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Abstract

Revealing the gene targets of distal regulatory elements is challenging yet critical for interpreting
regulome data. Experiment-derived enhancer-gene links are restricted to a small set of
enhancers and/or cell types, while the accuracy of genome-wide approaches remains elusive due
to the lack of a systematic evaluation. We combined multiple spatial and in silico approaches for
defining enhancer locations and linking them to their target genes aggregated across >500 cell
types, generating 1,860 human genome-wide distal Enhancer to Target gene Definitions
(EnTDefs). To evaluate performance, we used gene set enrichment testing on 87 independent
ENCODE ChlP-seq datasets of 34 transcription factors (TFs) and assessed concordance of results
with known TF Gene Ontology (GO) annotations., assuming that greater concordance with TF-GO
annotation signifies better enrichment results and thus more accurate enhancer-to-gene
assignments. Notably, the top ranked 741 (40%) EnTDefs significantly outperformed the common,
naive approach of linking distal regions to the nearest genes (FDR < 0.05), and the top 10 ranked
EnTDefs performed well when applied to ChIP-seq data of other cell types. These general EnTDefs
also showed comparable performance to EnTDefs generated using cell-type-specific data. Our
findings illustrate the power of our approach to provide genome-wide interpretation regardless

of cell type.

Background
Enhancers, silencers and insulators are key genomic cis-regulatory elements that play pivotal

roles in spatiotemporal control of gene expression by physical contact with the promoters of
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target genes they control [1-3]. Promoters are located immediately upstream of the transcription
start sties (TSSs), facilitating the recruitment of transcription factors and RNA polymerase Il
(RNAPII) to instruct the initiation and direction of gene transcription, whereas enhancers and
silencers can be located anywhere in the genome and often at distal regions, such as upstream,
downstream or in introns of target genes or unrelated genes. Via interaction with promoters of
the target genes, enhancers are bound by activator proteins and stimulate the rate of
transcription, while silencers were bound by repressor proteins and decrease the rate. In certain
cases when the interactions between enhancers/silencers and promoters are unwanted,
insulators can block their interactions[4]. Bound by tissue-specific transcription factors and
cofactors, such as p300 and Mediator, the cis-regulatory elements and promoter connections
direct what, when and how the genome is transcribed so as to control cell fate decisions during
development and differentiation [5-7]. For simplicity, we will refer to these distal cis-regulatory

elements as general “enhancers” (>5kb from a transcription start site [TSS]) hereinafter.

Perturbation of enhancer activities and/or functions induced by genomic variants, epigenomic
dysregulation, and/or aberrant chromosomal rearrangements can underlie disease susceptibility
and developmental malformations [8, 9]. A prototypic example of this is the point mutation in
the Shh enhancer, ZRS (zone of polarizing activity regulatory sequence), which can lead to limb
malformations such as polydactyly in humans [10]. Recently, genome-wide association studies
(GWAS) identified that >88% of disease-linked variants occur within non-coding regulatory DNA

[11], especially enriched in enhancers [12]. These findings confirm the importance of enhancers
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in orchestrating transcriptional regulation and reveal that the dysregulation of enhancer function

contributes to the pathogenesis of a variety of diseases, referred to as “enhanceropathies” [13].

A challenge in enhancer biology is to decipher their target genes and the mechanisms underlying
the precise enhancer-gene interactions, which is reviewed in Pennacchio LA et al [14]. The
enhancer to target gene specificity is essential to understand how gene expression is
programmed during normal development and differentiation, and how the ectopic enhancer
and/or non-target gene interactions can lead to diseases. However, interpreting genome-wide
regulatory data is significantly hampered by our limited knowledge of enhancers and their target
genes for multiple reasons. First, enhancers are commonly located distal to their target genes
with multiple intervening genes in between, and greatly varying distances. One enhancer can act
on multiple genes and one gene can be regulated by multiple enhancers [15]. Second, enhancers
act in a dynamic and often cell type-specific manner, which further complicates the definition of
a comprehensive set of enhancers and their target genes. Third, enhancers and promoters share
various characteristics and functions [16, 17], thus making it challenging to disentangle the two

elements based on functional genomic data.

With the breathtaking progress in technologies such as massive parallel sequencing and high-
resolution chromosome conformation capture, our knowledge of cis-regulatory elements’
function and spatial organization have grown considerably over the past decade [18-23]. In most
cases, enhancers are located at regions distal of their target genes up to hundreds of kilobases,

and they can bypass more proximally located genes to bind to the promoters of the genes they
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85  control through long-range 3D chromosomal interactions [19, 24, 25]. The 3D genome is
86 organized in hierarchical layers, from bottom to top including chromatin loops (or insulated
87 neighborhoods), topological associating domains (TADs), and compartments [26]. The chromatin
88 loops are the fundamental structural and functional building blocks of genome organization,
89  which form between two convergent CTCF (CCCTC binding factor) binding sites bound by the
90 cohesin protein complex [27].
91
92 Large epigenomics consortia like ENCODE [28-30] and Roadmap Epigenomics [31], have
93 generated a tremendous amount of regulatory data across various tissue and cell types, including
94  genome-wide transcription factor (TF) binding by ChIP-seq [32], chromatin accessibility assays
95 (e.g. DNase-seq [33], ATAC-seq [34]), genome-wide chromatin mark profiles, and 3D
96 chromosome organization. However, enhancer-promoter interactions are still highly restricted
97  toasmall number of cell types, which is probed by Chromatin Interaction Analysis by Paired-End
98 Tag Sequencing (ChIA-PET [35]), and the genome-wide interaction map is still limited due to the
99  high cost of Hi-C experiments [36]. Other enhancer-promoter interaction datasets have been
100 generated by mathematical and/or bioinformatic approaches. The FANTOMS5 [37] dataset is
101 based on the gene expression correlation between enhancer and promoter regions, and
102  Thurman et al. exploited DNase signal correlation between enhancers and promoters using
103  DNase-seq data [38]. However, the reliability and generalization of these approaches remains
104  elusive due to the lack of a systematic evaluation.

