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Abstract 

Genome-wide association studies (GWAS) have identified more than 140 prostate cancer 

(PrCa) risk regions which provide potential insights into causal mechanisms. Multiple lines of 

evidence show that a significant proportion of PrCa risk can be explained by germline causal 

variants that dysregulate nearby target genes in prostate-relevant tissues thus altering disease 

risk. The traditional approach to explore this hypothesis has been correlating GWAS variants 

with steady-state transcript levels, referred to as expression quantitative trait loci (eQTLs). In 

this work, we assess the utility of chromosome conformation capture (3C) coupled with 

immunoprecipitation (HiChIP) to identify target genes for PrCa GWAS risk loci. We find that 

interactome data confirms previously reported PrCa target genes identified through 

GWAS/eQTL overlap (e.g., MLPH). Interestingly, HiChIP identified links between PrCa GWAS 

variants and genes well-known to play a role in prostate cancer biology (e.g., AR) that are not 

detected by eQTL-based methods. We validate these findings through CRISPR interference 

(CRISPRi) perturbation of the variant-containing regulatory elements for NKX3-1 and AR in the 

LNCaP cell line. Our results demonstrate that looping data harbor additional information beyond 

eQTLs and expand the number of PrCa GWAS loci that can be linked to candidate susceptibility 

genes. 

Introduction 

Prostate cancer (PrCa) is the most common cancer in men, the second leading cause of cancer 

deaths worldwide, and has a strong familial component 1–4. Genome wide association studies 

(GWAS) have identified single nucleotide polymorphisms (SNPs) associated with increased risk 

of PrCa across 147 predominantly non-coding genomic loci 5, collectively explaining 28.4% of 

familial risk 6–9. With the vast majority of risk variants discovered by PrCa GWAS located outside 

protein-coding regions, the molecular mechanisms driving pathogenesis have only been 
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described for a handful of loci 10–15. GWAS loci predominantly colocalize with tissue-specific 

regulatory elements thus supporting the hypothesis that risk variants exert their effects on 

disease by influencing the transcriptional levels of their target genes. For example, a substantial 

proportion of PrCa heritability lies in regions marked by H3K27ac 16, a histone modification 

marking active enhancers and promoters 17–19.   

A standard approach to link variants to genes is through expression quantitative trait loci (eQTL) 

analysis, which identifies genotypes that correlate with transcript levels across individuals in a 

target tissue of interest 20–22. Overlapping eQTLs with variants identified by GWAS is a powerful 

tool to prioritize target genes for further functional investigation 20,21,23–28. However, eQTLs have 

several limitations. They are primarily studied under steady-state conditions, therefore eQTLs 

that are elicited under specific conditions are missed. For example, context-specific eQTLs have 

been identified after stimulation with interferon-γ and bacterial lipopolysaccharides in monocytes 

29. Second, statistical power for eQTL identification is dependent on sample and effect size with 

many eQTLs being undetected (i.e. a false negative), particularly for hard-to-collect tissues 

and/or eQTLs in a rare cell type. Despite some PrCa GWAS loci mapping near well-known 

prostate cancer biology genes, such as FOXA1, GATA2, AR, and MYC, the absence of strong 

eQTL associations with these transcripts is notable. This suggests that traditional eQTL/GWAS 

overlap may fail to detect important susceptibility genes for PrCa. 

Chromosome conformation capture (3C)-based assays have recently emerged as powerful 

tools to evaluate physical interactions between regulatory elements and target genes in the 

context of GWAS, including prostate cancer risk 30–32 and can be used as an orthogonal method 

to validate eQTL-based findings. Efficiencies of 3C-based techniques can be increased by 

enriching for interactions via chromatin immunoprecipitation against proteins, such as H3K27ac, 

a marker of active promoter/enhancer activity (HiChIP) 33–35 or through nucleic acid hybridization 

36.  
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Notably, across a number of models, enhancer-promoter contacts (loops) pre-exist at 

stimulation-responsive genes prior to the stimulus 37–39. In other words, stimulation does not 

induce significant de novo looping even at genes that are transcriptionally responsive in 

differentiated cells. These observations raise the hypothesis that looping (measured even in the 

steady-state) can identify GWAS target genes beyond traditional GWAS/eQTL overlap; that is, 

looping could reveal eQTL-target gene relationships that are observable only under certain 

contexts (e.g., cell-type) and/or capture eQTLs with small, but important, effects. 

We utilized high-resolution H3K27ac-HiChIP data in the LNCaP prostate cancer cell line to 

identify links between target genes and PrCa risk loci. We linked 99 out of 130 known 

susceptibility loci for PrCa with 665 genes and observed a significant overlap between eQTL-

target gene pairs and loops. Notably, we identified looping between candidate PrCa causal 

variants from GWAS and genes with established roles in PrCa biology at eQTL-negative loci. 

We used CRISPR interference (CRISPRi) to functionally validate the enhancer-promoter 

interaction for NKX3-1 and AR. Overall, our results confirm that 3C-based strategies can not 

only validate eQTLs, but can also discover important target gene links not detected by current 

GWAS/eQTL strategies.   

Results 

A high-resolution H3K27ac-HiChIP chromatin contact map for LNCaP  

We performed H3K27ac HiChIP in LNCaP across 5 biological replicates and identified 126,280 

loops (FitHiChIP, FDR<0.01, Methods and Figure 1). We called between 4,000 and 14,000 

loops from a read depth ranging from 183,000 reads to 235,000 reads across individual 

replicates (Table S1). We observed that loop count and loop length depended on read depth. 

