

# The effect of basal core promoter and pre-core mutations on HBV replication and persistence in mice

Yi Chen<sup>1</sup>, Zhiwei Xu<sup>1</sup>, Yanli Zeng<sup>2</sup>, Junping Liu<sup>2</sup>, Yongjun Tian<sup>2\*</sup>, Yi Kang<sup>2\*</sup>

4 <sup>1</sup>Clinical research service center, Zhengzhou University People's Hospital, Henan Province,  
5 Zhengzhou 450003, China.

6   <sup>2</sup>Department of Infectious Diseases, Zhengzhou University People's Hospital, Zhengzhou, 450003,  
7   China.

8

9 Running title: HBeAg, Pre-core mutation and HBV persistence

10

11 \*Correspondence to: Yi Kang, Zhengzhou University People's Hospital, 7 Weiwu Ave, Jinshui  
12 District, Zhengzhou, Henan Province, China; Phone: 86 139 3855 3839; Email:  
13 [13938553839@163.com](mailto:13938553839@163.com)

14 Yongjun Tian, Zhengzhou University People's Hospital, 7 Weiwu Ave, Jinshui District,  
15 Zhengzhou, Henan Province, China; Phone: 86 139 3855 3839; Email: [yongjun-tian@163.com](mailto:yongjun-tian@163.com)

16 \* contributed equally to this work.

17

18 **Keywords:** Hepatitis B virus, basal core promoter mutation, pre-C stop-codon mutation, CTL  
19 response, HBV replication

20 **Financial Support:** This work was supported by the National Nature Science Foundation of  
21 China (U1704179). The funders had no role in study design, data collection and analysis,  
22 decision to publish, or preparation of the manuscript.

23

24 **Abstract**

25 The appearance of the BCP or Pre-C mutations, which reduce or abolish HBeAg  
26 production, could increase HBV replication. The remove of the HBeAg often lead to a vigorous  
27 immune response, which has an important role in HBV related fulminant outcome. In this study,  
28 BCP mutations and Pre-C mutations were separately introduced by site-directed mutagenesis in  
29 the same genetic background of an HBV infectious clone, to determine the effect of these  
30 mutations per se on replication. BCP and Pre-C mutations increased HBV replication both in  
31 *vitro* and *in vivo*. HBV could persist in mice injected with wild type HBV infectious clone for  
32 about 7 weeks. However, HBV could persist about 5 weeks in mice injected with BCP HBV  
33 infectious clone, and 3 weeks only in mice injected with Pre-C HBV infectious clone. HBV  
34 related CD8+ CTL response in BCP HBV infectious clone injected mice only slightly increased,  
35 but significantly increased in Pre-C HBV infectious clone injected mice compared with that in  
36 wild type HBV infectious clone injected mice. The population of Tregs significantly increased in  
37 liver but not in spleen of mice injected with Pre-C HBV infectious clone. In summary, we  
38 demonstrate that HBeAg plays an important role in suppressing the CTL response, which is  
39 related with increasing the frequency of Tregs in mouse. Lack of HBeAg expression leads to the  
40 partial loss of immune tolerance.

41

42 **Introduction**

43 Infection with Hepatitis B virus (HBV) causes a wide spectrum of disease manifestations,  
44 ranging from asymptomatic infection to acute self-limiting or fulminant hepatitis, or chronic  
45 infection with variable disease activity. Partially chronic infected patients may eventually  
46 develop cirrhosis or hepatocellular carcinoma. HBV is the prototype member of the

47 hepadnavirus family. It is a small DNA virus with a 3.2-kb genome, which contains four genes  
48 named S, X, P and C genes. The S gene codes for the three co-carboxy-terminal envelope  
49 proteins termed large (LHBs), middle (MHBs) and small surface antigens (SHBs) or pre-S1, pre-  
50 S2 and major S proteins. The X gene codes for a 17-kDa regulatory protein. The P gene codes  
51 for the viral DNA polymerase, which is also a reverse transcriptase. The C gene codes for the  
52 core protein, which forms the viral core particle, and a related protein named the precore protein,  
53 which is the precursor of the secreted e antigen (HBeAg)[1]. HBeAg is found in serum during  
54 active infection and generally correlates with the degree of viremia. Indeed, HBV DNA level  
55 have been found to decline in serum following the development of an immuno response to  
56 HBeAg (anti-HBeAg)[2].

57 Previous studies indicated that Chronic HBV infection is associated with the emergence  
58 of mutations throughout the viral genome that result in the generation of diverse viral  
59 populations or quasispecies[3]. Point mutations unable to produce e antigen often become the  
60 dominant viral quasispecies in viral population present in the infected individual. The  
61 mechanism for their increased fitness may involve selection via the immune response or by  
62 enhancement of viral replication rates. The mutations associated with the loss of e antigen  
63 production in fulminant hepatitis patients frequently include the double mutation of A to T  
64 (A→T) at nt 1762 and G to A (G→A) at nt 1764 basal core promoter (BCP) mutation[4], and the  
65 G to A (G→A) at nt 1896 pre-C stop-codon mutation[5], the latter often accompanied by a G to  
66 A (G→A) mutation at nt 1899. Moreover, additional mutation in the BCP region that may confer  
67 increased replication efficiency to the virus have been described[6, 7].

68 It has been postulated that fulminant induced by HBV infection may be the result of  
69 increased viral replication results from the BCP mutation, which up-regulate pgRNA, with

70 concurrent downregulation of pre-C mRNA synthesis[6, 8]. However, in vitro experiments  
71 addressing these issues have provided conflicting results[6, 9]. Some studies have reported  
72 increased viral replication in conjunction with a decrease in pre-C mRNA synthesis[6, 8], whilst  
73 others reported no increase in viral replication, only reduced pre-C mRNA production[10]. Such  
74 studies have employed reporter-gene constructs containing subgenomic fragments bearing the  
75 relevant mutations in the genetic background that they were found in or have used infectious  
76 clones with the mutations engineered by site-directed mutagenesis.

77 In the present study, BCP mutations and Pre-C mutations were separately introduced by  
78 site-directed mutagenesis in the same genetic background of an infectious clone, to determine the  
79 effect of these mutations per se on replication. In contrast to earlier studies, various infectious  
80 constructs were also introduced into mouse liver by hydrodynamic injection. Replication  
81 efficiency *in vivo* of various infectious constructs was measured by Southern Blot, Northern  
82 Blot, quantitative real-time PCR measurements of intracellular replicative intermediates,  
83 including RC dsDNA and pgRNA and released virion-associated HBV DNA. HBV DNA  
84 replication persistence was also detected in mouse.

85

## 86 **Materials and Methods**

### 87 **Plasmid constructs and site-directed mutagenesis**

88 A replication-competent plasmid, named pHBV1.2-WT, containing 1.2 copies genome  
89 length of HBV subtype adr (genotype C) was kindly provided by Peter Karayiannis[11]. This  
90 plasmid formed the template for use with a GeneArt® Site-Directed Mutagenesis System  
91 (ThermoFisher, cat. #: A13282) according to the manufacturer's instructions. A plasmid, named  
92 pHBV1.2-BCP, that contained an A to T mutation at nucleotide 1762 and G to A mutation at

93 nucleotide 1764 was constructed. A plasmid, named pHBV1.2-PC, that contained a G to A  
94 mutation at nucleotide 1896 was constructed. A compensatory mutation of C to U at nucleotide  
95 1858 was also created to maintain the stability of the overlapping epsilon structure[12].

96

97 **Cell culture and transfection**

98 HepG2 cells were maintained in DMEM medium supplemented with 10% of fetal bovine  
99 serum, 100 µg/ml penicillin and 100 µg/ml streptomycin. Cells were seeded in 6-well plates at  
100 approximately 60% confluence. After 24 h, cells were transfected with Lipofectamine 2000  
101 (Invitrogen, Camarillo, USA) according to the manufacturer's instructions. The efficiency of  
102 transfection procedure was verified and controlled by co-transfection of a reporter plasmid  
103 pVIVO-Lucia/SEAP plasmids (Promega, USA), which expresses luciferase and SEAP.

104

105 **Hydrodynamic Injection of plasmids**

106 Eight-week old male C57BL/6 mice were purchased from the experimental animal center  
107 in Henan Province, China. Our animal protocol was approved by the Life Science Ethics  
108 Committee of Zhengzhou University. Mice were injected via the tail vein with plasmids in 5-8  
109 seconds in a volume of saline equivalent to 8% of the body weight of the mouse as described  
110 previously[13]. pVIVO-Lucia/SEAP plasmids (invivoGen, San Diego, CA, USA), which  
111 expresses the luciferase and SEAP, was included in the injection to serve as the internal control  
112 to monitor the injection efficiency.

113

114 **Southern and Northern blot analyses**

115 Transfected cells or Liver tissues were homogenized in DNA lysis buffer (20 mM Tris-  
116 HCl, pH7.0, 20 mM EDTA, 50 mM NaCl, 0.5% SDS), incubated for 16 hours at 37°C with  
117 proteinase K (600 µg/ml) and then phenol/chloroform extracted for the isolation of DNA. The  
118 HBV RI DNA in the core particles was isolated using previous protocol [28]. For RNA isolation,  
119 liver tissues were homogenized in Trizol (Invitrogen) and total RNA was isolated following the  
120 manufacturer's protocol. Both Southern and Northern blot analyses were conducted using the  
121  $^{32}\text{P}$ -labeled HBV DNA probe.

