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ABSTRACT 

Women are at more than 1.5-fold higher risk for clinically relevant adverse drug events. While 

this higher prevalence is partially due to gender-related effects, biological sex differences likely 

also impact drug response. Publicly available gene expression databases provide a unique 

opportunity for examining drug response at a cellular level. However, missingness and 

heterogeneity of metadata prevent large-scale identification of drug exposure studies and limit 

assessments of sex bias. To address this, we trained organism-specific models to infer sample 

sex from gene expression data, and used entity normalization to map metadata cell line and 

drug mentions to existing ontologies. Using this method, we infer sex labels for 450,371 human 

and 245,107 mouse microarray and RNA-seq samples from refine.bio. Overall, we find slight 

female bias (52.1%) in human samples and (62.5%) male bias in mouse samples; this 

corresponds to a majority of single sex studies, split between female-only and male-only (33.3% 

vs 18.4% in human and 31.0% vs 30.4% in mouse respectively). In drug studies, we find limited 

evidence for sex-sampling bias overall; however, specific categories of drugs, including human 

cancer and mouse nervous system drugs, are enriched in female-only and male-only studies 

respectively.  Our expression-based sex labels allow us to further examine the complexity of cell 

line sex and assess the frequency of metadata sex label misannotations (2-5%). We make our 

inferred and normalized labels, along with flags for misannotated samples, publicly available to 

catalyze the routine use of sex as a study variable in future analyses. 

  

INTRODUCTION 

Sex differences have been reported across multiple traits and diseases and in response to 

drugs. In the case of drug response, women experience more than 1.5-fold as many adverse 
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drug events ​(Zopf et al. 2008)​. This is in part due to historical exclusion of women from clinical 

research. In 1993, the policies excluding women were revoked and the National Institutes of 

Health (NIH) Revitalization Act was passed to increase inclusion of women and minorities in 

clinical research. This has improved inclusion of women, but clinical studies continue to show 

sex bias against female participants ​(Kim, Tingen, and Woodruff 2010; Prakash et al. 2018; 

Feldman et al. 2019)​. Additionally, preclinical studies are critical to the drug development 

process ​(Tannenbaum, Day, and Matera Alliance 2017)​; however, there is limited reporting of 

sex in both rodent ​(Beery and Zucker 2011; Klein et al. 2015)​ and cell line research ​(Shah, 

McCormack, and Bradbury 2014)​. In 2016, the NIH passed a mandate that requires researchers 

to consider sex as a variable in preclinical analysis ​(Clayton and Collins 2014)​, and this has led 

to increases in sex reporting, but sex bias in these studies still remains ​(Woitowich, Beery, and 

Woodruff 2020)​. 

 

Gene expression data is often used as part of the drug development pipeline in order to better 

understand cellular and molecular-level effects of drugs and assess their mechanisms of action 

and side effects ​(Chengalvala et al. 2007)​.  While we do not expect all drugs to show 

cellular-level sex differences in drug response, pervasive use of single-sex studies may lead to 

the development of drugs that do not work well for both men and women. 

 

Multiple studies have sought to assess sex reporting and bias in specific areas, including in skin 

(Kong et al. 2016)​, neuroscience ​(Mamlouk et al. 2020; Beery and Zucker 2011)​, and pain 

research ​(Mogil and Chanda 2005)​, and across biomedical fields ​(Beery and Zucker 2011; 

Woitowich, Beery, and Woodruff 2020)​; these assessments largely focus on scientific literature. 

Public repositories of biological data provide another avenue for assessing sex bias. 

Repositories such as Gene Expression Omnibus (GEO) ​(Edgar, Domrachev, and Lash 2002)​, 

Sequence Read Archive (SRA)​(Leinonen et al. 2010)​, and ArrayExpress ​(Brazma et al. 2003) 

contain gene expression data and corresponding metadata describing the experiments and 

samples, allowing for re-analysis and re-use of these data. Gene expression metadata is 

organized according to the Minimum Information about a Microarray Experiment 

(MIAME)​(Brazma et al. 2001)​ and Minimum Information about a high-throughput Nucleotide 

Sequencing Experiment (MINISEQE) guidelines; despite this, metadata is heterogeneous 

across experiments, making large-scale analysis difficult. In the case of examining sex labels, 

not only are these labels reported inconsistently, the majority of samples are missing this 

information, limiting assessment of sex bias. Previous studies also suggest there may also be 
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widespread misannotation ​(Toker, Feng, and Pavlidis 2016; Lohr et al. 2015)​.  Metadata 

normalization, such as that performed by MetaSRA ​(Bernstein, Doan, and Dewey 2017)​, seeks 

to address the problem of inconsistent reporting of sex, cell type, age, and multiple other labels 

by mapping these to existing ontologies; however, it is unable to address the issue of 

missingness due to lack of metadata ​.  
 

Assessment of sex bias in gene expression data does not require metadata: sex can be 

imputed from the expression levels of X and Y chromosome genes. Recount2 ​(Collado-Torres 

et al. 2017)​ used expression data to impute sex labels across 70,000 publicly available human 

RNA-seq samples using a linear model and found slight female bias overall; however their work 

does not extend to microarray platforms ​(Ellis et al. 2018)​. While other methods for imputing sex 

labels from microarray expression data have good performance, they are either clustering 

based and therefore limited to mixed sex studies (because they assume two clusters) 

(Buckberry et al. 2014; Toker, Feng, and Pavlidis 2016)​ or only work for specific platforms (e.g., 

(Giles et al. 2017)​ GPL570).  

 

In addition to metadata challenges, expression data can be difficult to study at scale because of 

platform heterogeneity and differences in data pre-processing and normalization ​(Ramasamy et 

al. 2008)​. Previous resources, such as ARCHS4 ​(Lachmann et al. 2018)​ and recount2 

(Collado-Torres et al. 2017)​ have worked to address these limitations by releasing human and 

mouse RNA-seq data that has been processed with standardized pipelines. 

 

Refine.bio is a new transcriptomic resource that addresses many of these previous limitations 

(​http://www.refine.bio ​, Greene et al.). It contains all publicly available microarray and RNA-seq 

data from twenty-two organisms, pre-processed, de-duplicated, and normalized to allow for 

examination across platforms. Additionally, portions of the metadata are “harmonized”, meaning 

that groups of semantically similar labels (eg., “tissue” and “organ”) have been manually 

aggregated into categories.  

