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Abstract 11 

Disinfection strategies are commonly applied to inactivate pathogenic viruses in water, food, air, 12 

and on surfaces to prevent the spread of infectious diseases. Determining how quickly viruses are 13 

inactivated to mitigate health risks is not always feasible due to biosafety restrictions or difficulties 14 

with virus culturability. Therefore, methods that would rapidly predict kinetics of virus 15 

inactivation by UV254 would be valuable, particularly for emerging and difficult-to-culture viruses. 16 

We conducted a rapid systematic literature review to collect high-quality inactivation rate 17 

constants for a wide range of viruses. Using these data and basic virus information (e.g., genome 18 

sequence attributes), we developed and evaluated four different model classes, including linear 19 

and non-linear approaches, to find the top performing prediction model. For both the (+) ssRNA 20 

and dsDNA virus types, multiple linear regressions were the top performing model classes. In both 21 

cases, the cross-validated root mean squared relative prediction errors were similar to those 22 

associated with experimental rate constants. We tested the models by predicting and measuring 23 

inactivation rate constants for two viruses that were not identified in our systematic review, 24 

including a (+) ssRNA mouse coronavirus and a dsDNA marine bacteriophage; the predicted rate 25 

constants were within 7% and 71% of the experimental rate constants, respectively. Finally, we 26 

applied our models to predict the UV254 rate constants of several viruses for which high-quality 27 

UV254 inactivation data are not available. Our models will be valuable for predicting inactivation 28 

kinetics of emerging or difficult-to-culture viruses.29 
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Introduction 30 

Viruses can cause diverse and costly illnesses in humans and other animals (1). A variety 31 

of approaches have therefore been developed to decontaminate food, water, air, and surfaces that 32 

may contain infective viruses (2–7). UV254 treatment, in particular, is gaining popularity as an 33 

alternative to more traditional chemical disinfection strategies (8–10). Viruses can have highly 34 

variable UV254 susceptibilities (11, 12). For example, two dsDNA viruses, adenovirus type 40 and 35 

bacteriophage T6, are inactivated by UV254 at the widely varying rates of ~ 0.06 cm2 mJ-1 (13–18) 36 

and ~ 5.4 cm2 mJ-1 (19), respectively. 37 

Viruses have diverse genome types, including double-stranded RNA (dsRNA), single-38 

stranded RNA (ssRNA), double-stranded DNA (dsDNA), and single-stranded DNA (ssDNA). 39 

UV254 inactivates by primarily targeting viral genetic material, and the different biochemical 40 

structures associated with these viral genome types result in distinct sensitivities to UV254 (20). 41 

Nucleic acid primary structure, or nucleotide base sequence, also affects UV254 genome reactivity 42 

– pyrimidine bases, for instance, are about an order of magnitude more reactive with UV254 than 43 

purine bases (21, 22). Different replication modes among viruses can also impact susceptibility to 44 

UV254. For example, the reverse transcriptase enzymes involved in generation of retrovirus mRNA 45 

may have different fidelities to photochemical modifications in nucleic acid compared to the RNA 46 

dependent RNA polymerase enzymes used by other RNA viruses to synthesize mRNA (23). 47 

Additional differences in viral infection cycles impact virus sensitivity to UV254 (24). dsDNA virus 48 

genomes, for example, can undergo nucleic acid repair once inside host cells (24–26). This means 49 

that a virus may be inactivated by UV254 treatment through base modification, only to be repaired 50 

and thus rendered infectious again when such repair mechanisms are available. We note these 51 
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differences in virus genome type and mode of mRNA generation are utilized in the Baltimore virus 52 

classification system (e.g., Group 1: dsDNA viruses, Group IV: (+) ssRNA viruses) (1, 27). 53 

Virus disinfection methods are evaluated by enumerating infective viruses before and after 54 

treatment, typically with virus culture systems. Relying on culture-based approaches to evaluate 55 

inactivation kinetics is often problematic. Most notably, many human viruses that are spread 56 

through the environment are not readily culturable. For highly pathogenic viruses that are 57 

culturable, disinfection experiments are complicated by biosafety restrictions. Disinfection 58 

experiments with severe acute respiratory syndrome (SARS) coronaviruses (SARS-CoV-1 and 59 

SARS-CoV-2), for example, are limited to biosafety level 3 laboratories and work with 60 

ebolaviruses require biosafety level 4 facilities. Alternative approaches for determining virus 61 

inactivation kinetics would be valuable, especially for difficult-to-culture and emerging viruses. 62 

Earlier studies have worked towards a predictive manner of evaluating UV254 virus inactivation 63 

based on virus attributes (28, 29). Recently developed modeling strategies, an improved 64 

understanding of virus UV254 inactivation mechanisms, and additional high-quality inactivation 65 

data published in recent years provide the necessary tools and information to expand upon these 66 

initial predictive approaches. 67 

In this study, we develop models to predict rate constants for virus inactivation with UV254 68 

treatment in aqueous suspension using variables that are expected to play a role in inactivation, 69 

such as genome sequence composition and genome repair information. We conducted a rapid 70 

systematic review to gather high quality virus inactivation data from the literature and used the 71 

resulting data set to train and validate the predictive performance of four different models (i.e., 72 

multiple linear regression, elastic net regularization, boosted trees, and random forests). The 73 

models developed in this research will facilitate rapid evaluation of UV254 inactivation rate 74 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.355479doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.355479
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

constants for a broad class of virus types based solely on virus genome sequence and genome 75 

repair information. 76 

 77 

Results 78 

Numerous UV254 rate constants are available, but only for a limited subset of viruses. 79 

We conducted a rapid systematic review to collect UV254 inactivation rate constants and used them 80 

for the training and validation of models developed to predict virus inactivation kinetics. Of 2,416 81 

initial studies, 531 underwent full text review, and 103 studies were included in the final data set 82 

