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Abstract

Disinfection strategies are commonly applied to inactivate pathogenic viruses in water, food, air,
and on surfaces to prevent the spread of infectious diseases. Determining how quickly viruses are
inactivated to mitigate health risks is not always feasible due to biosafety restrictions or difficulties
with virus culturability. Therefore, methods that would rapidly predict kinetics of virus
inactivation by UV2s4 would be valuable, particularly for emerging and difficult-to-culture viruses.
We conducted a rapid systematic literature review to collect high-quality inactivation rate
constants for a wide range of viruses. Using these data and basic virus information (e.g., genome
sequence attributes), we developed and evaluated four different model classes, including linear
and non-linear approaches, to find the top performing prediction model. For both the (+) ssRNA
and dsDNA virus types, multiple linear regressions were the top performing model classes. In both
cases, the cross-validated root mean squared relative prediction errors were similar to those
associated with experimental rate constants. We tested the models by predicting and measuring
inactivation rate constants for two viruses that were not identified in our systematic review,
including a (+) ssRNA mouse coronavirus and a dSDNA marine bacteriophage; the predicted rate
constants were within 7% and 71% of the experimental rate constants, respectively. Finally, we
applied our models to predict the UV2s4 rate constants of several viruses for which high-quality
UV2s4 inactivation data are not available. Our models will be valuable for predicting inactivation

kinetics of emerging or difficult-to-culture viruses.
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Introduction

Viruses can cause diverse and costly illnesses in humans and other animals (1). A variety
of approaches have therefore been developed to decontaminate food, water, air, and surfaces that
may contain infective viruses (2—7). UVass treatment, in particular, is gaining popularity as an
alternative to more traditional chemical disinfection strategies (8—10). Viruses can have highly
variable UV2s4 susceptibilities (11, 12). For example, two dsDNA viruses, adenovirus type 40 and
bacteriophage T6, are inactivated by UV2s4 at the widely varying rates of ~ 0.06 cm? mJ! (13-18)
and ~ 5.4 cm? mJ! (19), respectively.

Viruses have diverse genome types, including double-stranded RNA (dsRNA), single-
stranded RNA (ssRNA), double-stranded DNA (dsDNA), and single-stranded DNA (ssDNA).
UV3s4 inactivates by primarily targeting viral genetic material, and the different biochemical
structures associated with these viral genome types result in distinct sensitivities to UVas4 (20).
Nucleic acid primary structure, or nucleotide base sequence, also affects UV2s4 genome reactivity
— pyrimidine bases, for instance, are about an order of magnitude more reactive with UV2s4 than
purine bases (21, 22). Different replication modes among viruses can also impact susceptibility to
UV3s4. For example, the reverse transcriptase enzymes involved in generation of retrovirus mRNA
may have different fidelities to photochemical modifications in nucleic acid compared to the RNA
dependent RNA polymerase enzymes used by other RNA viruses to synthesize mRNA (23).
Additional differences in viral infection cycles impact virus sensitivity to UV2s4 (24). dsSDNA virus
genomes, for example, can undergo nucleic acid repair once inside host cells (24—26). This means
that a virus may be inactivated by UVas4 treatment through base modification, only to be repaired

and thus rendered infectious again when such repair mechanisms are available. We note these
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differences in virus genome type and mode of mRNA generation are utilized in the Baltimore virus
classification system (e.g., Group 1: dsDNA viruses, Group I'V: (+) ssRNA viruses) (1, 27).

Virus disinfection methods are evaluated by enumerating infective viruses before and after
treatment, typically with virus culture systems. Relying on culture-based approaches to evaluate
inactivation kinetics is often problematic. Most notably, many human viruses that are spread
through the environment are not readily culturable. For highly pathogenic viruses that are
culturable, disinfection experiments are complicated by biosafety restrictions. Disinfection
experiments with severe acute respiratory syndrome (SARS) coronaviruses (SARS-CoV-1 and
SARS-CoV-2), for example, are limited to biosafety level 3 laboratories and work with
ebolaviruses require biosafety level 4 facilities. Alternative approaches for determining virus
inactivation kinetics would be valuable, especially for difficult-to-culture and emerging viruses.
Earlier studies have worked towards a predictive manner of evaluating UV2s4 virus inactivation
based on virus attributes (28, 29). Recently developed modeling strategies, an improved
understanding of virus UVas4 inactivation mechanisms, and additional high-quality inactivation
data published in recent years provide the necessary tools and information to expand upon these
initial predictive approaches.

In this study, we develop models to predict rate constants for virus inactivation with UV2s4
treatment in aqueous suspension using variables that are expected to play a role in inactivation,
such as genome sequence composition and genome repair information. We conducted a rapid
systematic review to gather high quality virus inactivation data from the literature and used the
resulting data set to train and validate the predictive performance of four different models (i.e.,
multiple linear regression, elastic net regularization, boosted trees, and random forests). The

models developed in this research will facilitate rapid evaluation of UV2s4 inactivation rate
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constants for a broad class of virus types based solely on virus genome sequence and genome

repair information.

Results

Numerous UV3s4 rate constants are available, but only for a limited subset of viruses.
We conducted a rapid systematic review to collect UV2s4 inactivation rate constants and used them
for the training and validation of models developed to predict virus inactivation kinetics. Of 2,416
initial studies, 531 underwent full text review, and 103 studies were included in the final data set
(SI Appendix, Fig. S1). Only data from studies passing a set of experimental criteria (SI Appendix,
Supplementary Text) were included to ensure collection of high-quality rate constants. These
studies produced 224 experimental inactivation rate constants for 59 viruses (Figure 1; SI
Appendix, Table S1). Viruses of different strains and types were considered unique.

