

1 **Rapid evolution of enhanced Zika virus virulence during direct
2 vertebrate transmission chains**

3

4 Kasen K. Riemersma^{1*}, Anna S. Jaeger^{2*}, Chelsea M. Crooks¹, Katarina M. Braun¹,
5 James Weger-Lucarelli³, Gregory D. Ebel⁴, Thomas C. Friedrich¹, Matthew T. Aliota^{2#}

6

7 *¹University of Wisconsin-Madison, Madison, WI, United States*

8 *²University of Minnesota, Twin Cities, St Paul, MN, United States*

9 *³Virginia Tech, Blacksburg, VA, United States*

10 *⁴Colorado State University, Fort Collins, CO, United States*

11

12 #Address correspondence to Matthew T. Aliota: mtaliota@umn.edu

13 *These authors contributed equally to this work

14

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 Zika virus (ZIKV) has the unusual capacity to circumvent natural alternating mosquito-
26 human transmission and be directly transmitted human-to-human via sexual and vertical
27 routes. The impact of direct transmission on ZIKV evolution and adaptation to vertebrate
28 hosts is unknown. Here we show that molecularly barcoded ZIKV rapidly adapted to a
29 mammalian host during direct transmission chains in mice, coincident with the
30 emergence of an amino acid substitution previously shown to enhance virulence. In
31 contrast, little to no adaptation of ZIKV to mice was observed following chains of direct
32 transmission in mosquitoes or alternating host transmission. Detailed genetic analyses
33 revealed that ZIKV evolution in mice was generally more convergent and subjected to
34 more relaxed purifying selection than in mosquitoes or alternate passages. These
35 findings suggest that prevention of direct human transmission chains may be paramount
36 to resist gains in ZIKV virulence.

37

38 **Introduction**

39 Following its discovery in central Africa in 1947, Zika virus (ZIKV; genus *Flavivirus*,
40 family *Flaviviridae*) was introduced and circulated in Asia unbeknownst to the scientific
41 community (Petersen et al., 2016). Outbreaks in Yap in 2007 and French Polynesia in
42 2013 established ZIKV as a pathogen of global concern. Those concerns were realized
43 in 2015 and 2016, when Asian-lineage ZIKV swept through nearly every country in the
44 Americas (Hills et al., 2017; Petersen et al., 2016). The reasons for the sudden
45 emergence of ZIKV in the Americas are still not completely understood. As a result,
46 extensive research efforts have aimed to understand whether there are mutations that
47 have contributed to the severity of the ZIKV outbreak in the Americas. Mounting
48 evidence indicates that African-lineage and American-sublineage ZIKV are generally
49 more transmissible than other Asian lineage ZIKVs (Aubry et al., 2020; Calvez et al.,
50 2018; Liu et al., 2017; Pompon et al., 2017; Roundy et al., 2017; Weger-Lucarelli et al.,
51 2016). Further, a panel of mutations present in American-sublineage ZIKV, but not other
52 Asian-lineage ZIKV, were shown to enhance transmission by *Aedes aegypti*
53 mosquitoes, as well as replication and virulence in mouse models (Liu et al., 2020;
54 Shan et al., 2020). While there are data on the effects of single mutations in ZIKV, there
55 is a need to better understand the biological basis of mutational effects.

56

57 ZIKV is a mosquito-borne virus that naturally cycles between vertebrate hosts and
58 mosquito vectors. In urban environments, transmission predominantly occurs between
59 humans and *Ae. aegypti* mosquitoes. In both field and laboratory settings, female *Ae.*
60 *aegypti* have been shown to transmit ZIKV to their progeny at low rates, indicating that
61 the virus can bypass the vertebrate host (Ciota et al., 2017; Comeau et al., 2020; da
62 Costa et al., 2018; Thangamani et al., 2016). Similarly, ZIKV can bypass the mosquito
63 vector with direct human-to-human transmission. Of great clinical concern, vertical

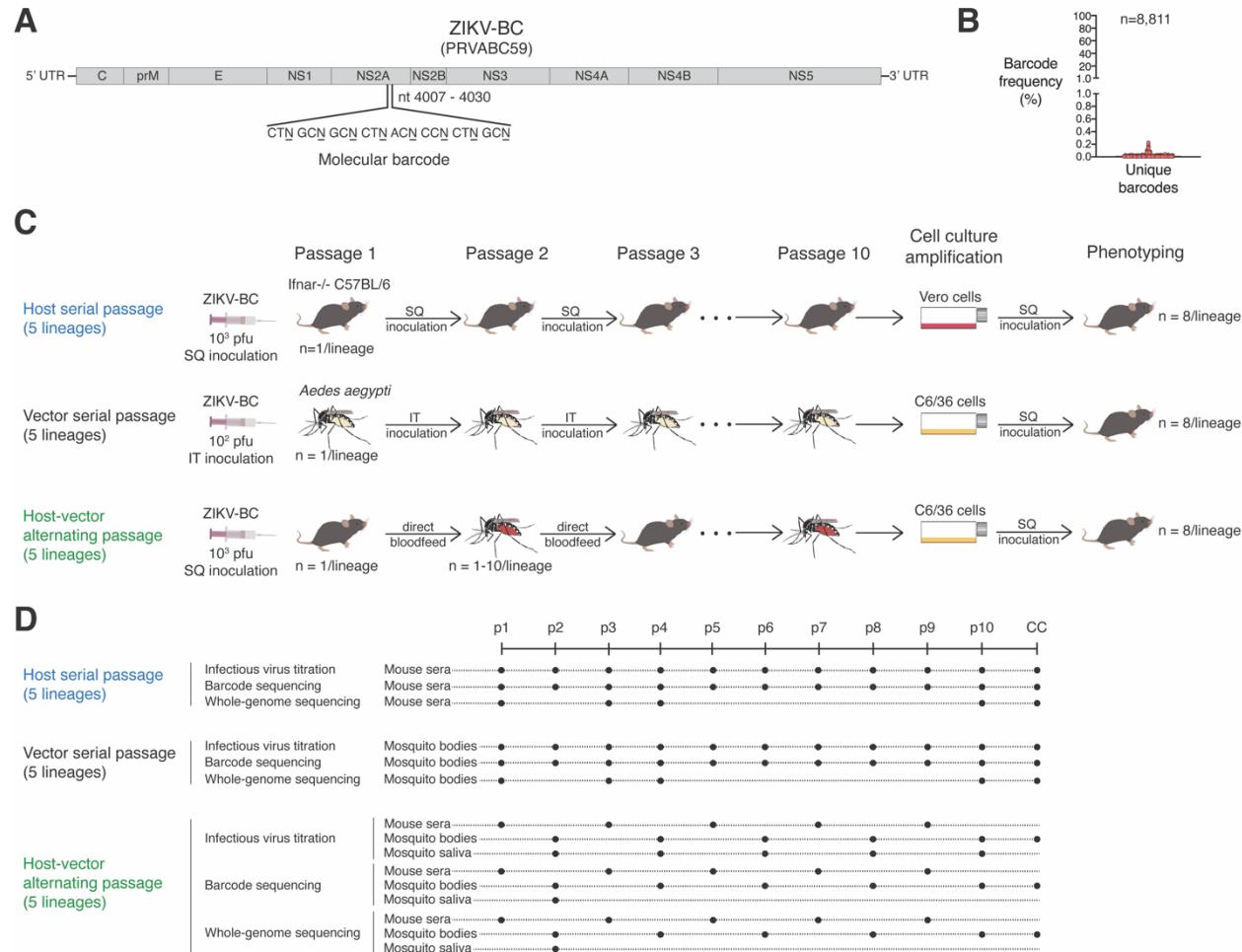
64 transmission during pregnancy can result in congenital Zika syndrome, a term for the
65 combination of neuropathologic birth defects and disabilities following *in utero* exposure
66 to ZIKV (Cristina da Silva Rosa et al., 2020; Gregory et al., 2017; Grischott et al., 2016;
67 Moore et al., 2017). ZIKV can also be transmitted horizontally in humans via sexual
68 intercourse (Foy et al., 2011; Fréour et al., 2016; Hills et al., 2016; McCarthy, 2016;
69 Moreira et al., 2017; Turmel et al., 2016; Venturi et al., 2016). Rare cases of horizontal
70 transmission via blood transfusion (Barjas-Castro et al., 2016), breastfeeding (Colt et
71 al., 2017), and nonsexual contact (Swaminathan et al., 2016) have also been reported.
72 Rates of sexual ZIKV transmission and its contribution to epidemic spread are difficult to
73 quantify in regions with endemic *Ae. aegypti*, but the increased risk for seropositivity in
74 sexual partners of index cases (Magalhaes et al., 2020) and secondary cases in *Ae.*
75 *aegypti*-free regions (Grischott et al., 2016; Khaiboullina et al., 2019) suggest it is a
76 common non-vector-borne route of transmission. Given the aforementioned evidence
77 for ZIKV mutations enhancing transmission and virulence, it is critical to study the
78 impact of bypassing the mosquito vector on ZIKV evolution and the potential for
79 adaptation to vertebrate hosts.

80
81 For arthropod-borne viruses (arboviruses), it has been proposed that a fitness trade-off
82 occurs during host cycling, where fitness gains in one host are counteracted by fitness
83 losses in the opposing host (Ciota and Kramer, 2010). However, this has not been
84 supported by *in-vivo* infection studies generally (Ciota et al., 2009, 2008; Coffey et al.,
85 2008; Deardorff et al., 2011). Release from host cycling does typically enable
86 adaptation to the vertebrate or arthropod, but not necessarily at the cost of lost fitness in
87 the other host. We hypothesized that ZIKV would demonstrate a similar capacity for
88 host adaptation when bypassing the mosquito vector, an outcome with potentially
89 significant implications during direct ZIKV transmission in humans. Here, we tested this
90 hypothesis by assessing phenotypic and genotypic changes following serial passage in
91 mice or mosquitoes, and during alternating passage between both, using a molecularly
92 barcoded ZIKV strain previously validated for tracking genetic bottlenecks and selective
93 pressures within mosquitoes and non-human primates (Aliota et al., 2018; Weger-
94 Lucarelli et al., 2018). We found that ZIKV rapidly acquires enhanced virulence with
95 universal fatality in mice coincidental to selective sweeps involving a previously
96 described virulence-enhancing mutation. We additionally show that ZIKV populations
97 evolve convergently under relaxed purifying selection in vertebrate hosts, whereas
98 stochasticity and purifying selection characterize ZIKV evolution in mosquitoes and
99 during alternating transmission.

100

101 **Results**

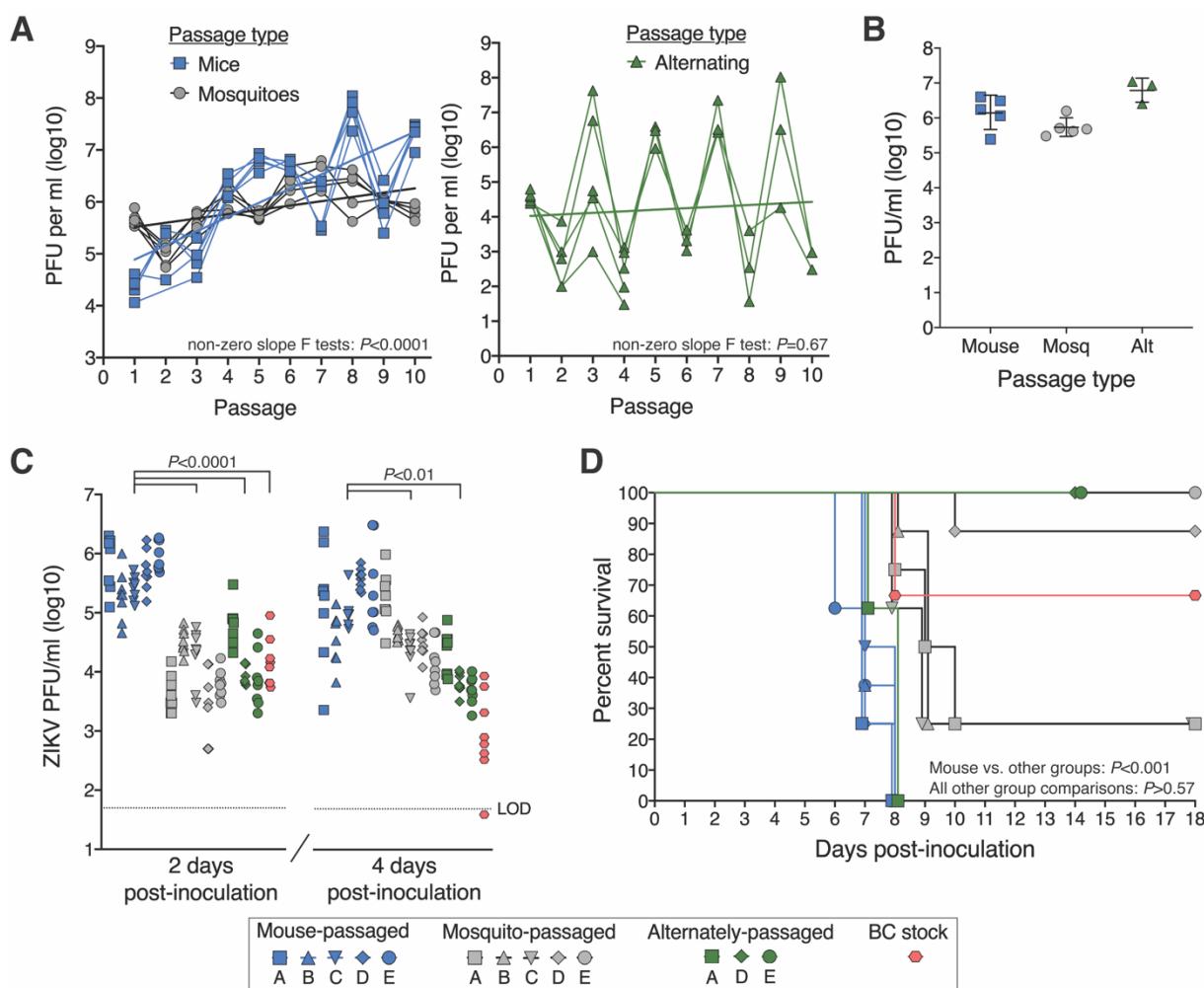
102 **Conspecific and alternating passage titers**


103 To determine the effect of release from host-cycling on ZIKV evolution, *in-vivo* serial
104 passage experiments were conducted with a previously characterized barcoded ZIKV
105 (ZIKV-BC; strain PRVABC59) containing a run of eight consecutive degenerate codons
106 in NS2A (amino acids 144-151; Figure 1A) that allows for every synonymous mutation
107 to occur. There was no evidence of barcode bias in our ZIKV-BC stocks, as the 8,811
108 barcodes detected by deep sequencing were evenly distributed at less than 0.3%
109 frequency within the population (Figure 1B). ZIKV-BC was serially passaged in 5
110 parallel replicates (lineages) for 10 passages via subcutaneous (SQ) inoculation in
111 *Ifnar1^{-/-}* mice or via intrathoracic (IT) inoculation in *Ae. aegypti* mosquitoes (Figure 1C).
112 Despite a consistent amount of infectious virus inoculated at each passage, ZIKV-BC
113 titers rose significantly over 10 serial passages in both mice and mosquitoes (non-zero
114 slope F-test, $P<0.0001$; Figure 2A). The mean increase in infectious virus titer from
115 passage 1 to 10 was greater in mice ($+ 10^{2.97}$ pfu/ml) than in mosquitoes ($+ 10^{0.15}$
116 pfu/ml).

