

1 Gene validation and remodelling using proteogenomics of *Phytophthora cinnamomi*, the causal agent
2 of Dieback.

3 Christina E. Andronis^{1, 2*}, James K. Hane^{1, 2}, Scott Bringans³, Giles E. S. Hardy⁴, Silke Jacques¹, Richard
4 Lipscombe³ and Kar-Chun Tan^{1*}

5 Author affiliations

6 ¹Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia

7 ²Curtin Institute for Computation, Faculty of Science and Engineering, Curtin University, Perth, WA,
8 Australia

9 ³Proteomics International, Nedlands, WA, Australia

10 ⁴Centre for Phytophthora Science and Management, Murdoch University, Murdoch, WA, Australia

11 *Corresponding authors: Christina.Andronis@postgrad.curtin.edu.au and Kar-Chun.Tan@curtin.edu.au

12 Key words

13 Proteogenomics, oomycete, *Phytophthora*, Dieback, proteomics

14 Declarations

15 Ethics approval and consent to participate

16 Not applicable.

17 Consent to publish

18 Not applicable.

19 Availability of data and materials

20 Spectral data used for this study are available at Dryad (doi:10.5061/dryad.7h44j0zsc). Newly curated
21 genes have been submitted to Genbank under accessions MT820633-MT820655. Supporting data for
22 all edited and newly curated genes are shown in the additional files.

23 **Competing interests**

24 Not applicable.

25 **Funding**

26 Proteomics International provided funded the project. Curtin University provided funding for sample
27 preparation through the postgraduate maintenance fund. KCT, JKH and SJ are supported by the Centre
28 for Crop and Disease Management, a joint initiative of Curtin University and the Grains Research and
29 Development Corporation (CUR00023).

30 **Authors' contributions**

31 CEA and KCT conceived and designed the study. CEA performed all the experiments and prepared the
32 draft of the manuscript. CEA and JKH performed the bioinformatics analysis. GESH and SJ provided
33 intellectual input into the study. SB and RL provided input into proteomics sample preparation and mass
34 spectrometry analysis. All authors revised and approved the manuscript.

35 **Acknowledgments**

36 Funding was provided by Proteomics International. We thank Dr Paula Moolhuijzen, Johannes Debler
37 and Darcy Jones for their technical assistance.

38

39

40

41

42 **Abstract**

43 *Phytophthora cinnamomi* is a pathogenic oomycete that causes plant dieback disease across a range of
44 natural ecosystems and in many agriculturally important crops on a global scale. An annotated draft
45 genome sequence and annotation is publicly available (JGI Mycocosm) and suggests 26,131 gene
46 models. In this study, soluble mycelial, extracellular (secretome) and zoospore proteins of *P. cinnamomi*
47 were exploited to refine the genome by correcting gene annotations and discovering novel genes. By
48 implementing the diverse set of sub-proteomes into a generated proteogenomics pipeline, we were
49 able to improve the *P. cinnamomi* genome. Liquid chromatography mass spectrometry was used to
50 obtain high confidence peptides with spectral matching to both the annotated genome and a generated
51 6-frame translation. 2,764 annotations from the draft genome were confirmed by spectral matching.
52 Using a proteogenomic pipeline, mass spectra were used to edit the *P. cinnamomi* genome and allowed
53 identification of 23 new gene models and 60 edited gene features using high confidence peptides
54 obtained by mass spectrometry, suggesting a rate of incorrect annotations of 3% of the detectable
55 proteome. The novel features were further validated by total peptide support, alongside functional
56 analysis including the use of Gene Ontology and functional domain identification. We demonstrated
57 the use of spectral data in combination with our proteogenomics pipeline can be used to improve the
58 genome of important plant diseases and identify biologically relevant missed genes. This study presents
59 the first use of spectral data to edit and manually annotate an oomycete pathogen.

60 **Background**

61 The primary role of a genome sequence is to elucidate the entire set of genes expressed by an organism.
62 *In silico* prediction platforms are the main methods for predicting reliable gene sets. However, they can
63 be problematic as transcriptome data does not always correlate with the protein products and their
64 abundance [1]. Curating genes correctly and accurately is fundamental in defining the biochemical
65 composition of an organism [2]. Sequence transcripts and orthologues from related and similar
66 organisms are the primary methods in accurately predicting such genes and identifying interesting and

67 relevant biological components [3]. Evidence-based curation includes transcript data and associated
68 functional annotation such as Gene Ontology (GO) and Protein Families (PFAM) based on sequence
69 homology to other related species [4, 5]. The challenges in defining comprehensive gene products
70 result in under-represented annotations and incorrectly defined exon boundaries that can miss
71 biologically important features of a genome.

72 Proteogenomics is a proven but underutilised technology that integrates high confidence peptide data
73 derived from mass spectrometry analysis with genomics as a method to improve gene annotation [6–
74 8]. Proteogenomic pipelines have been used in phytopathogenic fungi such as *Parastagonospora*
75 *nodorum*, where mass spectra were used to validate transcriptomic data, edit the genome annotation
76 and identify new candidate genes, generating a more accurate genome that can be used for
77 downstream work [9, 10]. Proteogenomic analysis has also allowed the identification of potential
78 effector molecules in fungi, which has important implications for characterising virulence and
79 understanding the plant-host interface. The proteome of the causal agent of black spot in pear,
80 *Venturia pirina*, was analysed by mass spectrometry and 1085 novel protein groups were identified, 14
81 of which were fungal candidate effector genes [11]. This provides useful insight into the mechanisms
82 of pathogenicity and has the potential to be exploited to control oomycete and fungal plant pathogens.

83 Mass spectrometry based proteomics can also be used to overcome some of the constraints of
84 traditional gene prediction methods and with continuing advances in proteomics technologies becomes
85 a desirable tool to elucidate the biochemistry of an organism [12]. High throughput proteomic pipelines
86 such as liquid chromatography mass spectrometry (LC-MS/MS) are becoming more sensitive, rapid and
87 less expensive [13]. As an added benefit to transcriptome work, quantitative proteomics can inform on
88 differential expression of proteins [14].

89 *Phytophthora cinnamomi* is a phytopathogenic oomycete that causes dieback and root rot in natural
90 and agricultural systems across the globe. Its hosts include many species of native Australian flora, as
91 well as crops such as avocado and macadamia [15]. Oomycetes proliferate by releasing motile, asexual

92 units of reproduction called zoospores. When temperatures and humidity reach favourable levels, *P.*
93 *cinnamomi* produces fruiting bodies called sporangia which expel a free swimming zoospores in to the
94 environment, allowing the organism to spread between susceptible hosts. As the zoospores colonise a
95 hosts root system, mature structures including those required for sexual reproduction and nutrient
96 acquisition form, eventually killing the host. Due to the host range, ability to survive harsh
97 environmental conditions and aggressive pathogenicity, *Phytophthora* is recognised as one of the most
98 economically important oomycete genera, with insufficient existing control strategies to minimize its
99 impacts [15, 16].

100 *P. cinnamomi* is controlled by the application of phosphite to vegetation [17]. The mechanisms involved
101 in phosphite are not well understood, however it is suggested that it has both direct influence on the
102 organism and indirect action through the plant by priming host defence responses [18–20]. Genes
103 involving cell wall synthesis and cytoskeleton function have been suggested to be disrupted in *P.*
104 *cinnamomi* when treated with phosphite *in vitro* [21]. Despite its economic and ecological importance,
105 little is known about the molecular mechanism of *P. cinnamomi* phytopathogenicity. It is hypothesised
106 that *P. cinnamomi* secretes effectors based on studies on other oomycetes such as *P. infestans* and *P.*
107 *ramorum* [22]. Virulence and infection related molecules such as β-cinnamomin have been identified
108 in *P. cinnamomi* [23].

109 A genome sequence of the West Australian *Phytophthora cinnamomi* MU94-48 isolate (GenBank
110 accession JX113294) was established (unpublished and publicly available at
111 <https://mycocosm.jgi.doe.gov/Phyc1>) [24]. This is a valuable tool that can be used to identify effectors
112 and elucidate the molecular mechanisms of virulence [25]. The version 1 (V1) assembly has a coverage
113 of 69.6x and comprises 9,537 contigs, 1,314 scaffolds with 26,131 predicted gene models. The
114 predicted gene models of *P. cinnamomi* are inflated compared to many *Phytophthora* species such as
115 *P. infestans*, *P. ramorum*, *P. capsici* and the more closely related *P. sojae*, which have reported 17,797,
116 16,066, 19,805 and 15,743 gene models respectively [25].

