distribution of slopes and dark lines shows the 240 
posterior mean slopes. These slopes were estimated while sampling the pathwise distance and speed 241 
within species (Methods). 242 
 243 
Conclusion 244 
Global change poses a double jeopardy for fish body size, as both overfishing36 and climate drives 245 
populations towards smaller sizes. The phenomena of fish shrinking when facing hotter waters is 246 
general in the evolutionary history of Clupeiformes and over their entire worldwide geographic 247 
distribution. Provided that smaller fish adapted to warmer conditions are less capable to disperse 248 
and in turn less able to originate new species, the scenario of global warming could limit their 249 
possibilities to find optimal environments to live and their capacity to buffer their increasing 250 
extinction risk by the process of speciation. Furthermore, Clupeiformes fish living in the present 251 
are the survivors of a long evolutionary history under variable rates of temperature change. They 252 
have responded to such historical changes by SL adaptation and dispersal but such evolutionary 253 
process have never involved the current accelerating rates of heating of the water bodies. It is 254 
probable that Clupeiformes will face an increasing risk of extinction. 255 
 256 
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Methods 372 
Data. Analyses were performed on a time-calibrated phylogeny of 158 Clupeiformes species. This 373 
phylogeny was obtained from The Fish Tree of Life37. We used the maximum Standard Length 374 
(SL) in mm, for these 158 species, obtained from FishBase and the FAO Species Catalogue for 375 
clupeoid fishes38. The maximum SL was used because of three reasons. First, maximum SL is 376 
preferred over mean SL because fishes have indeterminate growth39. Second, it is a more stable 377 
measure of size in teleost to compare museum and collection samples. Third, and most important, 378 
individuals that are commonly larger than the population average and are outside the central 379 
distribution of size, are likely the individuals that allow the species to shift their geographic 380 
ranges4. 21,895 georeferenced occurrences (Supplementary Figure 1) were obtained from 381 
marine and freshwater bodies (i.e., rivers and lakes) from Aquamaps 382 
(https://www.aquamaps.org/) and the IUCN (https://www.iucnredlist.org/) respectively. We 383 
obtained the geographic locations (within the native range) of 116 species available in Aquamaps, 384 
and locations within the polygon of distribution for 42 additional species available in the IUCN. To 385 
obtain the geographic locations from the IUCN, we sampled 100 random locations within each 386 
species polygon. All georeferenced occurrences were matched with information of water surface 387 
temperature (WST). For marine species we used the mean annual sea surface temperature (SST) 388 
estimated from the Aquamaps database. For freshwater species, the mean annual air 389 
temperatures estimated from the WordClim database (https://worldclim.org/) were used as a first-390 
order proxy of the water surface temperature of the freshwater bodies40–42. By maximizing the 391 
number of temperature records per species, instead of using single estimates (e.g. mean 392 
temperature, or temperate at the geographic centroid) allow us to produce more precise estimates 393 
of both the ancestral locations and the ancestral thermal environments of Clupeiformes. Finally, 394 
information about the type of migration for each species (diadromous, non-diadromous) was 395 
obtained from Bloom et al29. 396 
 397 
Inferring ancestral locations. From the geographic locations within each species in the 398 
Clupeiformes phylogeny, we inferred the ancestral geo-distribution in a continuous, three-399 
dimensional space. Ancestral locations were estimated for each phylogenetic node using the Geo 400 
Model30 in the computer program BayesTraits 3.043. This model estimates the posterior 401 
distribution of ancestral locations measured in longitude and latitude, while sampling across all 402 
location-data within species, and considering the spherical nature of Earth. This natural 403 
assumption of the Earth as a spherical object avoid the erroneous calculation of distances 404 
between the inferred ancestral locations due to the non-continuity of the longitude scale. When 405 
based on a time-calibrated phylogeny, the Geo Model simultaneously estimate the speed of 406 
species movement across each branch that links pairs of phylogenetic nodes (branchwise speed 407 
of movement). The ancestral locations across phylogenetic nodes are estimated while 408 
considering the continuous variation in dispersal ability of each ancestral species – ranging from 409 
species quiescence (no movement), through constant movement in direct proportion of the 410 
passage of time, to fast species movement. Estimation of the branchwise speed of species 411 
movement are based on the variable rates model44 which detects shifts away from a background 412 
rate of evolution in continuous traits (expected under Brownian motion) in whole clades or 413 
individual branches. We also include data of the geographic locations of two Clupeiformes fossils, 414 
one for the crown group of Engraulidae and another for the crown group of Dorosoma. These 415 
fossils information was obtained from The Fish Tree of Life37. 416 
 417 
We ran four MCMC chains for 250,000,000 iterations, sampling every 50,000 iterations, and 418 
discarding 200,000,000 as burn in. These procedures were conducted based on the Brownian 419 
motion (BM) model and the Variable Rates (VR) model (Supplementary Table 3). The final sample 420 
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includes 1,000 posterior locations for each phylogenetic node. We selected the model that fit the 421 
data better by means of Bayes factors (B), using the marginal likelihoods estimated by stepping 422 