More than 350 studies from the full text review that reported conducting UV virus
inactivation in aqueous suspension were not included in the final data set. Data were excluded
most commonly because the article did not address UV2s4 attenuation in the experimental solution
and it could not be ruled out based on details in the materials and methods. Nearly 50% of the
extracted rate constants represented only five different viruses. For example, there were 62
different experimental inactivation rates for bacteriophage MS2; in contrast, several viruses,
including hepatitis E virus, only had one reported inactivation rate constant, and there were many
human viruses with no data that met the review criteria (e.g., influenza viruses, ebolaviruses,
coronaviruses, herpesviruses). Ultimately 13, 84, 111, 4, and 12 experimental inactivation rate
constants were extracted for ssDNA, dsDNA, (+) ssRNA, (-) ssRNA, and dsRNA viruses,

respectively, representing 3, 26, 22, 2, and 5 unique viruses (Figure 1). No rate constants met the
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98 inclusion criteria for retroviral (+) ssRNA viruses, referred to as RT-ssRNA viruses. The
99  inactivation rate constants spanned ~2.5 orders of magnitude (Figure 1) and ranged from 0.021 to
100 7.6 cm® mJ!. The (-) ssRNA viruses had the largest rate constants on average (k = 3.6 cm? mJ!),
101  while dsRNA viruses had the lowest average rate constants (k = 0.15 cm? mJ'). dsDNA virus
102 constants exhibited the widest range of rate constants, spanning from 0.021 to 5.4 cm? mJ! with a

103  mean of 0.55 cm? mJ!.
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105 Figure 1. Distribution of UV 54 inactivation rate constants collected from the rapid systematic literature review. Black bars denote
106 arithmetic means of inactivation rate constants for viruses with more than one experimental rate constant. Outliers are not
107 included. ssDNA viruses: three viruses, 13 rate constants; dsDNA viruses: 26 viruses, * 84 rate constants, (-) sSRNA viruses: two
108 viruses, four rate constants; (+) ssRNA viruses: 22 viruses, 107 rate constants (four outlier rate constants removed); dsRNA
109 viruses: five viruses, 12 rate constants. Viruses within each Baltimore classification are ordered from highest to lowest mean rate
110 constant from left to right. Rate constants are reported in SI Appendix, Table S1. *Considers two viruses (i.e., adenovirus 5 and
111 adenovirus 41) assayed in host cells with reduced repair abilities as different from the same viruses assayed in wild-type host cells.
112 Individual models were developed for the (+) ssSRNA and dsDNA virus classes. The limited

113 data sets for viruses in the other Baltimore classifications made it infeasible to develop individual
114  predictive models for the other groups. The data sets used for (+) ssSRNA and dsDNA model

115  training and validation included 19 (+) ssRNA viruses with 93 experimental inactivation rate
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116  constants and 16 dsDNA viruses with 50 inactivation rate constants, respectively (SI Appendix,
117  Table S1). The model developed with all viruses from the systematic review included 43 viruses
118  with 168 experimental inactivation rate constants.

119 Rate constants predicted using common modeling approaches. We used the data collected
120  in the rapid systematic literature review to develop linear regression, elastic net regularization,
121  random forests, and boosted trees models for predicting inactivation rate constants based on
122 several predictors (SI Appendix, Table S2). These model classes were selected to cover a range of
123 different linear and non-linear approaches that are commonly applied in the predictive modeling
124 field (30).

125 (+) ssRNA virus model. The cross-validated root mean squared relative prediction errors
126 (RMSrPEs) for the four optimized models varied from 0.22 to 0.95 (Figure 2 and SI Appendix,
127  Table S3), with the top performing multiple linear regression resulting in the lowest RMSrPE out
128  of the four optimized model classes. Various subsets of genomic variables were included in
129  multiple linear regression development. Because these genomic variables are highly collinear, we
130  used principal components that incorporated various genomic variable subsets as predictors in the
131  regression models. Ultimately, the multiple linear regression model with one principal component
132 that incorporated the numbers of cytosines (Cs), uracils (Us), uracil doublets (UUs), and uracil
133 triplets (UUUs) resulted in the lowest RMSrPE (0.22 £ 0.23; RMSrPE + standard error; SI
134 Appendix, Table S3). Other multiple linear regressions performed similarly (SI Appendix, Table
135  S4). The optimized elastic net regularization and boosted trees models resulted in slightly higher
136 RMSrPEs than the top performing multiple linear regression model (RMSrPEciastic net = 0.28 £ 0.26,

137 RMSrPEbpoosted trees = 0.32 £ 0.28; SI Appendix, Table S3), and the random forests model had the

138  largest RMSrPE of the (+) ssSRNA virus models (RMSrPE andom forests = 0.95 £ 0.48; SI Appendix,
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139  Table S3). Model performance was significantly reduced in the elastic net and random forests

140  models as compared to the multiple linear regression model (SI Appendix, Table S5).
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142 Figure 2. Root squared relative prediction error of virus inactivation rate constants using top
143 performing models from each model class developed with only (+) ssRNA viruses (left) or dsDNA
144 viruses (right) in the training and validation set. Individual symbols indicate the root squared
145  relative prediction error of each virus, and the black bar indicates the model’s root mean squared
146  relative prediction error. Distinct colors represent different viruses, and the symbol sizes represent
147  the weight of the experimental inactivation rate constant used for inverse variance weighting,
148  where a larger symbol indicates a greater weight. MLR = multiple linear regression, ELNT =
149  elastic net regularization, XGB = boosted trees, RF = random forests.