105
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106  Gene set enrichment (GSE) testing is widely applied to infer the regulatory networks embedded
107 in the abundant high-throughput gene regulation data, including ChlP-seq, Bisulfite sequencing,
108 DNase-seq, and ATAC-seq. The first step in this analysis is to assign the genomic regions identified
109 by the assays to their target genes, and most methods simply do the assignment using the nearest
110 genes regardless of the actual regulatory targets [39-42]. Since enhancers and their target genes
111 havelong-range chromosomal contact, adjacent gene assignments tend to link enhancers to non-
112 target genes, leading to incorrect interpretation for distal enhancer regulation. In this study, we
113  aimed to determine the best sets of human “enhancers” (enhancers, silencers and insulators)
114 and their gene targets. By all possible combinations of existing experimental and/or
115 computationally-derived datasets, we generated 1,860 Enhancer to Target gene Definitions,
116 referred to as EnTDefs, and systematically evaluated their performance based on the
117  concordance of GSE results of 87 ENCODE ChlIP-seq datasets with known TF biological processes,
118 resulting in a handful of best-performing EnTDefs. We also showed that as opposed to being
119 random, target genes that are often missed or often falsely identified using adjacent gene
120  assignments are biased to specific Gene Ontology terms. In addition, we compared cell-type-
121  specific EnTDefs (CT-EnTDefs) with non-cell-type-specific ones (general EnTDefs) and found that
122 general EnTDefs were more favorable. Our findings demonstrate that the novel, top-performing
123 EnTDefs significantly enhance the biological interpretation for genomic region data regardless of
124 cell type.

125

126  RESULTS

127  Creation and ranking of genome-wide Enhancer-to-Target gene Definitions (EnTDefs)
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128  Several approaches to define human enhancer locations and their target genes have been
129  proposed in the literature, but no systematic study has been performed to evaluate their
130 performance separately or in combination on a genome-wide scale. To determine the best sets
131  of human enhancers and their distal gene targets, we generated a total of 1,860 genome-wide
132 Enhancer-Target gene Definitions (EnTDefs) using existing experiments and/or literature-derived
133  data, and systematically evaluated their performance. This was done by applying all possible
134  combinations of methods for defining 1) enhancer region locations, identified from four data
135 sources (ChromHMM[43], DNase-seq[38], FANTOM5[37, 44, 45] and Thurman[38]), and 2)
136  enhancer-target gene links, defined by four different methods (ChlA-pet data [“ChIA”][46, 47],
137  DNAase-signal correlation [“Thurman”][38], gene expression correlation [“FANTOMS5”][45] and
138 loop boundaries with convergent CTCF motif [“L”][48]), including combinations using multiple of
139  each (see Methods for details). Overall, these included a total of 1,768,201 possible individual
140 enhancer-target links across >500 cell types by integrating all of the 4 enhancer-defining datasets
141  and all of the 4 enhancer-gene link datasets. These enhancer-target links were defined from
142 685,921 enhancers and 21,094 linked target genes. Figure 1 demonstrates the workflow for the
143  creation and evaluation of these 1,860 EnTDefs. For the “L” enhancer-gene linking method, we
144  evaluated the loops with up to 3 genes (L1: one gene, L2: < two genes, or L3: < three genes),
145  allowing the links between the enhancer to any of the included genes within the loop. Because
146  current knowledge of enhancers is far from complete and the experimental data that assay
147  enhancers to target genes is limited, the genome coverage of EnTDefs defined by the
148  experimentally and/or computationally derived methods (Figure 1A: four enhancer-defining

149  methods and four enhancer-target gene linking methods) was expected to be low. Therefore, we
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150 extended the enhancer regions up to 1kb and/or assigned regions outside of enhancers and
151  promoters (within 5kb of a transcription start site (TSS)) to the gene with the nearest TSS (Figure
152  1A: Extension and Additional link), resulting in 100% coverage of distal genomic regions (>5kb of
153  TSS). All of the 1,860 EnTDefs were evaluated and ranked based on how well they performed in
154  gene set enrichment (GSE) testing with genes’ distal ChIP-seq peaks. Specifically, the Gene
155  Ontology biological process (GO BP) enrichment results from 87 ENCODE ChIP-seq datasets for
156 34 distinct transcription factors (TFs) were compared with the curated GO BP terms annotated
157  to the same tested TFs (GO annotation by GO database) using F1 scores (see Methods). EnTDefs
158 demonstrating higher concordance ranked higher, as they were better able to identify the known

159  functions of the TFs based on their distal binding regions (non-promoters).

160 Overview of the EnTDef characteristics

161  We first investigated the characteristics of the 1,860 EnTDefs by comparing them to simply
162  assigning distal genomic regions (i.e. >5kb from a TSS) to the genes with the nearest TSS (>5kb
163  Locus Definition [LocDef]) (Figure 2A, Supplementary Figure S1). The EnTDefs were ranked in
164  decreasing order by their average F1 score across 34 TFs, and the top 741 EnTDefs (~40%) were
165 found to significantly outperform the >5kb LocDef (Wilcox signed-rank test, FDR < 0.05). The best
166  performing EnTDef (No. 1 ranked) was defined by DNase-seq plus FANTOMS enhancers and ChlA,

III

167  Thurman and FANTOMS enhancer-target gene link methods with the “nearest_AlIl” addition. For
168 the top 741 EnTDefs, the percentage of genome covered and percent of distal peaks caught
169  (outside of 5kb regions around TSSs) was as high as 100% (89% - 100%), the median number of

170  genes assigned to each enhancer was 2 (range of 1 - 2), and the median number of enhancers
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171  assigned to each gene was 20 (range of 2 - 98). Out of the 741 EnTDefs, those ranked 2 through
172 19 were not significantly worse than the best performing EnTDef (Wilcoxon signed-rank test, p >
173  0.01. Supplementary Table S1), suggesting that these 19 EnTDefs performed equally well. This
174  finding was robust to the specific set of GOBP annotations used (i.e. with or without IEA-based

175 GO to gene annotations; see Methods, data not shown).

176 By examining the types of methods used to generate the top 741 EnTDefs (Figure 2B), we found
177  that: i) over half of them included FANTOMS5 (54%), Thurman (53%) and DNase-seq (51%)
178 enhancer regions, while chromHMM defined enhancers were least used (~45%); ii)
179  approximately 60% of them were generated without enhancer regions extension; jii) all of them
180 used the “nearest_All” addition to assign the distal regions that were not in enhancers to the
181 nearest gene’s TSS; and iv) the “ChlA” method applying ChlA-PET data to assign enhancers to
182  target genes was included most frequently (~60%), followed by FANTOMS5 (~51%) and Thurman
183  (42%), whereas the “L” method assigning genes to enhancers within the same loop boundaries
184  with convergent CTCF motifs was least used (~26%). It is not surprising that all of the top 741
185 EnTDefs included the “nearest_all” addition, because this significantly increased genome
186  coverage by assigning all regions outside enhancers and promoters to the nearest distance gene
187  (>5kb LocDef), leading to improved sensitivity and thus F1 score (Figure 2A). On the other hand,
188 the fact that these 741 EnTDefs outperformed the >5kb LocDef suggests that the “smart”
189  enhancer to target gene assignments more accurately capture real biological regulatory elements
190 for distal enhancer regions when compared to the simplistic assignment to nearest genes. In
191  addition, all of the top performing EnTDefs were generated using combinations of at least two

192  different datasets/methods for enhancer definitions (ChromHMM, DNase-seq, FANTOMS,
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193 and/or Thurman) and enhancer-gene assignments (ChlA, FANTOMS5, L, and/or Thurman),
194  illustrating the importance of high genomic coverage and that the integration of multiple data

195 sources and methods indeed improves the performance of enhancer to target gene assignments.

