

1 **TaqMan Array Cards enable monitoring of diverse enteric pathogens across**
2 **environmental and host reservoirs**

3 Rachael Lappan^{1,2*}, Rebekah Henry^{3*}, Steven L. Chown², Stephen P. Luby⁴, Ellen E. Higginson⁵, Lamiya
4 Bata³, Thanavit Jirapanjawat^{1,2}, Christelle Schang³, John J. Openshaw⁴, Joanne O'Toole⁶, Audrie Lin⁷,
5 Autiko Tela⁸, Amelia Turagabeci⁸, Tony H.F. Wong⁹, Matthew A. French¹⁰, Rebekah R. Brown¹⁰, Karin
6 Leder⁶, Chris Greening^{1,2#}, David McCarthy^{3#}

7 1. Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton,
8 VIC 3800, Australia

9 2. School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia

10 3. Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia

11 4. Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA
12 94305, USA

13 5. Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of
14 Cambridge, Cambridge CB2 0AW, United Kingdom

15 6. School of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC 3004,
16 Australia

17 7. Division of Epidemiology and Biostatistics, School of Public Health, University of California
18 Berkeley, CA 94720, USA

19 8. School of Public Health, Fiji National University, Suva, Fiji

20 9. Water Sensitive Cities Institute, Monash University, Clayton, VIC 3800, Australia

21 10. Monash Sustainable Development Institute, Monash University, Clayton, VIC 3800, Australia

22 *Co-first authors

23 # Co-corresponding authors (chris.greening@monash.edu, david.mccarthy@monash.edu)

24

25

26 **Abstract**

27 *Background*

28 Multiple bacteria, viruses, protists, and helminths cause enteric infections that greatly impact human
29 health and wellbeing. These enteropathogens are transmitted via several pathways through human,
30 animal, and environmental reservoirs. Individual quantitative PCR (qPCR) assays have been extensively
31 used to detect enteropathogens within these types of samples, whereas the TaqMan Array Card (TAC)
32 that allows simultaneous detection of multiple enteropathogens has only previously been validated
33 in human clinical samples.

34 *Methods*

35 Here, we performed a comprehensive double-blinded comparison of the performance of a custom
36 TAC relative to standard qPCR for the detection of eight enteric targets, by using spiked samples,
37 wastewater from Melbourne (Australia), and human, animal, and environmental samples from
38 informal settlements in Suva, Fiji.

39 *Findings*

40 Both methods exhibited high and comparable specificity (TAC: 100%, qPCR: 94%), sensitivity (TAC:
41 92%; qPCR: 100%), and quantitation accuracy (TAC: 91%; qPCR: 99%) in non-inhibited sample
42 matrices. PCR inhibitors substantially impacted detection via TAC, though this issue was alleviated by
43 10-fold sample dilution. Among samples from informal settlements, the two techniques were
44 comparable for detection (89% agreement) and quantitation ($R^2 = 0.82$). The TAC additionally included
45 38 other targets, enabling detection of diverse faecal pathogens and extensive environmental
46 contamination that would be prohibitively labour intensive to assay by standard qPCR.

47 *Interpretation*

48 Overall, the two techniques produce comparable results across diverse sample types, with qPCR
49 prioritising greater sensitivity and quantitation accuracy, and TAC trading small reductions in these for
50 a cost-effective larger enteropathogen panel that enables a greater number of enteric pathogens to
51 be analysed concurrently, which is beneficial given the abundance and variety of enteric pathogens in
52 environments such as urban informal settlements. The ability to monitor multiple enteric pathogens
53 across diverse reservoirs in turn allows better resolution of pathogen exposure pathways, and the
54 design and monitoring of interventions to reduce pathogen load.

55 *Funding*

56 Wellcome Trust *Our Planet, Our Health* program [OPOH grant 205222/Z/16/Z].

57 **1. Introduction**

58 Diarrhoeal disease due to inadequate sanitation and poor water quality is a major public health issue
59 and the target of one of the United Nations Sustainable Development Goals (SDG 6). This problem
60 disproportionately affects lower- and middle-income countries, especially people living in urban
61 informal settlements.^{1,2} Approximately 500,000 children under the age of five die from diarrhoeal
62 disease each year,³⁻⁵ despite the potential to prevent an estimated 360,000 child deaths by
63 improvements to water, sanitation and hygiene (WASH).⁶ Various nondiarrhoeal pathogens, most
64 notably helminths, also contribute to enteric disease burden and malnutrition⁷. Moreover,
65 asymptomatic or subclinical carriage of various enteropathogens also impacts child growth.⁸ Recent
66 evidence has suggested that traditional household level WASH interventions such as pit latrines,
67 handwashing with soap, and chlorination of water deliver suboptimal reductions in enteric disease in
68 environments that are densely populated,⁹ highly contaminated¹⁰ or have a high prevalence of
69 diarrhoea.¹¹ This is likely due to the inability of these interventions to address the many pathways that
70 connect environmental enteropathogens to community residents. Humans, animals, and their
71 surrounding environments can serve as extensively interconnected reservoirs for enteropathogens.
72 Thus, unified 'One Health' and 'Planetary Health' approaches are needed to identify pathogen
73 exposure pathways and inform interventions that reduce pathogen load in the environment and in
74 turn reduce human exposure.¹²

75 Assessing the extent of enteropathogen contamination and the impact of new mitigating
76 interventions in urban informal settlements requires methods that can monitor several
77 enteropathogen species in a range of sample types. Screening for a large number of enteropathogens
78 is important, as multiple viruses, bacteria, protists and helminths are responsible for poor
79 gastrointestinal health and diarrhoeal disease^{13,14} and mixed infections are common.¹⁴ Additionally,
80 the relative contribution of individual pathogens to disease burden varies across settlements, within
81 a settlement over time, and between individuals. Interventions can also disrupt some transmission
82 pathways more effectively than others.¹⁰ The catch-all approach has traditionally been challenging
83 due to the large number of possible enteropathogens, with a simpler solution to rely on bacterial
84 indicator organisms to identify faecal contamination.^{15,16} However, faecal indicators do not correlate
85 well with pathogen abundance and distribution,¹⁷⁻²⁰ and reliance on indicators misses the complexities
86 of enteropathogen diversity and pathogen-specific impacts of an intervention. Thus, the development
87 of high-throughput molecular methods for enteropathogen screening of human, animal, and
88 environmental samples would remove the need to rely solely on faecal indicators and can provide a
89 comprehensive view of enteropathogen sources and diversity.

90 TaqMan quantitative PCR (qPCR) is a standard technique used across the human, animal, and
91 environmental health fields to detect and quantify pathogens based on amplification of a pathogen-
92 specific gene sequence.^{19,21-23} This technique can be readily used to quantify pathogenic bacteria,
93 viruses, protists, and helminths *in situ*, whereas alternative approaches such as selective cultivation,
94 amplicon sequencing, and metagenomic sequencing are variably challenging to implement for non-
95 bacterial targets. Moreover, given the ability to multiplex qPCR reactions and use 96-well and 384-
96 well plates to process many samples at a time, this technique is relatively efficient, cheap, and high-
97 throughput with respect to sample numbers. However, the price and labour time for screening many
98 samples for several pathogens can become high, given each additional pathogen target adds to the
99 cost of reagents, sample volume used, and preparation time. This can become prohibitive for
100 enteropathogen detection across human, animal, and environmental samples, where the number and
101 taxonomic diversity of enteropathogens contributing to the burden of disease may be high and is often
102 unknown.²⁴

103 The TaqMan Array Card (TAC), manufactured by Applied Biosystems, is a microfluidic card designed
104 to automate several TaqMan qPCR assays per sample. Originally designed for gene expression
105 experiments, TAC has been effectively repurposed for detection of large panels of pathogens,²⁵ with
106 successful application to human faecal,²⁶ blood,²⁷ cerebrospinal fluid,²⁸ and nasopharyngeal²⁹ samples.
107 Generally, the ability to efficiently detect large numbers of pathogens simultaneously is accompanied
108 by a loss of sensitivity compared to standard qPCR,^{30,31} though it is highly cost effective compared to
109 standard qPCR for the breadth of targets that can be detected. Several large multi-centre studies have
110 used TAC to study the aetiology of diarrhoeal disease.^{14,32} However, TAC has rarely been applied to
111 non-human samples, with only two studies to date using TAC to detect enteropathogens in food³³ and
112 environmental¹⁸ samples. The latter study showed that TAC can detect a wide range of pathogens in
113 soil and water samples from informal settlements in Kisumu, Kenya.¹⁸ However, the sensitivity,
114 specificity, and quantitation accuracy of TAC has not yet been extensively evaluated in environmental
115 samples in relation to the gold standard of qPCR. Thus, it is currently unclear whether the technique
116 presents a valid alternative to standard qPCR to monitor multiple enteropathogens across different
117 reservoirs.

118 In this study, we designed and evaluated a custom enteropathogen TAC that detects 46 different
119 pathogen marker and faecal indicator genes. We first comprehensively tested the specificity,
120 sensitivity, and accuracy of standard qPCR and TAC on a set of mock samples consisting of spiked
121 enteropathogen genomic DNA in different sample matrices varying in PCR inhibition levels. We
122 additionally tested both techniques on wastewater samples from Melbourne (Australia) and human
123 stool, animal scat, environmental water, potable water, and soil samples from informal settlements
124 in Suva, Fiji, where the diversity and prevalence of enteropathogens was not previously known.
125 Through this approach, we demonstrate that TAC enables the reliable monitoring of multiple
126 enteropathogens across environmental and host reservoirs.

127 **2. Materials and Methods**

128

129 **2.1. Spiked sample preparation and matrix testing**

130 Two sets of mock samples were prepared by spiking synthetic gene blocks (IDT, Australia) representing
131 eight enteropathogen genes (**Table 1**; **Table S1**). Dilution of gene blocks for addition to each test
132 matrix was conducted based on conversion of the measured nanograms of resuspended amplicon to
133 total gene copy number using the formula:

134 number of copies (molecules) =
$$\frac{X \text{ ng} * 6.0221 \times 10^{23} \text{ molecules/mole}}{(N * 660 \text{ g/mole}) * 1 \times 10^9 \text{ ng/g}}$$
 (1)

135 where X is the amount of measured amplicon (ng), N is the total length of dsDNA amplicon and 660
136 g/mole represents the average mass of 1 bp dsDNA. Set 1 consisted of 10 nuclease-free water samples
137 for comparison of method sensitivity and specificity. Three samples contained all eight targets at low
138 (10 copies/µl), medium (100 copies/µl), or high (1000 copies/µl) concentration; six samples contained
139 combinations of targets and concentrations; and one sample was a blank with no targets spiked.