150 Predicted (+) ssRNA virus rate constants from the top performing model were within 51%
151  of the mean experimental virus inactivation rate constants obtained from the systematic review,
152 with the exception of the rate constant for Atlantic Halibut Nodavirus (percent error = 182%; SI
153  Appendix, Fig. S2a). The RMSrPE from the top performing linear regression model was lower

154  than the estimated relative inter-experimental error of viruses with multiple rate constants in the
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155  literature (RMSrPE = 0.22 + 0.23; relative inter-experimental error = 0.33; Figure 3a). In other

156  words, the predicted rate constants for new (+) ssSRNA viruses would be at least as accurate as the

157  rate constants determined through experimental studies.
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158

159  Figure 3. Experimental and predicted cross-validated inactivation rate constants for (+) ssRNA
160  viruses (a) and dsDNA viruses (b) present in the training and validation set. Different colors and
161  symbols represent different viruses. Black lines represent the estimated experimental rate constant
162 for each virus. Data included in the models were obtained from the literature with a rapid

163 systematic review, and all predicted and experimental inactivation rate constants are provided in

164  SI Appendix, Tables S1 and S6.

165 dsDNA virus model. The genomic variables used in dsDNA model development were
166  equivalent to the (+) ssRNA models, with the exception that thymines (Ts) were substituted for Us
167  (SI Appendix, Table S1). A major distinction of dSDNA viruses is that their genomes can undergo
168  repair in host cells and this impacts their susceptibility to UV2s4 (24, 31-33). Genome repair can

169  be mediated by the host cell or by viral genes (24), and the varied efficacy of host-mediated dsSDNA
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170  repair (34-37) impacts virus UVass sensitivity. We included categorical predictors for genome
171  repair mode (i.e., host cell mediated, virus-gene controlled using one repair system, or virus-gene
172 controlled using multiple repair systems) and host cell type (i.e., prokaryotic host, eukaryotic host
173 with wild type repair, or eukaryotic host with reduced repair) in the dSDNA virus inactivation rate
174  constant models. Genome repair mode and host cell type were assigned based on available
175  information and are described in the SI Appendix.

176 The RMStPE of the four optimized dsDNA model classes ranged from 0.31 to 1.6 (SI
177  Appendix, Table S3), and the optimized multiple linear regression model outperformed the three
178  other optimized model classes (RMSrPE = 0.31 £ 0.28; Figure 2 and SI Appendix, Table S3). The
179  optimized elastic net and boosted trees RMSrPEs were slightly higher (RMSrPEeiastic net = 0.79 £
180  0.46, RMSrPEpoosted trees = 0.70 = 0.43), though the difference in model performance was not
181  significant (SI Appendix, Table S5), and the random forests model performed significantly worse
182  (RMSrPErandom forests = 1.6 + 0.66). The top linear regression model included the genome repair
183  mode and host cell type predictors, as well as one principal component comprising the three
184  genomic variables numbers of thymine doublets (TT), thymine quintuplets (TTTTT), and Cs. As
185  with the top-performing (+) ssSRNA model, many of the regressions tested with different genomic
186  variable subsets had similar prediction performance, making it difficult to identify which genomic
187  wvariables were critical for predicting dsDNA virus rate constants (SI Appendix, Table S4). A point
188  estimate comparison of the regression coefficients for the standardized principal component (Brci
189 = 0.46), genome repair mode (Bgenome repair mode = 2.7), and host cell type (Bhost cell type = -0.37)
190  predictors indicates that the genome repair mode predictor is approximately 5.9 times more
191  important than the principal component predictor (Bgenome repair mode/ Brct = 2.7/0.46). Host cell type

192  was comparable in importance to the genomic variable contribution, collectively represented by

10
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193 the principal component. Prediction performance dropped significantly without genome repair
194  mode as a predictor (RMSrPEqy = 0.31 £ 0.28, RMSrPE repair = 1.0 £ 0.52; SI Appendix, Table
195  S5), further highlighting the importance of genome repair in UV2s4 inactivation.

196 The multiple linear regression model accurately predicted inactivation rate constants across
197  the wide range of dsDNA virus susceptibilities to UV2s4 (Figure 3b). As with the top performing
198  (+) ssSRNA model, the predicted error for the top performing dsSDNA model was lower than the
199  estimated inter-experimental error for viruses with more than one experimental rate constant
200 (RMSrPE = 0.31 £ 0.28; inter-experimental error of kyius = 0.45). Predictions were poorest for
201  T7M, B40-8, and lambda predicted (percent error = 62%, 63%, and 62%, respectively; SI
202  Appendix, Fig. S2b), which are bacteriophages with the same form of genome repair mode. The
203  poor prediction of viruses from this group indicates that some of the rate constants in the training
204  data for viruses with these attributes may be inaccurate, leading to worse performance for
205  bacteriophages with host mediated repair.