(SI Appendix, Fig. S1). Only data from studies passing a set of experimental criteria (SI Appendix, 83 

Supplementary Text) were included to ensure collection of high-quality rate constants. These 84 

studies produced 224 experimental inactivation rate constants for 59 viruses (Figure 1; SI 85 

Appendix, Table S1). Viruses of different strains and types were considered unique. 86 

More than 350 studies from the full text review that reported conducting UV virus 87 

inactivation in aqueous suspension were not included in the final data set. Data were excluded 88 

most commonly because the article did not address UV254 attenuation in the experimental solution 89 

and it could not be ruled out based on details in the materials and methods. Nearly 50% of the 90 

extracted rate constants represented only five different viruses. For example, there were 62 91 

different experimental inactivation rates for bacteriophage MS2; in contrast, several viruses, 92 

including hepatitis E virus, only had one reported inactivation rate constant, and there were many 93 

human viruses with no data that met the review criteria (e.g., influenza viruses, ebolaviruses, 94 

coronaviruses, herpesviruses). Ultimately 13, 84, 111, 4, and 12 experimental inactivation rate 95 

constants were extracted for ssDNA, dsDNA, (+) ssRNA, (-) ssRNA, and dsRNA viruses, 96 

respectively, representing 3, 26, 22, 2, and 5 unique viruses (Figure 1). No rate constants met the 97 
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inclusion criteria for retroviral (+) ssRNA viruses, referred to as RT-ssRNA viruses. The 98 

inactivation rate constants spanned ~2.5 orders of magnitude (Figure 1) and ranged from 0.021 to 99 

7.6 cm2 mJ-1. The (-) ssRNA viruses had the largest rate constants on average (k = 3.6 cm2 mJ-1), 100 

while dsRNA viruses had the lowest average rate constants (k = 0.15 cm2 mJ-1). dsDNA virus 101 

constants exhibited the widest range of rate constants, spanning from 0.021 to 5.4 cm2 mJ-1 with a 102 

mean of 0.55 cm2 mJ-1. 103 

 104 

Figure 1. Distribution of UV254 inactivation rate constants collected from the rapid systematic literature review. Black bars denote 105 

arithmetic means of inactivation rate constants for viruses with more than one experimental rate constant. Outliers are not 106 

included. ssDNA viruses: three viruses, 13 rate constants; dsDNA viruses: 26 viruses,* 84 rate constants; (-) ssRNA viruses: two 107 

viruses, four rate constants; (+) ssRNA viruses: 22 viruses, 107 rate constants (four outlier rate constants removed); dsRNA 108 

viruses: five viruses, 12 rate constants. Viruses within each Baltimore classification are ordered from highest to lowest mean rate 109 

constant from left to right. Rate constants are reported in SI Appendix, Table S1. *Considers two viruses (i.e., adenovirus 5 and 110 

adenovirus 41) assayed in host cells with reduced repair abilities as different from the same viruses assayed in wild-type host cells. 111 

Individual models were developed for the (+) ssRNA and dsDNA virus classes. The limited 112 

data sets for viruses in the other Baltimore classifications made it infeasible to develop individual 113 

predictive models for the other groups. The data sets used for (+) ssRNA and dsDNA model 114 

training and validation included 19 (+) ssRNA viruses with 93 experimental inactivation rate 115 
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constants and 16 dsDNA viruses with 50 inactivation rate constants, respectively (SI Appendix, 116 

Table S1). The model developed with all viruses from the systematic review included 43 viruses 117 

with 168 experimental inactivation rate constants. 118 

Rate constants predicted using common modeling approaches. We used the data collected 119 

in the rapid systematic literature review to develop linear regression, elastic net regularization, 120 

random forests, and boosted trees models for predicting inactivation rate constants based on 121 

several predictors (SI Appendix, Table S2). These model classes were selected to cover a range of 122 

different linear and non-linear approaches that are commonly applied in the predictive modeling 123 

field (30). 124 

(+) ssRNA virus model. The cross-validated root mean squared relative prediction errors 125 

(RMSrPEs) for the four optimized models varied from 0.22 to 0.95 (Figure 2 and SI Appendix, 126 

Table S3), with the top performing multiple linear regression resulting in the lowest RMSrPE out 127 

of the four optimized model classes. Various subsets of genomic variables were included in 128 

multiple linear regression development. Because these genomic variables are highly collinear, we 129 

used principal components that incorporated various genomic variable subsets as predictors in the 130 

regression models. Ultimately, the multiple linear regression model with one principal component 131 

that incorporated the numbers of cytosines (Cs), uracils (Us), uracil doublets (UUs), and uracil 132 

triplets (UUUs) resulted in the lowest RMSrPE (0.22 ± 0.23; RMSrPE ± standard error; SI 133 

Appendix, Table S3). Other multiple linear regressions performed similarly (SI Appendix, Table 134 

S4). The optimized elastic net regularization and boosted trees models resulted in slightly higher 135 

RMSrPEs than the top performing multiple linear regression model (RMSrPEelastic net = 0.28 ± 0.26, 136 

RMSrPEboosted trees = 0.32 ± 0.28; SI Appendix, Table S3), and the random forests model had the 137 

largest RMSrPE of the (+) ssRNA virus models (RMSrPErandom forests = 0.95 ± 0.48; SI Appendix, 138 
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Table S3). Model performance was significantly reduced in the elastic net and random forests 139 

models as compared to the multiple linear regression model (SI Appendix, Table S5). 140 