117 Proteomics data has proven a useful tool to improve the genome annotation of several phytopathogens
118 where high quality mass spectra complemented transcriptomic data and identified potential annotation
119 inaccuracies of exon boundaries and unsuspected gene models. We aimed to use spectral data from
120 several *P. cinnamomi* sub-proteomes to assist in gene calling. These sub-proteomes represent a wide
121 coverage of the *P. cinnamomi* proteome and include a diverse repertoire of soluble proteins. Zoospores
122 characterize the infective life stage and the extracellular proteome is likely to contain proteins related
123 to virulence. These were analysed by 2D LC-MS/MS and resulting spectra were matched to the current
124 gene prediction models. To generate a list of peptides which potentially do not match current models,
125 a 6-frame translation was generated and used for spectral matching. A list of peptides indicating
126 potential altered or novel gene models was generated using the genomic coordinates and peptide open
127 reading frames. These were subsequently used to carefully manually edit current annotations and
128 curate novel features on a homology basis with proteins of similar species. Using this proteomics
129 dataset, we refined the genome for downstream proteomic work which will aid the identification of
130 virulence factors and metabolic targets for chemical control. By working towards completing the *P.*
131 *cinnamomi* genome, downstream proteomic work will be more accurate as the gene set is more
132 representative of what is being expressed. There is also the potential for effector virulence gene
133 discovery and improved biochemical characterisation which can lead to development of resistance
134 gene inclusion in hosts and more targeted methods of chemical control.

135 **Methods**

136 **Growth and maintenance of *P. cinnamomi***

137 *P. cinnamomi* MU94-48 (Centre for Phytophthora Science and Management, Murdoch University,
138 Western Australia) stocks plugs were stored in sterile water in McCartney bottles and grown on V8 agar
139 at room temperature in the dark. For mycelial, secretome and zoospore production, four plates were
140 used for each biological replicate. Four days of mycelial growth were scraped from the plate and were
141 inoculated into Riberio's minimal media supplemented with 25 mM glucose [26]. The cells were

142 incubated for 3 days at 24°C in the dark. Mycelia were isolated by centrifugation and the culture filtrate
143 containing secreted proteins was decanted and filter sterilised. The mycelial pellet was washed twice
144 with MilliQ water and observed microscopically to confirm that hyphal cells predominated. Zoospores
145 were produced as previously described by Byrt & Grant, isolated from mycelial fragments by passage
146 through a glass wool syringe, observed microscopically to ensure purity, and counted with a
147 haemocytometer [27]. Approximately 4.8E5 spores were used for each biological replicate.

148 **Protein extraction**

149 Mycelia and zoospores were ground using mortar and pestle in liquid nitrogen and extraction buffer
150 used to extract and solubilise proteins as previously described [28]. Samples were kept on ice for 30
151 minutes with regular gentle mixing and centrifuged at 20,000g at 4°C for 30 minutes. The protein
152 solutions were subsequently desalted and protein amount was estimated using Direct Detect cards
153 (Merck Millipore, Darmstadt). All samples were freeze dried before further processing. SDS-PAGE was
154 performed for all samples to ensure proteolysis was minimal.

155 **Sample preparation**

156 To visualise each sub-proteome, 20 µg of each sample was loaded onto a 1D SDS-PAGE. To determine
157 the amount of intracellular contamination in the extracellular proteome, the activity of an intracellular
158 enzyme marker glyceraldehyde phosphate dehydrogenase (GAPDH) was assayed on each sub-
159 proteome as per the manufacturer's instructions (Sigma, St Louis). 500 ug of each sample was
160 resuspended in 250 uL 0.5 M triethylammonium bicarbonate (pH 8.5) before reduction and alkylation
161 with 25 uL of 50 mM tris(2-carboxyethyl)phosphine (Thermo Scientific, Waltham) and 12.5 uL 200 mM
162 methyl methanethiosulfonate (Sigma, St Louis) respectively. Samples were digested overnight at 37°C
163 with trypsin (Sigma, St Louis) at a ratio of 1:10, subsequently desalted on a Strata-X 33 um polymeric
164 reverse phase column (Phenomenex, Torrance, CA, USA) and dried in a vacuum centrifuge.

165 **High pH reverse phase chromatography**

166 Dried peptides were separated by high pH reverse phased liquid chromatography on an Agilent 1100
167 HPLC system using a Zorbax Eclipse column (2.1 X 150 mm, 5 um) (Agilent Technologies, Palo Alto).
168 Peptides were eluted with a linear gradient of 20 mM ammonium formate pH 10, 90 % acetonitrile over
169 80 minutes. A total of 98 fractions were collected, concatenated into 12 fractions based on collection
170 order and dried in a vacuum centrifuge. The UV trace was also used to visualise the total peptide
171 content and depth of each sub-proteome.

172 **Nano LCMS/MS**

173 Fractions were resuspended in 100 uL of 2% acetonitrile and 0.1% formic acid and loaded onto a
174 Shimadzu Prominence nano HPLC system (Shimadzu, Kyoto, Japan). Peptides were resolved with a
175 gradient of 10-40% acetonitrile (0.1% formic acid) at 300 nL/min over 180 minutes and eluted through
176 a nanospray interface into a 5600 TripleTOF mass spectrometer (AB Sciex, Framingham, MA). The data
177 was acquired in an information-dependent acquisition mode with Analyst TF 1.6 software (AB Sciex,
178 Framingham, MA). The MS settings were as follows: Ionspray Voltage Floating = 2300 V, curtain gas =
179 20, ion source gas 1 = 20, interface heater temperature = 150, and declustering potential = 70 V. The
180 TOF MS scan was performed in the mass range of 400-1250 Da with a 0.25 s TOF MS accumulation
181 time, whereas the MS/MS product ion scan was performed in the mass range of 100 - 1800 Da with a
182 0.1 s accumulation time. The criteria for product ion fragmentation were set as follows: ions (>400 *m/z*
183 and <1250 *m/z*) with charge states of between 2 and 5 and an abundance threshold of >250 cps. Former
184 target ions were excluded for 10 s after one occurrence. The maximum number of candidate ions per
185 cycle was 20.

186 **Data analysis**

187 Mass spectral data were analysed using Protein Pilot 4.5 Beta Software (July 2012; Sciex). MS/MS
188 spectra were searched against the genomic proteins and the 6-frame translated data set constructed
189 from the genomic assembly scaffolds using EMBOSS: getorf (v6.6). Search parameters were: Cys
190 Alkylation: MMTS; Digestion: Trypsin; Instrument: TripleTOF 5600; Special factors: None; Quantitation

191 tab checked: Bias correction and Background correction tabs checked; ID focus: Biological
192 modifications; Search effort: Thorough; Detected protein threshold (Unused ProtScore (CONF)): 0.05
193 (10%); False discovery rate analysis tab checked. All identified proteins had an Unused ProtScore of >1.3
194 (peptides identified with >95% confidence), as calculated by the software and a global false discovery
195 rate of <0.1% determined at the protein level. To determine the sub-proteome enrichment, the
196 resulting sequences of matched proteins were analysed using the protein localisation tool WolfPSORT
197 (version 0.2, plant parameters) [29]. Proteins were assigned to a predicted sub-cellular location based
198 on sorting signals, amino acid composition and functional motifs.

199 ***De novo* proteogenomics**

200 Peptide matches to the 6-frame translated assembly were mapped back to their genomic location and
201 a set of criteria described below were applied to determine which genes suggest incorrect boundary
202 annotations and which peptides support discovery of new genes. Firstly, BEDtools (version 2.28.0,
203 2019) was used to distinguish peptides into the following groups using the intersect and subtract
204 features: a) peptides more than 200 base pairs from coding regions of genes (CDS), b) peptides within
205 200 base pairs from CDS features but do not overlap CDS boundaries, c) Peptides that overlap CDS
206 boundaries, and d) peptides that remain within CDS feature boundaries [9, 30]. Subsequently, the CDS
207 Mapper tool (version 0.6, 2011, <https://sourceforge.net/projects/cdsmapper/>) was used with default
208 parameters to further classify these based on their frame match to corresponding CDS features of the
209 annotated draft genome (Figure 2) (Bringans et al., 2009). All peptides suggesting novel or altered gene
210 models were blasted (BLASTp, version 2.9.0, 2019) with the following search parameters: organism:
211 *Phytophthora* (tax ID 4783), expect threshold: 2E5, word size: 2, matrix: PAM30, gap costs: existence 9
212 and extension 1. All peptides with significant returns (e<1E-3) were considered for manual annotation.
213 Peptides that did not return significant results were not used for this analysis. All significant BLAST hits
214 were transferred onto the *Phytophthora* draft genome and manually edited to comply with sequence
215 features such as start/stop codons and non-sequenced regions. The novel annotated genes were

216 further analysed for total number of supporting peptides (as per Protein Pilot methods described
217 above). Genes that had only one high confidence peptide were included for the purposes of gene
218 discovery [31]. Protein Family domains (PFAM), Gene Ontology (GO) terms and Kyoto Encyclopedia of
219 Genes and Genomes (KEGG) were also assigned using Interpro scan (version 5.44-79.0, 2020) using and
220 EGGNOG-mapper (version 2, 2019) using default parameters. To determine whether any pathogenesis
221 related proteins were present within the novel set, annotations were analysed for presence of any
222 potential virulence factors using PHI-BASE (version 4.9, 2020) using default parameters [32]. The Codon
223 Adaptation Indexes (CAIs) of each novel gene were also calculated using Emboss CAI (version 6.6,
224 default parameters), which indicated gene annotation with anomalous usage of codons [33].