122

## 123 Real-time PCR analysis of medium or serum HBV DNA

100  $\mu$ l cell culture medium or 10  $\mu$ l mouse serum was digested with 10  $\mu$ g DNase I and  
micrococcal nuclease for 30 min at 37°C to remove free DNA. Then added 100  $\mu$ l lysis buffer  
(20 mM Tris-HCl, 20 mM EDTA, 50 mM NaCl, and 0.5%SDS) containing 27 $\mu$ g proteinase K.  
After incubation at 65°C overnight, viral DNA was isolated by phenol/chloroform extraction and  
ethanol precipitation. The DNA pellet was rinsed with 70% ethanol and resuspended in 10  $\mu$ l TE  
(10 mM Tris-HCl [pH 7.0], 1 mM EDTA). HBV DNA was then isolated as described above. For  
HBV real-time PCR analysis, the following primers were used: forward primer, 1552-  
CCGTCTGTGCCTTCTCATCTG-1572; and reverse primer, 1667-  
AGTCCTCTTATGTAAGACCTT-1646. The TaqMan probe used was 1578-  
CCGTGTGCACTTCGCTTCACCTCTGC-1603.

134

## 135 HBV serological assays by ELISA

136           HBsAg and HBeAg were analyzed using the ELISA kit following the manufacturer's  
137        instructions (Kehua, China). The mouse serum was diluted 50-fold with PBS, and 100 µl of  
138        diluted sample was used for the assay. The assays were conducted in triplicate.

139

140        **Isolation of mononuclear cells from the mouse liver**

141           The mouse liver was perfused with 30 ml PBS via the hepatic portal vein at room  
142        temperature. The liver was excised, and liver cells were dispersed in PBS containing 2% fetal  
143        bovine serum (FBS) and 0.02% NaN<sub>3</sub> at 4°C through a 40-µm nylon cell strainer (DN Falcon  
144        #352340). Cells were centrifuged at 500×g at 4°C for 5 minutes. Liver mononuclear cells were  
145        then isolated by centrifugation at 700×g in 25 ml of 33.75% sterile Percoll at 25°C for 7 minutes.  
146        Cells were incubated with the 1× Red Blood Cell lysis buffer (Sigma) at room temperature for 4  
147        minutes, and washed three times with PBS containing 2% FBS and 0.02% NaN<sub>3</sub> at 4°C with  
148        centrifugation at 500×g for 5 minutes after each wash. After the first wash, cells were again  
149        filtered through a 40-µm nylon cell strainer and, after the last wash, cells were resuspended in 1  
150        ml PBS containing 2% FBS and 0.02% NaN<sub>3</sub> and counted.

151

152        **Flow cytometry**

153           The following antibodies, which were all purchased from eBioscience, San Diego, were  
154        used for flow cytometry: anti-mouse CD3 eFluor 450 (cat. 48-0032-82), anti-mouse CD4 FITC  
155        (cat. 11-0042-82), anti-mouse CD25 PE (12-0251-82), and anti-mouse FoxP3 APC (cat. 17-  
156        5773-82) . Two million cells per sample were used for flow cytometry. Cells were incubated  
157        with Fc Block for 15 minutes at 4°C in darkness to block the Fc<sub>Y</sub>R and then stained with  
158        fluorochrome-conjugated antibodies for 30 minutes at 4°C also in darkness. Cells were then

159 analyzed using a Canto II (BD Bioscience, CA) 8-color flow cytometer, and data were analyzed  
160 using FlowJo software (Tree Star, Inc., Ashland, OR).

161

## 162 **The luciferase reporter assay**

163 The reporter construct pVIVO-Lucia/SEAP was transfected into HepG2 cells or delivered  
164 into the mouse liver by hydrodynamic injection. The cells culture medium was diluted 100 folds;  
165 the mouse serum was diluted 5000 folds. SEAP expression was be quantified by using The  
166 SEAP Reporter Assay Kit (invivoGen, San Diego, CA, USA). All the experiments were  
167 repeated at least three times.

## 168 **Statistical Analyses**

169 Data were presented as the mean  $\pm$  SEM, and *p* values were determined by two-tailed  
170 Student's *t* test using GraphPad Prism software. Differences that were statistically significant  
171 were indicated by asterisks in the figures.

172

## 173 **Results**

### 174 **Replication capacity of BCP and pre-C constructs in vitro**

175 The construction pHBV1.2-BCP contains double mutation of A to T (A $\rightarrow$ T) at nt 1762  
176 and G to A (G $\rightarrow$ A) at nt 1764 basal core promoter (BCP) mutation, and the construction  
177 pHBV1.2-PC contain G to A (G $\rightarrow$ A) at nt 1896 pre-C stop-codon mutation were introduced by  
178 site-directed mutagenesis in the same genetic background of a HBV replication-competent  
179 plasmid pHBV1.2-WT, the latter accompanied by a G to A (G $\rightarrow$ A) mutation at nt 1899. To  
180 examine the replication capacity of each construction, each construction was transfected into  
181 HepG2 cells. Replication capacity of each construct was analyzed in terms of HBV core particle

182 DNA and total cellular RNA by Southern and Northern Blot in transfected HepG2 cells at 72  
183 hours post-transfection. As shown in figure 1A, the level of HBV core particle DNA was  
184 increased by 40% in construct with the BCP mutations, increased 1.8 folds in construct with Pre-  
185 C mutation comparing with that in pHBV1.2-WT transfected cells. When the HBV RNA was  
186 analyzed by Northern blot, a significant increase of the HBV RNA level both in BCP mutations  
187 and Pre-C mutation was also observed, particularly with the HBV S gene transcripts. The HBsAg  
188 and HBeAg in the supernatant of cell culture were also measured by ELISA. The results shown  
189 these mutations did not affect the expression of HBsAg in HepG2 cells, but Pre-C mutation  
190 abolished the expression of HBeAg, and BCP double mutations reduce HBeAg exprssion about  
191 50% (Figure 1B). The viral titer in the supernant of cell culture transfected BCP or stop-codon  
192 mutations inceased about 3 tines and 7 times than that of in cell supernant transfected with  
193 wildtype replicated HBV DNA (Fig. 1C)

194 **Figure 1. The effect of BCP or Pre-C mutations on HBeAg expression and HBV replication**  
195 **in vitro.** HepG2 cells were transfected with the pHBV1.2-WT, pHBV1.2-BCP or pHBV1.2-PC  
196 for 48 hours. (A) The cells were lysed for the analysis of the HBV RI DNA by Southern-blot and  
197 HBV RNA by Northern Blot. (B) The incubation media were then harvested for the analysis of  
198 HBsAg and HBeAg by ELISA. (C) HBV DNA levels in the media was analyzed by real-time  
199 PCR.

200

201 **Replication capacity of BCP and pre-C constructs in vivo**

202 To examine the replication capacity of each construction in vivo, we performed the  
203 hydrodynamic injection in mice, which is a rapid and convenient method for HBV gene delivery  
204 into mouse liver. 4  $\mu$ g pHBV1.2-WT, pHBV1.2-BCP or pHBV1.2-PC plasmids were injected

205 via the tail vein into the mice, respectively. HBsAg, HBeAg and the viral titer in the serum were  
206 measured by ELISA and real-time PCR at 72 hours after injection. As shown in Figure 2A,  
207 HBsAg level increased about 1 time in the mice injected with pHBV1.2-BCP plasmid, and 1.5  
208 times in the mice injected with pHBV1.2-PC plasmid compared with that in mice injected with  
209 pHBV1.2-WT control HBV DNA. HBeAg level decreased about 2 time in the mice injected with  
210 pHBV1.2-BCP plasmid compared with that in mice injected with control plasmid, and HBeAg  
211 was undetectable in the mice injected with pHBV1.2-PC plasmid. HBV titer in the mice serum  
212 was also detected by qPCR. As shown in Figure 2B, HBV titer increased in mice injected with  
213 either pHBV1.2-BCP or pHBV1.2-PC plasmid compared with that in mice injected with  
214 pHBV1.2-WT, but increased more significantly in the mice injected with pHBV1.2-PC.

215 HBV core particle DNA and total cellular HBV RNA were then analyzed. As showin in the  
216 figure 2C, both BCP and Pre-C mutations led to an increasing level of HBV core partical DNA  
217 and HBV RNA, but PC mutations had a more prominent effect on HBV core partical DNA and  
218 HBV RNA.

219 **Figure 2. The effect of BCP or Pre-C mutations on HBeAg expression and HBV replication**  
220 **in vivo.** 4  $\mu$ g pHBV1.2-WT, pHBV1.2-BCP or pHBV1.2-PC plasmids were injected via the tail  
221 vein into the mice by hydrodynamic injection, respectively. Mice sacrificed at 72 hours after  
222 injection. (A) HBsAg and HBeAg in the serum were measured by ELISA. (B) HBV DNA levels  
223 in the serum was analyzed by real-time PCR. (C) 50 ug the liver tissues were lysed for the  
224 analysis of the HBV RI DNA by Southern-blot or HBV RNA by Northern Blot.

