

1 *Title:* Shrinking of fish under warmer temperatures decrease dispersal abilities and speciation  
2 rates

3  
4 *Authors:* Jorge Avaria-Llautureo<sup>1\*</sup>, Chris Venditti<sup>2</sup>, Marcelo M. Rivadeneira<sup>1,3,4</sup>, Oscar Inostroza-  
5 Michael<sup>5</sup>, Reinaldo J. Rivera<sup>6</sup>, Cristián E. Hernández<sup>5,7</sup> & Cristian B. Canales-Aguirre<sup>8,9\*</sup>

6  
7 *Author affiliations:*

8  
9 1. Centro de Estudios Avanzados en Zonas Áridas, CEAZA, Coquimbo, Chile.

10 2. School of Biological Sciences, University of Reading, Reading, UK.

11 3. Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica de  
12 Norte, Coquimbo, Chile.

13 4. Departamento de Biología, Universidad de La Serena, La Serena, Chile.

14 5. Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de  
15 Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.

16 6. Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Facultad de  
17 Ciencias, Universidad Católica de la Santísima Concepción (UCSC), Concepción, Chile.

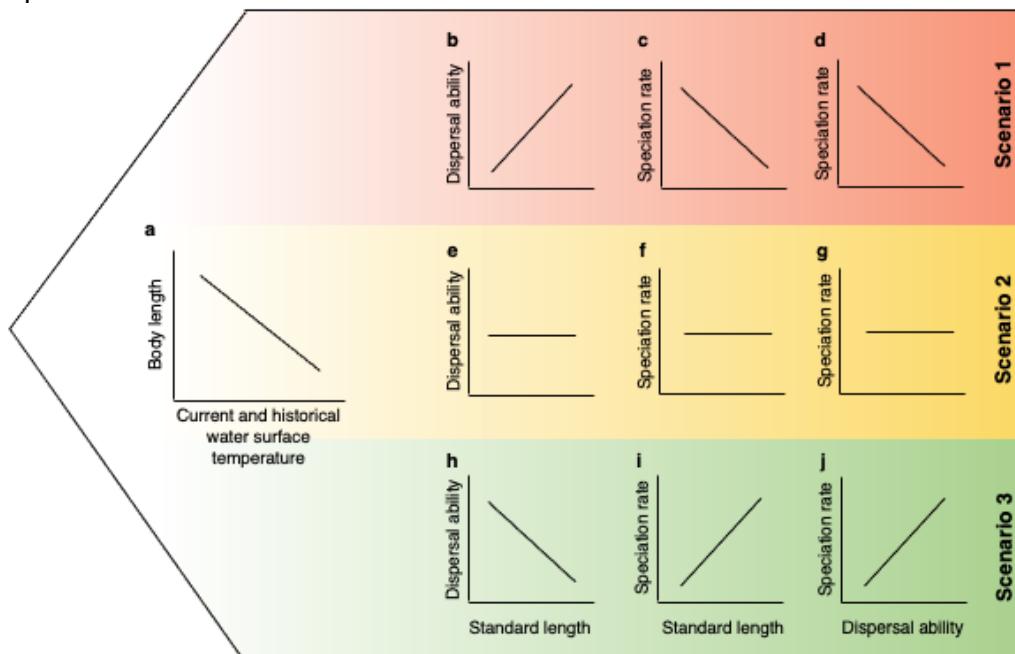
18 7. Universidad Católica de Santa María, Arequipa, Perú.

19 8. Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km 6, Puerto Montt, Chile.

20 9. Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile.

21 \* [jorge.avaria@ceaza.cl](mailto:jorge.avaria@ceaza.cl); [cristian.canales@ulagos.cl](mailto:cristian.canales@ulagos.cl)

34 **There is an ongoing debate as to whether fish body size will decrease with global warming**  
35 **and how body size changes may impact dispersal abilities and speciation rates. Although**  
36 **theory predicts that, when fish face warmer temperatures, they grow to smaller adult sizes,**  
37 **see a reduction in their ability to move, and increase their probability of speciation,**  
38 **evaluations of such predictions are hampered owing to the lack of empirical data spanning**  
39 **both wide temporal and geographical scales. Here, using phylogenetic methods,**  
40 **temperature, and 21,895 occurrences for 158 worldwide-distributed species of fish, we**  
41 **show that smaller fish have occurred in warmer waters for over 150 million years and**  
42 **across marine and freshwater realms. Smaller fish have historically moved the shortest**  
43 **distances and at low speeds. In addition, small fish display the lowest probability of giving**  
44 **rise to new species. Further, we found that species of fish that displayed high speeds of**  
45 **geographical movement and rates of size evolution experienced higher rates of**  
46 **temperature change in their lineage. Taking these results together, global warming**  
47 **predicts a future where smaller fish that have reduced ability to move over aquatic systems**  
48 **will be more prevalent, in turn, this will result in fewer species contributing global**  
49 **biodiversity.**

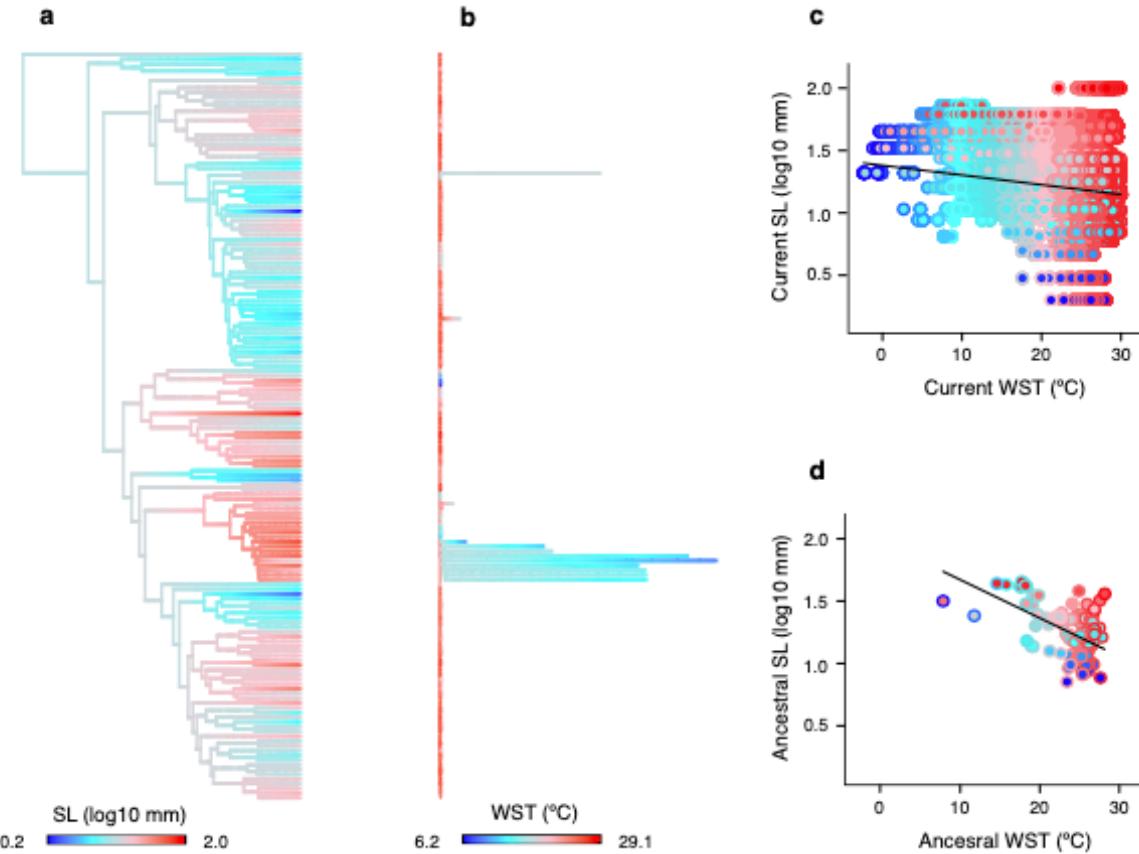

50  
51 A great deal of scientific research seeks the impact of human-induced global warming on Earth's  
52 biodiversity<sup>1–5</sup>. Compelling evidence suggests that global warming will increase species extinction  
53 risk<sup>6–8</sup>, but there are hints in the literature pointing to the idea that species have several alternative  
54 strategies which might enable them to survive such adversity<sup>2,3,9,10</sup>. Local adaptive changes to  
55 decrease body size or tracking of suitable environmental conditions over geographic space have  
56 emerged as common responses allowing species survival, especially in fish<sup>8,11–19</sup>. However, it is  
57 unknown to what extent fish get smaller with warming<sup>20</sup> and how these climate-induced changes  
58 in size will impact their ability to track optimal environmental conditions over aquatic systems, i.e.,  
59 dispersal abilities<sup>4,5,10</sup>. Furthermore, the consequences that the interaction between temperature,  
60 size, and dispersal may have on speciation is less explored, even though speciation is indeed the  
61 principal buffer preventing biodiversity loss in the face of species extinction.