225 Results

226 Sub-proteome enrichment

227 To obtain a representative proteome of *P. cinnamomi*, vegetative mycelia and transient short-lived
228 zoospores of *P. cinnamomi* were used as these are the dominant cell types that grow and initiate
229 infection in hosts. In addition, we extracted soluble secreted proteins (secretome) from the mycelia,
230 which are widely studied due to their implications on pathogen-host interactions. The purity of the
231 mycelia and zoospores was observed under a stereoscope (Figure 1). Figure 1A shows no evidence of
232 intercellular contamination and demonstrated the purity of these cell types. The large mass of mycelia
233 had not produced zoospores or their precursor (the sporangia) in this method of *in vitro* cell culture.
234 Similarly, vegetative mycelia was not observed in the zoospore preparation (Figure 1B).

235 1D SDS-PAGE was run to visualize the sub-proteomes of each cell type (Figure 2A). The banding patterns
236 of each sub-proteome show differences in total protein content. The extracellular proteome showed
237 enrichment in lower molecular weight proteins whereas the mycelia and zoospores had proteins that
238 spanned over the whole mass range. To test the purity of the secretome, an enzyme activity assay of
239 the cytoplasmic marker GAPDH was measured, which should only be present in small amounts (Figure
240 3b) [34]. Both the mycelia and zoospores had similar detected amounts of GAPDH detected,

241 approximately 4.7 and 4.8 mU/mg protein, respectively. GAPDH was also detected in the secretome,
242 however at lower amounts (1.6 mU/mg protein). The RP-HPLC UV total ion count traces indicated
243 differing protein content between the three sub-proteomes, as majority of the peaks do not match in
244 intensity and retention time (Figure 3c). The majority of proteins detected in the mycelial and zoospore
245 were localised intracellularly at 45% and 41%, respectively as predicted by WolfPSORT (Table 1). The
246 secretome was enriched in extracellular localisation proteins with a predicted 18% compared to 5% in
247 both the mycelia and zoospores.

248 **Validation of V1 gene models using sub-proteome spectra**

249 The mass spectra were used to validate the draft annotation of the *P. cinnamomi* genome. The
250 annotations acquired from JGI Mycocosm (assembly annotation version 1.0) were designated in this
251 study as 'V1' and the annotation set containing subsequently manually edited loci was designated 'V2'.

252 Non-redundant peptide matches (at least two 95% confident peptides) resulted in 2,554, 1,362, and
253 2,304 proteins from the mycelia, secretome and zoospores respectively. From this data, 2,764 unique
254 proteins from the V1 predicted gene set were identified (Figure 4). 526, 215 and 432 proteins were
255 unique to the mycelia, secretome and zoospores respectively, which implies a wide range of the whole
256 proteome detected. The mycelia and zoospores had more unique protein identifications than the
257 secretome, which may be a result of an expected lower mass range of an extracellular proteome that
258 were below the acquisition detection limits.

259 When matched to 4,874,027 generated open reading frames (ORF) of the 6-frame translation, 2,752,
260 1,355, and 2,334 ORFs from the mycelia, secretome and zoospores were identified (Table 2). Although
261 this does allow us to match more peptides to the genome than the V1 annotation, some level of
262 redundancy is expected from matching to reading frames that do not form genes. The false discovery
263 rate for all mass spectra analysis was <0.1% using the Protein Pilot decoy database method, which is
264 within the limits of the general consensus for large scale proteomic data [35, 36]. Of the V1 detected
265 by mass spectrometry, 2,398 had additional support by assigned GO terms and/or PFAM domain.

266 **Annotating new gene models by homology criteria**

267 Although there is peptide support for a large number of the V1 genes, it is expected that there are some
268 forms of incorrect intron and exon boundary annotations that can be detected using spectral data. In
269 addition, this spectral data can also be used in the detection of new genes. 23,457 unique high
270 confidence peptides matched to the 6-frame ORFs were mapped back to their genomic location. 22,443
271 peptides mapped completely within coding exon boundaries. 274 peptides mapped partly within exons
272 (i.e span across boundaries) and 287 within 200 bp of boundaries (Figure 2B, 2C). 453 peptides mapped
273 more than 200 bp from exon boundaries (Figure 2A). Furthermore, the frame test applied more
274 stringent criteria for frame matching of these peptides to corresponding V1 annotations (Table 4). A
275 total of 1,010 peptides did not match the frame of corresponding CDS features or were further than
276 200 bp from any gene models. This suggested 438 gene features with potentially incorrect boundaries.
277 These were considered as candidates for new gene models.

278 To select peptide candidates that would likely result in alteration of V1 genes and curation of new
279 genes, Blastp was used. Peptides that returned significant hits to other *Phytophthora* species were used
280 to manually edit and curate new genes (Table 4). This largely reduced the number of potential edited
281 and new genes due to both the redundancies of 6-frame peptides and rigorous Blastp parameters used
282 for peptide matches. Of those with conflicting boundaries, 70 peptides showed significant homology to
283 other *Phytophthora* species. Of the peptides that were further than 200 bp from any gene, a total of
284 118 peptides returned significant BLASTp hits, suggesting the presence of previously unannotated
285 genes on the *P. cinnamomi* genome. The homologous sequences were transferred onto the *P.*
286 *cinnamomi* genome and the annotations were manually integrated, taking into consideration
287 differences in the genome and features such as introns.

288 Using these criteria, a total of 60 genes were edited, which equates to an error rate of approximately
289 2% of the detected proteome. The CDS coordinates of the edited genes are shown in Additional file 1.
290 Of these, 44 were modified by extending the exon boundaries and there were 16 instances of merged

291 genes. Additionally, 23 new previously undefined genes were annotated (Table 5). These annotations
292 were uploaded to the GenBank under accessions MT820663-MT820655. The edited annotations will
293 be referred to by original annotation identification with 'V2' suffixed, as listed in the Additional files 2
294 and 3, respectively. In summary, we identified errors in 60 V1 genes which were manually altered and
295 added a further 23 annotations to the gene set of *P. cinnamomi*.

296 **Validating edited and new genes**

297 The edited genes were subsequently analysed for total peptide support and differences in functional
298 assignment compared to the original annotation. Peptides within the edited regions were manually
299 counted (Table 6). Of the extended genes, only one had no other supporting information other than
300 the support of one 95% confident peptide in the extended portion of the gene (e_gw1.28.366.1_V2).
301 All other extended genes had support from more than two high confidence peptides and/or
302 homologous functional assignment. Similarly, only one merged gene had a single peptide supporting
303 the merged region of the annotation (gw1.160.19.1_V2). All others were supported by two or more
304 high confidence peptides, which is the general requirement for protein identification in proteomics
305 [37]. Genes were analysed for GO terms, PFAM domains and KEGG orthologues (KO) to determine
306 whether the altered boundaries change their functional annotation assignment (Table 6). Details of
307 each functional annotation are shown in Additional files 2 and 3.

308 The original mass spectra were matched to the set of new genes (using Protein Pilot- see methods) to
309 determine how many peptides supported each gene (i.e. determine if any genes were a product of
310 single peptide matches) (Table 7). Of the 23 new genes identified, one new gene had support from only
311 one high confidence peptide (MT820633). All new genes were detected in the mycelia and most were
312 also identified in the secretome and zoospore (Additional file 4). The remaining 22 genes had at least
313 two or more supporting peptides.