225

226 **BCP and Pre-C mutations were not benefit for HBV persistence in mouse.**

227 Previous studies demonstrated that HBeAg may be important for HBV persistence after  
228 vertical transmission [2, 14, 15]. Expression of HBeAg was also important for HBV to establish  
229 persistent replication in mice. As BCP mutants partially reduce HBeAg level and Pre-C mutants  
230 abolish HBeAg expression, we want to know whether BCP and Pre-C mutants affect HBV  
231 persistence replication in mice. 4 µg pHBV1.2-WT, pHBV1.2-BCP or pHBV1.2-PC plasmids  
232 were injected via the tail vein into the mice, respectively. Mouse blood was collected at different  
233 time point after injection. HBsAg and the viral titer in the serum were measured by ELISA and  
234 real-time PCR, respectively. As shown in Figure 3A, mice injected with pHBV1.2-WT,  
235 pHBV1.2-BCP or pHBV1.2-PC plasmids produced initially a high level of HBsAg in the serum.  
236 This HBsAg level declined rapidly in mice injected with pHBV1.2-BCP or pHBV1.2-PC  
237 plasmids. HBsAg became undetectable in three weeks in the mice injected with pHBV1.2-PC  
238 plasmid. HBsAg became undetectable in five weeks in the mice injected with pHBV1.2-BCP  
239 plasmid. In contrast, the HBsAg level in mice injected with pHBV1.2-WT plasmid declined  
240 slowly and was still detectable at 7 weeks after injection, the study endpoint. The level of virion-  
241 associated HBV DNA in the serum peaked at 1 day post-infection in mice injected with  
242 pHBV1.2-WT, pHBV1.2-BCP or pHBV1.2-PC plasmids. It was approximately  $6.3 \times 10^6$  genome  
243 copies/ml. HBV DNA in the serum declined rapidly and became undetectable in mice injected  
244 with pHBV1.2-PC mutant plasmid after 3 weeks. In mice injected with pHBV1.2-BCP plasmid,  
245 the virion-associated HBV DNA became undetectable after 5 weeks. However, in the mice  
246 injected with pHBV1.2-WT, the virion-associated HBV DNA reduced slightly after day 4 but  
247 remained more or less at the same level at about  $10^3$  genome copies/ml up to 7 weeks after  
248 injection. Mouse liver HBV DNA and RNA was also confirmed by detecting HBV serum  
249 DNA replicative intermediates (RI). As shown in figure 3B, the HBV RI DNA could be detected

250 by Southern blot in the mouse liver at 6 weeks post-injection of pHBV1.2. In contrast, HBV RI  
251 DNA could not be detected in the mouse liver injected with pHBV1.2-BCP or pHBV1.2-PC at  
252 same time point. Similarly, the HBV core protein could be detected by immunostaining in a  
253 significant number of hepatocytes (Figure 3C) in mouse at 6 weeks after pHBV1.2-WT injection.  
254 In contrast, the HBV core protein could not be detected in the hepatocytes of mice injected with  
255 pHBV1.2-BCP or pHBV1.2-PC at the same time point after injection. These results that HBV  
256 could not persistently replicate longer in mice injected with pHBV1.2-BCP or pHBV1.2-PC than  
257 that in mice injected with pHBV1.2 indicated an important effect of HBeAg on the establishment  
258 of HBV persistence in mice.

259 **Figure 3. The effect of BCP or Pre-C mutations on HBV Persists in Mice.** (A) Analysis of  
260 HBV persistence in pHBV1.2-WT, pHBV1.2-BCP or pHBV1.2-PC plasmids injected mice. The  
261 sera of 15 pHBV1.2-WT injected mice, 13 pHBV1.2-BCP injected mice and 16 pHBV1.2-PC  
262 injected mice were collected at the time points indicated and analyzed for HBsAg by ELISA  
263 (upper panel) and HBV DNA by real-time PCR (lower panel). (B) HBV replicative intermediate  
264 (RI) DNA in the mice liver was analyzed by Southern blot. The liver tissues of mice were  
265 isolated at 6 weeks after HBV DNA injection for the analysis. (C) Immunostaining of HBV core  
266 protein in the liver of different mice. The liver tissues of mice were collected at 6 weeks after  
267 HBV DNA injection for the analysis.

268

### 269 **Pre-C mutations increased CD8+ CTL response in mice**

270 To understand why HBV persisted shorter in mice injected with pHBV1.2-PC than that in  
271 mice injected with pHBV1.2-WT or pHBV1.2-BCP plasmids, we firstly analyzed the level of  
272 HBV-associate CD8+ T cells in mice two weeks after the injection of HBV DNA. Mononuclear

273 cells isolated from the liver were stimulated with a peptide derived from the HBV core protein  
274 (amino acids 93–100, MGLKIRQL) as previously described [13]. The IFN- $\gamma$ -producing CD8+ T  
275 cells were then analyzed by flow cytometry. As show in Figure 4A, control mice injected with  
276 the pUC19 vector DNA had few activated interferon- $\gamma$  (IFN- $\gamma$ )-CD8+ T cells stimulating with  
277 the HBV peptide. For the mice injected with the pHBV1.2, the population of IFN- $\gamma$ -positive  
278 CD8+ T cells was 1.7% in the liver. The population of IFN- $\gamma$ -positive CD8+ T cells was 1.9% in  
279 the liver of mice injected with pHBV1.2-BCP. But the population of IFN- $\gamma$ -positive CD8+ T  
280 cells was 3.2% in the liver of mice injected with PC mutant HBV DNA.

281 We also analyzed the HBV-specific hepatic CD8+ T cells with the tetramer containing a  
282 peptide derived from the HBV core protein as described above. The results revealed a slightly  
283 increase of HBV-specific CD8+ T cells in mice injected with pHBV1.2-PC comparing with the  
284 mice injected with pHBV1.2. As show in Figure 4B, in mice injected with the pHBV1.2-WT or  
285 pHBV1.2-BCP plasmid, the populations of HBV-specific CD8+ T cells in the liver were 1.5%  
286 and 1.7%, respectively. In contrast, a significant increase of the population of HBV-specific  
287 CD8+ T cells was observed in the liver of mice injected with pHBV1.2-PC plasmid (2.8%). As  
288 Pre-C mutation abolished HBeAg express, these results suggested that the increased CD8+ CTL  
289 response in pHBV1.2-PC injected mice might be due to the lack of HBeAg in those cells.

290 **Figure 4. The effect of BCP or Pre-C mutations on CTL responses in mice.**

291 (A) Analysis of HBV-specific CD8+ T cells. 4  $\mu$ g pUC19, pHBV1.2-WT, pHBV1.2-BCP or  
292 pHBV1.2-PC plasmids were injected via the tail vein into the mice by hydrodynamic injection,  
293 respectively. Mice were sacrificed at 14 days after injection for the isolation of  
294 liver mononuclear cells. These cells were then stimulated with the HBV core peptide (aa 93-100)  
295 and analyzed by flow cytometry for CD8+IFN- $\gamma$ + cells. The results represent the mean values of

296 five different mice. (B) Total number of HBV-specific CD8+ T cells per mouse liver. CD8+ T  
297 cells stained by the HBV core tetramer were analyzed by flow cytometry. The results represent  
298 the mean of five different mice. \*p > 0.05; \*\*p < 0.01.

299

300 **Pre-C mutations decreased the population of Regulatory T cells (Tregs) in mice**

301 Tregs have an important role in regulating effector T cell responses in many infectious  
302 diseases[16, 17]. Tregs have been reported to down-regulating HBV-specific T cell responses in  
303 HBV infected patients as well as in HBV animal models[18, 19]. To understand whether stronger  
304 HBV- specific T cell responses in mice injected with pHBV1.2-PC was related to Tregs. Treg  
305 response in the spleen and liver were analyzed by Flow cytometry. 14 days after mice  
306 hydrodynamic injection, mice liver monocytes and spleen cells were isolated and absolute  
307 numbers of CD4+ Foxp3+ Treg cells were analyzed by flow cytometry. As show in Figure 5,  
308 injection of pHBV1.2-WT, pHBV1.2-BCP or pHBV1.2-PC plasmids resulted in a slightly  
309 increasing population of CD4+ Foxp3+ Treg+ cells in mice spleen comparing with that in  
310 control mice injected with pUC19 plasmid. The population of Treg cells in liver significantly  
311 increased in the mice injected with pHBV1.2-WT comparing with that in mice injected with  
312 pUC19, pHBV1.2-BCP or pHBV1.2-PC. The population of Treg cells in liver slightly increased  
313 in the mice injected with pHBV1.2-BCP or pHBV1.2-PC comparing with that in mice injected  
314 with pUC19. As Pre-C mutation abolished the expression of HBeAg and BCP mutations reduce  
315 HBeAg exprssion both in vitro or in vivo, these results demostrated that HBeAg might has an  
316 important role in HBV persistence by regulating Treg popula

317 **Figure 5. The effect of BCP or Pre-C mutations on Treg in mice.** 4  $\mu$ g pUC19, pHBV1.2-  
318 WT, pHBV1.2-BCP or pHBV1.2-PC plasmids were injected via the tail vein into the mice by

319 hydrodynamic injection, respectively. Mice were sacrificed at 14 days after injection for the  
320 isolation of liver mononuclear cells and spleen cells. CD3<sup>+</sup>/CD4<sup>+</sup>/FoxP3<sup>+</sup> Treg were analyzed by  
321 flow cytometry. The results represent the mean of five different mice. \*p > 0.05; \*\*p < 0.01.

322

## 323 **Discussion**

324 The appearance of the BCP or Pre-C mutations, which reduce or abolish HBeAg  
325 production[9, 20], heralds the initiation of the seroconversion phase from HBeAg to anti-HBeAg  
326 positivity in clinical[21]. The removal of the HBeAg often lead to the awakening of the immune  
327 response[22]. However, the appearance of the BCP or Pre-C mutations also often result to  
328 HBeAg negative chronic hepatitis B with high viremia levels[23]. Many studies have confirmed  
329 that BCP mutations reduce HBeAg expression and pre-C mutations abrogate HBeAg synthesis in  
330 vitro[11, 24]. However, there is still no clear evidence to show whether the reduction or loss of  
331 HBeAg caused by BCP or Pre-C mutations is associated with HBV persistence. In this study, we  
332 constructed a replication-competent HBV plasmid containing BCP and Pre-C mutations,  
333 respectively. The two plasmids were transfected into HepG2 cells. The BCP mutation reduced  
334 the HBeAg level by 50% and increased the HBV replication level about 3 times. The Pre-C  
335 mutation completely abolished HBeAg expression, and the HBV replication level increased 7  
336 times compared with the control. These results consist with previous results[11, 24, 25]. To  
337 further study the effect of BCP and Pre-C mutations on HBV replication in vivo, we injected  
338 these two mutant plasmids into the liver of mice by hydrodynamic injection. The results showed  
339 that the BCP mutation reduced the serum HBeAg level, and the Pre-C mutation eliminated  
340 HBeAg expression in mice. The BCP mutation slightly increased the levels of HBV DNA and  
341 RNA in the liver of mice, and the HBV titer in the serum. The Pre-C mutation significantly

342 increased both HBV DNA and RNA levels in the liver of mice, and the level of HBV DNA in  
343 the serum increased more significantly.