140 Set 2 consisted of previously extracted Australian samples from different matrices to test the
141 performance of the two methods under varying levels of PCR inhibition. The 36 samples tested
142 included: nine wastewater samples with no gene blocks spiked; seven potable water samples spiked
143 with 200 copies/µl of each target; and five different combinations of low, medium and high spiked
144 targets in extracted DNA from each of four additional matrices (creek water, human stool, sediment
145 and DNA extraction blank). All standard qPCR assays were performed on undiluted purified genomic
146 DNA. As initial testing indicated that TAC reactions were inhibited for the wastewater and potable
147 water matrices, these samples were assayed with TAC undiluted, diluted 1:10, and diluted 1:20 with
148 nuclease-free water. Full details of the mock samples can be found in **Table S2**. All spiked samples
149 were double-blinded and two separate laboratories delivered the results; one for TAC and another for
150 standard qPCR.

151 **2.2. Fiji sample collection and processing**

152 Samples of child stool (n = 60), animal scats (n = 17), soil (n = 24), potable water (n = 10), and
153 environmental water (n = 10) were collected from informal settlements in Suva, Fiji as part of the
154 Revitalising Informal Settlements and their Environments (RISE) program (<https://www.rise-program.org>), a transdisciplinary research program and randomised controlled trial focused on
155 improving environmental and human health in urban informal settlements of Fiji and Indonesia.^{34,35}

157 Sixty child (< 5 year-old) stool samples were randomly selected for the current study from a total of
158 287 samples collected from 12 informal settlements during the period September 27 to November 8
159 2019. Samples were collected by the caregiver and stored at 4°C on frozen gel packs prior to transport
160 to the laboratory and storage at -80°C within 24-48 hours.

161 Twenty water samples were collected in clean, source-water rinsed disposable bottles from the
162 associated settlement. Potable water was run from local municipal water sources for 1 min prior to
163 direct collection of 2 L of sample. Riverine, freshwater and stormwater (environmental water) samples
164 were taken perpendicular from the bank and at an approximate depth of 0.15 m at each location. For
165 each potable and environmental water sample, 1 L was filtered where possible through five 0.22 µM
166 filters (Millipore). Where sediment prevented the passing of 1 L, a reduced volume was filtered until
167 a total of five filters were collected. Filters were stored at -80°C within food-grade sealable bags.

168 Soil samples were collected using a sterile tongue depressor to transfer 2 cm³ of material into food-
169 grade sealable bags. Total animal stools were collected and stored in the same manner, with visual
170 assessment of stool age to prevent collection of older “dry” samples. Material was placed at 4°C and
171 transferred to the laboratory within two to four hours of collection. Animal scats and soil samples
172 were homogenised (Stomacher 400 circulator, Seward) for 1 min at 250 × rpm and stored in 0.25 g
173 aliquots in sterile cryo-storage tubes at -80°C.

174 For child stool, animal scats and soil samples, total genomic DNA was isolated from 0.25 g of material
175 using the QIAGEN DNeasy PowerSoil Pro kit as per manufacturer’s instructions, and eluted in 50 µL of
176 sterile molecular grade water. For water samples, the filters were crushed within the bags and
177 transferred to the bead tubes with disposable spatulas for extraction with the QIAGEN DNeasy
178 PowerMax Soil kit with the following modifications: after the addition of buffer C1, the samples were
179 incubated at 65°C with shaking for 30 min at 200 rpm to lyse bacterial cells. The membranes were
180 incubated for 10 min at room temperature in 1.5 ml of nuclease-free water prior to elution in this
181 volume. Viral RNA is co-extracted with these kits. Extracted nucleic acid samples were frozen at -80°C
182 prior to ambient transfer and refrigeration upon receipt in Melbourne, Australia. Samples were
183 analysed by standard qPCR and TAC within one week without refreezing.

184 **2.3. Standard TaqMan qPCR detection**

185 Standard TaqMan qPCR assays were undertaken using primers and probes for eight target pathogens
186 (**Table 1**) under the PCR reaction and cycling conditions (40 cycles) described in US-EPA Method
187 1696.³⁶ The PCR was conducted on a Biorad CFX96 thermocycler (Biorad, USA). Standard curves were
188 prepared using the gene blocks (**Table S1**)³⁷ serially diluted 10-fold to achieve a five-point standard
189 curve ranging from 10⁵ to 10 copies/µL. Similarly, an internal amplification control gene block was
190 diluted to a final concentration of 50 copies/µL with 100 copies added to each 25 µL reaction to
191 indicate PCR inhibition.

192 Each 25 µL reaction contained 2 µL of either diluted standard gene block or sample genomic DNA.
193 Reactions were conducted in triplicate for each sample and standard. Six replicates of no template
194 controls were included on each run. The *Sketa22* assay described in Method 1696 was not performed
195 as salmon testes DNA was not added prior to sample extraction. Quality control, data analysis and
196 calculations were conducted as outlined in Method 1696³⁶ (using
197 https://www.epa.gov/sites/production/files/2019-04/methods-1696-1697-analysis-tool_march-2019.xlsm), to ensure acceptance thresholds were met for R² (standards), amplification efficiency (E),
198 no-template control (NTC), method blank, internal amplification control, and lower limit of
199 quantification (LLOQ). Relative fluorescence units (RFU) analysis was conducted to ensure a peak had
200 been generated for each target assay.
201

202 **2.4. TaqMan Array Card detection**

203 The custom TaqMan Array Card (TAC, Applied Biosystems) contained 48 singleplex assays (**Figure S1**;
204 **Table S3**), including the eight primer and probe sets used in the standard qPCR assays and the
205 manufacturer’s 18S rRNA control. Of the 47 custom assays, 40 have previously been validated on
206 TAC^{26,38} and the remaining seven were assays that have previously been published as individual
207 TaqMan qPCR assays under similar conditions.^{14,39-41} Cards were loaded with 100 µL of reaction mix
208 per port, containing 60 µL of AgPath-ID One-Step RT-PCR master mix (Applied Biosystems; 50 µL buffer,
209 4 µL enzyme mix and 6 µL nuclease-free water per port) mixed with 40 µL of sample nucleic acid.²⁶
210 Samples were diluted in nuclease-free water as necessary to allow a maximum of 1400 ng total nucleic
211 acid per port, and 8 samples were tested per card. Loaded cards were centrifuged and sealed as per

212 manufacturer's instructions, and run on a QuantStudio 7 Flex instrument (Applied Biosystems) under
213 the following cycling conditions: 45°C for 20 minutes, then 95°C for 10 minutes, followed by 45 cycles
214 of 95°C for 15 seconds and 60°C for 1 minute.²⁶

215 To calculate gene copies per microlitre, a standard curve was generated using synthetic plasmid
216 controls (GeneWiz) as described in Kodani and Winchell *et al.* (2012).⁴² Three plasmids were designed
217 with primer and probe sequences included in inserts of approximately 1 kb each (15-20 targets per
218 plasmid). If the primers or probe were degenerate, the sequence from the reference genome was
219 used. All three plasmid insert sequences are in **Dataset S1**. The three plasmid controls were combined
220 at equal concentrations and seven 10-fold serial dilutions were used to make the standard curve (7.2
221 × 10⁶ to 7.2 copies per microlitre). This positive control was run in triplicate with a no-template control
222 on each card. Cycle threshold (C_q) values were manually adjusted where necessary as below, with C_q
223 values exported to calculate a linear equation per target from the three replicates in R v3.6.2.⁴³ Note
224 that a standard curve could not be generated for the manufacturer's 18S rRNA control. The lower limit
225 of quantitation (LLOQ) was defined as the lowest dilution of the standard curve that was detectable
226 in all three replicates. For quality control, one of the plasmids (not containing the rotavirus target)
227 mixed with rotavirus A RNA was analysed with each new batch of master mix to test DNA polymerase
228 and reverse transcriptase activity. A no-template control was included once every 10 cards to monitor
229 reagent contamination.

230 TAC data were reviewed within the QuantStudio Real-Time PCR Software v1.3. Each multicomponent
231 plot was manually checked for amplification, and C_q threshold values were checked and manually
232 adjusted per target when the automatic threshold was inappropriate. Samples with very poor
233 amplification curves were considered negative results, and wells flagged with both BADROX and NOISE
234 or SPIKE, or another flag indicating a substantial issue with the well were omitted from analysis. C_q
235 values were exported and analysed in R v3.6.2⁴³ to calculate gene copies per microlitre of original
236 nucleic acid extract using the standard curve for each target. For the purpose of this method
237 comparison, all assays with a genuine amplification curve, regardless of C_q value, were considered
238 positive.

239 **2.5. Sensitivity and specificity analyses**

240 Sensitivity and specificity for both methods were calculated using the spiked samples as follows:

$$241 \text{Sensitivity} = \frac{\text{true positives detected}}{\text{total spiked positives (i.e. true positives + false negatives)}} \quad (2)$$

$$242 \text{Specificity} = \frac{\text{true negatives detected}}{\text{total non-spiked negatives (i.e. true negatives + false positives)}} \quad (3)$$

243 To assess quantitation accuracy, the percentage of assays that quantified gene copies per microlitre
244 within one \log_{10} of the spiked amount was calculated as follows:

$$245 |\log_{10}(\text{spiked copies}/\mu\text{l}) - \log_{10}(\text{measured copies}/\mu\text{l})| < 1 \quad (4)$$

246 For the second set of mock samples, specificity was not calculated because it was possible for spiked
247 targets to already be present in the samples (false positives could not be determined). Additionally,
248 samples with a background level of target detected by either method were excluded from the
249 quantitation accuracy calculations.

