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ABSTRACT

The novel SARS-CoV-2 virus emerged in December 2019 and has few effective
treatments. We applied a computational drug repositioning pipeline to SARS-CoV-2
differential gene expression signatures derived from publicly available data. We utilized
three independent published studies to acquire or generate lists of differentially
expressed genes between control and SARS-CoV-2-infected samples. Using a rank-
based pattern matching strategy based on the Kolmogorov-Smirnov Statistic, the
signatures were queried against drug profiles from Connectivity Map (CMap). We
validated sixteen of our top predicted hits in live SARS-CoV-2 antiviral assays in either
Calu-3 or 293T-ACE2 cells. Validation experiments in human cell lines showed that 11
of the 16 compounds tested to date (including clofazimine, haloperidol and others) had
measurable antiviral activity against SARS-CoV-2. These initial results are encouraging
as we continue to work towards a further analysis of these predicted drugs as potential

therapeutics for the treatment of COVID-19.
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INTRODUCTION

SARS-CoV-2 has already claimed at least a million lives, has been detected in at
least 40 million people, and has likely infected at least another 200 million. The
spectrum of disease caused by the virus can be broad ranging from silent infection to
lethal disease, with an estimated infection-fatality ratio around 1%'. SARS-CoV-2
infection has been shown to affect many organs of the body in addition to the lungs?.
Three epidemiological factors increase the risk of disease severity: increasing age,
decade-by-decade, after the age of 50 years; being male; and various underlying
medical conditions'. However, even taking these factors into account, there is immense
interindividual clinical variability in each demographic category considered®. Recently,
researchers found that more than 10% of people who develop severe COVID-19 have
misguided antibodies—autoantibodies—that attack the innate immune system. Another
3.5% or more of people who develop severe COVID-19 carry specific genetic mutations
that impact innate immunity. Consequently, both groups lack effective innate immune
responses that depend on type interferon, demonstrating a crucial role for type
interferon in protecting cells and the body from COVID-19. Whether the type interferon
has been neutralized by autoantibodies or—because of a faulty gene—is produced in
insufficient amounts or induced an inadequate antiviral response, the absence of type
IFN-mediated immune response appears to be a commonality among a subgroup of
people who suffer from life-threatening COVID-19 pneumonia®.

While numerous efforts are underway to identify potential therapies targeting
various aspects of the disease, there is a paucity of clinically proven treatments for

COVID-19. There have been efforts to therapeutically target the hyperinflammation


https://doi.org/10.1101/2020.10.23.352666
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.352666; this version posted October 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

associated with severe COVID-19%, as well as to utilize previously identified antiviral
medications®®. One of these antivirals, remdesivir, an intravenously administered RNA-
dependent RNA polymerase inhibitor, showed positive preliminary results in patients
with severe COVID-19’. In October 2020, the FDA approved remdesivir for the
treatment of COVID-19%. Dexamethasone has also been shown to reduce the mortality
rate in cases of severe COVID-19°.

Nevertheless, the lack of treatments and the severity of the current health
pandemic warrant the exploration of rapid identification methods of preventive and
therapeutic strategies from every angle. The traditional paradigm of drug discovery is
generally regarded as protracted and costly, taking approximately 15 years and over $1
billion to develop and bring a novel drug to market™. The repositioning of drugs already
approved for human use mitigates the costs and risks associated with early stages of
drug development, and offers shorter routes to approval for therapeutic indications.
Successful examples of drug repositioning include the indication of thalidomide for
severe erythema nodosum leprosum and retinoic acid for acute promyelocytic
leukemia'. The development and availability of large-scale genomic, transcriptomic,
and other molecular profiling technologies and publicly available databases, in
combination with the deployment of the network concept of drug targets and the power
of phenotypic screening, provide an unprecedented opportunity to advance rational drug
design.

Drug repositioning is being extensively explored for COVID-19. High-throughput
screening pipelines have been implemented in order to quickly test drug candidates as

they are identified'? . In the past, our group has successfully applied a transcriptomics-
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based computational drug repositioning pipeline to identify novel therapeutic uses for
existing drugs'®. This pipeline leverages transcriptomic data to perform a pattern-
matching search between diseases and drugs. The underlying hypothesis is that for a
given disease signature consisting of a set of up and down-regulated genes, if there is a
drug profile where those same sets of genes are instead down-regulated and up-
regulated, respectively, then that drug could be therapeutic for the disease. This method
has shown promising results for a variety of different indications, including inflammatory
bowel disease'’, dermatomyositis'®, cancer**?!, and preterm birth?.

