

A curated dataset of modern and ancient high-coverage shotgun human genomes

Pierpaolo Maisano Delser^{1,2}, Eppie R. Jones^{1,3}, Anahit Hovhannisyan⁴, Lara Cassidy², Ron Pinhasi⁵, Andrea Manica¹.

1. Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
2. Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
3. Genomics Medicine Ireland, Dublin, Ireland.
4. Institute of Molecular Biology, National Academy of Sciences, 7 Hasratyan Street, 0014 Yerevan, Armenia.
5. Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.

corresponding author(s): Pierpaolo Maisano Delser (pm604@cam.ac.uk), Andrea Manica (am315@cam.ac.uk).

Abstract

Over the last few years, genome-wide data for a large number of ancient human samples have been collected. Whilst datasets of capture SNPs have been collated, high coverage shotgun genomes (which are relatively few but allow certain type of analyses not possible with ascertained captured SNPs) have to be reprocessed by individual groups from raw reads. This task is computationally intensive. Here, we release a dataset including 34 whole-genome sequenced samples, previously published and distributed worldwide, together with the genetic pipeline used to process them. The dataset contains 73,435,604 sites called across 18 ancient and 16 modern individuals and includes sequence data from four previously published ancient samples which we sequenced to higher coverage (10-18x). Such a resource will allow researchers to analyse their new samples with the same genetic pipeline and directly compare them to the reference dataset without re-processing published samples. Moreover, this dataset can be easily expanded to increase the sample distribution both across time and space.

Background & Summary

The number of ancient humans with genome-wide data available has increased from less than five a decade ago to more than 3,000 thanks to advancements in extraction and sequencing methods for ancient DNA (aDNA)¹. However, there are just a few high-quality (coverage > 10x) shotgun whole-genome sequenced ancient samples². Moreover, the genetic pipelines used to process shotgun aDNA data are very diverse, making it hard to combine published samples from different studies and research groups. Therefore, researchers have to download raw reads of published samples and reprocess them to create a dataset to compare their new samples against to without pipeline-associated biases. This problem is less pronounced for modern DNA samples as the higher quality of DNA and sequencing coverage partially reduce the biases introduced by the usage of different bioinformatic tools.

Panels including shotgun data for modern samples distributed worldwide have been previously published, such as the Simon Genome Diversity Program³, 1000 Genome Project⁴ and Human Genome Diversity Project (HGDP-CEPH panel)⁵.

However, the same concept has not yet been applied to ancient samples or a mix of modern and ancient samples. This study aims to start filling this gap by creating a dataset including both modern and ancient samples distributed across all continents. Therefore, we fully reprocessed 14 high-quality shotgun sequenced ancient samples downloaded from the literature, generated additional new data for previously published 4 ancient samples and merged them with 16 modern samples. The final dataset includes 34 individuals and researchers can use it to quickly compare their new samples against a set of individuals distributed across time and space (Figure 1). Moreover, we hope that researchers will add additional data processed with the pipeline that we released to increase the sample resolution both in time and space.

Methods

Sample collection

Additional sequence data were generated for four ancient samples which were previously collected and described in the following original publications: ZVEJ25 and ZVEJ31 were published in Jones et al. (2017)⁶, KK1 in Jones et al. (2015)⁷ and NE5 in Gamba et al. (2014)⁸. Furthermore, 14 additional ancient samples and modern samples have been downloaded from the literature (see Table 1 and 2). The final dataset includes 34 samples consisting of 18 ancient and 16 modern samples.

DNA extraction, Library preparation and next-generation sequencing

DNA was extracted and libraries were prepared for ZVEJ25, ZVEJ31, KK1 and NE5 (Table 3), following protocols described in the original publications, with the exception that DNA extracts were incubated with USER enzyme (5 µl enzyme: 16.50 µl of extract) for 3 hours at 37°C prior to library preparation in order to repair post-mortem molecular damage. The libraries were sequenced across 31 lanes of a HiSeq 2,500.

Bioinformatics analysis

Ancient samples

The following approach was used for both the newly sequenced ancient samples and the downloaded raw fastq files from previously published ancient samples.