 

We sought to assess sex bias at the sample and study level across all publicly available 

expression data, including specifically drug-related datasets. For this analysis, we focus on 

human and mouse expression studies, using refine.bio as a resource, and expand on previous 

analysis by using a penalized logistic regression model to predict sample sex. In the process we 
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also consider cell line sex and use our imputed sex labels to estimate baseline misannotation 

rates. 

METHODS 

The code used for this analysis is publicly available at ​https://github.com/erflynn/sl_label ​; all 

analyses were performed in R (3.6.1) or python (3.7.1);  

 

1 Dataset construction  
1-1 Expression data pre-processing 
We downloaded the normalized expression compendia and RNA-seq libraries for human (​Homo 

sapiens​) and mouse (​Mus musculus​) from refine.bio (3/15/2020). The compendia contain both 

microarray and RNA-seq data, quantile normalized and with missing values imputed using 

SVD-impute ​(Perry 2009)​ (430,119 human, 228,708 mouse samples). We extracted the 

microarray data (330,508 human, 123,279 mouse samples) and converted the data to gctx 

format to aid analysis ​(Enache et al. 2019)​; no other transformations were applied to them. All 

RNA-seq libraries for human and mouse were downloaded from refine.bio (122,864 human, 

125,652 mouse). RNA-seq samples with fewer than 100,000 counts were removed, resulting in 

119,863 human and 121,828 mouse samples. Transcripts per million (TPM) counts were 

extracted from the salmon quant.sf files output ​(Patro et al. 2017)​  To convert RNA-seq count 

data to a normal distribution for logistic regression, the data were transformed with the Box-Cox 

transformation using the R package BestNormalize ​(Peterson and Cavanaugh 2019)​.  

 

1-2 Extraction of sample and study metadata labels 
GEO microarray metadata were extracted from GEOMetadb ​(Zhu et al. 2008)​ , including study 

information (title, description, date), sample-study membership, and sample titles and attributes 

included in the ​characteristics_ch1​ field. Following a similar process to refine-bio metadata 

harmonization, RNA-seq metadata was extracted from European Nucleotide Archive ​(Leinonen 

et al. 2011)​ XML files, including study information, study-run membership, run-to-sample 

mappings, and sample attributes. All runs were assigned the attributes of their corresponding 

samples (each sample can map to multiple runs but no run maps to multiple samples; for 

consistency with other data sources, we refer to SRA runs as “samples” from here forward). 

ArrayExpress microarray metadata was also extracted from ENA json files. 
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Sample metadata was present for 443,611 of 448,827 (98.8%) GEO samples, all 4960 

ArrayExpress samples, and 237,267 of 241,691 RNA-seq runs (98.2%, corresponding to 

196,852 unique samples).  

 

2 – Sex labeling 
2-1 Metadata sex label extraction.  
Sample-level sex labels were extracted from metadata sample attributes by filtering for keys that 

contained the words “sex” or “gender”. Additional attributes were also extracted if values 

contained exact matches to the words “male” or “female”  All unique values were then mapped 

to one of “male”, “female”, “mixed” sex (e.g. pooled sample from both males and females), or 

“unlabeled”. The human labels for the refine-bio RNA-seq samples almost exactly match those 

of MetaSRA ​(Bernstein, Doan, and Dewey 2017)​ (30,063 of 30,073 samples).  

 

We grouped studies into the following categories based on the provided sample sex labels: 

1. Unlabeled: ​studies with either less than half of their samples labeled (for studies with up 

to sixty samples) or less than thirty samples labeled (for studies with more than sixty 

samples) 

2. Male-only:​ all male labels 

3. Female-only: ​all female labels 

4. Mostly-male:​ >80% of labeled samples are male 

5. Mostly-female:​ >80% of labeled samples are female 

6. Mixed sex:​ ≤80% of labeled samples belong to either sex 

 

To distinguish between studies with similar and highly imbalanced male/female proportions, we 

created separate categories for mixed sex (≤80%) vs mostly-male and mostly-female studies 

(>80%). See ​Supplementary Tables S1A and S1B​ for the sample and study sex breakdowns 

respectively. 
 
2-2 Inferring sample sex from expression data 
2-2-1 Training and testing data 

There is often substantial overlap of samples across studies; with groups of samples belonging 

to multiple studies. To reduce this overlap, we removed studies that share one or more samples 

with greater than 5 other studies. For the remainder of studies, we aggregated studies into study 

groups such that all samples that share any study are in the same study group. 
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For each organism and data type, we stratified by study group, sampled a maximum of five 

samples per study (to limit overfitting to a particular study), and then randomly selected training 

(n=2,300-3,200 samples, 540-1,300 studies) and testing data (n=630-790 samples, 120-360 

studies) such that was approximately balanced between males and females (48.4-50.7%) (see 

Supplementary Table S2A ​for size of datasets by organism and data type). The goals in 

constructing these data sets were to ensure there was no leakage between training and test 

sets, limit overfitting, and retain sufficient samples and studies to perform stratified 

cross-validation.  

 

2-2-2 Model training 

We trained logistic regression models with an elastic net penalty (using the R package glmnet 

(Friedman, Hastie, and Tibshirani 2010)​) using all X and Y chromosome genes as input. We 

used nested six-fold cross-validation to select the hyperparameters alpha (elastic net penalty) 

and lambda (shrinkage parameter). Briefly, for each of the six cross-validation folds 

(study-stratified), each value of alpha (0.1 to 1 in increments of 0.1), lambda was selected from 

a grid of values by performing cross-validation on five of the six folds and selecting the lambda 

within one standard error of the minimum mean cross-validated error (“lambda-1se”). This 

model was assessed on the sixth “validation” fold. We then computed the median classification 

error and median lambda for each alpha across all six validation folds, and selected the value of 

alpha (and its corresponding lambda) with the lowest median error. 

 

We performed nested cross-validation in this way because of the substantial between-study 

heterogeneity and within-study correlations in expression data. Selection of hyperparameters 

without the additional cross-validation loop led to increased classification error. The procedure 

described is equivalent to the percentile lasso ​(Roberts and Nowak 2014)​ using the 50th 

percentile, and extended to select both alpha and lambda. 

 

2-2-3 Accuracy assessment and cutoff selection 

We assessed the accuracy of our model using both the held out test set (described above) and 

an extended test set consisting of all samples with metadata sex labels from studies not in 

either the training set. We consider a sample to be correctly labeled when metadata sex 

matches the expression-based sex; however, it is important to note that we are actually 

measuring concordance, as metadata sex labels may contain errors.  We also examined two 
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subsets of the extended test set: samples from large (1) ​mixed sex ​studies (at least 10 samples 

per study) or (2) ​exclusively single sex​ studies​ ​(at least 8 samples per study, with all samples 

present and annotated as from one sex) and assessed the accuracy on these subsets of the 

data (see ​Supplementary Table S2A​ for a full list of assessment datasets and their size, and 

Supplementary Table S2B​ for the corresponding accuracies).  