In existing work from Xing et al.??, this pipeline has been used to identify potential
drug hits from multiple input disease signatures derived from SARS-CoV or MERS-CoV
data. The results were aggregated to obtain a consensus ranking, with 10 drugs
selected for in vitro testing against SARS-CoV-2 in Vero E6 cell lines, with four drugs
(bortezomib, dactolisib, alvocidib and methotrexate) showing viral inhibition?®, However,
this pipeline has not yet been applied specifically to SARS-CoV-2 infection.

A variety of different transcriptomic datasets related to SARS-CoV-2 were
published in the spring of 2020. In May 2020, Blanco-Melo et al. studied the
transcriptomic signature of SARS-CoV-2 in a variety of different systems, including
human cell lines and a ferret model**. By infecting human adenocarcinomic alveolar
basal epithelial cells with SARS-CoV-2 and comparing to controls, the authors
generated a list of 120 differentially expressed genes. They observed two enriched
pathways: one composed primarily of type-I interferon-stimulated genes (ISGs) involved
in the cellular response to viral infection; and a second composed of chemokines,

cytokines, and complement proteins involved in the humoral response. After infecting
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the cell lines, Blanco-Melo et al. did not detect either ACE2 or TMPRSS2, which are the
SARS-CoV-2 receptor and SARS-CoV-2 protease, respectively®®>. However, supported
viral replication was observed, thereby allowing the capture of some of the biological
responses to SARS-CoV-2.

In May 2020, another study by Lamers et al. examined SARS-CoV-2 infection in
human small intestinal organoids grown from primary gut epithelial stem cells. The
organoids were exposed to SARS-CoV-2 and grown in various conditions, including
Wnt-high expansion media. Enterocytes were readily infected by the virus, and RNA
sequencing revealed upregulation of cytokines and genes related to type | and Il
interferon responses?®.

A limited amount of transcriptomic data from human samples has also been
published. One study detailed the transcriptional signature of bronchoalveolar lavage
fluid (of which responding immune cells are often a primary component) of COVID-19
patients compared to controls*’. Despite a limited number of samples, the results were
striking enough to reveal inflammatory cytokine profiles in the COVID-19 cases, along
with enrichments in the activation of apoptosis and the P53 signaling pathways.

On the drug side, data are available in the form of differential gene expression
profiles from testing on human cells. Publicly-available versions include the Connectivity
Map (CMap)?®, which contains genome-wide testing on approximately 1,300 drugs,
wherein the differential profile for a drug was generated by comparing cultured cells
treated with the drug to untreated control cultures.

Here, we applied our existing computational drug repositioning pipeline to identify

drug profiles with significantly reversed differential gene expression compared to


https://doi.org/10.1101/2020.10.23.352666
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.352666; this version posted October 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

several diverse input signatures for SARS-CoV-2 effects on human cells. By taking into
account a broader view of differentially expressed gene sets from both cell line and
organoid disease models and human samples, the predictions are complementary to
other drug discovery approaches. We identified 102 unique drug hits, from which 25
were identified in at least two of the signatures, several of which have been already
investigated in clinical trials. We furthermore explore our findings in the context of other
computational drug repurposing efforts for COVID-19. Finally, we tested 16 of our top
predicted hits in live SARS-CoV-2 antiviral assays. Four of the top predicted inhibitors
were tested for virus inhibition in a human lung cell line, Calu-3, infected with SARS-
CoV-2 with quantitation of the secreted virus assessed by RT-gPCR assay. Thirteen
predicted inhibitors (including one tested in Calu-3) were incubated with SARS-CoV-2
infected human embryonic kidney 293T cells overexpressing ACE2 (293T-ACE2) with

viral replication determined using an immunofluorescence-based assay.
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RESULTS

In this study, we applied our drug repositioning pipeline to SARS-CoV-2
differential gene expression signatures derived from publicly available RNA-seq data
(Figure 1). The transcriptomic data were generated from distinct types of tissues, so
rather than aggregating them together, we predicted therapeutics for each signature
and then combined the results. We utilized three independent gene expression
signatures (labelled “ALV”, “EXP”, and “BALF”), each of which consisted of lists of
differentially expressed genes between SARS-CoV-2 samples and their respective
controls. The ALV signature was generated from human adenocarcinomic alveolar
basal epithelial cells by comparing SARS-CoV-2 infection to mock-infection conditions.
The EXP signature originated from a study where organoids, grown from human
intestinal cells expanded in Wnt-high expansion media, were infected with SARS-CoV-2
and then compared to controls®. The BALF signature was from a contrast of primary
human BALF samples from two COVID-19 patients versus three controls®’. Each of
these signatures was contrasted with drug profiles of differential gene expression from
CMap.