314 To further support this new gene set, protein sequences were analysed for protein function by
315 assignment of PFAM domains, GO terms and KO assignment (Table 7). Details of these annotations for

316 each entry are shown in Additional file 4. The new annotations were analysed for virulence factors using
317 PHI-BASE. None of these annotations returned a significant hit to any known virulence factors.

318 **Codon adaptation Index**

319 The codon adaptation indices were calculated for the set of new features and compared to the V1 gene
320 set to identify significant differences in codon usage and distribution that could indicate possible causes
321 for errors and missed genes (Figure 8). The distribution of the CAIs of the new set were significantly
322 different (t-test, p value <0.05) than those of the predicted gene set suggesting a higher proportion of
323 less common codon usage in the new set. These were also significantly lower to the CAIs of all original
324 annotations that had high confidence supporting peptides. Each new gene was also analysed for
325 unusual codon usage, primarily the use of start codons other than methionine and not terminated by a
326 stop codon (Table 8). Only one new annotation MT820649 had abnormal codon usage, where there
327 was no annotated start codon at the correct locus.

328 **Discussion**

329 The three sub-proteomes (mycelia, secretome and zoospores) represent a diverse range of proteins
330 and capture the majority of the *P. cinnamomi* proteome. Although microscopic observation indicated
331 successful purity in the mycelia and zoospores, the GAPDH assay showed some cytoplasmic
332 contamination in the secretome. Cytoplasmic markers such as GAPDH and malate dehydrogenase have
333 been used in other studies as indicators of intracellular contamination in secretome samples of other
334 organisms [38, 39]. In these cases, some level of contamination was similarly observed in isolated
335 secretome samples, likely due to some level of cellular leakage. Other known cytoplasmic markers such
336 as malate dehydrogenase have been observed in fungal secretomes, where their extracellular functions
337 are not known [40]. This set of enrichment data confirms that the sub-proteomes were sufficiently
338 enriched for this study and the total proteome is diverse and represents both growing and infective
339 stages of development.

340 The aim of using these three sub-proteomes was firstly to validate as much as the *P. cinnamomi* draft
341 gene set as possible. Through spectral matching, we verified 10.6% of the predicted gene set. The
342 differing sub-proteomes, as shown above, are reflected in the validation of V1 genes by spectral
343 matching. Unique protein identifications of approximately 19%, 8% and 16% of the mycelia, secretome
344 and zoospores respectively, accounted for the differences in observed SDS-PAGE banding patterns and
345 RP-HPLC traces. Proteomic studies of other *Phytophthora* species indicated variable numbers of unique
346 proteins to these sub-proteomes. A 2- dimensional proteomic study of the oomycete *P. palmivora*
347 indicated 1% unique proteins for mycelia and zoospores [41]. However, a profile of the *P. infestans*
348 secretome indicated similar coverage of extracellular proteins to this study [42].

349 Using the mass spectra matched to the 6-frame translation of the draft genome, we refined the draft
350 genome of *P. cinnamomi*. Total peptide support and functional assignment were used to validate and
351 to obtain the most accurate representation of edited and newly curated genes. We compared the
352 functional assignments of V1 and V2 edited genes to identify differences inferred by the changes in
353 annotation features. The PFAM domains associated with the extended genes that differed from V1
354 genes were involved in energy production and one recombination protein (gw1.193.42.1_V2 and
355 fgenesh1_kg.277_#_5_V2). Similarly, the only differing GO was that of DNA repair (CE70043_1777_V2).
356 The KO of V2 extended genes remained mostly the same with minor changes and one enzyme code, an
357 enzyme involved in carbohydrate metabolism was not present in V1 genes. These changes include a
358 PAMP recognition signalling factor in gw1.44.72.1_V2. The majority of merged gene features were
359 mostly between CDS features of the same gene. Therefore, there were minimal functional assignment
360 differences between V1 genes and those altered by merging. However, three instances merged whole
361 genes (fgenesh1_kg.79_#_14_#_15_V2, estExt_fgenesh1_pm.C_90019, fgenesh1_pm.9_#_20,
362 e_gw1.9.526.1_V2 and gw1.243.65.1, gw1.243.79.1_V2). fgenesh1_kg.79_#_14_#_15_V2 combined
363 two whole genes from the V1 annotation, the V2 functional assignment included an additional PFAM
364 domain, PF12698, an ABC-2 family transporter protein, which are often highly expressed in plant
365 pathogens such as the oomycetes as they play roles in the biotrophic phase of infection and

366 pathogenicity [43, 44]. The second, estExt_fgenesh1_pm.C_90019, fgenesh1_pm.9_#_20,
367 e_gw1.9.526.1_V2, merged three whole genes, and included three different PFAM domains, two
368 Poly(ADP-ribose polymerase domains and one WGR domain. This edit also resulted in one gene
369 ontology difference, the presence of an NAD+ ADP-ribosyltransferase. There were no other differences
370 in the GO and KEGG ontologies between V1 and V2 merged genes. Although these functional
371 differences do not indicate major functional differences, they can impact the way in which we classify
372 these proteins when trying to understand their role in a system.

373 The newly curated genes were validated using total peptide support, functional assignment and also
374 examined for their codon usage to gain a better understanding of why they were missed in the V1
375 annotation. Although MT820633 had only one supporting peptide, it had PFAM, GO and KEGG
376 assignment, all indicating its function to be associated with ankyrin, a protein family that is involved in
377 the formation of the cytoskeleton and has been associated with signal transduction in other oomycete
378 pathogens [45]. MT820636, MT820637 and MT820651 although had significant blast hits to other
379 oomycetes but did not have any PFAM, GO or KO assignments. Functional domains were identified for
380 all other new genes, most of which were related to general biochemical processes, including energy
381 production, translation and transporter activity. PFAM domains and GO assignments that were
382 associated with new genes but not present in V1 genes were mostly domains of ribosomal proteins and
383 one ferredoxin type domain. Ribosomal proteins are highly conserved between species of oomycetes.
384 This has been shown in *Pythium insidiosum* using expressed sequence tags, that show homology
385 between several of the *Phytophthora* species [46, 47]. Ferredoxin domains have been identified in *P.*
386 *parasitica* and were found to be associated with ATP generation [48]. Of the KO assignments, nine from
387 V2 genes were not present in V1 genes. These were mostly associated with general metabolic and
388 cellular functions, translation and genetic information processing functions, with many domains
389 associated with ribosomes (Additional file 1).

390 PHI-BASE indicated no significant homology to virulence factors in the new gene set. This was expected
391 as all cell culture was performed *in vitro* where there is minimal stimulation to produce and release
392 virulence factors such as effector molecules. Typically, studies aiming to identify virulence factors such
393 as effectors simulate a host interaction environment as plant pathogens primarily express these
394 molecules at early stages of infection to overcome host defence systems [32, 49, 50]. This data also
395 complies with the GO, PFAM and EC assignments, as the majority of functional annotations indicated
396 core metabolic functions and therefore are unlikely to have virulence or infection related functions.

397 The significantly lower codon adaptation indices of the new genes compared to detected V1 genes can
398 suggest a limited rate of protein translation, which implies that over time optimised transcriptional
399 levels have a selective advantage for gene expression. This can also be influenced by repeat- induced
400 point mutations which can have implication on codon frequencies, and ultimately CAIs [51].
401 Additionally, recent lateral gene transfers can result in altered codon frequencies as these involve
402 acquiring genes that have codons optimised for different species [52]. We also observed a bias of CAIs
403 in V1 annotations confirmed by mass spectrometry compared to the CAIs of all V1 genes. These
404 experimentally confirmed genes had higher CAIs, which indicates that the highly abundant proteins
405 sampled in this study are translated with high efficiency. The unusual codon usage of MT820649 was
406 likely due to a sequencing error as there is no evidence of the presence of an intron at this locus (based
407 on sequence homology with other *Phytophthora* species) and there is a stop codon 6 bp upstream. The
408 remaining 28 sequences had normal codon usage.

409 Conclusion

410 The data generated by shotgun LC-MS/MS confirmed 2,764 previously annotated gene models from
411 the *P. cinnamomi* draft genome using high quality mass spectra from a diverse range of sub-proteome
412 fractions. The spectral data suggested potential errors in gene calling, and using the spectral data, we
413 were able to alter 60 genes by extending and merging exons, and identify 23 previously undescribed
414 annotations in the *P. cinnamomi* genome. This demonstrates that the correlation between genes called

415 by methods *in silico* are not always correlated to protein products, with evidence of annotation error
416 rates of 2% of the detected proteome. This work demonstrates there are effective ways to use
417 proteomics to correct boundary discrepancies and discover new genes. To our knowledge, this study
418 presents the first use of spectral data to edit and manually annotate an oomycete pathogen. As more
419 spectral data is accumulated, we expect there will be additional changes to the annotation including
420 the discovery of more new genes.