stone sampling. B is calculated as the double of the difference between the log marginal likelihood 423 
of the complex model and the simple model. By convention, B > 2 indicates positive evidence for 424 
the complex model, B = 5–10 indicates strong support and B > 10 is considered very strong 425 
support. We excluded the species Denticeps clupeoides from the Geo Model analyses because 426 
its pathwise distance and speed of movement obtained from previous analyses were outliers, 427 
which can bias the inferences made from further analyses. 428 
 429 
Pathwise distances and speed of species movement. In order to obtain the total distance that 430 
each species have historically dispersed through the oceans and rivers – starting from the location 431 
of the root of the Clupeiformes phylogenetic tree - we calculated the distances dispersed across 432 
each phylogenetic branch (branchwise distances) and then we summed these distances along 433 
the path that links the root with extant species (pathwise distances). The branchwise distances 434 
were calculated using the disCosine function in the geosphere R package45. This method 435 
calculates the great circle distance (the shortest distance) between two points on a sphere 436 
measured in kilometres using the spherical law of cosines, which works for calculating these 437 
distances at both large and small scales. We calculated the branchwise distances for every 438 
location in the posterior sample, meaning that we have 1,000 distances for every branch in the 439 
tree, and therefore, 1,000 pathwise distances for each species in the tree. With this approach we 440 
have the historical distance dispersed for each species, considering the uncertainty in ancestral 441 
locations estimates. In order to have a measure of the speed at which each species in phylogeny 442 
have dispersed over historical time, we calculated the branchwise speed of movement in km per 443 
Myr - diving the branchwise distances by the branch length of the time-calibrated tree. We also 444 
calculate the speed of movement for all the posterior sample of branchwise distances, and then 445 
we calculated the median speed of movement in the path that links the MRCA with extant species. 446 
Finally, we have 1,000 measures of the historical speed of movement for each species which 447 
include the uncertainty in ancestral location estimates. 448 
 449 
Phylogenetic regressions. To evaluate the expected relationships between SL, WST, pathwise 450 
distance, pathwise speed of movement, and speciation rates, we performed Phylogenetic 451 
Generalized Least Squares regression models (PGLS) with Bayesian inference which allowed us 452 
to consider the uncertainty in both, parameters estimation and within species data. We consider 453 
the uncertainty within species by using the samples of data for WST, georeferenced, pathwise 454 
distances, and speed of movement for each species. Under this approach, the MCMC samples 455 
the regression parameters and the data within species simultaneously, integrating the uncertainty 456 
of both factors in the results. All Bayesian regression were done in the computer program 457 
BayesTraits 3.0. 458 
 459 
We, first, conducted a multiple phylogenetic regression to evaluate the relationship between SL, 460 
WST and type of migration, including the sample of WST within species. We compared the BM, 461 
Lambda model (LA), and Ornstein-Uhlenbeck model (OU) for these regressions. We also 462 
evaluated the variation in the rate of SL evolution using the variable rates (VR) regression model34. 463 
The VR regression model enables the simultaneous estimation of both an overall relationship 464 
between SL as a function of WST and type of migration, and any shift in rate that apply to the 465 
phylogenetically structured residual variance in the relationship. The VR regression model identify 466 
heterogeneity in the rate of evolution along phylogenetic branches (branchwise rates) by dividing 467 
the rate into two parameters: a background rate parameter (s2b), which assumes that changes in 468 
the trait of interest are drawn from an underlying BM process, and a second parameter, r, which 469 
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identifies a branch-specific rate shift. A full set of branchwise rates are estimated by adjusting the 470 
lengths of each branch in a time-calibrated tree (stretching or compressing a branch is equivalent 471 
to increasing or decreasing the phenotypic rate of change relative to the underlying Brownian rate 472 
of evolution). Branchwise rates are defined by a set of branch-specific scalars r (0 < r < ∞) that 473 
scale each branch to optimize the phenotypic rate of change to a BM process (s2b × r). If 474 
phenotypic change occurred at rates faster than the background rate, along a specific branch of 475 
the tree, then r > 1 and the branch is stretched. Rates slower than the background rate are 476 
detected by r < 1 and the branch is compressed. If the trait evolves at a constant rate along a 477 
branch, then the branch will not be modified (that is, r = 1).  478 
 479 
Second, in order to estimate the rates of WST change through the Clupeiformes phylogeny, we 480 
conducted a Bayesian VR regression between WST and latitude (comparing it with the BM, LA, 481 
and OU regression models; Supplementary Table 2). We included the sample of WST and latitude 482 
within each species in regression analyses. Then, we obtained the consensus rate-scaled tree 483 
for WST. This consensus rate-scaled tree considers the median value of the branches scaled in 484 
more than 95% of the MCMC sample. We ran four MCMC chains for 300,000,000 iterations, 485 
sampling every 250,000 iterations, and discarding 150,000,000 as burn in. This consensus tree 486 
was also used in the estimation of the ancestral WST at phylogenetic nodes using the package 487 
phytools46. By using the consensus rate-scaled tree we ensure to consider the variation in the 488 