62  
63 Based on previous knowledge, a positive association between fish size and dispersal abilities is  
64 expected given that bigger species are more efficient in consuming energy for long distance  
65 dispersals<sup>21</sup>. Moreover, population genetics theory postulates that organisms with high capacity  
66 to move will increase the gene flow within species and therefore predicts a low probability of  
67 population divergence and speciation<sup>22</sup>. Taking these predictions together, it is expected that the  
68 evolution of smaller fish under global warming (Fig. 1a) will decrease their dispersal abilities (Fig  
69 1b) but increase the rate at which they contribute with new species to biodiversity by local genetic  
70 differentiation (Fig. 1c and d). Nevertheless, there is a big gap between theoretical expectations  
71 and evidence owing to the lack of combined data on size evolution, temperature change, species  
72 dispersal abilities and speciation rates. This patchy evidence comes by virtue of the fact that, first,  
73 the relationships between size, dispersal, and temperature change have only been evaluated  
74 across small temporal scales (i.e. decades)<sup>12,13,17–20,23,24</sup>, where the process of speciation cannot  
75 be observed. Second, species movement is notoriously difficult to quantify<sup>25–27</sup> so that most  
76 studies use data from extremely few individuals within species, measured in recent decades<sup>19</sup>.

77  
78 Here, for the first time, we test these predictions (and potential alternatives; Fig. 1) in Clupeiformes  
79 species - a highly diverse Order of fish with worldwide distribution, inhabiting the marine and  
80 freshwater realms<sup>28</sup> (Supplementary Figure 1). Clupeiformes include some of the most important  
81 species for fisheries<sup>29</sup>, such as the anchovy (*Engraulis ringens*), atlantic herring (*Clupea*  
82 *harengus*), japanese pilchard (*Sardinops melanostictus*), pacific herring (*Clupea pallasii*), and the

83 south american pilchard (*Sardinops sagax*). We evaluated the relationship between water surface  
84 temperature (WST) and standard length (SL) across the nodes of the Clupeiformes phylogenetic  
85 tree spanning 150 Myr of evolutionary history, and across the full global distribution of these fish.  
86 To evaluate the relationship between WST, SL and the species ability to move over aquatic  
87 systems we inferred the historical distance and speed of fish historical movement in a three-  
88 dimensional space, using a novel phylogenetic approach (the GeoModel<sup>30</sup>; Methods). This model  
89 estimates the *posterior* distribution of the estimated ancestral geographical locations for all nodes  
90 in a time-calibrated phylogenetic tree – allowing us to have a measure of the distance of  
91 movement per-time unit (speed). Then, we evaluated the effect of SL and dispersal abilities on  
92 Clupeiformes speciation rates. As our approach provides information on the rate of WST change  
93 over evolutionary history, we can uniquely seek to, not only, understand how species respond to  
94 the magnitude of climate change but also how they respond to the rate at which climate has  
95 changed (how fast) over long time scales. Studying species responses to the rate of climate  
96 change is now more pertinent than ever given the alarming accelerating-rates of heating of the  
97 oceans<sup>31</sup> and because species and populations respond differently when faced with a fast or slow  
98 change in their environment<sup>32,33</sup>.

99  
100 If SL reductions under global warming decrease the ability to move and increase the probability  
101 of speciation (Fig. 1, Scenario 1), we expect to observe a negative relationship between SL and  
102 WST over both evolutionary history and across extant species (Fig. 1a); a positive relationship  
103 between dispersal abilities and SL (Fig. 1b); and a negative effect of SL on dispersal abilities and  
104 speciation rates (Fig. 1c and d). In opposition, if SL reductions under global warming increase the  
105 ability to move but decrease the probabilities of speciation (Fig. 1, Scenario 3), we expect to  
106 observe a negative relationship between dispersal abilities and SL (Fig. 1h); and a positive effect  
107 of SL and dispersal abilities on speciation rates (Fig. 1i and j). We cannot make any inference if  
108 there is no relationship between SL, dispersal abilities, and speciation rates (Fig. 1e – g, Scenario  
109 2). Finally, if the rate of climate change can additionally modulate species responses then we  
110 should find a significant effect of the rate of WST change on both the rate of SL evolution and the  
111 speed of species movement.



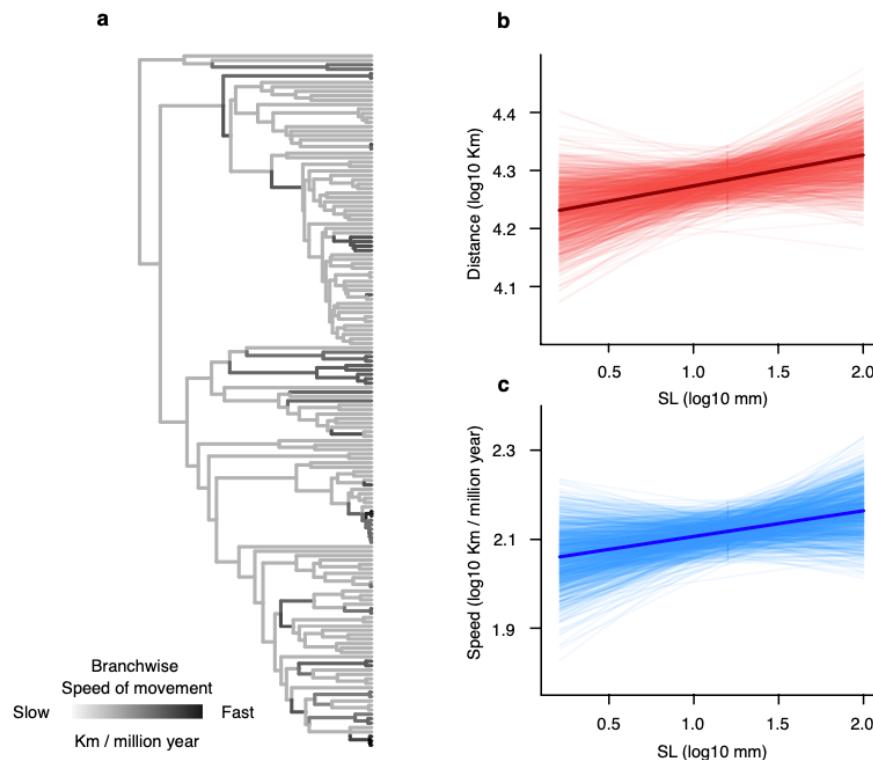

113 **Figure 1. Size reductions under global warming can impact dispersal abilities and speciation rates**  
114 **in multiple ways.** **a**, a negative relationship between standard length (SL) and water surface temperature  
115 (WST), across the phylogeny and the extant global distribution of fish, support the idea that warmer  
116 temperatures have selected small fish over million years and at wide geographical scales. **b - d**, if small  
117 fish are less likely to shift their geographic range but more prone to speciate we should observe (**b**) a  
118 positive relationship between dispersal ability and SL; (**c, d**) a negative effect of dispersal ability and SL on  
119 speciation rates. **e - g**, we cannot make any inference if there is no relationship between SL, dispersal  
120 abilities, and speciation rate. **h - j**, if small fish are more likely to shift their geographic range but less prone  
121 to speciate we should observe (**h**) a negative relationship between dispersal ability and SL; (**h, j**) a positive  
122 effect of dispersal ability and SL on speciation rates.  
123

