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Abstract 21 

Revealing the gene targets of distal regulatory elements is challenging yet critical for interpreting 22 

regulome data. Experiment-derived enhancer-gene links are restricted to a small set of 23 

enhancers and/or cell types, while the accuracy of genome-wide approaches remains elusive due 24 

to the lack of a systematic evaluation. We combined multiple spatial and in silico approaches for 25 

defining enhancer locations and linking them to their target genes aggregated across >500 cell 26 

types, generating 1,860 human genome-wide distal Enhancer to Target gene Definitions 27 

(EnTDefs). To evaluate performance, we used gene set enrichment testing on 87 independent 28 

ENCODE ChIP-seq datasets of 34 transcription factors (TFs) and assessed concordance of results 29 

with known TF Gene Ontology (GO) annotations., assuming that greater concordance with TF-GO 30 

annotation signifies better enrichment results and thus more accurate enhancer-to-gene 31 

assignments. Notably, the top ranked 741 (40%) EnTDefs significantly outperformed the common, 32 

naïve approach of linking distal regions to the nearest genes (FDR < 0.05), and the top 10 ranked 33 

EnTDefs performed well when applied to ChIP-seq data of other cell types. These general EnTDefs 34 

also showed comparable performance to EnTDefs generated using cell-type-specific data. Our 35 

findings illustrate the power of our approach to provide genome-wide interpretation regardless 36 

of cell type.  37 

 38 

Background 39 

Enhancers, silencers and insulators are key genomic cis-regulatory elements that play pivotal 40 

roles in spatiotemporal control of gene expression by physical contact with the promoters of 41 
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target genes they control [1-3]. Promoters are located immediately upstream of the transcription 42 

start sties (TSSs), facilitating the recruitment of transcription factors and RNA polymerase II 43 

(RNAPII) to instruct the initiation and direction of gene transcription, whereas enhancers and 44 

silencers can be located anywhere in the genome and often at distal regions, such as upstream, 45 

downstream or in introns of target genes or unrelated genes. Via interaction with promoters of 46 

the target genes, enhancers are bound by activator proteins and stimulate the rate of 47 

transcription, while silencers were bound by repressor proteins and decrease the rate. In certain 48 

cases when the interactions between enhancers/silencers and promoters are unwanted, 49 

insulators can block their interactions[4]. Bound by tissue-specific transcription factors and 50 

cofactors, such as p300 and Mediator, the cis-regulatory elements and promoter connections 51 

direct what, when and how the genome is transcribed so as to control cell fate decisions during 52 

development and differentiation [5-7]. For simplicity, we will refer to these distal cis-regulatory 53 

elements as general “enhancers” (>5kb from a transcription start site [TSS]) hereinafter. 54 

 55 

Perturbation of enhancer activities and/or functions induced by genomic variants, epigenomic 56 

dysregulation, and/or aberrant chromosomal rearrangements can underlie disease susceptibility 57 

and developmental malformations [8, 9]. A prototypic example of this is the point mutation in 58 

the Shh enhancer, ZRS (zone of polarizing activity regulatory sequence), which can lead to limb 59 

malformations such as polydactyly in humans [10]. Recently, genome-wide association studies 60 

(GWAS) identified that >88% of disease-linked variants occur within non-coding regulatory DNA 61 

[11], especially enriched in enhancers [12]. These findings confirm the importance of enhancers 62 
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in orchestrating transcriptional regulation and reveal that the dysregulation of enhancer function 63 

contributes to the pathogenesis of a variety of diseases, referred to as “enhanceropathies” [13].  64 

 65 

A challenge in enhancer biology is to decipher their target genes and the mechanisms underlying 66 

the precise enhancer-gene interactions, which is reviewed in Pennacchio LA et al [14]. The 67 

enhancer to target gene specificity is essential to understand how gene expression is 68 

programmed during normal development and differentiation, and how the ectopic enhancer 69 

and/or non-target gene interactions can lead to diseases. However, interpreting genome-wide 70 

regulatory data is significantly hampered by our limited knowledge of enhancers and their target 71 

genes for multiple reasons. First, enhancers are commonly located distal to their target genes 72 

with multiple intervening genes in between, and greatly varying distances. One enhancer can act 73 

on multiple genes and one gene can be regulated by multiple enhancers [15]. Second, enhancers 74 

act in a dynamic and often cell type-specific manner, which further complicates the definition of 75 

a comprehensive set of enhancers and their target genes. Third, enhancers and promoters share 76 

various characteristics and functions [16, 17], thus making it challenging to disentangle the two 77 

elements based on functional genomic data.  78 

 79 

With the breathtaking progress in technologies such as massive parallel sequencing and high-80 

resolution chromosome conformation capture, our knowledge of cis-regulatory elements’ 81 

function and spatial organization have grown considerably over the past decade [18-23]. In most 82 

cases, enhancers are located at regions distal of their target genes up to hundreds of kilobases, 83 

and they can bypass more proximally located genes to bind to the promoters of the genes they 84 
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control through long-range 3D chromosomal interactions [19, 24, 25]. The 3D genome is 85 

organized in hierarchical layers, from bottom to top including chromatin loops (or insulated 86 

neighborhoods), topological associating domains (TADs), and compartments [26]. The chromatin 87 

loops are the fundamental structural and functional building blocks of genome organization, 88 

which form between two convergent CTCF (CCCTC binding factor) binding sites bound by the 89 

cohesin protein complex [27].   90 

 91 

Large epigenomics consortia like ENCODE [28-30] and Roadmap Epigenomics [31], have 92 

generated a tremendous amount of regulatory data across various tissue and cell types, including 93 

genome-wide transcription factor (TF) binding by ChIP-seq [32], chromatin accessibility assays 94 

(e.g. DNase-seq [33], ATAC-seq [34]), genome-wide chromatin mark profiles, and 3D 95 

chromosome organization. However, enhancer-promoter interactions are still highly restricted 96 

to a small number of cell types, which is probed by Chromatin Interaction Analysis by Paired-End 97 

Tag Sequencing (ChIA-PET [35]), and the genome-wide interaction map is still limited due to the 98 

high cost of Hi-C experiments [36]. Other enhancer-promoter interaction datasets have been 99 

generated by mathematical and/or bioinformatic approaches. The FANTOM5 [37] dataset is 100 

based on the gene expression correlation between enhancer and promoter regions, and 101 

Thurman et al. exploited DNase signal correlation between enhancers and promoters using 102 

DNase-seq data [38]. However, the reliability and generalization of these approaches remains 103 

elusive due to the lack of a systematic evaluation.  104 

 105 
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Gene set enrichment (GSE) testing is widely applied to infer the regulatory networks embedded 106 

in the abundant high-throughput gene regulation data, including ChIP-seq, Bisulfite sequencing, 107 

DNase-seq, and ATAC-seq. The first step in this analysis is to assign the genomic regions identified 108 

by the assays to their target genes, and most methods simply do the assignment using the nearest 109 

genes regardless of the actual regulatory targets [39-42]. Since enhancers and their target genes 110 

have long-range chromosomal contact, adjacent gene assignments tend to link enhancers to non-111 

target genes, leading to incorrect interpretation for distal enhancer regulation. In this study, we 112 

aimed to determine the best sets of human “enhancers” (enhancers, silencers and insulators) 113 

and their gene targets. By all possible combinations of existing experimental and/or 114 

computationally-derived datasets, we generated 1,860 Enhancer to Target gene Definitions, 115 

referred to as EnTDefs, and systematically evaluated their performance based on the 116 

concordance of GSE results of 87 ENCODE ChIP-seq datasets with known TF biological processes, 117 

resulting in a handful of best-performing EnTDefs. We also showed that as opposed to being 118 

random, target genes that are often missed or often falsely identified using adjacent gene 119 

assignments are biased to specific Gene Ontology terms. In addition, we compared cell-type-120 

specific EnTDefs (CT-EnTDefs) with non-cell-type-specific ones (general EnTDefs) and found that 121 

general EnTDefs were more favorable. Our findings demonstrate that the novel, top-performing 122 