117
118 To mimic natural host-cycling, ZIKV-BC was alternately passaged in mice and
119 mosquitoes for 10 passages in 5 parallel lineages. After SQ inoculation of mice on
120 passage 1, alternating passage was conducted via natural bloodfeeding transmission
121 with small cohorts of mosquitoes feeding on an infected mouse, and then feeding on a
122 naive mouse 12 days later. Only 3 of 5 lineages successfully completed the series of 10
123 passages. Despite successful bloodfeeding, lineage B and C viruses replicated to very
124 low titers ($<10^2$ pfu/ml) in mosquito bodies on passage 4 and were not transmitted
125 onwards to mice. Unlike with serial conspecific passage, ZIKV-BC titers did not rise over
126 the course of 10 alternating passages (non-zero slope F-test, $P=0.67$). The rising and
127 falling sequential titers with alternating passage reflect the virus' capacity for greater
128 replication in mice than mosquitoes. After passaging ZIKV-BC with and without host-
129 cycling, we next assessed the p10 viruses for phenotypic changes in viral replication
130 and virulence in mice.

131

132 **Phenotypic changes in mice**


133 Viral replication and virulence of mouse-adapted, mosquito-adapted, and alternately-
134 passaged p10 lineages were compared with unpassaged ZIKV-BC stock in *Ifnar1^{-/-}*
135 mice. To generate adequate viral stocks of the passaged viruses, each p10 virus isolate
136 was amplified in a single passage at high multiplicity of infection on Vero cells for
137 mouse-adapted lineages or on a mosquito cell line (C6/36) for mosquito-adapted and
138 alternately-passaged lineages (Figure 2B). Cell culture-amplified stocks and p10 virus
139 isolates were deep sequenced to ensure minimal changes in the single nucleotide

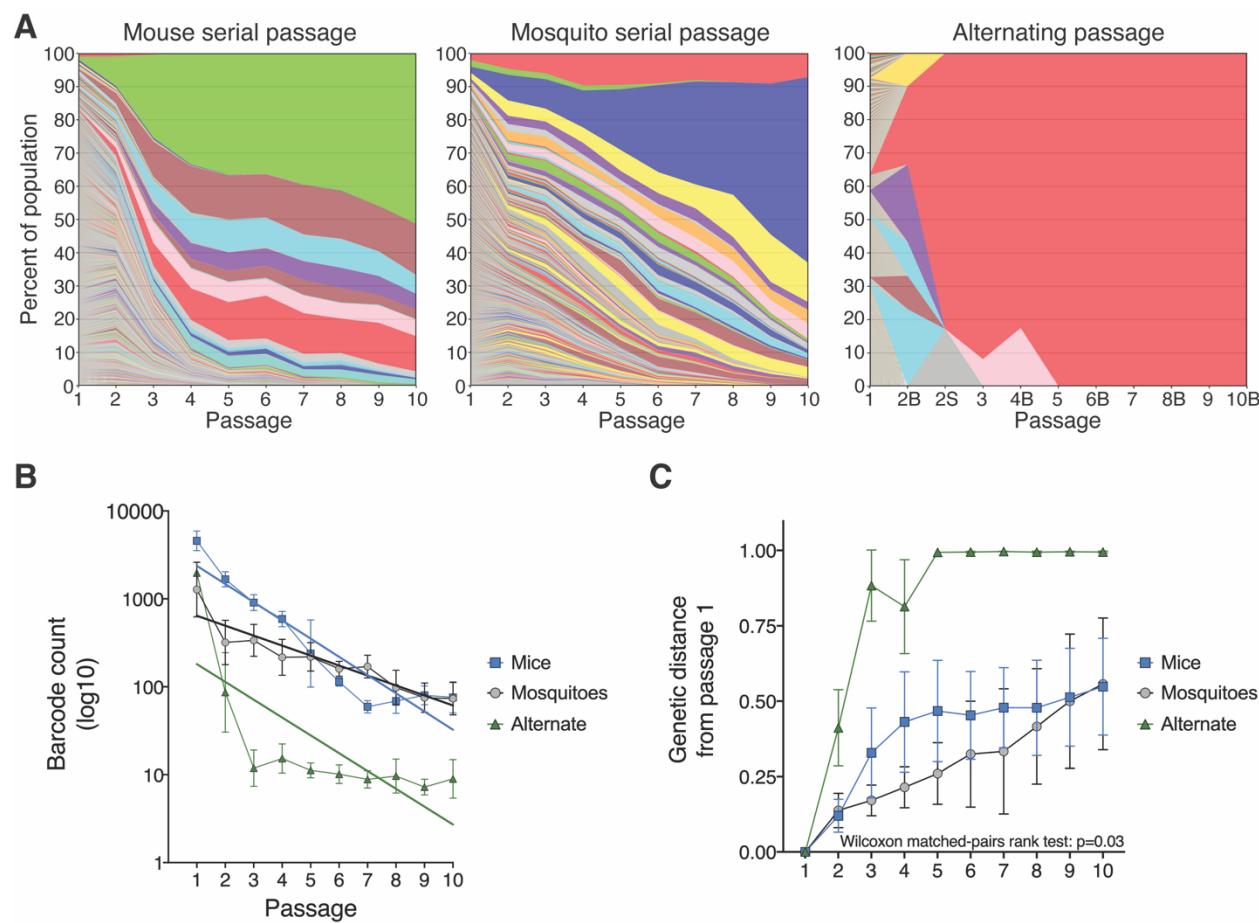
140
141 **Figure 1.** Genetic and phenotypic evolution of molecularly barcoded ZIKV tracked during serial or
142 alternating *in vivo* passage. **(A)** Stocks of molecularly barcoded ZIKV (ZIKV-BC) consist of **(B)** an
143 unbiased distribution of unique barcodes. **(C)** Five replicate lineages of ZIKV-BC were serially passed
144 via needle inoculation for ten passages in Ifnar1^{-/-} C57BL/6 mice or *Aedes aegypti* mosquitoes, or
145 alternately passaged via bloodfeeding for ten passages. Passage 10 viruses were amplified once in Vero
146 or C6/36 cells before phenotypic analysis in mice. **(D)** Viral replication was tracked by plaque assay after
147 each passage. Deep sequencing of virus barcodes and whole ZIKV genomes was employed to
148 characterize virus population structure and composition, respectively, over the course of ten passages.
149 SQ: subcutaneous, IT: intrathoracic, and CC: cell culture.

150
151 variant (SNV) frequencies after amplification (Figure 2 — supplemental figure 1). To
152 evaluate viral replication, infectious virus was titrated by plaque assay at 2 and 4 days
153 post-inoculation (dpi) from mouse sera (Figure 2C). At 2 dpi, only mouse-adapted ZIKV
154 replicated to significantly higher titers compared to the unpassaged ZIKV-BC (one-way
155 ANOVA, $P<0.0001$). By 4 dpi, both mouse-adapted and mosquito-adapted lineages
156 replicated to higher titers compared to the unpassaged ZIKV-BC (one-way ANOVA,
157 $P<0.0001$). In terms of virulence, only the mouse-adapted lineages were associated
158 with reduced survival in mice compared to unpassaged virus (Log-rank tests, $P=0.0009$;
159 Figure 2D). Median survival was 7 dpi for mice infected with the mouse-adapted

160 lineages with all mice succumbing by 8 dpi. The mosquito-adapted and alternately-
 161 passaged lineages demonstrated a wide range of virulence, with some lineages
 162 producing enhanced mortality rates relative to unpassaged virus, and other lineages
 163 generating little to no mortality. These data suggest that focused adaptation to a specific
 164 environment broadened diversity with several phenotypic variants arising, suggesting
 165 that host specialization can alter the direction of virulence evolution in virus populations.
 166 We therefore aimed next to define genotypic diversity and the impact on ZIKV
 167 population structure/composition associated with differences in virus replication and
 168 virulence.
 169

170 **Figure 2.** Phenotypic changes of serially and alternately passaged ZIKV-BC in mice. **(A)** Infectious ZIKV
 171 titers over sequential serial or alternating passages. **(B)** High titers of cell culture-amplified passage 10
 172 viruses. **(C)** Infectious titers of passage 10 viruses and ZIKV-BC stock in mouse sera 2 and 4 days post-
 173 inoculation. P -values shown are from ANOVA tests for each day post-inoculation. **(D)** Survival of mice
 174 inoculated with passage 10 viruses and ZIKV-BC stock. P -values shown are from Mantel-Cox log-rank
 175 tests between each group. PFU: plaque-forming unit, Alt: alternate, LOD: limit of detection. Symbol
 176 shapes and letters represent replicate lineages.
 177

178


179 **Barcode dynamics**

180 We deep sequenced the barcode in virus populations from our passage series, which
181 allowed us to track changes in the ZIKV population structure over sequential passages.
182 In serial mouse and serial mosquito lineages, unique molecular identifiers (UMI) were
183 incorporated in the barcode sequencing libraries to enable bioinformatic filtering of PCR
184 and sequencer errors that could create false barcodes. The UMI approach was not
185 possible with the mosquito samples (even-numbered passages) in the alternating
186 passage lineages due to low concentrations of ZIKV RNA. Instead, whole genome
187 sequencing reads covering the entire barcode region were processed with stringent
188 quality-trimming and overlapping-read error correction, and then analyzed in the same
189 manner as the UMI approach. For alternating passages, only mosquitoes with
190 detectable infectious virus in their body and saliva were sequenced. In alternating
191 passage lineages C and E, the dominant barcode in passage 3 and onwards was not
192 detected in any of the sequenced mosquito tissues from passage 2, indicating that
193 onward transmission was instigated by a mosquito whose saliva was not sequenced. As
194 a result, mosquito bodies and saliva at passage 2 in lineages C and E were excluded
195 from barcode analyses and figures.

196

197 Across the five lineages serially passaged in mice, the virus populations were
198 composed of more than 10^3 uniquely barcoded viruses until passages 3 and 4, after
199 which the populations were rapidly overtaken by a small number of barcoded viruses
200 that remained dominant through passage 10 (Figure 3A-B, Figure 3 — supplemental
201 figure 1A). In contrast, the virus populations serially passaged in mosquitoes exhibited a
202 slower and steadier loss of population structure heterogeneity from approximately 10^3
203 uniquely barcoded viruses to 10^2 over the ten passages (Figure 3A-B, Figure 3 —
204 supplemental figure 1B). The divergence in the viral barcode populations relative to
205 passage 1 was measured by Euclidean distance. Despite achieving comparable
206 divergence by passage 10, the dynamics of genetic divergence in barcode populations
207 differed significantly between serial mouse lineages and serial mosquito lineages over
208 ten passages (Wilcoxon matched-pairs signed rank test, $P=0.03$; Figure 3C). During
209 serial mouse passage, rapid divergence in the first four passages was followed by
210 slower divergence in the final six passages, whereas the rate of divergence was
211 relatively stable during serial mosquito passage. For the alternately passaged
212 populations, the population structure contracted down to only a few unique barcodes
213 after the first passage in mosquitoes (Figure 3A,B, Figure 3 — supplemental figure 1C).
214 In line with known anatomical bottlenecks in the mosquito midgut and salivary glands,
215 constriction of the population structure was observed in mosquito bodies with further
216 constriction in the mosquito saliva (Figure 3A). Sudden homogenization of virus
217 population structure, as seen during serial mouse and alternate passaging, is consistent
218 with either a stringent genetic bottleneck or selective sweep(s).

219

220

221 **Figure 3.** ZIKV barcode dynamics over sequential passages. **(A)** Individual barcode frequencies over 10
222 serial or alternating passages. Composite images for each passage series were generated by ranking
223 barcodes from most to least frequent and calculating the mean frequency of the barcodes at each rank
224 across the five replicate lineages. Colors represent barcode rank and are not associated with the barcode
225 sequence. Thus, each colored bar is the mean frequency of barcodes with the same rank in the five
226 replicate lineages. In the alternating passage series, even passages are labeled with "B" or "S" to
227 differentiate mosquito bodies and saliva, respectively. **(B)** Barcode abundance over sequential passages.
228 Solid lines are linear regression lines of best fit. **(C)** Euclidean distance of barcode populations relative to
229 populations at passage 1. Values ranging from 0 to 1 indicate degree of genetic similarity, with lower
230 values indicative of high similarity and vice versa. Wilcoxon matched-pairs rank test result reported for
231 comparison between serial mouse and serial mosquito passage.

232

233 Importantly, none of the 50 most frequent barcodes present at passage 10 were shared
234 between any mosquito lineage or alternate lineage (Figure 3 — supplemental figure
235 2A), indicating phenotypic neutrality for the barcodes *in vivo*. Of the 50 most frequent
236 barcodes present at passage 10 in mouse lineages, ten were present in more than one
237 lineage, although there was no positive correlation between barcode frequencies across
238 lineages (Spearman's correlation, $P=0.51$; Figure 3 — supplemental figure 2B). While
239 selective advantages for certain barcodes in mouse cannot be ruled out, early selective

240 sweeps and genetic hitchhiking can also cause barcode sharing if the barcode is linked
241 with a non-barcode mutation in the virus stocks that is selected for *in vivo*. We therefore
242 conclude that the genetic barcodes are unbiased, neutral reporters of population
243 evolution. In addition to evaluating ZIKV population structure, we also performed whole
244 genome deep sequencing to assess changes in the genetic composition of the ZIKV
245 population.

246

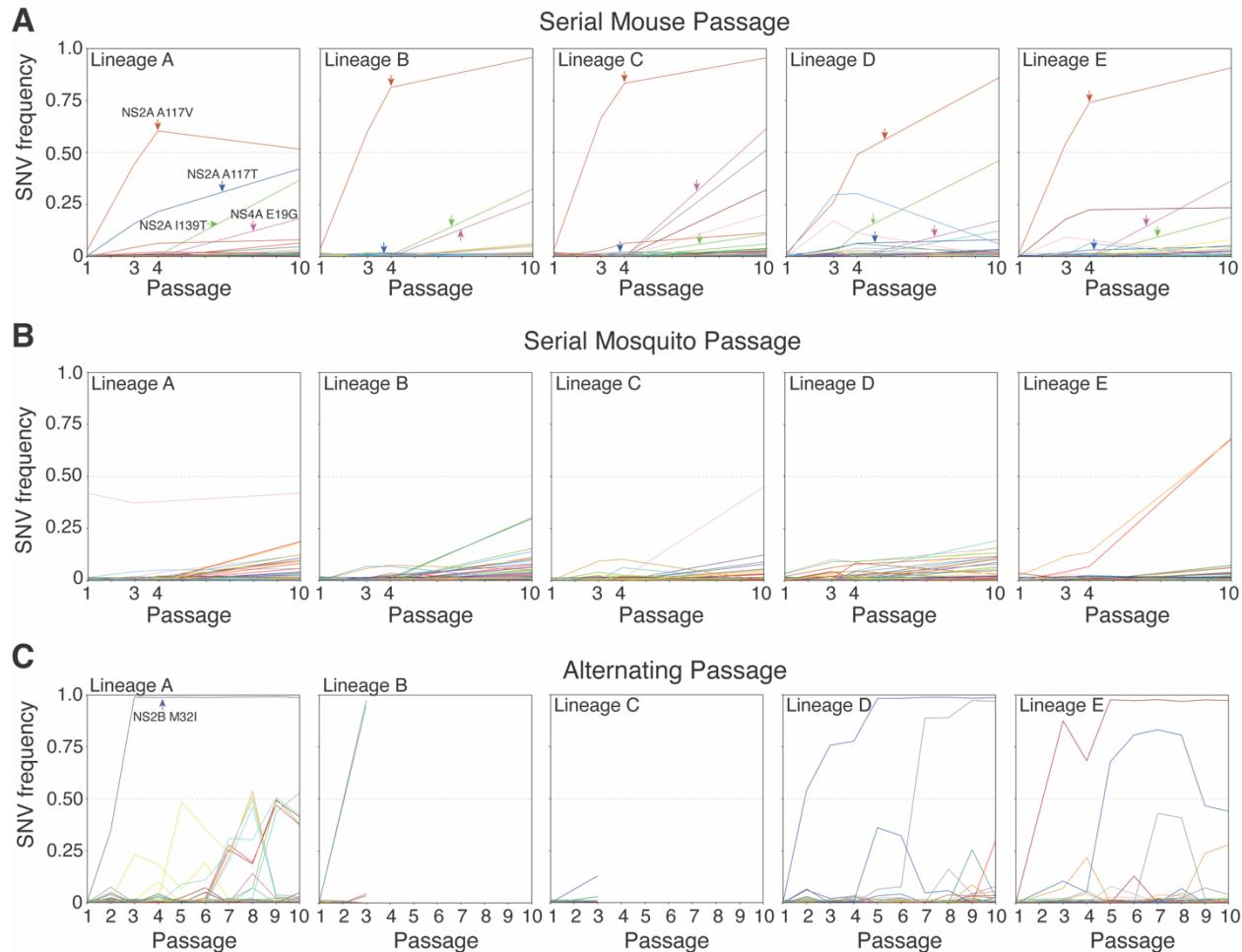
247 **ZIKV host-adaptation associated with consistent emergence of NS2A A117V**

248 Informed by the observed population structure dynamics in mice, we selected passages
249 1, 3, 4, 10, and the cell culture amplification passage of the serial mouse and mosquito
250 passage lineages for whole-genome deep sequencing. For the alternating transmission
251 lineages, all 10 passages and the cell culture amplification passage were sequenced
252 (Supplemental Table 1). The frequency of individual SNVs were tracked over sequential
253 passages to monitor the dynamics of ZIKV population composition. All SNVs called at
254 greater than 1% frequency in any passage and with at least 300 reads of coverage were
255 tracked. Depth of coverage was greater than 300 reads across the entire coding region
256 for 81% (165/204) of sequencing libraries, with high coverage on at least 70% of the
257 coding region in the remaining libraries (Figure 4 — supplemental figure 1). SNVs were
258 further compared across lineages and passage series to assess convergent evolution.
259 As with barcode sequencing, passage 2 from alternating passage lineages C and E was
260 excluded from SNV analyses and figures since the mosquito contributing to onward
261 transmission was not sequenced. For the alternate passage lineages A, B, and D,
262 passage 2 SNV data are from the single mosquito that contributed to onward
263 transmission. SNV data from passages 4, 6, 8, and 10 for all alternate passage lineages
264 are from mosquito pools since the mosquito(es) contributing to onward transmission
265 could no longer be identified by barcode sequences.