For each of the input signatures, we applied a significance threshold false
discovery rate (FDR) < 0.05. We further applied minimum fold change thresholds in
order to identify the driving genes. The ALV signature had only 120 genes, with 109
genes shared with the drug profiles; in order to maintain at least 100 genes for the
pattern-matching algorithm to work with, we applied no fold-change threshold. For the
EXP signature, we applied a |logoFC| > 2 cutoff, resulting in 125 genes for the

expansion signature (108 shared with the drug profiles). For the BALF signature, we
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processed the raw read count data to calculate differential gene expression values. We
applied a |log,FC| > 4 cutoff, with the BALF data yielding 1,349 protein-coding genes for
the lavage fluid signature (941 shared with the drug profiles). The gene lists for each of
these signatures can be found in the supplement (Tables S1, S2, S3).

We used GSEA (Gene Set Enrichment Analysis)®**° to annotate enriched
Hallmark pathways from each of the input signatures (Figure 2A). A number of
pathways common to at least two signatures were found. Interferon alpha response and
interferon beta response were upregulated in the ALV and EXP signatures.
Adipogenesis and cholesterol homeostasis pathways were downregulated in the EXP
and BALF signatures. KRAS signaling, and mTORC1 (mammalian target of rapamycin
complex 1) signaling were enriched in all three signatures, but not in the same direction,
showing the diversity of effects SARS-CoV-2 may have on human cells, and highlighting
a need for utilization of diverse profiles as we do in the present study. When we look at
the contributing genes within the three signatures (Figure 2B), we found one
overlapping upregulated gene - Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1).
We used the publicly available single-cell RNAseq dataset GSE128033* composed of
13 patients (4 healthy, 3 presenting with mild COVID-19 symptoms, and 6 presenting
with severe COVID-19 symptoms) to further characterise the expression of DKK1
(Figure S1). Data were re-analyzed following the standard Seurat pipeline. From the
analyses of the single-cell data, DKK1 is highly expressed in COVID-19 patients
compared to controls, specifically in severe patients and it is expressed by epithelial

cells.
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After analyzing the input SARS-CoV-2 signatures, we utilized our repositioning
pipeline to identify drugs with reversed profiles from CMap (Figure 1). Significantly
reversed drug profiles were identified for each of the signatures using a permutation
approach: 30 hits from the ALV signature (Table S4), 15 hits from the EXP signature
(Table S5), and 86 hits from the BALF signature (Table S6). When visualizing the gene
regulation of the input signatures and their respective top 15 drug hits, the overall
reversal pattern can be observed (Figure 2C-E). In total, our analysis identified 102
unique drug hits (Table S7). Twenty-five common drug hits were shared by at least two
of the signatures (p = 0.0334), with four consensus drug hits (bacampicillin, clofazimine,
haloperidol, valproic acid) across all three signatures (p = 0.0599) (Table 1, Figure 3A).

We further characterized the common hits by examining their interactions with
proteins in humans. We used known drug targets from DrugBank® and predicted
additional targets using the similarity ensemble approach (SEA)*. We visualized the
known interactions from DrugBank in a network (Figure 3B). We also aggregated the list
of proteins which were found in DrugBank for at least 2 of the common hits (Table S9).
The proteins with the most known interactions with our list of 25 drugs included
adrenergic receptors (particularly a2 adrenoreceptors), dopamine receptors, and

serotonin receptors.
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Drug hit Description (current ALV EXP BALF

uses) Reversal Reversal Reversal
Score Score Score

Bacampicillin Antibiotic 0.789 0.790 0.596

Benzocaine Anesthetic n.s. 0.766 0.546

Ciclopirox Antifungal n.s. 1 0.361

Ciclosporin Immunosuppressant (RA, 0.756 n.s. 0.409
psoriasis, Crohn’s)

Clofazimine Antimycobacterial (leprosy) 0.946 0.893 0.558

Co-dergocrine Ergoid mesylate (dementia, | 0.775 n.s. 0.553

mesilate Alzheimer’s, stroke)