EnTDefs significantly enhance the biological interpretation for genomic region data regardless of 123 

cell type.  124 

 125 

RESULTS 126 

Creation and ranking of genome-wide Enhancer-to-Target gene Definitions (EnTDefs) 127 
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Several approaches to define human enhancer locations and their target genes have been 128 

proposed in the literature, but no systematic study has been performed to evaluate their 129 

performance separately or in combination on a genome-wide scale. To determine the best sets 130 

of human enhancers and their distal gene targets, we generated a total of 1,860 genome-wide 131 

Enhancer-Target gene Definitions (EnTDefs) using existing experiments and/or literature-derived 132 

data, and systematically evaluated their performance. This was done by applying all possible 133 

combinations of methods for defining 1) enhancer region locations, identified from four data 134 

sources (ChromHMM[43], DNase-seq[38], FANTOM5[37, 44, 45] and Thurman[38]), and 2) 135 

enhancer-target gene links, defined by four different methods (ChIA-pet data [“ChIA”][46, 47], 136 

DNAase-signal correlation [“Thurman”][38], gene expression correlation [“FANTOM5”][45] and 137 

loop boundaries with convergent CTCF motif [“L”][48]), including combinations using multiple of 138 

each (see Methods for details). Overall, these included a total of 1,768,201 possible individual 139 

enhancer-target links across >500 cell types by integrating all of the 4 enhancer-defining datasets 140 

and all of the 4 enhancer-gene link datasets. These enhancer-target links were defined from 141 

685,921 enhancers and 21,094 linked target genes.  Figure 1 demonstrates the workflow for the 142 

creation and evaluation of these 1,860 EnTDefs. For the “L” enhancer-gene linking method, we 143 

evaluated the loops with up to 3 genes (L1: one gene, L2: £  two genes, or L3: £ three genes), 144 

allowing the links between the enhancer to any of the included genes within the loop. Because 145 

current knowledge of enhancers is far from complete and the experimental data that assay 146 

enhancers to target genes is limited, the genome coverage of EnTDefs defined by the 147 

experimentally and/or computationally derived methods (Figure 1A: four enhancer-defining 148 

methods and four enhancer-target gene linking methods) was expected to be low. Therefore, we 149 
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extended the enhancer regions up to 1kb and/or assigned regions outside of enhancers and 150 

promoters (within 5kb of a transcription start site (TSS)) to the gene with the nearest TSS (Figure 151 

1A: Extension and Additional link), resulting in 100% coverage of distal genomic regions (>5kb of 152 

TSS). All of the 1,860 EnTDefs were evaluated and ranked based on how well they performed in 153 

gene set enrichment (GSE) testing with genes’ distal ChIP-seq peaks. Specifically, the Gene 154 

Ontology biological process (GO BP) enrichment results from 87 ENCODE ChIP-seq datasets for 155 

34 distinct transcription factors (TFs) were compared with the curated GO BP terms annotated 156 

to the same tested TFs (GO annotation by GO database) using F1 scores (see Methods). EnTDefs 157 

demonstrating higher concordance ranked higher, as they were better able to identify the known 158 

functions of the TFs based on their distal binding regions (non-promoters). 159 

Overview of the EnTDef characteristics  160 

We first investigated the characteristics of the 1,860 EnTDefs by comparing them to simply 161 

assigning distal genomic regions (i.e. >5kb from a TSS) to the genes with the nearest TSS (>5kb 162 

Locus Definition [LocDef]) (Figure 2A, Supplementary Figure S1). The EnTDefs were ranked in 163 

decreasing order by their average F1 score across 34 TFs, and the top 741 EnTDefs (~40%) were 164 

found to significantly outperform the >5kb LocDef (Wilcox signed-rank test, FDR < 0.05). The best 165 

performing EnTDef (No. 1 ranked) was defined by DNase-seq plus FANTOM5 enhancers and ChIA, 166 

Thurman and FANTOM5 enhancer-target gene link methods with the “nearest_All” addition. For 167 

the top 741 EnTDefs, the percentage of genome covered and percent of distal peaks caught 168 

(outside of 5kb regions around TSSs) was as high as 100% (89% - 100%), the median number of 169 

genes assigned to each enhancer was 2 (range of 1 - 2), and the median number of enhancers 170 
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assigned to each gene was 20 (range of 2 - 98). Out of the 741 EnTDefs, those ranked 2 through 171 

19 were not significantly worse than the best performing EnTDef (Wilcoxon signed-rank test, p > 172 

0.01. Supplementary Table S1), suggesting that these 19 EnTDefs performed equally well. This 173 

finding was robust to the specific set of GOBP annotations used (i.e. with or without IEA-based 174 

GO to gene annotations; see Methods, data not shown).  175 

By examining the types of methods used to generate the top 741 EnTDefs (Figure 2B), we found 176 

that: i) over half of them included FANTOM5 (54%), Thurman (53%) and DNase-seq (51%) 177 

enhancer regions, while chromHMM defined enhancers were least used (~45%); ii) 178 

approximately 60% of them were generated without enhancer regions extension; iii) all of them 179 

used the “nearest_All” addition to assign the distal regions that were not in enhancers to the 180 

nearest gene’s TSS; and iv) the “ChIA” method applying ChIA-PET data to assign enhancers to 181 

target genes was included most frequently (~60%), followed by FANTOM5 (~51%) and Thurman 182 

(42%), whereas the “L” method assigning genes to enhancers within the same loop boundaries 183 

with convergent CTCF motifs was least used (~26%). It is not surprising that all of the top 741 184 

EnTDefs included the “nearest_all” addition, because this significantly increased genome 185 

coverage by assigning all regions outside enhancers and promoters to the nearest distance gene 186 

(>5kb LocDef), leading to improved sensitivity and thus F1 score (Figure 2A). On the other hand, 187 

the fact that these 741 EnTDefs outperformed the >5kb LocDef suggests that the “smart” 188 

enhancer to target gene assignments more accurately capture real biological regulatory elements 189 

for distal enhancer regions when compared to the simplistic assignment to nearest genes. In 190 

addition, all of the top performing EnTDefs were generated using combinations of at least two 191 

different datasets/methods for enhancer definitions (ChromHMM, DNase-seq, FANTOM5, 192 
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and/or Thurman) and enhancer-gene assignments (ChIA, FANTOM5, L, and/or Thurman), 193 

illustrating the importance of high genomic coverage and that the integration of multiple data 194 

sources and methods indeed improves the performance of enhancer to target gene assignments.  195 

EnTDefs plus promoter regions outperforms the nearest TSS method 196 

Our analyses thus far have focused on the assessment of distal gene regulation. However, often 197 

the goal is to assess the functional regulation from anywhere in the genome, including binding 198 

both distal and proximal to TSSs. One commonly used method for ChIP-seq GSE testing is to link 199 

all peaks to the nearest gene, hereinafter referred to as the “nearest TSS” method 200 

(Supplementary Figure S1: “nearest TSS” LocDef), resulting in all peaks having at least one 201 

assigned gene. EnTDefs were generated for distal regions (outside the 5kb windows around TSSs) 202 

and any regions within 5kb of a TSS were ignored, whereas the “nearest TSS” method includes 203 

all genomic regions. Thus, to compare fairly with the “nearest TSS” method, we added promoter 204 

regions to the top 10 ranked EnTDefs, referred to as “EnTDef_plus5kb”. That is, peaks within 5kb 205 

of a TSS were assigned to the nearest gene (Supplementary Figure S1: “5kb” LocDef), while distal 206 

peaks were assigned according to the EnTDef. All ten of the EnTDef_plus5kbs significantly 207 

outperformed the “nearest TSS” method (~0.05 increase in average F1 score, Wilcoxon signed-208 

rank test, p < 0.0001) (Figure 2C), using the same evaluation method based on F1 scores as used 209 

above (see Methods).  210 

We next determined if our ‘smart’ EntDefs using only distal binding events could even 211 

outperform the use of all peaks (promoter and enhancer) with naïve assignments to the genes 212 

with the nearest TSS. When compared with the “nearest TSS” method, the top 10 best 213 

performing EnTDefs showed slightly lower F1 scores (~0.03 lower), but the difference among the 214 
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top half of them were not significantly different from “nearest TSS” (Wilcoxon signed-rank test, 215 

p > 0.05). Thus, although they did not outperform it, the best were not significantly worse. This 216 

illustrates the great importance of regulation from promoters in GSE testing.   217 