344 As the BCP and Pre-C are frequently observed in HBV sequences isolated from chronic  
345 patients[4, 5], we want to know whether the BCP and Pre-C mutations contribute to HBV  
346 persistent infection. In this study, we injected low density (4 $\mu$ g/mouse) pHBV1.2-WT,  
347 pHBV1.2-BCP or pHBV1.2-PC into mice, respectively. Our results shown that HBV could  
348 persist in mice injected with pHBV1.2-WT for about 7 weeks. However, HBV could persist  
349 about 5 weeks in mice injected with pHBV1.2-BCP, and 3 weeks only in mice injected with  
350 pHBV1.2-PC plasmid. As BCP and Pre-C mutations affect HBV replication level and the  
351 expression of HBeAg, which has a role of regulating immune activity, we believe that the  
352 reduction or absence of HBeAg induced by BCP or Pre-C mutations significantly shortens the  
353 HBV persistence in mice.

354 Previous studies shown that HBeAg plays an important role in the development of CHB  
355 by regulating the host immune response through multiple pathways. Circulating HBeAg may  
356 downregulate antiviral clearance mechanisms by virtue of eliciting anti-inflammatory Th2-like  
357 cytokine[26] and deplete inflammatory HBeAg-specific Th<sub>1</sub> cells[27]. In addition, studies with  
358 mouse models have shown that HBeAg impairs liver HBV-specific CD8<sup>+</sup> cytotoxic T  
359 lymphocytes mediated by hepatic macrophages[28].These results indicated that HBeAg has the  
360 importance role in HBV persistence. In current study, we analyzed the immune responses in  
361 pUC19, pHBV1.2-WT, pHBV1.2-BCP or pHBV1.2-PC plasmids injected mice. We found the  
362 HBV related CD8+ CTL response in pHBV1.2-BCP injected mice only slightly increased  
363 comparing with that in mice injected with pHBV1.2. However, the HBV related CD8+ CTL  
364 response in pHBV1.2-PC injected mice significant increased compared with that in control mice.

365 These results indicated that loss of HBeAg might upregulate HBV related CD8+ CTL response  
366 which terminate HBV persistent.

367 To understand why HBV specific CD8+ CTL response in pHBV1.2-PC injected mice is  
368 stronger than that in pHBV1.2-WT injected mice, we analyzed the CD3<sup>+</sup>CD4<sup>+</sup>Foxp3<sup>+</sup> regulatory  
369 T cells (Tregs), as several reports have suggested that it plays a significant role in suppressing T  
370 cell responses during viral infections[16, 17]. Some studies also indicated that Tregs play an  
371 important role in down-regulating HBV-specific effector T cell responses in HBV patients[18,  
372 19, 29]. In addition, studies with mouse models have shown that absolute Treg numbers  
373 significantly increased in the liver after hydrodynamic injection of replicative HBV DNA[30]. In  
374 this study, we found that population of Tregs significantly increased in liver but not in spleen of  
375 mice injected with pHBV1.2-PC comparing with that in mice injected with pHBV1.2-WT or  
376 pHBV1.2-BCP. It indicates that HBeAg might contribute to regulation of Treg population only  
377 in liver, which affect HBV specific CD8+ CTL response and HBV persistence.

378 Taken together, in this study we demonstrated that HBeAg play an important role in  
379 suppressing the CTL response, which is related with increasing the frequency of Tregs in mouse.  
380 Lack of HBeAg expression leads to the partial loss of immune tolerance. This study will provide  
381 important information for us to understand the mechanism of HBV persistence and to improve  
382 the treatments for chronic HBV patients.

383

384 **Conflict of Interest**

385 The authors declare no conflict of interest.

386

387 **Author Contributions**

388 C.Y and L. JP designed, performed study, Z. WX and Y. LZ analyzed the date. Y. K and T. YJ  
389 directed the study and wrote the manuscript.

390

391 **Acknowledgements**

392 We wish to thank all the subjects volunteered to participate in this study. This work was  
393 supported by the National Natural Science Foundation of China (U1704179).

394

395 **References**

396

- 397 1. Ou JH, Laub O, Rutter WJ. Hepatitis B virus gene function: the precore region targets the  
398 core antigen to cellular membranes and causes the secretion of the e antigen. *Proc Natl Acad Sci  
399 U S A*. 1986;83(6):1578-82. Epub 1986/03/01. doi: 10.1073/pnas.83.6.1578. PubMed PMID:  
400 3006057; PubMed Central PMCID: PMCPMC323126.
- 401 2. Milich D, Liang TJ. Exploring the biological basis of hepatitis B e antigen in hepatitis B  
402 virus infection. *Hepatology*. 2003;38(5):1075-86. Epub 2003/10/28. doi:  
403 10.1053/jhep.2003.50453. PubMed PMID: 14578844.
- 404 3. Revill PA, Tu T, Netter HJ, Yuen LKW, Locarnini SA, Littlejohn M. The evolution and  
405 clinical impact of hepatitis B virus genome diversity. *Nat Rev Gastroenterol Hepatol*. 2020. Epub  
406 2020/05/30. doi: 10.1038/s41575-020-0296-6. PubMed PMID: 32467580.
- 407 4. Okamoto H, Tsuda F, Akahane Y, Sugai Y, Yoshioka M, Moriyama K, et al. Hepatitis B  
408 virus with mutations in the core promoter for an e antigen-negative phenotype in carriers with  
409 antibody to e antigen. *J Virol*. 1994;68(12):8102-10. Epub 1994/12/01. doi:  
410 10.1128/JVI.68.12.8102-8110.1994. PubMed PMID: 7966600; PubMed Central PMCID:  
411 PMCPMC237274.
- 412 5. Carman WF, Jacyna MR, Hadziyannis S, Karayiannis P, McGarvey MJ, Makris A, et al.  
413 Mutation preventing formation of hepatitis B e antigen in patients with chronic hepatitis B  
414 infection. *Lancet*. 1989;2(8663):588-91. Epub 1989/09/09. doi: 10.1016/s0140-6736(89)90713-  
415 7. PubMed PMID: 2570285.
- 416 6. Baumert TF, Marrone A, Vergalla J, Liang TJ. Naturally occurring mutations define a  
417 novel function of the hepatitis B virus core promoter in core protein expression. *J Virol*.  
418 1998;72(8):6785-95. Epub 1998/07/11. doi: 10.1128/JVI.72.8.6785-6795.1998. PubMed PMID:  
419 9658127; PubMed Central PMCID: PMCPMC109887.
- 420 7. Parekh S, Zoulim F, Ahn SH, Tsai A, Li J, Kawai S, et al. Genome replication, virion  
421 secretion, and e antigen expression of naturally occurring hepatitis B virus core promoter  
422 mutants. *J Virol*. 2003;77(12):6601-12. Epub 2003/05/28. doi: 10.1128/jvi.77.12.6601-  
423 6612.2003. PubMed PMID: 12767980; PubMed Central PMCID: PMCPMC156182.
- 424 8. Buckwold VE, Xu Z, Chen M, Yen TS, Ou JH. Effects of a naturally occurring mutation  
425 in the hepatitis B virus basal core promoter on precore gene expression and viral replication. *J*

426 Virol. 1996;70(9):5845-51. Epub 1996/09/01. doi: 10.1128/JVI.70.9.5845-5851.1996. PubMed  
427 PMID: 8709203; PubMed Central PMCID: PMCPMC190601.

428 9. Li J, Buckwold VE, Hon MW, Ou JH. Mechanism of suppression of hepatitis B virus  
429 precore RNA transcription by a frequent double mutation. J Virol. 1999;73(2):1239-44. Epub  
430 1999/01/09. doi: 10.1128/JVI.73.2.1239-1244.1999. PubMed PMID: 9882327; PubMed Central  
431 PMCID: PMCPMC103946.

432 10. Sterneck M, Kalinina T, Gunther S, Fischer L, Santantonio T, Greten H, et al. Functional  
433 analysis of HBV genomes from patients with fulminant hepatitis. Hepatology. 1998;28(5):1390-  
434 7. Epub 1998/10/31. doi: 10.1002/hep.510280530. PubMed PMID: 9794926.

435 11. Jammeh S, Tavner F, Watson R, Thomas HC, Karayiannis P. Effect of basal core  
436 promoter and pre-core mutations on hepatitis B virus replication. J Gen Virol. 2008;89(Pt  
437 4):901-9. Epub 2008/03/18. doi: 10.1099/vir.0.83468-0. PubMed PMID: 18343830.

438 12. Lok AS, Akarca U, Greene S. Mutations in the pre-core region of hepatitis B virus serve  
439 to enhance the stability of the secondary structure of the pre-genome encapsidation signal. Proc  
440 Natl Acad Sci U S A. 1994;91(9):4077-81. Epub 1994/04/26. doi: 10.1073/pnas.91.9.4077.  
441 PubMed PMID: 8171038; PubMed Central PMCID: PMCPMC43726.

442 13. Yang PL, Althage A, Chung J, Maier H, Wieland S, Isogawa M, et al. Immune effectors  
443 required for hepatitis B virus clearance. Proc Natl Acad Sci U S A. 2010;107(2):798-802. Epub  
444 2010/01/19. doi: 10.1073/pnas.0913498107. PubMed PMID: 20080755; PubMed Central  
445 PMCID: PMCPMC2818933.