 141 

Figure 2. Root squared relative prediction error of virus inactivation rate constants using top 142 

performing models from each model class developed with only (+) ssRNA viruses (left) or dsDNA 143 

viruses (right) in the training and validation set. Individual symbols indicate the root squared 144 

relative prediction error of each virus, and the black bar indicates the model’s root mean squared 145 

relative prediction error. Distinct colors represent different viruses, and the symbol sizes represent 146 

the weight of the experimental inactivation rate constant used for inverse variance weighting, 147 

where a larger symbol indicates a greater weight. MLR = multiple linear regression, ELNT = 148 

elastic net regularization, XGB = boosted trees, RF = random forests. 149 

Predicted (+) ssRNA virus rate constants from the top performing model were within 51% 150 

of the mean experimental virus inactivation rate constants obtained from the systematic review, 151 

with the exception of the rate constant for Atlantic Halibut Nodavirus (percent error = 182%; SI 152 

Appendix, Fig. S2a). The RMSrPE from the top performing linear regression model was lower 153 

than the estimated relative inter-experimental error of viruses with multiple rate constants in the 154 
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 9 

literature (RMSrPE = 0.22 ± 0.23; relative inter-experimental error = 0.33; Figure 3a). In other 155 

words, the predicted rate constants for new (+) ssRNA viruses would be at least as accurate as the 156 

rate constants determined through experimental studies. 157 

 158 

Figure 3. Experimental and predicted cross-validated inactivation rate constants for (+) ssRNA 159 

viruses (a) and dsDNA viruses (b) present in the training and validation set. Different colors and 160 

symbols represent different viruses. Black lines represent the estimated experimental rate constant 161 

for each virus. Data included in the models were obtained from the literature with a rapid 162 

systematic review, and all predicted and experimental inactivation rate constants are provided in 163 

SI Appendix, Tables S1 and S6. 164 

dsDNA virus model. The genomic variables used in dsDNA model development were 165 

equivalent to the (+) ssRNA models, with the exception that thymines (Ts) were substituted for Us 166 

(SI Appendix, Table S1). A major distinction of dsDNA viruses is that their genomes can undergo 167 

repair in host cells and this impacts their susceptibility to UV254 (24, 31–33). Genome repair can 168 

be mediated by the host cell or by viral genes (24), and the varied efficacy of host-mediated dsDNA 169 
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 10 

repair (34–37) impacts virus UV254 sensitivity. We included categorical predictors for genome 170 

repair mode (i.e., host cell mediated, virus-gene controlled using one repair system, or virus-gene 171 

controlled using multiple repair systems) and host cell type (i.e., prokaryotic host, eukaryotic host 172 

with wild type repair, or eukaryotic host with reduced repair) in the dsDNA virus inactivation rate 173 

constant models. Genome repair mode and host cell type were assigned based on available 174 

information and are described in the SI Appendix. 175 

The RMSrPE of the four optimized dsDNA model classes ranged from 0.31 to 1.6 (SI 176 

Appendix, Table S3), and the optimized multiple linear regression model outperformed the three 177 

other optimized model classes (RMSrPE = 0.31 ± 0.28; Figure 2 and SI Appendix, Table S3). The 178 

optimized elastic net and boosted trees RMSrPEs were slightly higher (RMSrPEelastic net = 0.79 ± 179 

0.46, RMSrPEboosted trees = 0.70 ± 0.43), though the difference in model performance was not 180 

significant (SI Appendix, Table S5), and the random forests model performed significantly worse 181 

(RMSrPErandom forests = 1.6 ± 0.66). The top linear regression model included the genome repair 182 

mode and host cell type predictors, as well as one principal component comprising the three 183 

genomic variables numbers of thymine doublets (TT), thymine quintuplets (TTTTT), and Cs. As 184 

with the top-performing (+) ssRNA model, many of the regressions tested with different genomic 185 

variable subsets had similar prediction performance, making it difficult to identify which genomic 186 

variables were critical for predicting dsDNA virus rate constants (SI Appendix, Table S4). A point 187 

estimate comparison of the regression coefficients for the standardized principal component (bPC1 188 

= 0.46), genome repair mode (bgenome repair mode = 2.7), and host cell type (bhost cell type = -0.37) 189 

predictors indicates that the genome repair mode predictor is approximately 5.9 times more 190 

important than the principal component predictor (bgenome repair mode/bPC1 = 2.7/0.46). Host cell type 191 

was comparable in importance to the genomic variable contribution, collectively represented by 192 
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 11 

the principal component. Prediction performance dropped significantly without genome repair 193 

mode as a predictor (RMSrPEopt = 0.31 ± 0.28, RMSrPEno repair = 1.0 ± 0.52; SI Appendix, Table 194 

S5), further highlighting the importance of genome repair in UV254 inactivation. 195 

The multiple linear regression model accurately predicted inactivation rate constants across 196 

the wide range of dsDNA virus susceptibilities to UV254 (Figure 3b). As with the top performing 197 

(+) ssRNA model, the predicted error for the top performing dsDNA model was lower than the 198 

estimated inter-experimental error for viruses with more than one experimental rate constant 199 

(RMSrPE = 0.31 ± 0.28; inter-experimental error of kvirus = 0.45). Predictions were poorest for 200 

T7M, B40-8, and lambda predicted (percent error = 62%, 63%, and 62%, respectively; SI 201 

Appendix, Fig. S2b), which are bacteriophages with the same form of genome repair mode. The 202 

poor prediction of viruses from this group indicates that some of the rate constants in the training 203 

data for viruses with these attributes may be inaccurate, leading to worse performance for 204 

bacteriophages with host mediated repair. 205 

 All-virus model. Larger data sets generally add predictive power to models, though the 206 

increased signal from additional data can be attenuated or negated by increased heterogeneity. We 207 

therefore compared the performance of the separate (+) ssRNA and dsDNA virus models with a 208 

model that incorporated data from all Baltimore classes. In addition to the genomic variables and 209 

repair-related predictors (i.e., genome repair mode and host cell type) included for (+) ssRNA and 210 

dsDNA viruses, a categorical predictor for nucleic acid type (i.e., double-stranded or single-211 

stranded) was included. Boosted trees models were the top performing models using all viruses 212 