196  EnTDefs plus promoter regions outperforms the nearest TSS method

197  Our analyses thus far have focused on the assessment of distal gene regulation. However, often
198 the goal is to assess the functional regulation from anywhere in the genome, including binding
199  both distal and proximal to TSSs. One commonly used method for ChiIP-seq GSE testing is to link
200 all peaks to the nearest gene, hereinafter referred to as the “nearest TSS” method
201  (Supplementary Figure S1: “nearest TSS” LocDef), resulting in all peaks having at least one
202  assigned gene. EnTDefs were generated for distal regions (outside the 5kb windows around TSSs)
203  and any regions within 5kb of a TSS were ignored, whereas the “nearest TSS” method includes
204  all genomic regions. Thus, to compare fairly with the “nearest TSS” method, we added promoter
205 regions to the top 10 ranked EnTDefs, referred to as “EnTDef_plus5kb”. That is, peaks within 5kb
206  of aTSS were assigned to the nearest gene (Supplementary Figure S1: “5kb” LocDef), while distal
207  peaks were assigned according to the EnTDef. All ten of the EnTDef _plus5kbs significantly
208 outperformed the “nearest TSS” method (~0.05 increase in average F1 score, Wilcoxon signed-
209  ranktest, p < 0.0001) (Figure 2C), using the same evaluation method based on F1 scores as used

210 above (see Methods).

211  We next determined if our ‘smart’ EntDefs using only distal binding events could even
212 outperform the use of all peaks (promoter and enhancer) with naive assignments to the genes
213  with the nearest TSS. When compared with the “nearest TSS” method, the top 10 best

214  performing EnTDefs showed slightly lower F1 scores (~0.03 lower), but the difference among the

10
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215  top half of them were not significantly different from “nearest TSS” (Wilcoxon signed-rank test,
216  p > 0.05). Thus, although they did not outperform it, the best were not significantly worse. This

217  illustrates the great importance of regulation from promoters in GSE testing.

218 Two other commonly used GSE methods for genomic regions, GREAT[39] and Fisher’s exact test
219  (FET) using peaks within 5kb of a TSS (Supplementary Figure S1: “5kb” LocDef), were also
220  evaluated using the same scheme. Notably, the three GSE testing methods (Poly-Enrich, GREAT
221  and FET using 5kb LocDef to assign peak to gene) performed equally well (Friedman test, p =0.91),
222  but significantly worse than the top 10 EnTDefs (Figure 2C, average F1 = 0.45 vs 0.47, Wilcoxon
223 rank-sum test, p < 0.007). In addition, both top 10 EnTDefs and 5kb LocDef (i.e. assigning
224 promoters to the nearest gene) significantly outperformed >5kb LocDef (i.e. the naive approach
225  of assigning distal regions to the nearest gene) (average F1=0.47, 0.45 vs 0.27, Wilcoxon signed-
226  ranktest, p=2.37x10and 1.32x108 respectively). In summary, although the naive approach of
227  linking distal regions to the nearest gene (>5kb LocDef) did not outperform the use of promoter
228  data only (5kb LocDef), the use of distal binding events with ‘smart’ gene assignments (EnTDefs)
229  did outperform the use of promoter data only. These findings illustrate the importance of
230  accurately modeling regulation from enhancers, and that when done well, enhancers have the
231  potential to provide more regulatory information than promoters. We conclude that GSE testing
232 using our top EnTDefs exceeds the commonly used nearest distance-based and promoter-only

233 based GSE approaches.

234  Our EnTDefs are generalizable to different cell lines

11
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235  Next, we sought to investigate whether the EnTDefs (which were selected based on their
236  performance in GM12878, H1-HESC and K562 cell lines) can perform equally well on testing ChIP-
237  seq data from different cell lines (A549, HEPG2, HUVEC and NB4). Surprisingly, the average F1
238  score of the top 10 EnTDefs across the test ChIP-seq datasets (different cell lines) was significantly
239  higher than that from the evaluation ChIP-seq datasets (average F1 = 0.60 vs. 0.56, Wilcoxon
240  sum-rank test, p = 0.0059) (Figure 2D, and Supplementary Figure S2). This may be due to the test
241  ChIP-seq datasets containing more peaks than the evaluation datasets (Supplementary Figure
242  S3A, Wilcoxon sum-rank test, p = 0.092), and indeed we found that the F1 scores were
243 significantly corelated with the number of peaks (Supplementary Figure S3B, Pearson’s
244  correlationr=0.65, p=4.57x 10°). The findings indicate that the performance of the top selected
245  EnTDefs are independent of the cell types of ChIP-seq datasets, but likely strongly influenced by
246  the quality of the datasets themselves. We reasoned that the EnTDefs were created based on the
247  combinations of diverse data sources stemming from >500 different cell types, resulting in a
248  consensus set of enhancer and gene assignments across various cell types, and therefore
249  representative of the background interactions between enhancer and target genes across many
250 cell types. The high generalizability of our top EnTDef makes it feasible to integrate with GSE

251  testingin a cell type-independent manner.

252  General EnTDefs perform comparably to cell-type-specific EnTDefs

253  To contrast with the EnTDefs generated by integrating data for many cell types, hereafter called
254  “general EnTDefs”, we created “cell-type-specific EnTDefs” (CT-EnTDef) using ChIA-PET datasets
255  of a particular cell type. Since many enhancers and regulatory relationships between enhancer

256  and target genes are considered to be tissue and cell-type-specific, we sought to examine how

12
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257  the general EnTDefs perform when compared with CT-EnTDefs. For each tested TF (the average
258  number of TFs tested in each cell type is ~60 [6 - 104], see Supplementary Table S2), F1 scores
259  were calculated (see Methods) and compared between a pair of EnTDefs which were created
260 using the same methods (the same combinations of enhancer and enhancer-gene link methods)
261  but based on data from different cell types: i) general EnTDef vs. CT-EnTDef using the same cell
262  type (same-CT-EnTDefs), ii) general EnTDef vs. CT-EnTDef using a different cell type (diff-CT-
263  EnTDefs), and iii) same CT-EnTDefs vs. different CT-EnTDefs. Notably, there was no significant
264  difference in F1 scores among the three comparative EnTDefs for cell types GM12878, H1HESC
265  or K562 (Figure 3A, Kruskal-Wallis test, p > 0.5). For MCF7, the same-CT-EnTDef performed near
266  significantly better than the general CT-EnTDef (Wilcoxon sum-rank test, p = 0.03; three groups:
267  Kruskal-Wallis test, p = 0.059). It is worth noting that only four TFs were tested in cell type MCF7,
268  whereas >46 TFs were tested in the other three cell types, so this exception might not be visible

269 foralarger set of TFs.