Dicycloverine Antispasmodic (IBS) 0.847 n.s. 0..461

Fludrocortisone Corticosteroid n.s. 0.782 0.519

Fluticasone Steroid (asthma, COPD) 0.790 n.s. 0.463

Haloperidol Antipsychotic 0.937 0.773 0.507
(schizophrenia)

Isoxicam NSAID n.s. 0.873 0.410

Lansoprazole Proton-pump inhibitor (acid 0.856 n.s. 0.370
reflux)

Levopropoxyphene [ Antitussive n.s. 0.835 0.770

Lomustine Antineoplastic (Hodgkin’s 0.748 n.s. 0.338
disease, brain tumors)

Metixene Anticholinergic 0.759 n.s. 0.344
(Parkinson’s)

Myricetin Flavonoid n.s. 0.823 0.603

Niclosamide Anthelmintic (tapeworms) 0.812 n.s. 0.360

Nocodazole Antineoplastic 0.766 n.s. 0.439

Pentoxifylline Vasodilatory and anti- n.s. 0.791 0.552
inflammatory (claudication)

Sirolimus Immunosuppressive n..s. 0.768 0.729

11
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Thiamazole Antithyroid agent (Graves n.s. 0.796 0.724
disease)

Tocainide Antiarrhythmic 0.798 n.s. 0.714

Tretinoin Vitamin A derivative (acne, n.s. 0.854 0.579
acute promyelocytic
leukemia)

Valproic acid Anticonvulsant (seizures, 0.917 0.786 0.546
bipolar disorder)

Zuclopenthixol Antipsychotic 0.754 n.s. 0.535
(schizophrenia)

Table 1. Therapeutic hits reversing at least 2 of input SARS-CoV-2 signatures. A wide
variety of drugs were identified by the analysis of multiple signatures. Drug reversal
scores are normalized for each signature; drug entries marked “n.s.” were not significant
for reversing that signature.

To confirm the validity of our approach, the inhibitory effects of 16 of our drug hits
which significantly reversed multiple SARS-CoV-2 profiles were assessed in live
antiviral assays. The inhibitory effects of haloperidol, clofazimine, valproic acid, and
fluticasone were evaluated in SARS-CoV-2 infected Calu-3 cells (human lung epithelial
cell line), with remdesivir also tested as a positive control. From these five, remdesivir
and haloperidol inhibited viral replication (Figure 4A), and the inhibitory effect was also
observed by microscopy (Figure 4B).

Additionally, 13 drugs (bacampicillin, ciclopirox, ciclosporin, clofazimine,
dicycloverine, fludrocortisone, isoxicam, lansoprazole, metixene, myricetin,
pentoxifylline, sirolimus, tretinoin) were assessed in a live SARS-CoV-2 antiviral assay.
Remdesivir was again used as a positive control. This testing involved six serial
dilutions of each drug to inhibit the replication of SARS-CoV-2 in 293T-ACE?2 cells using
an immunofluorescence-based antiviral assay*. All antiviral assays were paired with

cytotoxicity assays using identical drug concentrations in uninfected human 293T-ACE2

12


https://doi.org/10.1101/2020.10.23.352666
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.352666; this version posted October 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cells. Positive control remdesivir and 10 of our predicted drugs (bacampicillin, ciclopirox,
ciclosporin, clofazimine, dicycloverine, isoxicam, metixene, pentoxifylline, sirolimus, and
tretinoin) showed antiviral efficacy against SARS-CoV-2, reducing viral infection by at
least 50%, that was distinguishable from their cytotoxicity profile when tested in this cell
line (Figure 5). Several inhibitors showed micromolar to sub-micromolar antiviral
efficacy, including clofazimine, ciclosporin, ciclopirox, and metixene. These results not
only confirm our predictive methods, but have also identified several clinically-approved

drugs with potential for repurposing for the treatment of COVID-19.
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DISCUSSION

Here, we used a transcriptomics-based drug repositioning pipeline to predict
therapeutic drug hits for three different input SARS-CoV-2 signatures, each of which
came from distinct human cell or tissue origins. We found significant overlap of the
therapeutic predictions for these signatures. From 102 total drug hits, 25 drugs reversed
at least two signatures (p = 0.0334) and 4 drugs reversed all three signatures (p =
0.0599). The diversity of such signatures yet overlap of highlighted drugs underscores
the utility of the current pipeline for identification of drugs which might be therapeutic for
the diverse effects of SARS-CoV-2 infection.