 

We created the exclusively single sex datasets for two reasons: (1) we expect that if metadata 

indicates all samples in a study are of one sex it is less likely there are misannotation errors, 

and (2) to make sure that within study variability did not skew or ability to label these data. In 

microarray data in particular because these data are signal intensities rather than counts, 

improper normalization of single sex studies can lead to a wider distribution of sex relevant gene 

expression values.  

 

For assigning sex labels to samples, we used a cutoff threshold of 0.7 on the model predicted 

probabilities  in order to approximate 95% accuracy (see ​Supplementary Figure 2 ​ and 

Supplementary Table S2B)​. This leads to labeling of 91-93% of the microarray and 70-73% of 

the RNA-seq extended test sets. 

 

2-2-4 Assessment of performance across platforms 

Platform heterogeneity presents a huge challenge for examining microarray data, and as a 

result, previous sex labeling methods have been limited to specific platforms. With our method, 

we aimed to have high performance across a range of platforms. Our models show high 

performance in the majority of platforms; however, it performs particularly poorly in a small 

number of platforms (all less than 50% accuracy; no other platforms have between 50-70% 

accuracy) but these cover <3% of samples (​Supplementary Figure 3 ​and ​ Supplementary Table 

3A-B​). As a result, these six platforms were excluded from subsequent analysis. 

 

3. Cell line sex label assessment 
 
3-1 Cell line labeling.  
3-1-1 Cell line normalization. ​Cell line names, synonyms, sex labels, and amelogenin Short 

Term Repeat (STR) marker results were extracted from Cellosaurus ​(Bairoch 2018)​ (3/27/2020). 

We filtered for human and mouse cell lines (n=109,426 unique accessions). Cell line names and 

synonyms were converted to lowercase. Where multiple different accessions have the same 

7 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.356287doi: bioRxiv preprint 

https://paperpile.com/c/3YhXWw/tFrvH
https://doi.org/10.1101/2020.10.26.356287
http://creativecommons.org/licenses/by-nc/4.0/


 

name (n=31 names, 760 synonyms) or the same names with different punctuation (n=294 

names, 579 synonyms), we map every instance to all accessions. If a synonym matches a cell 

line name it does not share an accession with (n=412 exactly, 91 with different punctuation), we 

map that name only to the cell line accession where the name belongs, but not to both. A subset 

of the identically named cell lines have the same parent cell line (n=77 names, 739 synonyms); 

in this case, the parent cell line is used for the subsequent analysis steps.  

 

We mapped samples to cell lines by matching values to Cellosaurus names and synonyms. We 

performed mapping using three sets of attributes, of decreasing specificity: (1) attribute pairs 

with keys containing “cell” and “line”, (2) attribute pairs with values containing “cell” and “line”, 

and (3) attribute pairs that mention the word “cell”. Human and mouse data were mapped 

separately, using the appropriate Cellosaurus subset. Prior to analysis, mouse strain names, 

common stopwords, and cell line names/synonyms that consisted of all numeric characters 

were removed. We first used exact matches between the value and cell line names (>= 3 

characters) for attribute pairs with a cell line key. Then, cell line mentions were detected using 

n-gram matching (n=1,2,3) between the attribute value (>3 characters) to a cell line or synonym.  

 

3-1-2 Labeling sample source type.​ Based on the presence of exact lexical matches to key 

terms in the sample metadata, we automatically assigned samples to one of: tissue, stem cell, 

xenograft, cancer cell, cell line, primary cell, or other. Cell line data was divided into “named” 

and “unnamed” cell lines, where named cell lines map to a Cellosaurus identifier (see 

Supplementary Figure 5 ​ for logic and ​Supplementary Table 4 ​ for counts by sample type).  

 
3-2 Examining cell line sex 
Using our normalized cell line labels, we can compare the reference sex of a cell line from 

Cellosaurus to the imputed sex from our expression data. For this analysis, we examined cell 

line samples that were both labeled as a cell line using our expression model and mapped to a 

Cellosaurus ontology label based on its metadata. 

 

Two types of reference sex labels from Cellosaurus were compared to imputed sex labels from 

our model; these include ​donor​ sex, the sex of the donor the cell line was derived from, and 

recorded​ sex, which is the sex of cell line samples derived from Short Tandem Repeat (STR) 

profiling of the amelogenin genes ​(Sullivan et al. 1993)​. Samples are labeled as “both” if multiple 

STR analyses have obtained different sex labels.  
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For cell lines with corresponding data in the Cancer Cell Line Encyclopedia (CCLE)  ​(Barretina 

et al. 2012)​, we compared our sample sex scores to CCLE X and Y chromosome copy number 

(CNV) data (downloaded 9/5/2020). 

 

4. Estimation of metadata misannotation 
We examined metadata sex label misannotation rates in three ways, described below. 

 

4-1 Comparing mismatch rates in single sex versus mixed sex studies  
We examined the rates of sample and study sex label mismatches in large single and mixed sex 

studies (large is defined as having at least 10 samples). A sample mismatch is a sample with a 

metadata sex label of male or female and an expression-based sex label above a given 

threshold (0.7) indicating the opposite sex. A mismatched study means that the study contains 

at least one mismatched sample. We used a chi-squared test to examine whether the fraction of 

mismatched samples and studies was significantly different across in mixed versus single sex 

studies. 

 

4-2 Comparing expression-based methods in mixed sex studies 
For large mixed sex studies (at least 5 male and 5 female samples), we compared metadata sex 

labels with expression labels predicted from the clustering-based methods from Toker et al. 

(Toker, Feng, and Pavlidis 2016)​ and massiR ​(Buckberry et al. 2014)​ and our own classification 

method. We conservatively labeled a sample as a mismatch if all of the expression labels 

disagreed with the metadata label.  