#### 124 **SL and WST over current and historical time**

125 We studied the relationship between fish SL and WST over their extant geographic distribution  
126 using the phylogenetic variable rates regression model<sup>34</sup> (Methods). This approach enables the  
127 simultaneous estimation of both an overall relationship between SL as a function of WST across  
128 extant species, and any significant shifts in the rate of SL evolution that apply to the  
129 phylogenetically structured residual variance in the relationship. We also included the type of  
130 migration (diadromous and non-diadromous) as an additional binary variable in the regression,  
131 as previous studies show that diadromous fish are larger on average<sup>29</sup>. We used a novel Bayesian  
132 approach that allows the estimation of regression coefficients while sampling the WST data within  
133 each species. With this approach we effectively evaluate the effect of WST on SL while  
134 considering the temperature variability over the entire native distributional range of each species  
135 (Methods). Results show that WST have a significant negative effect on SL across the current  
136 geographic distribution of Clupeiformes (Fig. 2a;  $P_{MCMC} = 0.001$ ). This reveal that smaller  
137 Clupeiformes are found in warmer WST, supporting the “temperature-size rule”<sup>35</sup>. Diadromous  
138 species were significantly larger than non-diadromous species on average (Supplementary Table;  
139  $P_{MCMC} = 0$ ). Additionally, the variable rate regression did not detect any significant shifts in the  
140 rate of SL evolution, and fish SL was better explained by Brownian motion on the scaled  
141 phylogeny according to the Pagel’s Lambda ( $\lambda$ ) parameter (Fig. 2a Supplementary Table 1).  
142

143 To study the relationship between fish size and temperature in the deep past, we evaluated the  
144 relationship between the SL and WST of ancestral fish and their environments, which comprises  
145 a temporal window of ~150 Myr. To conduct this analysis we, firstly, inferred the ancestral states  
146 of SL across nodes of the  $\lambda$ -scaled phylogeny (Fig. 2b; Methods). Secondly, we inferred the  
147 ancestral WST across nodes of the rate-scaled phylogeny (Fig. 2c) obtained from the variable  
148 rate regression between WST and absolute latitude across the 21,895 occurrence records  
149 (Methods; Supplementary Table 2). We found a significant negative association between the  
150 ancestral SL and WST (Fig. 2d;  $P_{MCMC} = 0$ ), which support that Clupeiformes evolved smaller sizes  
151 under warmer SWT for over 150 Myr (Fig. 2d). Finally, the variable rate regression for WST  
152 indicates that the lower rate of temperature change at which Clupeiformes have survived is  
153 0.00069 °C Myr<sup>-1</sup>, while the upper rate is 0.36 °C Myr<sup>-1</sup> (6.9E-8 and 3.6E-6 °C per decade,  
154 respectively). These historical rates of WST change, given our data and approach, are far lower  
155 than the average rates of global warming that the planet is experiencing in the last decades; 0.07  
156 °C per decade since 1880 to 1981, and 0.18 °C per decade since 1981 (according to the NOAA  
157 2019 Global Climate Summary). Understanding how fish have responded to these rates of  
158 historical temperature change can provide insight of the effect that the current increasing rates of  
159 global warming will have on fish biodiversity.

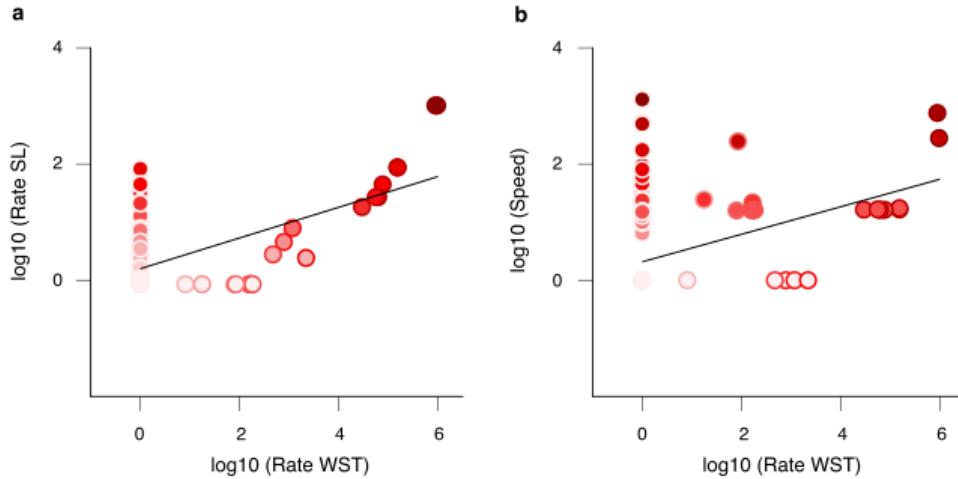



160  
161 **Figure 2. Clupeiformes evolved smaller size in warmer temperatures for million years and in recent**  
162 **times.** a. Clupeiformes phylogenetic time tree with branches scaled according to (a) the  $\lambda$ -model for SL,  
163 and (b) the variable rate regression for WST. Longer branches shows rates significantly higher than the  
164 constant-background rate (scaled in more than 95% of the *posterior* distribution). Branch colours show the  
165 ancestral states for SL and WST, estimated on the rate-scaled trees. c. Bayesian phylogenetic generalized  
166 least squares sustain that SL and WST are negatively correlated across extant species ( $P_{MCMC} = 0.001$ ;  $n$   
167 = 158,000). The black line represents the posterior mean slope of the phylogenetic regression, which was  
168 estimated while sampling within species WST data. d. Bayesian generalized least squares shows a  
169 significant negative correlation between the ancestral SL and WST values across nodes ( $P_{MCMC} = 0$ ;  $n$   
170 = 157 phylogenetic nodes; black line). Fill point gradient colours represent size values and outline point  
171 gradient colours represent WST values.

172

### 173 **SL and dispersal abilities**

174 The geographic analyses support a model with significant variation in the speed of fish movement  
175 across phylogenetic branches (Supplementary Table 3). This implies that the current spatial  
176 diversity of Clupeiformes have been assembled by species dispersal at variable speeds over the  
177 oceans for over 150 Myr (Fig. 3a). The average total distances taken by Clupeiformes, from the  
178 location of the most recent common ancestor (MRCA), range from 8,745 km to 55,590 km.  
179 Moreover, the speed at which these species dispersed ranges from  $71 \text{ km Myr}^{-1}$  to  $536 \text{ km Myr}^{-1}$ .  
180 We evaluated the effect of SL on the total distance moved for each species from the root of the  
181 phylogenetic tree (pathwise distance; Methods), and the median of the branch-specific speed of  
182 movement along the path that links the MRCA with extant species (pathwise speed; Methods).  
183 These relationships were evaluated using Bayesian phylogenetic regression models that include  
184 a sample of 1,000 pathwise distances and speeds for each species in the estimation of regression  
185 coefficients (Methods). Results show that SL correlates positively with both the pathwise


186 distances and the pathwise speed of movement (Fig. 3b and c; Supplementary Table 4 and 5,  
187 respectively). There were no significant differences in either the mean pathwise distances nor the  
188 pathwise speed of movement travelled by diadromous and non-diadromous species  
189 (Supplementary Table 4 and 5). These results demonstrate that smaller fish have had a reduced  
190 ability to disperse through water bodies over their evolutionary history. Therefore, smaller fish  
191 may find it hard to track suitable temperatures over geological time, thus making them more prone  
192 to extinction.  
193