Two other commonly used GSE methods for genomic regions, GREAT[39] and Fisher’s exact test 218 

(FET) using peaks within 5kb of a TSS (Supplementary Figure S1: “5kb” LocDef), were also 219 

evaluated using the same scheme. Notably, the three GSE testing methods (Poly-Enrich, GREAT 220 

and FET using 5kb LocDef to assign peak to gene) performed equally well (Friedman test, p = 0.91), 221 

but significantly worse than the top 10 EnTDefs (Figure 2C, average F1 = 0.45 vs 0.47, Wilcoxon 222 

rank-sum test, p < 0.007). In addition, both top 10 EnTDefs and 5kb LocDef (i.e. assigning 223 

promoters to the nearest gene) significantly outperformed >5kb LocDef (i.e. the naïve approach 224 

of assigning distal regions to the nearest gene) (average F1 = 0.47, 0.45 vs 0.27, Wilcoxon signed-225 

rank test, p = 2.37´10-14 and 1.32´10-8 respectively). In summary, although the naïve approach of 226 

linking distal regions to the nearest gene (>5kb LocDef) did not outperform the use of promoter 227 

data only (5kb LocDef), the use of distal binding events with ‘smart’ gene assignments (EnTDefs) 228 

did outperform the use of promoter data only. These findings illustrate the importance of 229 

accurately modeling regulation from enhancers, and that when done well, enhancers have the 230 

potential to provide more regulatory information than promoters. We conclude that GSE testing 231 

using our top EnTDefs exceeds the commonly used nearest distance-based and promoter-only 232 

based GSE approaches. 233 

Our EnTDefs are generalizable to different cell lines 234 
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Next, we sought to investigate whether the EnTDefs (which were selected based on their 235 

performance in GM12878, H1-HESC and K562 cell lines) can perform equally well on testing ChIP-236 

seq data from different cell lines (A549, HEPG2, HUVEC and NB4). Surprisingly, the average F1 237 

score of the top 10 EnTDefs across the test ChIP-seq datasets (different cell lines) was significantly 238 

higher than that from the evaluation ChIP-seq datasets (average F1 = 0.60 vs. 0.56, Wilcoxon 239 

sum-rank test, p = 0.0059) (Figure 2D, and Supplementary Figure S2). This may be due to the test 240 

ChIP-seq datasets containing more peaks than the evaluation datasets (Supplementary Figure 241 

S3A, Wilcoxon sum-rank test, p = 0.092), and indeed we found that the F1 scores were 242 

significantly corelated with the number of peaks (Supplementary Figure S3B, Pearson’s 243 

correlation r = 0.65, p = 4.57´ 10-6). The findings indicate that the performance of the top selected 244 

EnTDefs are independent of the cell types of ChIP-seq datasets, but likely strongly influenced by 245 

the quality of the datasets themselves. We reasoned that the EnTDefs were created based on the 246 

combinations of diverse data sources stemming from >500 different cell types, resulting in a 247 

consensus set of enhancer and gene assignments across various cell types, and therefore 248 

representative of the background interactions between enhancer and target genes across many 249 

cell types. The high generalizability of our top EnTDef makes it feasible to integrate with GSE 250 

testing in a cell type-independent manner. 251 

General EnTDefs perform comparably to cell-type-specific EnTDefs 252 

To contrast with the EnTDefs generated by integrating data for many cell types, hereafter called 253 

“general EnTDefs”, we created “cell-type-specific EnTDefs” (CT-EnTDef) using ChIA-PET datasets 254 

of a particular cell type. Since many enhancers and regulatory relationships between enhancer 255 

and target genes are considered to be tissue and cell-type-specific, we sought to examine how 256 
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the general EnTDefs perform when compared with CT-EnTDefs. For each tested TF (the average 257 

number of TFs tested in each cell type is ~60 [6 - 104], see Supplementary Table S2), F1 scores 258 

were calculated (see Methods) and compared between a pair of EnTDefs which were created 259 

using the same methods (the same combinations of enhancer and enhancer-gene link methods) 260 

but based on data from different cell types: i) general EnTDef vs. CT-EnTDef using the same cell 261 

type (same-CT-EnTDefs), ii) general EnTDef vs. CT-EnTDef using a different cell type (diff-CT-262 

EnTDefs), and iii) same CT-EnTDefs vs. different CT-EnTDefs. Notably, there was no significant 263 

difference in F1 scores among the three comparative EnTDefs for cell types GM12878, H1HESC 264 

or K562 (Figure 3A, Kruskal-Wallis test, p ³ 0.5). For MCF7, the same-CT-EnTDef performed near 265 

significantly better than the general CT-EnTDef (Wilcoxon sum-rank test, p = 0.03; three groups: 266 

Kruskal-Wallis test, p = 0.059). It is worth noting that only four TFs were tested in cell type MCF7, 267 

whereas ³46 TFs were tested in the other three cell types, so this exception might not be visible 268 

for a larger set of TFs.  269 

We also observed that the average F1 scores of TFs across all possible EnTDefs were significantly 270 

correlated between the same-CT-EnTDef and diff-CT-EnTDef for all four cell lines (Figure 3B and 271 

Supplementary Figure S4, Pearson’s correlation > 0.9, p < 0.0001). This implies that the 272 

performance of the results is driven more by the quality and quantity of input data than by 273 

whether a general or CT-EnTDef is used. The trend of correlation still held at the individual TF and 274 

EnTDef level (F1 score per TF per EnTDef, Supplementary Figure S5). As shown in Figure 3C, 275 

regardless of the type of EnTDef (general EnTDefs, same-CT-EnTDefs and diff-CT-EnTDefs) used 276 

for evaluation, the average F1 score across all TFs and EnTDefs were similar, with the difference 277 

ranging from 0 to 0.14. Taken together, these findings suggest that CT-EnTDefs are overall 278 
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comparable to general EnTDefs, and the benefit of using CT-EnTDefs is minor and depends on 279 

the quality and quantity of data for a particular cell type (e.g. MCF7 in Figure 3C). This is good 280 

news since it is costly and difficult to generate cell-type-specific ChIA-PET experiments, which are 281 

required to create the corresponding CT-EnTDef. In contrast, the general EnTDefs, which capture 282 

real enhancer and target gene interactions in a similar way to CT-EnTDef, are more practically 283 

and economically favorable for GSE testing. 284 

Incorrect gene assignments by nearest distance method are not random 285 

Since enhancers are known to be located up to 1Mbp away from their regulatory genes [14, 49], 286 

several interceding genes can reside between a TF binding site (peak) in an enhancer and its 287 

target gene(s), as modeled by our EnTDefs (Supplementary Figure S6). In contrast, the nearest 288 

distance method simply links a peak to the gene with the nearest TSS without accounting for 289 

interceding genes. By ranking the genes based on the average number of interceding genes 290 

across the enhancers that target them, we investigated whether the number of interceding genes 291 

is randomly distributed across genes and GO terms, or if there are GO terms significantly enriched 292 

with genes having more or fewer interceding genes[50]. We investigated the best performing 293 

EnTDef excluding the “nearest_all” addition, in order to assess the ‘smart’ enhancer-target links 294 

only. The genes least likely to have interceding genes were found to be significantly enriched in 295 

G protein-coupled receptor activity (FDR = 1.41´10-14), olfactory receptor activity (FDR = 6.21´10-296 

12), detection of chemical stimulus (FDR = 3.23´10-11), phenol-containing compound metabolic 297 

process (FDR = 1.91´10-4), GABA-ergic synapse (FDR = 2.35´10-4), RISC complex (FDR = 2.39´10-298 