 

4-3 Clustering to identify high confidence swaps in mixed sex studies 
While the model predicted probability (​“sample sex score”​) provides an estimate that a sample is 

a particular sex, we find there is a lot of study-to-study heterogeneity in the distribution of these 

sample sex scores. By clustering the sample sex scores, we can leverage information about 

their distribution within a mixed sex study to obtain a probability estimate that a sample belongs 

to either the male or female cluster (​Figure 4 ​). This provides a more local estimate of 

mis-annotated samples at a study level and allows us to identify high confidence swaps. To 

obtain a probability estimate that a sample belongs to a cluster, we fit a mixture of 

one-dimensional Gaussians.  
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To identify high confidence misannotated samples in mixed sex studies, we used Gaussian 

model based clustering (R package Mclust ​(Scrucca et al. 2016)​) to cluster the sample sex 

scores within a study. We performed clustering by fitting a mixture of Gaussians using the 

unequal variances model. We used the default prior with a larger scale parameter (scale=0.15) 

to account for the spread of samples. Noise was added in the case that sample sex scores fell 

in the unclassified category (0.3 < p(male) < 0.7) and was initialized to the set of these samples; 

however, for studies with >⅓ samples unclassified, we did not include noise terms to help with 

convergence. The number of Gaussians (n=1 or 2) and the best model for each study was 

selected using Bayesian Information Criterion (BIC). We additionally filtered studies with little 

separation between clusters, removing studies where the difference in means between the two 

clusters’ sample sex scores was less than 0.3 (n=2 studies). For the remaining studies, we set a 

cutoff posterior probability of 0.95 for assignment of a sample to a cluster, in cases where the 

metadata sex does not match that cluster, we have a “mismatched” sample. The remaining 

samples are labeled “unclassified” (if the model estimated that they were noise) or “unclear” 

(assigned a cluster by the model but with probability < 0.95). 

 
5 – Sex bias in drug data 
 

5-1 Drug labeling 
5-1-1 Study drug mention labeling 

Studies were labeled as having a drug mention if the metadata contained a drug name. 

DrugBank  ​(Wishart et al. 2018)​ (date accessed: 4/14/2019) XML data was downloaded and 

synonyms and drug names parsed. Names or synonyms 3 or fewer characters long were 

discarded, as well as common stop words. Then, we used n-gram matching (n=1,2,3) to map 

between the metadata text (either study or sample) and a drug or synonym.  

 

To find drug-containing studies with high sensitivity, we labeled studies based on ​drug mentions 

in their metadata. Study mapping used the text from study title and description fields. Out of 

44,184 total studies, 7665 (17.3%) contained a drug mention (1104 drugs).  

 

5-1-2 Sample-level annotation of drug labeling 

To build a high specificity dataset, we also performed sample level labeling using the refine.bio 

harmonized “treatment” and “compound” fields, as well as the sample title.  
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We created a library of common control terms for sample mapping. This vocabulary consists of 

the following words: 

"none", "control", "untreated", "dmso", "na", "placebo", "saline", "pbs", "mock", "baseline", 

"unstimulated", "etoh", "ethanol", "ctrl", "non-treated", "vehicle", "ctl", “no treatment” 

 

We then identified the subset of studies where the drug mentioned in a treatment field is the 

drug mentioned in the study; we call these ​drug exposure studies​.  

 

5-2 Assessment of sex bias in drug data 
Anatomic Therapeutic Class (ATC) drug mappings were extracted from DrugBank. The 

enrichment of male only vs female only, and single vs mixed sex studies in each class was 

assessed separately using chi-squared tests. Prior to running tests, we removed classes with 

less than 5 samples in a category. We filtered for a corrected chisq p-value < 0.05 using 

Bonferroni correction on the number of tests (n=48). We also grouped by drug and calculated 

the fraction of male-only and female-only studies for each drug. 

 

RESULTS  

 

1.  Aggregation of publicly available mouse and human expression data 
We downloaded expression data and metadata for all human and mouse samples and studies 

from refine-bio. After filtering (​see Methods 1-1 ​), this resulted in 330,508 and 123,279 

microarray samples (spanning 11,333 and 9,303 studies) and 119,863 and 121,828 RNA-seq 

samples (spanning 6,240 and 6,477 studies) respectively (​Figure 1 ​).  
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Figure 1. Schematic of study analysis. All human and mouse samples from refine-bio were 

gathered, metadata extracted and normalized, and sex labels inferred based on expression. 

This allowed us to examine sex breakdown, cell line sex, and bias in drug studies. 

 
2. Large-scale sex labeling of mouse and human data 
2-1 The majority of samples are missing metadata sex labels​. We extracted and examined 

the missing of metadata sex labels in all mouse and human data present in refine.bio (see 

Methods 2-1 ​). Our analysis indicates that 68-86% percent of samples and 77-88% percent of 

their corresponding studies are missing sex labels (​Figure 2, S1, Tables S1A and B​). In the 

absence of metadata sex labels, we can neither assess inclusion of males and females in 

studies nor examine whether there are sex-related effects​. 
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Figure 2. Alluvial diagram showing the breakdown of study sex labels in the metadata (left of 

each panel) and after expression based labeling (right of each panel). The flow is colored by the 

initial metadata labels and helps trace whether there is a “change” in labels. For the majority of 

studies with metadata labels, the labels match the imputed expression labels.  The results are 

shown for both human and mouse (columns) and in microarray and RNA-seq (rows). On the left 

of each panel is the metadata sex breakdown, on the right is the breakdown after expression 

labeling. Gray indicates that a study is missing sex labels (for n <=60, more than half of the 

study labels are missing or unlabeled, for n>60, there are fewer than 30 labels), dark blue 

means the samples in the study are female-only, dark orange is male-only, and pink is 

mixed-sex. Mostly male (light orange) and mostly female (light blue) indicate that more than 

80% of the samples labeled in that study are of that sex. For the metadata breakdown, the 

numbers of studies in mostly-male and mostly-female categories was small (8-87 studies) and 
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were grouped into mixed sex for ease of visualization. (For a similar figure with sample sex 

breakdown see Supplementary Figure 1.) 

 

 

2-2 Inferring sample sex from expression data. ​Existing methods for inferring missing sex 

labels from expression data are limited to mixed sex studies ​(Toker, Feng, and Pavlidis 2016; 

Buckberry et al. 2014)​ (and as a result cannot be applied ​a priori​) or to specific data or platforms 

(Giles et al. 2017; Ellis et al. 2018)​. In order to label all publicly available expression data, we 

trained penalized logistic regression models to impute sample sex from the expression of X and 

Y chromosome genes. The predicted value from the model corresponds to the model’s 

predicted probability of that sample being male (P(male) or P(sex=1) using the standard coding 

where female is 0 and male is 1); we refer to this value as a ​sample sex score​ and leverage this 

score to better understand the distributions of samples. In many cases we both use this to label 

sample sex, assigning samples to male or female at a certain threshold cutoff, and examine the 

distribution of these scores. 