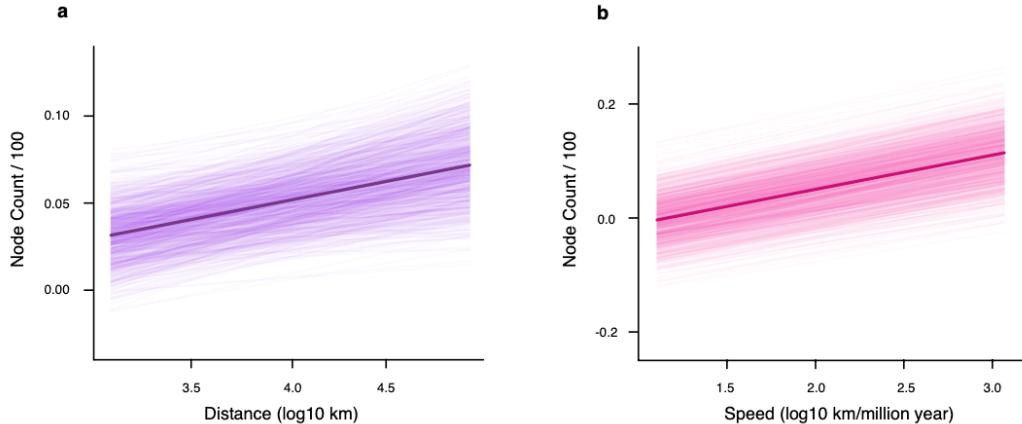


194  
195 **Figure 3. Fish dispersal abilities depend of their size. a.** Clupeiformes phylogenetic tree with branches  
196 coloured according to the speed of movement. **b.** Bayesian phylogenetic generalized least squares show  
197 that pathwise distance correlates positively with SL (Bayes Factor > 5;  $n = 157,000$ ). **c.** SL has also a  
198 significant positive effect on pathwise speed of movement (Bayes Factor > 10;  $n = 157,000$ ). Lighter lines  
199 represent the posterior distribution of phylogenetic slopes and the darker lines the *posterior* mean.  
200

### 201 **Fish response to the historical rate of WST change**

202 We evaluated the effect that the rates of WST change may have on both the rates of SL evolution  
203 and the speed of movement across all branches of the Clupeiformes phylogeny, using Bayesian  
204 GLS regressions (Methods). All branchwise rates were estimated by dividing the scaled branches  
205 (with  $\lambda$ -model for SL, the variable rate regression model for WST, and the variable rate Geo Model  
206 for speed) with original branch lengths measured in time. The rate of WST change had a positive  
207 effect on both the rate of SL evolution and the speed of fish movement ( $P_{MCMC} = 0$ , Fig. 4a, b),  
208 meaning that the SL of Clupeiformes have evolved rapidly, and they have dispersed faster when  
209 the temperature of the oceans have changed at higher rates.  
210




211  
212  
213  
214  
215  
216  
217  
218  
219

**Figure 4. Clupeiformes have evolved rapidly and moved faster when temperature changed at higher rates.** **a.** Bayesian generalized least squares support that the branchwise rates of SL evolution are positively correlated with the branchwise rates of WST change ( $P_{\text{MCMC}} = 0$ ;  $n = 312$  phylogenetic branches). **b.** The branchwise speed of fish movement are also positively correlated with the branchwise rates of WST change ( $P_{\text{MCMC}} = 0$ ;  $n = 312$  phylogenetic branches). Point fill colours represent the branchwise rates of SL evolution and the branchwise speed of species movement. Point outline colours represent the branchwise rates of WST change.

220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235

#### Effect of SL and dispersal abilities on speciation rates

We evaluated the relationship between speciation rates and the dispersal ability and SL of Clupeiformes. We used Bayesian phylogenetic regressions models that include the uncertainty in parameter estimation and samples of dispersal abilities within species (Methods). Our results show that the independent additive effect of pathwise distance and pathwise speed were significant ( $P_{\text{MCMC}} = 0.01$  and 0 respectively; Supplementary Table 6) – species that move longer distances and faster were more likely to originate new species. SL did not have a significant effect on speciation, when its independent additive effect or their interaction with dispersal ability was evaluated (Supplementary Table 6). These results suggest that fish SL, by its positive association with dispersal ability, has an indirect effect on speciation rates. The speciation rates of smaller fish that move slowly are lower than the speciation rates of their larger counterparts that moved faster and larger distances. A scenario of smaller fish under global warming may cause the loss of fish attributes that promotes the generation of biodiversity.



236  
237  
238  
239  
240  
241  
242  
243

**Figure 5. Clupeiformes with lower dispersal abilities have lower probabilities of originate new species.** a - b. The Bayesian phylogenetic generalized least squares show that the pathwise distance of movement and the pathwise speed of movement has a positive effect on speciation ( $P_{MCMC} = 0.01$  and 0, respectively;  $n = 157,000$ ). Lighter lines show the *posterior* distribution of slopes and dark lines shows the *posterior* mean slopes. These slopes were estimated while sampling the pathwise distance and speed within species (Methods).

244

## Conclusion

245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255

Global change poses a double jeopardy for fish body size, as both overfishing<sup>36</sup> and climate drives populations towards smaller sizes. The phenomena of fish shrinking when facing hotter waters is general in the evolutionary history of Clupeiformes and over their entire worldwide geographic distribution. Provided that smaller fish adapted to warmer conditions are less capable to disperse and in turn less able to originate new species, the scenario of global warming could limit their possibilities to find optimal environments to live and their capacity to buffer their increasing extinction risk by the process of speciation. Furthermore, Clupeiformes fish living in the present are the survivors of a long evolutionary history under variable rates of temperature change. They have responded to such historical changes by SL adaptation and dispersal but such evolutionary process have never involved the current accelerating rates of heating of the water bodies. It is probable that Clupeiformes will face an increasing risk of extinction.

256  
257

## References

258

1. Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. *Annu. Rev. Ecol. Evol. Syst.* **37**, 637–669 (2006).
2. Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. *Nat. Clim. Chang.* **1**, 401–406 (2011).
3. Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming? *Trends Ecol. Evol.* **26**, 285–291 (2011).
4. McCauley, S. J. & Mabry, K. E. Climate change, body size, and phenotype dependent dispersal. *Trends Ecol. Evol.* **26**, 554–555 (2011).
5. Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. *Nat. Clim. Chang.* **2**, 747–751 (2012).
6. Amigo, I. The Amazon's fragile future. **578**, 505–507 (2020).
7. Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H. O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. *Nat. Clim. Chang.* **10**, (2020).
8. Comte, L. & Olden, J. D. Climatic vulnerability of the world's freshwater and marine

274 fishes. *Nat. Clim. Chang.* **7**, 718–722 (2017).

275 9. Skelly, D. K. *et al.* Evolutionary responses to climate change. *Conserv. Biol.* **21**, 1353–  
276 1355 (2007).

277 10. Chen, I., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid Range Shifts of  
278 Species Associated with High Levels of Climate Warming. *Science (80-.)* **1024**, 17–20  
279 (2012).

280 11. Cheung, W. W. L. *et al.* Projecting global marine biodiversity impacts under climate  
281 change scenarios. *Fish Fish.* **10**, 235–251 (2009).

282 12. Cheung, W. W. L. *et al.* Shrinking of fishes exacerbates impacts of global ocean changes  
283 on marine ecosystems. *Nat. Clim. Chang.* **3**, 254–258 (2013).

284 13. Crozier, L. G. & Hutchings, J. A. Plastic and evolutionary responses to climate change in  
285 fish. *Evol. Appl.* **7**, 68–87 (2014).

286 14. Travis, J. M. J. *et al.* Dispersal and species' responses to climate change. *Oikos* **122**,  
287 1532–1540 (2013).

288 15. Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling  
289 shrinking of fishes under climate change. *Glob. Chang. Biol.* **24**, e15–e26 (2018).

290 16. Tamario, C., Sunde, J., Petersson, E., Tibblin, P. & Forsman, A. Ecological and  
291 Evolutionary Consequences of Environmental Change and Management Actions for  
292 Migrating Fish. *Front. Ecol. Evol.* **7**, 1–24 (2019).

293 17. Ljungström, G., Claireaux, M., Fiksen, Ø. & Jørgensen, C. Body size adaptions under  
294 climate change: zooplankton community more important than temperature or food  
295 abundance in model of a zooplanktivorous fish. *Mar. Ecol. Prog. Ser.* **636**, 1–18 (2020).

296 18. Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in  
297 aquatic ecosystems. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 12788–12793 (2009).