rate of SWT change when ancestral states are estimated. 489 
 490 
Third, we evaluated the relationship between the pathwise distance with SL and type of migration, 491 
and between the pathwise speed with SL and type of migration. We included in the phylogenetic 492 
regressions the sample of species data for the pathwise distance and speed of movement, 493 
comparing regressions fitted with the BM, LA, OU, and VR model. We ran four MCMC chains for 494 
51,000,000 iterations, sampling every 50,000 iterations, and discarding 1,000,000 as burn in. We 495 
conducted these regression using the BM, LA, OU, and VR model (Supplementary Table 4 and 496 
5).   497 
 498 
Fourth, we evaluated the relationship between speciation rates with pathwise speed, SL, pathwise 499 
distance, and WST - including the sample of data for pathwise distances and speed of movement. 500 
We used tip-specific estimates of speciation rates to evaluate the regression between speciation 501 
rates and the multiple explanatory variables. Among the recommended non-model-based tip-rate 502 
metrics to study the correlates of speciation rates (i.e. inverse of equal splits [ES], node density 503 
[ND] and the inverse of terminal branch length [TB])47 we based our interpretations on the node 504 
density along the phylogenetic paths, divided by the age of the phylogeny (100 Myr after excluding 505 
Denticeps clupeoides). Our choice is based on the fact that ND is the least influenced metric by 506 
potential biases and sources of uncertainty associated with branch length estimation from 507 
empirical data48 – ND capture the average speciation rate over the entire phylogenetic path and 508 
weight equally all branch lengths along the paths. We did not use the tip-rate speciation metric 509 
estimated from time-varying birth-death diversification models owing to the striking uncertainty in 510 
the speciation rates values when they are estimated from phylogenies with extant species only49, 511 
and due to the erroneous inference of the general diversification patterns when the variation in 512 
rates of sequence evolution are not properly considered in time-tree inference50. Additionally, we 513 
used PGLS regression models to evaluate regression-coefficients-significance because PGLS-514 
ND has the highest statistical power when compared with PGLS-ES and PGLS-TB47. 515 
Furthermore, PGLS allow us to evaluate the simultaneous effect of multiple explanatory variables 516 
whose effect on speciation rates can be modelled as a linear or non-linear function. This last point 517 
is of upmost importance for our objective because there are expected interactions between the 518 
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main explanatory variables (e.g. pathwise speed and SL, WST and SL) and also because there 519 
are statistical complications associated with estimating interactions without including quadratic 520 
terms (i.e. non-linear functions between the independent and explanatory variables)51. Our full 521 
PGLS-ND regression model is described by the following equation:  ND ~ Speed + SL + Distance 522 
+ WST + Speed2 + SL2 + Distance2 + WST2 + (Speed * SL) + (Distance * SL) + (WST * SL). Then, 523 
we reached the simpler reduced PGLS-ND regression model based on strict criteria: we removed 524 
the single most non-significant regression-coefficient from the full regression model, then we 525 
reiterated this procedure across every simpler regression until we get the regression with 526 
significant covariates only. We conduced these regression analyses comparing the BM and LA 527 
model. The final regression is in Supplementary Table 6. We ran 51,000,000 iterations, sampling 528 
every 50,000 iterations, and discarding the first 1,000,000 iterations as burn in. Regression 529 
coefficients were judged to be significant according to a calculated PMCMC value for each posterior 530 
of regression coefficients. For cases in which <5% of samples in the posterior distribution crossed 531 
zero, this indicates that the coefficient is significantly different from zero. 532 
 533 
Non phylogenetic regressions. We applied Bayesian GLS regressions to evaluate the 534 
relationship between the branchwise rates of SL evolution, the branchwise speed of movement 535 
and the branchwise rates of temperature change. We obtained these branchwise rates and speed 536 
of movement using the rate-scaled branches as dividend and the original branch lengths 537 
(measured in time) as divisor. Specifically, we divided the branches from the LA-scaled 538 
consensus tree for SL, the VRLA-scaled consensus tree for WST, and the VR-scaled tree for 539 
geographic occurrences. Additionally, we regressed the ancestral SL on the ancestral WST 540 
inferred at each node of the Clupeiformes phylogeny. For these ancestral state reconstruction 541 
made with package phytools, we used the scaled-trees with the model that fit the data better, i.e., 542 
LA-scaled tree for SL and the VRLA-scaled tree for WST. 543 
 544 
We conducted the Bayesian non-phylogenetic GLS regressions in BayesTraits by setting the 545 
Pagel’s Lambda parameter to zero, which discard the phylogenetic covariance of the data values. 546 
We ran 51,000,000 iterations, sampling every 50,000 iterations, and discarding the first 1,000,000 547 
iterations as burn in. Regression coefficients were judged to be significant according to a 548 
calculated PMCMC value for each posterior of regression coefficients. For cases in which <5% of 549 
samples in the posterior distribution crossed zero, this indicates that the coefficient is significantly 550 
different from zero. 551 
 552 
Code availability 553 
All analyses in this study were done using BayesTraits version 3 available at 554 
http://www.evolution.rdg.ac.uk/BayesTraitsV3/ BayesTraitsV3.html 555 
 556 
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Supplementary Figures 582 
 583 