 

We assessed the accuracy of our model in a randomly held-out test set and in various subsets 

of the data, compared to all metadata labels (agreement 90.8-93.9%). We additionally looked at 

the performance for the subsets of these labels in single sex studies (agreement 88.7-96.7%), 

mixed sex studies (91.5-96.5%), and, in human, manually annotated sex labels from a previous 

analysis (94.2%) ​(Giles et al. 2017)​. As expected, at more stringent cutoffs for assigning sample 

sex, we achieve higher concordance at the expense of leaving a portion of samples unlabeled 

(​Supplementary Figure 2, ​values in ​Supplementary Table 2B​). We selected a threshold of 0.7 to 

correspond with approximately 95% accuracy across the datasets. Our models show good 

performance in most platforms; however, 6 of 62 platforms (covering <3% of all samples) have 

very poor performance (accuracy < 70%, see ​Supplementary Figure 3 ​and ​ Supplementary 

Table 3A ​for platform-specific accuracy). We filtered to remove these “problem platforms​”, ​and 

had 92-97% accuracy with 70-71% of RNA-seq and 91-93% of microarray data labeled at a 

model threshold of 0.7 (​Supplementary Table 3B​).  

 

2-3 Sex labeling mixed sex or pooled samples. ​For a small fraction of samples (0.05-4.2%), 

their metadata indicates that they are pooled or mixed sex samples; this practice is more 

common in mouse data, as samples are often pooled from mice of the same strain before 

analysis, and it is used to both increase signal and reduce the number of expression samples 
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(and thereby the cost). Pooling often includes samples from both sexes, but this is highly 

variable. We sought to examine our models’ predictions on these mixed or pooled samples. The 

models’ sample sex score distributions are significantly different in mixed/pooled samples 

versus male or female labeled samples; where the model distribution appears almost uniform for 

mouse pooled samples (see ​Supplementary Figure 4 ​). At a threshold of 0.7, pooled samples fall 

into the unlabeled category at higher rates than samples with male and female metadata sex (in 

mouse microarray data, 28.8% of pooled versus 5.4 and 7.7% of female and male samples are 

not labeled).  

 

2-4 Sex breakdown shows slight female bias in humans and male bias in mice.  ​We 

applied these models to all publicly available human and mouse expression data and found that 

the overall sex breakdown is slightly female-biased (52.1%) in humans and male-biased 

(62.5%) in mice (​Figure S1, Table S1A​). At a study-level, in humans, the majority of studies are 

mixed sex (41.0% mixed sex vs 33.3% female-only and 18.4% male-only), while in mice, studies 

are evenly split with about one third in each category (31.0% female-only, 30.4% male-only, 

29.6% mixed sex). This pattern does not appear to change over time (​Supplementary Figure 5 ​).  

 

3. Cell line “sex” is complex 
We performed named entity recognition to identify cell lines based on the metadata and mapped 

74,140 out of 99,426 human samples and 8,433 out of 17,061 mouse samples to Cellosaurus 

identifiers. For human RNA-seq samples, this showed high concordance with MetaSRA (76.5% 

exact matching, 14,390 out of 18,821 samples). 

 

3-1 Our analysis supports previous observations that cell line “sex” is fundamentally 
different from tissue sex. ​Previous studies ​(Shah, McCormack, and Bradbury 2014)​ have 

encouraged researchers to report the sex of their cell lines; however, several other studies have 

shown that cell line sex can be a complicated concept, in part because cell lines often lose their 

Y chromosomes in culture ​(Molaro and Malik 2017)​. We find that many samples with reference 

sex male are labeled as female based on expression data (37.8%) while relatively few samples 

have reference sex female and are labeled male (4.24%, ​Figure 3A, Supplementary Figure 8 ​). 

This pattern of cell line “switching” from male to female matches patterns that have already 

been shown on a smaller scale; namely, many cell lines lose Y chromosomes. 

 

15 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.356287doi: bioRxiv preprint 

https://paperpile.com/c/3YhXWw/HnEmV
https://paperpile.com/c/3YhXWw/IFOB1
https://doi.org/10.1101/2020.10.26.356287
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure 3. Y chromosome loss is prevalent and variable across cell lines. A) Cell line sex label 

switching. The sex of the donor cell line is on the left and the imputed sex is on the right. 

Samples are divided into female (blue) and male (orange). Additionally for donor cell sex labels, 

we include samples with unknown sex (gray) and samples with metadata mapping to more than 

one cell line (green). B) Distribution of average study sex scores (e.g. P(male) for a sample) for 

male cell lines shows a bimodal pattern, indicating that many of these cell lines appear 

“female-like”.  (see Supplementary Table 7 for a list). C) Profiles of Y chromosome loss across 

male cell lines with more than five studies. Each cell line is a row. From left to right, the first 

panel shows the fraction of male (orange), female (blue), and unlabeled (gray) samples, the 

second shows the distribution of study average sample sex scores, and the third shows the cell 

line specific distributions of Y chromosome gene copy number (CNV) from the Cancer Cell Line 

Encyclopedia ​(Barretina et al. 2012)​. Overall, this demonstrates the highly variable and 

cell-specific nature of Y chromosome loss. 

  

Overall, we see significant enrichment of the overall proportion of female imputed labels in cell 

line versus tissue samples (​Supplementary Figure 7A​, p<0.05 for human and mouse microarray 

and human RNA-seq, N.S. for mouse RNA-seq).  Additionally, the distributions of sample sex 
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scores for cell line vs tissue shows increased female scores and a wider distribution of scores in 

cell line versus tissue data (​Supplementary Figure 7B​).  

 

3-2. Our analysis provides evidence of cell-line specific patterns of Y chromosome loss. 
Across male cell lines, the fraction of inferred male versus inferred female samples varies 

greatly, with certain cell lines appearing more “male-like” (e.g., THP-1, OCI-Ly7), “female-like” 

(e.g. KYSE-30, HaCaT), or cell lines appearing to belong more in the middle with samples 

belonging to both (A549, HCT-116) (​Figure 3B-C​). We further examined 87 cell lines from male 

donors that had a large number of studies and samples (at least five studies, with at least 3 

samples in each study) (​Supplementary Table 5 ​). Of these cell lines, 45 are included in Cancer 

Cell Line Encyclopedia ​(Barretina et al. 2012)​. On a cell line level, our sample sex score 

predictions correlate with CCLE Y but not X chromosome copy number (Spearman correlation 

of medians for Y: 0.774, p< 4.58 x 10 ​-10​ , and X: -0.0944, p = 0.537) (​Figure 3C)​.  