Replicates 1 and 5 had the highest number of high-quality uniquely mapped read pairs and final 

number of loops, and therefore the highest median loop length and paired end tag (PET) counts 
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(Figures S1a and S1b). The intersection of significantly called loops across the 5 replicates 

ranged from 20% to 60%. Once the individual replicates data was merged, each replicate 

shared 90% or more significantly called loops with the merged data (Table S2). Pairwise 

correlations of PET counts supporting each loop were significant across all replicates (⍴> 0.7, p-

value < 0.001, Figure 2). Merging data across all replicates substantially increased the number 

of significant loops to 126,280. The mean (median) loop length was 173kb (95kb), and the mean 

(median) number of paired-end tags (PETs) per loop was 46 (19) (Table S1). As expected, the 

number of loops decreased with increasing loop distance (Figure S1b). 17,690 genes (out of 

27,063 RefSeq genes considered) had promoters overlapping at last one loop; each gene 

promoter overlaps a mean (median) of 7.9(6) loops per gene, with a mean (median) of 351 

(174) PETs per gene. Gene connectivity, defined as the number of loops per gene promoter (or 

as total number of PETs per gene), is moderately correlated with gene expression activity (as 

assayed by RNA-seq in the same cell line, Methods) (Spearman ⍴ = 0.489; p-value < 2.2e-16) 

(Figures S3a and S3b).  

Prior studies have demonstrated that looping interactions do not qualitatively change in 

response to a perturbation 37–39. To assess whether loop formation correlates with differential 

expression across perturbations and states, we evaluated the looping status of genes in 

androgen stimulated cells and during tumorigenesis (Methods). We observed that genes that 

are destined to change under these conditions have pre-existing loops (e.g., upon androgen 

stimulation, genes with >1.5-fold changes in transcript levels after 4h have 10 loops on average 

whereas the average number of loops of any gene in LNCaP is 9, see Table S3; Table S4). 

This observation suggests that de novo loop formation is not a major mechanism underlying 

gene expression changes in this data. 

H3K27ac-HiChIP loops are enriched for eQTLs in prostate tissue 
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To evaluate if chromatin interactions are enriched in prostate eQTLs, we assessed the overlap 

of loops with eQTLs measured in two prostate datasets: Thibodeau eQTLs in prostate normal 

tissue (n=471) 40, and TCGA eQTLs in prostate tumor tissue (n=378) 41. Local eQTLs (within 

3Mb of every gene) were called using standard approaches (Methods). First, we found that the 

top eQTL variant for each eGene is 2 times more likely to fall within a HiChIP anchor than a 

random SNP in a 3Mb region centered on the eGene (empirical p-value 0.0099, FigureS4a). 

Second, we found that loops with eQTLs in one anchor were more likely to loop to the promoter 

of their eGene than expected by chance (1.2-fold change compared to random, empirical p-

value = 0.0099, Methods), across a range of distances from their target promoters (Figures 

S4b and S4c).  

H3k27ac-HiChIP loops link prostate cancer risk variants to target 

genes 

Next, we quantified the enrichment of GWAS signals at the anchor regions of the loops using 

stratified linkage disequilibrium score (LDSC) regression analysis 42 integrating the H3K27ac-

HiChIP loops with the largest PrCa GWAS to date 5. Variants residing in loop anchors show high 

enrichment of prostate cancer heritability as compared to random variants in the genome overall 

(s-LDSC enrichment of 2.61, p=1.06E-09), and the enrichment is even greater when the 

variants are also falling within H3K27ac peaks (our calling allows for one anchor not to be 

acetylated thus yielding many loops with one non-acetylated anchor, see Methods) (s-LDSC 

enrichment of 14.06, p = 2.54e-5 for all loop types, Table S5). This confirms that H3K27ac-

HiChIP looping localizes relevant PrCa GWAS signal. Interestingly, we observed a higher 

enrichment when restricting loops to specific categories (e.g., 18.72 for enhancer-promoter, 

p=8.93e-6, Table S5).  
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Next, we performed probabilistic fine-mapping of the prostate cancer GWAS at 130 of the 147 

previously reported risk loci except 8q24 for which exhaustive fine-mapping is available 11. We 

integrated 1,953 HiChIP loops with at least one anchor overlapping a PrCa credible causal 

variant in 104 risk loci regions. Overall, 2,016 PrCa credible causal variants linked to 665 genes 

across these 104 loci (Figure 3, Table S6). 48 (out of 104) regions have 3 or fewer HiChiP 

genes overlapping credible GWAS SNPs (Table S7). Of the 665 genes, 37 are eGenes in 

prostate tissue and have evidence of GWAS/eQTL overlap with PrCa risk variants either 

through TWAS and/or co-localization (Figure 3, Table 1, Table S8). One example is MLPH 

(Figure 4a), which is an eGene in prostate tissue and has been previously reported in normal 

prostate tissue from GTEx 43. By contrast, 4 genes (CEACAM21, MOB2, ASCL2, GDF7) are 

eGenes and show evidence of TWAS/Colocalization but are not supported by any HiChiP loop 

(Table S8).  

Looping maps PrCa GWAS variants to known PrCa biology genes  

We noted that many genes previously implicated in PrCa biology, such as GATA2, AR, MYC, 

and NKX3-1 are nearby PrCa GWAS risk loci. Despite the clear role of these genes in PrCa, 

compelling evidence linking risk variants to these genes through expression-based methods is 

currently lacking. Interestingly, looping provides links from promoters of these genes to GWAS 

risk regions. We highlight three such genes MYC, AR and NKX3-1. 

MYC has an uncontested role in cancer biology and has been associated with numerous cancer 

types through GWAS 44–46, MYC has never been reported as an eGene. A study from Matejcic 

et al. 11 fine-mapped the prostate cancer susceptibility region at 8q24 where MYC is located and 

observed 174 variants in the 95% credible set. 169 of these candidate causal variants overlap 

one of 225 HiChIP loops, and the majority (152/169) link to the MYC promoter (Figure 4b, 

Table S9).   
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AR is critical for prostate cancer as PrCa is dependent on the actions of androgens and 

therefore on the function of the AR gene. More than half of primary tumors and almost all tumor 

metastases are associated with overexpressed or deregulated AR 47,48, and mutations in the AR 

gene have been associated particularly with tumor progression 49–51. We identified H3K27Ac 

HiChIP loops that link PrCa credible SNPs located in the X chromosome with the AR promoter, 

potentially pointing to enhancer regions important for PrCa (Figure 4c). Moreover, these 

variants have never been implicated as eQTLs. 