206 All-virus model. Larger data sets generally add predictive power to models, though the
207  increased signal from additional data can be attenuated or negated by increased heterogeneity. We
208  therefore compared the performance of the separate (+) ssSRNA and dsDNA virus models with a
209  model that incorporated data from all Baltimore classes. In addition to the genomic variables and
210  repair-related predictors (i.e., genome repair mode and host cell type) included for (+) ssSRNA and
211  dsDNA viruses, a categorical predictor for nucleic acid type (i.e., double-stranded or single-
212 stranded) was included. Boosted trees models were the top performing models using all viruses
213 (SI Appendix, Table S3); these performed significantly worse than the models trained using only
214 (+) ssRNA viruses (RMSrPE ) ssrnva = 0.22 £ 0.23, RMSrPE.; = 0.45 + 0.33; SI Appendix, Table

215  S5) or only dsDNA viruses (RMSrPE4spna = 0.31 £0.28 vs RMSrPE.; = 0.45 +0.35; SI Appendix,

11
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216  Tables S3 and S5). This suggests that using our modeling approach and combining viruses with
217  diverse genome types and infection cycles into one model can negatively impact performance of
218  virus predictions, possibly owing to insufficient data from less studied classes. Based on these
219  results, we used the separate (+) ssSRNA and dsDNA models for subsequent analyses.

220 Predicted rate constants align with new experimental rate constants. We applied the
221  optimized (+) ssRNA and dsDNA models to predict the rate constants of one (+) ssSRNA virus and
222 one dsDNA virus for which experimental data were not available and then measured the rate
223 constants experimentally. Specifically, we predicted and measured the rate constants for MHV, a
224 (+) ssRNA mouse coronavirus, and HS2, a dsDNA marine bacteriophage. Based on its large
225  genome size (i.e., ~ 270% longer than the largest (+) ssSRNA virus genome included in the training
226  and validation set) MHV provided an opportunity to assess the (+) ssSRNA model’s predictive
227  power using a virus with attributes outside those in the training and validation set (SI Appendix,
228  Fig. S3). HS2 bacteriophage has similar genomic attributes to many of the other viruses in the data
229  set (SI Appendix, Fig. S3), and genome repair-related predictors are the same as those for most of
230  the phages. Bacteriophage MS2 was included in each experimental solution to confirm UVas4
231  doses; the measured MS2 rate constants were in line with those in the literature (0.12 to 0.14 cm?
232 mJ!; SI Appendix, Fig. S4 and Table S1).

233 The predicted inactivation rate constant for MHV (kpred = 2.05 + 0.88 cm? mJ™!; mean +
234 95% margin of error) was not significantly different than the experimental rate constant (kexp =
235 1.92 £ 0.17 cm2 mJ!), with a percent error of only 7% (Figure 4a). The prediction accuracy the
236  model achieved despite MHV’s elevated UV2s4 sensitivity compared with other (+) ssRNA viruses
237  inthe data set highlights how linear regression approaches are capable of extrapolating predictions

238  to values distinct from those used in training and validation. In comparison, the MHYV inactivation

12
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239  rate constant predicted with the top performing nonlinear approach, boosted trees, was 79%
240  different the experimental value, with a rate constant of 0.40 £+ 0.25 cm? mJ'!. The accuracy of the
241  MHYV rate constant prediction and the relatively low RMSPE obtained for the top performing (+)
242 ssRNA virus model provide confidence that the (+) ssSRNA model can effectively predict UV2s4
243 rate constants for emerging or difficult-to-culture (+) ssSRNA viruses.

244 The experimental HS2 inactivation kinetics exhibited significant tailing beyond UVas4
245 fluences of 50 mJ cm?; we therefore modeled the first ~5-logio of inactivation to obtain a rate
246  constant from the first-order portion of the curve. The resulting dsSDNA HS2 bacteriophage
247  experimental rate constant of kexp = 0.28 £ 0.08 cm? mJ™! was 71% lower than the predicted rate
248  constant of kprea = 0.48 + 0.29 cm? mJ!(Figure 4b). Although the error of this dSDNA estimate
249  was larger than that of the (+) ssSRNA estimate, the HS2 predicted and experimental constants are
250  not significantly different. This result, in combination with the cross-validation results, suggest
251  that the dsDNA model can effectively predict if a dsSDNA virus is particularly resistant to UV2s4

252  treatment.
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254 Figure 4. Experimental and predicted UV sy inactivation of MHV A59 (a) and HS2 bacteriophage

255  (b). All independent replicates (N = 3) from experiments are shown as individual points. The

13
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256  experimental HS2 inactivation rate constant was determined using the first two UV 254 fluences due

257  to significant tailing beyond UV>sq4 fluences of 50 mJ cm™.

258 Predictive models estimate inactivation of several emerging and difficult-to-culture
259  viruses. Our systematic review identified a number of important human viruses that lack published
260  high quality UV2s4 inactivation rate constants in the literature. We therefore applied the (+) ssSRNA
261 and dsDNA predictive models to estimate the inactivation rates constants for several viruses,
262  including human norovirus, dengue virus, SARS-CoV-2, and several herpesviruses (Table 1).
263  These predictions resulted in a range of inactivation rate constants, from 0.28 for human norovirus
264  to 3.0 cm? mJ!' for human cytomegalovirus.

265 Table 1. Predicted UV3s4 inactivation rate constants for several viruses without high-

266  quality experimental inactivation rate constants.

Predicted inactivation rate

i NCBI i
Virus CBI accession number constant, k (cm? mJ)*

(1) ssRNA viruses

SARS-CoV-1 NC 004718 1.9+£0.82
SARS-CoV-2 MN908947 2.0+0.86
Middle eastern respiratory

syndrome coronavirus JX869059 2.1+£091
(MERS-CoV)

Dengue virus NC 001477 0.38£0.16
Zika virus NC 035889 0.39+£0.17
Human rhinovirus (B14) K02121 0.34 £0.15
Human norovirus

(GIL4 Sydney) JX459908 0.28 £ 0.12
dsDNA viruses

Herpes simplex virus 1 NC 001806 1.8+1.1
(strain 17) -

Epstein-Barr virus NC 007605 1.9+1.2
Human cytomegalovirus NC 006273 30+ 1.8
Variola virus (major) L22579 25+1.5
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267  “Error shown represents the 95% margin of error of predicted rate constant, as determined by the
268  model’s 95% margin of error, estimated as 1.96 times the standard error, where standard error =
269  RMSrPE x virus rate constant.