(SI Appendix, Table S3); these performed significantly worse than the models trained using only 213 

(+) ssRNA viruses (RMSrPE(+) ssRNA = 0.22 ± 0.23, RMSrPEall = 0.45 ± 0.33; SI Appendix, Table 214 

S5) or only dsDNA viruses (RMSrPEdsDNA = 0.31 ± 0.28 vs RMSrPEall = 0.45 ± 0.35; SI Appendix, 215 
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Tables S3 and S5). This suggests that using our modeling approach and combining viruses with 216 

diverse genome types and infection cycles into one model can negatively impact performance of 217 

virus predictions, possibly owing to insufficient data from less studied classes. Based on these 218 

results, we used the separate (+) ssRNA and dsDNA models for subsequent analyses. 219 

Predicted rate constants align with new experimental rate constants. We applied the 220 

optimized (+) ssRNA and dsDNA models to predict the rate constants of one (+) ssRNA virus and 221 

one dsDNA virus for which experimental data were not available and then measured the rate 222 

constants experimentally. Specifically, we predicted and measured the rate constants for MHV, a 223 

(+) ssRNA mouse coronavirus, and HS2, a dsDNA marine bacteriophage. Based on its large 224 

genome size (i.e., ~ 270% longer than the largest (+) ssRNA virus genome included in the training 225 

and validation set) MHV provided an opportunity to assess the (+) ssRNA model’s predictive 226 

power using a virus with attributes outside those in the training and validation set (SI Appendix, 227 

Fig. S3). HS2 bacteriophage has similar genomic attributes to many of the other viruses in the data 228 

set (SI Appendix, Fig. S3), and genome repair-related predictors are the same as those for most of 229 

the phages.  Bacteriophage MS2 was included in each experimental solution to confirm UV254 230 

doses; the measured MS2 rate constants were in line with those in the literature (0.12 to 0.14 cm2 231 

mJ-1; SI Appendix, Fig. S4 and Table S1). 232 

The predicted inactivation rate constant for MHV (kpred = 2.05 ± 0.88 cm2 mJ-1; mean ± 233 

95% margin of error) was not significantly different than the experimental rate constant (kexp = 234 

1.92 ± 0.17 cm-2 mJ-1), with a percent error of only 7% (Figure 4a). The prediction accuracy the 235 

model achieved despite MHV’s elevated UV254 sensitivity compared with other (+) ssRNA viruses 236 

in the data set highlights how linear regression approaches are capable of extrapolating predictions 237 

to values distinct from those used in training and validation. In comparison, the MHV inactivation 238 
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rate constant predicted with the top performing nonlinear approach, boosted trees, was 79% 239 

different the experimental value, with a rate constant of 0.40 ± 0.25 cm2 mJ-1. The accuracy of the 240 

MHV rate constant prediction and the relatively low RMSPE obtained for the top performing (+) 241 

ssRNA virus model provide confidence that the (+) ssRNA model can effectively predict UV254 242 

rate constants for emerging or difficult-to-culture (+) ssRNA viruses.  243 

The experimental HS2 inactivation kinetics exhibited significant tailing beyond UV254 244 

fluences of 50 mJ cm-2; we therefore modeled the first ~5-log10 of inactivation to obtain a rate 245 

constant from the first-order portion of the curve. The resulting dsDNA HS2 bacteriophage 246 

experimental rate constant of kexp = 0.28 ± 0.08 cm2 mJ-1 was 71% lower than the predicted rate 247 

constant of kpred = 0.48 ± 0.29 cm2 mJ-1(Figure 4b). Although the error of this dsDNA estimate 248 

was larger than that of the (+) ssRNA estimate, the HS2 predicted and experimental constants are 249 

not significantly different. This result, in combination with the cross-validation results, suggest 250 

that the dsDNA model can effectively predict if a dsDNA virus is particularly resistant to UV254 251 

treatment.  252 

 253 

Figure 4. Experimental and predicted UV254 inactivation of MHV A59 (a) and HS2 bacteriophage 254 

(b). All independent replicates (N = 3) from experiments are shown as individual points. The 255 
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experimental HS2 inactivation rate constant was determined using the first two UV254 fluences due 256 

to significant tailing beyond UV254 fluences of 50 mJ cm-2. 257 

Predictive models estimate inactivation of several emerging and difficult-to-culture 258 

viruses. Our systematic review identified a number of important human viruses that lack published 259 

high quality UV254 inactivation rate constants in the literature. We therefore applied the (+) ssRNA 260 

and dsDNA predictive models to estimate the inactivation rates constants for several viruses, 261 

including human norovirus, dengue virus, SARS-CoV-2, and several herpesviruses (Table 1). 262 

These predictions resulted in a range of inactivation rate constants, from 0.28 for human norovirus 263 

to 3.0 cm2 mJ-1 for human cytomegalovirus.  264 

Table 1. Predicted UV254 inactivation rate constants for several viruses without high-265 

quality experimental inactivation rate constants. 266 

Virus NCBI accession number Predicted inactivation rate 
constant, k (cm2 mJ-1)a 

(+) ssRNA viruses 
SARS-CoV-1 NC_004718 1.9 ± 0.82 
SARS-CoV-2 MN908947 2.0 ± 0.86 
Middle eastern respiratory 
syndrome coronavirus 
(MERS-CoV) 