266

267 In the mouse serial passage lineages, four non-synonymous SNVs, NS2A A117V,
268 NS2A A117T, NS2A I139T, and NS4A E19G, arose in all five lineages, typically
269 reaching high frequency in the population (Figure 4A). Of particular note, the NS2A
270 A117V rose from less than 2% frequency at passage 1 to greater than 25% by passage
271 3 and greater than 45% by passage 4. In four of the five lineages, NS2A A117V was
272 present on more than 75% of viruses at passage 10. Interestingly, in lineage A, the
273 frequency of NS2A A117V plateaued at just above 50%, but another mutation at the
274 same locus, NS2A A117T, rose to 40% by passage 10, such that in this lineage viruses
275 encoding alternate amino acids at NS2A residue 117 accounted for more than 90% of
276 the population. The less frequent NS2A A117T mutation was also found at low
277 frequency (<10%) in the other four lineages. The trajectory of the NS2A polymorphisms
278 aligns closely with the aforementioned population structure dynamics (Figure 3C),
279 supporting our hypothesis that selective sweeps accounted for the dramatic loss in viral

280 population diversity during mouse passage. The two other SNVs found in all five
281 lineages, NS2A I139T and NS4A E19G, tended to arise between passages 4 and 10,
282 and were typically found on less than 50% of the ZIKV genomes. None of the four
283 presumed mouse-adaptive mutations demonstrated parallel trajectories indicative of
284 genetic hitchhiking. The two NS2A 117 mutations and NS4A E19G were not detected in
285 any passage of the serial mosquito and alternating passages. The NS2A I139T was
286 detected in two serial mosquito lineages, but never at greater than 2% frequency.


287

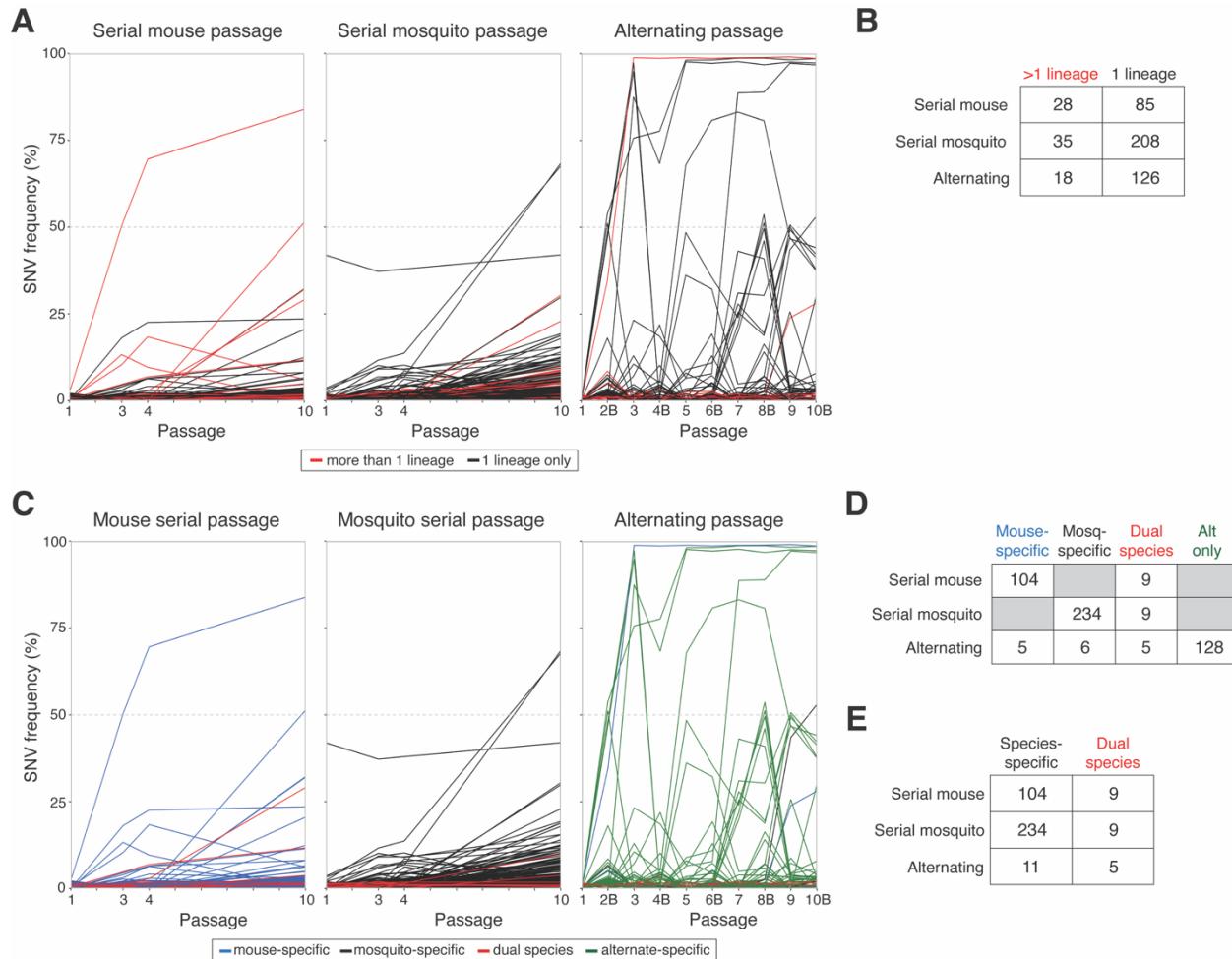
288 Unlike with serial mouse passage, we detected no SNVs shared by all 5 serial mosquito
289 lineages above our 1% frequency cut-off (Figure 4B). Across the five mosquito lineages,
290 there were 204 unique SNVs that rose slowly over the ten passages, but remained
291 below 25% frequency. Two SNVs in lineage E that exhibited parallel trajectories
292 indicative of genetic hitchhiking were the only SNVs to achieve greater than 50%
293 frequency. The observed SNV trajectory patterns in mosquitoes is consistent with loose
294 transmission bottlenecks and weak positive selection following IT inoculation, such that
295 SNVs arise, persist, and accumulate at lower frequencies. Similar to serial mosquito
296 passage, alternating passage did not yield any high-frequency SNVs shared across the
297 three lineages that progressed to passage 10 (Figure 4C). One SNV, NS2B M32I, found
298 at near 100% frequency in lineage A from passage 3 onwards, was previously
299 associated with enhanced fetal infection in mice, but reduced transmissibility in
300 mosquitoes (referred to as M1404I) (Lemos et al., 2020). To our knowledge, none of the
301 other consensus-level SNVs detected in serial mosquito passage or alternating passage
302 have been phenotyped. Unlike the accumulation of medium-frequency SNVs during
303 serial mosquito passage, SNVs arising during alternating passage tended to either
304 quickly rise to high frequency or be lost after a single passage. This SNV trajectory
305 pattern in alternating passage lineages is consistent with sequential tight bottlenecks
306 that drive SNVs to fixation or extinction.

307

308 **Differential selective pressures in mice and mosquitoes**

309 In light of the shared SNVs arising during serial mouse passage, we sought to quantify
310 the degree of convergent evolution in each passage type. Any variant (>1% frequency)
311 that arose in more than one homotypic lineage was defined as convergent, and total
312 convergence was quantified as the proportion of SNVs that were convergent (Figure
313 5A-B, Figure 5 — supplemental figure 1). Across all the lineages, there was a greater
314 degree of convergent evolution during serial mouse passage (25.4%) than serial
315 mosquito (14.8%) or alternating passage (12.5%; χ^2 , $P<0.017$). In the serial mosquito
316 and alternating passage lineages, only 18.8% (6/32) and 6.5% (2/31) high-frequency
317 SNVs (>10% frequency), respectively, were shared across multiple homotypic lineages,
318 whereas 53.8% (7/13) were shared across multiple serial mouse lineages.

319

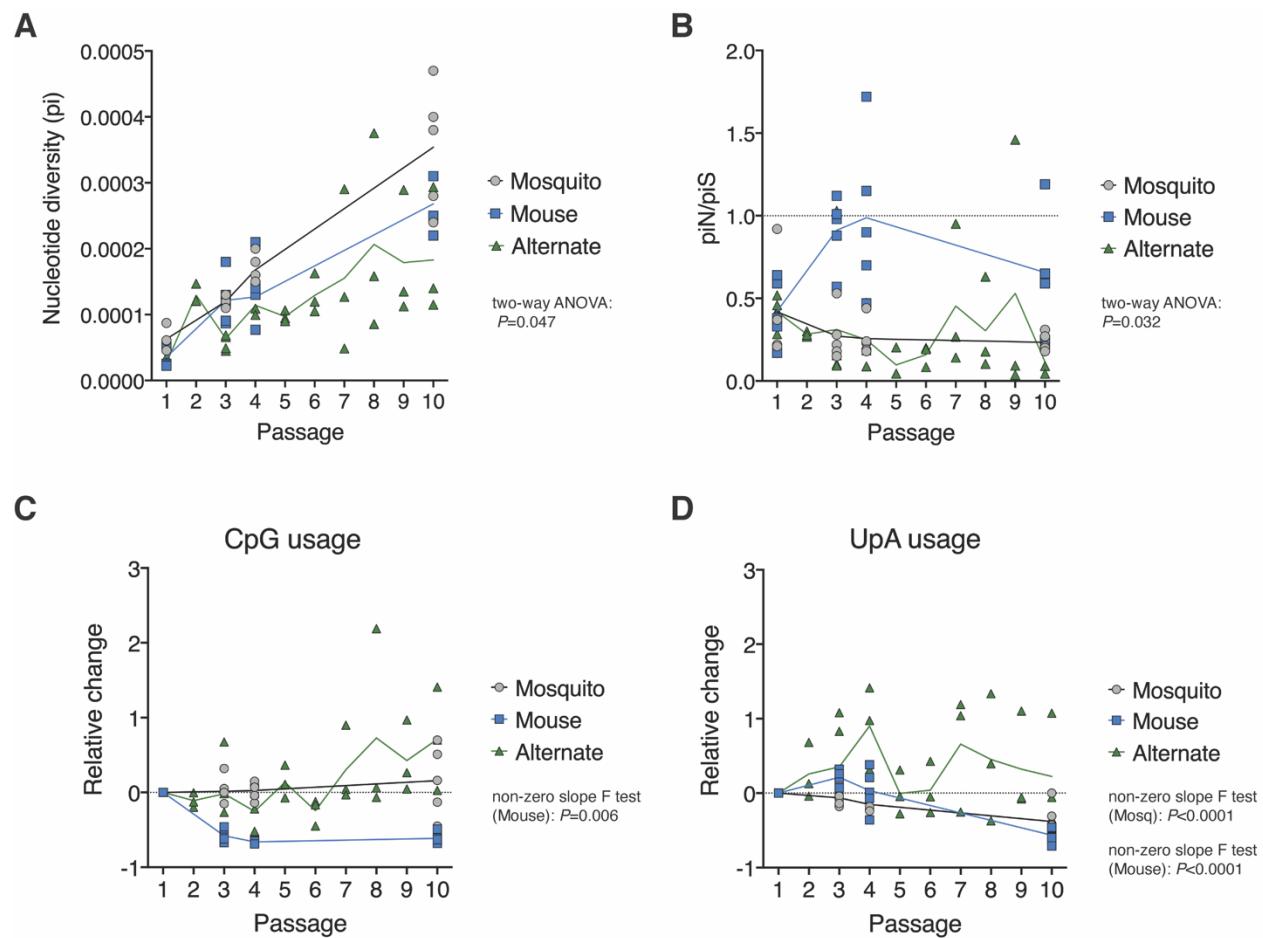

320 **Figure 4.** Trajectories of individual single-nucleotide variants (SNVs) over sequential passages detected
 321 at >1% frequency in any passage. SNV frequencies for individual SNVs detected in **(A)** serial mouse
 322 lineages, **(B)** serial mosquito lineages, **(C)** alternating passage lineages. Four non-synonymous SNVs
 323 detected in all five mouse lineages are demarcated with arrows, and one SNV of note is similarly
 324 demarcated in alternating passage lineage A. Colors represent the same SNVs across homotypic
 325 lineages, but are used more than once due to the large number of SNVs. Also, the same SNVs may not
 326 be represented by the same colors across passage types. In the alternating passage series, odd
 327 passages are mouse sera and even passages are mosquito bodies.

328

329 To understand the overlap in genetic sequence space explored by ZIKV during each
 330 passage type, we determined whether SNVs arising in the presence or absence of host-
 331 cycling were more or less likely to be species-specific. Each SNV detected during any
 332 passage at greater than 1% frequency was assigned as being mouse-specific if it only
 333 arose during serial mouse passage, and vice versa for mosquito-specific SNVs (Figure
 334 5C, Figure 5 — supplemental figure 2). Dual-species SNVs were those detected during
 335 both serial mouse and serial mosquito passage. For alternating passage, a fourth
 336 classification, alternate-specific, was included for SNVs that only arose during
 337 alternating passage and never during serial conspecific passage. In total, more than
 338 twice as many SNVs (243 vs 113) were detected in serial mosquito passage than serial

339 mouse passage. Despite two alternating passage lineages ending at passage 4, more
340 SNVs were also detected during alternating passage than serial mouse passage (144
341 vs 113). During serial mouse passage, 92.0% of (104/113) SNVs were mouse-specific
342 whereas only 7.9% (9/113) were dual-species (Figure 5D). Similarly, during serial
343 mosquito passage, 96.3% (234/243) were mosquito-specific whereas only 3.7% (9/243)
344 were dual-species (Figure 5D). There was no statistically significant difference in the
345 high degree of SNV species specificity during serial mouse and serial mosquito
346 passage (X^2 , $P=0.09$, Figure 5D). During alternating passage, the majority of SNVs
347 were alternate-specific 88.9% (128/144) while only 3.5% (5/144), 4.2% (6/144), and
348 3.5% (5/144) were mouse-specific, mosquito-specific, and dual-species, respectively.
349 Mouse-specific SNVs were similarly likely to arise during alternating passage as
350 mosquito-specific SNVs (Fisher's exact test, $P=0.28$; Figure 5D). In contrast, dual-
351 species SNVs were significantly more likely to arise during alternating passage than
352 species-specific SNVs (Fisher's exact test, $P<0.0001$; Figure 5E). These data
353 demonstrate very little overlap in genetic sequence space used by mouse and
354 mosquito-adapted ZIKV, or by mouse or mosquito-adapted ZIKV and alternately
355 passaged ZIKV. Further, the overlapping sequence space used by mouse or mosquito-
356 adapted ZIKV and alternately passaged ZIKV was biased for mutations that arose
357 during adaptation in both species.