270

271  Discussion

272 Through evaluation of a large set of models from four distinct model classes developed
273  with the best currently available data, we identified effective models for predicting UVas4
274  inactivation rate constants of (+) ssSRNA and dsDNA viruses using simple virus attributes as model
275  predictors. UV2s4 primarily targets viral nucleic acid during irradiation. Pyrimidine bases are more
276  photoreactive than purines (38), and pyrimidine dimers, in particular, cause a large portion of the
277  UV-induced damage to DNA (38—44). Limited research centered on ssSRNA photolysis suggests
278  pyrimidine hydrates are the primary lesions inducing UV damage (45). Photochemical damage to
279  nucleic acids can stall or inhibit enzymes required for productive viral infection of host cells (46—
280  48). Based on this a priori knowledge, we included several combinations of pyrimidine bases as

281  predictors in our (+) ssSRNA and dsDNA models, namely the numbers of U, UU, UUU, UUUU,

282 UUUUU, C, UC, and CU in (+) ssRNA models and the numbers of T, TT, TTT, TTTT, TTTTT,
283 C, TC, and CT in dsDNA models.

284 Ultimately, the top performing (+) ssRNA virus model employed one principal component
285  incorporating multiple genomic variables (i.e., numbers of C, U, UU, and UUU), and the top
286  performing dsDNA virus model employed repair mode, host cell type, and one principal
287  component representing three genomic variables (i.e., numbers of C, TT, TTTTT). The relative
288  importance of variables in our top performing predictive models may provide insight into the

289  mechanisms driving UVjs4 inactivation of viruses. Among the (+) ssSRNA models, many of the
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290  multiple linear regression models that included distinct subsets of genomic variables performed
291  similarly. This is likely because these genomic variables are so highly correlated that different
292  variable combinations resulted in a similar set of principal components as predictors in modeling,
293  ultimately yielding similar performance among different models. Separating the effects of
294  individual genomic variables was therefore difficult in the (+) ssSRNA model. Although the top
295  performing model incorporated multiple genomic variables, several linear regression models using
296  as few as one genomic variable as a predictor resulted in similar model performance. This finding
297  demonstrates that simple aspects of the (+) ssSRNA genome provide all the necessary information
298  toaccurately predict rate constants for this class of viruses. In the dsDNA model, performance was
299  significantly improved when genome repair predictors were included in addition to principal
300  components incorporating genomic variables. The importance of genome repair was expected. For
301  example, the two dsDNA bacteriophages T2 and T4 have similar genome sizes and composition
302  (SI Appendix, Fig. S3b and Table S2) but dissimilar UV»s4 inactivation rate constants (5.1 cm™
303 mJ!for T2 and 1.7 cm™ mJ! for T4; SI Appendix, Table S1). T4 phage’s UV2s4 resistance is due
304  to an additional virus-controlled repair gene in the T4 genome not present in the T2 genome (50,
305  51). Interestingly, the relative contribution of genomic variables in the dsDNA model was
306  significantly less than the genome repair predictors, which suggests that genome repair is a more
307  important factor in dsSDNA UV>s4 inactivation than genomic variables.

308 Including genome repair as a model predictor presented some limitations. First, the mode
309  and extent of genome repair is not known for many viruses and has not been well-studied across
310  virus families. A single predictor encompassing the contribution of genome repair was therefore
311  not possible. We instead applied multiple categorical predictors. With this approach, only viruses

312 that shared a particular genome repair mode or host cell type with at least one other virus in the
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313 dsDNA data set could be used in cross-validation. Ultimately, the data set used for dSDNA model
314  development and validation lacked numerous forms of dsDNA viruses with distinct repair modes
315  and host cell types, resulting in uncertainty in model performance for certain dsSDNA viruses not
316  represented in the training and validation set. To improve future dsDNA virus models, it is critical
317 to have a better understanding of genome repair mechanisms and how they affect UVas4
318  inactivation.

319 Our top performing UV»ss virus prediction models provide improvements over earlier
320  prediction approaches (28, 29). On average, the (+) ssRNA and dsDNA virus models predicted
321  rate constants to within ~0.2x and ~0.3x of experimental constants, respectively. A previous
322 approach using genome length to determine genome size-normalized sensitivity values for a
323 number of virus families expected uncertainties in predicted values of ~2x (28). A more recent
324  approach developed predictive models for ssRNA and dsDNA UV2s4 inactivation using genome
325  dimer formation potential, a value that incorporated pyrimidine doublets, genome length, and
326  purines with adjacent pyrimidine doublets (29). Their reported error as a coefficient of
327  determination (i.e., R?) was 0.67 for ssRNA viruses compared to 0.74 (adjusted R?) for our model,
328 and an R? value of 0.62 for dsDNA viruses compared to 0.99 (adjusted R?) for our model. Several
329  factors can be attributed to the improved performance of our models, including extensive curation
330  of data based on quality and the incorporation of genome repair into dsDNA modeling.