JX869059 2.1 ± 0.91 

Dengue virus NC_001477 0.38 ± 0.16 
Zika virus NC_035889 0.39 ± 0.17 
Human rhinovirus (B14) K02121 0.34  ± 0.15 
Human norovirus 
(GII.4 Sydney) JX459908 0.28 ± 0.12 

dsDNA viruses 
Herpes simplex virus 1 
(strain 17) NC_001806 1.8 ± 1.1 

Epstein-Barr virus NC_007605 1.9 ± 1.2 
Human cytomegalovirus NC_006273 3.0 ± 1.8 
Variola virus (major) L22579 2.5 ± 1.5 
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aError shown represents the 95% margin of error of predicted rate constant, as determined by the 267 

model’s 95% margin of error, estimated as 1.96 times the standard error, where standard error = 268 

RMSrPE x virus rate constant. 269 

 270 

Discussion 271 

Through evaluation of a large set of models from four distinct model classes developed 272 

with the best currently available data, we identified effective models for predicting UV254 273 

inactivation rate constants of (+) ssRNA and dsDNA viruses using simple virus attributes as model 274 

predictors. UV254 primarily targets viral nucleic acid during irradiation. Pyrimidine bases are more 275 

photoreactive than purines (38), and pyrimidine dimers, in particular, cause a large portion of the 276 

UV-induced damage to DNA (38–44). Limited research centered on ssRNA photolysis suggests 277 

pyrimidine hydrates are the primary lesions inducing UV damage (45). Photochemical damage to 278 

nucleic acids can stall or inhibit enzymes required for productive viral infection of host cells (46–279 

48). Based on this a priori knowledge, we included several combinations of pyrimidine bases as 280 

predictors in our (+) ssRNA and dsDNA models, namely the numbers of U, UU, UUU, UUUU, 281 

UUUUU, C, UC, and CU in (+) ssRNA models and the numbers of T, TT, TTT, TTTT, TTTTT, 282 

C, TC, and CT in dsDNA models. 283 

Ultimately, the top performing (+) ssRNA virus model employed one principal component 284 

incorporating multiple genomic variables (i.e., numbers of C, U, UU, and UUU), and the top 285 

performing dsDNA virus model employed repair mode, host cell type, and one principal 286 

component representing three genomic variables (i.e., numbers of C, TT, TTTTT). The relative 287 

importance of variables in our top performing predictive models may provide insight into the 288 

mechanisms driving UV254 inactivation of viruses. Among the (+) ssRNA models, many of the 289 
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multiple linear regression models that included distinct subsets of genomic variables performed 290 

similarly. This is likely because these genomic variables are so highly correlated that different 291 

variable combinations resulted in a similar set of principal components as predictors in modeling, 292 

ultimately yielding similar performance among different models. Separating the effects of 293 

individual genomic variables was therefore difficult in the (+) ssRNA model. Although the top 294 

performing model incorporated multiple genomic variables, several linear regression models using 295 

as few as one genomic variable as a predictor resulted in similar model performance. This finding 296 

demonstrates that simple aspects of the (+) ssRNA genome provide all the necessary information 297 

to accurately predict rate constants for this class of viruses. In the dsDNA model, performance was 298 

significantly improved when genome repair predictors were included in addition to principal 299 

components incorporating genomic variables. The importance of genome repair was expected. For 300 

example, the two dsDNA bacteriophages T2 and T4 have similar genome sizes and composition 301 

(SI Appendix, Fig. S3b and Table S2) but dissimilar UV254 inactivation rate constants (5.1 cm-2 302 

mJ-1 for T2 and 1.7 cm-2 mJ-1 for T4; SI Appendix, Table S1). T4 phage’s UV254 resistance is due 303 

to an additional virus-controlled repair gene in the T4 genome not present in the T2 genome (50, 304 

51). Interestingly, the relative contribution of genomic variables in the dsDNA model was 305 

significantly less than the genome repair predictors, which suggests that genome repair is a more 306 

important factor in dsDNA UV254 inactivation than genomic variables.  307 

Including genome repair as a model predictor presented some limitations. First, the mode 308 

and extent of genome repair is not known for many viruses and has not been well-studied across 309 

virus families. A single predictor encompassing the contribution of genome repair was therefore 310 

not possible. We instead applied multiple categorical predictors. With this approach, only viruses 311 

that shared a particular genome repair mode or host cell type with at least one other virus in the 312 
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dsDNA data set could be used in cross-validation. Ultimately, the data set used for dsDNA model 313 

development and validation lacked numerous forms of dsDNA viruses with distinct repair modes 314 

and host cell types, resulting in uncertainty in model performance for certain dsDNA viruses not 315 

represented in the training and validation set. To improve future dsDNA virus models, it is critical 316 

to have a better understanding of genome repair mechanisms and how they affect UV254 317 

inactivation.  318 

Our top performing UV254 virus prediction models provide improvements over earlier 319 

prediction approaches (28, 29). On average, the (+) ssRNA and dsDNA virus models predicted 320 

rate constants to within ~0.2x and ~0.3x of experimental constants, respectively. A previous 321 

approach using genome length to determine genome size-normalized sensitivity values for a 322 

number of virus families expected uncertainties in predicted values of ~2x (28). A more recent 323 

approach developed predictive models for ssRNA and dsDNA UV254 inactivation using genome 324 

dimer formation potential, a value that incorporated pyrimidine doublets, genome length, and 325 

purines with adjacent pyrimidine doublets (29). Their reported error as a coefficient of 326 

determination (i.e., R2) was 0.67 for ssRNA viruses compared to 0.74 (adjusted R2) for our model, 327 

and an R2 value of 0.62 for dsDNA viruses compared to 0.99 (adjusted R2) for our model. Several 328 

factors can be attributed to the improved performance of our models, including extensive curation 329 

of data based on quality and the incorporation of genome repair into dsDNA modeling. 330 