Adapters were trimmed with Cutadapt v1.9.1⁹ and then raw reads were aligned to human reference sequence hg19/hs37d5 with bwa aln v0.7.12¹⁰ with seeding disabled (-I 1000), maximum edit distance set to -n 0.01 and maximum number of gap opens set to -o 2. Sai files were converted into sam files using bwa samse v0.7.12 and the read group line was also added. Bam files were generated using Samtools view v1.9¹¹. Reads from multiple libraries belonging to the same sample were merged with the module MergeSamFiles within Picard v2.9.2¹². Aligned reads were filtered for minimum mapping quality 20 with Samtools view v1.9. Indexing, sorting and duplicate removal (rmdup) were performed with Samtools v1.9. Indels were realigned using The Genome Analysis Toolkit v3.7¹³ (module RealignerTargetCreator and IndelRealigner) and 2bp were softclipped from the start and ends of reads using a custom python script. Final bam files were split by chromosome using Samtools view v1.9 and variant calling was performed with UnifiedGenotyper from The Genome Analysis Toolkit v3.7. All calls were filtered for minimum base quality 20 (-mbq 20) and reference-bias free priors were used (-inputPrior 0.0010 -inputPrior 0.4995). The same priors have been used for modern samples in the Simon Genome Diversity Panel³.

We focused on selecting a subset of the genome representing neutral genomic variation for demographic inferences^{14,15}. Therefore, specific filters were applied to discard: recombination hotspots (filter_hotspot1000g), poor mapping quality regions

(filter_Map20), recent duplication (recent duplications, RepeatMasker score < 20), recent segmental duplication (filter_segDups), simple repeats (filter_simpleRepeat), gene exons together with 1000bp flanking and conserved elements together 100bp flanking (filter_selection_10000_100) and positions with systematic sequencing errors (filter_SysErrHCB and filter_SysErr.starch). All CpG sites were removed as well as C and G sites with an adjacent missing genotype. Genotypes were filtered by minimum coverage 8x and maximum coverage defined as twice the average coverage. Vcf files per chromosome belonging to the same sample were concatenated using vcf-concat from vcftools v0.1.15².¹⁶

Modern samples

Bam files were downloaded from the Simon Genome Diversity Panel³ and from McColl et al.¹⁷ (Table 2). Bam files were split by chromosome and variant calling, filtering for GC sites and coverage were performed as described above for the ancient samples with the same options and thresholds.

Final dataset

Per sample vcf files were compressed with bgzip and indexed with tabix from htslib v1.6¹¹. The final dataset was assembled by merging filtered compressed vcf files for all modern and ancient samples with bcftools merge v1.6¹¹. Only sites with called genotypes for all samples were kept using vcftools v0.1.15 (--max-missing 1). Tri-allelic sites were also discarded using bcftools view v1.6 (-m1 -M2). Final vcf statistics were generated with bcftools stats v1.6. Downstream analysis and plotting were performed in R v3.6.3¹⁸.

Data Records

All newly generated sequencing raw reads have been deposited in the NCBI Sequence Read Archive XXX.

Technical Validation

Summary of newly generated data

DNA was extracted for four previously published samples (ZVEJ25, ZVEJ31, KK1 and NE5) and sequence data were generated with an average coverage between 10x and 18x (Table 3). Endogenous DNA was estimated between 0.48 and 0.71 across all libraries (Table 4). Each library generated between 150 and 425 millions of reads corresponding to 15.2 and 42.9Gb respectively (Table 4).