NKX3-1 is another interesting example since it is one of the most androgen responsive genes in 

the LNCaP cell line, it is involved in prostate development, and is recurrently mutated in 

advanced PrCa 52–55. We measured looping before and after androgen stimulation in the LNCaP 

cell line and we observed that the number of NKX3-1 promoter loops is largely unchanged 

(Methods, Table S4 and Figure 4d). For example, the expression changes by ~2 fold after 

4(16) hours of androgen stimulation (logFC = 2.23(1.88) p-value < 1E-50), while the total 

number of loops change minimally (from 14 loops to 11 and to 13, respectively for the two time 

points, Table S4). These data indicate that transcriptionally dynamic genes, which may 

represent context-dependent eQTL targets are discoverable through looping. 

Looping identifies germline-somatic interactions  

We next investigated germline-somatic interactions by evaluating whether genes known to be 

somatically mutated in PrCa oncogenesis also show evidence of looping to germline PrCa 

GWAS. We identified a set of 119 prostate cancer–genes curated from large-scale PrCa studies 

that show evidence of somatically acquired mutations 56–58 (Methods). Interestingly these genes 

are on average closer to a PrCa credible causal variant when compared to other genes within a 

3Mb region, providing additional evidence of their importance to PrCa (Figure S5, 30% of PrCa 

genes compared to 8% of all genes are within 100Kb of PrCa credible causal variant). Eighteen 

(out of 104) genes have HiChIP loops linking a credible causal variant to the promoter of the 
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gene (Table 1). Strikingly, none show significant colocalization GWAS/eQTL, with only 2 genes 

being eGenes in existing prostate transcriptomic data (Figure 3).  

Validation of enhancer-promoter contacts using CRISPRi   

Next, we validated candidate HiChIP SNP-gene targets at PrCa two GWAS loci using CRISPRi 

in LNCaP cells. We selected two GWAS loci where anchors containing a candidate causal 

variant looped to genes that play clear roles in PrCa biology, NKX3-1 and AR (Figure 5). As 

described above, these two loci have not been strongly implicated through eQTL- or 

COLOC/TWAS-based analyses. Putative regulatory enhancer regions containing candidate 

causal variants within a HiChIP anchor and overlapping DNase hypersensitivity sites (DHS) 

were identified and targeted. Guide RNAs (gRNAs) were designed and tested against distinct 

DHS peaks to evaluate the role of these enhancers on NKX3-1 and AR expression (Table S10). 

Suppression of these enhancer regions containing candidate causal variants significantly 

reduced RNA levels in the target genes (Figure 5, Table S11).  

Discussion 

A central issue driving post-GWAS studies is a mechanistic understanding of non-protein coding 

risk loci, which account for over 90% of GWAS variants. In this work, we outlined a systematic 

approach, based on chromosome conformation capture technology, to link GWAS PrCa risk 

SNPs to candidate target genes. We used H3K27Ac HiChIP methodology as a means to assay 

genome-wide enhancer-promoter chromatin interactions. 3C-based methods measure physical 

interactions and, thus complement other approaches, such as eQTLs, which are based on 

association between genotypes and transcript levels. eQTL studies can be confounded by LD 

and are dependent on sample size whereby interactome maps do not suffer from these 

limitations.  
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An additional limitation of large-scale expression-based studies is that they are based on 

steady-state transcript levels. By contrast, studies have demonstrated that looping is less 

dynamic in response to defined perturbations 37,39,59. Stated another way, looping identifies the 

potential of an enhancer-promoter interaction to be active and is less informative as a 

quantitative readout of transcriptional levels of genes. This observation raises the provocative 

notion that looping can identify latent, stimulus- and context-dependent eQTLs and highlight 

important candidate genes without requiring experiments that directly measure these other 

conditions. This rationale is consistent with recent reports showing that steady-state eQTLs are 

insufficient to explain the majority of disease heritability 60. Indeed, our results showed that 

important PrCa biology genes interact with risk loci that previously escaped detection through 

expression-based methods.  

Other techniques can be used to assay enhancer-promoter interactions. Traditional Hi-C can 

assay all loops; however Hi-C can lack resolution in mapping the enhancer-promoter link if not 

sequenced to extremely high depths. Through enrichment based on immunoprecipitation of a 

target protein, H3K27Ac HiChIP is an efficient way to detect enhancer-promoter loops and has 

been shown to identify a similar number of loops with ten-fold less sequencing compared to Hi-

C 61. ChIA-PET is another whole genome 3C-based assay able to detect protein-centric long 

range contacts, however this method still requires hundreds of millions of cells per experiment 

and is less efficient than HiChIP 61. 

As with any method, there are limitations of HiChIP. First, all 3C-based methods have limited 

power to confidently detect nearby genes. Second, the computational pipelines to analyze 

HiCHiP data are still in their infancy and future developments could affect results. HiChIP loop-

calling is dependent on H3K27ac ChIP-seq peak-calling used for loop anchors. In this study, we 

defined promoters based on the longest transcript from TSS from RefSeq, which reports the 

most representative initiation site across different cell types. Using this definition, novel genes 
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with as-yet unannotated start sites are missed. Furthermore, a 5-kb resolution of the HiChIP 

data analysis limits our definition of anchors, and there is the risk that the additional 5-kb 

padding added to anchors could result in decreased resolution of enhancer-promoter links. In 

this work we focused on H3K27ac histone modification. In future studies, assays using other 

modifications (e.g., H3K4me1, H3K4me2) could be used in combination to better refine 

enhancer and promoter regions 62.  