250 **2.6. Statistical analysis**

251 All statistical analyses were performed in R v3.6.2.⁴³ Cohen's κ statistic was calculated with the
252 kappa2() function from package irr v.0.84.1⁴⁴ to quantify agreement between standard qPCR and TAC

253 sensitivity. Wilcoxon's signed-rank test was applied with continuity correction using the `wilcox.test()`
254 function. R^2 values for concordance between measured qPCR and TAC gene copy numbers were
255 calculated with the `lm()` function using \log_{10} transformed copy numbers with a pseudocount of 1 to
256 accommodate values of 0. Graphics were created with `ggplot2 v3.3.2`.⁴⁵

257 **3. Results**

258

259 **3.1. Assay sensitivity and specificity under ideal conditions**

260 General assay sensitivity and specificity was tested using synthetic gene blocks of eight pathogen
261 markers spiked at different concentrations into nuclease-free water in ten different combinations (80
262 individual assays; **Table S2 & S4**). Across all assays, the sensitivity of TAC was slightly lower (92%) than
263 qPCR (100%). TAC performed well when detecting all eight targets at low concentration (10 copies/ μ l),
264 but sometimes failed to detect targets at this concentration when others were present at high (1000
265 copies/ μ l) concentration. Specificity was very high for both assays, with no false positives detected via
266 TAC (100%) and one false positive detected by qPCR (94%). Both methods quantified spiked targets
267 with variable accuracy in nuclease-free water, with TAC on average underestimating target abundance
268 by 1.73-fold and qPCR by contrast overestimated target abundance by 2.61-fold (**Figure 1; Table S4**).
269 Overall, 98.75% of all qPCR results within one log of the spiked concentration, compared to 91.25%
270 from TAC (**Table 2**). Most (5/7) of these differences from the TAC results were instances of low-copy
271 targets that were not detected by TAC. It should be noted that the layout of TACs prevent the
272 generation of a standard curve for each run and C_q thresholds are applied independently to each card.
273 However, minimal run-to-run variation was observed amongst the plasmid controls, with controls
274 providing very similar C_q values across cards; the lowest dilution, 7.2 gene copies per microlitre, was
275 the most variable and for some targets was not consistently detected. Altogether, these findings
276 suggest that TAC and qPCR perform comparably in inhibitor-free sample matrices.

277 **3.2. Assay performance in inhibited sample matrices**

278 The second set of test samples was used to determine the performance of each technique on samples
279 with varying levels of PCR inhibition (**Table S2 & S4**). For both methods, there was a reduction in
280 sensitivity (77.3% TAC and 89.2% qPCR of spiked targets detected) and quantitation accuracy (66.7%
281 TAC and 69.3% qPCR assays within one log of the spiked concentration) across all sample matrices
282 (**Table 2**). This decrease in performance compared to samples spiked in nuclease-free water (**Figure**
283 **1**) suggests both methods, especially TAC, are affected by PCR inhibitors. There was nevertheless much
284 variability in the relative performance of the two methods across different sample matrices and
285 pathogen targets. For example, while TAC underperformed relative to qPCR in spiked fluorinated
286 potable water samples, the converse was true for sediment samples. Likewise, while TAC detected
287 *Cryptosporidium* with higher accuracy, qPCR was more sensitive and accurate for detecting
288 *Campylobacter* (**Table 2**). TAC also detected a range of indicators and pathogens present in Melbourne
289 sewage and stormwater samples (**Figure 3**). TAC was more inhibited by this sample matrix than qPCR
290 and detected no targets (including universal 16S rRNA) in five of the eight samples. However, diluting
291 samples (1:10 and 1:20) greatly improved detection for all samples, resulting in 216-fold and 273-fold
292 increases in the number of targets detected respectively (**Table S5**). These results suggest that TAC is
293 generally, though not consistently, less sensitive and accurate than qPCR for sample matrices with
294 high inhibitor content. In common with previous findings,¹⁸ however, sample dilution greatly reduced
295 inhibition without compromising detection for moderately to highly abundant targets.

296 **3.3. Performance comparison with faecal and environmental samples from urban informal**
297 **settlements in Fiji**

298 A set of 121 samples from informal settlements in Fiji consisting of 60 child stool, 17 animal scats
299 (predicted to be primarily from dogs and ducks), 20 water (10 environmental, 10 potable) samples,
300 and 24 soil samples were analysed with TAC and standard qPCR. The nature and distribution of
301 enteropathogen contamination in this environment is relatively unknown, and this sampling effort
302 represents an initial insight into the baseline conditions of these settlements prior to the water and
303 sanitation intervention to be trialled by the RISE program.^{34,35} The full dataset containing measured
304 gene copies per microlitre is provided in **Table S6**. For the eight pathogen targets assayed by both
305 methods, the presence/absence concordance rate was high, with 89% of all assays in agreement
306 between both methods (Cohen's $\kappa = 0.619$) (**Figure 2a**). Of the remaining discordant 11%, 7%
307 represented a detection by qPCR that was not observed with TAC, and 4% a TAC detection missed by
308 qPCR; this indicates that the greater overall sensitivity of qPCR does not preclude the ability for TAC
309 to detect pathogens when qPCR does not. Only one sample (a child stool) was indicated to be
310 significantly inhibited by the qPCR *Bacteroides* internal amplification control; despite this, both
311 methods detected the *Bacteroides* faecal indicator.

312 For assays where both methods detected the target, quantitation is quite consistent with $R^2 = 0.815$
313 (**Figure 2b**). The distribution of measured quantities for targets detected by only one method is similar
314 on both axes, indicating that both qPCR and TAC can similarly detect targets that are missed by the
315 other method. The target quantities measured by the two methods were significantly different ($p =$
316 0.00006, Wilcoxon signed rank), which was driven by instances where a target at low concentration
317 was detected by one method and not the other (**Figure 2b**). When considering the concordance
318 between the techniques when a quantity was measured by both, differences in quantities were not
319 statistically significant ($p = 0.206$, Wilcoxon signed rank).

320 The pathogens detected in each sample type are shown in **Figure 2a**. All targets were found in at least
321 four samples. *Giardia* and enteropathogenic *E. coli* (EPEC; *eae* gene) were the most common of the
322 eight targets, whereas *Salmonella* and *Cryptosporidium* were found infrequently. Reflecting the
323 concordance rate, detections of each target in each sample type were similar. The generic faecal
324 indicator *Bacteroides* was detected more often by TAC than by qPCR, especially in child stool samples.
325 The major discrepancy in results was the reported detection of *Giardia* in several soil samples by qPCR
326 (quantified at 10-100 copies per microlitre of original sample), which were not detected by TAC. It is
327 possible that these hits are true positives that were not detected by TAC due to a combination of low
328 *Giardia* levels, sample dilution, and challenging detection in a soil matrix. However, it is also possible
329 that false positive detection underlies these issues given *Giardia* qPCRs accounted for the only false
330 positive detected in the spiking study (**Figure 1**) and thus further work is required to discriminate this.
331 Negative extraction controls were free of amplification, with the exception of a low concentration of
332 *Giardia* in the animal scat control (detected by both methods) and in the soil control (detected only
333 by qPCR).

334 **3.4. Detection of other pathogens by TAC**

335 In addition to the eight targets assayed via both methods, the custom TAC was designed to detect a
336 range of other viral, bacterial, protist, and helminth enteropathogen targets (**Figure S1; Table S3**). Of
337 the 48 targets on the card, 44 were detected at least once (39 pathogen targets, 3 faecal indicators, 2
338 controls); astrovirus, *S. enterica* serovar Typhi (Typhoid fever), *Necator americanus* (hookworm), and
339 *Cystoisospora belli* (isosporiasis) were not detected in any sample. Overall, most samples contained a
340 wide range of enteropathogens (**Figure 3**), with the exception of potable water which contained only
341 very low concentrations of human faecal indicators. Environmental water and animal scat samples
342 were the most rich in enteropathogens, with most samples containing more than eight pathogens and

343 ten targets (**Figure 3c**). Somewhat fewer pathogens were detected in child stool and soil (av. 2.8 and
344 2.2 pathogens per sample respectively, excluding faecal indicators).

345 The most prevalent enteropathogens across host and environmental reservoirs were
346 enteroaggregative *E. coli* (EAEC) and EPEC. All three target genes were commonly detected for EAEC
347 (*aaiC*, *aatA*, *aggR*), whereas the *eae* gene was detected more frequently than *bfpA* for EPEC (**Figure**
348 **2a**). Both markers of *Shigella flexneri* clade 6 (O-antigen, type 3 restriction enzyme) were also present
349 in 18 samples.¹⁴ *Giardia* and *Blastocystis* were common protists, with *Giardia* present at highest
350 concentrations in human stool (**Figure 2b**). Amongst helminths, the large roundworm *Ascaris* was
351 most common in human faecal samples, which is concordant with findings that this genus infects
352 approximately a sixth of the world's population.⁴⁶ In contrast, *Ancylostoma* and *Trichuris* were
353 predominant in animal faeces. Few helminths were detected in soil, but those that were present had
354 moderately high abundance (approximately 120-140 copies per ng of DNA). Viruses were less
355 prevalent overall; rotavirus and adenovirus F were most commonly detected, primarily in
356 environmental water, whereas norovirus GII was abundant in one stool sample (**Table S6**). Some other
357 targets, notably *Campylobacter* pan, *Entamoeba* pan, *Aeromonas*, and *Plesiomonas shigelloides*, were
358 abundant in environmental waters and other samples. However, they were infrequently found in child
359 stool.

360 TAC also detected a range of faecal indicators and other marker genes. The universal bacterial marker
361 16S rRNA was detected in most samples, absent in only one environmental water and all potable water
362 samples. Providing an estimate of total bacterial load, 16S rRNA quantities were highest in the human
363 faecal samples and lowest in environmental water. Aside from the universal 16S rRNA assay, the most
364 common target detected overall was human-associated *Lachnospiraceae*, a faecal marker detected in
365 the majority of child stool and environmental water samples. This suggests that *Lachnospiraceae* is a
366 useful faecal indicator in this population, in agreement with previous studies.^{39,47} CrAssphage, an
367 abundant bacteriophage of human *Bacteroides* and a proposed faecal indicator,^{41,48} was the least
368 common faecal indicator detected in individual stool samples, but was present in most of the
369 environmental water samples. These reportedly human-specific faecal indicators were also detected
370 in the animal scats, though to a lesser extent than in child stool (**Figure 2**).