 584 
Supplementary figure 1. Geographic distribution of Clupeiformes species used in this study. Red 585 
dots represents the geographic occurrences obtained from Aquamaps and the IUCN which comprises 586 
21,895 datapoints for 158 species. This dataset was used for the ancestral locations inference and to obtain 587 
data of environmental temperature. 588 
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Supplementary Tables 600 
 601 
Table 1. Evolutionary model fitting for the regression that evaluate the effect of type of migration 602 
and water surface temperature (WST) on fish standard length (SL). Data analysed includes the 603 
maximum SL and samples of WST, within the native range, for each species. The log Marginal 604 
Likelihood (Marginal Lh), estimated by stepping stone sampling, provides the models support 605 
given the data and priors. More positive values support a given model, where differences >1 606 
indicates positive evidence; differences between 2,5 - 5 indicates strong support; and differences 607 
> 5 indicates very strong support for a model over the other. BM = Brownian Motion, LA = Lambda, 608 
OU = Ornstein-Uhlenbeck, VR = Variable Rate, VRLA = Variable Rate and Lambda. 609 
 610 

SL Phylogenetic Regression Model Marginal Lh. 
BM 

Marginal Lh. 
LA 

Marginal Lh. 
OU 

Marginal Lh. 
VR 

Marginal Lh. 
VRLA 

SL ~ a + b1(Diadromous) + b2(WST) -59.11 8.09 -19.84 -16.29 8.13 

 611 
 612 
Table 2. Evolutionary model fitting for the regression that evaluates the effect of absolute latitude 613 
on WST. Data analysed includes a sample of WST and absolute latitude (AbsLat) within the native 614 
range of each species.  The log Marginal Likelihood (Marginal Lh), estimated by stepping stone 615 
sampling, provides the models support given the data and priors. More positive values support a 616 
given model, where differences >1 indicates positive evidence; differences between 2,5 - 5 617 
indicates strong support; and differences > 5 indicates very strong support for a model over the 618 
other. BM = Brownian Motion, LA = Lambda, OU = Ornstein-Uhlenbeck, VR = Variable Rate, 619 
VRLA = Variable Rate and Lambda. 620 
 621 