4), postsynaptic membrane (FDR = 4.13´10-4) and behavior (FDR =4.71´10-4) (Figure 4A). These 299 
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GO terms enriched with genes least likely to have interceding genes (lower ranked genes) are 300 

most likely to be correctly assigned by the nearest distance method (Supplementary Figure 301 

S1: >5kb LocDef), and thus most easily detectable by current GSE testing. Conversely, the GO 302 

terms enriched with higher numbers of interceding genes (upper ranked genes) were mRNA 303 

metabolic process (FDR = 8.09´10-8), regulation of catabolic process (FDR = 8.40´10-8), chromatin 304 

organization (FDR = 2.53´10-7),  kinase binding (FDR = 1.75´10-6), heterocycle catabolic process 305 

(FDR = 3.22´10-6), chromatin (FDR = 7.25´10-6), hemopoiesis (FDR = 9.47´10-6) and RNA 306 

processing (FDR = 2.27´10-5)  (Figure 4A). Those GO terms are least likely to be assigned by the 307 

nearest distance method, and most likely missed using current methods for GSE testing.  308 

To determine if this observation is robust to different EnTDefs, we performed the same analysis 309 

on all top 10 best performing EnTDefs without the “nearest_all” addition, and combined the 310 

results by calculating FDR-adjusted harmonic mean p-values, followed by removing redundant 311 

terms (see Methods). Consistently, G protein-coupled receptor activity, olfactory receptor activity, 312 

RISC complex and postsynaptic membrane were still the top 5 enriched terms for the  genes with 313 

fewer interceding genes, and similarly, regulation of catabolic process, chromatin organization, 314 

kinase binding and heterocycle catabolic process were the top 5 enriched terms in upper ranked 315 

genes with more interceding genes (Figure 4B). These findings indicate that both the genes with 316 

the most and fewest interceding genes are not random: chemical stimulus and neuron-related 317 

genes can be easily assigned with the nearest distance method, whereas metabolic processing 318 

and chromatin organization genes may be frequently missed. It is concordant with the knowledge 319 

that enhancers regulate genes via long-range chromatin interactions, which are able to be 320 

captured by our EnTDefs. 321 
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Nearest distance assignment method leads to false positive and false negative GSE results 322 

Our finding that the nearest distance method tends to incorrectly assign TF binding sites in some 323 

biological functions more than others triggered us to investigate how this bias affects the results 324 

of GSE testing. By comparing the GSE results from assigning distal regions to the nearest genes 325 

(i.e. using >5kb LocDef) to those using the best-performing EnTDef, and evaluating using TF GO 326 

annotations as above (see Methods), we identified all false positive (FP) and false negative (FN) 327 

enriched GO terms by the >5kb LocDef, that were correctly called by our EnTDef. First, we ranked 328 

the FP GO terms in descending order by significance across the 34 tested TFs. These FPs represent 329 

GO terms with genes that tend to be in between enhancers and their targets (i.e. the interceding 330 

genes), and they are not annotated to the TFs of interest. For instance, the GO term blood vessel 331 

morphogenesis is annotated with PROK1, an interceding gene between an enhancer bound by 332 

the TF YY1 (peak:1503) and its target gene SLC16A4 (Figure 5A left panel). Using the nearest 333 

distance method, the YY1 binding site would be falsely assigned to the nearest gene PROK1, 334 

rather than to the real target gene SLC16A4, leading to the enrichment of blood vessel 335 

morphogenesis that is not regulated by the TF YY1 (i.e. a FP term by >5kb LocDef). 336 

The top ranked FP biological processes (Figure 5B) included those related to development and 337 

regulation (gland development, skeletal muscle organ development, regulation of DNA biding, 338 

and regulation of neuron death), metabolic process or response to different stimuli (alcohol 339 

metabolic process, response to calcium ion, response to drug), and cell differentiation processes 340 

(Stem cell differentiation, lymphocyte differentiation and T cell activation). Among them, blood 341 

vessel morphogenesis was identified to be the most often falsely enriched term by >5kb LocDef 342 

(Fisher’s FDR = 9.48´10-14) with five out of seven TFs falsely called as positives (FP rate = 71%). It 343 
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is noteworthy that the Fisher’s p values of FP terms calculated based on >5kb LocDef GSE results 344 

were overall significantly lower than those based on EnTDef GSE results (Wilcoxon rank-sum test, 345 

p= 3.95´10-09), indicating that those FP terms were much less likely identified by our EnTDef 346 

method.  347 

On the other hand, common FN GO terms failed to be identified by >5kb LocDef while being 348 

successfully identified by the top EnTDef. In contrast to the FP GO terms, FN terms tend to be 349 

missed by assignment to the nearest distance gene, but correctly identified using the top EnTDefs. 350 

As shown in Figure 5A (right panel), the GO term histone modification contains the gene CHD3, 351 

the gene target of an enhancer bound by the TF CTCF (the peak:6206). Using the nearest distance 352 

method, the CTCF binding site would be falsely assigned to the nearest gene ALOX15B, rather 353 

than the target gene CHD3, failing to identify histone modification as regulated by the TF CTCF 354 

(i.e. a FN term by >5kb LocDef). These FN GO terms consistently point to chromosome 355 

organization and modification processes, including Protein-DNA complex subunit organization 356 

(FN rate = 50%), histone modification (FN rate = 40%), Peptidyl-lysine modification (FN rate = 38%), 357 

and regulation of chromosome organization (FN rate = 25%) (Figure 5C). Their Fisher’s p values 358 

based on the >5kb LocDef GSE results were significantly higher than those based on the EnTDef 359 

GSE results (Wilcoxon rank-sum test, p= 6.24´10-15), in line with the finding that chromosome 360 

organization-related terms are very often missed by the nearest distance method. Together, 361 

these results demonstrate that GSE analysis using the nearest distance gene assignment method 362 

cannot always identify biological processes induced by long-range chromosome organization; 363 

rather, they tend to favor development and cell differentiation functions which are not related 364 

to the TFs. In contrast, the EnTDef method can successfully detect distal enhancer and target 365 
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gene interactions even for biological processes with complex long-range interactions such as 366 

chromosomal organization-related terms, and avert potential false positive results. 367 

Guidance for selecting a peak-to-gene assignment method in GSE analysis 368 

The first step in GSE testing of cis-regulome data, such as TF binding sites or chromatin marks 369 

from ChIP-seq, is to assign the genomic regions or peaks to their target genes. The different 370 

assignment methods can lead to variable enrichment results and FP and/or FN findings, as 371 

discussed above (nearest distance method vs. EnTDef). To avoid misinterpretation of genome-372 

wide regulatory data, we need to select an appropriate LocDef method with care, which should 373 

be specific to the particular research question and the genomic regions of interest. Figure 6 374 

summarizes three general categories of research questions and the corresponding regions of 375 

interest: i) the 5kb or 1kb LocDef should be selected when interested in how a TF and/or 376 

chromatin mark regulates gene expression from promoters; ii) the EnTDef (enhancer) should be 377 

selected when interested in how a TF and/or chromatin mark regulates gene expression from 378 

distal regions; and iii) when the comprehensive regulatory signature is of interest, including both 379 

promoter and distal regions, our EnTDef plus 5kb LocDef (enhancer.5kb) should be selected. The 380 

promoter LocDef has the lowest genome coverage (10% for <5kb LocDef and 2% for <1kb LocDef), 381 

while the EnTDef plus 5kb has 100% genome coverage, and the EnTDef has intermediate genome 382 

coverage (90%). We incorporated our top performing EnTDef and EnTDef.plus5kb into the 383 

Bioconductor package chipenrich [42] and the ChIP-Enrich website (https://chip-384 

enrich.med.umich.edu), allowing users to select the most suitable genomic regions-gene 385 

assignment methods, gene sets and GSE method to correctly interpret their genome-wide 386 

regulatory data. In addition, we provide a peak-to-gene assignment functionality in our GSE Suite 387 
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(http://gsesuite.dcmb.med.umich.edu), by which users can select any possible combination of 388 

enhancer location and enhancer-to-gene target methods (as described in this study) and obtain 389 

the gene assignments for a user uploaded list of genomic regions, based on the selected EnTDef, 390 

or other method (e.g. promoters, exons, introns or anywhere in the genome). 391 

 392 

DISCUSSION 393 

A greater appreciation of the central role that distal regulatory elements play in genetic diseases 394 

and cancers has motivated a multitude of enhancer studies. As a result of the increasing 395 

availability of functional genomics data, growing attention has been paid to matching Enhancer-396 