371

372 **4. Discussion**

373 Until now, the TaqMan Array Card has been validated for pathogen detection in human clinical
374 samples,^{26,30,31} and has, to the best of our knowledge, been used in only two studies to date to detect
375 enteropathogens in non-human samples.^{18,33} In the current study, to evaluate the performance of TAC
376 compared to standard qPCR on environmental samples, we compared enteropathogen assays with
377 both techniques using spiked samples of known concentration, wastewater samples from Melbourne
378 (Australia), and a range of sample types collected from urban informal settlements in Fiji. We found
379 that the performance of TAC in environmental samples was comparable to standard qPCR with respect
380 to specificity, sensitivity, and quantitation accuracy in clean sample matrices. Nevertheless, TAC was
381 somewhat less sensitive than standard qPCR in detecting spiked targets in matrices with variable
382 inhibition. Both assays varied in quantitation accuracy depending on sample matrix and pathogen
383 target, with TAC underestimating abundance by 1.13-fold and qPCR overestimating abundance by
384 1.48-fold on average across the entire dataset of spiked samples. The capacity of TAC to efficiently
385 detect multiple enteropathogen targets potentially counterbalances these tradeoffs in sensitivity and
386 accuracy, given the benefits of monitoring a large array of enteropathogens in samples from heavily
387 contaminated environments. In addition, we show that TAC can effectively quantify enteric pathogens
388 across a range of environmental, human, and animal reservoirs, thereby providing a unified method
389 to monitor pathogen transmission pathways and evaluate public health interventions.

390 It can be expected that TAC would detect fewer targets per sample than qPCR. The smaller reaction
391 volume for TAC (approximately 1 µl compared to 20 µl standard qPCRs) means there is a reduced
392 chance that a reaction well contains a copy of a low-concentration target. Reduction in sensitivity has
393 been observed in previous comparisons between standard qPCR and TAC. For example, Kodani *et al.*
394 (2011) compared standard qPCR and TAC performance on respiratory specimens, and observed a
395 general 10-fold reduction in sensitivity with TAC; some assays had a greater drop in sensitivity while
396 others were as sensitive as standard qPCR.⁴⁹ Subsequent studies have also reported significant
397 reductions in sensitivity for TAC.^{30,31} Importantly, some of these previous standard qPCR/TAC
398 comparisons have evaluated the performance of TAC relative to the standard qPCR, rather than a side-
399 by-side comparison.^{31,49} This means that the sensitivity and accuracy of standard qPCR is assumed to
400 be 100% (as the gold standard), whereas that for TAC is reported as the percentage of assays that
401 agree with standard qPCR results. This may be a reasonable approach for diagnostics in clinical
402 samples, though our tests with spiked environmental sample matrices indicated that the performance
403 of standard qPCR is not optimal; this method overestimated target abundance overall, falsely detected
404 *Giardia* in at least one sample, and performed suboptimally in some matrices (e.g. fluorinated water,
405 sediment). By evaluating both methods independently, we provide a clearer view of how they each
406 perform in challenging sample types and demonstrate that they remain comparable.

407 TAC was generally more susceptible to inhibition by PCR inhibitors than standard qPCR in both the
408 spiked samples and Melbourne wastewater samples. However, sample dilution by 1:10 and 1:20 was
409 sufficient to alleviate this and yield strong amplification curves for a wide range of indicators and
410 pathogens. By contrast, we detected minimal inhibition in the stool, scat, soil, and water samples
411 extracted from the Fiji informal settlements with DNeasy kits, as verified by a standard qPCR internal
412 control. We recommend that environmental studies test for PCR inhibition prior to application of TAC
413 to enable appropriate changes in sample preparation, such as dilution, or re-extraction of samples
414 with optimised methods. For example, studies led by Baker¹⁸ and Tsai³³ initially screened for
415 inhibition with the QuantiFast pathogen kit and used 1:10 dilution to resolve it if present. Alternatively,
416 it is possible to introduce internal amplification controls on TAC. However, we elected not to include
417 one for this study due to the concern that the addition of control DNA would impact the detection of

418 other targets, as enteropathogens in real environmental samples were likely to be at low
419 concentrations and the reaction volume is minimal. Instead, we included a universal 16S rRNA target
420 in addition to the manufacturer's 18S rRNA control; failure of these targets to amplify indicates either
421 substantial inhibition or minimal sample biomass, which can be discriminated by quantifying DNA
422 through spectroscopic methods (e.g. Nanodrop, Qubit).

423 As both the TAC and qPCR approaches evaluated here both use the same fundamental method of
424 TaqMan qPCR to specifically target pathogen genes of interest, both techniques are excellent options
425 for environmental enteropathogen monitoring. As summarised in **Table 3**, they have different
426 strengths and limitations depending on purpose of their applications. Standard qPCR offers greater
427 sensitivity and the ease of running replicates to improve confidence in positive results and quantities,
428 while TAC is capable of detecting up to 47 custom targets across 8 samples in a minimally laborious
429 way, eliminating pipetting error, and greatly reducing the potential for assay contamination. It is,
430 however, important to consider the limitations of both methods. An overarching caveat is that TAC is
431 designed to provide the best overall result and will not be optimal for individual pathogens;
432 optimisation of assays is more easily done for standard qPCR. Quantitation is ideally performed using
433 a standard curve included on each run, with quality control measures associated with this.³⁶ As a TAC
434 standard curve can only occasionally be produced (requiring one whole card per replicate), the
435 quantitation is less stringent and standard curve-related quality control measures not applicable. We
436 demonstrated with spiked gene blocks that accurate quantitation with TAC is achievable, but the
437 assays that target ribosomal RNA will amplify an unknown number of gene copies per organism given
438 rRNA copy number variation.⁵⁰ Moreover, as the protocol involves a universal reverse transcription
439 step to detect RNA viruses, both gene and mRNA copies of all targets will be amplified. This makes it
440 challenging to accurately estimate the number of organisms per gram or millilitre of original sample,
441 but potentially boosts sensitivity. Some of the gene targets for bacterial pathogens assayed here are
442 encoded on plasmids, which can be of high copy number and hence further compromise quantitation.
443 Finally, an important consideration when interpreting qPCR-based pathogen detection is that it does
444 not indicate organism viability. Persistence of DNA from non-viable pathogens in the environment is
445 likely to vary by organism, and presence of DNA in stool samples without active clinical infection can
446 also complicate interpretation of results.⁵¹

447 In the context of assessing water and sanitation interventions in low-income contexts, however, a
448 consistent method measuring relative change over time without the need to calculate organism
449 numbers or identify aetiology is appropriate. We also included as many enteropathogen targets as
450 possible, with no replicates. Customising cards to include fewer targets in duplicate, for example, may
451 improve TAC sensitivity further. Liu *et al.* (2013) reported that almost half of low-concentration targets
452 spiked into stool were detected in only one of two replicates,²⁶ which is in agreement with the
453 variability in the lowest dilution of our TAC standard curve. The feasibility of reducing the number of
454 targets to introduce replicates is a trade-off dependent on the research project and the samples to be
455 screened, and it may be beneficial to have some assays also available via standard qPCR to confirm
456 ambiguous results or the presence of inhibition. Despite these limitations, we have shown TAC to
457 perform comparably and have several advantages over standard qPCR that encompass the ability to
458 scale up the number of targets with minimal impact on the amount of sample required, cost per
459 sample, risk of assay contamination and error, and overall ease-of-use.

460 We demonstrated that there is a diverse range of enteropathogens present in urban informal
461 settlements in Suva, Fiji, highlighting the utility of TAC in this setting. There was a high burden of
462 bacterial pathogens in human stools, particularly EAEC and EPEC, as well as wide range of bacterial,
463 protist, and helminth pathogens in environmental waters and animal scats. The inclusion and

464 detection of soil-transmitted helminths in both human and environmental samples on TAC is a
465 particularly important advance, as the standard methods for detection of such pathogens in stool
466 involve conventional microscopy (labour-intensive, subjective, and high-risk for the operator) or
467 serology (only viable for human-derived samples).⁵² Despite their transmission pathway, soil-
468 transmitted helminths were more common in human and animal faeces than in soil samples from Fiji.
469 The soil samples taken may not have been representative of helminth-contaminated areas, or
470 alternatively detection may have been influenced by the integrity of helminth eggs impeding DNA
471 extraction or the difficulties of detecting pathogens with low abundance in soil (demonstrated by our
472 mock samples) combined with the small volume of soil extracted. Regarding human faecal indicators,
473 *Lachnospiraceae* seems most suitable for this population as it was detected in the majority of faecal
474 samples. As the assay used has been validated as highly human-specific,³⁹ its presence in animal scats
475 suggests a close association between animals and people in these settings, or possibly
476 misidentification of scat origin. While *Bacteroides* and CrAssphage were less frequently detected in
477 individual child stools, all three indicators were common in environmental waters. Through RISE, we
478 are conducting further studies to understand the distribution and transmission of enteropathogens in
479 the Fiji sites, as well as the trial settlements in Makassar, Indonesia.³⁵

480 Conclusion

481 Techniques that can adequately monitor a range of enteropathogens in humans, animals and the
482 environment are required to assess water and sanitation improvements that aim to interrupt diverse
483 transmission pathways. The use of qPCR in the form of individual assays or via the TaqMan Array Card
484 enables direct detection of several enteropathogens in a range of sample types, bypassing reliance on
485 faecal indicator organisms. Our study is the first to our knowledge to evaluate the performance of a
486 custom TAC compared to standard qPCRs on human, animal, and environmental samples. We have
487 demonstrated that, in these challenging sample matrices, TAC is comparable to standard qPCR and is
488 a cost-effective, scalable, accurate, and easy to use alternative for multiple pathogens. Better
489 understanding of the distribution, transmission, and impacts of a broad range of enteropathogens
490 across environmental, human, and animal reservoirs is essential for improvements to public health
491 towards SDGs 3 and 6. Among various potential applications, this will be critical for informing and
492 evaluating future water and sanitation interventions in urban informal settlements, where the nature
493 and extent of enteropathogen contamination is poorly characterised and diverse. More broadly, this
494 technology enables unified approaches for surveying enteropathogens in populations and
495 environments, as well as resolving and interrupting their transmission pathways.

496 **5. Footnotes**

497 **Acknowledgements:** This work was primarily funded by the Wellcome Trust “Our Planet, Our Health”
498 grant 205222/Z/16/Z. It was also supported by an NHMRC EL2 Fellowship (APP1178715; salary for
499 C.G.), NHMRC Senior Research Fellowship (APP1155005; salary for K.L.) and NHMRC Equipment Grant
500 (awarded to K.L. and S.L.C.). We also thank Eric Houpt, Darwin Operario, James Platts-Mills, Bas Dutilh,
501 Ondrej Cinek, Brett Davis, Fiona Barker, and Sean Bay for helpful discussions. We thank David Rayner
502 for TaqMan Array Card technical support and advice, and Sarah Thomas and Julie Bines for providing
503 rotavirus RNA for quality control purposes. We acknowledge the hard work of the RISE field and
504 laboratory teams in Fiji and the broader team within the RISE program. Finally, we thank all study
505 participants in RISE.