We demonstrate the benefit of using HiChIP to both validate eQTLs as well as prioritize genes 

for PrCa that are missed by eQTL-based methodologies. Moving forward, we propose to utilize 

the complementary techniques of eQTL-based methodologies and HiChIP to prioritize genes at 

GWAS loci. This work also creates an opportunity to create a unified model combining 

expression and interaction information to extract the strengths of both methods.  
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Methods 

H3K27ac ChiP-Seq in LNCaP. H3K27Ac ChiP using either LNCaP (CRL1740, ATCC) was 

performed as previously described 51. 10 million cells were fixed with 1% formaldehyde at room 

temperature for 10 minutes and quenched. Cells were collected in lysis buffer (1% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS and protease inhibitor (#11873580001, Roche) in PBS) 63. 

Chromatin was sonicated to 300-800 bp using Covaris E220 sonicator (140PIP, 5% duty cycle, 

200 cycle burst). H3K27ac Antibody (C15410196, Diagenode, 1:600 ratio) were incubated with 

40 µl of Dynabeads protein A/G (Invitrogen) for at least 6 hours before immunoprecipitation with 

the sonicated chromatin overnight. Chromatin was washed with LiCl wash buffer (100 mM Tris 

pH 7.5, 500 mM LiCl, 1% NP-40, 1% sodium deoxycholate) 6 times for 10 minutes. Eluted 

sample DNA wes prepared as the sequencing libraries using the ThruPLEX-FD Prep Kit 

(Rubicon Genomics). Libraries were sequenced using 150-base pair single reads on the 

Illumina platform (Illumina) at Novogene. For further analyses, we used the union of ChipSeq 

narrow and broad peaks in regular media. This comprises 49,638 ChipSeq peaks in LNCaP 

cells (length of peaks ranged from 146 to 129,126 bases). 43,335 out of 49,638 peaks overlap 

HiChIP anchors.  

Peak calling. ChIP-seq and ATAC-seq were processed through the ChiLin pipeline 64. Briefly, 

Illumina Casava1.7 software used for base calling and raw sequence quality and GC content 

were checked using FastQC (0.10.1). The Burrows–Wheeler Aligner (BWA, version 0.7.10) was 

used to align the reads to human genome hg19. Then, MACS2 (v. 2.1.0.20140616) was used 

for peak calling with a FDR q-value threshold of 0.01. Bed files and Bigwig files were generated 

using bedGraphToBigWig for H3K27Ac. The union of H3K27Ac narrow and broad peaks was 

used in the downstream analyses. The following quality metrics were assessed for each 

sample: 1. Percentage of uniquely mapped reads , 2. PCR bottleneck coefficient to identify 

potential over amplification by PCR, 3. FRiP (fraction of non-mitochondrial reads in peak 
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regions), 4. Peak Number, 5. Number of peaks with 10-fold and 20-fold enrichment over 

background, 6. Fragment size, 7. Percentage of the merged peaks with promoter, enhancer, 

intron, or intergenic, and 8. Peak overlap with DNaseI hypersensitivity sites. For datasets with 

replicates, ChiLin calculates the replicate consistency with two metrics: 1. Pearson correlation of 

ChIP-seq reads across the genome using UCSC software wigCorrelate after normalizing signal 

to reads per million and 2. percentage of overlapping peaks in the ChIP replicates. 

RNA-Seq in LNCaP. 1 million of LNCaP cells were harvested for RNA seq. For the DHT 

treatment samples, LNCaP cells were grown in hormone depleted media for 3 days then treated 

with 10nM DHT for either 4h or 16h. Total RNA was collected from the cells using RNeasy kit 

(74104, Qiagen) with DNase I treatment (79254, Qiagen). The library preparations, quality 

control and sequencing on a HiSeq platforms with paired-end 150 bp (PE 150) were performed 

by Novogene. RNA-seq data were processed using the VIPER pipeline 65. Reads were aligned 

to the hg19 human genome build with STAR 66. FPKM values were calculated with Cufflinks 67 

for 20,114 RefSEQ genes included in the VIPER repository. Differential expression (DE) 

analyses was performed with the DESeq2 R package 68, using supervised analysis based on 

gene expression levels (counts from STAR) and cutoffs of FDR-adjusted p-value (padj) < 0.05 

and log2 fold-change > 1. DHT treatment of LNCaP for 4 or 16 hours was compared to vehicle 

treatment (two replicates each). We called loops at FDR 1%, and annotated genes to loops, 

following the procedure described below. The total number of loops called in 4hrs and 16 hrs 

were 98,960 and 183,958, respectively. The total number of genes annotated in 4hrs and 16 hrs 

HiChIP loop data were 17,649 and 20,899, respectively. We considered only the genes in 

common between LNCaP and 4hr sample (Ngenes = 15630), and between LNCaP and 16hr 

sample (Ngenes = 16979). 

H3k27ac HiChIP in LNCaP. HiChIP was performed mainly following the procedure described in 

61, trypsinized 10 million LNCaP cells were fixed with 1% formaldehyde at room temperature for 
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10 minutes and quenched. Sample was lysed in HiChIP lysis buffer and digested with MboI 

(NEB) for 4 hrs. After 1hr of biotin incorporation with biotin dATP, the sample was ligated using 

T4 DNA ligase for 4 hrs and, chipped with H3K27ac antibody (DiAGenode, C1541019) after 

chromatin.  Reverse crossed IP sample was pulled down with streptavidin C1 beads (life tech) 

treated with Transposase (illumina) and was amplified with reasonable cycle numbers based on 

the qPCR using 5cycle-preamplified library. Library was submitted sequenced using 150-base 

pair end reads on the Illumina platform (Novogene). All of these libraries were generated using 

the 4-bp cutter MboI restriction fragment. The raw fastq files (paired-end data) were first 

trimmed to remove adaptor sequences using Trim Galore 69. HiC-Pro version 2.9.0 70 was used 

to align the reads to the hg19 human genome, assign reads to MboI restriction fragments, 

remove duplicate reads. We used the following options: MIN_MAPQ = 20, 

BOWTIE2_GLOBAL_OPTIONS = --very-sensitive --end-to-end --reorder, 

BOWTIE2_LOCAL_OPTIONS = --very-sensitive --end-to-end --reorder, GENOME_FRAGMENT 

= MboI_resfrag_hg19.bed, LIGATION_SITE = GATCGATC, LIGATION_SITE = 'GATCGATC', 

BIN_SIZE = '5000'. All other default settings were used. The HiC-Pro pipeline selects only 

uniquely mapped valid read pairs involving two different restriction fragments to build the 

contact maps.  