 

4. Our models allow for improved detection of mis-annotated data ​.  
We can estimate metadata mis-annotation rates at scale by comparing our inferred sex labels to 

metadata sex labels. First, we examined the mismatch rates in mixed sex versus single sex 

tissue studies and found significantly higher mismatch rates in samples from human mixed sex 

studies (4.87%) than single sex studies (2.03%) (Chi-squared p-value < 1.69 *10^-48). By 

contrast, in mouse studies, mismatch rates for samples in single sex studies (3.42%) exceeded 

that of mixed sex (2.58%) studies (p < 9.70*10^-6) (​Supplementary Table 6A​). 

 

Second, we created a dataset of large mixed sex studies with metadata labels, consisting of 

6066 mouse and 8658 human samples (168 and 163 studies respectively), which we sex 

labeled with the Toker and massiR methods, as well as our own (see ​Methods 4-2 ​). Across 

these samples, 4.74% of human and 6.64% of mouse samples had metadata sex labels that did 

not match any of the predicted expression-based labels. At a study level, 35.0% of human and 

16.7% of mouse studies contained at least one mismatched sample (​Supplementary Table 6B​).  

 

Third, to label estimate the probability that an individual sample is mislabeled in a mixed sex 

study, we fit a mixture of Gaussians to each study-level distribution of sample sex scores (see 

Methods 4-3 ​). This allows us to identify high confidence mismatches at a particular probability 

threshold (>0.95) by examining the concordance between metadata labels and expression 

labels. After discarding mixed sex studies where the best model was a single Gaussian (409 or 
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26.9% of mixed sex studies -- by comparison, we also clustered single sex studies and found 

94.0% of single sex studies were best modeled by a single Gaussian), we estimate that 2.04% 

of mouse and 3.06% of human samples are mislabeled in these studies. At a study level, this 

corresponds to 26.0% of mouse and 51.7% of human studies containing at least one high 

confidence mismatched sample (​Supplementary Table 6C​).  

 

 

Figure 4. Leveraging within-study distributions of sample sex scores to identify high-confidence 

mislabeled samples. Each row is a study (randomly sampled from the list of mixed sex tissue 

studies with multiple clusters). Samples are separated by metadata sex (on the y axis) and our 

model sample sex score (P(male)) (on the x axis). Samples are colored by whether they show a 

high confidence (as indicated by a P(sample belongs to cluster) > 0.95) “match” (blue) or 

“mismatch” (red) between the metadata and expression-based sex; samples that were not 

classified by the model are labeled “unclassified” (gray), classified samples that do not pass the 

0.95 threshold for their cluster are labeled “unclear” (purple). Clustering was obtained by fitting a 

mixture of Gaussians; and the estimated mean (solid line) and 95% confidence interval (dashed 

line) for each cluster is shown. 
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5. Sex breakdown of drugs in tissue data  
5-1 Labeling drug studies using metadata. ​We identified all gene expression studies 

containing drug mentions by applying named entity recognition and normalization to the study 

and sample metadata (see ​Methods 5-1 ​). We labeled studies with ​drug mentions​ (n=7,665), 

which contain a drug in the study abstract or title, and ​drug exposure ​studies (n=1,095) which 

include a drug in the sample treatment field.  

 

Out of the 95,788 human and mouse samples with non-null treatment fields (spanning 9,130 

unique treatment labels), 30,000 mapped to only control terms (1,144 unique) and 463 mapped 

to DrugBank drugs and control terms (91 unique), 12,692 mapped to just drugs (1,410 unique 

treatment labels, mapping to 417 drugs), leaving 52,633 unmapped treatment labels (6,485 

unique). 96 additional samples mapped using compound or title. 

 

The overlap between the studies with drug mentions (n=7,665) and treatment studies (n=1,095) 

is 757 studies; 557 of these map to the same drug or drug(s) and 159 map to at least one of the 

same drugs. After filtering for only overlapping drugs, there are 844 unique study-drug pairs 

spanning 319 drugs and 715 studies. We include a list of these ​drug exposure studies​ in 

Supplementary Table 6. 

 

5-2 The sex breakdown of drug studies shows limited sex bias overall. ​We then asked the 

question of whether global patterns of sex breakdown continue in the context of drug studies. 

We found that this was the case; with slightly increased female-bias in human studies (52.7% 

overall, 59.9% in drug studies) and male-bias in mouse studies (52.0% overall, 57.1% of drug 

studies) (​Supplementary Figure 9 ​). This pattern varies across drug Anatomic Therapeutic Class 

(ATC), with female-only studies enriched in human and mouse genitourinary system drugs 

(class G, p < 10 ​-8​ and p < 10 ​-16​ respectively) and in human cancer/immune system drugs (L, p < 

10 ​-7​), and male-only studies were enriched in mouse nervous system drugs (N, p < 10 ​-7​) ​(Figure 

5 ​). These patterns match what is seen in drug exposure studies (​Supplementary Figure 10A,C​) 

and a previous dataset of manually curated drug expression studies (​(Wang et al. 2016)​, n=472) 

(​Supplementary Figure 10B,D​) .  
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C)

 

Figure 5. Sex breakdown by drug ATC class in human and mouse data shows enrichment of 

female only studies in human cancer drugs and male only studies in mouse drugs. Count 

breakdown of female only, male only, and mixed sex studies by class in humans (A) and mice 

(B) (* indicates p<0.05 after Bonferroni correction). The fraction of studies for each individual 

drug is also shown in (C), where the x axis is the fraction of female only studies and the y axis is 

the fraction of male only studies. Each point is a drug, the size of the point indicates the number 

of studies that include that drug, and the color of the point is ATC class. Drug name labels are 

included for drugs with at least three studies and a strongly sex-biased ratio (>⅔ of studies only 

one sex, <⅓ the other); other labels are omitted for ease of visualization. For a full list of drugs 

see Supplementary Table 7.  

20 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.356287doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.356287
http://creativecommons.org/licenses/by-nc/4.0/


 

 

5-3 Human cancer drug studies are female-biased.​ ​There are 370 female-only versus 105 

male-only studies with cancer drug mentions; however, the majority of cancer drug studies are 

still mixed sex (n=396). These studies span 143 different drugs and despite being highly 

female-biased at the study level, 115 of these drugs (80.4%) have at least one mixed sex study.  