298 19. Lenoir, J. *et al.* Species better track climate warming in the oceans than on land. *Nat.*  
299 *Ecol. Evol.* (2020). doi:10.1038/s41559-020-1198-2

300 20. Audzijonyte, A. *et al.* Fish body sizes change with temperature but not all species shrink  
301 with warming. *Nat. Ecol. Evol.* 1–6 (2020). doi:10.1038/s41559-020-1171-0

302 21. Burns, M. D. & Bloom, D. D. Migratory lineages rapidly evolve larger body sizes than non-  
303 migratory relatives in ray-finned fishes. *Proceedings. Biol. Sci.* **287**, 20192615 (2020).

304 22. Bohonak, A. J. Dispersal, gene flow, and population structure. *Q. Rev. Biol.* **74**, 21–45  
305 (1999).

306 23. Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution  
307 shifts in marine fishes. *Science (80-.)* **308**, 1912–1915 (2005).

308 24. Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track  
309 local climate velocities. *Science (80-.)* **341**, 1239–1242 (2013).

310 25. Stevens, V. M. *et al.* A comparative analysis of dispersal syndromes in terrestrial and  
311 semi-terrestrial animals. *Ecol. Lett.* **17**, 1039–1052 (2014).

312 26. Dieckmann, U., O'Hara, B. & Weisser, W. The evolutionary ecology of dispersal. *Trends*  
313 *Ecol. Evol.* **14**, 88–90 (1999).

314 27. Kokko, H. & López-Sepulcre, A. From individual dispersal to species ranges:  
315 Perspectives for a changing world. *Science (80-.)* **313**, 789–791 (2006).

316 28. Lavoué, S., Miya, M., Musikasinthorn, P., Chen, W. J. & Nishida, M. Mitogenomic  
317 Evidence for an Indo-West Pacific Origin of the Clupeoidei (Teleostei: Clupeiformes).  
318 *PLoS One* **8**, (2013).

319 29. Bloom, D. D., Burns, M. D. & Schriever, T. A. Evolution of body size and trophic position  
320 in migratory fishes: A phylogenetic comparative analysis of Clupeiformes (anchovies,  
321 herring, shad and allies). *Biol. J. Linn. Soc.* **125**, 302–314 (2018).

322 30. O'Donovan, C., Meade, A. & Venditti, C. Dinosaurs reveal the geographical signature of

323 an evolutionary radiation. *Nat. Ecol. Evol.* **2**, 452–458 (2018).

324 31. Cheng, L. *et al.* Record-Setting Ocean Warmth Continued in 2019. *Adv. Atmos. Sci.* **37**,  
325 137–142 (2020).

326 32. Pinek, L., Mansour, I., Lakovic, M., Ryo, M. & Rillig, M. C. Rate of environmental change  
327 across scales in ecology. *Biol. Rev.* **1**, (2020).

328 33. Avaria-Llautureo, J., Hernández, C. E., Rodríguez-Serrano, E. & Venditti, C. The  
329 decoupled nature of basal metabolic rate and body temperature in endotherm evolution.  
330 *Nature* **572**, 651–654 (2019).

331 34. Baker, J., Meade, A., Pagel, M. & Venditti, C. Positive phenotypic selection inferred from  
332 phylogenies. *Biol. J. Linn. Soc.* **118**, 95–115 (2016).

333 35. Angilletta, M. J. & Dunham, A. E. The Temperature-Size Rule in Ectotherms: Simple  
334 Evolutionary Explanations May Not Be General. *Am. Nat.* **162**, 332–342 (2003).

335 36. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres Jr, F. Fishing Down Marine  
336 Food Webs. *Science* (80-). **279**, 860–863 (1998).

337 37. Rabosky, D. L. *et al.* An inverse latitudinal gradient in speciation rate for marine fishes.  
338 *Nature* **559**, 392–395 (2018).

339 38. Whitehead, P. J. P. FAO Species Catalogue: Vol. 7 Clupeoid Fishes of the World. *FAO*  
340 *Fish. synopsis* **7**, 303 (1985).

341 39. Charnov, E. L. & Berrigan, D. Evolution of life history parameters in animals with  
342 indeterminate growth, particularly fish. *Evol. Ecol.* **5**, 63–68 (1991).

343 40. Mohseni, O. & Stefan, H. G. Stream temperature/air temperature relationship: A physical  
344 interpretation. *J. Hydrol.* **218**, 128–141 (1999).

345 41. Morrill, J. C., Bales, R. C. & Conklin, M. H. Estimating stream temperature from air  
346 temperature: Implications for future water quality. *J. Environ. Eng.* **131**, 139–146 (2005).

347 42. Sharma, S., Jackson, D. A., Minns, C. K. & Shuter, B. J. Will northern fish populations be  
348 in hot water because of climate change? *Glob. Chang. Biol.* **13**, 2052–2064 (2007).

349 43. Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on  
350 phylogenies. *Syst. Biol.* **53**, 673–684 (2004).

351 44. Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. *Nature* **479**,  
352 393–396 (2011).

353 45. Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5-10.  
354 <https://CRAN.R-project.org/package=geosphere>. (2019).

355 46. Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other  
356 things). *Methods Ecol. Evol.* **3**, 217–223 (2012).

357 47. Harvey, M. G. & Rabosky, D. L. Continuous traits and speciation rates: Alternatives to  
358 state-dependent diversification models. *Methods Ecol. Evol.* **9**, 984–993 (2018).

359 48. Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: What are we  
360 estimating, and how good are the estimates? *Methods Ecol. Evol.* **10**, 821–834 (2019).

361 49. Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification  
362 histories. *Nature* **580**, 502–505 (2020).

363 50. Shafir, A., Azouri, D., Goldberg, E. E. & Mayrose, I. Heterogeneity in the rate of molecular  
364 sequence evolution substantially impacts the accuracy of detecting shifts in diversification  
365 rates. *Evolution (N. Y.)*. (2020). doi:<https://doi.org/10.1111/evo.14036>

366 51. Ganzach, Y. Misleading Interaction and Curvilinear Terms. *Psychol. Methods* **2**, 235–247  
367 (1997).

368

369

370

371

372 **Methods**

373 **Data.** Analyses were performed on a time-calibrated phylogeny of 158 Clupeiformes species. This  
374 phylogeny was obtained from The Fish Tree of Life<sup>37</sup>. We used the maximum Standard Length  
375 (SL) in mm, for these 158 species, obtained from FishBase and the FAO Species Catalogue for  
376 clupeoid fishes<sup>38</sup>. The maximum SL was used because of three reasons. First, maximum SL is  
377 preferred over mean SL because fishes have indeterminate growth<sup>39</sup>. Second, it is a more stable  
378 measure of size in teleost to compare museum and collection samples. Third, and most important,  
379 individuals that are commonly larger than the population average and are outside the central  
380 distribution of size, are likely the individuals that allow the species to shift their geographic  
381 ranges<sup>4</sup>. 21,895 georeferenced occurrences (Supplementary Figure 1) were obtained from  
382 marine and freshwater bodies (i.e., rivers and lakes) from Aquamaps  
383 (<https://www.aquamaps.org/>) and the IUCN (<https://www.iucnredlist.org/>) respectively. We  
384 obtained the geographic locations (within the native range) of 116 species available in Aquamaps,  
385 and locations within the polygon of distribution for 42 additional species available in the IUCN. To  
386 obtain the geographic locations from the IUCN, we sampled 100 random locations within each  
387 species polygon. All georeferenced occurrences were matched with information of water surface  
388 temperature (WST). For marine species we used the mean annual sea surface temperature (SST)  
389 estimated from the Aquamaps database. For freshwater species, the mean annual air  
390 temperatures estimated from the WordClim database (<https://worldclim.org/>) were used as a first-  
391 order proxy of the water surface temperature of the freshwater bodies<sup>40-42</sup>. By maximizing the  
392 number of temperature records per species, instead of using single estimates (e.g. mean  
393 temperature, or temperate at the geographic centroid) allow us to produce more precise estimates  
394 of both the ancestral locations and the ancestral thermal environments of Clupeiformes. Finally,  
395 information about the type of migration for each species (diadromous, non-diadromous) was  
396 obtained from Bloom et al<sup>29</sup>.