270  We also observed that the average F1 scores of TFs across all possible EnTDefs were significantly
271  correlated between the same-CT-EnTDef and diff-CT-EnTDef for all four cell lines (Figure 3B and
272  Supplementary Figure S4, Pearson’s correlation > 0.9, p < 0.0001). This implies that the
273  performance of the results is driven more by the quality and quantity of input data than by
274  whether a general or CT-EnTDef is used. The trend of correlation still held at the individual TF and
275  EnTDef level (F1 score per TF per EnTDef, Supplementary Figure S5). As shown in Figure 3C,
276  regardless of the type of EnTDef (general EnTDefs, same-CT-EnTDefs and diff-CT-EnTDefs) used
277  for evaluation, the average F1 score across all TFs and EnTDefs were similar, with the difference

278  ranging from 0 to 0.14. Taken together, these findings suggest that CT-EnTDefs are overall

13
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279  comparable to general EnTDefs, and the benefit of using CT-EnTDefs is minor and depends on
280 the quality and quantity of data for a particular cell type (e.g. MCF7 in Figure 3C). This is good
281  newssince it is costly and difficult to generate cell-type-specific ChIA-PET experiments, which are
282  required to create the corresponding CT-EnTDef. In contrast, the general EnTDefs, which capture
283  real enhancer and target gene interactions in a similar way to CT-EnTDef, are more practically

284  and economically favorable for GSE testing.

285 Incorrect gene assignments by nearest distance method are not random

286  Since enhancers are known to be located up to 1Mbp away from their regulatory genes [14, 49],
287  several interceding genes can reside between a TF binding site (peak) in an enhancer and its
288  target gene(s), as modeled by our EnTDefs (Supplementary Figure S6). In contrast, the nearest
289  distance method simply links a peak to the gene with the nearest TSS without accounting for
290 interceding genes. By ranking the genes based on the average number of interceding genes
291  across the enhancers that target them, we investigated whether the number of interceding genes
292  israndomly distributed across genes and GO terms, or if there are GO terms significantly enriched
293  with genes having more or fewer interceding genes[50]. We investigated the best performing
294  EnTDef excluding the “nearest_all” addition, in order to assess the ‘smart” enhancer-target links
295  only. The genes least likely to have interceding genes were found to be significantly enriched in
296 G protein-coupled receptor activity (FDR = 1.41x1074), olfactory receptor activity (FDR = 6.21x10°
297  1?), detection of chemical stimulus (FDR = 3.23x10Y), phenol-containing compound metabolic
298  process (FDR = 1.91x10*), GABA-ergic synapse (FDR = 2.35x10%), RISC complex (FDR = 2.39x10

299 %), postsynaptic membrane (FDR = 4.13x10#) and behavior (FDR =4.71x10*) (Figure 4A). These
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300 GO terms enriched with genes least likely to have interceding genes (lower ranked genes) are
301 most likely to be correctly assigned by the nearest distance method (Supplementary Figure
302 S1: >5kb LocDef), and thus most easily detectable by current GSE testing. Conversely, the GO
303 terms enriched with higher numbers of interceding genes (upper ranked genes) were mRNA
304 metabolic process (FDR = 8.09x10®), regulation of catabolic process (FDR = 8.40x108), chromatin
305 organization (FDR = 2.53x107), kinase binding (FDR = 1.75x10®), heterocycle catabolic process
306 (FDR = 3.22x10°®), chromatin (FDR = 7.25x10®), hemopoiesis (FDR = 9.47x10°) and RNA
307 processing (FDR = 2.27x10°) (Figure 4A). Those GO terms are least likely to be assigned by the

308 nearest distance method, and most likely missed using current methods for GSE testing.

309 To determine if this observation is robust to different EnTDefs, we performed the same analysis
310 on all top 10 best performing EnTDefs without the “nearest_all” addition, and combined the
311  results by calculating FDR-adjusted harmonic mean p-values, followed by removing redundant
312 terms (see Methods). Consistently, G protein-coupled receptor activity, olfactory receptor activity,
313  RISC complex and postsynaptic membrane were still the top 5 enriched terms for the genes with
314 fewer interceding genes, and similarly, regulation of catabolic process, chromatin organization,
315  kinase binding and heterocycle catabolic process were the top 5 enriched terms in upper ranked
316  genes with more interceding genes (Figure 4B). These findings indicate that both the genes with
317 the most and fewest interceding genes are not random: chemical stimulus and neuron-related
318 genes can be easily assigned with the nearest distance method, whereas metabolic processing
319 and chromatin organization genes may be frequently missed. It is concordant with the knowledge
320 that enhancers regulate genes via long-range chromatin interactions, which are able to be

321  captured by our EnTDefs.
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322  Nearest distance assignment method leads to false positive and false negative GSE results

323  Ourfinding that the nearest distance method tends to incorrectly assign TF binding sites in some
324  biological functions more than others triggered us to investigate how this bias affects the results
325  of GSE testing. By comparing the GSE results from assigning distal regions to the nearest genes
326  (i.e. using >5kb LocDef) to those using the best-performing EnTDef, and evaluating using TF GO
327 annotations as above (see Methods), we identified all false positive (FP) and false negative (FN)
328  enriched GO terms by the >5kb LocDef, that were correctly called by our EnTDef. First, we ranked
329 the FP GOtermsin descending order by significance across the 34 tested TFs. These FPs represent
330 GO terms with genes that tend to be in between enhancers and their targets (i.e. the interceding
331 genes), and they are not annotated to the TFs of interest. For instance, the GO term blood vessel
332  morphogenesis is annotated with PROK1, an interceding gene between an enhancer bound by
333 the TF YY1 (peak:1503) and its target gene SLC16A4 (Figure 5A left panel). Using the nearest
334  distance method, the YY1 binding site would be falsely assigned to the nearest gene PROK1,
335 rather than to the real target gene SLC16A4, leading to the enrichment of blood vessel

336 morphogenesis that is not regulated by the TF YY1 (i.e. a FP term by >5kb LocDef).