358
359 In addition to trends in individual SNVs, the relative effect of selective and stochastic
360 mechanisms were compared between passage types using population-level metrics to
361 better understand if host environments have different impacts on virus populations.
362 Overall genome-wide population diversity, assessed by nucleotide diversity (π), was
363 comparable at passages 1 through 4 across all passage series (two-way ANOVA with
364 Tukey's post-hoc comparisons, $P>0.05$; Figure 6A). By passage 10, serial mosquito
365 lineages exhibited greater diversity than serial mouse lineages, which in turn were more
366 diverse than alternating passage lineages (two-way ANOVA with Tukey's post-hoc
367 comparisons, $P<0.028$; Figure 6A). The mutational spectra at passage 10 did not
368 appear biased by technical artifacts, with transition substitutions occurring at a
369 significantly greater frequency than transversion substitutions across all passage series
370 (matched one-way ANOVA with Dunnett's post-hoc comparisons, $P<0.01$; Figure 6 —
371 supplemental figure 1). The diversity at non-synonymous versus synonymous sites
372 ($\pi_{\text{N}}/\pi_{\text{S}}$) was employed as a proxy measurement for natural selection pressures, with
373 values greater than 1 indicative of positive selection and less than 1 indicative of
374 purifying selection. Mean $\pi_{\text{N}}/\pi_{\text{S}}$ values were consistently less than 1 for all passage
375 types, but were significantly higher in serial mouse passages, suggesting that purifying
376 selection was more relaxed in mice (two-way ANOVA, $P=0.032$; Figure 6B). Lastly,


377

378 **Figure 5.** Convergence and species-specificity of individual single-nucleotide variants (SNVs) detected at
 379 >1% frequency at any passage. **(A)** Convergent SNVs, colored red, were defined as being detected in
 380 more than one homotypic lineage at any passage number. **(B)** Abundance of convergent and non-
 381 convergent SNVs for each passage series. **(C)** SNVs were defined as being mouse- or mosquito-specific
 382 if they were detected in one serial passage series and not the other. Dual species SNVs were detected in
 383 both serial mouse and serial mosquito passage series. For the alternating passage series, any SNV not
 384 defined as species-specific or dual species was defined as alternate-specific. **(D)** Abundance of species-
 385 specific, dual species, and alternate-specific SNVs in each passage series. **(E)** Abundance of species-
 386 specific and dual species SNVs in each passage series. For panels A and C, composite figures of SNV
 387 trajectories were generated by calculating the mean frequency of each SNV across all lineages it was
 388 detected in. For the alternating passage series, even passages are labeled with “B” to indicate mosquito
 389 bodies.

390

391 adaptation to host dinucleotide usage biases was compared between passage types by
 392 tracking changes in CpG and UpA dinucleotide usage within virus populations. In mice
 393 and humans, CpG and UpA dinucleotides are suppressed within the host genome
 394 (Sexton and Ebel, 2019), whereas only UpA dinucleotides are suppressed within
 395 mosquito genomes. In line with host and vector biases, CpG usage was strongly
 396 suppressed after the first serial passage in mice (linear regression non-zero slope F

397 test, $P=0.0060$), but no suppression was observed during serial mosquito or alternating
 398 passage (linear regression slope >0 ; Figure 6C). Similarly in agreement with host and
 399 vector biases, UpA usage was suppressed over serial passages in both mice and
 400 mosquitoes (linear regression non-zero slope F tests, $P<0.0001$), but not over
 401 alternating passages (linear regression slope >0 ; Figure 6D).
 402

403
 404 **Figure 6.** Genome-wide patterns of genetic diversity and dinucleotide usage. **(A)** Genome-wide
 405 nucleotide diversity (π) in serial and alternate passage series over sequential passages. **(B)** Mean ratio of
 406 nucleotide diversity at nonsynonymous sites (πN) and synonymous sites (πS) across the genome. **(C)**
 407 Change in CpG usage relative to passage 1 in serial and alternate passage series. **(D)** Change in UpA
 408 usage relative to passage 1 in serial and alternate passage series. For panels A and B, two-way ANOVA
 409 P -values are provided for comparison of all three groups at passage 1, 3, 4, and 10. For panels C and D,
 410 only statistically significant P -values from linear regression non-zero slope F tests are provided. In all
 411 panels, solid lines represent mean values over sequential passages. Deep sequencing data was
 412 available for all 10 alternating passages, but only passages 1, 3, 4, and 10 of serial passage series. For
 413 serial passage series, $n=5$ lineages at each passage. For alternate passage, $n=5$ lineages at passages
 414 1-3 and $n=3$ lineages for passages 4-10. Even numbered alternate passages are mosquito body
 415 samples. Alternate passage 2 data are from single mosquitoes that contributed to onward transmission,
 416 while alternate passage 4, 6, 8, and 10 are pools of all infected mosquitoes.
 417

418 **Discussion**

419 By naturally cycling between humans and mosquitoes, mosquito-borne viruses must
420 alternately navigate distinct host environments and barriers to infection and
421 transmission that restrict virus evolution. Unlike other mosquito-borne viruses, ZIKV
422 frequently bypasses mosquitoes and is directly transmitted human-to-human from
423 mother to fetus or between sexual partners. Infants infected *in utero* are likely dead-end
424 hosts who do not contribute to onward transmission, but people infected by sexual
425 transmission develop systemic infections and may transmit onwards to mosquitoes or
426 additional sexual partners. Thus, direct human-to-human sexual transmission potentially
427 enables ZIKV to redirect its evolutionary trajectory and quickly adapt to humans. In the
428 current study, we model direct and alternating ZIKV transmission chains in mosquitoes
429 and mice to elucidate the evolutionary pressures at play and the potential for vertebrate
430 host-adaptation under different transmission conditions. We show that directly
431 transmitted ZIKV rapidly adapts to mice resulting in faster and higher rates of mortality.
432 The rise in virulence occurs in concert with the acquisition of one or two viral mutations
433 of single amino acid, NS2A A117V or A117T. In contrast, ZIKV virulence does not
434 increase during natural host-cycling by bloodfeeding transmission and the NS2A
435 mutations are never detected.

436

437 In two strains of American-sublineage ZIKV not used here, NS2A A117V was previously
438 shown to confer enhanced virulence in mice (Ávila-Pérez et al., 2019), but the
439 phenotypic effect of NS2A A117T has yet to be determined and warrants further
440 investigation. The consistent emergence of the NS2A 117 substitutions coincidental with
441 the sudden loss of barcode diversity is evidence for selective sweeps, as opposed to
442 genetic bottlenecks where population diversity is lost, but substitutions emerge
443 randomly. Barcode sharing between serial mouse lineages after the selective sweeps
444 indicates that the polymorphisms were likely present at below our 1% frequency cut-off
445 in the ZIKV-BC stock and did not always arise *de novo* in mice. Interestingly, neither
446 NS2A 117 substitution was detected in any serial mosquito or alternating passage. Two
447 other uncharacterized substitutions—NS2A I139T and NS4A E19G—consistently arose
448 during serial mouse passage, with only the former detected at low frequency in two
449 serial mosquito lineages. The repeated emergence of these two substitutions, without
450 aligned trajectories indicative of genetic hitchhiking, suggests they may confer fitness
451 advantages, but confirmatory phenotypic analyses are warranted. These findings
452 indicate that restriction of ZIKV host-adaptation during natural host-cycling is robust,
453 with near complete suppression of known and presumptive beneficial mutations
454 consistently selected for when host-cycling is circumvented. Thus, it is possible that
455 releasing ZIKV from host-cycling through direct human-to-human transmission may
456 reduce the barrier for emergence of virulence-enhancing mutations.

457

458 Genetic drift and strong purifying selection appeared to be the predominant evolutionary
459 forces during serial mosquito and alternating passage. This is supported by the paucity
460 of convergent SNVs and lower genetic diversity at nonsynonymous sites than
461 synonymous sites across the ZIKV genome. In contrast, there is evidence for directional
462 selection and weak purifying selection during serial mouse passage, with a greater
463 proportion of convergent SNVs and near equal diversity at nonsynonymous and
464 synonymous sites. These findings are in line with evolutionary forces acting on
465 chikungunya virus (genus *Alphavirus*, family *Togaviridae*) (Riemersma et al., 2019;
466 Riemersma and Coffey, 2019) and dengue virus (genus *Flavivirus*, family *Flaviviridae*)
467 (Lequime et al., 2017, 2016; Vasilakis et al., 2009), but oppose trends observed with
468 West Nile virus (genus *Flavivirus*, family *Flaviviridae*) (Deardorff et al., 2011; Grubaugh
469 et al., 2017; Grubaugh and Ebel, 2016). The stochastic ZIKV evolution observed during
470 alternating passage is, in large part, the result of tight genetic bottlenecks in mosquitoes
471 during peroral infection and salivary transmission. Here, and in our previous studies
472 (Aliota et al., 2018; Weger-Lucarelli et al., 2018), barcoded ZIKV clearly highlights these
473 bottlenecks via sequential, drastic reductions in barcode abundance in mosquito bodies
474 and saliva. Furthermore, individual SNV trajectories during alternating passage display
475 strong founder biases with SNVs either rising to dominance or being lost after mosquito
476 infection. Bottleneck effects are not evident in ZIKV evolution during serial mosquito
477 passage due the use of IT inoculation that bypasses the bottleneck sites in the midgut
478 and salivary glands. IT inoculation was employed to model vertical transmission in
479 mosquitoes, and was additionally necessitated by the improbability of orally infecting
480 naive mosquitoes with infectious, low-titer mosquito saliva.

481
482 Despite the preponderance of evidence for genetic drift and purifying selection during
483 serial mosquito passage, we demonstrate that directional selection acts on dinucleotide
484 usage with UpA, but not CpG, dinucleotide usage being suppressed in mosquitoes. In
485 serial mouse passage, we observed similar suppression of UpA dinucleotides, but saw
486 even more stringent suppression of CpG dinucleotides. The observed ZIKV dinucleotide
487 usage patterns in mice and mosquitoes align with the dinucleotide usage biases in each
488 host (Lobo et al., 2009; Sexton and Ebel, 2019). Mosquitoes and vertebrates exhibit
489 disparate dinucleotide usage biases in their transcriptomes, and arbovirus genomes
490 typically adopt an intermediate usage pattern at consensus-level compared to single-
491 host viruses, presumably to accommodate both vector and vertebrate host
492 environments (Halbach et al., 2017; Sexton and Ebel, 2019). To our knowledge, this is
493 the first evidence of the dinucleotide selective pressure acting on a multi-host virus at
494 the sub-consensus level, as opposed to the consensus level. Unsurprisingly, we
495 observed no clear trends in dinucleotide usage patterns during natural alternating
496 passage, almost certainly the byproduct of bottleneck events. This provides further

497 evidence that natural alternating transmission restricts ZIKV's capacity to adapt to
498 vertebrate hosts and also mosquito vectors.

499
500 The fitness trade-off hypothesis posits that fitness gains in one host come at the cost of
501 fitness losses in the other host. Here, we demonstrate evidence to the contrary. Serial
502 passage of ZIKV in mosquitoes increased viral replication in mosquitoes, but replication
503 was not reduced in mice. These data are more consistent with the notion that the
504 degree of host specialization can dramatically alter the evolution of virulence in
505 pathogen populations, and that a fitness gain in one environment may paradoxically
506 broaden the overall phenotypic potential of a virus. To this end we are performing
507 additional studies to evaluate the phenotypic effects of host-cycling release in
508 mosquitoes to determine if the lack of fitness trade-offs are observed in both hosts.
509 Antagonistic pleiotropy—contradictory phenotypes for the same mutations in hosts and
510 vectors—is the rationale underlying the fitness trade-off hypothesis. Interestingly,
511 although our data refute fitness trade-offs for host-adapted lineages, there is evidence
512 for antagonistic pleiotropy in that very few SNVs arise during both mouse and mosquito-
513 adaptation, and very few species-specific SNVs arise during alternating transmission.
514 This suggests that antagonistic pleiotropy can exist without apparent fitness trade-offs
515 for the ZIKV population, possibly due to weak antagonism and overlapping viable fitness
516 landscapes (Coffey et al., 2013; Novella et al., 2011). That said, species-specific SNVs
517 (potentially antagonistic) were less likely to arise in alternately passaged ZIKV than dual
518 species SNVs that presumably had neutral or beneficial fitness effects in both hosts.
519 Overall, alternately passaged ZIKV exhibited very little overlap in SNV usage with the
520 mouse- or mosquito-adapted ZIKV. Non-mutually exclusive explanations for the
521 uniqueness of alternately passaged ZIKV are: 1) genetic drift in broad, viable sequence
522 space such that few mutations are shared by chance, and 2) that host-cycling acts as a
523 selection pressure pushing the ZIKV population into a unique region of sequence space.
524 Further investigations into the relative contribution of each explanation are worthwhile
525 because the likelihood of host-adaptive SNVs emerging is likely higher in the first
526 scenario than the second. Additionally, making that distinction would inform whether
527 ZIKV's evolutionary potential under natural host-cycling conditions can be explored or
528 predicted by experimental adaptation to animal models or mosquitoes.

529
530 Taken together, our findings clarify the effect of host-cycling on ZIKV evolution and
531 highlight the potential for rapid host-adaptation with direct vertebrate transmission
532 chains. Whether similar adaptation would be observed with direct human-to-human
533 transmission remains unclear. A potential limitation of this study is that direct
534 transmission by needle inoculation may imperfectly model sexual transmission
535 dynamics. Further studies are therefore needed to assess ZIKV host-adaptation using
536 animal models of sexual transmission. Nonetheless, our data suggest that prevention of

537 direct human transmission chains should be a public health priority to thwart the
538 emergence of virulence-enhancing mutations.

539

540 **Materials and Methods**

541 **Cells and virus**

542 African Green Monkey cells (Vero; ATCC CCL-81) and human embryonic kidney cells
543 (HEK293T; ATCC CRL-3216) were cultured in Dulbecco's modified Eagle media
544 (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Cytiva HyClone), 2
545 mM L-glutamine, 1.5 g/L sodium bicarbonate, 100 U/ml penicillin, and 100 µg/ml of
546 streptomycin at 37°C in 5% CO₂. Larval *Aedes albopictus* cells (C6/36; ATCC CRL-1660)
547 were cultured in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 1.5 g/L
548 sodium bicarbonate, 100 U/ml penicillin, and 100 µg/ml of streptomycin at 28°C in 5%
549 CO₂. The barcoded ZIKV infectious clone was constructed by bacteria-free cloning of
550 the ZIKV PRVABC59 strain genome (GenBank: KU501215.1), as previously described
551 (Aliota et al., 2018; Weger-Lucarelli et al., 2018). Briefly, the ZIKV PRVABC59 isolate
552 was passaged three times on Vero cells and twice on C6/36 cells, followed by PCR
553 amplification of the whole genome in two overlapping amplicons. The genetic barcode,
554 degenerate nucleotides at the third position of 8 consecutive codons in NS2A (Figure
555 1A), was then introduced via an overlapping PCR-amplified oligo. The two amplicons
556 were assembled with a 5' CMV promoter amplified from pcDNA3.1 (Invitrogen) by
557 Gibson assembly (New England Biosciences (NEB)) followed by enzymatic digestion of
558 remaining ssDNA and non-circular dsDNA. Full-length ZIKV constructs were amplified
559 using rolling circle amplification (Qiagen repli-g mini kit) and genomic integrity verified
560 by restriction digestion and Sanger sequencing. Infectious barcoded ZIKV (ZIKV-BC)
561 rescue was performed in HEK293T cells.