Target Gene pairs (ETG) in the field of computational biology and genomics. Over the past decade, 397 

a variety of algorithms and tools have been developed by leveraging multiple genomic features 398 

and functional data, as recently reviewed in [51]. Briefly, they can be categorized into four groups: 399 

1) correlation-based (e.g. Thurman et al [38], PreSTIGE [52], ELMER [53, 54], etc.); 2) supervised 400 

learning-based (e.g. IM-PET [55], TargetFinder[56], McEnhancer[57], etc.); 3) regression-based 401 

(e.g. RIPPLE[58], JEME[59], FOCS[60], etc.); and 4) score-based methods (e.g. EpiTensor[61], 402 

GeneHancer[62] and PEGASUS [63, 64]). Although these algorithms have significantly advanced 403 

our knowledge of ETGs, they are affected by one or more of the following issues: 1) the lack of a 404 

genome-wide exhaustive reference list of enhancers; 2) the lack of a large gold standard which is 405 

required for supervised learning algorithms, i.e. experimentally-validated true positive and true 406 

negative enhancer-target gene pairs, and 3) the lack of a systematic evaluation of their reliability 407 

and generalization in various cell types. To overcome these issues, we developed a gold standard-408 
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free approach to generate and prioritize comprehensive sets of ETGs based on their performance 409 

in the interpretation of regulome data.  410 

In this study, we identified a best set of Enhancer to Target gene Definitions (EnTDefs) by 411 

investigating and evaluating all possible combinations of existing reliable sources for human 412 

enhancer location definitions and enhancer-target gene pair definitions across various cell types. 413 

Purposely, we coupled EnTDefs with GSE testing to systematically evaluate their performance 414 

when interpreting regulome data. By carefully selecting datasets of high quality and resolution, 415 

we explored ENCODE ChromHMM, DNase-seq, FANTOM5 and Thurman datasets for enhancer 416 

regions and ENCODE ChIA-PET interactions, Thurman DHS correlation-based, FANTOM5 and 417 

ENCODE ChIA-PET CTCF loops-based enhancer-target gene interactions. We also systematically 418 

evaluated the performance of all possible combinations of datasets when applied on ENCODE TF 419 

ChIP-seq data in GO GSE testing and compared the enriched GO terms with the curated TF GO 420 

annotations (TF-annotated GO BP terms by the GO database). In contrast to the statistical model-421 

based or machine learning-based algorithms as described above, our approach integrates various 422 

data sources and directly couples the EnTDefs with GSE testing for a systematic evaluation, 423 

resulting in an EnTDef with maximally balanced sensitivity and specificity (assessed by F1-score). 424 

Our approach to generating EnTDefs is assumption-free and independent of true 425 

positive/negative pairs, but based on a systematic evaluation using GSE testing. The results 426 

demonstrate that the DNase-seq and FANTOM5 enhancers with the integrated enhancer-target 427 

gene pairs from ChIA-PET, Thurman and FANTOM5 interactions performed best, suggesting that 428 

both chromosome accessibility and conformation, as well as transcriptional correlation, are 429 

beneficial for identifying enhancer-target regulatory relationships.  430 
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The nearest distance method, which naively assigns genomic regions of interest to the nearest 431 

gene, is commonly used in GSE for regulome data. Our analysis showed that this naïve approach 432 

commonly fails to identify certain functions, such as those related to chromosome organization, 433 

which lead to false negatives, whereas our top EnTDefs can successfully identify these long-range 434 

enhancer regulatory functions. These findings re-confirmed that universally assigning cis-435 

regulatory elements to the gene with the nearest TSS is problematic, resulting in misleading 436 

and/or incomplete functional interpretation.  437 

Our EnTDefs were generated by leveraging different genomic data across >500 cell types and can 438 

be applied to different cell types, demonstrating performance comparable to their cell-type-439 

specific counterparts. Our top integrated EnTDef based on many cell types represents a 440 

comprehensive set of enhancer regions (only a subset of which will be active in any one cell type); 441 

our data indicate this performs well because current cell-type-specific enhancer-target genes 442 

(ETGs) are not yet sufficiently comprehensive (except for a few cell types such as GM12878).  443 

Research performed on cancer samples, less commonly used cell lines, and other complex tissue 444 

samples will greatly benefit from this integrated EnTDef. While cell-type-specific ETGs are 445 

important for studying regulation at specific locations, our results demonstrate that for genome-446 

wide approaches such as GSE, the comprehensiveness outweighs the need for specificity.  447 

Besides DNase-seq, ChIA-PET, CAGE-seq, and RNA-seq data, Hi-C and eQTL data are also used to 448 

infer ETG [62, 65]. However, we found that current Hi-C data often have insufficient resolution, 449 

with genomic windows being a few to several kb wide due to low coverage, and high quality Hi-450 

C data is not available for nearly as many cell types as the other approaches. Although eQTL data 451 

is available for many tissues and cell types, it is similarly restricted by limited population diversity 452 
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and low resolution. The tissue-specific eQTL data from the GTEx project [66] is widely used, 453 

however, it was generated for only 49 tissues from <1000 donors with the majority being 454 

Caucasian (84.6%), making it difficult to apply to other tissues/populations. In addition, eQTL data 455 

is highly correlated with the linkage disequilibrium, and thus its resolution is associated with the 456 

size of haplotype blocks, which is highly variable across populations (on average ~10kb) [67], 457 

whereas enhancers are usually short genomic regions (50-1,500bp). Due to this low resolution of 458 

Hi-C and eQTL data, we excluded them from our analysis. On the other hand, another data-459 

integration method, HACER, was recently developed [68], which utilized the nascent eRNA 460 

information from GRO-seq and PRO-seq, along with the FANTOM5 CAGE-seq data, to identify 461 

cell-type-specific ETGs. In future work, we will incorporate the GRO-seq and PRO-seq data 462 

deposited in HACER and evaluate if the new datasets can further boost our EnTDef performance 463 

when coupled with GSE.  464 

In conclusion, we identified a best set of enhancer-target gene pairs (EnTDef) by leveraging 465 

existing data sources of chromosome accessibility and/or conformation and transcriptome data 466 

across numerous cell types, which significantly improved the biological interpretation of distal 467 

regulation in GSE compared to assigning genomic regions to the nearest gene. Our approach 468 

performs well across a wide range of cell types, making it feasible to apply on extensive genomic 469 

data sets. The limitations of our EnTDef are inherited from the existing data sources, including 470 

low genome coverage, low resolution, and small number of cell types with good quality ChIA-PET 471 

data. With the continued growth in volume of functional genomics data and advances in data 472 

quality and resolution, we expect further improvement of our EnTDef in the future.  473 

 474 
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Conclusions 475 

In summary, we provide an optimized enhancer-to-target gene assignment approach, which is 476 

critical for interpreting genome-wide regulatory data. This study has important implications for 477 

which type of enhancer-target gene methods are most accurate, and the relative importance of 478 

comprehensiveness versus cell-type specific accuracy. To the best of our knowledge, there is 479 

currently no such a comprehensive resource of distal regulatory region-to-target gene links which 480 

are feasible to apply on various types of regulome data (eg.ChIP-seq, ATAC-seq) regardless of cell 481 

types. 482 

 483 

METHODS 484 

Generation of general enhancer-target gene definitions 485 

We generated genome-wide definitions of human distal enhancer locations and their target gene 486 

assignments for the hg19 genome using all possible combinations of the below enhancer location 487 

methods and enhancer-gene linking data (Figure 1A: Enhancer, Extension, Enhancer-target gene 488 

link and Additional links). These are based on enhancers from: 1) “ChromHMM”: ENCODE 489 