397

398 **Inferring ancestral locations.** From the geographic locations within each species in the  
399 Clupeiformes phylogeny, we inferred the ancestral geo-distribution in a continuous, three-  
400 dimensional space. Ancestral locations were estimated for each phylogenetic node using the Geo  
401 Model<sup>30</sup> in the computer program BayesTraits 3.0<sup>43</sup>. This model estimates the *posterior*  
402 distribution of ancestral locations measured in longitude and latitude, while sampling across all  
403 location-data within species, and considering the spherical nature of Earth. This natural  
404 assumption of the Earth as a spherical object avoid the erroneous calculation of distances  
405 between the inferred ancestral locations due to the non-continuity of the longitude scale. When  
406 based on a time-calibrated phylogeny, the Geo Model simultaneously estimate the speed of  
407 species movement across each branch that links pairs of phylogenetic nodes (branchwise speed  
408 of movement). The ancestral locations across phylogenetic nodes are estimated while  
409 considering the continuous variation in dispersal ability of each ancestral species – ranging from  
410 species quiescence (no movement), through constant movement in direct proportion of the  
411 passage of time, to fast species movement. Estimation of the branchwise speed of species  
412 movement are based on the variable rates model<sup>44</sup> which detects shifts away from a background  
413 rate of evolution in continuous traits (expected under Brownian motion) in whole clades or  
414 individual branches. We also include data of the geographic locations of two Clupeiformes fossils,  
415 one for the crown group of Engraulidae and another for the crown group of Dorosoma. These  
416 fossils information was obtained from The Fish Tree of Life<sup>37</sup>.

417

418 We ran four MCMC chains for 250,000,000 iterations, sampling every 50,000 iterations, and  
419 discarding 200,000,000 as burn in. These procedures were conducted based on the Brownian  
420 motion (BM) model and the Variable Rates (VR) model (Supplementary Table 3). The final sample

421 includes 1,000 posterior locations for each phylogenetic node. We selected the model that fit the  
422 data better by means of Bayes factors ( $B$ ), using the marginal likelihoods estimated by stepping  
423 stone sampling.  $B$  is calculated as the double of the difference between the log marginal likelihood  
424 of the complex model and the simple model. By convention,  $B > 2$  indicates positive evidence for  
425 the complex model,  $B = 5-10$  indicates strong support and  $B > 10$  is considered very strong  
426 support. We excluded the species *Denticeps clupeoides* from the Geo Model analyses because  
427 its pathwise distance and speed of movement obtained from previous analyses were outliers,  
428 which can bias the inferences made from further analyses.  
429

430 **Pathwise distances and speed of species movement.** In order to obtain the total distance that  
431 each species have historically dispersed through the oceans and rivers – starting from the location  
432 of the root of the Clupeiformes phylogenetic tree - we calculated the distances dispersed across  
433 each phylogenetic branch (branchwise distances) and then we summed these distances along  
434 the path that links the root with extant species (pathwise distances). The branchwise distances  
435 were calculated using the disCosine function in the geosphere R package<sup>45</sup>. This method  
436 calculates the great circle distance (the shortest distance) between two points on a sphere  
437 measured in kilometres using the spherical law of cosines, which works for calculating these  
438 distances at both large and small scales. We calculated the branchwise distances for every  
439 location in the posterior sample, meaning that we have 1,000 distances for every branch in the  
440 tree, and therefore, 1,000 pathwise distances for each species in the tree. With this approach we  
441 have the historical distance dispersed for each species, considering the uncertainty in ancestral  
442 locations estimates. In order to have a measure of the speed at which each species in phylogeny  
443 have dispersed over historical time, we calculated the branchwise speed of movement in km per  
444 Myr - diving the branchwise distances by the branch length of the time-calibrated tree. We also  
445 calculate the speed of movement for all the posterior sample of branchwise distances, and then  
446 we calculated the median speed of movement in the path that links the MRCA with extant species.  
447 Finally, we have 1,000 measures of the historical speed of movement for each species which  
448 include the uncertainty in ancestral location estimates.  
449

450 **Phylogenetic regressions.** To evaluate the expected relationships between SL, WST, pathwise  
451 distance, pathwise speed of movement, and speciation rates, we performed Phylogenetic  
452 Generalized Least Squares regression models (PGLS) with Bayesian inference which allowed us  
453 to consider the uncertainty in both, parameters estimation and within species data. We consider  
454 the uncertainty within species by using the samples of data for WST, georeferenced, pathwise  
455 distances, and speed of movement for each species. Under this approach, the MCMC samples  
456 the regression parameters and the data within species simultaneously, integrating the uncertainty  
457 of both factors in the results. All Bayesian regression were done in the computer program  
458 BayesTraits 3.0.  
459

460 We, first, conducted a multiple phylogenetic regression to evaluate the relationship between SL,  
461 WST and type of migration, including the sample of WST within species. We compared the BM,  
462 Lambda model (LA), and Ornstein-Uhlenbeck model (OU) for these regressions. We also  
463 evaluated the variation in the rate of SL evolution using the variable rates (VR) regression model<sup>34</sup>.  
464 The VR regression model enables the simultaneous estimation of both an overall relationship  
465 between SL as a function of WST and type of migration, and any shift in rate that apply to the  
466 phylogenetically structured residual variance in the relationship. The VR regression model identify  
467 heterogeneity in the rate of evolution along phylogenetic branches (branchwise rates) by dividing  
468 the rate into two parameters: a background rate parameter ( $\sigma^2_b$ ), which assumes that changes in  
469 the trait of interest are drawn from an underlying BM process, and a second parameter,  $r$ , which

470 identifies a branch-specific rate shift. A full set of branchwise rates are estimated by adjusting the  
471 lengths of each branch in a time-calibrated tree (stretching or compressing a branch is equivalent  
472 to increasing or decreasing the phenotypic rate of change relative to the underlying Brownian rate  
473 of evolution). Branchwise rates are defined by a set of branch-specific scalars  $r$  ( $0 < r < \infty$ ) that  
474 scale each branch to optimize the phenotypic rate of change to a BM process ( $\sigma^2_b \times r$ ). If  
475 phenotypic change occurred at rates faster than the background rate, along a specific branch of  
476 the tree, then  $r > 1$  and the branch is stretched. Rates slower than the background rate are  
477 detected by  $r < 1$  and the branch is compressed. If the trait evolves at a constant rate along a  
478 branch, then the branch will not be modified (that is,  $r = 1$ ).  
479

480 Second, in order to estimate the rates of WST change through the Clupeiformes phylogeny, we  
481 conducted a Bayesian VR regression between WST and latitude (comparing it with the BM, LA,  
482 and OU regression models; Supplementary Table 2). We included the sample of WST and latitude  
483 within each species in regression analyses. Then, we obtained the consensus rate-scaled tree  
484 for WST. This consensus rate-scaled tree considers the median value of the branches scaled in  
485 more than 95% of the MCMC sample. We ran four MCMC chains for 300,000,000 iterations,  
486 sampling every 250,000 iterations, and discarding 150,000,000 as burn in. This consensus tree  
487 was also used in the estimation of the ancestral WST at phylogenetic nodes using the package  
488 *phytools*<sup>46</sup>. By using the consensus rate-scaled tree we ensure to consider the variation in the  
489 rate of SWT change when ancestral states are estimated.  
490

491 Third, we evaluated the relationship between the pathwise distance with SL and type of migration,  
492 and between the pathwise speed with SL and type of migration. We included in the phylogenetic  
493 regressions the sample of species data for the pathwise distance and speed of movement,  
494 comparing regressions fitted with the BM, LA, OU, and VR model. We ran four MCMC chains for  
495 51,000,000 iterations, sampling every 50,000 iterations, and discarding 1,000,000 as burn in. We  
496 conducted these regression using the BM, LA, OU, and VR model (Supplementary Table 4 and  
497 5).  
498