WST Phylogenetic Regression Model Marginal Lh. 
BM 

Marginal Lh. 
LA 

Marginal Lh. 
OU 

Marginal Lh. 
VR 

Marginal Lh. 
VRLA 

WST ~ a + b1(AbsLat) + b2(AbsLat)2 -421.8 -338.9 -340.1 -318.2 -300.1 

 622 
 623 
 624 
 625 
 626 
 627 
 628 
 629 
 630 
 631 
 632 
 633 
 634 
 635 
 636 
 637 
 638 
 639 
 640 
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Table 3. Geographic model (Geo Model) fitting for Clupeiformes georeferenced data. The Geo 641 
Model estimate the longitudes and latitudes across the nodes of the phylogenetic tree by means 642 
of Bayesian inference. These coordinates are estimated onto a three dimensional cartesian 643 
coordinates system which were modelled using Brownian motion (BM) – the rate of location 644 
change across the tree is constant. We also allowed the rate of location-change to vary across 645 
phylogenetic branches by fitting the Variable Rate model (VR). The log Marginal Likelihood 646 
(Marginal Lh), estimated by stepping stone sampling, provides the models support given the data 647 
and priors. More positive values support a given model, where differences >1 indicates positive 648 
evidence (Bayes Factor > 2); differences between 2,5 - 5 indicates strong support (Bayes Factor 649 
5 – 10); and differences > 5 indicates very strong support for a model over the other (Bayes Factor 650 
> 10). 651 
 652 

Chain Marginal Lh. 
Geographic Model BM 

Marginal Lh. 
Geographic Model VR 

Bayes Factor 
BM vs VR 

1 -8551.41 -8009.76 1083.30 
2 -8552.95 -8011.76 1082.38 
3 -8552.55 -8011.95 1081.20 
4 -8550.70 -8011.83 1077.74 

 653 
Table 4. Evolutionary model fitting for the regression that evaluate the effect of SL and type of 654 
migration on the speed of fish movement. The log Marginal Likelihood (Marginal Lh), estimated 655 
by stepping stone sampling, provides the models support given the data and priors. More positive 656 
values support a given model, where differences >1 indicates positive evidence (Bayes Factor > 657 
2); differences between 2,5 - 5 indicates strong support (Bayes Factor 5 – 10); and differences > 658 
5 indicates very strong support for a model over the other (Bayes Factor > 10). BM = Brownian 659 
Motion, LA = Lambda, OU = Ornstein-Uhlenbeck, VR = Variable Rate, VRLA = Variable Rate and 660 
Lambda. 661 
 662 
 663 

  Marginal Lh. 
BM 

Marginal Lh. 
LA 

Marginal Lh. 
OU 

Marginal Lh. 
VR 

Marginal Lh. 
VRLA 

Distance ~ a + b1(SL) 138.71 133.99 134,99 148.04 140.46 
Distance ~ a + b1(SL) + b2(Diadromous) 133.03 125.89 129.43 138.4 136.29 
Distance 123.57 118.07 117.37 128.77 126.12 

 664 
 665 
 666 
 667 
 668 
 669 
 670 
 671 
 672 
 673 
 674 
 675 
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Table 5. Evolutionary model fitting for the regression that evaluate the effect of SL and type of 676 
migration on the distance of fish movement. The log Marginal Likelihood (Marginal Lh), estimated 677 
by stepping stone sampling, provides the models support given the data and priors. More positive 678 
values support a given model, where differences >1 indicates positive evidence (Bayes Factor > 679 
2); differences between 2,5 - 5 indicates strong support (Bayes Factor 5 – 10); and differences > 680 
5 indicates very strong support for a model over the other (Bayes Factor > 10). BM = Brownian 681 
Motion, LA = Lambda, OU = Ornstein-Uhlenbeck, VR = Variable Rate, VRLA = Variable Rate and 682 
Lambda. 683 
 684 
 685 

  Marginal Lh. 
BM 

Marginal Lh. 
LA 

Marginal Lh. 
OU 

Marginal Lh. 
VR 

Marginal Lh. 
VRLA 

Speed ~ a + b1(SL) 102.67 96.99 99.71 135.16 109.77 
Speed ~ a + b1(SL) + b2(Diadromous) 93.07 91.97 89.61 113.02 101.47 
Speed 83.13 82.79 81.37 94.13 87.81 

 686 
 687 
Table 6. Phylogenetic regression model for Node Density (ND) obtained after reducing the full 688 
model ND ~ Speed + SL + Distance + WST + Speed2 + SL2 + Distance2 + WST2 + (Speed * SL) 689 
+ (Distance * SL) + (WST * SL). The log Marginal Likelihood (Marginal Lh), estimated by stepping 690 
stone sampling, provides the models support given the data and priors. More positive values 691 
support a given model, where differences >1 indicates positive evidence (Bayes Factor > 2); 692 
differences between 2,5 - 5 indicates strong support (Bayes Factor 5 – 10); and differences > 5 693 
indicates very strong support for a model over the other (Bayes Factor > 10). 694 
 695 
 696 

 Marginal Lh. 
BM 

Marginal Lh. 
LA 

ND ~ a + b1(Speed) + b2(Distance)  524.02 517.17 
 697 
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