ChromHMM UCSC tracks (9 cell types) [43], 2) “DNase-seq”: DNase hypersensitive sites (DHSs) 490 

from 125 cell types processed by ENCODE [38], 3) “FANTOM5”: Cap Analysis Gene Expression 491 

(CAGE) experiment-derived enhancers across 421 distinct cell lines/tissue/primary cells from 492 

FANTOM5 project [37, 44, 45], and/or 4) “Thurman”: distal and non-promoter DHS within 500 kb 493 

of the correlated promoter DHSs from 79 cell types, referred to as the first author of the 494 

publication [38]. Since our motivation was to identify the target genes of distal regulatory 495 
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elements that do not have clear target genes based on close proximity to a TSS, we constrained 496 

the enhancer regions to be outside of 5 kb from a transcription factor start site (TSS) by trimming 497 

the bases from the above defined enhancers overlapping with the 5kb windows of TSSs. The hg19 498 

TSS locations were obtained from the Bioconductor chipenrich package version 3.5.0 [42]. To 499 

identify target genes, we used: 1) “ChIA” method: enhancer and gene interactions identified by 500 

ChIA-PET2 using default parameters [69] from 10 ChIA-PET datasets of 5 cell types 501 

(Supplementary Table S3) [46, 47], 2) “Thurman” method: the enhancer and promoter 502 

interactions identified by Thurman et al, which were defined by high correlation (r > 0.7) between 503 

cross-cell-type DNase I signal at each DHS position and all promoters within ±500 kb [38], 3) 504 

“FANTOM5” method: the regulatory targets of enhancers predicted by correlation tests using the 505 

expression profiles of all enhancer-promoter pairs within 500kb[45], and 4) “Loop” method: any 506 

possible interactions between enhancers and genes that are encompassed within in a RAD21, 507 

cohesin and/or CTCF ChIA-PET loop with convergent CTCF motifs [48], and depending on the 508 

number of genes included in the loop, this method was referred to as “L1” (one gene), “L2” ( £  509 

two gene) or “L3” ( £ three genes) (Figure 1B).  510 

All possible combinations of the above, allowing multiple at a time, defined 465 of the Enhancer 511 

to Target gene Definitions (EnTDefs) (Figure 1A, B). In addition, to increase the genome coverage, 512 

we tested extending the enhancer regions to 1kb (i.e. “enhancer extension”, 500 bp extension at 513 

both sides of the midpoint), and assigning regions outside of enhancers and promoters (within 514 

5kb of a TSS) to the gene with the nearest TSS (i.e. “nearest_all” additional links). The additional 515 

combinations using these options brought us to a total of 1,860 distinct EnTDefs. 516 
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Evaluation of enhancer-target gene definitions 517 

To evaluate the performance of each individual EnTDef, we performed Gene Ontology (GO 518 

Biological Processes [GOBP]) enrichment testing using Poly-Enrich [70] in the chipenrich 519 

Bioconductor package[42] on 87 ChIP-seq datasets of 34 TFs selected from the tier 1 ENCODE cell 520 

lines (Supplementary Table S4). We then compared the significantly enriched GOBP terms with 521 

the GO BP annotations of each TF (i.e. the GOBP terms assigned to the 34 TFs by the GO database, 522 

excluding the terms with <15 or >2000 assigned genes) (Figure 1C: Evaluation of the Enhancer-523 

Target gene Definition), to identify the EnTDefs with greatest concordance. The assumption of 524 

this approach, used previously in[70, 71], is that TFs tend to the regulate genes in the biological 525 

processes to which they belong, and thus greater overlap with TF GO BP annotation indicates 526 

more accurate enrichment results, and thus more accurate peak-to-gene assignments. For a full 527 

justification of this, see Supplementary Methods.  To minimize runtime for the initial pass analysis, 528 

we used the PE.Approx method (an approximate version of Poly-Enrich[70], see Supplementary 529 

Methods and Supplementary Figure S7). To alleviate the bias caused by the unbalanced number 530 

of positive and negative assignments, we generated the same number of true negative 531 

assignments for each TF as there were positive by randomly selecting GOBP terms from the set 532 

that were not assigned to the particular TF, and excluding the offspring terms and their siblings 533 

of the assigned terms (hereafter called “true negative” terms, depicted in Supplementary Figure 534 

S8A). In order to control for the confounding of GOBP size (i.e. the number of assigned genes to 535 

each GOBP term), random sampling was performed among the negative terms of comparable 536 

size to the corresponding true positive term (bin size = 20). In each sampling, the PE results were 537 

assessed by the number of true positive (TP), false positive (FP), true negative (TN) and false 538 
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negative (FN) GOBP terms according to the following definitions: 1) TP: the number of GOBP 539 

terms that were significantly enriched (FDR < 0.05) and assigned to the TF by the GO database; 540 

2) FP: the number of GOBP terms that were significantly enriched (FDR < 0.05), but not assigned 541 

to the TF by the GO database; 3) TN: the number of GOBP terms that were not significantly 542 

enriched (FDR > 0.05 or “depleted”) and also not assigned to the TF; and 4) FN: the number of 543 

GOBP terms that were not significantly enriched (FDR > 0.05, or “depleted”), but assigned to the 544 

TF. The F1 score (𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 × !"#$%&%'(	×	+#$,--
!"#$%&%'(.+#$,--

 ) was calculated to measure the overall 545 

performance of an EnTDef for a TF. We repeated the sampling process 10 times, and took the 546 

average F1 score for each EnTDef and TF. The average of these F1 scores across TFs provided the 547 

final ranking for each EnTDef.  548 

To assess the robustness of our approach, we also evaluated the performance of EnTDefs using 549 

more conservative GO annotations, in which GOBP assignments based on “automatically 550 

assigned, inferred from Electronic Annotation” (IEA) were excluded, thus minimizing false 551 

annotations in GOBP. For the positive GO annotations we used only the leaf GO terms (the lowest 552 

level in the GO hierarchical tree) and their parent and grandparent GO terms, while the negative 553 

terms were sampled from all other terms, excluding positive terms, and ancestors of positive 554 

terms, siblings of ancestors of positives, as well as offspring of positives (depicted in 555 

Supplementary Figure S8B). 556 

After ranking all EnTDefs in descending order by their average F1 scores (Figure 1C: Rank of 557 

EnTDef), we identified the set of best EnTDefs. Paired Wilcox signed-rank tests were performed 558 

to compare the F1 score of the 1st ranked EnTDef with each of the sequential ones, and the rank 559 
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at which the EnTDef showed significantly lower F1 score than the 1st ranked one (p < 0.01) was 560 

selected as the cutoff. The EnTDefs ranking above the cutoff were defined as the best set of 561 

EnTDefs. In addition, we performed the same F1 score evaluation of previously-defined methods 562 

for genomic region-to-gene assignments, termed gene Locus Definitions (LocDefs, see 563 

Supplementary Figure S1 for details) that do not use “smart” enhancer-target links (i.e., “>5kb”: 564 

distal regions assigned to the gene with the nearest TSS; “<5kb”: regions within 5kb of a TSS 565 

assigned to the gene with that TSS; and “nearest TSS”: all regions assigned to the gene with the 566 

nearest TSS). These LocDefs are used by Poly-Enrich in the chipenrich R Bioconductor package 567 

[42], and represent the current standard practice for enhancer-to-gene assignments for gene set 568 

analysis. The F1 scores were compared between each EnTDef and the distal nearest distance 569 

(“>5kb”) LocDef by Wilcoxon signed-rank tests. We also evaluated and compared two commonly 570 

used Gene Set Enrichment (GSE) testing methods, Fisher’s Exact Test (FET) and GREAT [39], which 571 

were implemented by the R chipenrich package using the FET and binomial method respectively, 572 

coupled with the “5kb” LocDef. To obtain a final assessment, a second round of GSE testing using 573 