446 14. Okada K, Kamiyama I, Inomata M, Imai M, Miyakawa Y. e antigen and anti-e in the  
447 serum of asymptomatic carrier mothers as indicators of positive and negative transmission of  
448 hepatitis B virus to their infants. The New England journal of medicine. 1976;294(14):746-9.  
449 doi: 10.1056/NEJM197604012941402. PubMed PMID: 943694.

450 15. Ou JH. Molecular biology of hepatitis B virus e antigen. Journal of gastroenterology and  
451 hepatology. 1997;12(9-10):S178-87. PubMed PMID: 9407336.

452 16. Manigold T, Racanelli V. T-cell regulation by CD4 regulatory T cells during hepatitis B  
453 and C virus infections: facts and controversies. Lancet Infect Dis. 2007;7(12):804-13. Epub  
454 2007/11/30. doi: 10.1016/S1473-3099(07)70289-X. PubMed PMID: 18045563.

455 17. Rowe JH, Ertelt JM, Way SS. Foxp3(+) regulatory T cells, immune stimulation and host  
456 defence against infection. Immunology. 2012;136(1):1-10. Epub 2012/01/04. doi:  
457 10.1111/j.1365-2567.2011.03551.x. PubMed PMID: 22211994; PubMed Central PMCID:  
458 PMCPMC3372751.

459 18. Stoop JN, van der Molen RG, Baan CC, van der Laan LJ, Kuipers EJ, Kusters JG, et al. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis  
460 B virus infection. Hepatology. 2005;41(4):771-8. Epub 2005/03/26. doi: 10.1002/hep.20649.  
461 PubMed PMID: 15791617.

462 19. Franzese O, Kennedy PT, Gehring AJ, Gotto J, Williams R, Maini MK, et al. Modulation  
463 of the CD8+-T-cell response by CD4+ CD25+ regulatory T cells in patients with hepatitis B  
464 virus infection. J Virol. 2005;79(6):3322-8. Epub 2005/02/26. doi: 10.1128/JVI.79.6.3322-  
465 3328.2005. PubMed PMID: 15731226; PubMed Central PMCID: PMCPMC1075696.

466 20. Koumbi L, Pollicino T, Raimondo G, Stampoulis D, Khakoo S, Karayiannis P. Hepatitis  
467 B virus basal core promoter mutations show lower replication fitness associated with cccDNA  
468 acetylation status. Virus Res. 2016;220:150-60. Epub 2016/05/02. doi:  
469 10.1016/j.virusres.2016.04.022. PubMed PMID: 27132039.

471 21. Kamijo N, Matsumoto A, Umemura T, Shibata S, Ichikawa Y, Kimura T, et al. Mutations  
472 of pre-core and basal core promoter before and after hepatitis B e antigen seroconversion. World  
473 J Gastroenterol. 2015;21(2):541-8. Epub 2015/01/17. doi: 10.3748/wjg.v21.i2.541. PubMed  
474 PMID: 25593470; PubMed Central PMCID: PMCPMC4292286.

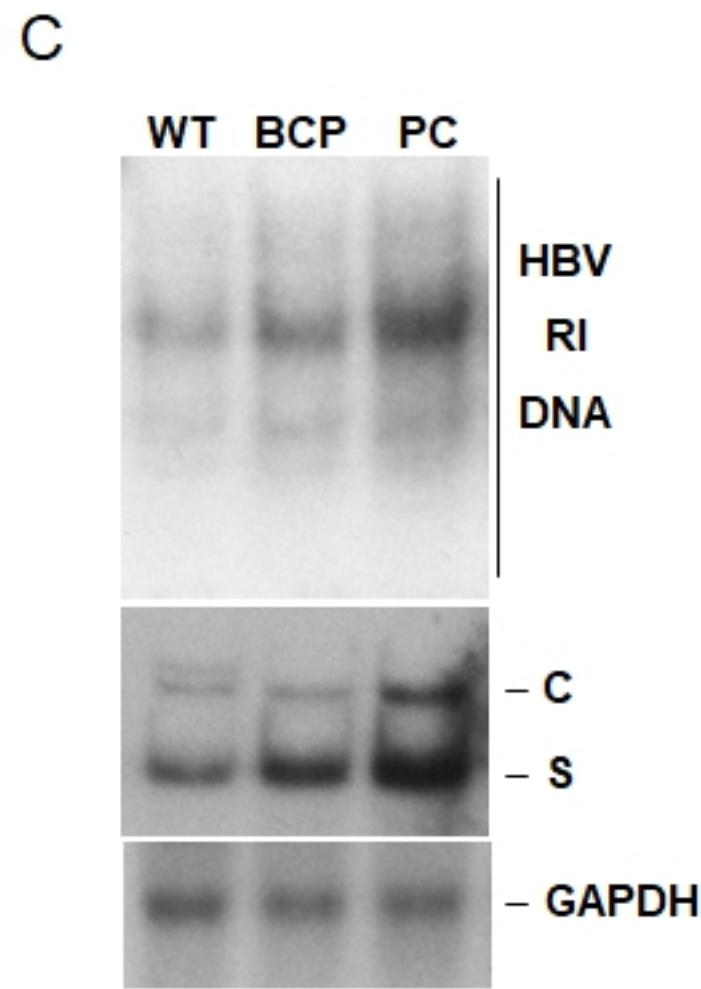
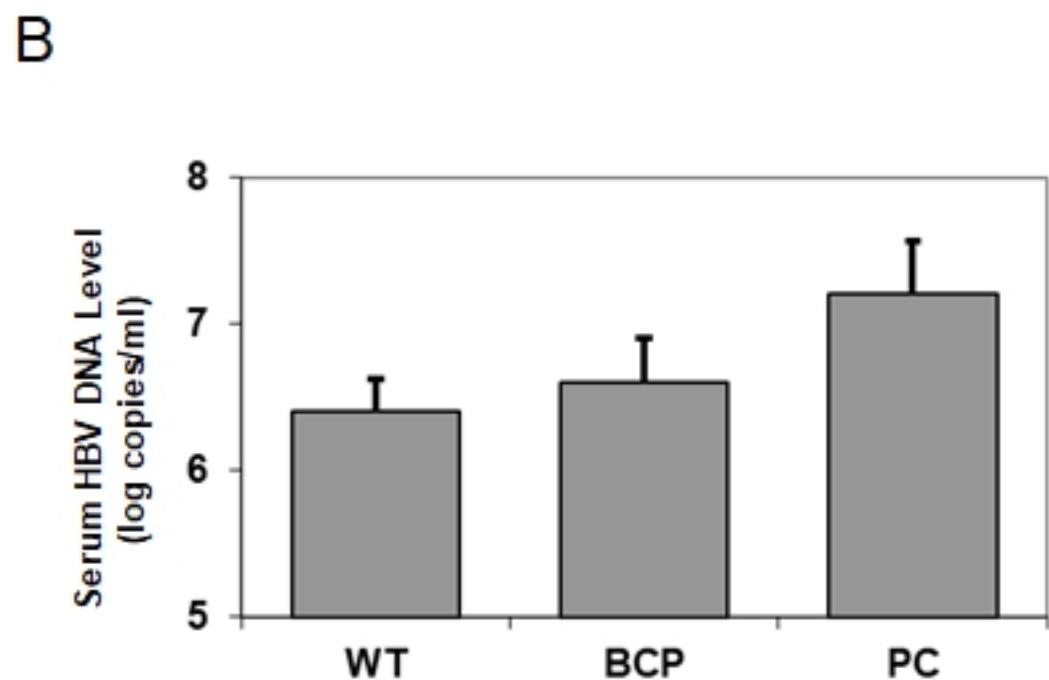
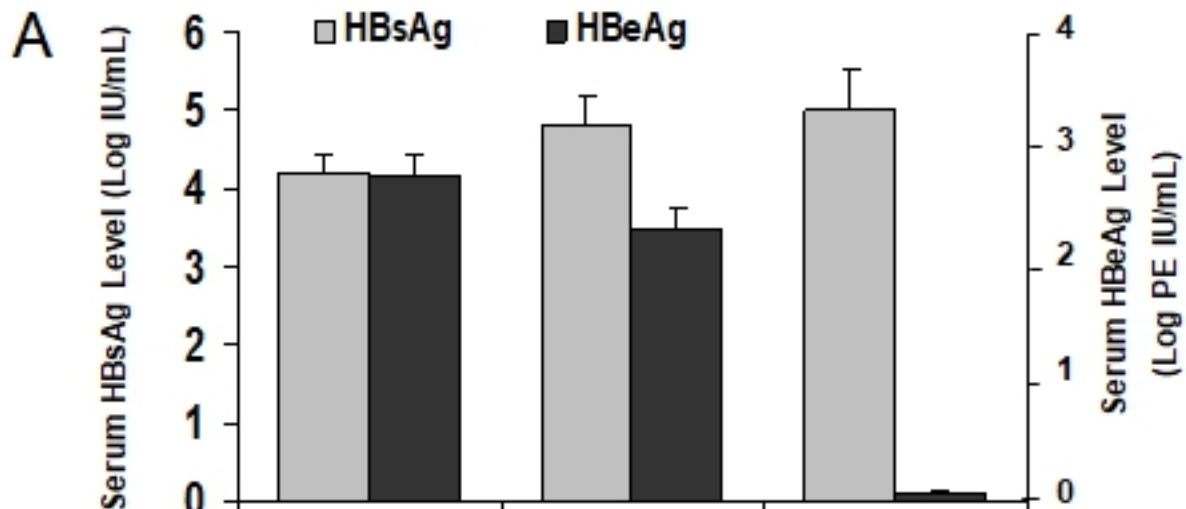
475 22. Alexopoulou A, Karayiannis P. HBeAg negative variants and their role in the natural  
476 history of chronic hepatitis B virus infection. World J Gastroenterol. 2014;20(24):7644-52. Epub  
477 2014/07/01. doi: 10.3748/wjg.v20.i24.7644. PubMed PMID: 24976702; PubMed Central  
478 PMCID: PMCPMC4069293.