331 In light of the coronavirus disease 2019 (COVID-19) pandemic and the need for effective
332 decontamination strategies, our predictive models provided an opportunity to predict rate constants
333 for a critical group of viruses with very little published inactivation data. Limited data on UV2s4
334  inactivation for coronaviruses in aqueous suspension are available and the published information

335  did not pass the inclusion criteria of our rapid systematic review (10, 52-54). This paucity of
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336  information on the susceptibility of coronaviruses to UV2s4 is of critical importance for developing
337  effective decontamination strategies. Our predicted rate constants for SARS-CoV-1, SARS-CoV-
338 2, and MERS, and our measured rate constant for the mouse coronavirus MHV, suggest that
339  coronaviruses are much more susceptible to UV2s4 inactivation than other (+) ssSRNA viruses. A
340  recent estimate of SARS-CoV-2 UVas4 susceptibility using the previously developed Lytle and
341  Sagripanti approach (28) is ~ 1.7x greater than our estimate indicates (55). Discrepancies in new
342  experimental coronavirus data still persist, likely stemming from a lack of checks on UVas4
343  attenuation of suspensions.

344 More robust models are possible with larger data sets that consist of more diverse viruses.
345  Unfortunately, a large portion of UV2s4 inactivation data found during the rapid systematic review
346  did not pass our inclusion criteria. The most common reason for excluding data from our
347  systematic review was a failure to report solution UV2s4 attenuation. An earlier study of SARS-
348  CoV-1 inactivation by UVass (54), for example, did not account for UVas4 attenuation in the
349  experimental DMEM suspension. The reported inactivation rate constant of 0.003 ¢cm? mJ! was
350  nearly three orders of magnitude lower than our predicted rate constant for SARS-CoV-1 and our
351  measured value for MHV, likely in part due to solution attenuation. We estimate that their rate
352 constant would be closer to 0.35 cm? mJ! after accounting for solution attenuation. This value
353  more closely aligns with our coronavirus values. Similarly, several studies reported UVas4
354  inactivation of viruses in blood products without describing how attenuation was considered in
355  their reported doses (10, 56-58). Although these doses are likely representative for these fluids,
356  they cannot be extrapolated to other matrices. More stringent reporting of UV2s4 experimental
357  conditions (59), including matrix solution transmission at 254 nm, will facilitate future modeling

358  efforts. We note when UV»s4 inactivation rate constants are known for a solution with 100%

18


https://doi.org/10.1101/2020.10.27.355479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.27.355479; this version posted October 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

359 transmittance (e.g., purified virus in buffer solution), the rate constant can be adjusted to account
360 for a solution with significant attenuation (e.g., blood products) based on the Beer-Lambert law
361  (60).

362 The developed models allow us to predict the effectiveness of current UV2s4 treatment
363  strategies on viral pathogens that are difficult or impossible to culture. For example, human
364  norovirus, which causes gastrointestinal disease, is a major target of UV2s4 disinfection processes
365  in water treatment and food processing. Our (+) ssSRNA virus model predicts an inactivation rate
366  constant of 0.28 cm? mJ! for human norovirus GII.4, which is similar to our recently reported rate
367  constant of k = 0.27 cm? mJ! for human norovirus GII.4 Sydney using RT-qPCR data coupled
368  with a full-genome extrapolation approach (61). This finding indicates that current water treatment
369  guidelines for adequate UV2s4 virus inactivation, which are defined to treat adenovirus 41 (62), are
370  more than sufficient to inactivate human norovirus to acceptable levels. In fact, none of the viruses
371  for which we predicted rate constants had UV2s4 resistance greater than viruses in the Adenoviridae
372 family.

373 The limited and unbalanced data set that we obtained from the systematic review and used
374  in modeling efforts created challenges in our modeling work. Of primary concern, we could not
375  take a commonly used approach to evaluating models, in which a portion of data is held back
376  during model development to assess performance. Holding back the typical 10 — 20% of data
377  would correspond to holding back only two to four viruses from the (+) ssSRNA or dsDNA classes
378  for testing. This could result in high variance estimates of prediction performance that would also
379  be highly dependent on the viruses withheld during training. We consequently used leave-one-
380  virus-out cross-validation to more efficiently estimate prediction performance on out of sample

381  data. Another limitation of our models is that they were developed and validated for only (+)
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382  ssRNA and dsDNA viruses. Although many human viruses are in these two classes, many
383  emerging and noteworthy human viruses belong to other classes. In particular, the (-) ssSRNA virus
384  class includes several important human pathogens, such as lassa virus, nipah virus, influenza virus,
385  and ebolavirus. Since only two (-) ssSRNA viruses were included in our data set, we were unable
386  to assess whether inactivation rate constants for viruses in this group could be accurately predicted
387  with our (+) ssSRNA model. More high quality UV2s4 experimental inactivation data for a broader
388  set of viruses would facilitate the holdout approach for validating models and the development of
389  models for other virus Baltimore classification groups.

390 This research demonstrates the value of predictive models for estimating virus fate in
391  wvarious settings. Using readily available viral genome data, we developed models to predict UV2s4
392  inactivation of (+) ssSRNA and dsDNA viruses. The benefits of predictive models are underlined
393 by the ongoing COVID-19 pandemic: access to the biosafety level 3 laboratories required to work
394  with SARS-CoV-2 has been limited and, as a result, few experimental inactivation studies have
395  been performed. Our approach can rapidly determine virus susceptibility to UV2s4 using available
396  genomes, but without relying on culture systems that are often unavailable or difficult to access.
397  Other potential applications of our models including identifying outlier UV2s4 data that are
398  published and predicting potential worst-case scenarios for viruses and their susceptibility to
399  UVass. Ultimately, we expect that this predictive modeling approach can be applied to estimate
400  inactivation of microorganisms with other disinfectants and in different settings, such as on
401  surfaces or in air.