 

To determine the possible association between cancer and sex, we examined whether drugs 

targeting strongly sex-biased cancers (e.g. breast, ovarian, prostate) were associated with more 

single sex studies. In humans, of the drugs with >70% female-only studies 9 out of 21 are breast 

cancer specific and 19 out of 21 drugs contain indications for breast or ovarian cancer 

(​Supplementary Table 8A​). For drugs with >70% male only studies, in humans 2 out of 8 of 

these are used for prostate cancer (Enzalutamide, Abiraterone); the remainder are used for 

multiple types of cancer (this includes Bleomycin which is used for multiple cancers including 

ovarian). 

 

5-4 Mouse nervous system drug studies are male-biased. ​In the case of mouse nervous 

system drugs, we see high male-bias in the proportion of male mice used as study subjects. 

This pattern of using only male rodents in neuroscience has been previously reported (​(Beery 

and Zucker 2011)​. At an individual drug level, while the majority drugs either single and mixed 

sex (n=147, 38.7% of human; n=95, 34.5% of mouse) or mixed sex only studies (n=115, 30.3% 

of human; n=38, 13.8% of mouse), some drugs showed very high male-bias (10.3% of human 

and 20.7% of mouse). In nervous system drugs in particular (n=27 in humans, n=37 in mice), 

this fraction is markedly increased in mouse nervous system drugs, with 13 drugs that are only 

studied in males versus 5 only in females (see ​Supplementary Table 8B​ for a list of neuro 

drugs).  The 13 drugs with male-only studies in mice, two have mixed sex studies in humans 

(Herion and Carbamazepine), two only have male-only studies in humans (Fluoxetine and 

Haloperidol), and the remainder have no human studies (Acepromazine, Amphetamine, 

Levadopa, Memantine, Modafinil, Olanzapine, Quetiapine, Salsalate, Venlafaxine). Fluoxetine is 

particularly interesting because it is a commonly prescribed antidepressant and is present in 

eight mouse studies, all of which are male-only. The eight studies are all treatment (fluoxetine) 

versus control comparisons and collectively contain 128 samples all from mouse brain tissue. In 

humans, there is only one fluoxetine study and it is also all male. 
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DISCUSSION 

We inferred sample sex labels at scale from expression data; to our knowledge, our analysis 

represents the first effort to label all human and mouse microarray and RNA-seq data. We 

leverage these labels to assess sex bias overall and in drug studies, examine cell line sex, and 

estimate misannotation rates. Below, we discuss our findings in the context of previous results, 

and potential limitations of our methodology. 

 

Labeling expression data at scale 
Improving on previous methods, which have high accuracy but are focused on specific data or 

platforms ​(Giles et al. 2017; Ellis et al. 2018)​ or mixed sex studies ​(Buckberry et al. 2014; Toker, 

Feng, and Pavlidis 2016)​, our labeling method has consistent accuracy across the majority of 

platforms and in both mixed and single sex studies. We leverage the sample and study 

metadata to label sample sources (e.g. tissue, cell line, primary cell, etc) and map samples and 

studies to cell line and drug identifiers from Cellosaurus ​(Bairoch 2018)​ and DrugBank ​(Wishart 

et al. 2006)​ respectively. Our combined metadata mappings and imputed sex labels allow us to 

examine the sex breakdown across sample source type, cell lines, and drug-related expression 

studies.  

 

We found that the overall sex breakdown shows slight female-bias in human samples and 

male-bias in mouse samples. This breakdown continues at a study level, where the majority of 

studies are mixed sex but there is still slight female- and male- bias in human and mouse 

studies respectively. This low overall sex bias is in contrast to what we expected, given the 

history of clinical trials and mouse studies excluding women, but this is consistent with a 

previous finding in human RNA-seq data ​(Ellis et al. 2018)​. It is important to note our analysis 

focuses on publicly available expression studies and does not extend to private data from drug 

company data or clinical trials.  

 

When we examined labels over a fifteen-year period (2004-2019), we found that the 

missingness of sex labels and patterns of sex bias did not appear to change over time. This was 

also unexpected because in 2016 there was an NIH mandate to include sex as a variable in 

preclinical studies and overall there has been increased awareness of its importance. Specific 

fields have documented improvements in the inclusion of females and reporting of sex 

(Woitowich, Beery, and Woodruff 2020)​; it is possible that future analysis grouping by field may 

show changes in the sex breakdown over time despite the overall pattern seeming consistent. 
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Sex labeling cell lines shows Y chromosome loss 
In 2014, Shah et al. ​(Shah, McCormack, and Bradbury 2014)​ encouraged researchers to 

include and examine the sex of the cells they are using.  Previous studies have shown that 

certain types of male and female cells in culture respond differently to drugs ​(Mennecozzi et al. 

2015)​, underscoring the importance of this consideration. However, there is an important 

distinction between examining the sex of primary or stem cells and examining the sex of 

transformed cell lines. While the sex of the cell line donor provides some information, cell lines 

in culture often undergo chromosomal loss or duplication ​(Xu et al. 2017)​; in particular loss of Y 

chromosomes is common ​(Molaro and Malik 2017) 

 

While the gold standard for cell line sex labeling is PCR-based authentication ​(Sullivan et al. 

1993)​, in the absence of this information, we can use our models to infer sample sex and 

identify Y chromosome loss from expression data, allowing for re-examination of existing 

studies. We found both highly prevalent (43.4% of male cell lines contain at least one 

female-appearing sample) and variable patterns of Y chromosome loss across cell lines. It is 

unclear whether this variability across cell lines is due to differences in cell stability ​(Fasterius 

and Al-Khalili Szigyarto 2018)​, passage number (Y chromosome loss is more common after 

longer time in vitro ​(Xu et al. 2017)​), contamination, or mislabeling. We additionally found that 

the distribution of sample sex scores in cell lines varies greatly from that of tissues and primary 

cells, with human primary cell line distributions appearing to more closely resemble tissue than 

cell lines. Many mouse primary samples had ambiguous sample sex scores, which is likely due 

to the practice of using pooled samples for mouse primary cultures. Altogether these results 

highlight the lack of a cell line sex binary and match previous recommendations against using 

cell lines for examining sex-related effects ​(Ritz 2017)​. We performed the remainder of the 

analysis on cell lines and tissues separately.  