479 23. Wang XL, Ren JP, Wang XQ, Wang XH, Yang SF, Xiong Y. Mutations in pre-core and  
480 basic core promoter regions of hepatitis B virus in chronic hepatitis B patients. World J  
481 Gastroenterol. 2016;22(11):3268-74. Epub 2016/03/24. doi: 10.3748/wjg.v22.i11.3268. PubMed  
482 PMID: 27004005; PubMed Central PMCID: PMCPMC4790003.

483 24. Liu Y, Zhao ZH, Lv XQ, Tang YW, Cao M, Xiang Q, et al. Precise analysis of the effect  
484 of basal core promoter/precore mutations on the main phenotype of chronic hepatitis B in mouse  
485 models. J Med Virol. 2020. Epub 2020/05/20. doi: 10.1002/jmv.26025. PubMed PMID:  
486 32427358.

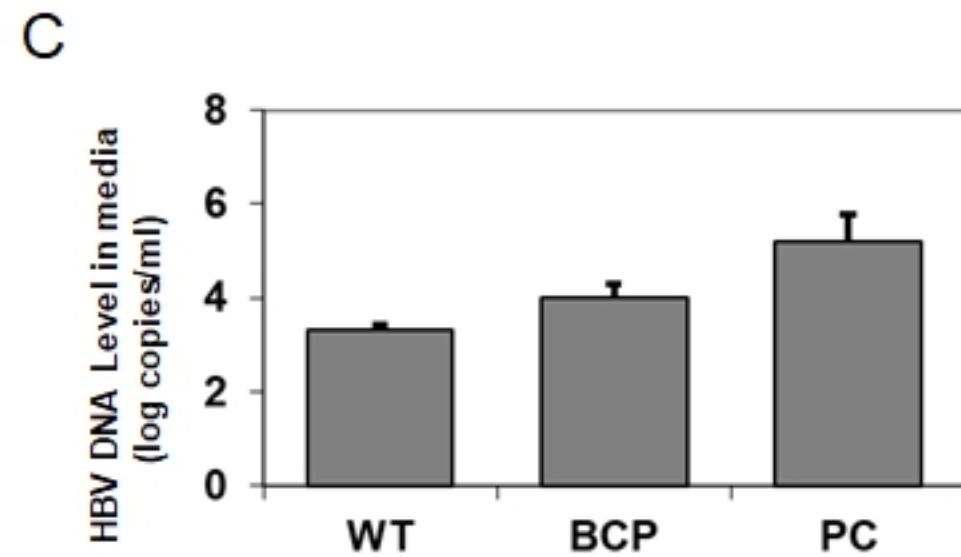
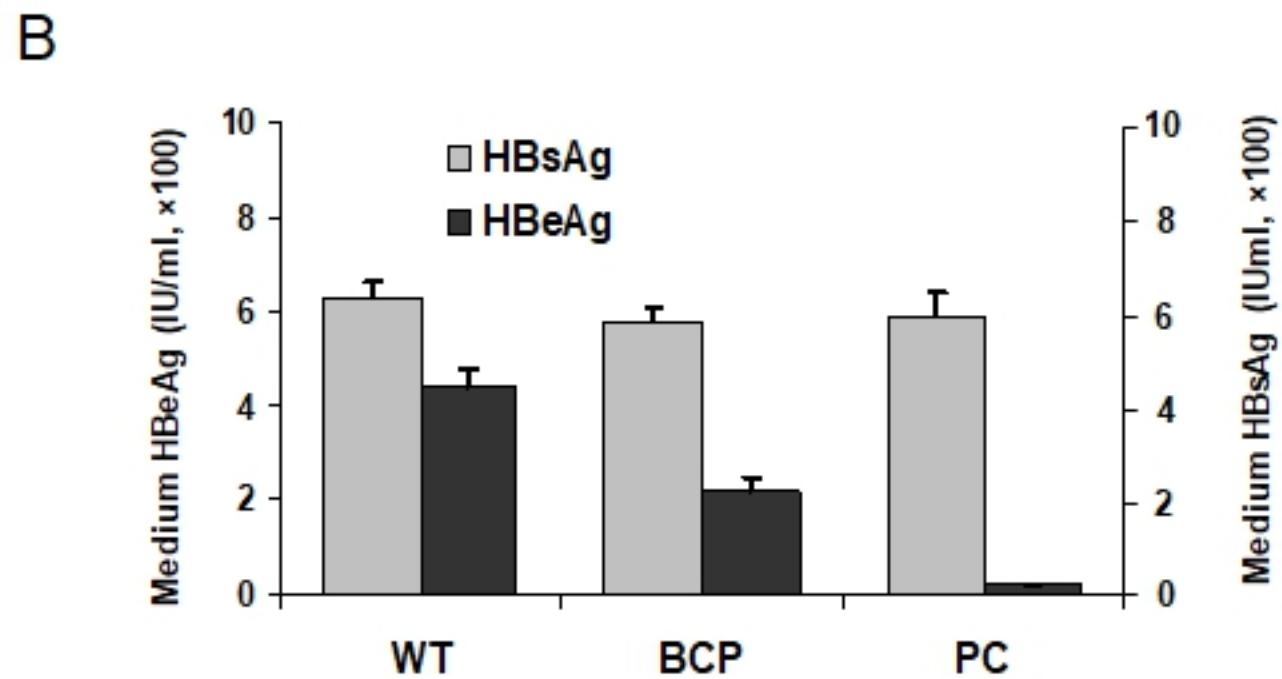
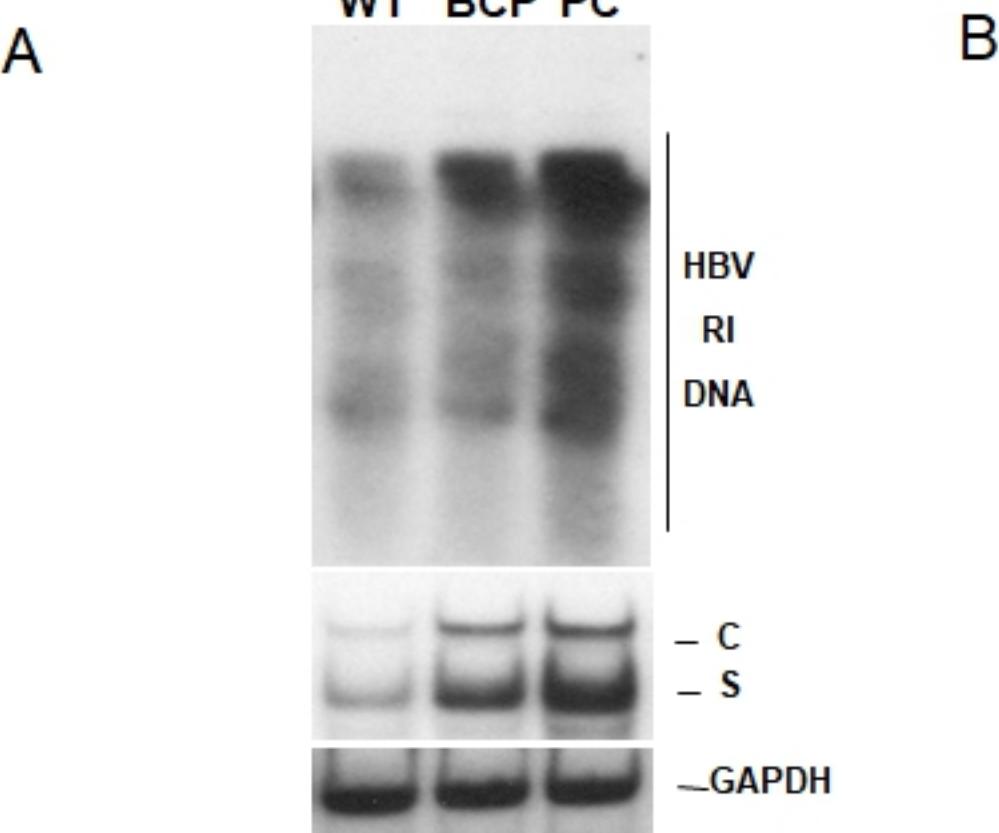
487 25. Cao M, Zhao Z, Tang Y, Wei Q, Wang L, Xiang Q, et al. A new hepatitis B virus e  
488 antigen-negative strain gene used as a reference sequence in an animal model. Biochem Biophys  
489 Res Commun. 2018;496(2):502-7. Epub 2018/01/18. doi: 10.1016/j.bbrc.2018.01.081. PubMed  
490 PMID: 29339154.