562

563 **Virus titration**

564 Infectious virus was titrated by plaque assay on Vero cells. A confluent monolayer of
565 Vero cells were inoculated with a 10-fold dilution series of each sample in duplicate.
566 Inoculated cells were incubated for 1 hour at 37°C and then overlaid with a 1:1 mixture
567 of 1.2% oxoid agar and 2X DMEM (Gibco) with 10% (vol/vol) FBS and 2% (vol/vol)
568 penicillin/streptomycin. After four days, the cell monolayers were stained with 0.33%
569 neutral red (Gibco). Cells were incubated overnight at 37°C and plaques were counted.
570 Plaque counts were averaged across the two replicates and the concentration of
571 infectious ZIKV was back-calculated from the mean.

572

573 Viral RNA was isolated directly from mouse serum, mosquito saliva collected in cell
574 culture media, and cell culture supernatant. Mosquito bodies were homogenized in PBS
575 supplemented with 20% FBS and 2% penicillin/streptomycin with 5mm stainless steel
576 beads with a TissueLyser (Qiagen) prior to RNA isolation. RNA was isolated with the

577 Maxwell RSC Viral Total Nucleic Acid Purification Kit on a Maxwell RSC 48 instrument
578 (Promega). Isolated ZIKV RNA was titrated by qRT-PCR using TaqMan Fast Virus 1-
579 Step Master Mix (ThermoFisher) and a LightCycler 480 or LC96 instrument (Roche).
580 Final reaction mixtures contained 600 nM of each ZIKV-specific qRT-PCR primer (5'-
581 CGY TGC CCA ACA CAA GG-3' and 5'-CCA CYA AYG TTC TTT TGC ABA CAT-3')
582 and 100 nM of probe (5'-6-FAM-AGC CTA CCT TGA YAA GCA RTC AGA CAC YCA A-
583 BHQ1-3') (Lanciotti et al., 2008). Cycling conditions were as follows: 50°C for 5 minutes,
584 95°C for 20 seconds, and 50 cycles of 95°C for 15 seconds followed by 60°C for 1 min.
585 ZIKV RNA titers were interpolated from a standard curve of diluted *in vitro* transcribed
586 ZIKV RNA. The limit of detection for this assay is 100 ZIKV genome copies/ml.
587

588 **Mice and mosquitoes**

589 *Ifnar1^{-/-}* mice on the C57BL/6 background were bred in the specific pathogen-free
590 animal facilities of the University of Wisconsin-Madison (UW) Mouse Breeding Core
591 within the School of Medicine and Public Health, or in the specific pathogen-free animal
592 facilities of the University of Minnesota (UMN) College of Veterinary Medicine. Three to
593 six week-old mice of mixed sex were used for all experiments.
594

595 *Ae. aegypti* mosquitoes used in this study were maintained at UW and UMN using
596 previously described rearing protocols (Christensen and Sutherland, 1984). The *Ae.*
597 *aegypti* line used in this study was established from several hundred eggs collected
598 from ovitraps placed around the municipality of Buenos Aires (communa no. 9), a
599 southeast suburb of Medellin, Colombia. Mosquitoes used in this study were from
600 generations 3 to 30 of the laboratory colony. Three- to six- day-old female mosquitoes
601 were used for all experiments.
602

603 This study was approved by the UW and UMN Institutional Animal Care and Use
604 Committees (Animal Care and Use Protocol Numbers V5519 (UW) and 1804-35828
605 (UMN)).
606

607 **Serial passage in mice or mosquitoes**

608 Five *Ifnar1^{-/-}* mice were subcutaneously inoculated in the left hind footpad with 10³ PFU
609 of ZIKV-BC stock as passage 1 of five replicate lineages. Submandibular blood draws
610 were performed two days post-inoculation (dpi) and serum was processed for virus
611 titration, sequencing, and for onward passaging. Serial passaging for each lineage was
612 maintained by inoculating a naive mouse with the 2 dpi serum diluted to 10³ PFU for ten
613 total passages.
614

615 Female *Ae. aegypti* mosquitoes were anesthetized on ice and intrathoracically
616 inoculated (Hong et al., 2003) with 100 PFU of ZIKV-BC in 1 μ l. Inoculated mosquitoes

617 were maintained on 0.3 M sucrose in an environmental chamber at $26.5^{\circ}\text{C} \pm 1^{\circ}\text{C}$,
618 75% \pm 5% relative humidity and with a 12-hour photoperiod within the Department of
619 Pathobiological Sciences Biosafety Level 3 insectary at UW. At 12 dpi, mosquitoes were
620 individually homogenized in 1ml of PBS supplemented with 20% FBS and 2%
621 penicillin/streptomycin. The supernatant was then collected and used for virus titration,
622 sequencing, and onward passaging. Supernatant from five individual mosquitoes was
623 then used to serially passage 100 PFU of virus through five replicate lineages of
624 mosquitoes for ten passages.

625

626 **Alternating passage**

627 Five *Ifnar1*^{-/-} mice were subcutaneously inoculated in the left hind footpad with 10³ PFU
628 of ZIKV-BC. Two days post inoculation, mice under ketamine/xylazine anesthesia were
629 fed on by cartons of female *Ae. aegypti* that had been sucrose starved for 14-16 hours
630 prior to mouse feeding. After mosquito bloodfeeding, submandibular blood draws were
631 performed to collect serum for virus titration and sequencing. Mosquitoes were
632 anesthetized on ice and mosquitoes that fed to repletion were selected and placed in
633 new cartons containing an oviposition cup. Bloodfed mosquitoes were maintained on
634 0.3 M sucrose in an environmental chamber at $26.5^{\circ}\text{C} \pm 1^{\circ}\text{C}$, 75% \pm 5% relative humidity
635 and with a 12-hour photoperiod within the Veterinary Isolation Facility BSL3 Insectary at
636 UMN. 12 days-post-feeding and following oviposition between 8-10 days, mosquitoes
637 bloodfed on new *Ifnar1*^{-/-} mice. Mosquitoes were then triethylamine anesthetized and
638 saliva and whole bodies were collected from those that fed to repletion for sequencing
639 and virus titration. Two days post bloodfeeding, these mice were fed on by naive
640 cartons of mosquitoes to continue alternate passaging through ten passages.

641

642 **Library preparation and sequencing**

643 Virus barcode libraries for the mouse and mosquito serial passage samples were
644 generated with unique molecular identifiers (UMI) to filter sequencer and PCR errors
645 that could produce false barcode sequences. ZIKV RNA concentrations in the
646 alternating passage samples were too low to employ the UMI approach, so viral
647 barcodes were sequenced by the whole genome sequencing (WGS) approach
648 described below. UMIs consisted of 12 random nucleotides inserted into the reverse
649 primer used for reverse transcription of the ZIKV barcode region (5'-GGA GTT CAG
650 ACG TGT GCT CTT CCG ATC TNN NNN NNN NNN NCC CCC GCA AGT AGC AAG
651 GCC TG-3'). UMI-tagged cDNA was treated with RNase H, purified with magnetic
652 beads (Agencourt RNAClean XP), and then PCR amplified for 20 cycles (NEB Phusion
653 Master Mix; Forward: 5'-TCT TTC CCT ACA CGA CGC TCT TCC GAT CTT GGT TGG
654 CAA TAC GAG CGA TGG TT-3', Reverse: 5'-GTG ACT GGA GTT CAG ACG TGT
655 GCT CTT CC-3'). Amplicons were bead-purified (Agencourt Ampure XP) and then PCR
656 amplified for 34 additional cycles using the same reverse primer and a forward primer

657 bearing a 6-nucleotide index sequence (Forward: 5'-CAA GCA GAA GAC GGC ATA
658 CGA GAT NNN NNN GTG ACT GGA GTT CAG ACG TGT GCT CTT-3').
659 Reconditioning PCR using 1/10th volume of the unpurified index amplicon was
660 performed for 3 cycles using the same reagents as the index PCR reaction. The entire
661 volume of reconditioned UMI barcode libraries were purified by gel extraction (Qiagen
662 QIAquick Gel Extraction Kit).

663
664 Whole genome ZIKV sequencing libraries were generated with a previously described
665 tiled PCR amplicon approach (Grubaugh et al., 2019; Quick et al., 2017). Briefly, 10^{6.15}
666 ZIKV genome copies were converted to cDNA with Superscript IV reverse transcriptase
667 and random hexamer primers (ThermoFisher). PCR amplification of the entire ZIKV
668 coding region was then performed in two reactions with pools of non-overlapping PCR
669 primer sets. Technical duplicates were generated for each WGS and UMI barcode
670 library. All libraries were quantified by a Qubit 3 fluorometer (ThermoFisher) and quality
671 assessed by Agilent Bioanalyzer prior to sequencing. UMI barcode libraries were
672 sequenced with paired-end 250 base pair reads on an Illumina MiSeq (Illumina MiSeq
673 Reagent Kit v2). WGS libraries were sequenced with paired-end 150 base pair reads on
674 an Illumina NovaSeq 6000 by the UW Biotechnology Center (Illumina NovaSeq 6000 S1
675 Reagent Kit v1.5).

676

677 **Bioinformatic analyses**

678 For UMI barcode sequence data, a pipeline was generated to process raw Illumina
679 reads, extract consensus UMI reads, and calculate unique barcode abundance and
680 frequencies. Briefly, raw paired-end reads were adapter- and quality-trimmed (q35),
681 merged, cropped, then quality-filtered based on average base quality. High-quality
682 reads were then grouped by UMI sequences and, for UMI groups with at least 3 reads,
683 the consensus sequence was extracted. The 24-nucleotide barcode sequence was then
684 extracted from all consensus sequences without ambiguous bases. Finally, the
685 abundance and frequency of each unique barcode sequence was calculated. For
686 mosquito samples in alternating passage lineages, concentrations of ZIKV RNA were
687 too low to use the UMI barcode library approach, so instead, WGS data were used.
688 First, reads were adapter- and quality-trimmed, then any paired-end reads with
689 mismatched bases in their overlapping sequences were filtered prior to merging. High-
690 quality merged reads were aligned to the ZIKV PRVABC59 reference sequence and
691 reads fully covering the barcode region were isolated. Barcode sequences were then
692 extracted from the reads, and the abundance and frequency of unique barcodes was
693 calculated. For both the UMI and WGS barcode approach, mean barcode abundance
694 and frequency was calculated across technical duplicate libraries and used in
695 subsequent analyses.

696

697 For WGS data, a pipeline was generated to process raw Illumina reads, align reads at a
698 normalized depth, call variants, and calculate diversity and dinucleotide usage metrics.
699 Briefly, raw paired-end reads were adapter-trimmed, then any paired-end reads with
700 mismatched bases or less than a 50-base pair overlap were filtered prior to merging.
701 Next, merged reads were quality-trimmed and primer sequences from the tiled primer
702 sets were trimmed from the ends of the high-quality merged reads. Reads were then
703 aligned to the ZIKV PRVABC59 reference and normalized to a coverage depth of
704 approximately 2500. Consensus sequences were extracted and variants were called
705 against both the reference and consensus sequences with LoFreq* (Wilm et al., 2012).
706 As with barcodes frequencies, variant frequencies were averaged across technical
707 duplicate libraries and mean frequencies were used for data analyses. Genome-wide
708 and site-specific nucleotide diversities (π , π_N , π_S) were calculated with SNPGenie (v3,
709 $\text{minfreq}=0.003$) (Nelson et al., 2015). Dinucleotide usage was calculated as the net
710 change in frequency of each dinucleotide with a bespoke R script. First, dinucleotide
711 sites were defined for each nucleotide pair across the reference genome, then potential
712 dinucleotide sites were identified as nucleotide pairs that differ from the target
713 dinucleotide by one nucleotide (for example, CpC or ApG for CpG dinucleotides). Then,
714 per site dinucleotide losses were calculated as the mean frequency of point mutations at
715 each dinucleotide site, and per site dinucleotide gains were calculated as the mean
716 frequency of point mutations that generated the target dinucleotide at potential
717 dinucleotide sites. Net dinucleotide usage for each dinucleotide was calculated as the
718 per site dinucleotide gains divided by per site dinucleotide losses.

719
720 All bespoke data processing, analysis, and visualization scripts are publicly available on
721 GitHub (https://github.com/tcflab/ZIKVBC_HostCycling). Read quality-trimming and
722 cropping were conducted with Trimmomatic (v0.39) (Bolger et al., 2014), cutadapt (v2.3)
723 (Martin, 2011), and fastp (v0.20.0) (Chen et al., 2018). Read merging, alignment
724 normalization, and barcode counting were performed with BBTools (v34.48; Joint
725 Genome Institute). Reference alignment of reads was completed with the Burrows-
726 Wheeler Aligner (bwa-mem; v0.7.16) (Li and Durbin, 2009). Parameter settings for each
727 process not included in the text are provided in the aforementioned scripts.

728

729 **Statistical analyses**

730 All statistical analyses were conducted using GraphPad Prism 8 (GraphPad Software,
731 CA, USA). Statistical significance was designated to P values of less than 0.05.

732

733 **Data availability**

734 Raw Illumina sequencing data are available on the NCBI Sequence Read Archive under
735 Bioproject PRJNA671510.

736

737 **Acknowledgements**

738 The authors acknowledge the University of Minnesota, Twin Cities BSL3 Program for
739 facilities and Neal Heuss for support. We thank Natalie Bennett for her contribution in
740 mosquito maintenance, Matthew Semler for his technical support, and Andrea Weiler
741 and Mason Bliss for their contributions in virus titration. We also thank Jody Peter for
742 maintenance of the *Ifnar1^{-/-}* colony at the University of Wisconsin-Madison.

743

744 **Funding**

745 Funding for this project came from DHHS/PHS/NIH R21AI131454. The publication's
746 contents are solely the responsibility of the authors and do not necessarily represent the
747 official views of the NCRR or NIH.

748

749 **References**

750 Aliota MT, Dudley DM, Newman CM, Weger-Lucarelli J, Stewart LM, Koenig MR,
751 Breitbach ME, Weiler AM, Semler MR, Barry GL, Zarbock KR, Haj AK, Moriarty RV,
752 Mohns MS, Mohr EL, Venturi V, Schultz-Darken N, Peterson E, Newton W,
753 Schotzko ML, Simmons HA, Mejia A, Hayes JM, Capuano S, Davenport MP,
754 Friedrich TC, Ebel GD, O'Connor SL, O'Connor DH. 2018. Molecularly barcoded
755 Zika virus libraries to probe in vivo evolutionary dynamics. *PLoS Pathog*
756 **14**:e1006964.

757 Aubry F, Jacobs S, Darmuzey M, Lequime S, Delang L, Fontaine A, Jupatanakul N,
758 Miot EF, Dabo S, Manet C, Montagutelli X, Baidaliuk A, Gambaro F, Simon-Lorière
759 E, Gilsoul M, Romero-Vivas CM, Cao-Lormeau V-M, Jarman RG, Diagne CT, Faye
760 O, Faye O, Sall AA, Neyts J, Nguyen L, Kaptein SJF, Lambrechts L. 2020. High
761 transmissibility and fetal pathogenicity of recent Zika virus strains from the African
762 lineage. *bioRxiv*. doi:10.1101/2020.09.01.277673

763 Ávila-Pérez G, Nogales A, Park J-G, Márquez-Jurado S, Iborra FJ, Almazan F,
764 Martínez-Sobrido L. 2019. A natural polymorphism in Zika virus NS2A protein
765 responsible of virulence in mice. *Sci Rep* **9**:19968.