Poly-Enrich (PE.Exact method; see Supplementary methods for details) was applied on the subset 574 

of EnTDefs which significantly outperformed the nearest distance assignments (>5kb LocDef), 575 

and the average F1 scores were calculated and used to refine the final ranking of EnTDefs. 576 

Validation of the EnTDefs with ChIP-seq data from different cell types 577 

To further evaluate the performance of EnTDefs in different cell lines, we selected 13 additional 578 

ENCODE ChIP-seq datasets from four non-tier 1 ENCODE cell lines (A549, HEPG2, HUVEC and 579 

NB4), which contain ChIP-seq experiments for at least three TFs in each cell line (Supplementary 580 
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Table S5). In comparison to the 87 evaluation ChIP-seq peak sets from ENCODE tier 1 cell lines 581 

(GM12878, H1HESC and K562), these 13 datasets are the test datasets. The six TFs (C-JUN, C-MYC, 582 

CEBPB, CTCF, MAX and NRSF) assayed by the 13 test datasets were also included in the 87 583 

evaluation datasets. The top 10 best EnTDefs were evaluated using the PE.Exact method as 584 

described above and these 13 test ChIP-seq datasets. For each EnTDef, the average F1 score 585 

across the 13 ChIP-seq datasets was calculated and compared with the average F1 score 586 

generated using the evaluation ChIP-seq datasets (n=16) of the corresponding TFs. 587 

Generation of cell-type-specific EnTDefs 588 

We used “ChIA” and/or “L”-derived enhancer-to-gene assignment methods (Figure 1B) to 589 

generate cell-type-specific enhancer-target gene definitions, hereafter called CT-EnTdefs. Since 590 

the enhancer-gene linking data defined by Thurman and FANTOM5 datasets were non-cell-type 591 

specific, we did not include these. The cell types were selected based on the availability and 592 

quality of cell-type specific ChIP-seq and ChIA-PET data in ENCODE. As shown in Supplementary 593 

Table S5, four cell types were selected: GM12878 (tier 1), H1-hESC (tier 1), K562 (tier 1) and MCF7 594 

(tier 2). The multiple ChIA-PET datasets were combined for each cell type. All combinations of 595 

enhancer location definitions, along with ChIA, L1 (or L2 or L3) enhancer-gene assignment 596 

methods, with or without enhancer location extension and “nearest_all” addition, were used to 597 

generate the CT-EnTDefs, resulting in a total of 630 CT-EnTDefs for each of the 4 cell types. 598 

Evaluation of CT-EnTDefs 599 

To evaluate the performance of the CT-EnTDefs, we performed GSE testing of Gene Ontology 600 

(GO Biological Processes [BOBP]) using Poly-Enrich [70] on the TF ChIP-seq peak sets of the same 601 
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cell type from which each CT-EnTDef was generated (Supplementary Table S5. See details as 602 

described above). For comparison, we also applied GSE testing on the same TF ChIP-seq peak sets 603 

using the corresponding general EnTDefs (i.e. not cell-type specific, using the same enhancer 604 

regions and target gene link methods as those of the comparative CT-EnTDef), as well as the CT-605 

EnTDef from a different cell type (Figure 3C, i.e. MCF7 CT-EnTDefs were applied on GM12878 TF 606 

ChIP-seq peaks, GM12878 CT-EnTDefs on H1hESC peaks, H1hESC EnTDefs on K562 peaks, K562 607 

EnTDefs on MCF7 peaks). For each TF, the average F1 scores across all evaluated EnTDefs were 608 

calculated and compared between using the respective CT-EnTDef, general EnTDef and different 609 

cell type CT-EnTDef. For each cell type, Pearson’s correlation test was used to evaluate the pair-610 

wise correlation among the F1 scores, and Wilcoxon Rank-Sum test was used to compare their 611 

differences. Finally, the overall performance of CT-EnTDefs, general EnTDefs and different cell 612 

type CT-EnTDefs were assessed using the average F1 scores across all evaluated EnTDefs and TFs 613 

in each cell type. 614 

Testing for functions that have significantly more or fewer interceding genes between 615 

enhancers and their target genes  616 

We investigated the number of interceding genes between an enhancer and its target gene(s) 617 

(i.e. genes between the entire region of an enhancer and the target gene in an EnTDef, depicted 618 

in supplementary Figure S6), and ranked all target genes based on their average number of 619 

interceding genes. By definition of nearest distance enhancer-target gene assignment (e.g. >5kb 620 

LocDef), the bottom genes with low numbers of interceding genes are most likely to be correctly 621 

assigned to their enhancers, while the top ranked genes with high numbers of interceding genes 622 
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are least likely assigned to their true enhancers. We used the best performing EnTDef without 623 

“nearest_all” addition, defined by DNase-seq plus FANTOM5 enhancers and ChIA, Thurman and 624 

FANTOM5 enhancer-target gene link methods, as an example for this analysis. Gene Ontology 625 

(GO) enrichment testing was performed by LRpath[50] using  GO Cellular Component (CC), 626 

Biological Process (GOBP), and Molecular Function (MF) terms of size ranging from 10 to 1000 627 

genes. The rank-based inverse normal transformation (INT) implemented by the rankNorm 628 

function in R package RNOmni[72] was applied to the average number of interceding genes to 629 

have approximately normally distributed scores. LRpath took the genes that were linked to at 630 

least one enhancer and their exponential transformed INT scores as the input (the input scores 631 

were log transformed internally by LRpath program) and performed logistic regression-based 632 

enrichment testing on each GO term. The significant GO terms (FDR < 0.05) with positive 633 

coefficients indicate the functions enriched in genes with less interceding genes (lower ranked), 634 

while those with negative coefficients are functions enriched in genes with more interceding 635 

genes (higher ranked). For reporting purposes, we filtered out closely related GO terms, using 636 

the GO.db R package [73] to determine relationships among significant terms. A GO term was 637 

filtered if one or more of its parents, children or siblings had a higher rank in the list [74].  638 

To determine the robustness of the results, we performed the same analysis for all top 10 best 639 

performing EnTDefs without “nearest_all” addition. The enrichment results were combined 640 

across EnTDefs for each GO term by taking the Harmonic Mean (HM) p-values[75]. The significant 641 

terms were extracted using FDR-adjusted HM p-values (HM FDR < 0.05), followed by redundant 642 

term filtering as described above. 643 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.22.351049doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.351049
http://creativecommons.org/licenses/by-nd/4.0/


 31 

Identification of common false positive and false negative enrichment results by nearest 644 

distance enhancer-target gene assignment 645 

Next, we examined the false positive (FP) and false negative (FN) GO terms identified using the 646 

nearest distance assignment (>5kb LocDef), that were correctly identified using the ‘smart’ 647 

enhancer-target gene assignments. To do this, we compared the Poly-Enrich [70] GSE results of 648 

the 87 evaluation ChIP-seq datasets using >5kb LocDef for nearest distance to those of the best 649 

performing EnTDef (defined by DNase-seq plus FANTOM5 enhancers and ChIA, Thurman and 650 

FANTOM5 enhancer-target gene link methods with “nearest_All” addition) using the known TF-651 

GO BP annotated terms (i.e. GO annotation). The FP and FN GO BP terms were defined according 652 

to the following criteria: i) FPs: GO terms identified as significantly enriched (FDR < 0.05) by 653 

the >5kb LocDef, but not significant (FDR  ³ 0.05) by EnTdef and not annotated by the GO 654 

database; ii) FNs: GO terms identified as insignificant (FDR ³ 0.05) by the >5kb LocDef, but 655 

significantly enriched (FDR  < 0.05) by EnTDef and also annotated by the GO database. GO terms 656 

were removed if they were annotated to < 4 (<10%) or > 30 (>90%) of the 34 used TFs to ensure 657 

the possibility of having both true and false annotations present among the TFs, and only terms 658 

with < 1000 total annotated genes were used in this analysis. For each GO term, the number of 659 

FPs and FNs among the 34 TFs, detected using ‘>5kb’, were summarized, and the proportion of 660 

FP and FN were calculated using the total number of positive TFs (FDR < 0.05) or negative TFs 661 