506 **Author contributions:** Different authors were responsible for study conception (S.L.C., K.L., S.P.L.,
507 D.M., R.R.B., T.W., M.F.), experimental design (D.M., C.G., R.H., R.L., K.L., S.L.C., S.P.L., E.H., M.F.), field
508 sampling (R.H., D.M., J.O., J.J.O., S.P.L., A.T., A.T., C.S., A.L.), DNA extractions (C.G., T.J., L.B., R.H., D.M.,
509 C.S., E.H., A.L., J.J.O., J.O.), TaqMan array card setup and analysis (R.L., C.G., E.H., K.L., S.L.C., S.P.L.,
510 J.J.O.), qPCR setup and analysis (R.H., D.M., C.S.), statistical analysis (R.L., C.G.), paper writing (R.L.,
511 C.G., R.H., D.M.), and critical review and approval of the manuscript (all authors).

512 **Ethics information:** Ethics review and approval was provided by participating university and local IRBs,
513 including Monash University Human Research Ethics Committee (Melbourne, Australia; protocol
514 9396) and the College Human Health Research Ethics Committee (CHREC) at the Fiji Institute of Pacific
515 Health Research (FIPHR) and College of Medicine, Nursing, and Health Sciences at Fiji National
516 University (FNU) (Suva, Fiji; protocol 137.19). All study settlements, households, and
517 caregivers/respondents provide informed consent.

518 **Conflict of interest statement:** The authors declare no conflict of interest.

519 **6. References**

520 1 Riley LW, Ko AI, Unger A, Reis MG. Slum health: Diseases of neglected populations. *BMC Int Health Hum Rights* 2007; **7**: 2.

522 2 Nadimpalli ML, Marks SJ, Montealegre MC, *et al.* Urban informal settlements as hotspots of
523 antimicrobial resistance and the need to curb environmental transmission. *Nat Microbiol* 2020; **5**:
524 787–95.

525 3 Liu L, Oza S, Hogan D, *et al.* Global, regional, and national causes of under-5 mortality in 2000–15:
526 an updated systematic analysis with implications for the Sustainable Development Goals. *The Lancet* 2016; **388**: 3027–35.

528 4 Liu L, Oza S, Hogan D, *et al.* Global, regional, and national causes of child mortality in 2000–13,
529 with projections to inform post-2015 priorities: an updated systematic analysis. *The Lancet* 2015;
530 **385**: 430–40.

531 5 Kotloff KL, Nataro JP, Blackwelder WC, *et al.* Burden and aetiology of diarrhoeal disease in infants
532 and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a
533 prospective, case-control study. *The Lancet* 2013; **382**: 209–22.

534 6 Prüss-Ustün A, Bartram J, Clasen T, *et al.* Burden of disease from inadequate water, sanitation
535 and hygiene in low- and middle-income settings: a retrospective analysis of data from 145
536 countries. *Trop Med Int Health* 2014; **19**: 894–905.

537 7 Bethony J, Brooker S, Albonico M, *et al.* Soil-transmitted helminth infections: ascariasis,
538 trichuriasis, and hookworm. *The Lancet* 2006; **367**: 1521–32.

539 8 Rogawski ET, Liu J, Platts-Mills JA, *et al.* Use of quantitative molecular diagnostic methods to
540 investigate the effect of enteropathogen infections on linear growth in children in low-resource
541 settings: longitudinal analysis of results from the MAL-ED cohort study. *Lancet Glob Health* 2018;
542 **6**: e1319–28.

543 9 Bauza V, Madadi V, Ocharo R, Nguyen TH, Guest JS. Enteric pathogens from water, hands,
544 surface, soil, drainage ditch, and stream exposure points in a low-income neighborhood of
545 Nairobi, Kenya. *Sci Total Environ* 2020; **709**: 135344.

546 10 Rogawski McQuade ET, Platts-Mills JA, Gratz J, *et al.* Impact of Water Quality, Sanitation,
547 Handwashing, and Nutritional Interventions on Enteric Infections in Rural Zimbabwe: The
548 Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial. *J Infect Dis* 2020; **221**: 1379–86.

549 11 Null C, Stewart CP, Pickering AJ, *et al.* Effects of water quality, sanitation, handwashing, and
550 nutritional interventions on diarrhoea and child growth in rural Kenya: a cluster-randomised
551 controlled trial. *Lancet Glob Health* 2018; **6**: e316–29.

552 12 Whitmee S, Haines A, Beyrer C, *et al.* Safeguarding human health in the Anthropocene epoch:
553 report of The Rockefeller Foundation–Lancet Commission on planetary health. *The Lancet* 2015;
554 **386**: 1973–2028.

555 13 Troeger C, Blacker BF, Khalil IA, *et al.* Estimates of the global, regional, and national morbidity,
556 mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global
557 Burden of Disease Study 2016. *Lancet Infect Dis* 2018; **18**: 1211–28.

558 14 Liu J, Platts-Mills JA, Juma J, *et al.* Use of quantitative molecular diagnostic methods to identify
559 causes of diarrhoea in children: a reanalysis of the GEMS case-control study. *The Lancet* 2016;
560 **388**: 1291–301.

561 15 Pickering AJ, Ercumen A, Arnold BF, *et al.* Fecal Indicator Bacteria along Multiple Environmental
562 Transmission Pathways (Water, Hands, Food, Soil, Flies) and Subsequent Child Diarrhea in Rural
563 Bangladesh. *Environ Sci Technol* 2018; **52**: 7928–36.

564 16 Holcomb DA, Knee J, Sumner T, *et al.* Human fecal contamination of water, soil, and surfaces in
565 households sharing poor-quality sanitation facilities in Maputo, Mozambique. *Int J Hyg Environ
566 Health* 2020; **226**: 113496.

567 17 Korajkic A, McMinn BR, Harwood VJ. Relationships between Microbial Indicators and Pathogens
568 in Recreational Water Settings. *Int J Environ Res Public Health* 2018; **15**.
569 DOI:10.3390/ijerph15122842.

570 18 Baker KK, Senesac R, Sewell D, Sen Gupta A, Cumming O, Mumma J. Fecal Fingerprints of Enteric
571 Pathogen Contamination in Public Environments of Kisumu, Kenya, Associated with Human
572 Sanitation Conditions and Domestic Animals. *Environ Sci Technol* 2018; **52**: 10263–74.

573 19 Fuhrmeister ER, Ercumen A, Pickering AJ, *et al.* Predictors of Enteric Pathogens in the Domestic
574 Environment from Human and Animal Sources in Rural Bangladesh. *Environ Sci Technol* 2019; **53**:
575 10023–33.

576 20 Harwood VJ, Levine AD, Scott TM, *et al.* Validity of the Indicator Organism Paradigm for Pathogen
577 Reduction in Reclaimed Water and Public Health Protection. *Appl Environ Microbiol* 2005; **71**:
578 3163–70.

579 21 Aw TG, Rose JB. Detection of pathogens in water: from phylochips to qPCR to pyrosequencing.
580 *Curr Opin Biotechnol* 2012; **23**: 422–30.

581 22 Noble RT, Blackwood AD, Griffith JF, McGee CD, Weisberg SB. Comparison of Rapid Quantitative
582 PCR-Based and Conventional Culture-Based Methods for Enumeration of Enterococcus spp. and
583 Escherichia coli in Recreational Waters. *Appl Environ Microbiol* 2010; **76**: 7437–43.

584 23 Ishii S, Segawa T, Okabe S. Simultaneous Quantification of Multiple Food- and Waterborne
585 Pathogens by Use of Microfluidic Quantitative PCR. *Appl Environ Microbiol* 2013; **79**: 2891–8.

586 24 Ramírez-Castillo FY, Loera-Muro A, Jacques M, *et al.* Waterborne Pathogens: Detection Methods
587 and Challenges. *Pathogens* 2015; **4**: 307–34.

588 25 Heaney J, Rolfe K, Gleadall NS, Greatorex JS, Curran MD. Chapter 6 - Low-Density TaqMan® Array
589 Cards for the Detection of Pathogens. In: Sails A, Tang Y-W, eds. *Methods in Microbiology*.
590 Academic Press, 2015: 199–218.

591 26 Liu J, Gratz J, Amour C, *et al.* A Laboratory-Developed TaqMan Array Card for Simultaneous
592 Detection of 19 Enteropathogens. *J Clin Microbiol* 2013; **51**: 472–80.

593 27 Moore CC, Jacob ST, Banura P, *et al.* Etiology of Sepsis in Uganda Using a Quantitative Polymerase
594 Chain Reaction-based TaqMan Array Card. *Clin Infect Dis* 2019; **68**: 266–72.

595 28 Zhao C, Wang X, Zhang C, *et al.* Development of a TaqMan Array card to target 21 purulent
596 meningitis-related pathogens. *BMC Infect Dis* 2019; **19**: 289.

597 29 Steensels D, Reynders M, Descheemaeker P, *et al.* Performance evaluation of direct fluorescent
598 antibody, Focus Diagnostics Simplexa™ Flu A/B & RSV and multi-parameter customized
599 respiratory Taqman® array card in immunocompromised patients. *J Virol Methods* 2017; **245**: 61–
600 5.

601 30 Harvey JJ, Chester S, Burke SA, *et al.* Comparative analytical evaluation of the respiratory TaqMan
602 Array Card with real-time PCR and commercial multi-pathogen assays. *J Virol Methods* 2016; **228**:
603 151–7.

604 31 Weinberg GA, Schnabel KC, Erdman DD, *et al.* Field evaluation of TaqMan Array Card (TAC) for the
605 simultaneous detection of multiple respiratory viruses in children with acute respiratory infection.
606 *J Clin Virol* 2013; **57**: 254–60.

607 32 Platts-Mills JA, Liu J, Rogawski ET, *et al.* Use of quantitative molecular diagnostic methods to
608 assess the aetiology, burden, and clinical characteristics of diarrhoea in children in low-resource
609 settings: a reanalysis of the MAL-ED cohort study. *Lancet Glob Health* 2018; **6**: e1309–18.

610 33 Tsai K, Simiyu S, Mumma J, *et al.* Enteric Pathogen Diversity in Infant Foods in Low-Income
611 Neighborhoods of Kisumu, Kenya. *Int J Environ Res Public Health* 2019; **16**: 506.