766 Barjas-Castro ML, Angerami RN, Cunha MS, Suzuki A, Nogueira JS, Rocco IM, Maeda
767 AY, Vasami FGS, Katz G, Boin IFSF, Stucchi RSB, Resende MR, Esposito DLA,
768 de Souza RP, da Fonseca BA, Addas-Carvalho M. 2016. Probable transfusion-
769 transmitted Zika virus in Brazil. *Transfusion* **56**:1684–1688.

770 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
771 sequence data. *Bioinformatics* **30**:2114–2120.

772 Calvez E, O'Connor O, Pol M, Rousset D, Faye O, Richard V, Tarantola A, Dupont-
773 Rouzeyrol M. 2018. Differential transmission of Asian and African Zika virus
774 lineages by *Aedes aegypti* from New Caledonia. *Emerg Microbes Infect* **7**:159.

775 Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ
776 preprocessor. *Bioinformatics* **34**:884–890.

777 Christensen BM, Sutherland DR. 1984. Brugia pahangi: Exsheathment and Midgut
778 Penetration in *Aedes aegypti*. *Trans Am Microsc Soc* **103**:423.

779 Ciota AT, Bialosuknia SM, Ehrbar DJ, Kramer LD. 2017. Vertical Transmission of Zika

780 Virus by *Aedes aegypti* and *Ae. albopictus* Mosquitoes. *Emerg Infect Dis* **23**:880–
781 882.

782 Ciota AT, Jia Y, Payne AF, Jerzak G, Davis LJ, Young DS, Ehrbar D, Kramer LD. 2009.
783 Experimental passage of St. Louis encephalitis virus in vivo in mosquitoes and
784 chickens reveals evolutionarily significant virus characteristics. *PLoS One* **4**:e7876.

785 Ciota AT, Kramer LD. 2010. Insights into arbovirus evolution and adaptation from
786 experimental studies. *Viruses* **2**:2594–2617.

787 Ciota AT, Lovelace AO, Jia Y, Davis LJ, Young DS, Kramer LD. 2008. Characterization
788 of mosquito-adapted West Nile virus. *J Gen Virol* **89**:1633–1642.

789 Coffey LL, Forrester N, Tsetsarkin K, Vasilakis N, Weaver SC. 2013. Factors shaping
790 the adaptive landscape for arboviruses: implications for the emergence of disease.
791 *Future Microbiol* **8**:155–176.

792 Coffey LL, Vasilakis N, Brault AC, Powers AM, Tripet F, Weaver SC. 2008. Arbovirus
793 evolution in vivo is constrained by host alternation. *Proc Natl Acad Sci U S A*
794 **105**:6970–6975.

795 Colt S, Garcia-Casal MN, Peña-Rosas JP, Finkelstein JL, Rayco-Solon P, Weise Prinzo
796 ZC, Mehta S. 2017. Transmission of Zika virus through breast milk and other
797 breastfeeding-related bodily-fluids: A systematic review. *PLoS Negl Trop Dis*
798 **11**:e0005528.

799 Comeau G, Zinna RA, Scott T, Ernst K, Walker K, Carrière Y, Riehle MA. 2020. Vertical
800 transmission of Zika virus in *Aedes aegypti* produces potentially infectious progeny.
801 *Am J Trop Med Hyg* **103**:876–883.

802 Cristina da Silva Rosa B, Hernandez Alves Ribeiro César CP, Paranhos LR, Guedes-
803 Granzotti RB, Lewis DR. 2020. Speech-language disorders in children with
804 congenital Zika virus syndrome: A systematic review. *Int J Pediatr Otorhinolaryngol*
805 **138**:110309.

806 da Costa CF, da Silva AV, do Nascimento VA, de Souza VC, Monteiro DC da S,
807 Terrazas WCM, Dos Passos RA, Nascimento S, Lima JBP, Naveca FG. 2018.
808 Evidence of vertical transmission of Zika virus in field-collected eggs of *Aedes*
809 *aegypti* in the Brazilian Amazon. *PLoS Negl Trop Dis* **12**:e0006594.

810 Deardorff ER, Fitzpatrick KA, Jerzak GVS, Shi P-Y, Kramer LD, Ebel GD. 2011. West
811 Nile virus experimental evolution in vivo and the trade-off hypothesis. *PLoS Pathog*
812 **7**:e1002335.

813 Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD,
814 Lanciotti RS, Tesh RB. 2011. Probable non-vector-borne transmission of Zika virus,
815 Colorado, USA. *Emerg Infect Dis* **17**:880–882.

816 Fréour T, Mirallié S, Hubert B, Spingart C, Barrière P, Maquart M, Leparc-Goffart I.
817 2016. Sexual transmission of Zika virus in an entirely asymptomatic couple
818 returning from a Zika epidemic area, France, April 2016. *Euro Surveill* **21**.
819 doi:10.2807/1560-7917.ES.2016.21.23.30254

820 Gregory CJ, Oduyebo T, Brault AC, Brooks JT, Chung K-W, Hills S, Kuehnert MJ, Mead
821 P, Meaney-Delman D, Rabe I, Staples E, Petersen LR. 2017. Modes of
822 transmission of Zika virus. *J Infect Dis* **216**:S875–S883.

823 Grischott F, Puhan M, Hatz C, Schlagenhauf P. 2016. Non-vector-borne transmission of
824 Zika virus: A systematic review. *Travel Med Infect Dis* **14**:313–330.

825 Grubaugh ND, Ebel GD. 2016. Dynamics of West Nile virus evolution in mosquito

826 vectors. *Curr Opin Virol* **21**:132–138.

827 Grubaugh ND, Fauver JR, Rückert C, Weger-Lucarelli J, Garcia-Luna S, Murrieta RA,
828 Gendernalik A, Smith DR, Brackney DE, Ebel GD. 2017. Mosquitoes transmit
829 unique West Nile virus populations during each feeding episode. *Cell Rep* **19**:709–
830 718.

831 Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan AL,
832 Paul LM, Brackney DE, Grewal S, Gurfield N, Van Rompay KKA, Isern S, Michael
833 SF, Coffey LL, Loman NJ, Andersen KG. 2019. An amplicon-based sequencing
834 framework for accurately measuring intrahost virus diversity using PrimalSeq and
835 iVar. *Genome Biol* **20**:8.

836 Halbach R, Junglen S, van Rij RP. 2017. Mosquito-specific and mosquito-borne viruses:
837 evolution, infection, and host defense. *Curr Opin Insect Sci* **22**:16–27.

838 Hills SL, Fischer M, Petersen LR. 2017. Epidemiology of Zika virus infection. *J Infect Dis*
839 **216**:S868–S874.

840 Hills SL, Russell K, Hennessey M, Williams C, Oster AM, Fischer M, Mead P. 2016.
841 Transmission of Zika virus through sexual contact with travelers to areas of ongoing
842 transmission - continental United States, 2016. *MMWR Morb Mortal Wkly Rep*
843 **65**:215–216.

844 Hong YS, Ton LQ, Collins FH. 2003. On methods of germ-line transformation and RNA
845 interference in African malaria mosquito, *Anopheles gambiae*. *J Asia Pac Entomol*
846 **6**:111–117.

847 Khaiboullina SF, Ribeiro FM, Uppal T, Martynova EV, Rizvanov AA, Verma SC. 2019.
848 Zika virus transmission through blood tissue barriers. *Front Microbiol* **10**:1465.

849 Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM,
850 Duffy MR. 2008. Genetic and serologic properties of Zika virus associated with an
851 epidemic, Yap State, Micronesia, 2007. *Emerg Infect Dis* **14**:1232–1239.

852 Lemos D, Stuart JB, Louie W, Singapuri A, Ramírez AL, Watanabe J, Usachenko J,
853 Keesler RI, Martin CS-S, Li T, Martyn C, Oliveira G, Saraf S, Grubaugh ND,
854 Andersen KG, Thissen J, Allen J, Borucki M, Tsetsarkin KA, Pletnev AG, Chiu CY,
855 Van Rompay KKA, Coffey LL. 2020. Two sides of a coin: a Zika virus mutation
856 selected in pregnant rhesus macaques promotes fetal infection in mice but at a cost
857 of reduced fitness in nonpregnant macaques and diminished transmissibility by
858 vectors. *J Virol* 2020.08.11.247411.

859 Lequime S, Fontaine A, Ar Gouilh M, Moltini-Conclois I, Lambrechts L. 2016. Genetic
860 drift, purifying selection and vector genotype shape dengue virus intra-host genetic
861 diversity in mosquitoes. *PLoS Genet* **12**:e1006111.

862 Lequime S, Richard V, Cao-Lormeau V-M, Lambrechts L. 2017. Full-genome dengue
863 virus sequencing in mosquito saliva shows lack of convergent positive selection
864 during transmission by *Aedes aegypti*. *Virus evolution* **3**:vex031.

865 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler
866 transform. *Bioinformatics* **25**:1754–1760.

867 Liu J, Liu Y, Shan C, Nunes BTD, Yun R, Haller SL, Rafael GH, Azar SR, Andersen CR,
868 Plante K, Vasilakis N, Shi P-Y, Weaver SC. 2020. Emergence of Zika virus: Role of
869 founder effects, drift and mutational reversions in spread to the Americas. *bioRxiv*.
870 doi:10.1101/2020.06.29.179150

871 Liu Z, Zhou T, Lai Z, Zhang Z, Jia Z, Zhou G, Williams T, Xu J, Gu J, Zhou X, Lin L, Yan

872 G, Chen X-G. 2017. Competence of *Aedes aegypti*, *Ae. albopictus*, and *Culex*
873 *quinquefasciatus* mosquitoes as Zika virus vectors, China. *Emerg Infect Dis*
874 **23**:1085–1091.

875 Lobo FP, Mota BEF, Pena SDJ, Azevedo V, Macedo AM, Tauch A, Machado CR,
876 Franco GR. 2009. Virus-host coevolution: common patterns of nucleotide motif
877 usage in Flaviviridae and their hosts. *PLoS One* **4**:e6282.

878 Magalhaes T, Morais CNL, Jacques IJAA, Azevedo EAN, Brito AM, Lima PV, Carvalho
879 GMM, Lima ARS, Castanha PMS, Cordeiro MT, Oliveira ALS, Jaenisch T, Lamb
880 MM, Marques ETA, Foy BD. 2020. Follow-up household serosurvey in Northeast
881 Brazil for Zika virus: sexual contacts of index patients have the highest risk for
882 seropositivity. *J Infect Dis*. doi:10.1093/infdis/jiaa563

883 Martin M. 2011. Cutadapt removes adapter sequences from high-throughput
884 sequencing reads. *EMBnet journal* **17**:10.

885 McCarthy M. 2016. Zika virus was transmitted by sexual contact in Texas, health
886 officials report. *BMJ* **352**:i720.

887 Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, Fonseca EB da, Ribeiro
888 EM, Ventura LO, Neto NN, Arena JF, Rasmussen SA. 2017. Characterizing the
889 pattern of anomalies in congenital Zika syndrome for pediatric clinicians. *JAMA*
890 *Pediatr* **171**:288–295.

891 Moreira J, Peixoto TM, Siqueira AM, Lamas CC. 2017. Sexually acquired Zika virus: a
892 systematic review. *Clin Microbiol Infect* **23**:296–305.

893 Nelson CW, Moncla LH, Hughes AL. 2015. SNPGenie: estimating evolutionary
894 parameters to detect natural selection using pooled next-generation sequencing
895 data. *Bioinformatics* **31**:3709–3711.

896 Novella IS, Presloid JB, Smith SD, Wilke CO. 2011. Specific and nonspecific host
897 adaptation during arboviral experimental evolution. *J Mol Microbiol Biotechnol*
898 **21**:71–81.

899 Petersen LR, Jamieson DJ, Powers AM, Honein MA. 2016. Zika virus. *N Engl J Med*
900 **374**:1552–1563.

901 Pompon J, Morales-Vargas R, Manuel M, Huat Tan C, Vial T, Hao Tan J, Sessions OM,
902 Vasconcelos P da C, Ng LC, Missé D. 2017. A Zika virus from America is more
903 efficiently transmitted than an Asian virus by *Aedes aegypti* mosquitoes from Asia.
904 *Sci Rep* **7**:1215.

905 Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G,
906 Robles-Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, de
907 Jesus JG, Giovanetti M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M,
908 Alcantara LC Jr, Sabino EC, Baylis SA, Faria NR, Loose M, Simpson JT, Pybus
909 OG, Andersen KG, Loman NJ. 2017. Multiplex PCR method for MinION and
910 Illumina sequencing of Zika and other virus genomes directly from clinical samples.
911 *Nat Protoc* **12**:1261–1276.

912 Riemersma KK, Coffey LL. 2019. Chikungunya virus populations experience diversity-
913 dependent attenuation and purifying intra-vector selection in Californian *Aedes*
914 *aegypti* mosquitoes. *PLoS Negl Trop Dis* **13**:e0007853.

915 Riemersma KK, Steiner C, Singapuri A, Coffey LL. 2019. Chikungunya virus fidelity
916 variants exhibit differential attenuation and population diversity in cell culture and
917 adult mice. *J Virol* **93**. doi:10.1128/JVI.01606-18

918 Roundy CM, Azar SR, Rossi SL, Huang JH, Leal G, Yun R, Fernandez-Salas I, Vitek
919 CJ, Paploski IAD, Kitron U, Ribeiro GS, Hanley KA, Weaver SC, Vasilakis N. 2017.
920 Variation in *Aedes aegypti* mosquito competence for Zika virus transmission.
921 *Emerg Infect Dis* **23**:625–632.

922 Sexton NR, Ebel GD. 2019. Effects of arbovirus multi-host life cycles on dinucleotide
923 and codon usage patterns. *Viruses* **11**. doi:10.3390/v11070643

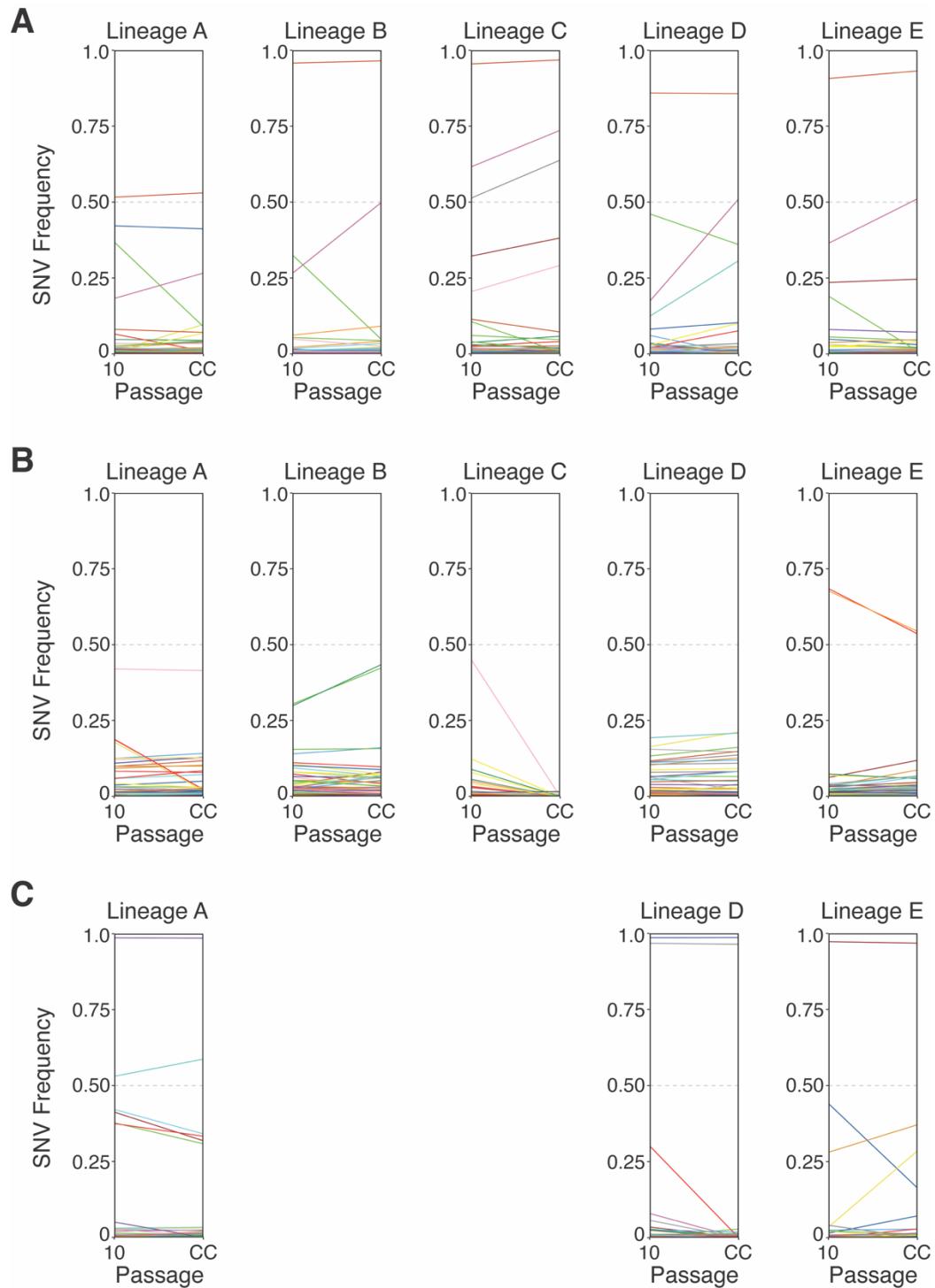
924 Shan C, Xia H, Haller SL, Azar SR, Liu Y, Liu J, Muruato AE, Chen R, Rossi SL,
925 Wakamiya M, Vasilakis N, Pei R, Fontes-Garfias CR, Singh SK, Xie X, Weaver SC,
926 Shi P-Y. 2020. A Zika virus envelope mutation preceding the 2015 epidemic
927 enhances virulence and fitness for transmission. *Proc Natl Acad Sci U S A*
928 **117**:20190–20197.