337 The top ranked FP biological processes (Figure 5B) included those related to development and
338 regulation (gland development, skeletal muscle organ development, regulation of DNA biding,
339 and regulation of neuron death), metabolic process or response to different stimuli (alcohol
340 metabolic process, response to calcium ion, response to drug), and cell differentiation processes
341  (Stem cell differentiation, lymphocyte differentiation and T cell activation). Among them, blood
342  vessel morphogenesis was identified to be the most often falsely enriched term by >5kb LocDef

343  (Fisher’s FDR = 9.48x10%) with five out of seven TFs falsely called as positives (FP rate = 71%). It
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344  is noteworthy that the Fisher’s p values of FP terms calculated based on >5kb LocDef GSE results
345  were overall significantly lower than those based on EnTDef GSE results (Wilcoxon rank-sum test,
346  p= 3.95x10%), indicating that those FP terms were much less likely identified by our EnTDef

347 method.

348  On the other hand, common FN GO terms failed to be identified by >5kb LocDef while being
349  successfully identified by the top EnTDef. In contrast to the FP GO terms, FN terms tend to be
350 missed by assignment to the nearest distance gene, but correctly identified using the top EnTDefs.
351  As shown in Figure 5A (right panel), the GO term histone modification contains the gene CHD3,
352 the gene target of an enhancer bound by the TF CTCF (the peak:6206). Using the nearest distance
353  method, the CTCF binding site would be falsely assigned to the nearest gene ALOX15B, rather
354  than the target gene CHD3, failing to identify histone modification as regulated by the TF CTCF
355 (i.e. a FN term by >5kb LocDef). These FN GO terms consistently point to chromosome
356  organization and modification processes, including Protein-DNA complex subunit organization
357 (FNrate =50%), histone modification (FN rate = 40%), Peptidyl-lysine modification (FN rate = 38%),
358 and regulation of chromosome organization (FN rate = 25%) (Figure 5C). Their Fisher’s p values
359  based on the >5kb LocDef GSE results were significantly higher than those based on the EnTDef
360  GSE results (Wilcoxon rank-sum test, p= 6.24x10%°), in line with the finding that chromosome
361 organization-related terms are very often missed by the nearest distance method. Together,
362 these results demonstrate that GSE analysis using the nearest distance gene assignment method
363 cannot always identify biological processes induced by long-range chromosome organization;
364 rather, they tend to favor development and cell differentiation functions which are not related

365 to the TFs. In contrast, the EnTDef method can successfully detect distal enhancer and target
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366 gene interactions even for biological processes with complex long-range interactions such as

367 chromosomal organization-related terms, and avert potential false positive results.

368 Guidance for selecting a peak-to-gene assighnment method in GSE analysis

369 The first step in GSE testing of cis-regulome data, such as TF binding sites or chromatin marks
370 from ChIP-seq, is to assign the genomic regions or peaks to their target genes. The different
371 assignment methods can lead to variable enrichment results and FP and/or FN findings, as
372  discussed above (nearest distance method vs. EnTDef). To avoid misinterpretation of genome-
373  wide regulatory data, we need to select an appropriate LocDef method with care, which should
374  be specific to the particular research question and the genomic regions of interest. Figure 6
375 summarizes three general categories of research questions and the corresponding regions of
376 interest: i) the 5kb or 1kb LocDef should be selected when interested in how a TF and/or
377 chromatin mark regulates gene expression from promoters; ii) the EnTDef (enhancer) should be
378 selected when interested in how a TF and/or chromatin mark regulates gene expression from
379 distal regions; and iii) when the comprehensive regulatory signature is of interest, including both
380 promoter and distal regions, our EnTDef plus 5kb LocDef (enhancer.5kb) should be selected. The
381 promoter LocDef has the lowest genome coverage (10% for <5kb LocDef and 2% for <1kb LocDef),
382  while the EnTDef plus 5kb has 100% genome coverage, and the EnTDef has intermediate genome
383  coverage (90%). We incorporated our top performing EnTDef and EnTDef.plus5kb into the
384  Bioconductor package chipenrich [42] and the ChlIP-Enrich website (https://chip-

385 enrich.med.umich.edu), allowing users to select the most suitable genomic regions-gene

386 assignment methods, gene sets and GSE method to correctly interpret their genome-wide

387 regulatory data. In addition, we provide a peak-to-gene assignment functionality in our GSE Suite
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388  (http://gsesuite.dcmb.med.umich.edu), by which users can select any possible combination of

389 enhancer location and enhancer-to-gene target methods (as described in this study) and obtain
390 the gene assignments for a user uploaded list of genomic regions, based on the selected EnTDef,

391 or other method (e.g. promoters, exons, introns or anywhere in the genome).

392

393  DISCUSSION

394  Agreater appreciation of the central role that distal regulatory elements play in genetic diseases
395 and cancers has motivated a multitude of enhancer studies. As a result of the increasing
396 availability of functional genomics data, growing attention has been paid to matching Enhancer-
397 Target Gene pairs (ETG) in the field of computational biology and genomics. Over the past decade,
398 avariety of algorithms and tools have been developed by leveraging multiple genomic features
399 andfunctional data, as recently reviewed in [51]. Briefly, they can be categorized into four groups:
400 1) correlation-based (e.g. Thurman et al [38], PreSTIGE [52], ELMER [53, 54], etc.); 2) supervised
401 learning-based (e.g. IM-PET [55], TargetFinder[56], McEnhancer[57], etc.); 3) regression-based
402 (e.g. RIPPLE[58], JEME[59], FOCS[60], etc.); and 4) score-based methods (e.g. EpiTensor[61],
403  GeneHancer[62] and PEGASUS [63, 64]). Although these algorithms have significantly advanced
404  our knowledge of ETGs, they are affected by one or more of the following issues: 1) the lack of a
405 genome-wide exhaustive reference list of enhancers; 2) the lack of a large gold standard which is
406 required for supervised learning algorithms, i.e. experimentally-validated true positive and true
407 negative enhancer-target gene pairs, and 3) the lack of a systematic evaluation of their reliability

408 andgeneralization in various cell types. To overcome these issues, we developed a gold standard-
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409 free approach to generate and prioritize comprehensive sets of ETGs based on their performance

410 inthe interpretation of regulome data.