612 34 Brown R, Leder K, Wong T, *et al.* Improving human and environmental health in urban informal
613 settlements: the Revitalising Informal Settlements and their Environments (RISE) programme.
614 *Lancet Planet Health* 2018; **2**: S29.

615 35 Leder K, Openshaw J, Allotey P, *et al.* Study design, rationale and methods of the Revitalising
616 Informal Settlements and their Environments (RISE) study: a cluster randomised controlled trial to
617 evaluate environmental and human health impacts of a water sensitive intervention in informal
618 settlements in Indonesia and Fiji. *BMJ Open* 2020; (**submitted**).

619 36 United States Environmental Protection Agency. Method 1696: Characterization of Human Fecal
620 Pollution in Water by HF183/BacR287 TaqMan® Quantitative Polymerase Chain Reaction (qPCR)
621 Assay (EPA 821-R-19-002). 2019; published online March.
622 https://www.epa.gov/sites/production/files/2019-03/documents/method_1696_draft_2019.pdf.

623 37 Conte J, Potocznak MJ, Tobe SS. Using synthetic oligonucleotides as standards in probe-based
624 qPCR. *BioTechniques* 2018; **64**: 177–9.

625 38 Liu J, Gratz J, Amour C, *et al.* Optimization of Quantitative PCR Methods for Enteropathogen
626 Detection. *PLOS ONE* 2016; **11**: e0158199.

627 39 Feng S, Bootsma M, McLellan SL. Human-Associated Lachnospiraceae Genetic Markers Improve
628 Detection of Fecal Pollution Sources in Urban Waters. *Appl Env Microbiol* 2018; **84**: e00309-18.

629 40 Green HC, Haugland RA, Varma M, *et al.* Improved HF183 Quantitative Real-Time PCR Assay for
630 Characterization of Human Fecal Pollution in Ambient Surface Water Samples. *Appl Env Microbiol*
631 2014; **80**: 3086–94.

632 41 Stachler E, Kelty C, Sivaganesan M, Li X, Bibby K, Shanks OC. Quantitative CrAssphage PCR Assays
633 for Human Fecal Pollution Measurement. *Environ Sci Technol* 2017; **51**: 9146–54.

634 42 Kodani M, Winchell JM. Engineered Combined-Positive-Control Template for Real-Time Reverse
635 Transcription-PCR in Multiple-Pathogen-Detection Assays. *J Clin Microbiol* 2012; **50**: 1057–60.

636 43 R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
637 Foundation for Statistical Computing, 2019 <https://www.R-project.org/>.

638 44 Gamer M, Lemon J, Fellows I, Singh P. irr: Various Coefficients of Interrater Reliability and
639 Agreement. 2019 <https://CRAN.R-project.org/package=irr>.

640 45 Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016
641 <https://ggplot2.tidyverse.org>.

642 46 Dold C, Holland CV. Ascaris and ascariasis. *Microbes Infect* 2011; **13**: 632–7.

643 47 Newton RJ, VandeWalle JL, Borchardt MA, Gorelick MH, McLellan SL. Lachnospiraceae and
644 Bacteroidales Alternative Fecal Indicators Reveal Chronic Human Sewage Contamination in an
645 Urban Harbor. *Appl Environ Microbiol* 2011; **77**: 6972–81.

646 48 Edwards RA, Vega AA, Norman HM, *et al*. Global phylogeography and ancient evolution of the
647 widespread human gut virus crAssphage. *Nat Microbiol* 2019; **4**: 1727–36.

648 49 Kodani M, Yang G, Conklin LM, *et al*. Application of TaqMan Low-Density Arrays for Simultaneous
649 Detection of Multiple Respiratory Pathogens. *J Clin Microbiol* 2011; **49**: 2175–82.

650 50 Klappenbach JA, Dunbar JM, Schmidt TM. rRNA Operon Copy Number Reflects Ecological
651 Strategies of Bacteria. *Appl Environ Microbiol* 2000; **66**: 1328–33.

652 51 Platts-Mills JA, Operario DJ, Houpt ER. Molecular Diagnosis of Diarrhea: Current Status and Future
653 Potential. *Curr Infect Dis Rep* 2012; **14**: 41–6.

654 52 Khurana S, Sethi S. Laboratory diagnosis of soil transmitted helminthiasis. *Trop Parasitol* 2017; **7**:
655 86–91.

656

657 **Tables**

658 **Table 1.** TaqMan qPCR assays used for detection by standard qPCR and custom TaqMan Array Cards.

Organism	Targeted gene	Forward primer (5' to 3')	Reverse primer (5' to 3')	TaqMan probe (standalone qPCR) ^a
<i>Campylobacter jejuni / coli</i>	<i>cadF</i>	CTGCTAAACCATA GAAATAAAATTCT CAC	CTTGAAAGGTAATT TAGATATGGATAA TCG	5'HEX- CATTGACGATTTGG CTTGA-3'MGB
<i>Salmonella enterica</i>	<i>invA</i>	TCGGGCAATTGTT ATTGG	GATAAACTGGACC ACGGTGACA	5'FAM- AAGACAACAAACCCAC CGC-3'MGB
Shiga toxin-producing <i>Escherichia coli</i> (STEC)	<i>stx1</i>	ACTTCTGACTGCA AAGACGTATG	ACAAATTATCCCCT GWGCCACTATC	5'Texas Red- CTCTGCAATAGGTACTCC A-3'MGB
STEC	<i>stx2</i>	CCACATCGGTGTCT GTTATTAACC	GGTCAAAACGCGC CTGATAG	5'FAM- TTGCTGTGGATATACGA GG-3'MGB
Enteropathogenic <i>E. coli</i> (EPEC)	<i>eae</i>	CATTGATCAGGATT TTTCTGGTGATA	CTCATGCGGAAT AGCCGTTA	5'FAM- ATACTGGCGAGACTATT CAA-3'MGB
<i>Cryptosporidium</i>	18S rRNA	GGGTTGTATTATT AGATAAAGAACCA	AGGCCAATACCC ACCGTCT	5'FAM- TGACATATCATTCAAGTT TCTGAC-3'MGB
<i>Giardia</i>	18S rRNA	GACGGCTCAGGAC AACGGTT	TTGCCAGCGGTGT CCG	5'HEX- CCCGCGGCGGTCCCTGC TAG-3'MGB
<i>Bacteroides</i>	16S rRNA	ATCATGAGTTCACA TGTCCG	CTTCCTCTCAGAAC CCCTATCC	5'FAM- CTAATGGAACGCATCCC- 3'MGB
Internal amplification control ^b	16S rRNA	ATCATGAGTTCACA TGTCCG	CTTCCTCTCAGAAC CCCTATCC	5'VIC- AACACGCCGTTGCTACA- 3'MGB

659 ^a TaqMan Array Card probes were identical with the exception of the fluorophore (all TAC probes
660 were 5'FAM 3'MGB).

661 ^b Internal amplification control targets *Bacteroides* and was applied to standalone qPCR assays only.

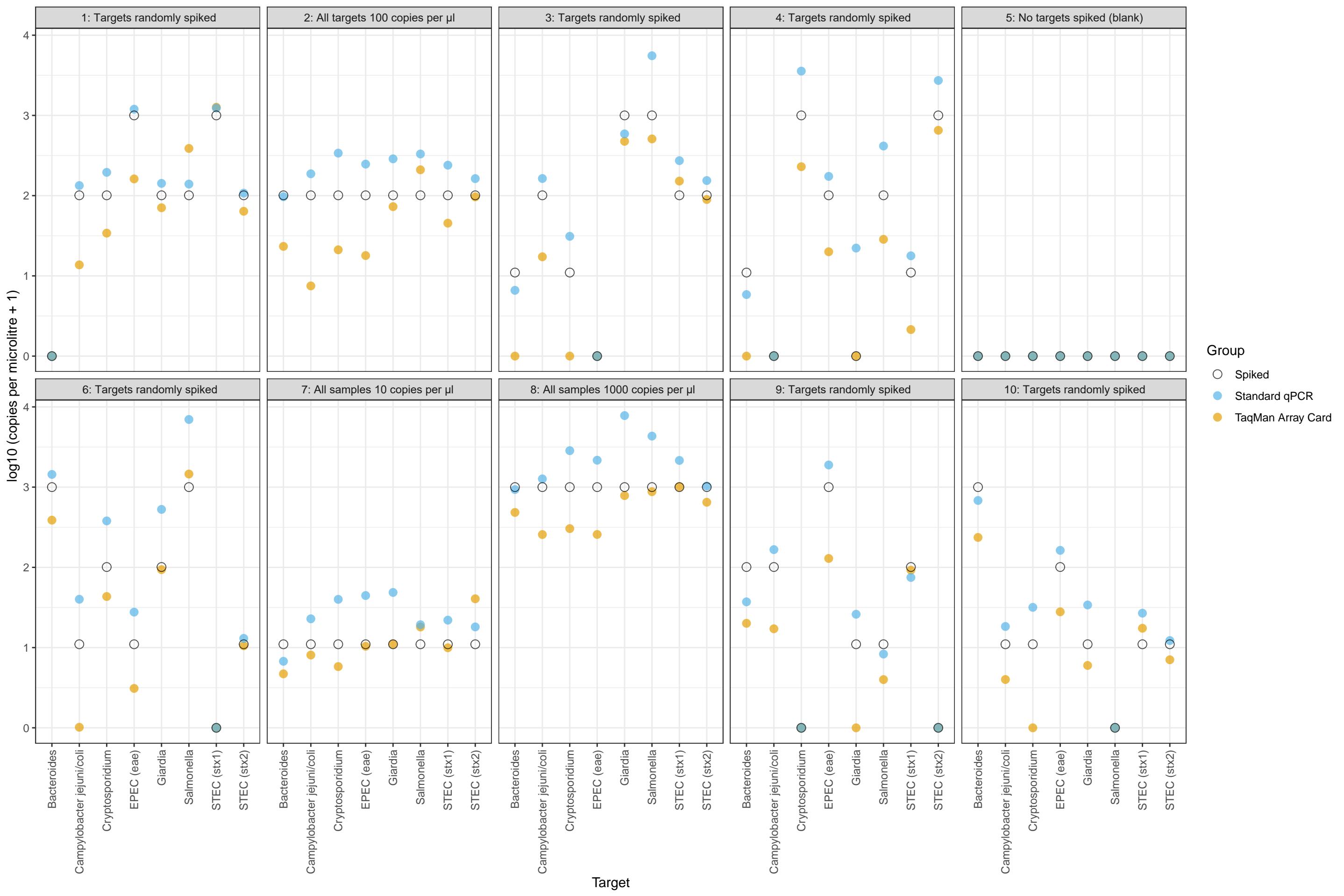
662 **Table 2.** Performance of TAC and qPCR on spiked samples in sample matrices varying in levels of PCR
663 inhibitors. Results are shown by sample matrix and by target. Sensitivity is defined as the percentage
664 of spiked targets that were detected. Accuracy is measured as percentage of assays within one \log_{10}
665 of the spiked concentration; assays where background levels of pathogen were detected by qPCR or
666 TAC are excluded from these calculations.