929 Swaminathan S, Schlaberg R, Lewis J, Hanson KE, Couturier MR. 2016. Fatal Zika
930 virus infection with secondary nonsexual transmission. *N Engl J Med* **375**:1907–
931 1909.

932 Thangamani S, Huang J, Hart CE, Guzman H, Tesh RB. 2016. Vertical transmission of
933 Zika virus in *Aedes aegypti* mosquitoes. *Am J Trop Med Hyg* **95**:1169–1173.

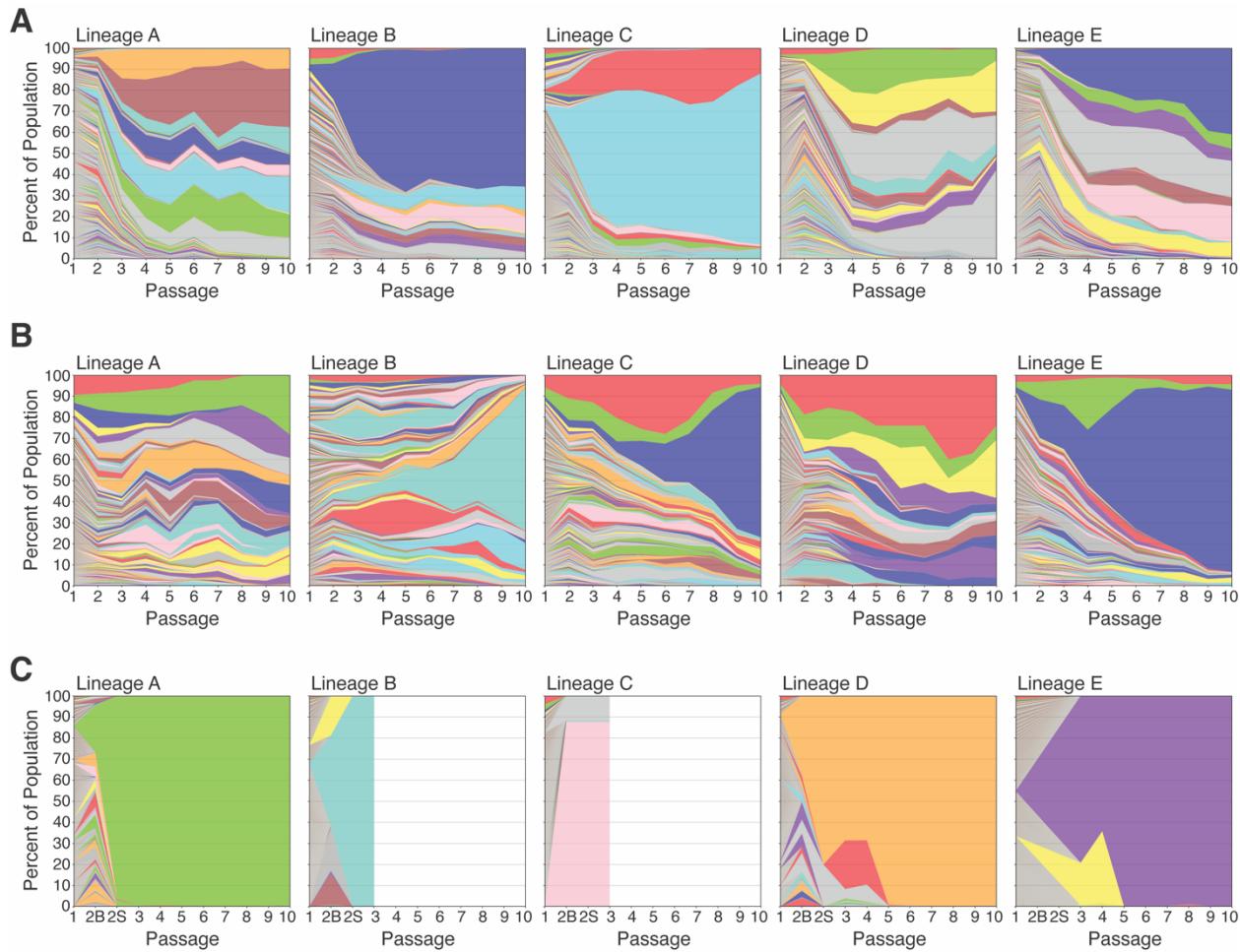
934 Turmel JM, Abgueguen P, Hubert B, Vandamme YM, Maquart M, Le Guillou-
935 Guillemette H, Leparc-Goffart I. 2016. Late sexual transmission of Zika virus related
936 to persistence in the semen. *Lancet* **387**:2501.

937 Vasilakis N, Deardorff ER, Kenney JL, Rossi SL, Hanley KA, Weaver SC. 2009.
938 Mosquitoes put the brake on arbovirus evolution: experimental evolution reveals
939 slower mutation accumulation in mosquito than vertebrate cells. *PLoS Pathog*
940 **5**:e1000467.


941 Venturi G, Zammarchi L, Fortuna C, Remoli ME, Benedetti E, Fiorentini C, Trotta M,
942 Rizzo C, Mantella A, Rezza G, Bartoloni A. 2016. An autochthonous case of Zika
943 due to possible sexual transmission, Florence, Italy, 2014. *Euro Surveill* **21**:30148.

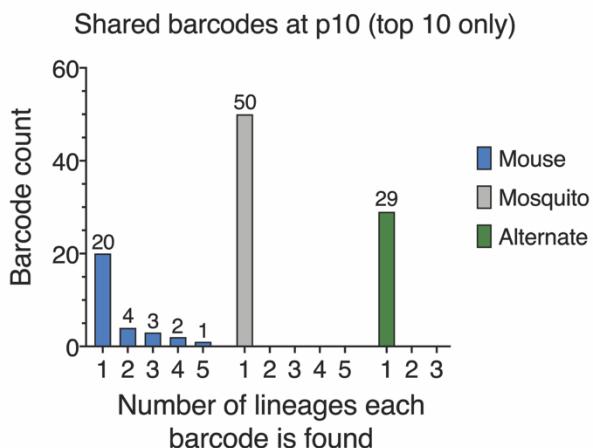
944 Weger-Lucarelli J, Garcia SM, Rückert C, Byas A, O'Connor SL, Aliota MT, Friedrich
945 TC, O'Connor DH, Ebel GD. 2018. Using barcoded Zika virus to assess virus
946 population structure in vitro and in *Aedes aegypti* mosquitoes. *Virology* **521**:138–
947 148.

948 Weger-Lucarelli J, Rückert C, Chotivan N, Nguyen C, Garcia Luna SM, Fauver JR, Foy
949 BD, Perera R, Black WC, Kading RC, Ebel GD. 2016. Vector competence of
950 American mosquitoes for three strains of Zika virus. *PLoS Negl Trop Dis*
951 **10**:e0005101.


952 Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, Khor CC, Petric R,
953 Hibberd ML, Nagarajan N. 2012. LoFreq: a sequence-quality aware, ultra-sensitive
954 variant caller for uncovering cell-population heterogeneity from high-throughput
955 sequencing datasets. *Nucleic Acids Res* **40**:11189–11201.

956

957
958
959
960
961
962
963
964


Figure 2 — Supplemental Figure 1. Frequencies of Zika virus single-nucleotide variants (SNVs) at passage 10 and after a single amplifying passage in cell culture. Changes in individual SNV frequencies are represented by colored lines. Colors represent the same SNVs across homotypic lineages, but are used more than once due to the large number of SNVs. SNV frequencies (0.0 to 1.0) are provided for (A) serial mouse passage lineages, (B) serial mosquito passage lineages, and (C) alternating passage lineages. Alternating passage lineages B and C were not maintained to passage 10, and therefore are not shown.

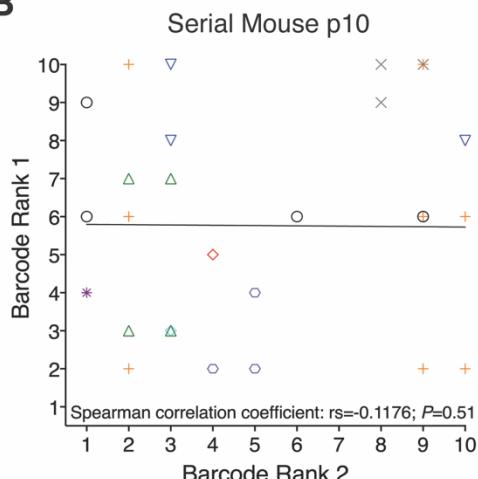

965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

Figure 3 — Supplemental Figure 1. ZIKV barcode dynamics over sequential passages for individual lineages. The frequency of each barcode over serial passages are presented for **(A)** serial mouse passage lineages, **(B)** serial mosquito passage lineages, and **(C)** alternating passage lineages. Colors represent barcode rank and are not associated with the barcode sequence. For alternating passage lineages, passage 2B and 2S are the mosquito body and saliva, respectively, that contributed to onward transmission. Alternating passage lineages B and C were not maintained past passage 3.