421 **Additional files**

422 Additional file 1- format: gff. Title: CDS coordinates of edited genes, Description: Gene coordinates of
423 manually edited V1 genes. Gene identification names include the original ID from
424 <https://mycocosm.jgi.doe.gov/Phyci1> as a reference.

425 Additional file 2- format: xlsx, Title: Master table of genes edited by extending features, Description:
426 Summary of sequence, sequence features, peptide support, codon usage and functional assignment of
427 edited genes generated by extending features

428 Additional file 3- format: xlsx, Title: Master table of genes edited by merging features, Description:
429 Summary of sequence, sequence features, peptide support, codon usage and functional assignment of
430 edited genes generated by merging features.

431 Additional file 4- format: xlsx, Title: Master table of new genes, Description: Summary of sequence,
432 sequence features, peptide support, codon usage and functional assignment of new genes.

433 **List of abbreviations**

434 **GO:** Gene Ontology

435 **PFAM:** Protein Families

436 **1D SDS-PAGE:** 1 Dimensional Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis

437 **RP-HPLC:** Reverse phase High pressure liquid Chromatography

438 **LC-MS:** Liquid Chromatography- Mass Spectrometry

439 **MS:** Mass Spectrometry

440 **TOF:** Time of Flight

441 **CONF:** Confidence

442 **FDR:** False Discovery Rate

443 **CDS:** Coding Sequence

444 **CAI:** Codon Adaptation Index

445 **GAPDH:** Glyceraldehyde Phosphate Dehydrogenase

446 **JGI:** Joint Genome Institute

447 **ORF:** Open Reading Frame

448 **KEGG:** Kyoto Encyclopaedia of Genes and Genomes

449 **KO:** KEGG Orthologues

450 **EC:** Enzyme Code

451 **References**

452 1. Wright PC, Noirel J, Ow SY, Fazeli A. A review of current proteomics technologies with a survey on
453 their widespread use in reproductive biology investigations. Theriogenology. 2012;77.

454 2. Jones DA, Bertazzoni S, Turo CJ, Syme RA, Hane JK. Bioinformatic prediction of plant-pathogenicity
455 effector proteins of fungi. Current Opinion in Microbiology. 2018;46:43–9.

456 3. Mathe C. Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res.
457 2002.

458 4. Liang C, Mao L, Ware D, Stein L. Evidence-based gene predictions in plant genomes. Genome Res.

459 2009.

460 5. McDonnell E, Strasser K, Tsang A. Manual gene curation and functional annotation. In: Methods in
461 Molecular Biology. 2018.

462 6. Renuse S, Chaerkady R, Pandey A. Proteogenomics. Proteomics. 2011.

463 7. Nesvizhskii AI. Proteogenomics: Concepts, applications and computational strategies. Nature
464 Methods. 2014.

465 8. Ruggles KV., Krug K, Wang X, Clauser KR, Wang J, Payne SH, et al. Methods, tools and current
466 perspectives in proteogenomics. Molecular and Cellular Proteomics. 2017.

467 9. Bringans S, Hane JK, Casey T, Tan K-C, Lipscombe R, Solomon PS, et al. Deep proteogenomics; high
468 throughput gene validation by multidimensional liquid chromatography and mass spectrometry of
469 proteins from the fungal wheat pathogen *Stagonospora nodorum*. BMC Bioinformatics. 2009;10:301.

470 10. Syme RA, Tan KC, Hane JK, Dodhia K, Stoll T, Hastie M, et al. Comprehensive Annotation of the
471 *Parastagonospora nodorum* Reference Genome Using Next-Generation Genomics, Transcriptomics
472 and Proteogenomics. PLoS One. 2016;11.

473 11. Cooke IR, Jones D, Bowen JK, Deng C, Faou P, Hall NE, et al. Proteogenomic analysis of the
474 *Venturia pirina* (PEAR SCAB Fungus) secretome reveals potential effectors. J Proteome Res. 2014.

475 12. Cox J, Mann M. Is Proteomics the New Genomics? Cell. 2007.

476 13. Law KP, Lim YP. Recent advances in mass spectrometry: data independent analysis and hyper
477 reaction monitoring. Expert Rev Proteomics. 2013;10:551–66. doi:10.1586/14789450.2013.858022.

478 14. Pastorelli R, Carpi D, Campagna R, Airoldi L, Pohjanvirta R, Viluksela M, et al. Differential
479 expression profiling of the hepatic proteome in a rat model of dioxin resistance: Correlation with
480 genomic and transcriptomic analyses. Mol Cell Proteomics. 2006.

481 15. Hardham AR. Pathogen Profile: *Phytophthora cinnamomi*. Mol Plant Pathol. 2005;6:589–604.

482 16. Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS, Dalio RJD, et al. The Top 10 oomycete
483 pathogens in molecular plant pathology. *Mol Plant Pathol.* 2015.

484 17. Hardy GESJ, Barrett S, Shearer BL. The future of phosphite as a fungicide to control the soilborne
485 plant pathogen *Phytophthora cinnamomi* in natural ecosystems. *Australas Plant Pathol.* 2001.

486 18. Machinandiarena MF, Lobato MC, Feldman ML, Daleo GR, Andreu AB. Potassium phosphite
487 primes defense responses in potato against *Phytophthora infestans*. *J Plant Physiol.* 2012.

488 19. Eshraghi L, Anderson J, Aryamanesh N, Shearer B, Mccomb J, Hardy GESJ, et al. Phosphite primed
489 defence responses and enhanced expression of defence genes in *Arabidopsis thaliana* infected with
490 *Phytophthora cinnamomi*. *Plant Pathol.* 2011;60:1086–95.

491 20. Smillie R. The Mode of Action of Phosphite: Evidence for Both Direct and Indirect Modes of Action
492 on Three *Phytophthora* spp. in Plants. *Phytopathology.* 1989.

493 21. King M, Reeve W, Van Der Hoek MB, Williams N, McComb J, O'Brien PA, et al. Defining the
494 phosphite-regulated transcriptome of the plant pathogen *Phytophthora cinnamomi*. *Mol Genet*
495 *Genomics.* 2010;284:425–35.

496 22. Birch PRJ, Rehmany AP, Pritchard L, Kamoun S, Beynon JL. Trafficking arms: Oomycete effectors
497 enter host plant cells. *Trends in Microbiology.* 2006;14:8–11.

498 23. Horta M, Caetano P, Medeira C, Maia I, Cravador A. Involvement of the β -cinnamomin elicitin in
499 infection and colonisation of cork oak roots by *Phytophthora cinnamomi*. *Eur J Plant Pathol.*
500 2010;127:427–36.

501 24. Hüberli D, Tommerup IC, Hardy GESJ. False-negative isolations or absence of lesions may cause
502 mis-diagnosis of diseased plants infected with *Phytophthora cinnamomi*. *Australas Plant Pathol.*
503 2000;29:164–9. doi:10.1071/AP00029.

504 25. Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, et al. *Phytophthora* genome sequences

505 uncover evolutionary origins and mechanisms of pathogenesis. *Science*. 2006;313:1261–6.

506 doi:10.1126/science.1128796.

507 26. K. RP, Ribeiro OK. A Source Book of the Genus *Phytophthora*. *Mycologia*. 1979.

508 27. Byrt P, Grant BR. Some conditions governing zoospore production in axenic cultures of

509 *Phytophthora cinnamomi* rands. *Aust J Bot*. 1979.

510 28. Resjö S, Ali A, Meijer HJG, Seidl MF, Snel B, Sandin M, et al. Quantitative label-free

511 phosphoproteomics of six different life stages of the late blight pathogen *phytophthora infestans*

512 reveals abundant phosphorylation of members of the CRN effector family. *J Proteome Res*.

513 2014;13:1848–59.

514 29. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: Protein

515 localization predictor. *Nucleic Acids Res*. 2007;35 SUPPL.2.

516 30. Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features.

517 *Bioinformatics*. 2010.

518 31. Sheng Q, Dai J, Wu Y, Tang H, Zeng R. BuildSummary: Using a group-based approach to improve

519 the sensitivity of peptide/protein identification in shotgun proteomics. In: *Journal of Proteome*

520 *Research*. 2012.