499 Fourth, we evaluated the relationship between speciation rates with pathwise speed, SL, pathwise  
500 distance, and WST - including the sample of data for pathwise distances and speed of movement.  
501 We used tip-specific estimates of speciation rates to evaluate the regression between speciation  
502 rates and the multiple explanatory variables. Among the recommended non-model-based tip-rate  
503 metrics to study the correlates of speciation rates (i.e. inverse of equal splits [ES], node density  
504 [ND] and the inverse of terminal branch length [TB])<sup>47</sup> we based our interpretations on the node  
505 density along the phylogenetic paths, divided by the age of the phylogeny (100 Myr after excluding  
506 *Denticeps clupeoides*). Our choice is based on the fact that ND is the least influenced metric by  
507 potential biases and sources of uncertainty associated with branch length estimation from  
508 empirical data<sup>48</sup> – ND capture the average speciation rate over the entire phylogenetic path and  
509 weight equally all branch lengths along the paths. We did not use the tip-rate speciation metric  
510 estimated from time-varying birth-death diversification models owing to the striking uncertainty in  
511 the speciation rates values when they are estimated from phylogenies with extant species only<sup>49</sup>,  
512 and due to the erroneous inference of the general diversification patterns when the variation in  
513 rates of sequence evolution are not properly considered in time-tree inference<sup>50</sup>. Additionally, we  
514 used PGLS regression models to evaluate regression-coefficients-significance because PGLS-  
515 ND has the highest statistical power when compared with PGLS-ES and PGLS-TB<sup>47</sup>.  
516 Furthermore, PGLS allow us to evaluate the simultaneous effect of multiple explanatory variables  
517 whose effect on speciation rates can be modelled as a linear or non-linear function. This last point  
518 is of upmost importance for our objective because there are expected interactions between the

519 main explanatory variables (e.g. pathwise speed and SL, WST and SL) and also because there  
520 are statistical complications associated with estimating interactions without including quadratic  
521 terms (i.e. non-linear functions between the independent and explanatory variables)<sup>51</sup>. Our full  
522 PGLS-ND regression model is described by the following equation:  $ND \sim Speed + SL + Distance$   
523  $+ WST + Speed^2 + SL^2 + Distance^2 + WST^2 + (Speed * SL) + (Distance * SL) + (WST * SL)$ . Then,  
524 we reached the simpler reduced PGLS-ND regression model based on strict criteria: we removed  
525 the single most non-significant regression-coefficient from the full regression model, then we  
526 reiterated this procedure across every simpler regression until we get the regression with  
527 significant covariates only. We conducted these regression analyses comparing the BM and LA  
528 model. The final regression is in Supplementary Table 6. We ran 51,000,000 iterations, sampling  
529 every 50,000 iterations, and discarding the first 1,000,000 iterations as burn in. Regression  
530 coefficients were judged to be significant according to a calculated  $P_{MCMC}$  value for each posterior  
531 of regression coefficients. For cases in which <5% of samples in the posterior distribution crossed  
532 zero, this indicates that the coefficient is significantly different from zero.  
533

534 **Non phylogenetic regressions.** We applied Bayesian GLS regressions to evaluate the  
535 relationship between the branchwise rates of SL evolution, the branchwise speed of movement  
536 and the branchwise rates of temperature change. We obtained these branchwise rates and speed  
537 of movement using the rate-scaled branches as dividend and the original branch lengths  
538 (measured in time) as divisor. Specifically, we divided the branches from the LA-scaled  
539 consensus tree for SL, the VRLA-scaled consensus tree for WST, and the VR-scaled tree for  
540 geographic occurrences. Additionally, we regressed the ancestral SL on the ancestral WST  
541 inferred at each node of the Clupeiformes phylogeny. For these ancestral state reconstruction  
542 made with package phytools, we used the scaled-trees with the model that fit the data better, i.e.,  
543 LA-scaled tree for SL and the VRLA-scaled tree for WST.  
544

545 We conducted the Bayesian non-phylogenetic GLS regressions in BayesTraits by setting the  
546 Pagel's Lambda parameter to zero, which discard the phylogenetic covariance of the data values.  
547 We ran 51,000,000 iterations, sampling every 50,000 iterations, and discarding the first 1,000,000  
548 iterations as burn in. Regression coefficients were judged to be significant according to a  
549 calculated  $P_{MCMC}$  value for each posterior of regression coefficients. For cases in which <5% of  
550 samples in the posterior distribution crossed zero, this indicates that the coefficient is significantly  
551 different from zero.  
552

### 553 **Code availability**

554 All analyses in this study were done using BayesTraits version 3 available at  
555 <http://www.evolution.rdg.ac.uk/BayesTraitsV3/> BayesTraitsV3.html  
556

### 557 **Acknowledgments**

558 We thank to Ciara O'Donovan for her help and advice with the Geo Model analyses, and to  
559 Andrew Meade for helping with the computer cluster at University of Reading. Devin D. Bloom  
560 shared data of Clupeiformes. JA-LL was supported by ANID FONDECYT postdoctoral grant N°  
561 3200654 and ANID FONDECYT regular grant N° 1201506. CBCA was supported by ANID  
562 FONDECYT initiation grant N° 11180897 and he was partially supported by Nucleo Milenio  
563 INVASAL funded by the Chilean government program Iniciativa Científica Milenio. CEH and RJR  
564 was supported by ANID FONDECYT regular grant N° 1170815 and 1201506. MMR was  
565 supported by ANID FONDECYT regular grant N° 1200843. CV was supported by a Leverhulme  
566 Trust Research Project Grant (RPG-2017-071) and a Leverhulme Trust Research Leadership  
567 Award (RL-2019-012).

568 **Author contributions**

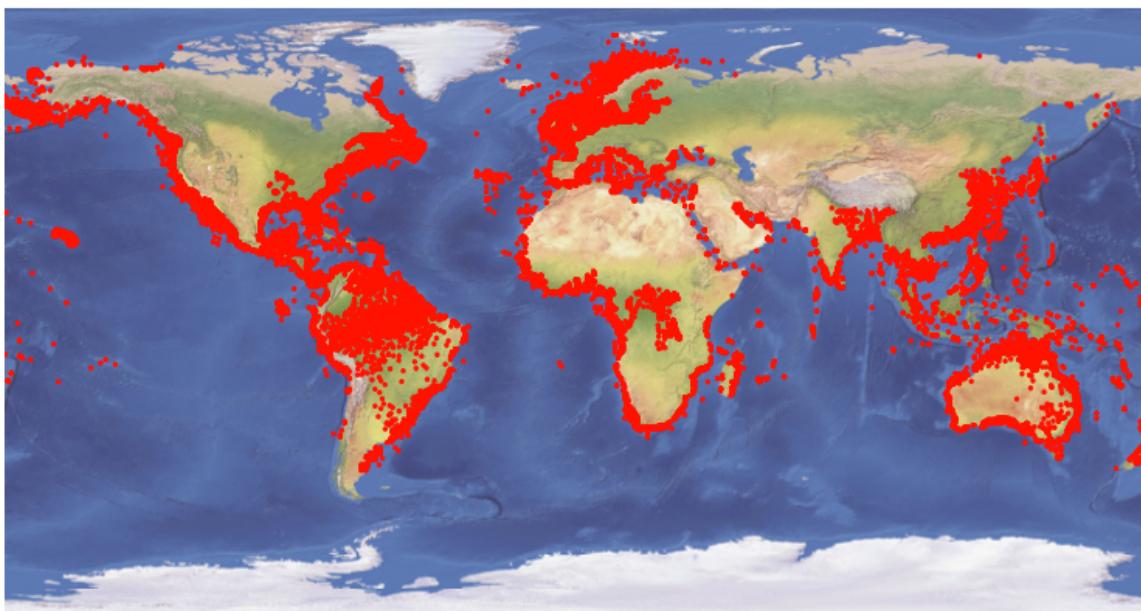
569 JA-LL and CBCA formulated and developed the overarching idea and research goals. JA-LL and  
570 CV designed the methodology and created the statistical models. JA-LL implemented the  
571 computer codes and applied the statistical analyses of data. CEH provided computational support  
572 for data analysis. OIM and RJR contributed to obtain the dataset and making of figures. JA-LL  
573 wrote the original draft and figures. CBCA, CV and MMR critically reviewed the original draft. All  
574 authors made comments, suggestion and editions to the last draft.

575

576 **Competing interests**

577 The authors declare no competing interests.

578


579 **Correspondence and request for materials** should be addressed to JA-LL.