Summary of the whole dataset including ancient and modern samples

The final dataset includes 34 samples with 509,348,047 sites in neutral regions before filtering (see Methods section for a detailed description of which regions were considered for variant calling). Sites not called across all samples (0% missing data allowed) were then discarded and 73,439,415 were retained. Multi-allelic sites (3811) were also removed bringing the final number of filtered sites to 73,435,604 (Table 5). Minimum and maximum coverage per sample within the final dataset is 11.3x and 55x respectively (within filtered intervals) with an average coverage across all samples of 30.1x (Table 5). We calculated the number of transitions (ts), transversions (tv) and the ts/tv ratio per sample (Table 5). As expected, all eight ancient samples that were not subjected to UDG-treatment showed a higher ts/tv ratio than their UDG-treated counterparts (see Figure 2), consistent with higher levels of DNA damage in these samples. The Brazilian

sample Sumidouro 5 shows the highest excess of transition, possibly due to poor DNA preservation caused by environmental conditions. All other samples (both modern and UDG-treated ancient) showed similar ts/tv ratio with an average of 1.73, maximum and minimum of 1.76 and 1.63 respectively (see Table 5, Figure 2).

Code Availability

The pipeline used to process the data with all scripts is available at XXX.

Acknowledgements

PMD was supported by funding from the HERA Joint Research Programme “Uses of the Past” (CitiGen), the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 649307. PMD and AM were supported by ERC Consolidator Grant 647797 ‘LocalAdaptation’. E.R.J. was supported by a Herchel Smith Research Fellowship. RP was supported by ERC starting grant ADNABIOARC (263441).

Author contributions

AM designed the project. PMD, LC, EJ and AH performed the analyses. RP provided the samples. AM and PMD wrote the manuscript. All authors had input in the manuscript and approved the final version.

Competing interests

The authors declare no conflict of interest.

Figures

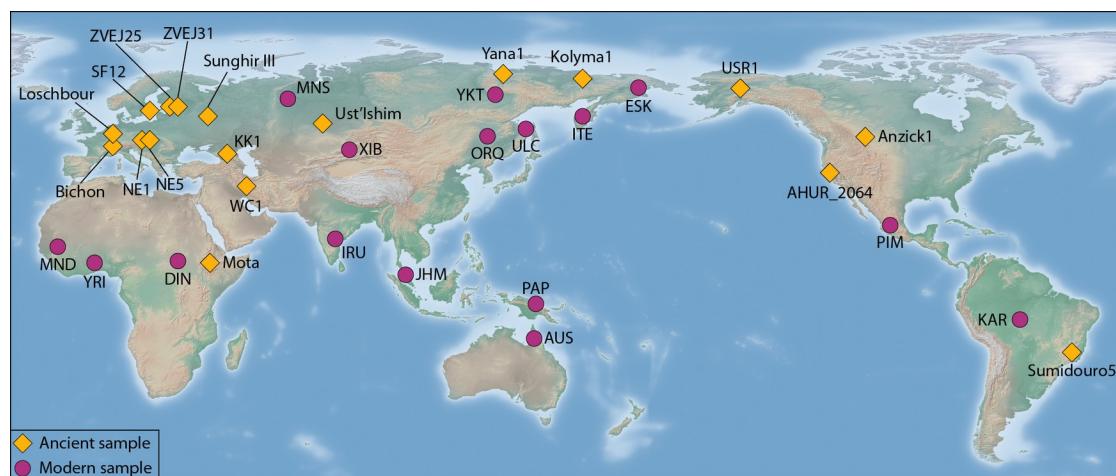


Figure 1: Geographic distribution of samples included in the dataset. Population acronyms are reported in Table 2.