In light of the coronavirus disease 2019 (COVID-19) pandemic and the need for effective 331 

decontamination strategies, our predictive models provided an opportunity to predict rate constants 332 

for a critical group of viruses with very little published inactivation data. Limited data on UV254 333 

inactivation for coronaviruses in aqueous suspension are available and the published information 334 

did not pass the inclusion criteria of our rapid systematic review (10, 52–54). This paucity of 335 
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information on the susceptibility of coronaviruses to UV254 is of critical importance for developing 336 

effective decontamination strategies. Our predicted rate constants for SARS-CoV-1, SARS-CoV-337 

2, and MERS, and our measured rate constant for the mouse coronavirus MHV, suggest that 338 

coronaviruses are much more susceptible to UV254 inactivation than other (+) ssRNA viruses. A 339 

recent estimate of SARS-CoV-2 UV254 susceptibility using the previously developed Lytle and 340 

Sagripanti approach (28) is ~ 1.7x greater than our estimate indicates (55). Discrepancies in new 341 

experimental coronavirus data still persist, likely stemming from a lack of checks on UV254 342 

attenuation of suspensions. 343 

More robust models are possible with larger data sets that consist of more diverse viruses. 344 

Unfortunately, a large portion of UV254 inactivation data found during the rapid systematic review 345 

did not pass our inclusion criteria. The most common reason for excluding data from our 346 

systematic review was a failure to report solution UV254 attenuation. An earlier study of SARS-347 

CoV-1 inactivation by UV254 (54), for example, did not account for UV254 attenuation in the 348 

experimental DMEM suspension. The reported inactivation rate constant of 0.003 cm2 mJ-1 was 349 

nearly three orders of magnitude lower than our predicted rate constant for SARS-CoV-1 and our 350 

measured value for MHV, likely in part due to solution attenuation. We estimate that their rate 351 

constant would be closer to 0.35 cm2 mJ-1 after accounting for solution attenuation. This value 352 

more closely aligns with our coronavirus values. Similarly, several studies reported UV254 353 

inactivation of viruses in blood products without describing how attenuation was considered in 354 

their reported doses (10, 56–58). Although these doses are likely representative for these fluids, 355 

they cannot be extrapolated to other matrices. More stringent reporting of UV254 experimental 356 

conditions (59), including matrix solution transmission at 254 nm, will facilitate future modeling 357 

efforts. We note when UV254 inactivation rate constants are known for a solution with 100% 358 
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transmittance (e.g., purified virus in buffer solution), the rate constant can be adjusted to account 359 

for a solution with significant attenuation (e.g., blood products) based on the Beer-Lambert law 360 

(60). 361 

The developed models allow us to predict the effectiveness of current UV254 treatment 362 

strategies on viral pathogens that are difficult or impossible to culture. For example, human 363 

norovirus, which causes gastrointestinal disease, is a major target of UV254 disinfection processes 364 

in water treatment and food processing. Our (+) ssRNA virus model predicts an inactivation rate 365 

constant of 0.28 cm2 mJ-1 for human norovirus GII.4, which is similar to our recently reported rate 366 

constant of k = 0.27 cm2 mJ-1 for human norovirus GII.4 Sydney using RT-qPCR data coupled 367 

with a full-genome extrapolation approach (61). This finding indicates that current water treatment 368 

guidelines for adequate UV254 virus inactivation, which are defined to treat adenovirus 41 (62), are 369 

more than sufficient to inactivate human norovirus to acceptable levels. In fact, none of the viruses 370 

for which we predicted rate constants had UV254 resistance greater than viruses in the Adenoviridae 371 

family. 372 

The limited and unbalanced data set that we obtained from the systematic review and used 373 

in modeling efforts created challenges in our modeling work. Of primary concern, we could not 374 

take a commonly used approach to evaluating models, in which a portion of data is held back 375 

during model development to assess performance. Holding back the typical 10 – 20% of data 376 

would correspond to holding back only two to four viruses from the (+) ssRNA or dsDNA classes 377 

for testing. This could result in high variance estimates of prediction performance that would also 378 

be highly dependent on the viruses withheld during training. We consequently used leave-one-379 

virus-out cross-validation to more efficiently estimate prediction performance on out of sample 380 

data. Another limitation of our models is that they were developed and validated for only (+) 381 
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ssRNA and dsDNA viruses. Although many human viruses are in these two classes, many 382 

emerging and noteworthy human viruses belong to other classes. In particular, the (-) ssRNA virus 383 

class includes several important human pathogens, such as lassa virus, nipah virus, influenza virus, 384 

and ebolavirus. Since only two (-) ssRNA viruses were included in our data set, we were unable 385 

to assess whether inactivation rate constants for viruses in this group could be accurately predicted 386 

with our (+) ssRNA model. More high quality UV254 experimental inactivation data for a broader 387 

set of viruses would facilitate the holdout approach for validating models and the development of 388 

models for other virus Baltimore classification groups. 389 

This research demonstrates the value of predictive models for estimating virus fate in 390 

various settings. Using readily available viral genome data, we developed models to predict UV254 391 

inactivation of (+) ssRNA and dsDNA viruses. The benefits of predictive models are underlined 392 

by the ongoing COVID-19 pandemic: access to the biosafety level 3 laboratories required to work 393 

with SARS-CoV-2 has been limited and, as a result, few experimental inactivation studies have 394 

been performed. Our approach can rapidly determine virus susceptibility to UV254 using available 395 

genomes, but without relying on culture systems that are often unavailable or difficult to access. 396 

Other potential applications of our models including identifying outlier UV254 data that are 397 

published and predicting potential worst-case scenarios for viruses and their susceptibility to 398 