402

403  Methods
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404 Rapid systematic review of UV2s4 virus inactivation data. We used a rapid systematic
405  literature review to capture high quality UVs4 virus inactivation data (63, 64). Data were extracted
406  from studies if they adhered to all of the following criteria: the UV2s4 lamp fluences were measured
407  and reported; sources emitted UV irradiation principally at wavelengths of 253, 253.7, 254, or 255
408 nm; viruses were irradiated in a liquid suspension; infective viruses were enumerated with
409  quantitative culture-based approaches (e.g., plaque assay); attenuation through the sample solution
410  was taken into account, or negligible UVs4 attenuation was reported (transmittance > 95%) or
411  could be assumed based on the reported viral stock purification techniques and matrix solution
412 composition; stirring was reported when attenuation was significant (transmittance < 95%); first-
413 order kinetics were reported or could be confirmed with reported data points for at least two UV2s4
414  fluences; the first-order inactivation rate constant or log-removal dose (e.g., Dg9) was provided or
415  could be determined with data presented in a plot or table. For publications that contained valuable
416  data, but for which not all criteria could be evaluated, corresponding authors were contacted when
417  possible to inquire about the criteria. For studies that reported multiple UV2s4 inactivation
418  experiments for the same virus (e.g., in different solutions, with multiple UV2s4 sources), we
419  combined all data to determine a single inactivation rate constant with linear regression analysis.
420  All data were re-extracted by a second reviewer and discrepancies were addressed. Additional
421  details of our rapid systematic review process are included in the SI Appendix, Supplementary
422 Text.

423 Final data set used in modeling. An inactivation rate constant collected in the rapid
424  systematic review was included in the modeling work if the virus’ genome sequence was available
425  through NCBI and if the error associated with the inactivation rate constant was available.

426  Information on NCBI sequence selection is provided in the SI Appendix, Supplementary Text. For
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427  viruses with three or more inactivation rate constants obtained from the systematic review, outlier
428  rate constants (i.e., values lying >1.5 times the interquartile range above the third quartile or below
429  the first quartile) were not included in model development. We calculated the inverse variance

430  weighted mean inactivation rate constant for each virus using the following equation:

431 k, = Zizkiwi (1)

Tawi
432 where ky is the inverse variance weighted mean for the virus, n is the number of experimental rate
433 constants for the virus, k; is the inactivation rate constant for experiment i, and w; is the weight for

434  experiment i, defined as:

435 w; = — 2)

436  where SE; is the standard error of the inactivation rate constant for experiment i. The standard
437  error of the inverse variance weighted mean, SE,, was evaluated for each virus as:

1
IR wi 3)

438 SE, =

439 We estimated the inter-experimental error for viruses with more than one experimental rate
440  constant in the literature by determining the residual standard deviation from a weighted least
441  squares regression. Virus was the categorical variable in the regression and experimental rate
442  constant was the dependent variable. Weighting was done using the inverse of the squared
443  experimental standard error normalized by the mean rate constant for that virus.

444 Predictors. For model development, we used predictors related to virus structure and
445  behavior that are known or hypothesized to affect UV2s4 inactivation. The specific predictors
446  incorporated included structure of nucleic acid strands (i.e., double-stranded or single stranded),
447  genome length, pyrimidine base content in the genome, sequential pyrimidine bases, genome

448  repair mode, and host cell type. Our reasoning for inclusion of predictors and the methods used to
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449  determine values for each predictor are included in the SI. A list of the exact predictors as well as
450  the values used for each virus are available in SI Appendix, Table S2.

451 Predictive model optimization. We used four model classes, namely multiple linear
452  regression, elastic net regularization, boosted trees, and random forests, to predict virus
453  inactivation during UV2s4 disinfection. For each model class, we developed individual models
454  using only (+) ssRNA viruses and only dsDNA viruses. We also generated a single model
455  developed using all viruses included in the collected data set and thus not separated by virus
456  Baltimore classification groups. We assessed model performance using leave-one-virus-out cross-
457  validation. Further details of model training, validation, and prediction performance evaluation are
458  included in the SI Appendix, Supplementary Text. Data manipulation, statistical analyses, and
459  modeling work were conducted in R software version 4.0.0 (65). The raw data files and the scripts
460  for model development and prediction will be made available on Github upon publication.

461 Multiple linear regression. Several of the genomic variables are collinear (e.g., numbers of
462  Uand UU). We therefore conducted principal component analysis (PCA) on the genomic variables
463  prior to linear modeling to reduce variable dimensionality and eliminate collinearity. The
464  predictors nucleic acid type, genome repair mode, and host cell type were not included in the PCA.
465  We then developed linear regression models containing either the first, first and second, or first,
466  second, and third principal components, as well as the other predictors. Only the first through third
467  principal components were assessed for inclusion in the linear regression models, because they
468  cumulatively explained 97% of the variation in genomic variables. Genomic variables were
469  standardized to unit variance prior to PCA to eliminate dissimilarities in the magnitude of variable

470  values. Linear regression can include one or more predictors that can affect model accuracy. We
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471  therefore used best subset selection to evaluate a wide range of potential multiple linear regression
472  models.