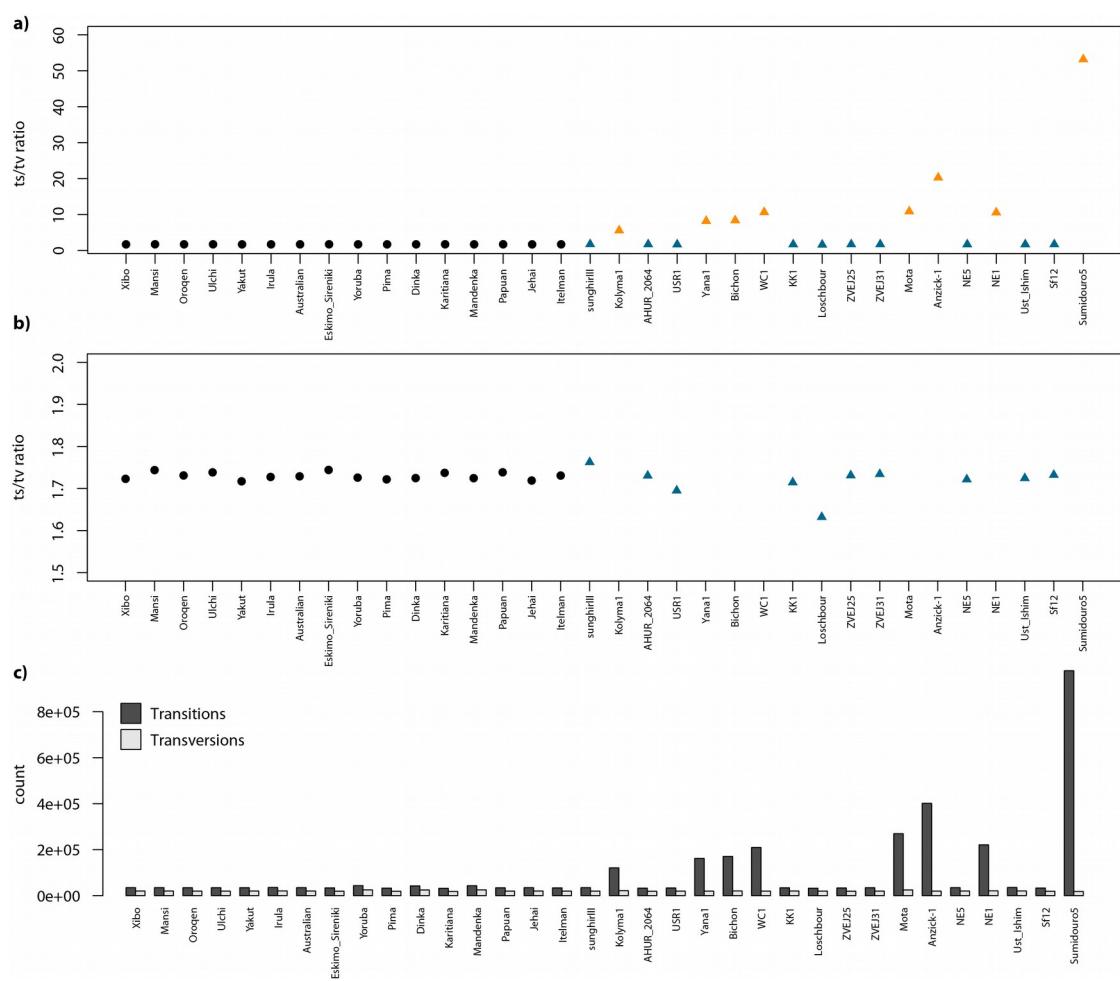


Figure 2: a) Transitions/Transversions ratio (ts/tv) per sample. Ancient and modern samples are represented by triangles and circles respectively. UDG and non-UDG treated samples are in blue and orange respectively. b) same as in a) but with a different y axis to focus on the ts/tv ratio among modern and UDG-treated ancient samples. c) Number of transitions (ts) and transversions (tv) per sample.

References

1. Racimo, F., Sikora, M., Vander Linden, M., Schroeder, H. & Lalueza-Fox, C. Beyond broad strokes: sociocultural insights from the study of ancient genomes. *Nat. Rev. Genet.* **21**, 355–366 (2020).
2. Downloadable genotypes of present-day and ancient DNA data (compiled from published papers). <https://reich.hms.harvard.edu/downloadable-genotypes-present-day-and-ancient-dna-data-compiled-published-papers> (2020).
3. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. *Nature* **538**, 201–206 (2016).
4. Auton, A. et al. A global reference for human genetic variation. *Nature* **526**, 68–74 (2015).
5. Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. *Science* **367**, (2020).
6. Jones, E. R. et al. The Neolithic Transition in the Baltic Was Not Driven by Admixture with Early European Farmers. *Curr. Biol.* **27**, 576–582 (2017).
7. Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. *Nat. Commun.* **6**, 8912 (2015).