We applied FitHiChIP version 5.1 71 for bias-corrected peak calling and DNA loop calling. 

FitHiChIP models the genomic distance effect using a spline fit, normalizes for coverage 

differences using regression, and computes statistical significance estimates for each pair of 

loci. The FitHiChIP loop significance model is used to determine whether interactions are 

significantly stronger than the random background interaction frequency. We used 49,638 

regions from H3K27Ac LNCaP union of narrow and broad peaks as anchors to call loops. We 

used a 5Kb resolution and considered only interactions between 5kb-3Mb.  We used the peak to 

all for the foreground, meaning at least one anchor to be in the H3K27 peak but it doesn't have 
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to be both. The corresponding FitHiChiP options specification is “IntType=3”. For the global 

background estimation of expected counts (and contact probabilities for each genomic 

distance), FitHiChIP can use either peak-to-peak (stringent) or peak-to-all loops (loose) loops 

for learning the background and spline fitting. We specified the suggested option to merge 

interactions close to each other to represent a single interaction when their originating bins are 

closer. The corresponding FitHiChiP options specifications are “UseP2PBackgrnd=0” and 

“MergeInt=1” (FitHiChIP(L+M)). We used the default FitHiChIP q-value < 0.01 to identify 

significant loops. For comparisons across replicates, we used the results not merged 

MergeInt=0, as suggested by the authors. The length considered was between 5kb and 3Mb. 

We explored reproducibility across replicates in the following way. We have processed 5 

biological replicates separately using the FitHiChIP pipeline, as well as all replicates together in 

a dataset called “merged” made up of the combined reads across the replicates. We used the q-

value < 0.01 cutoff to define high confidence loops, and compared the level of accuracy 

achieved by one replicate and the merged data versus our high confidence loops (i.e., the 

proportion of reference loops reported by one replicate that are captured at differing number of 

loop calls from other replicates, or from our combined library).  The final number of significant 

loops (q-value < 0.01) considered in these analyses are those using background 0 and merged 

FitHiChIP settings.  

Mapping loops to enhancers and promoters. For loop annotations, we first extended loop 

anchors by 5kb on either side. To identify potential gene targets, we defined promoter regions 

around the TSS (+/- 500 bases) for 27,063 genes using RefSeq hg19 

(http://genome.ucsc.edu/cgi-

bin/hgTables?hgsid=694977049_xUU5i1QkIJ50dj5miBt9wkAYuxN3&clade=mammal&org=&db

=hg19&hgta_group=genes&hgta_track=knownGene&hgta_table=knownGene&hgta_regionType

=genome&position=&hgta_outputType=selectedFields&hgta_outFileName=knownGene.gtf); 27 

genes were removed because of ambiguous positions. The longest transcript was used to 
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define TSS based on strand. To define enhancers, we used the subset of 49,638 regions from 

H3K27ac LNCaP in regular media (union of narrow and broad peaks). We then labeled the 

promoters and enhancer regions that overlap either right or left anchors, and considered a loop 

as E-E if both the anchors overlap an enhancer region; a loop as P-P if both the anchors 

overlap a promoter region; a loop as E-P if only one anchor overlaps a promoter and the other 

an enhancer region; a loop as E-O or P-O if one anchor overlaps a promoter or enhancer and 

the other overlaps a region without an H3K27ac or a TSS (+/- 500 bases).  

Correlation of gene expression with looping. We considered only loops involving promoters 

(E-P, P-P, P-O). In cases where there were duplicated loops (supporting the same two anchors 

but in opposite directions), we summed the PETs read counts.  For each gene, we considered 

two measures of gene connectivity: (i) the number of loops with one anchor overlapping the 

promoter (the opposing anchor can overlap a promoter, an enhancer, or neither (“Other”)), (ii) 

the sum of PET counts across all loops overlapping the promoter. We compute a Spearman 

correlation between the expression across genes with both measures if connectivity. For the 

expression of every 13,274 genes that have looping and expression data, we averaged the 

FPKM value across two LNCaP RNA-Seq replicates. FPKM was converted to TPM by dividing 

the each FPKM value by the sum of all FPKM values of the respective sample, and multiplying 

by 1e6. We divided the genes into ten expression bins of equal size. We compare this to the log 

of the counts of loops (Figure S3) and the log of the counts of PETs (Figure S4B). Spearman 

correlations were computed between average TPM and log of counts of loops or PETs. To 

estimate the amount that each loop/PET contributes to expression, we fitted a linear regression 

(with or without adjusting for H3k27ac): (1) expression (TPM) ~ loops/PETs ; (2) expression 

(TPM) ~ loops/PETs + H3k27ac. The H3k27ac level per gene is extracted by overlapping 

H3k27ac broad peaks scores with each gene promoter. If more than one peak overlaps the 

region, we sum across scores. We report the value of the coefficient in the model to represent 
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the per-loop/per-PET contribution to expression, Spearman correlation in each version of the 

model, and report corresponding p-values.  