411 In this study, we identified a best set of Enhancer to Target gene Definitions (EnTDefs) by
412  investigating and evaluating all possible combinations of existing reliable sources for human
413  enhancer location definitions and enhancer-target gene pair definitions across various cell types.
414  Purposely, we coupled EnTDefs with GSE testing to systematically evaluate their performance
415 when interpreting regulome data. By carefully selecting datasets of high quality and resolution,
416  we explored ENCODE ChromHMM, DNase-seq, FANTOMS5 and Thurman datasets for enhancer
417 regions and ENCODE ChIA-PET interactions, Thurman DHS correlation-based, FANTOM5 and
418 ENCODE ChIA-PET CTCF loops-based enhancer-target gene interactions. We also systematically
419  evaluated the performance of all possible combinations of datasets when applied on ENCODE TF
420  ChIP-seq data in GO GSE testing and compared the enriched GO terms with the curated TF GO
421 annotations (TF-annotated GO BP terms by the GO database). In contrast to the statistical model-
422  based or machine learning-based algorithms as described above, our approach integrates various
423  data sources and directly couples the EnTDefs with GSE testing for a systematic evaluation,
424  resulting in an EnTDef with maximally balanced sensitivity and specificity (assessed by F1-score).
425 Our approach to generating EnTDefs is assumption-free and independent of true
426  positive/negative pairs, but based on a systematic evaluation using GSE testing. The results
427  demonstrate that the DNase-seq and FANTOMDS5 enhancers with the integrated enhancer-target
428  gene pairs from ChIA-PET, Thurman and FANTOMS interactions performed best, suggesting that
429 both chromosome accessibility and conformation, as well as transcriptional correlation, are

430 beneficial for identifying enhancer-target regulatory relationships.
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431 The nearest distance method, which naively assigns genomic regions of interest to the nearest
432  gene, is commonly used in GSE for regulome data. Our analysis showed that this naive approach
433  commonly fails to identify certain functions, such as those related to chromosome organization,
434  which lead to false negatives, whereas our top EnTDefs can successfully identify these long-range
435  enhancer regulatory functions. These findings re-confirmed that universally assigning cis-
436  regulatory elements to the gene with the nearest TSS is problematic, resulting in misleading

437  and/or incomplete functional interpretation.

438  Our EnTDefs were generated by leveraging different genomic data across >500 cell types and can
439  be applied to different cell types, demonstrating performance comparable to their cell-type-
440  specific counterparts. Our top integrated EnTDef based on many cell types represents a
441 comprehensive set of enhancer regions (only a subset of which will be active in any one cell type);
442  our data indicate this performs well because current cell-type-specific enhancer-target genes
443  (ETGs) are not yet sufficiently comprehensive (except for a few cell types such as GM12878).
444  Research performed on cancer samples, less commonly used cell lines, and other complex tissue
445  samples will greatly benefit from this integrated EnTDef. While cell-type-specific ETGs are
446  important for studying regulation at specific locations, our results demonstrate that for genome-

447  wide approaches such as GSE, the comprehensiveness outweighs the need for specificity.

448 Besides DNase-seq, ChIA-PET, CAGE-seq, and RNA-seq data, Hi-C and eQTL data are also used to
449 infer ETG [62, 65]. However, we found that current Hi-C data often have insufficient resolution,
450  with genomic windows being a few to several kb wide due to low coverage, and high quality Hi-
451 Cdatais not available for nearly as many cell types as the other approaches. Although eQTL data

452 s available for many tissues and cell types, it is similarly restricted by limited population diversity

21


https://doi.org/10.1101/2020.10.22.351049
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.22.351049; this version posted October 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

453  and low resolution. The tissue-specific eQTL data from the GTEx project [66] is widely used,
454  however, it was generated for only 49 tissues from <1000 donors with the majority being
455  Caucasian (84.6%), making it difficult to apply to other tissues/populations. In addition, eQTL data
456 s highly correlated with the linkage disequilibrium, and thus its resolution is associated with the
457  size of haplotype blocks, which is highly variable across populations (on average ~10kb) [67],
458  whereas enhancers are usually short genomic regions (50-1,500bp). Due to this low resolution of
459 Hi-C and eQTL data, we excluded them from our analysis. On the other hand, another data-
460 integration method, HACER, was recently developed [68], which utilized the nascent eRNA
461 information from GRO-seq and PRO-seq, along with the FANTOMS5 CAGE-seq data, to identify
462  cell-type-specific ETGs. In future work, we will incorporate the GRO-seq and PRO-seq data
463  deposited in HACER and evaluate if the new datasets can further boost our EnTDef performance

464  when coupled with GSE.

465 In conclusion, we identified a best set of enhancer-target gene pairs (EnTDef) by leveraging
466  existing data sources of chromosome accessibility and/or conformation and transcriptome data
467  across numerous cell types, which significantly improved the biological interpretation of distal
468 regulation in GSE compared to assigning genomic regions to the nearest gene. Our approach
469  performs well across a wide range of cell types, making it feasible to apply on extensive genomic
470  data sets. The limitations of our EnTDef are inherited from the existing data sources, including
471  low genome coverage, low resolution, and small number of cell types with good quality ChIA-PET
472  data. With the continued growth in volume of functional genomics data and advances in data

473  quality and resolution, we expect further improvement of our EnTDef in the future.

474
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475  Conclusions

476  In summary, we provide an optimized enhancer-to-target gene assignment approach, which is
477  critical for interpreting genome-wide regulatory data. This study has important implications for
478  which type of enhancer-target gene methods are most accurate, and the relative importance of
479  comprehensiveness versus cell-type specific accuracy. To the best of our knowledge, there is
480 currently no such a comprehensive resource of distal regulatory region-to-target gene links which
481  are feasible to apply on various types of regulome data (eg.ChIP-seq, ATAC-seq) regardless of cell

482  types.

483

484  METHODS

485 Generation of general enhancer-target gene definitions

486  We generated genome-wide definitions of human distal enhancer locations and their target gene
487  assignments for the hg19 genome using all possible combinations of the below enhancer location
488 methods and enhancer-gene linking data (Figure 1A: Enhancer, Extension, Enhancer-target gene
489 link and Additional links). These are based on enhancers from: 1) “ChromHMM”: ENCODE
490 ChromHMM UCSC tracks (9 cell types) [43], 2) “DNase-seq”: DNase hypersensitive sites (DHSs)
491 from 125 cell types processed by ENCODE [38], 3) “FANTOMS5”: Cap Analysis Gene Expression
492  (CAGE) experiment-derived enhancers across 421 distinct cell lines/tissue/primary cells from
493  FANTOMS project [37, 44, 45], and/or 4) “Thurman”: distal and non-promoter DHS within 500 kb
494  of the correlated promoter DHSs from 79 cell types, referred to as the first author of the

495  publication [38]. Since our motivation was to identify the target genes of distal regulatory
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496 elements that do not have clear target genes based on close proximity to a TSS, we constrained
497  the enhancer regions to be outside of 5 kb from a transcription factor start site (TSS) by trimming
498  the bases from the above defined enhancers overlapping with the 5kb windows of TSSs. The hg19
499  TSS locations were obtained from the Bioconductor chipenrich package version 3.5.0 [42]. To
500 identify target genes, we used: 1) “ChIA” method: enhancer and gene interactions identified by
501 ChIA-PET2 using default parameters [69] from 10 ChIA-PET datasets of 5 cell types
502  (Supplementary Table S3) [46, 47], 2) “Thurman” method: the enhancer and promoter
503 interactionsidentified by Thurman et al, which were defined by high correlation (r > 0.7) between
504  cross-cell-type DNase | signal at each DHS position and all promoters within +500 kb [38], 3)
505 “FANTOMS5” method: the regulatory targets of enhancers predicted by correlation tests using the
506 expression profiles of all enhancer-promoter pairs within 500kb[45], and 4) “Loop” method: any
507 possible interactions between enhancers and genes that are encompassed within in a RAD21,
508 cohesin and/or CTCF ChIA-PET loop with convergent CTCF motifs [48], and depending on the
509 number of genes included in the loop, this method was referred to as “L1” (one gene), “L2” ( <

510 two gene) or “L3” ( < three genes) (Figure 1B).