 

While we infer potential Y chromosome loss in cell lines with donor sex male that appear female 

in our expression data, it is also possible that these cell lines are contaminated, which is very 

common ​(Capes-Davis et al. 2010)​. Proper cell line authentication (via PCR) is necessary to 

confirm contamination; however, this is not possible during re-analysis of existing studies. Our 

estimates are limited in that they also do not provide direct copy number information, which is 

important, as cell lines also often undergo X chromosome duplication or changes in autosomal 

ploidy ​(Xu et al. 2017)​. However, the sex breakdown of individual cell lines correlate with the 
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cell’s Y chromosome reference copy number variation (CNV) statistics from Cancer Cell Line 

Encyclopedia (CCLE), validating our inferred labels and providing further evidence of cell line 

specificity.  

 

Another potential factor that may influence sex-related behavor in cell lines is the presence of 

media, which we did not examine in this analysis. Many medias contain phenol red as an 

indicator, which has estrogenic properties, and serum, which mimics a pregnancy-like 

environment, and these may impact the study of sex-related effects ​(De Souza Santos et al. 

2018; Ritz 2017)​. Examining the effects of media is very challenging as there is great 

heterogeneity and media types are often underreported or missing specific information ​(De 

Souza Santos et al. 2018)​.  

 

Estimation of misannotation rates 
Metadata mislabeling is a widespread problem. Previous studies ​(Lohr et al. 2015; Toker, Feng, 

and Pavlidis 2016)​ have used imputed expression labels to estimate mislabeling rates. Toker et 

al found that 46% of the 70 mixed sex datasets they examined contained mislabeled samples, 

with an overall sample mislabeling rate of 2% (4160 samples). Using three methods, we 

estimate that 2-5% of samples contain misannotated sex labels and 30-50% of studies contain 

at least one misannotated sample. Our estimates match previous studies ​(Toker, Feng, and 

Pavlidis 2016; Lohr et al. 2015)​, but expand this analysis to include many more microarray 

platforms, RNA-seq studies, and mouse samples.  

 

We initially examined the difference in mismatch rates between mixed and single sex tissue 

studies, with the expectation that mixed sex studies would have higher mismatch rates than 

single sex studies because of the potential for swapped annotations. This was the case in 

human but not mouse data. It is unclear why single sex studies show higher mismatch rates in 

mice and it is possible that this may be a limitation of our metadata sample source identification 

pipeline. Our approach may have poorer performance in mouse data than human data at 

discriminating identifying cell line samples (the latter we evaluated through comparison to 

MetaSRA). Inclusion of cell line samples within the tissue analysis would increase mislabeling 

rates​.​ Additionally, this difference in rates may be related to the collection of samples from 

mouse pups, which are hard to sex ​(Deeney, Powers, and Crombleholme 2016)​. This raises 

questions about the proportion of mouse studies that are truly single sex, which requires further 
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investigation, and underscores the importance of using proper authentication for sex 

determination. 

 

Including sex as a variable in drug-related studies 
The sex breakdown of drug data shows limited sex bias and matches the overall breakdown of 

samples and studies; however, studies of specific drug classes show sex bias -- particularly 

mouse nervous system drugs (male-biased) and human cancer drugs (female-biased). While 

we focused our analysis on studies that mention a drug, which may have low specificity, we 

found a similar sex breakdown for the subset of these studies with drug information in a 

treatment field, and a crowd-sourced set of drug studies from CREEDS et al. ​(Wang et al. 

2016)​. Future work may involve better annotation of drug exposure studies from metadata using 

deep learning based methods.  

 

While it is of interest to examine whether particular drugs lead to differential gene expression 

responses between males and females, we are underpowered to identify interaction effects in 

most of these studies using classical methods because of sample size. However, it is possible 

that non-parametric methods or pathway and gene set based techniques could be used to 

examine these effects ​(Zhou and Wong 2011)​. Additionally, it is still important to include both 

sexes in studies regardless of our ability to examine interaction effects ​(Klein et al. 2015)​. Our 

inferred sex labels allow for assessment of these practices. In addition, we hope that these 

labels can lead to improved selection of studies and inclusion of sex as a variable in re-analysis 

of public data. 

 

Analysis Limitations 

In development of our sex labeling model, we chose to focus on a model that would allow us to 

infer sample sex at high accuracy across a wide range of samples, studies, and platforms. Our 

model has better performance on microarray data, this may be due to the fact that we used 

similar models across microarray and RNA-seq data by normalizing the count data; however, it 

is possible that alternate models for count data and normalization methods may perform better, 

and future work will assess this. 

 

As is common, our model results in one probability score for each sample, allowing for accurate 

probability cutoffs. However, it is possible that having two predicted scores (for male-like and 

female-like behavior) could allow for better understanding of sex in cell lines, pooled samples, 
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and samples from intersex individuals. Our analysis uses the expression of X and Y 

chromosome genes to label sample sex, we did not consider autosomal expression because 

previous studies have indicated that sex differences in this are generally tissue-specific 

(Gershoni and Pietrokovski 2017)​. However, sex differences in autosomal expression, such as 

determined through methods such as ISEXs ​(Bongen et al. 2019)​, is also important for 

biological understanding and future work may involve including autosomal genes. 

 

As part of our analysis, we also leveraged metadata to map samples and studies to sample 

source types, cell lines, and drugs. For mappings of samples to cell line and drug labels, we 

required an exact match with a cell line name or synonym, and for sample source type, we also 

required exact lexical matches for many of the sample source categories, resulting in many 

unlabeled or “other” samples. Use of state-of-the-art biomedical named entity recognition and 

normalization methods may help to improve the accuracy and sensitivity of these labels . 

 

We focused on sex bias in publicly available human and mouse expression data in refine.bio 

because we wanted to examine sex bias in data from both humans and a mammalian model 

organism. Mice have the largest amount of available expression data and are often used in drug 

development.  We labeled a large fraction of these data; however, a small subset of samples 

could not be labeled due platform challenges or missing or poor quality expression data. Since 

this is a small fraction, and missing data is spread across many studies, we do not expect that 

labeling these data will change our conclusions; despite this, continued efforts will attempt to 

“rescue” these missing data. While we found only slight overall bias in publicly available mouse 

and human expression data, it is possible that public data for other organisms or proprietary 

data show different patterns of bias. In the future, we hope to extend our methods to sex label 

publicly available samples from other organisms with XY determination systems in order to 

further aid in study re-analysis and assessment of sex bias.  

 

CODE & DATA AVAILABILITY 

The sample sex, source, drug, and cell line labels will be made publicly available through 

refine.bio (​https://www.refine.bio/​) to allow researchers to examine these labels and use them to 

better search for and re-analyze existing studies. The code used for labeling and analysis is 

publicly available at ​https://github.com/erflynn/sl_label ​. Cell line annotations of potential Y 

chromosome loss and drug-study mappings are included in the supplement. 
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