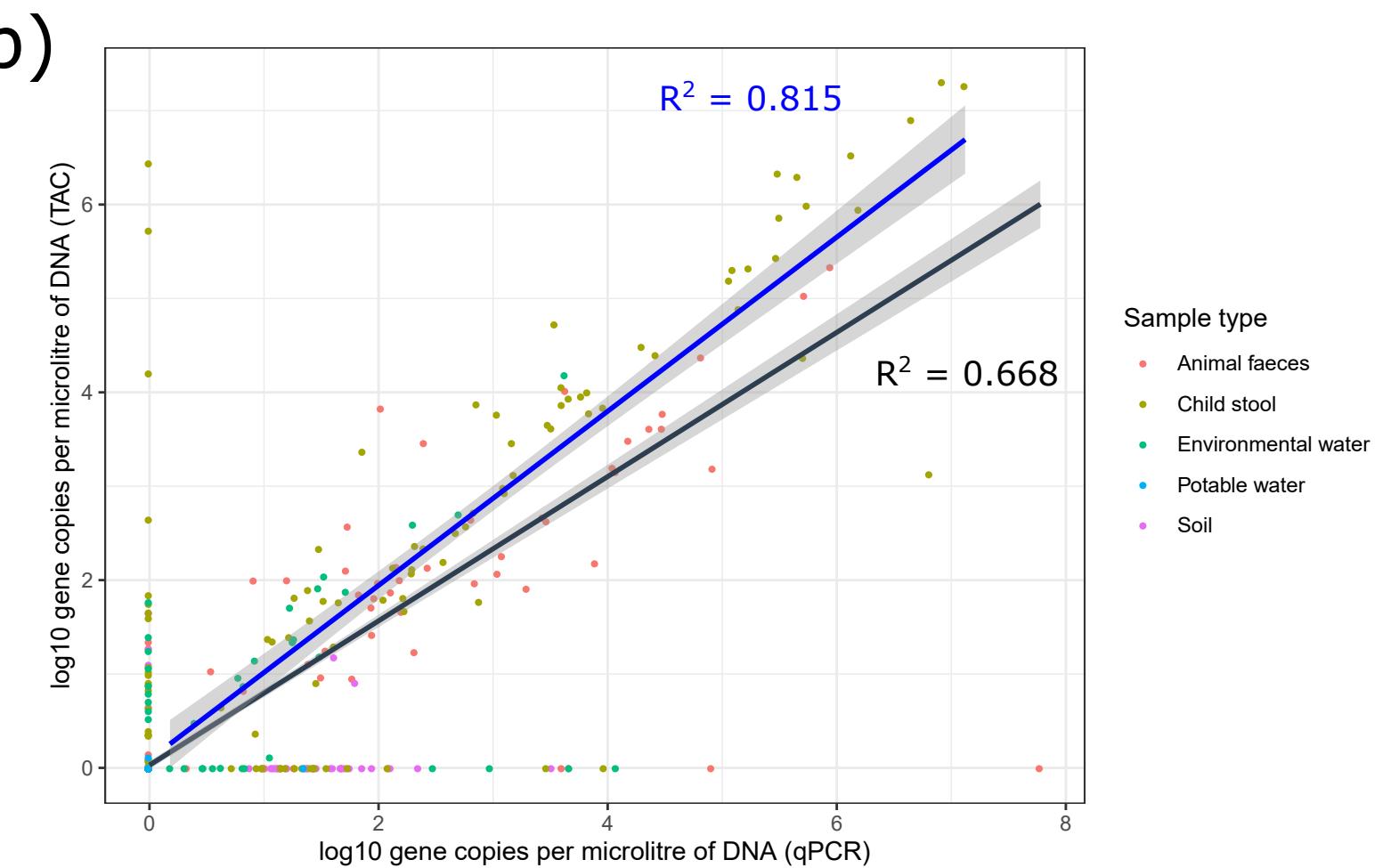
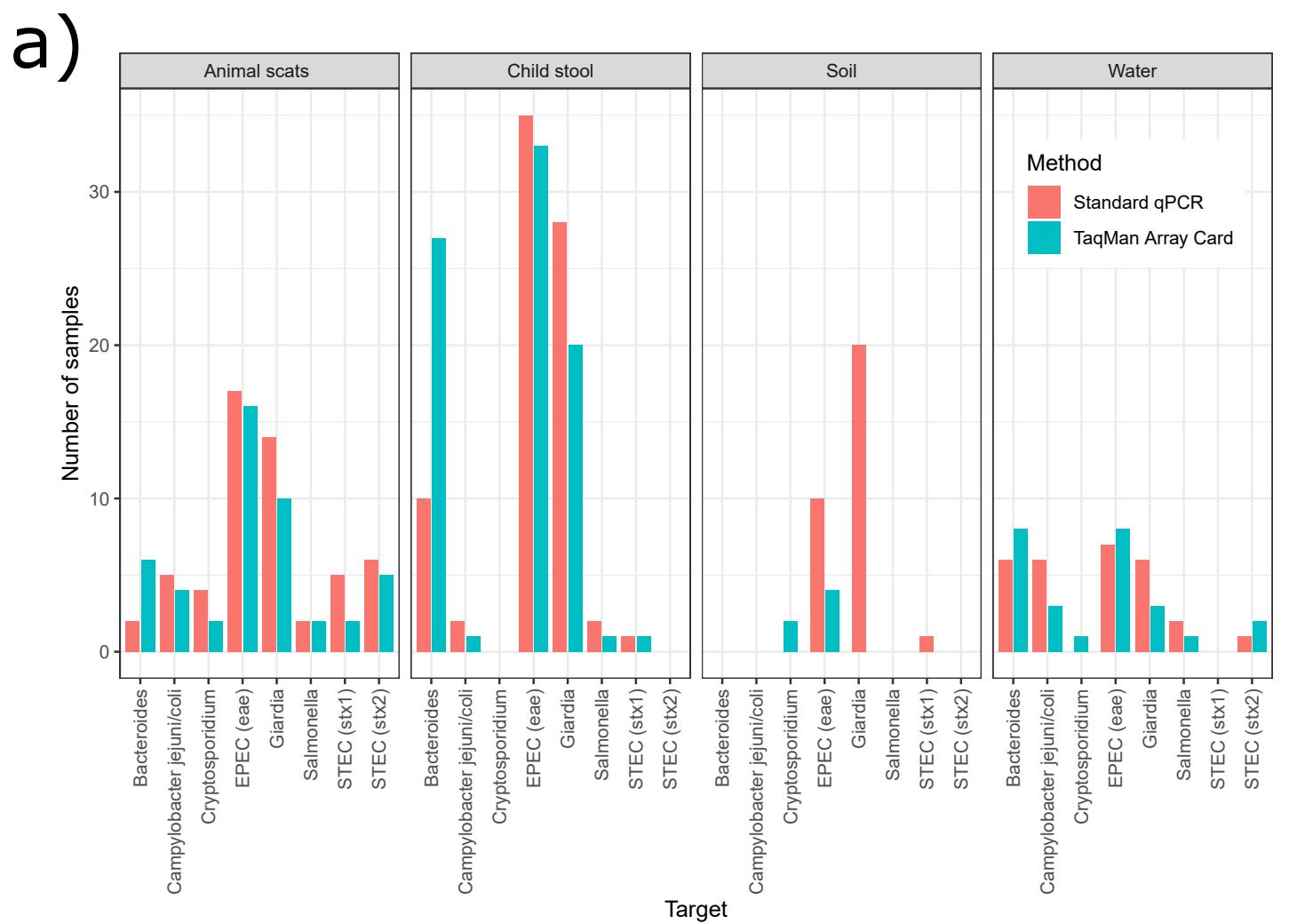
667