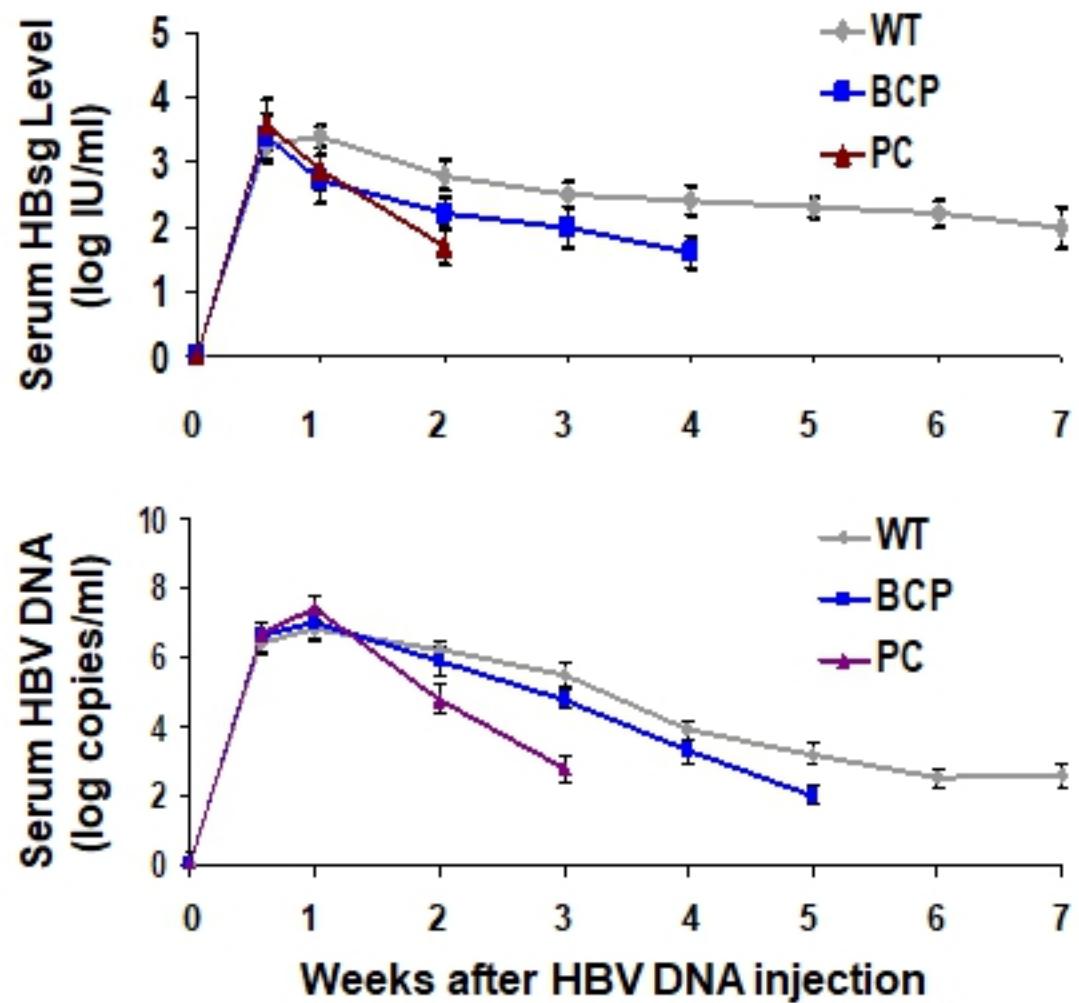
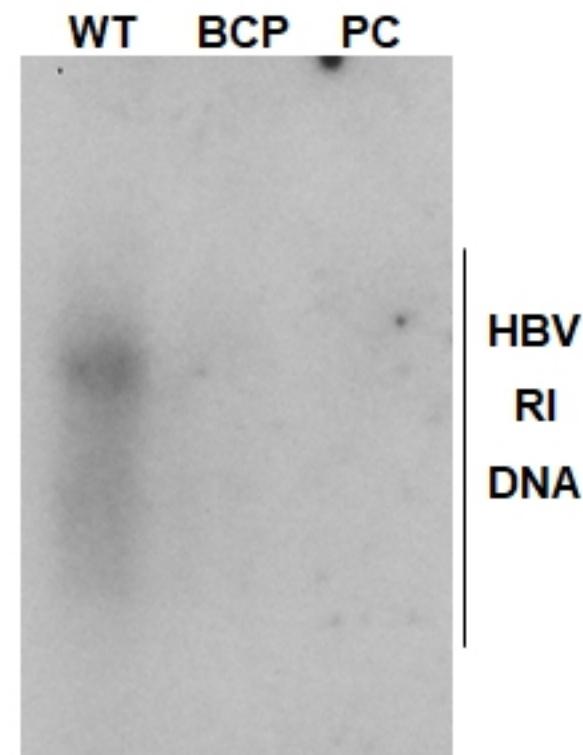
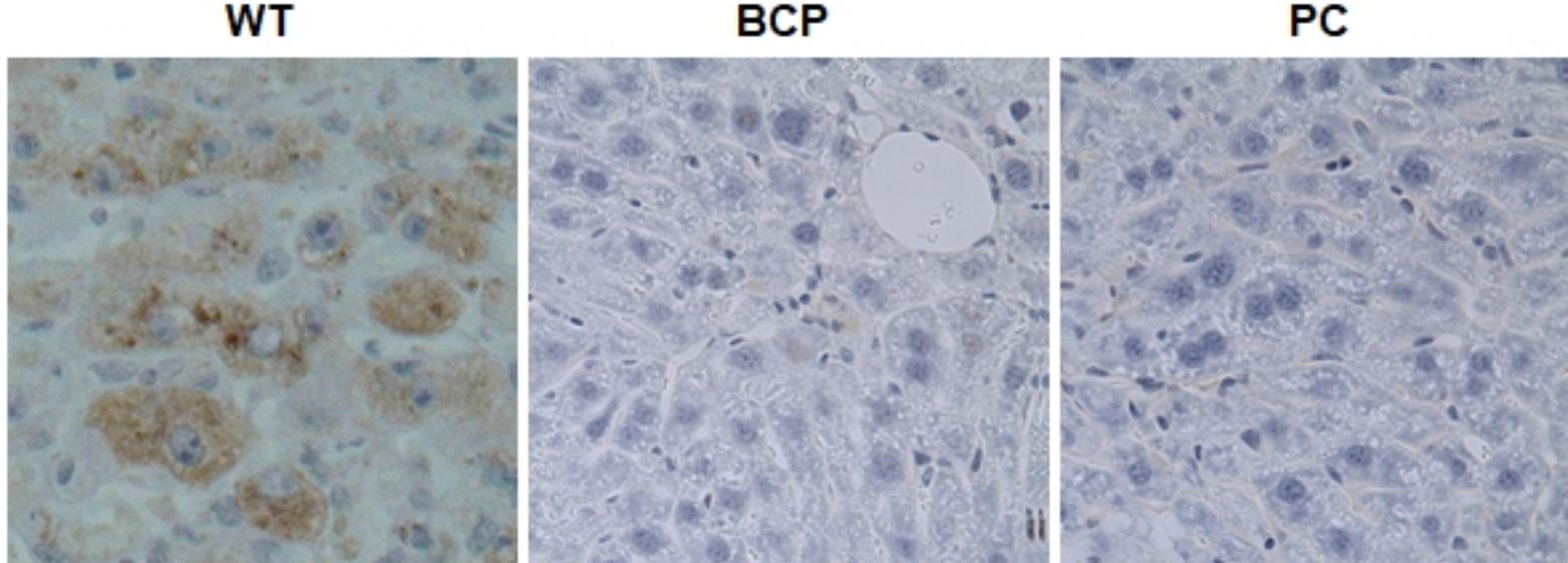
491 26. Milich DR, Schodel F, Hughes JL, Jones JE, Peterson DL. The hepatitis B virus core and  
492 e antigens elicit different Th cell subsets: antigen structure can affect Th cell phenotype. J Virol.  
493 1997;71(3):2192-201. Epub 1997/03/01. doi: 10.1128/JVI.71.3.2192-2201.1997. PubMed PMID:  
494 9032353; PubMed Central PMCID: PMCPMC191326.