521 32. Urban M, Cuzick A, Rutherford K, Irvine A, Pedro H, Pant R, et al. PHI-base: A new interface and

522 further additions for the multi-species pathogen-host interactions database. *Nucleic Acids Res*. 2017.

523 33. Sharp PM, Li WH. The codon adaptation index-a measure of directional synonymous codon usage

524 bias, and its potential applications. *Nucleic Acids Res*. 1987.

525 34. Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of GAPDH: Views from different

526 subcellular compartments. *Cellular Signalling*. 2011.

527 35. Lam H, Deutsch EW, Aebersold R. Artificial decoy spectral libraries for false discovery rate

528 estimation in spectral library searching in proteomics. *J Proteome Res.* 2010.

529 36. Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics:

530 Critical review update from 2007 to the present. *Analytical and Bioanalytical Chemistry.* 2012.

531 37. Bringans SD, Ito J, Stoll T, Winfield K, Phillips M, Peters K, et al. Comprehensive mass spectrometry

532 based biomarker discovery and validation platform as applied to diabetic kidney disease. *EuPA Open*

533 *Proteomics.* 2017.

534 38. Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, et al. In-depth insight into in vivo apoplastic

535 secretome of rice-Magnaporthe oryzae interaction. *J Proteomics.* 2013.

536 39. Alexandersson E, Ali A, Resjö S, Andreasson E. Plant secretome proteomics. *Frontiers in Plant*

537 *Science.* 2013.

538 40. Tan KC, Heazlewood JL, Millar AH, Oliver RP, Solomon PS. Proteomic identification of extracellular

539 proteins regulated by the Gna1 G α subunit in *Stagonospora nodorum*. *Mycol Res.* 2009.

540 41. Shepherd SJ, van West P, Gow N a R. Proteomic analysis of asexual development of *Phytophthora*

541 *palmivora*. *Mycol Res.* 2003;107 Pt 4:395–400.

542 42. Meijer HJG, Mancuso FM, Espadas G, Seidl MF, Chiva C, Govers F, et al. Profiling the secretome

543 and extracellular proteome of the potato late blight pathogen *Phytophthora infestans*. *Mol Cell*

544 *Proteomics.* 2014;:M113.035873-. doi:10.1074/mcp.M113.035873.

545 43. Seidl MF, van den Ackerveken G, Govers F, Snel B. A domain-centric analysis of oomycete plant

546 pathogen genomes reveals unique protein organization. *Plant Physiol.* 2011.

547 44. Ah-Fong AMV, Kim KS, Judelson HS. RNA-seq of life stages of the oomycete *Phytophthora*

548 *infestans* reveals dynamic changes in metabolic, signal transduction, and pathogenesis genes and a

549 major role for calcium signaling in development. *BMC Genomics.* 2017.

550 45. Torto-Alalibo T, Tian M, Gajendran K, Waugh ME, Van West P, Kamoun S. Expressed sequence tags

551 from the oomycete fish pathogen *Saprolegnia parasitica* reveal putative virulence factors. *BMC*
552 *Microbiol.* 2005.

553 46. Win J, Kanneganti TD, Torto-Alalibo T, Kamoun S. Computational and comparative analyses of 150
554 full-length cDNA sequences from the oomycete plant pathogen *Phytophthora infestans*. *Fungal Genet*
555 *Biol.* 2006.

556 47. Krajaejun T, Khositnithikul R, Lerksuthirat T, Lowhnoo T, Rujirawat T, Petchthong T, et al.
557 Expressed sequence tags reveal genetic diversity and putative virulence factors of the pathogenic
558 oomycete *Pythium insidiosum*. *Fungal Biol.* 2011.

559 48. Le Berre JY, Engler G, Panabières F. Exploration of the late stages of the tomato-*Phytophthora*
560 parasitica interactions through histological analysis and generation of expressed sequence tags. *New*
561 *Phytol.* 2008.

562 49. Baldwin TK, Winnenburg R, Urban M, Rawlings C, Koehler J, Hammond-Kosack KE. The Pathogen-
563 Host Interactions Database (PHI-base) provides insights into generic and novel themes of
564 pathogenicity. *Molecular Plant-Microbe Interactions*. 2006.

565 50. Bozkurt TO, Schornack S, Banfield MJ, Kamoun S. Oomycetes, effectors, and all that jazz. *Current*
566 *Opinion in Plant Biology*. 2012.

567 51. Testa AC, Oliver RP, Hane JK. OcculterCut: A comprehensive survey of at-rich regions in fungal
568 genomes. *Genome Biology and Evolution*. 2016.

569 52. Tuller T. Codon bias, tRNA pools, and horizontal gene transfer. *Mob Genet Elements*. 2011.

570

571

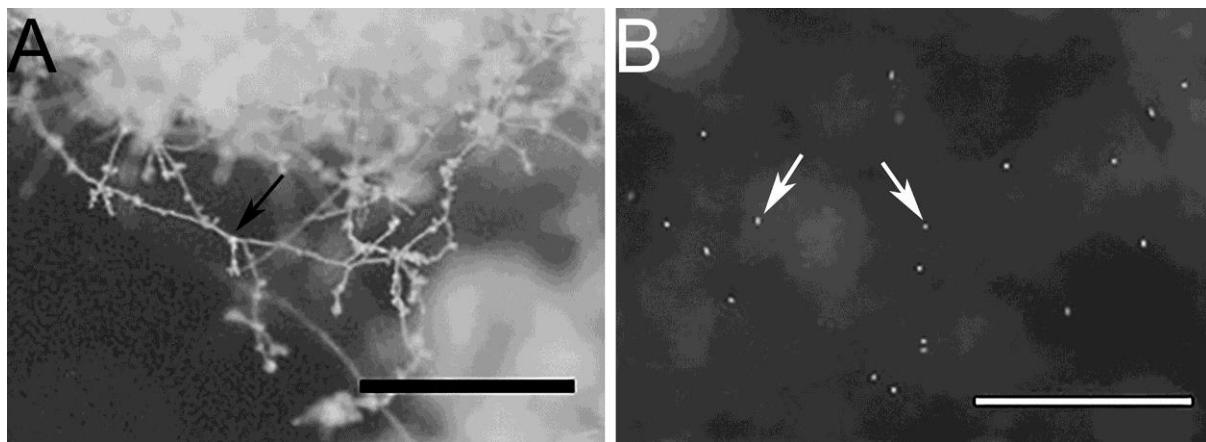


Figure 1. Stereo microscope images of A) a mycelial mass, and B) free swimming zoospores, indicating minimal to no cross contamination between cell types. Bars represent 1 mm scale. Black arrow indicates mycelia and white arrows indicate zoospores.