511  All possible combinations of the above, allowing multiple at a time, defined 465 of the Enhancer
512  toTarget gene Definitions (EnTDefs) (Figure 1A, B). In addition, to increase the genome coverage,
513  we tested extending the enhancer regions to 1kb (i.e. “enhancer extension”, 500 bp extension at
514  both sides of the midpoint), and assigning regions outside of enhancers and promoters (within
515 5kb of a TSS) to the gene with the nearest TSS (i.e. “nearest_all” additional links). The additional

516 combinations using these options brought us to a total of 1,860 distinct EnTDefs.
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517  Evaluation of enhancer-target gene definitions

518 To evaluate the performance of each individual EnTDef, we performed Gene Ontology (GO
519 Biological Processes [GOBP]) enrichment testing using Poly-Enrich [70] in the chipenrich
520 Bioconductor package[42] on 87 ChIP-seq datasets of 34 TFs selected from the tier 1 ENCODE cell
521 lines (Supplementary Table S4). We then compared the significantly enriched GOBP terms with
522  the GO BP annotations of each TF (i.e. the GOBP terms assigned to the 34 TFs by the GO database,
523  excluding the terms with <15 or >2000 assigned genes) (Figure 1C: Evaluation of the Enhancer-
524  Target gene Definition), to identify the EnTDefs with greatest concordance. The assumption of
525 this approach, used previously in[70, 71], is that TFs tend to the regulate genes in the biological
526  processes to which they belong, and thus greater overlap with TF GO BP annotation indicates
527  more accurate enrichment results, and thus more accurate peak-to-gene assignments. For a full
528 justification of this, see Supplementary Methods. To minimize runtime for the initial pass analysis,
529  we used the PE.Approx method (an approximate version of Poly-Enrich[70], see Supplementary
530 Methods and Supplementary Figure S7). To alleviate the bias caused by the unbalanced number
531 of positive and negative assignments, we generated the same number of true negative
532  assignments for each TF as there were positive by randomly selecting GOBP terms from the set
533  that were not assigned to the particular TF, and excluding the offspring terms and their siblings
534  of the assigned terms (hereafter called “true negative” terms, depicted in Supplementary Figure
535 S8A). In order to control for the confounding of GOBP size (i.e. the number of assigned genes to
536 each GOBP term), random sampling was performed among the negative terms of comparable
537  size to the corresponding true positive term (bin size = 20). In each sampling, the PE results were

538 assessed by the number of true positive (TP), false positive (FP), true negative (TN) and false
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539 negative (FN) GOBP terms according to the following definitions: 1) TP: the number of GOBP
540 terms that were significantly enriched (FDR < 0.05) and assigned to the TF by the GO database;
541  2) FP: the number of GOBP terms that were significantly enriched (FDR < 0.05), but not assigned
542  to the TF by the GO database; 3) TN: the number of GOBP terms that were not significantly
543  enriched (FDR > 0.05 or “depleted”) and also not assigned to the TF; and 4) FN: the number of

544  GOBP terms that were not significantly enriched (FDR > 0.05, or “depleted”), but assigned to the

Precision X Recall

545  TF. The F1 score (F1 score = 2 X ) was calculated to measure the overall

Precision+Recall

546  performance of an EnTDef for a TF. We repeated the sampling process 10 times, and took the
547  average F1 score for each EnTDef and TF. The average of these F1 scores across TFs provided the

548  final ranking for each EnTDef.

549  To assess the robustness of our approach, we also evaluated the performance of EnTDefs using
550 more conservative GO annotations, in which GOBP assignments based on “automatically
551  assigned, inferred from Electronic Annotation” (IEA) were excluded, thus minimizing false
552  annotations in GOBP. For the positive GO annotations we used only the leaf GO terms (the lowest
553 level in the GO hierarchical tree) and their parent and grandparent GO terms, while the negative
554  terms were sampled from all other terms, excluding positive terms, and ancestors of positive
555  terms, siblings of ancestors of positives, as well as offspring of positives (depicted in

556  Supplementary Figure S8B).

557  After ranking all EnTDefs in descending order by their average F1 scores (Figure 1C: Rank of
558  EnTDef), we identified the set of best EnTDefs. Paired Wilcox signed-rank tests were performed

559  to compare the F1 score of the 1% ranked EnTDef with each of the sequential ones, and the rank
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560 at which the EnTDef showed significantly lower F1 score than the 1 ranked one (p < 0.01) was
561 selected as the cutoff. The EnTDefs ranking above the cutoff were defined as the best set of
562  EnTDefs. In addition, we performed the same F1 score evaluation of previously-defined methods
563 for genomic region-to-gene assignments, termed gene Locus Definitions (LocDefs, see
564  Supplementary Figure S1 for details) that do not use “smart” enhancer-target links (i.e., “>5kb”:
565  distal regions assigned to the gene with the nearest TSS; “<5kb”: regions within 5kb of a TSS
566  assigned to the gene with that TSS; and “nearest TSS”: all regions assigned to the gene with the
567 nearest TSS). These LocDefs are used by Poly-Enrich in the chipenrich R Bioconductor package
568 [42], and represent the current standard practice for enhancer-to-gene assignments for gene set
569  analysis. The F1 scores were compared between each EnTDef and the distal nearest distance
570 (“>5kb”) LocDef by Wilcoxon signed-rank tests. We also evaluated and compared two commonly
571  used Gene Set Enrichment (GSE) testing methods, Fisher’s Exact Test (FET) and GREAT [39], which
572  were implemented by the R chipenrich package using the FET and binomial method respectively,
573  coupled with the “5kb” LocDef. To obtain a final assessment, a second round of GSE testing using
574  Poly-Enrich (PE.Exact method; see Supplementary methods for details) was applied on the subset
575  of EnTDefs which significantly outperformed the nearest distance assignments (>5kb LocDef),

576  and the average F1 scores were calculated and used to refine the final ranking of EnTDefs.