8. Gamba, C. *et al.* Genome flux and stasis in a five millennium transect of European prehistory. *Nat. Commun.* **5**, 5257 (2014).
9. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* **17**, 10–12 (2011).
10. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. *Bioinformatics* **25**, 1754–1760 (2009).
11. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinforma. Oxf. Engl.* **25**, 2078–2079 (2009).
12. Picard Tools - By Broad Institute. <http://broadinstitute.github.io/picard/>.
13. McKenna, A. *et al.* The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* **20**, 1297–1303 (2010).
14. Kuhlwilm, M. *et al.* Ancient gene flow from early modern humans into Eastern Neanderthals. *Nature* **530**, 429–433 (2016).
15. Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. *Nat. Genet.* **43**, 1031–1034 (2011).
16. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158 (2011).
17. McColl, H. *et al.* The prehistoric peopling of Southeast Asia. *Science* **361**, 88–92 (2018).
18. R Core Team. R: A Language and Environment for Statistical Computing. (2020).

Table 1: Metadata for ancient samples. Samples in bold have been resequenced in this study.

Sample	Study	County	Site	Latitude	Longitude	Mean date BP	Date (2-sigma)	UDG-treated
AHUR_2064	Moreno-Mayar JV et al., 2018	USA	Spirit Cave, Nevada	37.41	-122.08	10970	10770-11170 calBP	yes
Anzick-1	Rasmussen M et al., 2014	USA	Near Wilsall, Montana	45.97	-110.66	12632	12707-12556 calBP	no
Bichon	Jones et al. 2015	Switzerland	Bichon	47.1	6.87	13665	13560- 13770 cal BP	no
KK1	Jones et al. 2015	Georgia	Kotias Klde	42.25	43.27	9712	9529-9895 cal BP	yes
Kolyma1	Sikora M et al., 2019	Russia	Duvanni Yar	68.6	159.1	9786	9668-9904 calBP	no
Loschbour	Lazaridis et al. 2014	Luxembourg	Echternach	49.81	6.4	8055	6220-5990 calBCE	yes
Mota	Gallego-Llorente M et al., 2015	Africa	Mota Cave, Gamo highlands of southwest Ethiopia	6.80	38.17	4471	4524-4418 Cal BP	no
NE1	Gamba et al. 2014	Hungary	Polgar Ferenci hat	47.88	21.19	7140	5310-5070 calBC	yes
NE5	Gamba et al. 2014	Hungary	Kompolt-Kigyoser	47.17	20.83	7050	5210-4990 calBC	yes
SF12	Guenther et al. 2018	Sweden	Stora Fövar, Sweden	57.28	18	7700	7500-4000 cal BC	yes
Sumidouro5	Sikora et al. 2017	Brazil	Caverna do Sumidouro, Lagoa Santa, Brazil	-19.54	-43.94	10391	10258-10524 (97.0%) calBP	no
sunghirIII	Moreno-Mayar JV et al., 2018	Russia	Sunghir	56.176	40.503	34093	35154-33031 calBP	yes
USR1	Moreno-Mayar JV et al., 2018	USA	Upward Sun River site (USR)	64.98	-150.54	11435	11600-11270 cal BP	yes
Ust_Ishim	Fu et al. 2014	Russia	Ust'-Ishim, Omsk Oblast	57.43	71.1	45000	45000 calBP (46880-43210 calBP at 95.4% probability)	yes
WC1	Broushaki et al. 2016	Iran	Wezmeh Cave	34.05	46.59	9219	7455-7082 BCE	no
Yana1	Sikora M et al., 2019	Russia	Yana RHS	70.43	135.25	31684	31321-32047 calBP	no
ZVEJ25	Jones et al., 2017	Latvia	Zvejnieki	57.78	25.24	7689	7791-7586 calBP	yes
ZVEJ31	Jones et al., 2017	Latvia	Zvejnieki	57.78	25.24	5965	6179-5750 calBP	yes

Table 2: Metadata for modern samples. SGDP: Simon Genome Diversity Panel.