UV254. Ultimately, we expect that this predictive modeling approach can be applied to estimate 399 

inactivation of microorganisms with other disinfectants and in different settings, such as on 400 

surfaces or in air. 401 

 402 

Methods 403 
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Rapid systematic review of UV254 virus inactivation data. We used a rapid systematic 404 

literature review to capture high quality UV254 virus inactivation data (63, 64). Data were extracted 405 

from studies if they adhered to all of the following criteria: the UV254 lamp fluences were measured 406 

and reported; sources emitted UV irradiation principally at wavelengths of 253, 253.7, 254, or 255 407 

nm; viruses were irradiated in a liquid suspension; infective viruses were enumerated with 408 

quantitative culture-based approaches (e.g., plaque assay); attenuation through the sample solution 409 

was taken into account, or negligible UV254 attenuation was reported (transmittance > 95%) or 410 

could be assumed based on the reported viral stock purification techniques and matrix solution 411 

composition; stirring was reported when attenuation was significant (transmittance < 95%); first-412 

order kinetics were reported or could be confirmed with reported data points for at least two UV254 413 

fluences; the first-order inactivation rate constant or log-removal dose (e.g., D99) was provided or 414 

could be determined with data presented in a plot or table. For publications that contained valuable 415 

data, but for which not all criteria could be evaluated, corresponding authors were contacted when 416 

possible to inquire about the criteria. For studies that reported multiple UV254 inactivation 417 

experiments for the same virus (e.g., in different solutions, with multiple UV254 sources), we 418 

combined all data to determine a single inactivation rate constant with linear regression analysis. 419 

All data were re-extracted by a second reviewer and discrepancies were addressed. Additional 420 

details of our rapid systematic review process are included in the SI Appendix, Supplementary 421 

Text. 422 

Final data set used in modeling. An inactivation rate constant collected in the rapid 423 

systematic review was included in the modeling work if the virus’ genome sequence was available 424 

through NCBI and if the error associated with the inactivation rate constant was available. 425 

Information on NCBI sequence selection is provided in the SI Appendix, Supplementary Text. For 426 
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viruses with three or more inactivation rate constants obtained from the systematic review, outlier 427 

rate constants (i.e., values lying >1.5 times the interquartile range above the third quartile or below 428 

the first quartile) were not included in model development. We calculated the inverse variance 429 

weighted mean inactivation rate constant for each virus using the following equation: 430 

𝑘"# =
∑ &!∙(!"
!#$
∑ (!"
!#$

         (1) 431 

where k"v is the inverse variance weighted mean for the virus, n is the number of experimental rate 432 

constants for the virus, ki is the inactivation rate constant for experiment i, and wi is the weight for 433 

experiment i, defined as: 434 

𝑤+ =
,
-.!

%         (2) 435 

where SE,i is the standard error of the inactivation rate constant for experiment i. The standard 436 

error of the inverse variance weighted mean, SEv, was evaluated for each virus as: 437 

𝑆𝐸# = 	2
,

∑ (!"
!#$

        (3) 438 

We estimated the inter-experimental error for viruses with more than one experimental rate 439 

constant in the literature by determining the residual standard deviation from a weighted least 440 

squares regression. Virus was the categorical variable in the regression and experimental rate 441 

constant was the dependent variable. Weighting was done using the inverse of the squared 442 

experimental standard error normalized by the mean rate constant for that virus. 443 

Predictors. For model development, we used predictors related to virus structure and 444 

behavior that are known or hypothesized to affect UV254 inactivation. The specific predictors 445 

incorporated included structure of nucleic acid strands (i.e., double-stranded or single stranded), 446 

genome length, pyrimidine base content in the genome, sequential pyrimidine bases, genome 447 

repair mode, and host cell type. Our reasoning for inclusion of predictors and the methods used to 448 
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determine values for each predictor are included in the SI. A list of the exact predictors as well as 449 

the values used for each virus are available in SI Appendix, Table S2.  450 

Predictive model optimization. We used four model classes, namely multiple linear 451 

regression, elastic net regularization, boosted trees, and random forests, to predict virus 452 

inactivation during UV254 disinfection. For each model class, we developed individual models 453 

using only (+) ssRNA viruses and only dsDNA viruses. We also generated a single model 454 

developed using all viruses included in the collected data set and thus not separated by virus 455 

Baltimore classification groups. We assessed model performance using leave-one-virus-out cross-456 

validation. Further details of model training, validation, and prediction performance evaluation are 457 

included in the SI Appendix, Supplementary Text. Data manipulation, statistical analyses, and 458 

modeling work were conducted in R software version 4.0.0 (65). The raw data files and the scripts 459 

for model development and prediction will be made available on Github upon publication. 460 

Multiple linear regression. Several of the genomic variables are collinear (e.g., numbers of 461 

U and UU). We therefore conducted principal component analysis (PCA) on the genomic variables 462 

prior to linear modeling to reduce variable dimensionality and eliminate collinearity. The 463 

predictors nucleic acid type, genome repair mode, and host cell type were not included in the PCA. 464 

We then developed linear regression models containing either the first, first and second, or first, 465 

second, and third principal components, as well as the other predictors. Only the first through third 466 

principal components were assessed for inclusion in the linear regression models, because they 467 

cumulatively explained 97% of the variation in genomic variables. Genomic variables were 468 

standardized to unit variance prior to PCA to eliminate dissimilarities in the magnitude of variable 469 

values. Linear regression can include one or more predictors that can affect model accuracy. We 470 
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therefore used best subset selection to evaluate a wide range of potential multiple linear regression 471 

models. 472 

Elastic net regularization. As an alternative to best subset selection, we considered linear 473 

regression with parameter regularization using L1 (“Lasso”) and L2 (“Ridge”) penalties, a 474 

technique known as the elastic net. We used the ‘glmnet’ package in R to create models with elastic 475 

net regularization. The alpha and lambda hyperparameters, which control the relative contribution 476 

and overall scale of the L1 and L2 penalties, respectively, were tuned using a grid search to find 477 

the optimal hyperparameters for the data set as determined by leave-one-virus-out cross-validation. 478 