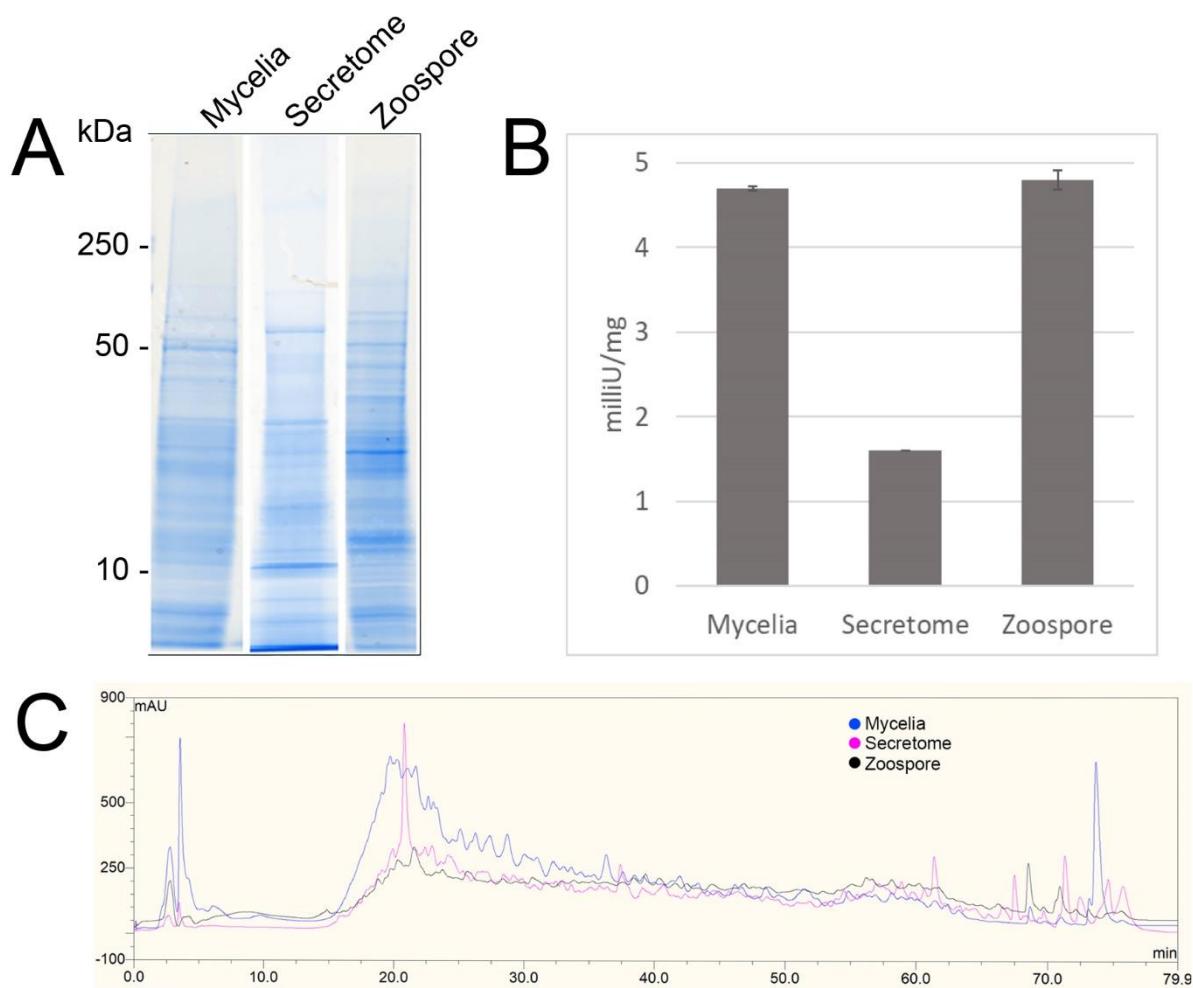


Figure 2. Quality control of sub-proteomes. A) SDS-PAGE analysis of *P. cinnamomi* sub-proteomes. B) Glyceraldehyde phosphate dehydrogenase activity within each sub-proteome indicating relative levels of contamination of intracellular proteins in the extracellular proteome. C) High pH reverse phase HPLC separation of 500 μ g of each sub-proteome demonstrating sufficient peptide separation and differing protein content.

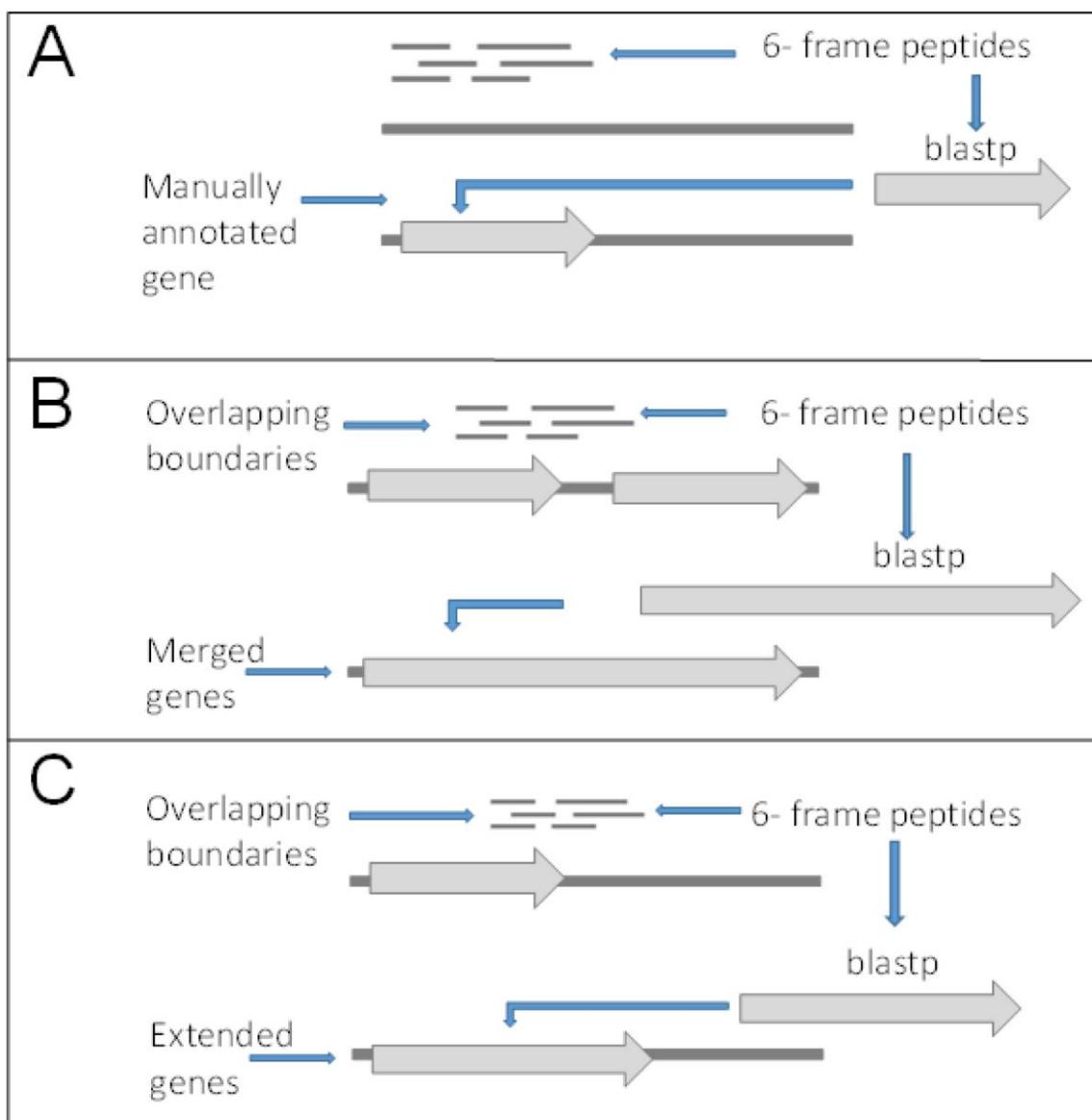


Figure 3. Criteria for gene editing and discovery. A) Peptides matching to 6-frame open reading frames in loci with no surrounding genes or out of frame from surrounding genes and returned significant BLASTp hits were manually annotated as new genes. B) Peptides overlapping boundaries of multiple genes within the same frame and returned significant BLASTp hits were used to manually merged genes. C) Genes with in frame peptides overlapping boundaries and returned significant BLASTp hits were manually edited.