473 Elastic net regularization. As an alternative to best subset selection, we considered linear
474  regression with parameter regularization using L1 (“Lasso”) and L2 (“Ridge”) penalties, a
475  technique known as the elastic net. We used the ‘glmnet’ package in R to create models with elastic
476  netregularization. The alpha and lambda hyperparameters, which control the relative contribution
477  and overall scale of the L1 and L2 penalties, respectively, were tuned using a grid search to find
478  the optimal hyperparameters for the data set as determined by leave-one-virus-out cross-validation.
479  Specifically, 11 different values ranging from 0 to 1 with a step of 0.1 were assessed for the
480  hyperparameter alpha, and 100 different lambda values were evaluated for each alpha.

481 Random forests. To accommodate the use of the modified inverse variance weights, the
482  random forests model was developed in R using the ‘xgboost” package with a single round of
483  boosting, and other hyperparameters were set to match defaults from the ‘randomForest’ package
484  as well as possible (66).

485 Boosted trees. Boosted trees modeling was conducted using the ‘xgboost’ package in R.
486  The number of boosting rounds was selected to minimize the cross-validated error. The
487  hyperparameters for learning rate, tree depth, and minimum terminal node weight were 0.3, 6, and
488 1, respectively.

489 Experimental and predicted UV:s4 inactivation of murine hepatitis virus (MHV) and
490  bacteriophage HS2. To consider how well the models may predict inactivation of a virus not
491  already included in the collected data set, we determined the UV2s4 inactivation rate constant of

492  MHYV, a virus in the Coronaviridae family and Betacoronavirus genus, and of HS2, a marine
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493  bacteriophage, and compared experimental inactivation to the model’s predicted inactivation.
494  Virus propagation and enumeration details are provided in the SI Appendix, Supplementary Text.
495 UV3s4 inactivation of viruses. All UV2s4 inactivation experiments were conducted with a
496  custom-made collimated beam reactor containing 0.16 mW c¢m lamps (model G15T8, Philips).
497  UVas4 irradiance was determined using chemical actinometry (67, 68) and MS2 (ATCC 15597-
498  BI1) was included in all experimental solutions as a biodosimeter to further confirm UV»s4 doses.
499  Infective MS2 was assessed using the double agar overlay approach with host Escherichia coli
500 (ATCC 15597) (69). For each UV2s4 exposure, 2 mL of the experimental solution was added to a
501 10 mL glass beaker and continuously stirred. Sample solution depth (0.8 cm) and transmittance (~
502 47% to 53% for MHV experiments, ~ 79% to 80% for HS2 experiments) were used to determine
503  the average UVas4 irradiance of the sample according to the Beer-Lambert law (60). Infective
504  viruses were assayed immediately following experiments. Dark controls were conducted with each
505  experiment and consisted of the virus suspended in experimental solution but stored in the dark on
506 ice for the duration of experiments. Three independent replicates were conducted for each
507  inactivation experiment.

508 For MHV experiments, solutions contained MHV and MS2 diluted in 1X PBS to a final
509  concentration of ~ 10° pfu/mL and ~ 10'° pfu/mL, respectively. Samples were exposed to UV2s4
510 for0s,5s,15s,25s, and 35 s, which corresponded to UVas4 doses of approximately 0 mJ cm™2,
511 0.62mJem?, 1.2mJecm™2, 1.9 mJ em?, 3.1 mJ cm2, and 4.3 mJ cm. MS2 infectivity was assayed
512 after larger UV2s4 doses due to its slower inactivation kinetics, namely 37 mJ cm?and 74 mJ cm
513 2. For HS2 experiments, solutions contained HS2 and MS2 diluted in 1X PBS to a final

514  concentration of ~ 10® pfu/mL and ~ 10° pfu/mL, respectively. Samples were irradiated for 0 s,
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515 180, 300 s, 480 s, 600 s, and 720 s, which resulted in UV2s4 doses of approximately 0 mJ cm™2,
516 26 mJ cm?, 44 mJ cm™2, 70 mJ cm?, 88 mJ cm™, and 105 mJ cm™.
517 The inactivation rate constant, kexp in cm?> mJ-!, for MHV, HS2, and MS2 was determined

518 by the following equation:

Cc
519 In (=) = kexp - Dyvass 4)

0

520  where Cop and C are infectious virus concentrations before and after UV2s4 exposure, respectively,
521  in pfu/mL, and Duv2ss4 is the average UVass dose, in mJ cm™,

522 Experimental inactivation rate constants (i.e., kexp) were determined with linear regression
523  analyses conducted in Prism version 8.4.2 (GraphPad) to obtain experimental inactivation rate
524  constants (i.e., kexp). UV2s4 inactivation curves for some viruses exhibited tailing at high doses. In
525  these situations, only the linear portions of the inactivation curves were included in the linear
526  regression analyses.

527 MHY and HS?2 inactivation rate constant prediction. The UV;s4 inactivation rate constants
528 of MHV and HS2 were predicted using the best-performing inactivation models for (+) ssSRNA
529  wviruses and dsDNA viruses, respectively. The MHV genome sequence was provided by Dr.
530  Leibowitz (SI Appendix, Supplementary Text File S1), and the HS2 genome sequence is available
531  in NCBI (accession no. KF302036).

532 Predicting UV:s4 inactivation of emerging or difficult-to-culture viruses. The inactivation
533  rates of several emerging and difficult-to-culture viruses, including SARS-CoV-2, were predicted
534 using the best-performing inactivation model. Sequence data for these viruses were obtained from
535  NCBI and all viruses with sequence information are included in SI Appendix, Table S2.
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