(FDR ³ 0.05) by >5kb LocDef as the denominator, respectively. To summarize the significance 662 

level of each FP or FN term in GSE testing, a meta-p-value was generated using Fisher’s method 663 

[76] across the annotated TFs using the raw p-values from the >5kb LocDef or EnTDef approach, 664 

respectively. Finally, the FP (or FN) GO terms were ranked by the proportion of FP (or FN) 665 
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decreasingly and meta-p value increasingly, followed by redundant GO term filtering as described 666 

above. 667 

 668 

DATA AVAILABILITY 669 

The top performing EnTDef and EnTDef.plus5kb have been included in the Bioconductor package 670 

chipenrich (42) and the ChIP-Enrich website (https://chip-enrich.med.umich.edu). The peak-to-671 

gene assignment functionality provided by our GSE Suite (http://gsesuite.dcmb.med.umich.edu) 672 

allows users to select all possible combinations of enhancer and/or enhancer-to-gene link 673 

methods (as described in this study) and obtain the gene assignments for user uploaded genomic 674 

regions based on the selected sources and methods. Genomic regions can also be assigned to 675 

target genes based on other approaches (e.g. promoters, exons or anywhere in the genome using 676 

the nearest distance method). 677 
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 687 

FIGURE LEGENDS 688 

Figure 1. Workflow for generating and evaluating EnTDefs. (A) Enhancers were defined by 689 

ENCODE ChromHMM UCSC tracks, ENCODE DNase-seq hypersensitive sites (DHSs), Cap Analysis 690 

Gene Expression (CAGE) experiment-derived enhancers from the FANTOM5 project, and/or distal 691 

and non-promoter DHS within 500kb of the correlated promoter DHSs from Thurman et al. (B) 692 

The enhancer-target gene links were defined by ChIA-PET interactions from ENCODE ChIA-PET 693 

data (ChIA), DNase-signal correlation-based links from Thurman et al, expression correlation-694 

based interactions from FANTOM5, and/or interactions between enhancers and genes within 695 

loop (L) boundaries of ChIA-PET with convergent CTCF motifs (L1 [one gene], L2 [£  two gene] or 696 

L3 [£ three genes] were allowed). An enhancer can be assigned to multiple genes. To increase 697 

the genome coverage, we allowed the extension of enhancers to 1kb (i.e. enhancer extension), 698 

and assigned other regions outside of 5kb from a TSS to the nearest gene (i.e. “nearest_All” 699 

additional links). All combinations of the above, allowing multiple at a time, defined the possible 700 

Enhancer to Target gene Definitions (EnTDefs). (C) Left: 1,860 EnTDefs were generated and GOBP 701 

GSE testing was performed on 87 ENCODE TF ChIP-seq datasets using each of the EnTDefs. By 702 

comparing the significant GOBP terms identified by GSE with each EntDef to those assigned to 703 

the TF by the GO database (“GO annotation”), the F1-score was calculated for each EnTDef-TF 704 

pair. Right: the EnTDefs were ranked by average F1-score across TFs in descending order. TF 705 

paired Wilcoxon sum-rank test was performed between the top ranked EnTDef and each of the 706 

sequential ones to identify the set of best EnTDefs (top 1 until the rank with p value < 0.01).  707 
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Figure 2. Characteristics of EnTDefs. (A) Overview of the characteristics of 1,860 EnTDefs 708 

and >5kb LocDef ranked by F1-score in descending order. F1-score, sensitivity, specificity, 709 

number of enhancers, average number of genes per enhancer, average number of enhancers per 710 

gene, average proportion of caught TF peaks, average proportion of caught TF peaks outside of 711 

5kb of TSSs, proportion of genome coverage, and whether the EnTDef was significantly better 712 

than the >5kb LocDef are shown. (B) The frequency of each method (four enhancer definition 713 

methods, with or without enhancer extension, seven enhancer-target gene link methods) among 714 

the 741 EnTDefs that significantly outperformed the >5kb LocDef. For simplification, the 715 

“nearest_all” additional link method was grouped in enhancer-target gene link method. (C) Bar 716 

plot of average F1-scores for the top 10 EnTDefs plus 5kb LocDef (blue bars), top 10 EnTDefs 717 

(purple bars), nearest TSS method (pink bar), >5kb LocDef (mustard bar) and 5kb LocDef used by  718 

PE.Approx (yellow bar), by GREAT (dark green bar) and by Fisher’s exact test (green bar). (D) 719 

Distribution of average F1-scores of the top 10 EnTDefs used on evaluation ChIP-seq datasets or 720 

testing ChIP-seq datasets. The dashed lines link the same EnTDefs used in the two different ChIP-721 

seq datasets. The p value of Wilcoxon signed-rank test was shown in the figure. 722 

Figure 3. Evaluation of cell type-specific (CT)-EnTDefs and general EnTDefs. (A) Distribution of 723 

the average F1-scores of same-CT EnTDefs, diff-CT EnTDefs and general EnTDefs that were 724 

applied on the same TF ChIP-seq data. (B) Correlation between average F1-scores calculated on 725 

a TF in a particular cell type using CT-EnTDefs of the matched cell type (x-axis) and the ones 726 

calculated on the same TF using CT-EnTDefs of a different cell type (y-axis). Each dot represents 727 

an average F1-score of a TF across EnTDefs, and each panel is one of four cell types (GM12878, 728 

H1HESC, K562 and MCF7) for which the CT-EnTDefs were created and evaluated, respectively. (C) 729 
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Evaluation summary of different types of EnTDefs in four different cell types. Comparative 730 

average F1-scores associated with a particular cell type are grouped in a grey box: blue refers to 731 

using the CT-EnTDef on a TF ChIP-seq from the same cell line, green refers to using the general 732 

CT-EnTDef on that TF ChIP-seq, and red refers to using the diff-CT-EnTDef on TF ChIP-seqs from 733 

that TF ChIP-seq. 734 

Figure 4. GO terms often missed or falsely identified by the nearest distance method of 735 

assigning genomic regions to target genes. (A) Distribution of the rank-based inverse normal 736 

transformation (INT) of average interceding gene numbers for the best EnTDef without the 737 

“nearest_all” addition. The top ranked enriched GO terms most likely or less likely to be identified 738 

by nearest distance method were listed. (B) The enriched GO terms in the genes with fewest 739 

interceding genes and the ones with the most interceding genes across the top 10 EnTDefs and 740 

their associated -log10 Harmonic Mean (HM) FDR.  741 

Figure 5. False positive and false negative GSE results by nearest distance assignment method. 742 

(A) Examples of false positive (left) and false negative results. The false positive term blood vessel 743 

morphogenesis was annotated with gene PROK1, the interceding genes between an enhancer 744 

bound by a TF YY1 (peak:1503) and its target gene SLC16A4. The false negative term histone 745 

modification was annotated with gene CHD3, a target gene of the enhancer bound by the TF CTCF 746 

(peak:6206). (B) The false positive GO terms identified as enriched by the nearest distance 747 

method, but not by the best performing EnTDef and not defined by the TFs’ GO annotation. (C) 748 

The false negative GO terms which were failed to be identified by the nearest distance method, 749 

but correctly identified by the best performing EnTDef and also defined by the TFs’ GO annotation. 750 

The significance levels (-log10 Fisher’s FDR) are shown in dark blue for >5kb LocDef and dark red 751 
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for the EnTDef. The numbers listed at the end of each paired bars are false positive rate (B) and 752 

false negative rate (C). 753 

Figure 6. User guidelines for selecting an appropriate enhancer-to-gene assignment method 754 

(LocDef) for GSE testing. Depending on the specific research questions, three types of LocDefs 755 

can be selected for GSE testing from the chipenrich R package: 1) “5kb” or “1kb” for promoter 756 

regulation, 2) “enhancer” for distal regulation, and 3) “enhancer.5kb” for whole genome 757 

regulation. Different LocDefs have different genome coverages as shown in the last column. 758 

Options in other GSE testing software for genomic regions will differ. We no longer recommend 759 

using nearest TSS method for Poly-Enrich analysis. 760 
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