Twenty-five of our drug hits reversed at least two of the three input signatures
(Table 3). Notably, 14 of the 15 hits from the EXP signature were also hits for the BALF
signature, despite being generated from different types of tissue. The EXP signature
was generated from intestinal tissue, whereas the BALF signature was generated from
constituents of the respiratory tract. Among the common hits reversing at least two of
the signatures were two immunosuppressants (ciclosporin and sirolimus), an anti-
inflammatory medication (isoxicam), and two steroids (fludrocortisone and fluticasone).
Sirolimus (or rapamycin), an immunosuppressant and an mTOR inhibitor, is currently
undergoing investigation in several clinical trials in COVID-19 patients (NCT04371640,
NCT04341675, NCT04461340). Other hits currently in clinical trials for COVID-19
treatment include ciclosporin  (NCT04412785, NCT04392531), niclosamide in
combination with diltiazem (NCT04558021), and clofazimine in combination with

interferon beta-1b (NCT04465695).
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Among our four drug hits that reversed all three signatures, three drugs
demonstrated in vitro antiviral efficacy - bacampicillin, clofazimine, and haloperidol. Our
group found haloperidol decreased viral growth in SARS-CoV-2 infected Calu-3 cells
(Figure 4B) in a dose-dependent manner (Figure 4A). Haloperidol is a psychiatric
medication that is indicated for the treatment of psychotic disorders including
schizophrenia and acute psychosis. By blocking dopamine (mainly D2) receptors in the
brain, haloperidol eliminates dopamine neurotransmission which leads to improvement
of psychotic symptoms®. Haloperidol can also bind to the sigma-1 and sigma-2
receptors, which are implicated in lipid remodeling and cell stress response®. As
reported by Gordon et al*?, the SARS-CoV-2 proteins Nsp6 and ORF9c interact with the
sigma-1 receptor and the sigma-2 receptor2, respectively. Moreover, they found that
haloperidol decreased viral replication in SARS-CoV-2-infected Vero E6 cells. In
another more recent study, Gordon et al found in their analysis of a national electronic
medical record database that fewer hospitalized COVID-19 patients who were newly
prescribed haloperidol and other Sigma-binding typical antipsychotic medications
progressed to requiring mechanical ventilation compared to those who were newly
prescribed atypical antipsychotic medications that do not bind to Sigma receptors™.

Our testing of clofazimine demonstrated submicromolar antiviral effects of this
drug in SARS-Co-V-2 infected 293T-ACE2 and Vero E6 cells (Figures 4 and S3).
Clofazimine is an orally administered antimycobacterial drug used in the treatment of
leprosy. By preferentially binding to mycobacterial DNA, clofazimine disrupts the cell
cycle and eventually kills the bacterium®. In addition to being an antimycobacterial

agent, clofazimine also possesses anti-inflammatory properties primarily by inhibiting T
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lymphocyte activation and proliferation®”. Yuan et al. found that clofazimine inhibits
SARS-CoV-2 replication by interfering with spike-mediated viral entry and viral RNA
replication. Their work also demonstrated that clofazimine has antiviral efficacy against
SARS-CoV-2 in human embryonic stem cell-derived cardiomyocytes and in an ex vivo
human lung culture system, as well as antiviral synergy with remdesivir demonstrating
the potential of clofazimine as part of a combination treatment regimen for COVID-19%,

Our group found bacampicillin to have micromolar antiviral efficacy in SARS-Co-
V-2 infected 293T-ACE2 cells. Bacampicillin is an orally administered prodrug of
ampicillin typically prescribed for treating bacterial infections®. As identified by
SPOKE?®, bacampicillin was found to downregulate the GDF15 gene and upregulate the
NFKB2 (Nuclear Factor Kappa B Subunit 2) gene in studies by CMap® and LINCS*.
The GDF15 protein acts as a cytokine and is involved in stress response after cellular
injury, and the NFKB2 is a central activator of genes involved with inflammation and
immune function*’. Circulating levels of GDF15 have been found to be significantly
higher in COVID-19 patients who die*. Zhou et al.'s work revealed NF-kappa B
signaling as one of the main pathways of coronavirus infections in humans. While the
rapid conversion of bacampicillin to ampicillin in vivo makes this prodrug a less optimal
therapeutic candidate for COVID-19, our findings nevertheless provide insights into the
immunologic and inflammatory landscape from SARS-CoV-2 infection.