A

B

981

982

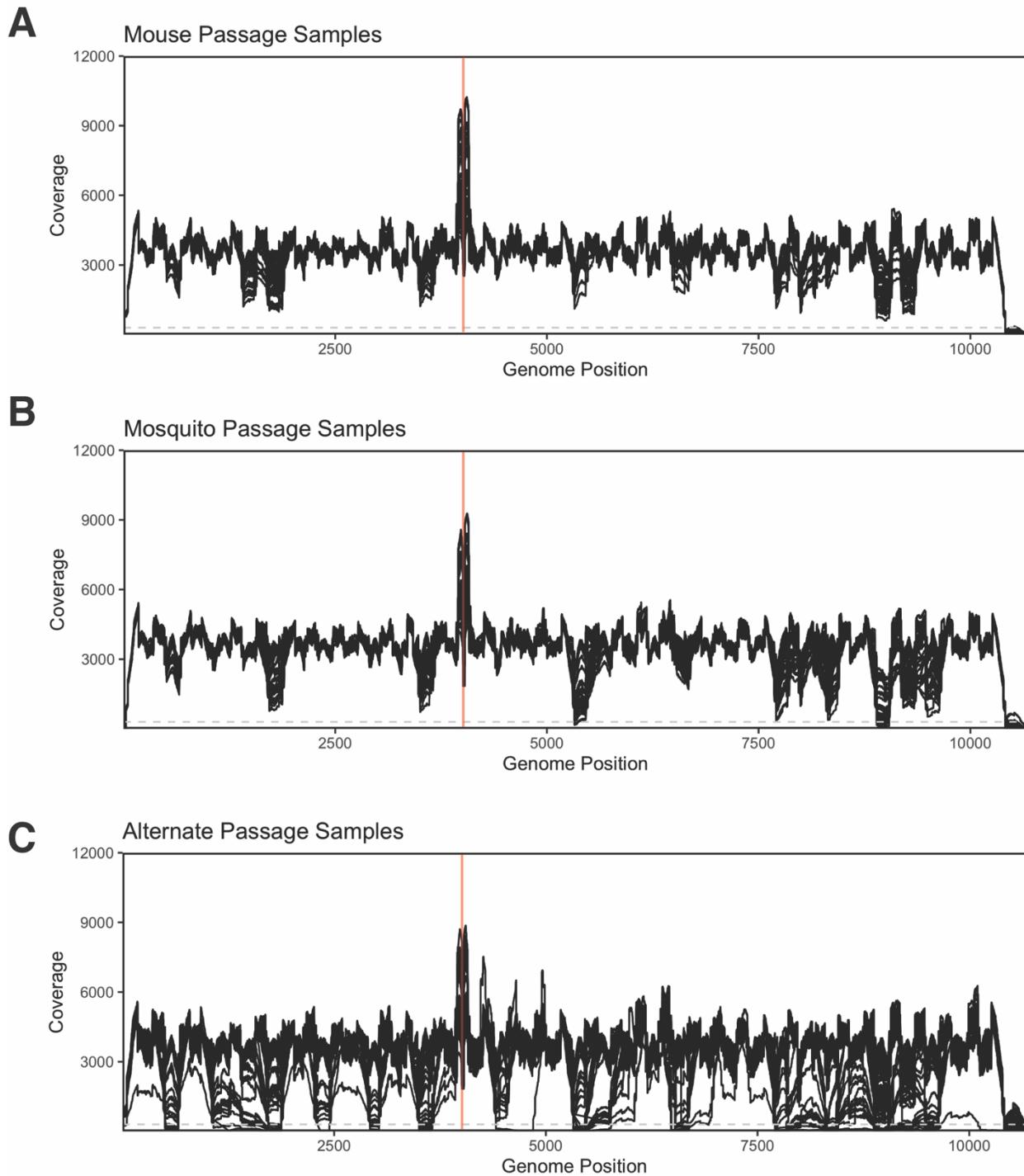
983

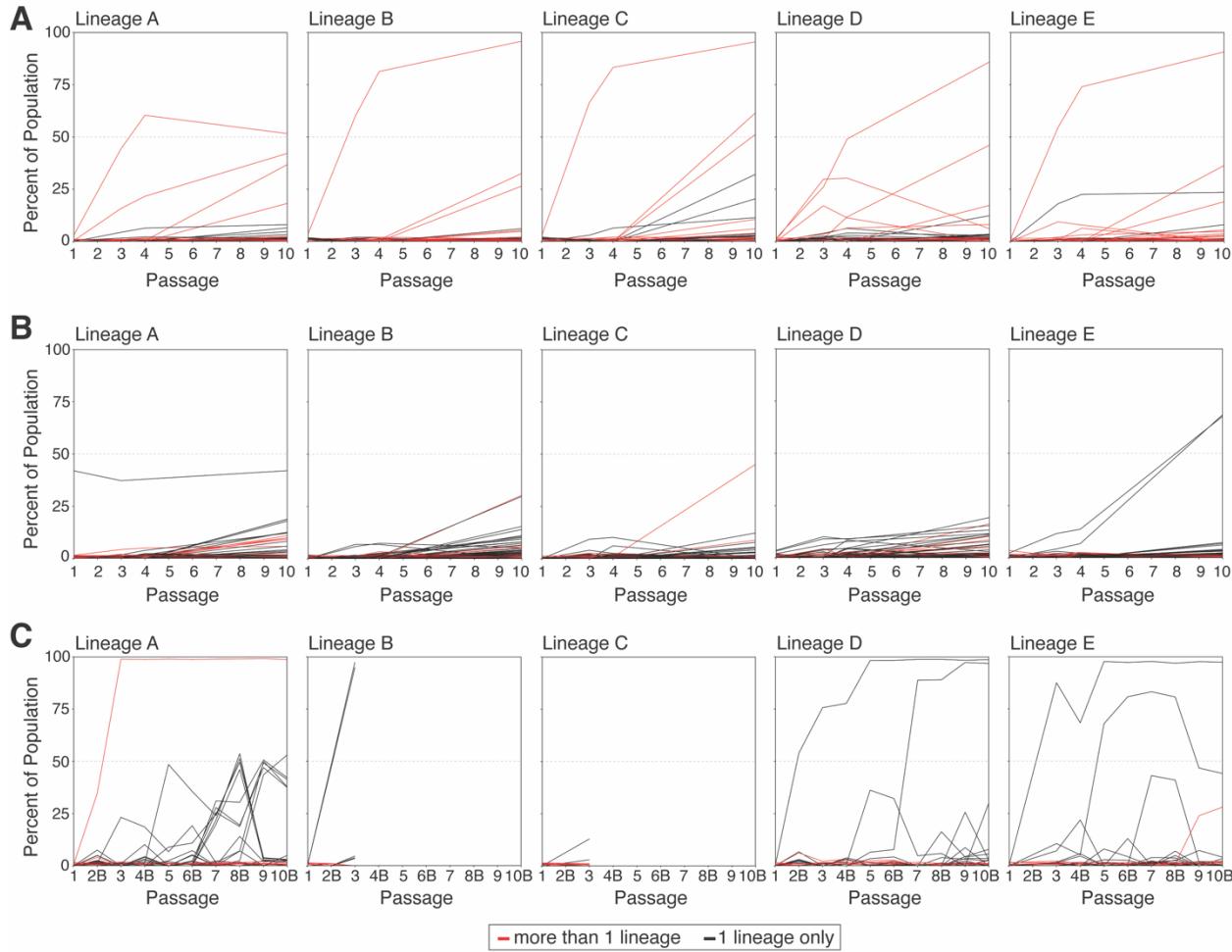
984

985

986

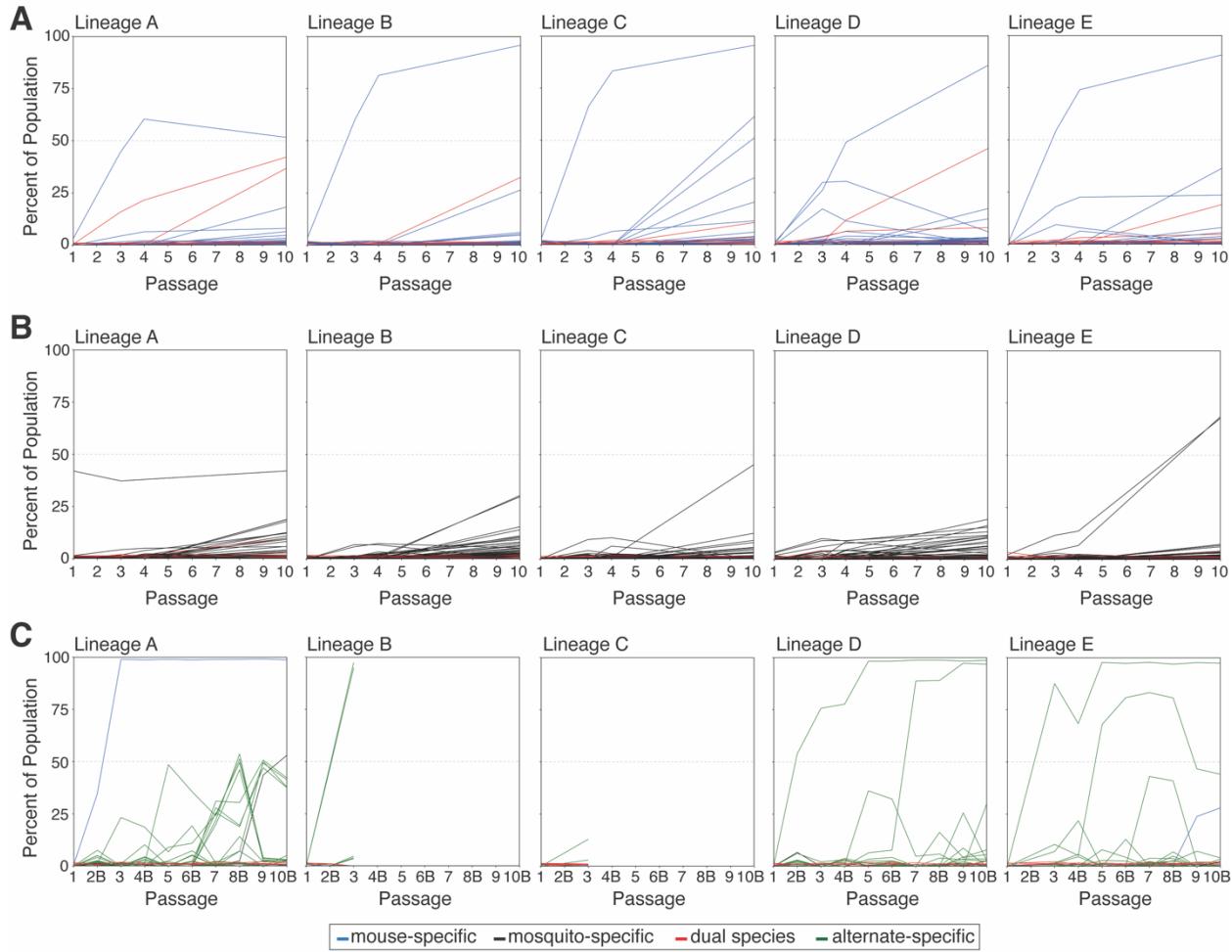
987


988


989

990

Figure 3 — Supplemental Figure 2. Barcodes shared between homotypic lineages at passage 10. (A)


Histograms of the number of barcodes found in multiple (>1) lineage. Only the top 10 most frequent barcodes from each of the five lineages were analyzed (max 50 barcodes). No barcodes were shared by multiple serial mosquito or alternating passage lineages, while ten barcodes were shared by at least two serial mouse lineage. (B) Pairwise ranks for each of the ten barcodes shared by more than one serial mouse lineage at passage 10. Colored symbols represent the ten specific barcode sequences. The solid black line represents the line of best-fit for all pairwise ranks. The nonparametric Spearman's correlation coefficient (rs) and P -value for all pairwise ranks are provided.

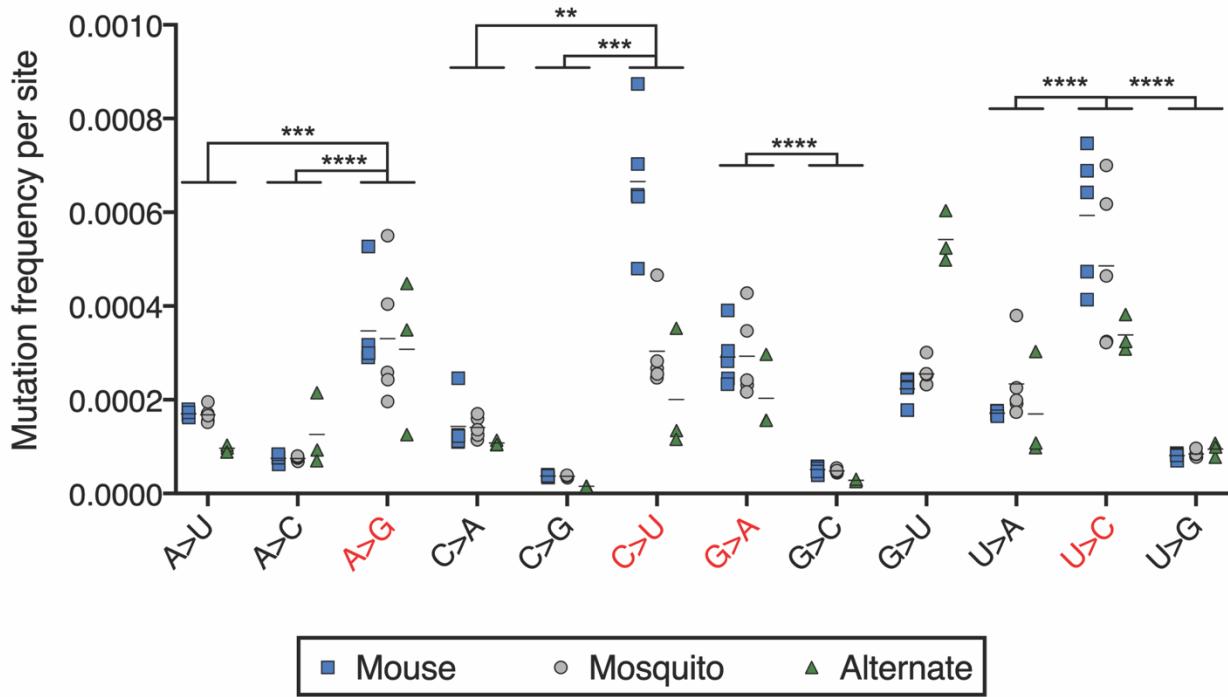

999
1000
1001
1002
1003
1004
1005
1006
1007

Figure 5 — Supplemental Figure 1. Dynamics of Zika virus single-nucleotide variants detected in more than one homotypic lineage (red) or only one lineage (black). Frequency trajectories are provided for each of the five replicate lineages of **(A)** serial mouse passage, **(B)** serial mosquito passage, and **(C)** alternating passage. Alternating passage lineages B and C were not maintained past passage 3. For alternating passage lineages in panel C, even numbered passages are noted with a "B" to indicate mosquito bodies. Alternate passage 2B is the single mosquito that contributed to onward transmission, whereas latter even-numbered passages are pools of infected mosquito bodies.

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

Figure 5 — Supplemental Figure 2. Dynamics of Zika virus single-nucleotide variants detected only in serial mouse passages (blue, “mouse-specific”), only in serial mosquito passages (black, “mosquito-specific”), in both serial mouse and serial mosquito passages (red, “dual species”), or only in alternating passages (green, “alternate-specific”). Frequency trajectories are provided for each of the five replicate lineages of **(A)** serial mouse passage, **(B)** serial mosquito passage, and **(C)** alternating passage. Alternating passage lineages B and C were not maintained past passage 3. For alternating passage lineages in panel C, even numbered passages are noted with a “B” to indicate mosquito bodies. Alternate passage 2B is the single mosquito that contributed to onward transmission, whereas latter even-numbered passages are pools of infected mosquito bodies.

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Figure 6 — Supplemental Figure 1. Frequency of specific nucleotide substitutions detected in all processed and aligned reads at passage 10. Frequency is reported as the average number of each substitution per site. Substitutions are shown as the reference nucleotide followed by ">" and the substitute nucleotide. Transition substitutions are highlighted with red font, whereas transversion substitutions are shown in black font. Horizontal lines represent the arithmetic means for each group. Statistically significant differences in mean frequencies of transitions versus transversions were assessed by matched one-way ANOVA tests. P -values less than 0.01, 0.001, and 0.0001 are denoted by **, ***, and ****, respectively. Absence of asterisks indicates a lack of statistically significant differences in mean frequencies ($P > 0.05$).

A

Run	System	Flowcell	Clusters (Raw)	Clusters (PF)	% bases >=Q30	Mean base quality score
1	Illumina NovaSeq	2X150 S1	1,615,376,266	807,688,133	95.51	36.26
2	Illumina NovaSeq	2X150 S1	1,747,936,596	873,968,298	93.53	35.89

B

Library ID	Passage series	Passage number	Lineage	Library ID	Passage series	Passage number	Lineage
SCP1_1	Serial mouse	1	A	AP1_1	Alternating	1	A
SCP1_2	Serial mouse	1	B	AP1_2	Alternating	1	B
SCP1_3	Serial mouse	1	C	AP1_3	Alternating	1	C
SCP1_4	Serial mouse	1	D	AP1_4	Alternating	1	D
SCP1_5	Serial mouse	1	E	AP1_5	Alternating	1	E
SCP3_1	Serial mouse	3	A	AP2_1_3B	Alternating	2	A
SCP3_2	Serial mouse	3	B	AP2_1_3S	Alternating	2	A
SCP3_3	Serial mouse	3	C	AP2_2_3B	Alternating	2	B
SCP3_4	Serial mouse	3	D	AP2_2_3B	Alternating	2	B
SCP3_5	Serial mouse	3	E	AP2_4_6B	Alternating	2	D
SCP4_1	Serial mouse	4	A	AP2_4_6S	Alternating	2	D
SCP4_2	Serial mouse	4	B	AP3_1	Alternating	3	A
SCP4_3	Serial mouse	4	C	AP3_2	Alternating	3	B
SCP4_4	Serial mouse	4	D	AP3_3	Alternating	3	C
SCP4_5	Serial mouse	4	E	AP3_4	Alternating	3	D
SCP10_1	Serial mouse	10	A	AP3_5	Alternating	3	E
SCP10_2	Serial mouse	10	B	AP4_1B	Alternating	4	A
SCP10_3	Serial mouse	10	C	AP4_4B	Alternating	4	D
SCP10_4	Serial mouse	10	D	AP4_5B	Alternating	4	E
SCP10_5	Serial mouse	10	E	AP5_1	Alternating	5	A
SCP10_A	Serial mouse	CC	A	AP5_4	Alternating	5	D
SCP10_B	Serial mouse	CC	B	AP5_5	Alternating	5	E
SCP10_C	Serial mouse	CC	C	AP6_1B	Alternating	6	A
SCP10_D	Serial mouse	CC	D	AP6_4B	Alternating	6	D
SCP10_E	Serial mouse	CC	E	AP6_5B	Alternating	6	E
MP1_1	Serial mosquito	1	A	AP7_1	Alternating	7	A
MP1_2	Serial mosquito	1	B	AP7_4	Alternating	7	D
MP1_3	Serial mosquito	1	C	AP7_5	Alternating	7	E
MP1_4	Serial mosquito	1	D	AP8_1B	Alternating	8	A
MP1_5	Serial mosquito	1	E	AP8_4B	Alternating	8	D
MP3_1	Serial mosquito	3	A	AP8_5B	Alternating	8	E
MP3_2	Serial mosquito	3	B	AP9_1	Alternating	9	A
MP3_3	Serial mosquito	3	C	AP9_4	Alternating	9	D
MP3_4	Serial mosquito	3	D	AP9_5	Alternating	9	E
MP3_5	Serial mosquito	3	E	AP10_1B	Alternating	10	A
MP4_1	Serial mosquito	4	A	AP10_4B	Alternating	10	D
MP4_2	Serial mosquito	4	B	AP10_5B	Alternating	10	E
MP4_3	Serial mosquito	4	C	AP10_A	Alternating	CC	A
MP4_4	Serial mosquito	4	D	AP10_D	Alternating	CC	D
MP4_5	Serial mosquito	4	E	AP10_E	Alternating	CC	E
MP10_1	Serial mosquito	10	A	BC2	Inoculum	Stock	n/a
MP10_2	Serial mosquito	10	B				
MP10_3	Serial mosquito	10	C				
MP10_4	Serial mosquito	10	D				
MP10_5	Serial mosquito	10	E				
MP10_A	Serial mosquito	CC	A				
MP10_B	Serial mosquito	CC	B				
MP10_C	Serial mosquito	CC	C				
MP10_D	Serial mosquito	CC	D				
MP10_E	Serial mosquito	CC	E				

1030

1031 **Supplemental Table 1.** Run and sample data for whole-genome sequencing. **(A)** Run metrics for whole-
1032 genome sequencing runs performed on Illumina NovaSeq. **(B)** Whole-genome sequencing library
1033 identifiers and descriptions. Q30: quality score of 30.