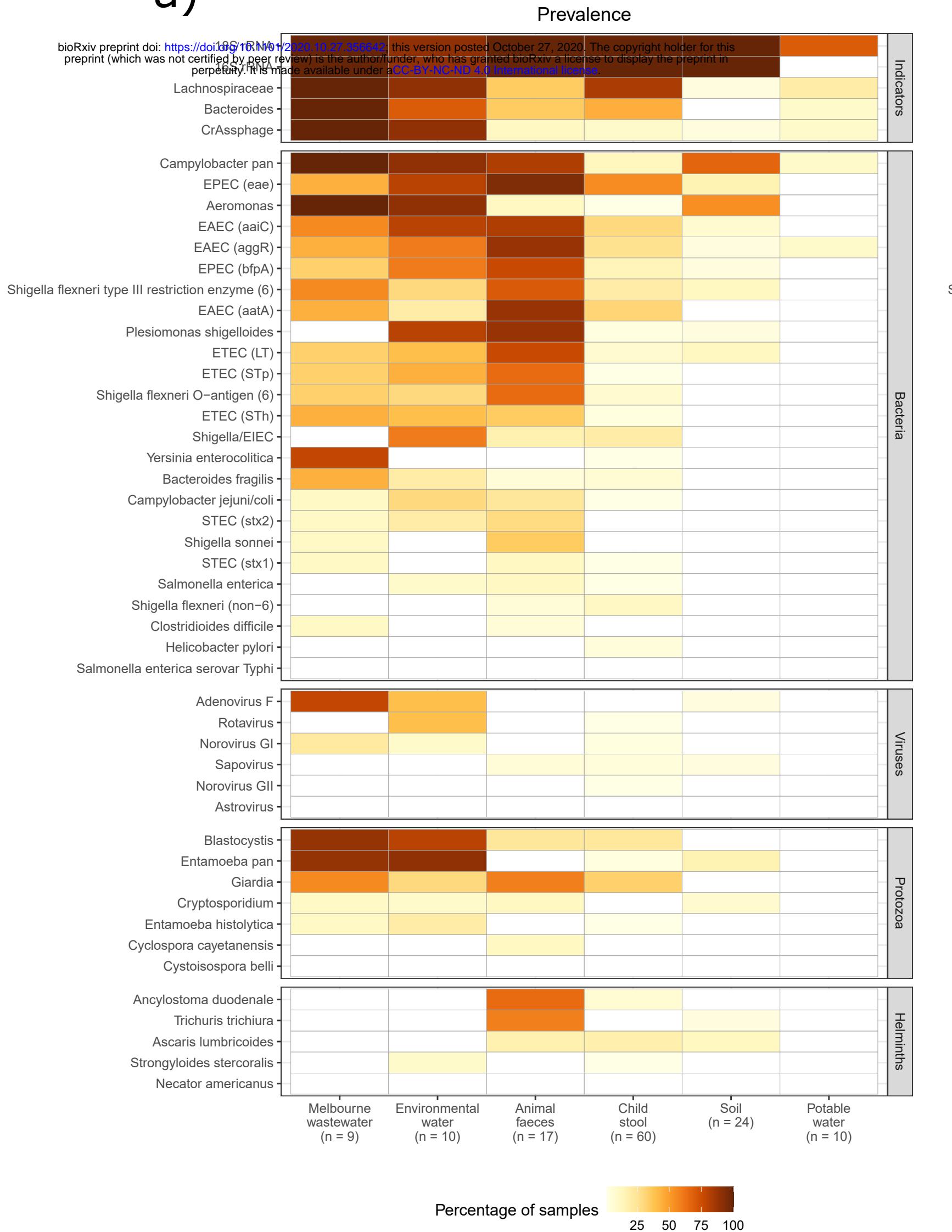
Sample matrix	Sensitivity (TAC, %)	Sensitivity (qPCR, %)	Accuracy (TAC, %)	Accuracy (qPCR, %)
Nuclease-free water	92.2	100	91.3	98.8
Creek water	93.3	96.7	80.0	80.0
Sediment	60.0	56.7	42.5	30.0
Human stool	83.3	96.7	80.0	90.0
Fluorinated potable water	71.4	94.6	62.5	73.2
Extraction blank	83.3	96.7	80.0	82.5
Target				
<i>Bacteroides</i>	85.2	85.2	81.5	85.2
<i>Campylobacter jejuni / coli</i>	77.4	87.1	48.6	78.4
<i>Cryptosporidium</i>	77.4	90.3	70.3	54.1
EPEC (<i>eae</i>)	74.2	90.3	73.0	78.4
<i>Giardia</i>	90.3	96.8	81.5	81.5
<i>Salmonella</i>	83.9	96.8	78.1	68.8
STEC (<i>stx1</i>)	85.2	96.3	87.5	90.6
STEC (<i>stx2</i>)	77.4	93.5	78.4	91.9

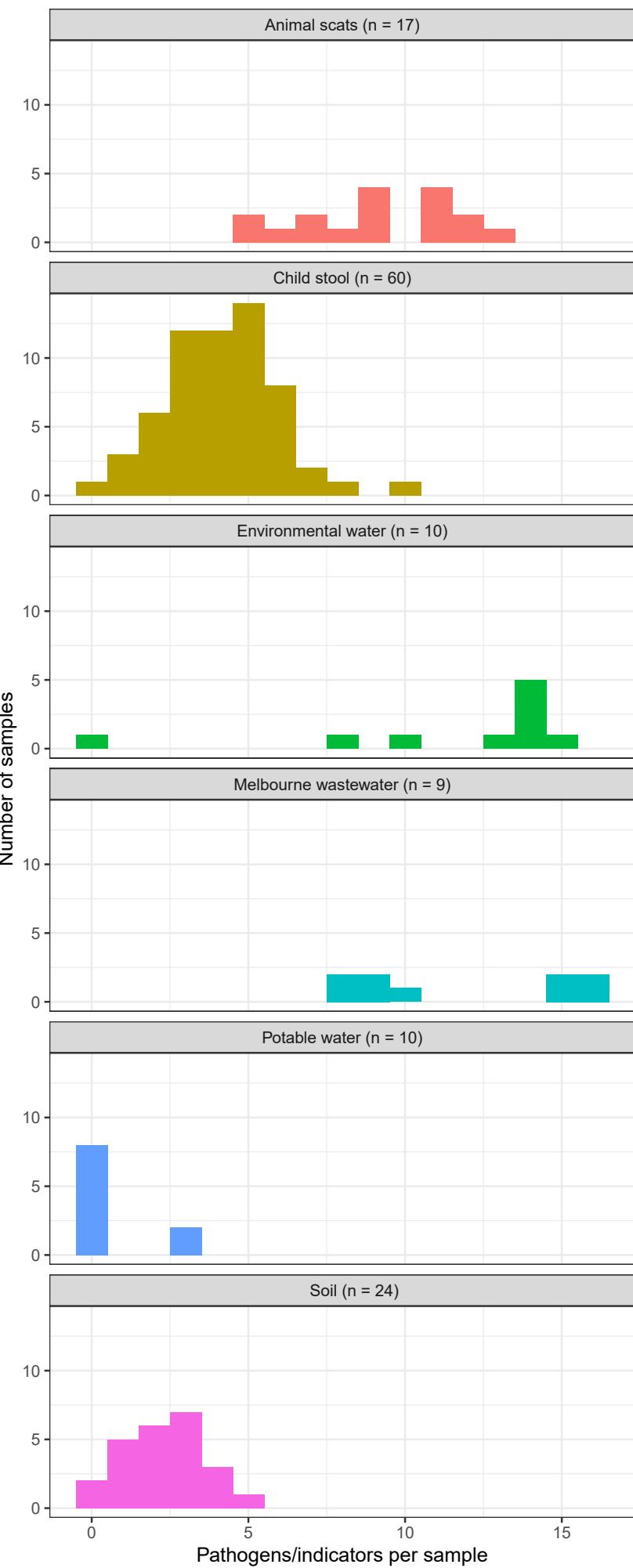
668

669 **Table 3.** Comparison of TAC vs qPCR for monitoring multiple pathogens.


Method	Quantitative PCR (qPCR) and reverse transcriptase qPCR (RT-qPCR)	TaqMan Array Cards (TAC)
Target range	Narrow target range: Individually detects any target of interest with appropriately optimised primers/probes. However, adding additional targets requires extra sample volume, labour, cost, and plastic waste. Assays can be multiplexed (detection of multiple targets in one reaction) with careful optimisation.	Broad target range: Simultaneously detects up to 47 targets and 1 internal control across 8 samples. Assays require careful card design and manufacture with appropriate lead-time. Optimisation may be required for target quantitation under universal conditions on the card.
Sensitivity / accuracy	High sensitivity and accuracy: Theoretical detection limit is approximately three gene copies per reaction. Pathogen quantitation possible with appropriate reference standards. PCR inhibition possible, but can be readily monitored with controls.	High sensitivity / medium accuracy: Sensitivity high but often lower than qPCR given smaller reaction volume and universal reaction conditions. Pathogen quantitation possible with reference standards, but generally requires comparisons between cards. Quantitation also challenging due to co-detection of DNA and RNA due to universal reverse transcriptase step to detect RNA viruses. Greater potential for PCR inhibition.
Specificity	High specificity: Well-designed TaqMan primer and probe sequences are very specific.	High specificity: Same TaqMan technology as standard qPCR.
Scalability	Moderate scalability: Extensive manual handling with large numbers of samples and/or pathogens. Large sample numbers require high labour time or robotics. Increased sample numbers require greater sample volume and produce more waste. High potential for pipetting errors.	High scalability: Simple and moderately fast (~3 hours) to prepare and run from extracted nucleic acids. Labour time is minimal given the few manual handling tasks required, though increases per card (eight samples). Low potential for pipetting errors.
Cost	Low cost per sample: Low reagent cost per sample (approximately USD \$2.10 for one pathogen without replicates). Small cost increase with more samples, but large increase with more targets (double the labour and reagents cost for two targets).	Low cost per pathogen: Moderate reagent cost per sample (approx. USD \$60). However, highly cost effective for monitoring multiple targets per sample (approx. USD \$1.28 per sample per target without replicates).
Resources	Moderate resources: Requires real-time thermal cycler. Training for molecular biology, equipment use, and software required.	Moderate resources: Requires real-time thermal cycler with array card block. Training needed for molecular biology, equipment, and software.



671 **Figure legends**




672 **Figure 1.** Quantitation of spiked genetic material in nuclease-free water by TAC and standard qPCR. Ten
673 different combinations of spiked material were tested in a randomised double-blinded manner. Targets
674 were either: spiked randomly in different combinations (samples 1, 3, 4, 6, 9, 10); spiked at consistent
675 concentrations of 10 (sample 7), 100 (sample 2), or 1000 (sample 8) copies per microlitre; or not spiked
676 at all (sample 5; a blank control). For each target, the quantity of material spiked (white circle), the copies
677 detected by standard qPCR (blue circle), and the copies detected by TAC (yellow circle) are shown.

678 **Figure 2. Concordance between standard qPCR and TAC in detecting pathogens in animal scats, child
679 stool, soil, and water collected from informal settlements of Suva, Fiji.** Agreement between the methods
680 with respect to **a**) the number of positive detections of targets and **b**) the measured target quantity in
681 \log_{10} gene copies per microlitre of extracted DNA (with a pseudocount of 1 added before \log_{10}
682 transformation). The regression lines with associated 95% confidence intervals are shown for the subset
683 of data where a target was quantified by both methods (blue, $R^2 = 0.815$). Across all data points, $R^2 =$
684 0.668 (black).

685 **Figure 3. Pathogen and indicator targets detected via TaqMan Array Card in Melbourne wastewater
686 samples and animal scats, child stool, soil, and water collected from informal settlements of Suva, Fiji.**
687 Heatmaps represent the **a**) prevalence (percentage of positive samples) and **b**) abundance (mean value
688 of \log_{10} gene copies per nanogram of DNA across positive samples) of each target by sample type. White
689 represents a zero value, and 18S rRNA quantitation was unavailable. The number of pathogens or
690 indicators detected per sample is represented by **c**) histograms, also by sample type. This excludes 16S
691 rRNA and 18S rRNA and counts pathogens with multiple gene targets once.

a)**b)****c)**