Overall, in testing of our drug hits across two human cell line assays, 11 of 16
exhibited inhibition of SARS-CoV-2 infection. In particular, three of our four consensus
drug hits demonstrated antiviral efficacy, with haloperidol showing reproducible

inhibition in Calu-3 cells, and bacampicillin and clofazimine inhibiting viral activity in
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293T-ACE2 cells without cytotoxicity. Many of our tested drugs can be administered
orally, and several are on the WHO Model List of Essential medications, including
ciclosporin, clofazimine, and haloperidol**. These results suggest that our drug
repositioning pipeline can rapidly identify readily available potential therapeutics in
antiviral contexts.

There are several limitations of our approach that should be recognized. Data
generated from cell lines (both the ALV and EXP signatures) might not accurately
represent the biological changes and responses in human infection. Moreover,
although the BALF signature was generated from fluid recovered from lavage of
infected human tissues, this primary response data was aggregated from a very limited
sample size (2 cases and 3 controls). Gathering samples from a larger number of
patients should generate a more robust gene expression signature and better inform
therapeutic predictions. Furthermore, the drug profiles from CMap were generated from
cell line data; drug data generated from more relevant tissue cultures (e.g. lung tissue)
may generate more appropriate comparisons.

The drug development response for SARS-CoV-2 / COVID-19 is rapidly
developing. One drug, remdesivir, recently received FDA approval for the treatment of
COVID-19, and numerous other drugs are being actively explored for possible
therapeutic value in COVID-19 cases. Utilizing a diverse set of transcriptomic SARS-
CoV-2 signatures, our drug repositioning pipeline identified 25 therapeutic candidates.
Validation experiments revealed antiviral activity for 11 of 16 drug hits. Further clinical
investigation into these drug hits as well as potential combination therapies is

warranted.
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METHODS
Study design

We have previously developed and used a transcriptomics based bioinformatics
approach for drug repositioning in various contexts including inflammatory bowel
disease, dermatomyositis, and spontaneous preterm birth. For a list of differentially
expressed genes, the computational pipeline compares the ranked differential
expression of a disease signature with that of a profile’®***. A reversal score based on
the Kolmogorov-Smirnov statistic is generated for each disease-drug pair, with the idea
that if the drug profile significantly reverses the disease signature, then the drug could

be potentially therapeutic for the disease.

SARS-CoV-2 gene expression signatures

Blanco-Melo et al. generated a differential gene expression signature using RNA-
seq on human adenocarcinomic alveolar basal epithelial cells infected with SARS-CoV-
2 propagated from Vero E6 cells (GSE147507)*. Due to the fast-moving nature of the
research topic, we opted to use this cell line data in lieu of waiting for substantial
patient-level data. This work identified 120 differentially expressed genes (DEGs) — 100
upregulated and 20 downregulated. We used these 120 genes as the ALV signature for
our computational pipeline (Table S1).

Lamers et al. performed RNA-seq on their organoid samples, from which

differentially expressed genes were calculated. These samples were grown in a medium
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with a Wnt surrogate supplement and infected with SARS-CoV-2 propagated from Vero
E6 cells (GSE149312). They detected 434 significant DEGs (FDR < 0.05). We
additionally applied a fold-change cutoff (|log, FC| > 2), resulting in 125 genes used as
the EXP signature (Table S2).

Xiong et al. performed RNA-seq analysis of BALF samples from two COVID-19
patients (two samples per patient) and three healthy controls. We processed their raw
read counts in order to construct a differential signature (see below for details). FASTQ
files were downloaded from the Genome Sequence Archive®*® under accession
number CRA002390. Paired-end reads were mapped to the hgl9 human reference
genome using Salmon (v.1.2.0) and assigned Ensembl genes. After read quality control,
we obtained quantifications for 55,640 genes in all samples. In order to identify genes
differentially expressed between cases and controls for the BALF samples, we
guantified gene expression as raw counts. Raw counts were used as inputs to DESeq2
(v.1.24.0 R package) to call differentially expressed genes (DEGSs). After adjusting for
the sequencing platform, the default settings of DESeq2 were used. Principal
components were generated using the DESeg2 function (Figure S2), and heat maps
were generated using the Bioconductor package pheatmap (v.1.0.12) using the rlog-
transformed counts (Figure S3). Values shown are rlog-transformed and row-
normalized. Volcano plots were generated using the Bioconductor package
EnhancedVolcano (v.1.2.0) (Figure S4). Retaining only protein-coding genes and
applying both a significance threshold and a fold-change cutoff (FDR < 0.05, |log, FC| >

4), we obtained 1,349 genes to be used as the BALF signature (Table S3).
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Pathway enrichment analysis

Functional enrichment gene-set analysis for GSEA (Gene Set Enrichment
Analysis) was performed using fgsea (v.1.12.0 R package) and the input gene lists were
ranked by log2 fold change. The 50 Hallmark Gene Sets used in the GSEA analysis
were downloaded from MSigDB Signatures database®*’. For GO (Gene Ontology)
terms, identification of enriched biological themes was performed using the DAVID

database®.