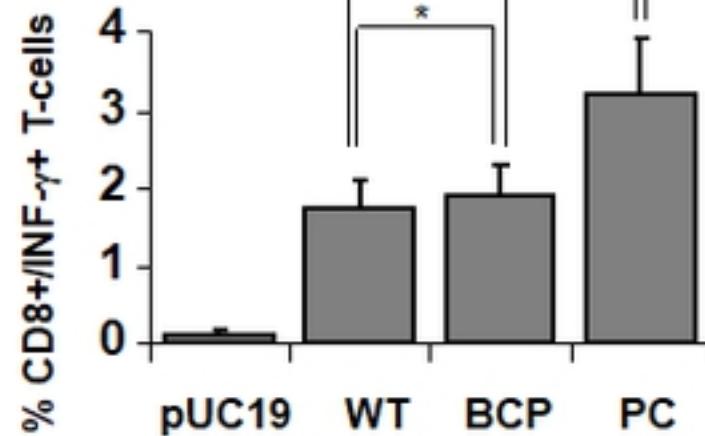
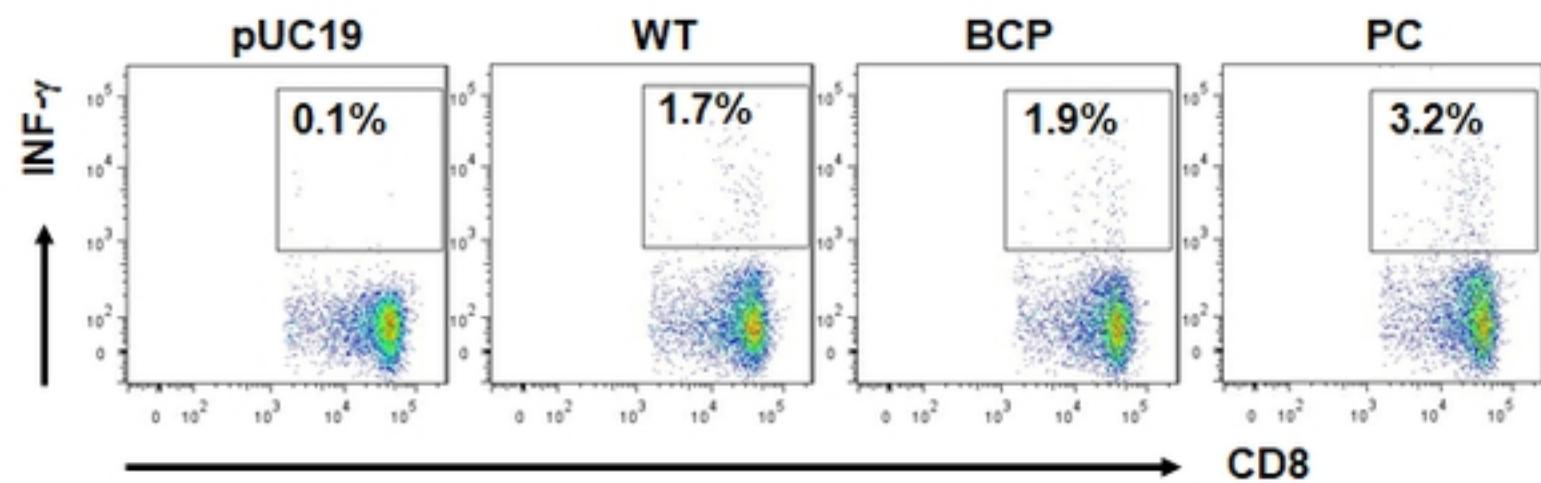
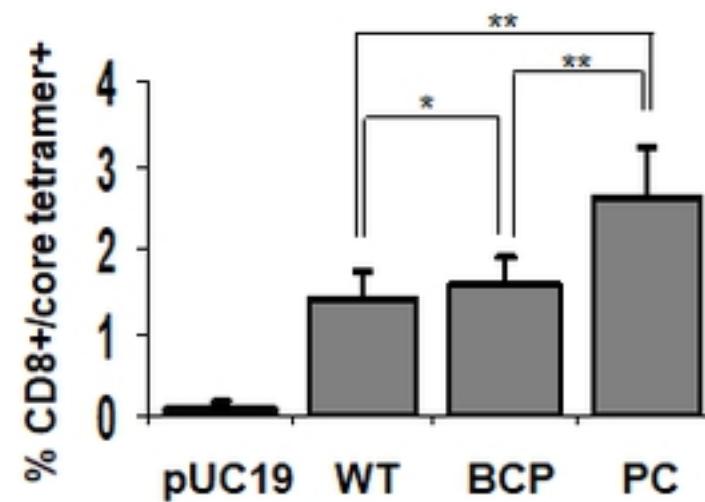
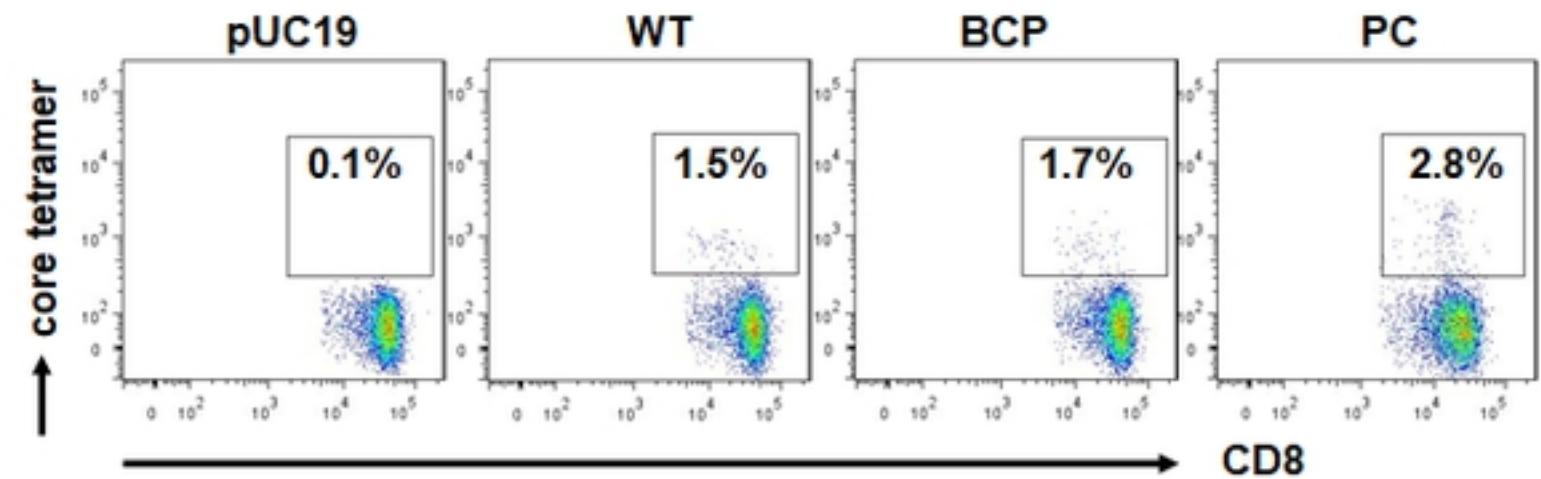



495 27. Milich DR, Chen MK, Hughes JL, Jones JE. The secreted hepatitis B precore antigen can  
496 modulate the immune response to the nucleocapsid: a mechanism for persistence. J Immunol.  
497 1998;160(4):2013-21. Epub 1998/02/20. PubMed PMID: 9469465.

498 28. Tian Y, Kuo CF, Akbari O, Ou JH. Maternal-Derived Hepatitis B Virus e Antigen Alters  
499 Macrophage Function in Offspring to Drive Viral Persistence after Vertical Transmission.  
500 Immunity. 2016;44(5):1204-14. Epub 2016/05/10. doi: 10.1016/j.immuni.2016.04.008. PubMed  
501 PMID: 27156385; PubMed Central PMCID: PMCPMC4871724.

502 29. Xu D, Fu J, Jin L, Zhang H, Zhou C, Zou Z, et al. Circulating and liver resident  
503 CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease  
504 progression in patients with hepatitis B. J Immunol. 2006;177(1):739-47. Epub 2006/06/21. doi:  
505 10.4049/jimmunol.177.1.739. PubMed PMID: 16785573.




506 30. Dietze KK, Schimmer S, Kretzmer F, Wang J, Lin Y, Huang X, et al. Characterization of  
507 the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model. PLoS One.  
508 2016;11(3):e0151717. Epub 2016/03/18. doi: 10.1371/journal.pone.0151717. PubMed PMID:  
509 26986976; PubMed Central PMCID: PMCPMC4795771.




510


**Figure 2**

Figure 1



**A****B****C****Figure 3**

**A****B****Figure 4**

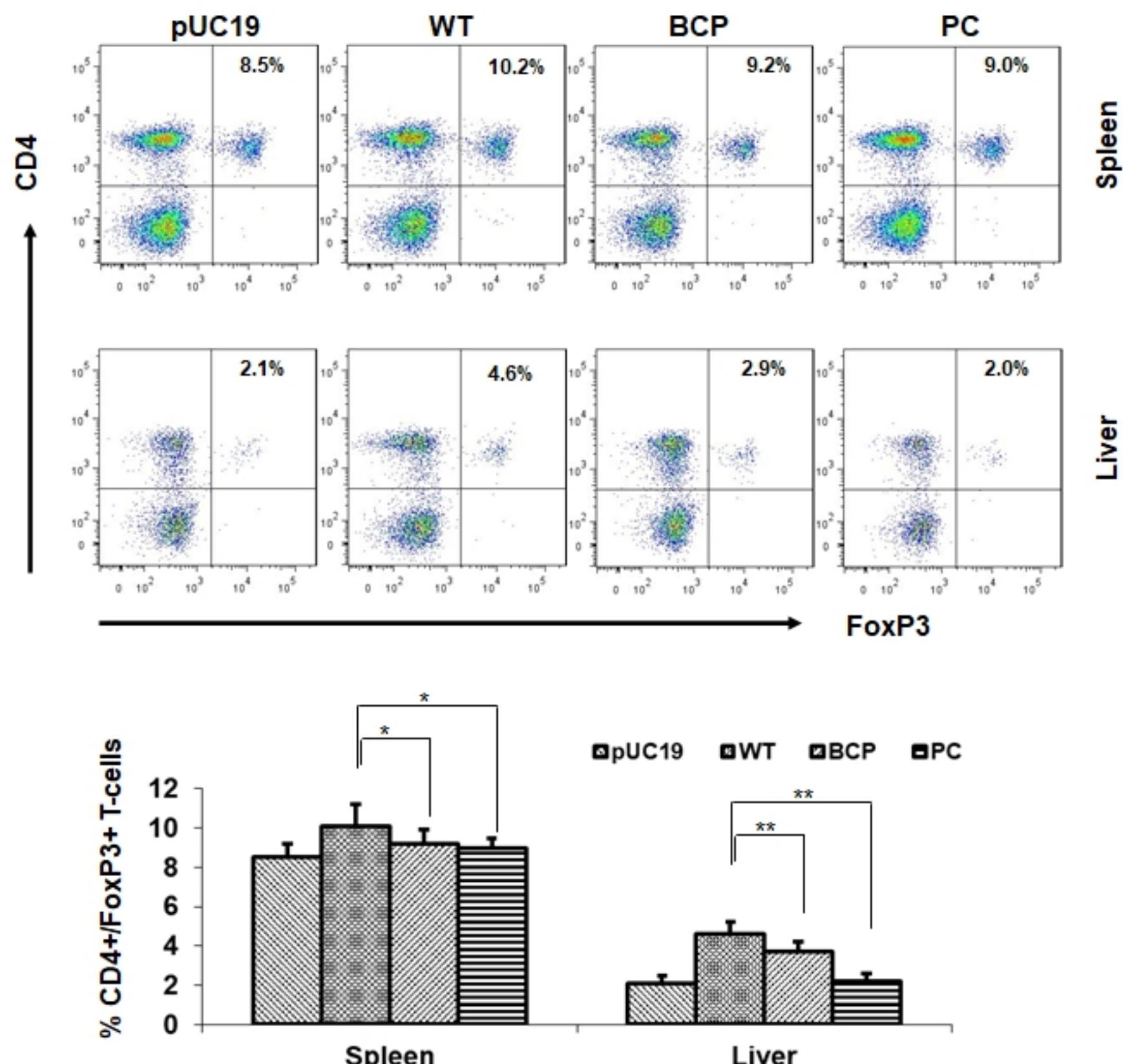



Figure 5