Credible sets of causal variants from Prostate Cancer GWAS. We used 147 SNPs 

previously reported5 index SNPs to define regions for fine-mapping with GWAS summary 

statistics from 72 downloaded from http://practical.icr.ac.uk/blog/?page_id=8164  (N=79,148 

cases and 61,106 controls) across 20,370,946 SNPs. SNPs were compared by chromosome 

and position to the 1000 Genomes phase 3, for allele and rsIDs matching. After filtering by 

MAF>=0.001, 15,818,179 SNPs remained, with 20,155 SNPs passing genome-wide 

significance (p<5e-08). A ~150kb window (adjusted manually) around the 147 index SNPs, 

which resulted in 137 regions after merging overlapping regions on chromosomes 4, 8, and 17 

was considered. In 6 of the regions (chr18.51504059.51971031.rs8093601, 

chr1.9945583.10662959.rs636291, chr6.170305546.170805546.rs138004030, 

chr7.1694537.2194537.rs527510716, chr9.123429584.124429584.rs1571801, 

chr9.21791998.22291998.rs17694493), a pvalue of genome-wide significance (p<5e-08) was 

not reached, so we do not consider these regions further. Furthermore, in the MYC region 

(8q24, 127.6–129.0Mb) we used 174 SNPs included in the 95% credible set from the JAM fine-

mapping (Supplementary Data 3 of Matejcic et al. 11 ). Therefore, the final number of PrCa risk 

loci considered was 130 (129 regions which we fine-mapped (described below), and one 

previously mapped MYC region). We used PAINTOR 73, a Bayesian statistical method, with no 

functional annotations and specifying a maximum of 1 causal SNP, to fine-map 129 regions 

(excluding MYC which was previously fine-mapped). We then constructed a 95% credible set 

for the most likely causal variants by taking the cumulative sum of the posterior probability until 

a cumulative 95% posterior probability was reached. The final probable causal set contained 

3,243 (3,069 from PAINTOR, 174 from JAM)  SNPs across 130 PrCa risk regions.  104 PrCa 
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loci overlapped 1,953 LNCaP loop anchors and 665 genes, connecting 2,016 fine-mapped 

SNPs.  

SNP-heritability enrichment for loop types. To estimate enrichment of PrCa risk heritability 

across functional categories, we ran stratified LDSC  regression using PrCa GWAS summary 

statistics from 72. First, we created custom bed tracks using H3K27ac peaks called from 

ChIPseq in LNCaP. We used the custom bed tracks to annotate SNPs genome-wide indicating 

their overlap. We computed annotation-specific LD scores using the above annotations, using 

the baseline model containing 53 functional annotation42 and estimated functional enrichments 

of heritability using sLDSC 74. 

eQTL in prostate tissues. eQTL results on two prostate-specific datasets were used: 

Thibodeau eQTLs in prostate normal tissue  40; TCGA eQTLs in prostate tumor tissue  41. 

Thibodeau dataset contains gene expression from tumor-adjacent normal prostate tissue on 

471 individuals 40, on autosomal and X chromosomes. TCGA dataset contains gene expression 

on 378 prostate cancer samples, only on autosomal chromosomes 41. We used MatrixEQTL 75 

and RNA sequencing and genotype data to conduct the gene expression linear regression 

association  for each study datasets. The cis-eQTLs were computed using a window of 3Mb 

from the TSS around the RefSeq genes, to match the HiChIP loop analysis. For the Thibodeau 

dataset, 51,232,032 SNP-eQTL pairs and 15,673 genes were tested, and a Bonferroni threshold 

of 0.05/51,232,032 was used to define “eQTLs” and “eGenes”. After the Bonferroni cut-off, there 

were 85,435 significant eQTLs and 4,747 eGenes.  For the TCGA dataset, 219,256,418 SNP-

eQTL pairs and 15,723 genes were tested, and a Bonferroni threshold of 0.05/219,256,418 was 

used to define “eQTLs” and “eGenes”. There were 86,555 significant eQTLs and 1,118 eGenes. 

Across both the datasets, we found 4,871 eGenes. To obtain the list of eQTL-eGene pairs, for 

each gene we selected the SNP with the most significant pvalue.  
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Genes with somatically acquired mutations in PrCa. Genes somatically mutated in prostate 

cancer were extracted from three publications: an exome sequencing study looking at both 

localized and advanced prostate cancer 56, TableS4 “Known in prostate cancer and Recurrently 

altered in cancer” and TableS6 “cancer_pathways_mutation”); a study looking at recurrent 

alterations in primary (localized) prostate cancer 57, TableS1C “SigMutated” and TableS1D 

“genes in wide peak” - we only took the gene highlighted in bold - and TableS1E “Fusions”); and 

an analysis describing recurrent alterations in metastatic prostate cancer 58, TableS5 

“SigMutated”). Together these sources identified 122 unique genes, of which 119 were in 

RefSeq and also considered in our analyses (missing MRE11A, FL1, WHSC1L1). 43 genes 

were within 3Mb of a credible risk SNP for PrCa.  

Gene expression data. Genes lists associated with gene expression were retrieved from the 

following sources:   

1) 908 Genes generally expressed in prostate tissue from GTEx 43 (TPM > 100 TPM). We 

downloaded GTEx median gene-level TPM by tissue from the GTEx website 

(GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct), and selected 

genes in RefSeq with a TPM>100.  

2) 803 genes from tissue-specific expression (top 10% t.stat from 76). We downloaded the file 

from 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/tstats/GTEx.tstat.ts

v) which contains t-statistics comparing each gene in the particular tissue to all other tissues 

using 24,842 genes in GTEx. We used only the 18,026 RefSeq genes. Then, we ordered the 

genes based on absolute value of the t statistics in prostate, and took the top 10%.  

3) 2,384 genes from differential gene expression tumor/normal 77. Differential gene regulation in 

prostate tissues was detected with GEPIA (http://gepia2.cancer-pku.cn/#degenes), which use 

the TCGA and GTEx projects databases to compare gene expression between tumor and 
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normal tissues under Limma, both under and over expressed. We used the default thresholds of 

logFC of 1 and qvalue cut-off of 0.01. 