Drug gene expression profiles

Drug gene expression profiles were sourced from Connectivity Map (CMap), a
publicly-available database of drugs tested on cancer cell lines®. CMap contains a set
of differential gene expression profiles generated from treating cultured human cells
with a variety of different drugs and experimental compounds. These profiles were
generated using DNA microarrays to assay mRNA expression. These drug profiles are
ranked genome-wide profiles (~22,000 genes) of the effects of the drugs on various cell
lines. 6,100 gene expression profiles are presented in CMap. A total of 1,309
compounds were tested in up to 5 different cell lines. The overlap between the gene

lists of CMap and the SARS-CoV-2 signature is 109 genes.

Computational gene expression reversal scoring
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To compute reversal scores, we used a non-parametric rank-based method
similar to the Kolmogorov-Smirnov test statistic. This analysis was originally suggested
by the creators of the CMap database and has since been implemented in a variety of
different settings'® %%, Similar to past works, we applied a pre-filtering step to the
CMap profiles to maintain only drug profiles which were significantly correlated with
another profile of the same drug. Drugs were assigned reversal scores based on their
ranked differential gene expression profile relative to the SARS-CoV-2 ranked
differential gene expression signature. A negative reversal score indicated that the drug
had a profile which reversed the SARS-CoV-2 signature; that is, up-regulated genes in

the SARS-CoV-2 signature were down-regulated in the drug profile and vice versa.

Statistical analysis

P-values were adjusted using the false discovery rate (FDR; Benjamini-
Hochberg) procedure. P-values for individual drug hits were obtained by comparing
reversal scores to a distribution of random scores. Negative reversal scores were
considered significant if they met the criterion FDR < 0.05. For drugs tested multiple
times (e.g. different cell lines), we used the most reversed profile (lowest negative
score). For significance values of the number of drugs reversing multiple signatures, we
constructed distributions of the common reversal (reversing two of three signatures) and
the consensus reversal (reversing three of three signatures) by randomly sampling the

same number of drug profiles for each signature from CMap.

Single-cell data analysis
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Quantification files were downloaded from GEO GSE145926. An individual Seurat
object for each sample was generated using Seurat v.3. While the data has been
filtered by 10x's algorithm, we still needed to ensure the remaining cells are clean and
devoid of artifacts. We calculated three confounders for the dataset: mitochondrial
percentage, ribosomal percentage, and cell cycle state information. For each sample,
cells were normalized for genes expressed per cell and per total expression, then
multiplied by a scale factor of 10,000 and log-transformed. Low quality cells were
excluded from our analyses— this was achieved by filtering out cells with greater than
5,000 and fewer than 300 genes and cells with high percentage of mitochondrial and
ribosomal genes (greater than 10% for mitochondrial genes, and 50% for ribosomal
genes). SCTransform is a relatively new technique that uses "Pearson Residuals" (PR)
to normalize the data. PR's are independent of sequencing depththanks®. We "regress
out" the effects of mitochondrial and ribosomal genes, and the cell cycling state of each
cell, so they do not dominate the downstream signal used for clustering and differential
expression. We then performed a lineage auto-update disabled r dimensional reduction
(RunPCA function). Then, each sample was merged together into one Seurat object.
Data were then re-normalized and dimensionality reduction and significant principal
components were used for downstream graph-based, semi-unsupervised clustering into
distinct populations (FindClusters function) and uniform manifold approximation and
projection (UMAP) dimensionality reduction was used. For clustering, the resolution
parameter was approximated based on the number of cells according to Seurat
guidelines; a vector of resolution parameters was passed to the FindClusters function

and the optimal resolution of 0.8 that established discernible clusters with distinct
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marker gene expression was selected. We obtained a total of 21 clusters representing
the major immune and epithelial cell populations. To identify marker genes driving each
cluster, the clusters were compared pairwise for differential gene expression
(FindAllIMarkers function) using the Likelihood ratio test assuming an underlying
negative binomial distribution (negbinom). For visualization of gene expression data
between different samples a number of Seurat functions were used: FeaturePlot,

VInPlot and DotPlot.