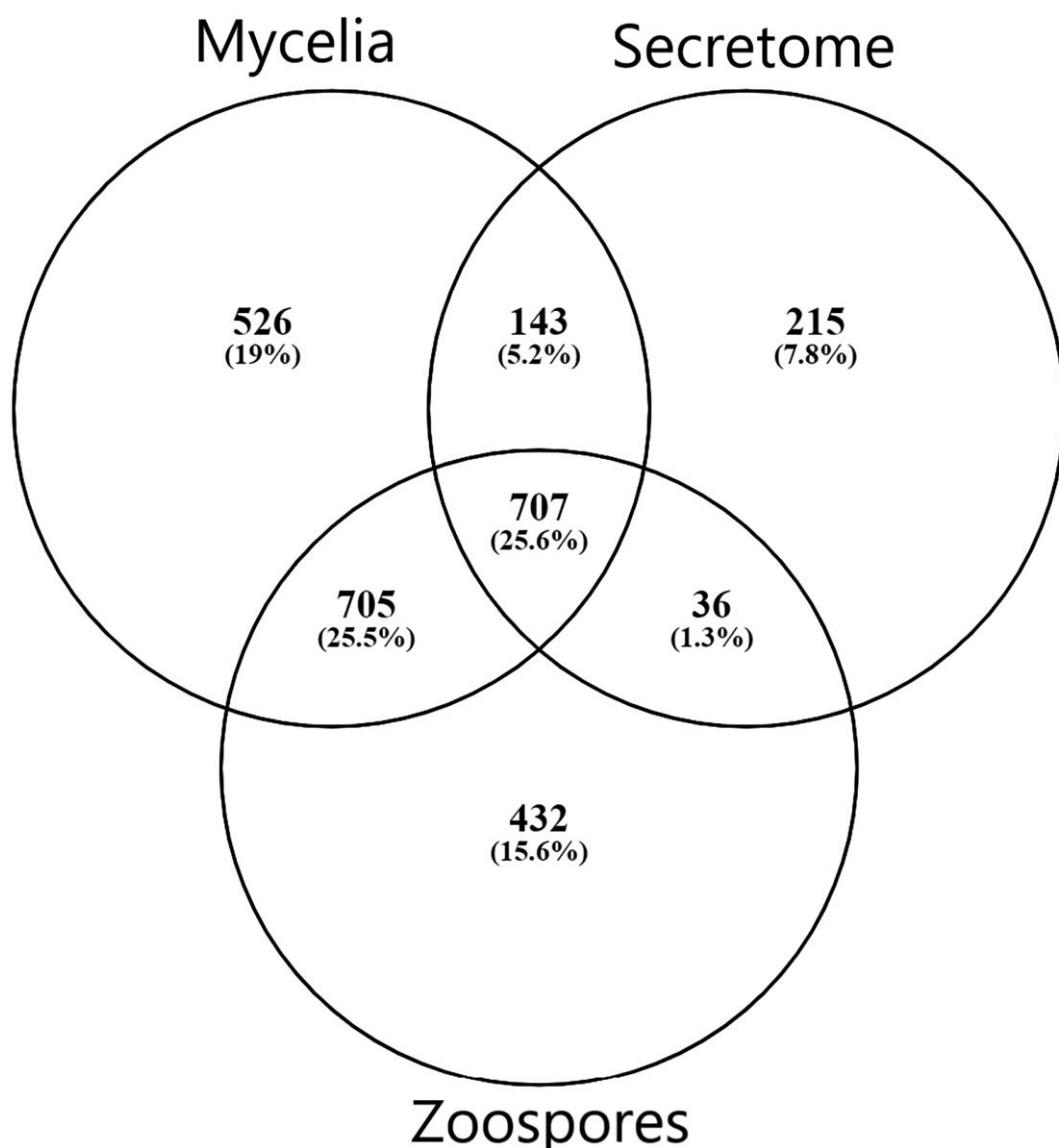


Figure 4. Number of proteins detected by mass spectrometry of each sub-proteome supported by at least two 95% confident peptides.

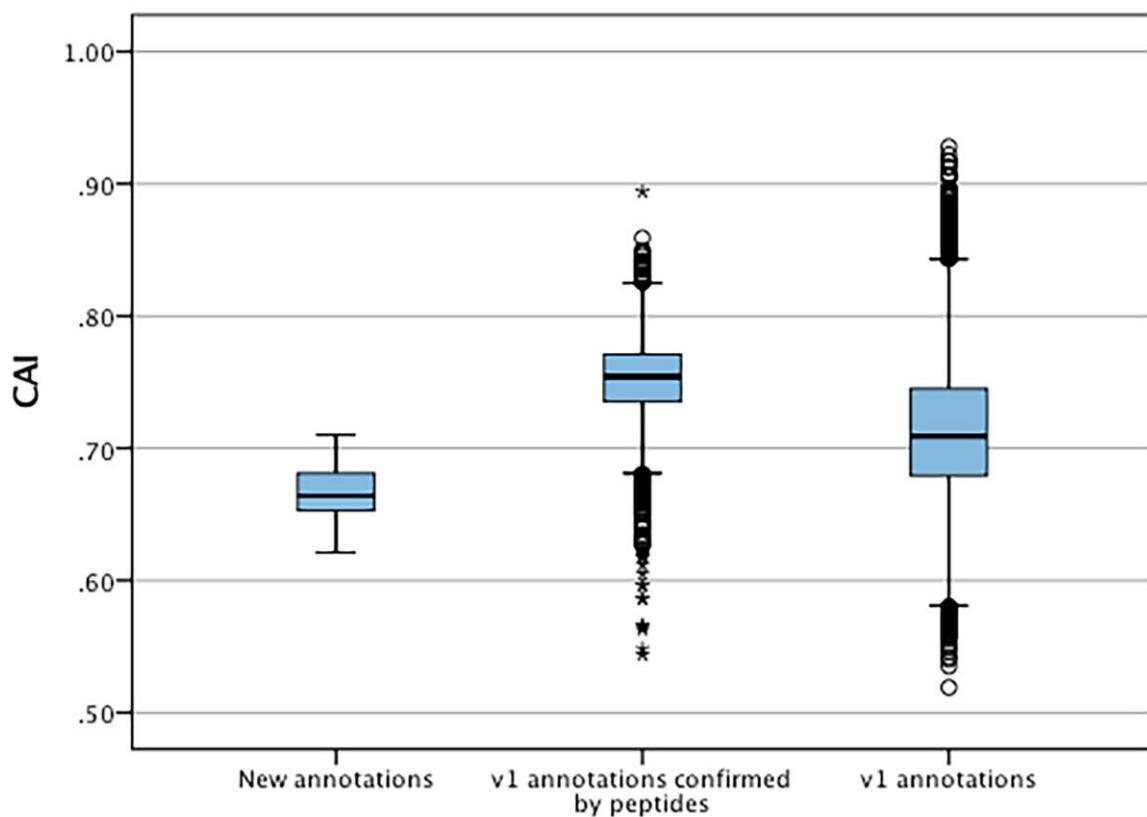


Figure 5. Distribution of codon adaptation indices between new annotation and v1 annotations confirmed by mass spectrometry and all v1 annotations. * represent significant differences ($p < 0.05$) of data sets to V1 annotations.

Table 1. WolfPSORT localisation prediction of the whole genome annotation and sub-proteomes.

WolfP SORT	Total no. proteins	Predicted Intracellular	Predicted Extracellular	Low confidence prediction
Whole genome prediction	26,131	43 %	6 %	51 %
Mycelial proteome	3,209	46 %	5 %	49 %
Secretome proteome	1,605	42 %	18 %	40 %
Zoospore proteome	2,304	50 %	5 %	45 %

Table 2. Summary of mass spectra identification using the annotated protein and 6-frame open reading frame databases.

Sub-proteome	Total spectra	Database type	Proteins identified (inc. single peptide hits)	% total spectra identified
Mycelia	964781	Annotated prediction	2554	36.1
		6-frame translation	2752	28.6
Secretome	877718	Annotated prediction	1362	18.6
		6-frame translation	1355	11.4
Zoospore	837256	Annotated prediction	2304	31.0
		6-frame translation	2334	22.8

Table 3. Confirmation of genes supported by peptides within or crossing exon boundaries.

Total number of genes	26478
Genes confirmed by spectral matching (Protein Pilot)	3468
Genes with 6-frame peptide support- with boundary conflicts	52
Genes with no 6-frame peptide support (inc. with boundary conflicts)	19724
Genes with only mismatched 6-frame peptides	69
Genes with matched and mismatched 6-frame peptides	24

Table 4. Summary of frame matches of peptides with nearby CDS features and number of significant Blastp hits (E value > 1E-3) and number of gene features manually

	Frame match (CDS)	Frame mismatch (CDS)	Total peptides	No. significant BLAST hits of conflicting peptides
Peptides within CDS boundaries	22134 (3178)	309 (242)	22443	38
Peptides crossing CDS boundaries	240 (171)	34 (31)	274	129

Peptides within 200bp from CDS boundaries	73 (52)	214 (165)	287	67
Peptides more than 200bp from CDS features	-	-	453	118

Table 5. Summary of original predicted and newly annotated/ edited genes using proteogenomics

	No. genes
Version 1 prediction	26131
Total modified genes	60
Modified by extension	44
Modified by merging genes	16
New gene annotations	23
Total number of version 2 genes	26151

Table 6. Summary of new gene validation using supporting peptides, PFAM and Gene Ontology terms using Protein Pilot.

	Merged annotations	Extended annotations
Supported by only one peptide	6	8
Supported by two or more peptides	10	36
Genes with PFAM domains	13	39
Edited genes with differing PFAM to v1	3	3
Genes with GO terms	13	35
Edited genes with differing GO to v1	1	1
Genes with KO assignment	13	34
v2 genes with differing KO to v1	0	1

Table 7. Summary of new gene validation using supporting peptides, Protein Families and Gene Ontology terms. Details of annotations of each entry are shown in Supplemental data 1

	Number of new gene models
Supported by only one peptide	1
Supported by two or more peptides	22
Contain PFAM domains	21
Contain GO terms	21
Containing KO	17
No functional support	2

Table 8. Codon usage summary of the new gene set.

	No. features
Total features	23
Normal codon usage	22
Stop codon only (no start codon)	1