Over-representation of eQTL-eGene links in HiChIP loops. eGenes that overlapped HiChIP 

were considered: n=3,837 for Thibodeau, n=870 for TCGA. For every gene, we chose a random 

SNP from the same window that eQTL was computed from (i.e. 3Mb for Thibodeau and TCGA 

data), and computed how many times this overlaps a HiChIP anchor. We constructed 100 

random control loop datasets by randomly flipping anchor1 (in 50% of the loops) or anchor2 (in 

the other 50%), and quantified eQTL-eGene that are supported by HiChIP loops in real data 

versus the random data. We find the empirical pvalue by comparing the proportion of eQTL-

eGene supported by HiChIP loops in the actual versus the 100 artificial loop datasets. 

GWAS/eQTL overlap. We tested for colocalization of GWAS and eQTL using COLOC with 

default parameters 78. COLOC TCGA tested 7,001 genes, 11 genes (9 of the 130 regions) had 

PP4 >= 0.75. COLOC Thibodeau tested 7,148 genes, 42 genes (33 of the 130 regions) had 

PP4 >= 0.75. In total 46 unique genes had evidence of colocalization. 32 unique genes (3 in 

TCGA, 22 in Thibodeau, 7 in common across the two datasets) were also eGenes under a strict 

Bonferroni threshold (see Methods above). We used the multi-tissue TWAS for PrCa from 79: 

This includes 892 significant TWAS associations (TWAS.P < 0.05 / 109170) in 45 tissues 

covering 217 genes (N = 4,458), including normal and tumor prostate. Restricting to only the 

genes in RefSeq, this includes 651 TWAS associations in 170 genes. We restrict to prostate 

specific results, specifically the results in "TCGA.PRAD_SP.TUMOR", "TCGA.PRAD.TUMOR", 

"GTEx.Prostate", which includes 190 signals and 74 unique genes, and 42 were also eGenes 

under a strict Bonferroni threshold. In total 101 unique genes had evidence from COLOC or 

TWAS, and 74 were also eGenes. 29 genes (COLOC) and 40 (TWAS) were also HiChIP genes 

(n=17,690), and 24 genes (COLOC) and 26 (TWAS) were also HiChIP genes looping to a 95% 

credible SNP (n=665) (Table 1).  
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CRISPR/dCas9-mediated repression and gene expression analysis. In order to create 

stable dCas9-KRAB expressing cell line LNCaP cells were infected with lenti-KRAB-dCas9-blast 

(Addgene, 89567) and selected with 6 µg/ml blasticidin for two weeks. sgRNAs were designed 

according to the "NGG" protospacer adjacent motive (PAM) restriction and gRNA efficiency 

score was calculated and ranked 80. Non-human genome targeting negative control and HPRT1 

promoter targeting positive control sgRNAs were also selected. sgRNA cassettes were 

synthesized (Integrated DNA Technologies) and cloned into lentiGuide-Puro (Addgene, 52963) 

vector. All sgRNA sequences are listed in Table S10. LNCaP cells stably expressing KRAB-

dCas9 were then subsequently infected with sgRNA vectors and selected with 2 µg/ml 

puromycin for five days. For gene expression, qRT-PCR 500 ng total RNA (Macherey- Nagel) 

was reverse transcribed (High Capacity Reverse transcription kit, LifeTechnologies) and cDNA 

was diluted (20x). SYBR Green assay was performed on Light Cycler 480 instrument (2x Probe 

Master Mix, Roche). All primer sequences are listed in Table S11. Relative gene expression 

was calculated based on the ddCT method 81. Each sample was measured by two biological 

and technical replicates. GAPDH1 gene was used as housekeeping genes to normalize the 

samples. 

CRISPRi data and analysis. The ddCT method 81 was used to determine relative gene 

expression alterations from CT values of the qPCR. Briefly, for each sample, the average of the 

housekeeping gene (ACTB) was used to calculate the dCT values for each of the three 

technical replicates, and the average dCT values were computed for each sample. After this, 

using the control sample average, the ddCT values were computed for each replicate. This 

shows the relative deviation of each sample from the control condition. The expression values 

for each condition was then computed using this formula: exp = 2^-ddCT. Finally, To compute 

the effects and the SEs, the averages of the expression values for each sample were combined 
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across the two biological replicates using a fixed effect meta-analysis. We then used a t-test to 

compare each sample to the control.  

 

Data Availability 

We provide HiChIP interactome maps integrated with GWAS and eQTL information generated 

as a resource to the research community to investigate PrCa GWAS mechanisms. 
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Figure 1: Experimental design. a. Description of experimental datasets and workflow of HiChIP analysis 

to call total LNCaP loops. b. Anchor and loop type definitions. c. Possible regulatory mechanism 

describing a causal variant in an enhancer anchor interacting with a promoter of a target gene. 
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Figure 2: Pairwise correlations of pair-end-tag (PET) counts at loops called significant in at least 

one of the LNCaP-HiChiP replicates. Every dot represents a HiCHiP loop called at FDR <0.01 in any of 

the replicates; the union of across replicates N = 114,142 loops. We consider all the loops called at no 

FDR cut-off. Out of these, we then take the loops called at FDR 0.01 in any of the replicates (i.e. the 

union of loops across replicates, N = 114,142 loops). Within the bottom left panels, the axis represent the 

number of pair-end-tags observed in the two compared replicates. The diagonal panel shows the 

distribution of each replicate’s PET counts. Pearson correlation coefficients are shown on the top right 

panels. If the PET count is missing for a loop in one replicate but it is present in the other, it is treated as 

0 in the correlation estimation. See Supplementary Figure 1 for a comprehensive comparison across 

replicates.  
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Figure 3: Breakdown of genes with various forms of evidence for linked to PrCa risk variants. Out 

of 27,063 genes in RefSeq, 17,690 show a HiChIP loop overlaying their promoter. 665 genes at 104 PrCa 

GWAS regions have a loop linking their promoter to a PrCa credible causal variant. 165 (out of 665) are 

also eGenes in tissues relevant to PrCa with 37 also showing evidence of co-localization and/or 

transcriptome-wide association. The numbers in parentheses showcases the breakdown of the 119 

genes with evidence of somatically acquired mutations in prostate cancer (Methods). 
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Figure 4. Examples of genes supported by HiChIP loops and GWAS: a. MLPH, with evidence of eQTLs 

in prostate tissue using both prostate tissue datasets (Thibodeau and TCGA); b. MYC and c. AR, with no 

evidence of eQTLs. d. NKX3-1, with weak evidence of eQTLs in prostate tissue.  