Experimental validation

Cell Lines

For studies at the Gladstone Institutes, Calu-3 cells, a human lung epithelial cell line
(American Type Culture Collection, ATCC HTB-55), were cultured in advanced MEM
supplemented with 2.5% fetal bovine serum (FBS) (Gibco, Life Technologies), 1% L-
GlutaMax (ThermoFisher), and 1% penicillin/streptomycin (Corning) at 37°C and 5%
CO,. SARS-CoV-2 Isolate USA-WA1/2020 was purchased from BEI Resources and

propagated and titered in Vero EG6 cells.

Compounds

Selection of compounds for testing was based on side effect profiles and compound
availability. Bacampicillin (B0O070000), ciclopirox (SML2011-50MG), ciclosporin
(C2163000), clofazimine (1138904-200MG), dicycloverine (D1060000), fludrocortisone

(1273003-200MG), fluticasone (1285873-100MG), haloperidol (H1512-5G), isoxicam
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(11762-1G), lansoprazole (1356916-150MG), metixene (M1808000), myricetin (M6760-
10MG), pentoxifylline (1508901-200MG), sirolimus (S-015-1ML), tretinoin (1674004-
5X30MG), and valproic acid (1708707-500MG) were purchased from Sigma-Aldrich.

Remdesivir (GS-5734) was purchased from Selleckchem.

Compounds were resuspended in DMSO according to manufacturer’s instructions and

serially diluted to the relevant concentrations for treatment of infected cells.

Infection Experiments

All work involving live SARS-CoV-2 was performed in the BSL3 facility at the Gladstone
Institutes with appropriate approvals. Calu-3 cells were seeded in 96-well plates for 24h,
infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.05, and treated with
compounds. 72 hours post infection, supernatant was collected for RNA extraction and
the RNA was analyzed using RT-qPCR to quantify viral genomes present in the
supernatant. SARS-CoV-2 specific primers targeting the E gene region: 5'-
ACAGGTACGTTAATAGTTAATAGCGT-3’ (Forward) and 5
ATATTGCAGCAGTACGCACACA-3' (Reverse) were used to quantify cDNA on the
7500 Fast Real-Time PCR system (Applied Biosystems). Cells were fixed with
paraformaldehyde and used for immunofluorescence analysis with dsRNA antibody
(SCICONS) and DAPI stain. Images were acquired and analyzed using ImageXpress

Micro Confocal High-Content Imaging System.
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In Vitro Microneutralization Assay for SARS-CoV-2 Serology and Drug Screening

For studies carried out at Mount Sinai, SARS-CoV-2 was propagated in Vero E6

12,34

cells and 293T-ACE2 cells, as previously described in . Two thousand cells were

seeded into 96-well plates in DMEM (10% FBS) and incubated for 24 h at 370°C,5%
CO2. Then, 2 h before infection, the medium was replaced with 100 yl of DMEM (2%
FBS) containing the compound of interest at concentrations 50% greater than those
indicated, including a DMSO control. The Vero E6 cell line used in this study is a kidney
cell line; therefore, we cannot exclude that lung cells yield different results for some
inhibitors. Plates were then transferred into the Biosafety Level 3 (BSL3) facility and 100
PFU (MOI = 0.025) was added in 50 yl of DMEM (2% FBS), bringing the final
compound concentration to those indicated. Plates were then incubated for 48 h at
37 1°C. After infection, supernatants were removed and cells were fixed with 4%
formaldehyde for 24 h before being removed from the BSL3 facility. The cells were then
immunostained for the viral NP protein (an in-house mAb 1C7, provided by Dr. Thomas
Moran) with a DAPI counterstain. Infected cells (488 nM) and total cells (DAPI) were
guantified using the Celigo (Nexcelcom) imaging cytometer. Infectivity is measured by
the accumulation of viral NP protein in the nucleus of the Vero E6 cells and 293T-ACE2
cells (fluorescence accumulation). Percentage infection was quantified as ((infected
cells/total cells) — background) x 100 and the DMSO control was then set to 100%
infection for analysis. The IC50 and IC90 for each experiment were determined using
the Prism (GraphPad) software. Cytotoxicity was also performed using the MTT assay

(Roche), according to the manufacturer’s instructions. Cytotoxicity was performed in

25


https://doi.org/10.1101/2020.10.23.352666
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.352666; this version posted October 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

uninfected VeroE6 cells with same compound dilutions and concurrent with viral

replication assay. All assays were performed in biologically independent triplicates.
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