Sample_ID	Sample_acronym	Population_ID	Country	Latitude	Longitude	Study
SS6004477	AUS	Australian	Australia	-13	143	SGDP – Mallick et al., 2016
LP6005443-DNA_B09	DIN	Dinka	Sudan	8.8	27.4	SGDP – Mallick et al., 2016
LP6005443-DNA_B03	ESK	Eskimo_Sireniki	Russia	64.4	173.9	SGDP – Mallick et al., 2016
LP6005519-DNA_D05	IRU	Irula	India	13.5	80	SGDP – Mallick et al., 2016
LP6005443-DNA_D04	ITE	Itelman	Russia	57	157	SGDP – Mallick et al., 2016
LP6005441-DNA_G06	KAR	Karitiana	Brazil	-10	-63	SGDP – Mallick et al., 2016
LP6005441-DNA_E07	MND	Mandenka	Senegal	12	-12	SGDP – Mallick et al., 2016
LP6005443-DNA_G04	MNS	Mansi	Russia	63.65	62.1	SGDP – Mallick et al., 2016
LP6005441-DNA_F09	ORQ	Oroqen	China	50.4	126.5	SGDP – Mallick et al., 2016
LP6005443-DNA_D08	PAP	Papuan	PapuaNewGuinea	-4	143	SGDP – Mallick et al., 2016
LP6005441-DNA_F10	PIM	Pima	Mexico	29	-108	SGDP – Mallick et al., 2016
LP6005442-DNA_H12	ULC	Ulchi	Russia	52.43	140.42	SGDP – Mallick et al., 2016
LP6005442-DNA_D01	XIB	Xibo	China	43.5	81.5	SGDP – Mallick et al., 2016
LP6005442-DNA_F01	YKT	Yakut	Russia	63	129.5	SGDP – Mallick et al., 2016
LP6005442-DNA_B02	YRI	Yoruba	Nigeria	7.4	3.9	SGDP – Mallick et al., 2016
JHM06	JHM	Jehai	Malaysia	5.25	101.17	McColl et al., 2018

Table 3: Data statistics for newly sequenced samples. Average autosomal coverage was estimated on bam files after mapping quality filtering (mq20), duplicates removal, indel realignment and 2bp softclipping.

Sample ID	Mass sampled (g)	Average autosomal coverage
Kotias (KK1)	0.101	12.03
Latvia_HG2 (ZVEJ25)	0.092	18.17
NE5 (14.6)	0.18	15.99
ZVEJ31	0.102	9.97

Table 4: Raw data statistics for the newly sequenced libraries

Sample	Total Bases	Read Count	GC (%)	Q20 (%)	Q30 (%)	Reads Aligned	Endogenous DNA
KK1_1	32,085,537,489	317,678,589	49.3	96.6	94.5	226,739,842	0.71
KK1_2	31,821,488,543	315,064,243	49.7	96.9	94.8	221,241,435	0.70
KK1_3	30,903,010,501	305,970,401	47.8	96.6	94.4	218,378,529	0.71
KK1_4	28,374,056,452	280,931,252	48.5	96.6	94.5	200,616,589	0.71
KK1_5	27,051,061,997	267,832,297	47.4	96.8	94.8	187,070,443	0.70
KK1_6	26,428,490,321	261,668,221	49.7	96.7	94.5	182,602,757	0.70
NE5_1	15,230,188,243	150,793,943	48.4	96.7	94.6	113,866,866	0.76
NE5_2	22,443,822,868	222,216,068	47.8	96.7	94.6	167,444,317	0.75
NE5_3	19,414,144,957	192,219,257	47.7	96.7	94.6	145,145,785	0.76
NE5_4	35,602,627,361	352,501,261	48.9	96.8	94.7	257,297,424	0.73
NE5_5	39,509,022,440	391,178,440	49.5	96.7	94.5	285,303,006	0.73
NE5_6	38,119,633,918	377,422,118	47.7	96.8	94.7	275,284,926	0.73
ZVEJ25_1	22,502,142,793	222,793,493	48.2	96.8	94.6	173,630,441	0.78
ZVEJ25_2	26,264,479,451	260,044,351	47.5	96.8	94.6	202,756,810	0.78
ZVEJ25_3	19,884,007,259	196,871,359	48.1	96.8	94.6	153,807,348	0.78
ZVEJ25_4	30,314,118,184	300,139,784	47.0	96.9	94.8	234,102,091	0.78
ZVEJ25_5	34,172,785,511	338,344,411	48.2	96.9	94.7	264,070,011	0.78
ZVEJ25_6	32,515,172,804	321,932,404	48.2	96.9	94.7	251,187,453	0.78
ZVEJ31_1	42,951,382,412	425,261,212	52.0	96.9	94.7	215,656,479	0.51
ZVEJ31_2	41,717,115,447	413,040,747	50.7	96.9	94.8	209,910,986	0.51
ZVEJ31_3	36,806,312,233	364,418,933	53.8	96.7	94.4	185,131,989	0.51
ZVEJ31_4	34,986,764,509	346,403,609	51.3	96.9	94.6	166,115,737	0.48
ZVEJ31_5	34,797,229,121	344,527,021	53.8	96.8	94.5	164,914,158	0.48
ZVEJ31_6	39,275,860,102	388,869,902	52.0	96.8	94.6	185,999,314	0.48