The tracks shown are listed below.  

Index Regions. the fine-mapped region.  

Credible. Position of the SNPs included in the 95% credible SNP set of being the most likely causal 

variants from PAINTOR analyses (Methods). The color of the track is deeper for SNPs with higher 

probability of being causal from 0 to 1.  

Matejcic SNPs. Position of fine-mapped SNPs from Matejcic et al. 11 

CRISPRi gRNA. gRNA positions targeted for the CRISPRi experiment. 

Credible 0.1. Position and name of SNPs that reach a posterior probability of being causal of 0.1.  

Dadaev Best Tag. Position and name of SNPs within 341 "best tag" SNPs fine-mapped in ref. Dadaev et 

al. 

GWAS SNPs. Each hollow circle represents a SNP; y-axis is the position and x-axis is the −log10(P) 

genome-wide association with PrCa risk.  

LNCaP anchors. Regions of the genome containing HiChIP anchors. 

HiChIP LNCaP. Loops from merged data of 5 replicates.  

eQTL TCGA. Same as above track. Associations were run on gene expression and genotype data on 

494 prostate cancer patients (ref. Pancan website).  

eGenes Thibodeau. Highlighted genes that are eGenes in Thibodeau dataset.  

eGenes TCGA Highlighted genes that are eGenes in TCGA dataset.  

eQTL Thibodeau. Each hollow circle represents a SNP; y-axis is the position and x-axis is the 

associations between SNP and gene expression (-log10(pvalue)) for SNPs within 3Mb window around a 

gene promoter. Associations were run using gene expression and genotype data from 471 samples from 

normal prostate tissue (ref. Thibodeau).  

eQTL TCGA. Each hollow circle represents a SNP; y-axis is the position and x-axis is the associations 

between SNP and gene expression (-log10(pvalue)) for SNPs within 3Mb window around a gene 
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promoter. Associations were run using gene expression and genotype data from 471 samples from 

normal prostate tissue (ref. Thibodeau).  

TWAS. Highlighted genes that have a significant TWAS signal in Prostate cancer.  

Coloc Thibodeau. Highlighted genes that have a significant COLOC signal in Prostate cancer, using 

Thibodeau eQTL data.  

Coloc TCGA. Highlighted genes that have a significant COLOC signal in Prostate cancer, using TCGA 

eQTL data. 

RefSeq genes. Known human protein-coding and non-protein-coding genes taken from th 2019 RefSeq 

Release.  

HiChIP LNCaP 16hr. HiChIP loops measured after 16 hours from androgen stimulation.  

 

Figure 5. CRISPRi functional validation of the AR and NKX3-1 loci. Functionally relevant 

enhancers were identified by integrating genetic (PrCa causal variants) and epigenetic datasets 

(DHS peaks and HiChIP anchors in LNCaP cell line). a. AR gene genomic region, LNCaP DHS 

signals, 95% credible SNP set and gRNA positions targeting DHS peaks for the CRISPRi experiment. 

Bottom panel shows the suppression effect on the AR gene using four different gRNAs compared to the 
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non-human targeting negative control. Three out of the four tested gRNAs showed ~1 fold significant 

suppression on the AR gene expression. Columns demonstrate averages of two biological replicates, 

error bars represent standard errors. b. NKX3-1 genomic region, LNCaP DHS signals, 95% credible SNP 

set and gRNA positions targeting DHS peaks for the CRISPRi experiment. Bottom panel shows the 

suppression effect on the NKX3-1 gene using three different gRNAs compared to the non-human 

targeting negative control. All three tested gRNAs showed ~1 fold significant suppression on the NKX3-1 

gene expression. Columns demonstrate averages of two biological replicates, error bars represent 

standard errors. 

 

Tables 

Genes for which looping links their promoters to PrCa risk variants with extra evidence from 

eQTL/GWAS overlap or somatically-acquired in PrCa. 

COLOC positive only  CASP10, COL2A1, COMMD7, CTSK, DNMT3B, 

HNF1B, LARP4B, MSMB, PPFIBP2, RAD9A, SNRPC 

TWAS positive only  ACAT2, C10orf95, CNTROB, FAM84B, MLPH, 

NOL10, RGS17, SESN1, SPINT2, TSPO, USP20, 

USP39, ZGPAT 

COLOC and TWAS positive  C9orf78, CTBP2, FAM57A, GEMIN4, HAUS6, KRT8, 

MBNL1, MMP7, MYO9B, NCOA4, PPP1R14A, 

UHRF1BP1, VPS53 

With somatically acquired mutations in PrCa AR, CCND1, CDKN1B, HD3, CIC, ERF, GATA2, 

KMT2D, MAP2K1*, MED12, MYC, NKX3-1, PTEN, 
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RNF43, RPRD2*, SETDB1, TP53, ZMYM3 

Table 1: Genes where HiChIP looping data links their promoters to PrCa risk variants. Out of the 

665 genes linked by looping to PrCa risk variants (Figure 3), we list genes with evidence of eQTL/GWAS 

overlap (37) or somatically-acquired mutations in PrCa (18); see Table S6 for all RefSeq genes. For 37 

genes looping links their promoter to PrCa GWAS variants, and also show evidence of eQTL/GWAS 

overlap through colocalization (COLOC) and/or transcriptome-wide association (TWAS). 18 out of the 119 

genes previously reported to have somatically acquired mutations in PrCa show loops linking their 

promoters to PrCa germline risk variants. The asterisk points to eGenes.  
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