580

581

582 **Supplementary Figures**

583



584

585 **Supplementary figure 1. Geographic distribution of Clupeiformes species used in this study.** Red  
586 dots represents the geographic occurrences obtained from Aquamaps and the IUCN which comprises  
587 21,895 datapoints for 158 species. This dataset was used for the ancestral locations inference and to obtain  
588 data of environmental temperature.

589

590

591

592

593

594

595

596

597

598

599

600 **Supplementary Tables**

601

602 **Table 1.** Evolutionary model fitting for the regression that evaluate the effect of type of migration  
603 and water surface temperature (WST) on fish standard length (SL). Data analysed includes the  
604 maximum SL and samples of WST, within the native range, for each species. The log Marginal  
605 Likelihood (Marginal Lh), estimated by stepping stone sampling, provides the models support  
606 given the data and priors. More positive values support a given model, where differences >1  
607 indicates positive evidence; differences between 2,5 - 5 indicates strong support; and differences  
608 > 5 indicates very strong support for a model over the other. BM = Brownian Motion, LA = Lambda,  
609 OU = Ornstein-Uhlenbeck, VR = Variable Rate, VRLA = Variable Rate and Lambda.

610

| SL Phylogenetic Regression Model                         | Marginal Lh.<br>BM | Marginal Lh.<br>LA | Marginal Lh.<br>OU | Marginal Lh.<br>VR | Marginal Lh.<br>VRLA |
|----------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|
| SL ~ $\alpha$ + $\beta_1$ (Diadromous) + $\beta_2$ (WST) | -59.11             | <b>8.09</b>        | -19.84             | -16.29             | 8.13                 |

611

612

613 **Table 2.** Evolutionary model fitting for the regression that evaluates the effect of absolute latitude  
614 on WST. Data analysed includes a sample of WST and absolute latitude (AbsLat) within the native  
615 range of each species. The log Marginal Likelihood (Marginal Lh), estimated by stepping stone  
616 sampling, provides the models support given the data and priors. More positive values support a  
617 given model, where differences >1 indicates positive evidence; differences between 2,5 - 5  
618 indicates strong support; and differences > 5 indicates very strong support for a model over the  
619 other. BM = Brownian Motion, LA = Lambda, OU = Ornstein-Uhlenbeck, VR = Variable Rate,  
620 VRLA = Variable Rate and Lambda.

621

| WST Phylogenetic Regression Model                                     | Marginal Lh.<br>BM | Marginal Lh.<br>LA | Marginal Lh.<br>OU | Marginal Lh.<br>VR | Marginal Lh.<br>VRLA |
|-----------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|
| WST ~ $\alpha$ + $\beta_1$ (AbsLat) + $\beta_2$ (AbsLat) <sup>2</sup> | -421.8             | -338.9             | -340.1             | -318.2             | <b>-300.1</b>        |

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641 **Table 3.** Geographic model (Geo Model) fitting for Clupeiformes georeferenced data. The Geo  
642 Model estimate the longitudes and latitudes across the nodes of the phylogenetic tree by means  
643 of Bayesian inference. These coordinates are estimated onto a three dimensional cartesian  
644 coordinates system which were modelled using Brownian motion (BM) – the rate of location  
645 change across the tree is constant. We also allowed the rate of location-change to vary across  
646 phylogenetic branches by fitting the Variable Rate model (VR). The log Marginal Likelihood  
647 (Marginal Lh), estimated by stepping stone sampling, provides the models support given the data  
648 and priors. More positive values support a given model, where differences >1 indicates positive  
649 evidence (Bayes Factor > 2); differences between 2,5 - 5 indicates strong support (Bayes Factor  
650 5 – 10); and differences > 5 indicates very strong support for a model over the other (Bayes Factor  
651 > 10).  
652

| Chain | Marginal Lh.<br>Geographic Model BM | Marginal Lh.<br>Geographic Model VR | Bayes Factor<br>BM vs VR |
|-------|-------------------------------------|-------------------------------------|--------------------------|
| 1     | -8551.41                            | -8009.76                            | 1083.30                  |
| 2     | -8552.95                            | -8011.76                            | 1082.38                  |
| 3     | -8552.55                            | -8011.95                            | 1081.20                  |
| 4     | -8550.70                            | -8011.83                            | 1077.74                  |

653 **Table 4.** Evolutionary model fitting for the regression that evaluate the effect of SL and type of  
654 migration on the speed of fish movement. The log Marginal Likelihood (Marginal Lh), estimated  
655 by stepping stone sampling, provides the models support given the data and priors. More positive  
656 values support a given model, where differences >1 indicates positive evidence (Bayes Factor >  
657 2); differences between 2,5 - 5 indicates strong support (Bayes Factor 5 – 10); and differences >  
658 5 indicates very strong support for a model over the other (Bayes Factor > 10). BM = Brownian  
659 Motion, LA = Lambda, OU = Ornstein-Uhlenbeck, VR = Variable Rate, VRLA = Variable Rate and  
660 Lambda.  
661

|                                                                          | Marginal Lh.<br>BM | Marginal Lh.<br>LA | Marginal Lh.<br>OU | Marginal Lh.<br>VR | Marginal Lh.<br>VRLA |
|--------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|
| Distance $\sim \alpha + \beta_1(\text{SL})$                              | 138.71             | 133.99             | 134.99             | <b>148.04</b>      | 140.46               |
| Distance $\sim \alpha + \beta_1(\text{SL}) + \beta_2(\text{Diadromous})$ | 133.03             | 125.89             | 129.43             | 138.4              | 136.29               |
| Distance                                                                 | 123.57             | 118.07             | 117.37             | 128.77             | 126.12               |

664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675

676 **Table 5.** Evolutionary model fitting for the regression that evaluate the effect of SL and type of  
677 migration on the distance of fish movement. The log Marginal Likelihood (Marginal Lh), estimated  
678 by stepping stone sampling, provides the models support given the data and priors. More positive  
679 values support a given model, where differences >1 indicates positive evidence (Bayes Factor >  
680 2); differences between 2,5 - 5 indicates strong support (Bayes Factor 5 – 10); and differences >  
681 5 indicates very strong support for a model over the other (Bayes Factor > 10). BM = Brownian  
682 Motion, LA = Lambda, OU = Ornstein-Uhlenbeck, VR = Variable Rate, VRLA = Variable Rate and  
683 Lambda.

684  
685

|                                                                       | Marginal Lh.<br>BM | Marginal Lh.<br>LA | Marginal Lh.<br>OU | Marginal Lh.<br>VR | Marginal Lh.<br>VRLA |
|-----------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|
| Speed $\sim \alpha + \beta_1(\text{SL})$                              | 102.67             | 96.99              | 99.71              | <b>135.16</b>      | 109.77               |
| Speed $\sim \alpha + \beta_1(\text{SL}) + \beta_2(\text{Diadromous})$ | 93.07              | 91.97              | 89.61              | 113.02             | 101.47               |
| Speed                                                                 | 83.13              | 82.79              | 81.37              | 94.13              | 87.81                |

686  
687

688 **Table 6.** Phylogenetic regression model for Node Density (ND) obtained after reducing the full  
689 model ND  $\sim \text{Speed} + \text{SL} + \text{Distance} + \text{WST} + \text{Speed}^2 + \text{SL}^2 + \text{Distance}^2 + \text{WST}^2 + (\text{Speed} * \text{SL})$   
690  $+ (\text{Distance} * \text{SL}) + (\text{WST} * \text{SL})$ . The log Marginal Likelihood (Marginal Lh), estimated by stepping  
691 stone sampling, provides the models support given the data and priors. More positive values  
692 support a given model, where differences >1 indicates positive evidence (Bayes Factor > 2);  
693 differences between 2,5 - 5 indicates strong support (Bayes Factor 5 – 10); and differences > 5  
694 indicates very strong support for a model over the other (Bayes Factor > 10).

695  
696

|                                                                     | Marginal Lh.<br>BM | Marginal Lh.<br>LA |
|---------------------------------------------------------------------|--------------------|--------------------|
| ND $\sim \alpha + \beta_1(\text{Speed}) + \beta_2(\text{Distance})$ | <b>524.02</b>      | 517.17             |

697