Table 5: variant calling summary per sample. DP: depth of coverage in filtered intervals for variant calling.

Sample	Ref_Hom_sites	Alt_Hom_sites	Het_sites	Transitions (ts)	Transversions (tv)	Average_DP	ts/tv ratio
Xibo	73380486	22850	32268	34876	20242	36.6	1.72
Mansi	73380645	21817	33142	34928	20031	45.6	1.74
Oroqen	73381419	23580	30605	34344	19841	39.0	1.73
Ulchi	73381180	23476	30948	34549	19875	42.0	1.74
Yakut	73380837	23102	31665	34610	20157	38.1	1.72
Irula	73379707	21860	34037	35402	20495	52.7	1.73
Australian	73380634	25423	29547	34826	20144	43.5	1.73
Eskimo_Sireniki	73382381	23785	29438	33827	19396	43.6	1.74
Yoruba	73366867	22452	46285	43520	25217	34.3	1.73
Pima	73383995	25261	26348	32647	18962	36.3	1.72
Dinka	73368528	22761	44315	42458	24618	36.0	1.72
Karitiana	73385473	25879	24252	31816	18315	44.2	1.74
Mandenka	73367366	22624	45614	43192	25046	33.2	1.72
Papuan	73381714	26484	27406	34211	19679	41.6	1.74
Jehai	73380775	23813	31016	34663	20166	36.0	1.72
Itelman	73382112	24509	28983	33903	19589	47.1	1.73
SIII	73380937	24070	30597	34878	19789	13.5	1.76
kolyma1	73293180	24274	118150	120802	21622	16.3	5.59
ahur_2064	73383950	24839	26815	32736	18918	20.0	1.73
usr1	73382576	24728	28300	33352	19676	19.5	1.70
yana1	73254076	23026	158502	161835	19693	28.8	8.22
Bichon	73244795	23656	167153	170509	20300	11.3	8.40
WC1	73206319	21431	207854	209619	19666	11.9	10.66
KK1	73381347	22877	31380	34269	19988	15.7	1.71
Loschbour	73383379	24998	27227	32383	19842	19.3	1.63
ZVEJ25	73383085	23326	29193	33289	19230	23.2	1.73
ZVEJ31	73381443	22542	31619	34352	19809	13.5	1.73
mota	73141456	23052	271096	269419	24729	13.6	10.89
anzick-1	73014373	22982	398249	401458	19773	15.4	20.30
NE5	73380544	21776	33284	34829	20231	20.8	1.72
NE1	73193709	21302	220593	220990	20905	23.9	10.57
Ust_Ishim	73379574	21982	34048	35464	20566	35.2	1.72
sf12	73383261	22971	29372	33185	19158	55.0	1.73
sumidouro5	72439087	21290	975227	978128	18389	16.2	53.19