Specifically, 11 different values ranging from 0 to 1 with a step of 0.1 were assessed for the 479 

hyperparameter alpha, and 100 different lambda values were evaluated for each alpha.  480 

Random forests. To accommodate the use of the modified inverse variance weights, the 481 

random forests model was developed in R using the ‘xgboost’ package with a single round of 482 

boosting, and other hyperparameters were set to match defaults from the ‘randomForest’ package 483 

as well as possible (66). 484 

Boosted trees. Boosted trees modeling was conducted using the ‘xgboost’ package in R. 485 

The number of boosting rounds was selected to minimize the cross-validated error. The 486 

hyperparameters for learning rate, tree depth, and minimum terminal node weight were 0.3, 6, and 487 

1, respectively.  488 

Experimental and predicted UV254 inactivation of murine hepatitis virus (MHV) and 489 

bacteriophage HS2. To consider how well the models may predict inactivation of a virus not 490 

already included in the collected data set, we determined the UV254 inactivation rate constant of 491 

MHV, a virus in the Coronaviridae family and Betacoronavirus genus, and of HS2, a marine 492 
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bacteriophage, and compared experimental inactivation to the model’s predicted inactivation. 493 

Virus propagation and enumeration details are provided in the SI Appendix, Supplementary Text. 494 

UV254 inactivation of viruses. All UV254 inactivation experiments were conducted with a 495 

custom-made collimated beam reactor containing 0.16 mW cm-2 lamps (model G15T8, Philips). 496 

UV254 irradiance was determined using chemical actinometry (67, 68) and MS2 (ATCC 15597-497 

B1) was included in all experimental solutions as a biodosimeter to further confirm UV254 doses. 498 

Infective MS2 was assessed using the double agar overlay approach with host Escherichia coli 499 

(ATCC 15597) (69). For each UV254 exposure, 2 mL of the experimental solution was added to a 500 

10 mL glass beaker and continuously stirred. Sample solution depth (0.8 cm) and transmittance (~ 501 

47% to 53% for MHV experiments, ~ 79% to 80% for HS2 experiments) were used to determine 502 

the average UV254 irradiance of the sample according to the Beer-Lambert law (60). Infective 503 

viruses were assayed immediately following experiments. Dark controls were conducted with each 504 

experiment and consisted of the virus suspended in experimental solution but stored in the dark on 505 

ice for the duration of experiments. Three independent replicates were conducted for each 506 

inactivation experiment. 507 

For MHV experiments, solutions contained MHV and MS2 diluted in 1X PBS to a final 508 

concentration of ~ 105 pfu/mL and ~ 1010 pfu/mL, respectively. Samples were exposed to UV254 509 

for 0 s, 5 s, 15 s, 25 s, and 35 s, which corresponded to UV254 doses of approximately 0 mJ cm-2, 510 

0.62 mJ cm-2, 1.2 mJ cm-2, 1.9 mJ cm-2, 3.1 mJ cm-2, and 4.3 mJ cm-2.  MS2 infectivity was assayed 511 

after larger UV254 doses due to its slower inactivation kinetics, namely 37 mJ cm-2 and 74 mJ cm-512 

2. For HS2 experiments, solutions contained HS2 and MS2 diluted in 1X PBS to a final 513 

concentration of ~ 108 pfu/mL and ~ 109 pfu/mL, respectively. Samples were irradiated for 0 s, 514 
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180 s, 300 s, 480 s, 600 s, and 720 s, which resulted in UV254 doses of approximately 0 mJ cm-2, 515 

26 mJ cm-2, 44 mJ cm-2, 70 mJ cm-2, 88 mJ cm-2, and 105 mJ cm-2. 516 

The inactivation rate constant, kexp in cm2 mJ-1, for MHV, HS2, and MS2 was determined 517 

by the following equation: 518 

𝑙𝑛 5 6
6&
7 = 𝑘89: ∙ 𝐷<=>?@       (4) 519 

where C0 and C are infectious virus concentrations before and after UV254 exposure, respectively, 520 

in pfu/mL, and DUV254 is the average UV254 dose, in mJ cm-2. 521 

 Experimental inactivation rate constants (i.e., kexp) were determined with linear regression 522 

analyses conducted in Prism version 8.4.2 (GraphPad) to obtain experimental inactivation rate 523 

constants (i.e., kexp). UV254 inactivation curves for some viruses exhibited tailing at high doses. In 524 

these situations, only the linear portions of the inactivation curves were included in the linear 525 

regression analyses. 526 

 MHV and HS2 inactivation rate constant prediction. The UV254 inactivation rate constants 527 

of MHV and HS2 were predicted using the best-performing inactivation models for (+) ssRNA 528 

viruses and dsDNA viruses, respectively. The MHV genome sequence was provided by Dr. 529 

Leibowitz (SI Appendix, Supplementary Text File S1), and the HS2 genome sequence is available 530 

in NCBI (accession no. KF302036). 531 

Predicting UV254 inactivation of emerging or difficult-to-culture viruses. The inactivation 532 

rates of several emerging and difficult-to-culture viruses, including SARS-CoV-2, were predicted 533 

using the best-performing inactivation model. Sequence data for these viruses were obtained from 534 

NCBI and all viruses with sequence information are included in SI Appendix, Table S2. 535 
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