577  Validation of the EnTDefs with ChiP-seq data from different cell types

578  To further evaluate the performance of EnTDefs in different cell lines, we selected 13 additional
579 ENCODE ChlP-seq datasets from four non-tier 1 ENCODE cell lines (A549, HEPG2, HUVEC and

580 NB4), which contain ChIP-seq experiments for at least three TFs in each cell line (Supplementary
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581  Table S5). In comparison to the 87 evaluation ChlP-seq peak sets from ENCODE tier 1 cell lines
582 (GM12878, H1IHESC and K562), these 13 datasets are the test datasets. The six TFs (C-JUN, C-MYC,
583  CEBPB, CTCF, MAX and NRSF) assayed by the 13 test datasets were also included in the 87
584  evaluation datasets. The top 10 best EnTDefs were evaluated using the PE.Exact method as
585  described above and these 13 test ChIP-seq datasets. For each EnTDef, the average F1 score
586 across the 13 ChlP-seq datasets was calculated and compared with the average F1 score

587  generated using the evaluation ChIP-seq datasets (n=16) of the corresponding TFs.

588 Generation of cell-type-specific EnTDefs

589 We used “ChIA” and/or “L”-derived enhancer-to-gene assignment methods (Figure 1B) to
590 generate cell-type-specific enhancer-target gene definitions, hereafter called CT-EnTdefs. Since
591 the enhancer-gene linking data defined by Thurman and FANTOMS5 datasets were non-cell-type
592  specific, we did not include these. The cell types were selected based on the availability and
593  quality of cell-type specific ChIP-seq and ChIA-PET data in ENCODE. As shown in Supplementary
594  Table S5, four cell types were selected: GM12878 (tier 1), H1-hESC (tier 1), K562 (tier 1) and MCF7
595  (tier 2). The multiple ChlA-PET datasets were combined for each cell type. All combinations of
596 enhancer location definitions, along with ChIA, L1 (or L2 or L3) enhancer-gene assignment

III

597 methods, with or without enhancer location extension and “nearest_all” addition, were used to

598 generate the CT-EnTDefs, resulting in a total of 630 CT-EnTDefs for each of the 4 cell types.

599  Evaluation of CT-EnTDefs

600 To evaluate the performance of the CT-EnTDefs, we performed GSE testing of Gene Ontology

601 (GO Biological Processes [BOBP]) using Poly-Enrich [70] on the TF ChIP-seq peak sets of the same
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602 cell type from which each CT-EnTDef was generated (Supplementary Table S5. See details as
603  described above). For comparison, we also applied GSE testing on the same TF ChIP-seq peak sets
604  using the corresponding general EnTDefs (i.e. not cell-type specific, using the same enhancer
605 regions and target gene link methods as those of the comparative CT-EnTDef), as well as the CT-
606 EnTDef from a different cell type (Figure 3C, i.e. MCF7 CT-EnTDefs were applied on GM12878 TF
607  ChIP-seq peaks, GM12878 CT-EnTDefs on H1hESC peaks, HLhESC EnTDefs on K562 peaks, K562
608 EnTDefs on MCF7 peaks). For each TF, the average F1 scores across all evaluated EnTDefs were
609 calculated and compared between using the respective CT-EnTDef, general EnTDef and different
610 cell type CT-EnTDef. For each cell type, Pearson’s correlation test was used to evaluate the pair-
611  wise correlation among the F1 scores, and Wilcoxon Rank-Sum test was used to compare their
612  differences. Finally, the overall performance of CT-EnTDefs, general EnTDefs and different cell
613  type CT-EnTDefs were assessed using the average F1 scores across all evaluated EnTDefs and TFs

614  in each cell type.

615 Testing for functions that have significantly more or fewer interceding genes between

616  enhancers and their target genes

617  We investigated the number of interceding genes between an enhancer and its target gene(s)
618 (i.e. genes between the entire region of an enhancer and the target gene in an EnTDef, depicted
619 in supplementary Figure S6), and ranked all target genes based on their average number of
620 interceding genes. By definition of nearest distance enhancer-target gene assignment (e.g. >5kb
621  LocDef), the bottom genes with low numbers of interceding genes are most likely to be correctly

622  assigned to their enhancers, while the top ranked genes with high numbers of interceding genes
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623  are least likely assigned to their true enhancers. We used the best performing EnTDef without
624  “nearest_all” addition, defined by DNase-seq plus FANTOMS5 enhancers and ChlA, Thurman and
625 FANTOMDS enhancer-target gene link methods, as an example for this analysis. Gene Ontology
626  (GO) enrichment testing was performed by LRpath[50] using GO Cellular Component (CC),
627  Biological Process (GOBP), and Molecular Function (MF) terms of size ranging from 10 to 1000
628 genes. The rank-based inverse normal transformation (INT) implemented by the rankNorm
629 function in R package RNOmni[72] was applied to the average number of interceding genes to
630 have approximately normally distributed scores. LRpath took the genes that were linked to at
631 least one enhancer and their exponential transformed INT scores as the input (the input scores
632  were log transformed internally by LRpath program) and performed logistic regression-based
633  enrichment testing on each GO term. The significant GO terms (FDR < 0.05) with positive
634  coefficients indicate the functions enriched in genes with less interceding genes (lower ranked),
635  while those with negative coefficients are functions enriched in genes with more interceding
636  genes (higher ranked). For reporting purposes, we filtered out closely related GO terms, using
637 the GO.db R package [73] to determine relationships among significant terms. A GO term was

638 filtered if one or more of its parents, children or siblings had a higher rank in the list [74].

639 To determine the robustness of the results, we performed the same analysis for all top 10 best

I”

640 performing EnTDefs without “nearest_all” addition. The enrichment results were combined
641  across EnTDefs for each GO term by taking the Harmonic Mean (HM) p-values[75]. The significant
642 terms were extracted using FDR-adjusted HM p-values (HM FDR < 0.05), followed by redundant

643  term filtering as described above.
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644 Identification of common false positive and false negative enrichment results by nearest

645 distance enhancer-target gene assignment

646  Next, we examined the false positive (FP) and false negative (FN) GO terms identified using the
647 nearest distance assighment (>5kb LocDef), that were correctly identified using the ‘smart’
648  enhancer-target gene assignments. To do this, we compared the Poly-Enrich [70] GSE results of
649 the 87 evaluation ChIP-seq datasets using >5kb LocDef for nearest distance to those of the best
650 performing EnTDef (defined by DNase-seq plus FANTOMS5 enhancers and ChlA, Thurman and
651 FANTOMS enhancer-target gene link methods with “nearest_All” addition) using the known TF-
652 GO BP annotated terms (i.e. GO annotation). The FP and FN GO BP terms were defined according
653  to the following criteria: i) FPs: GO terms identified as significantly enriched (FDR < 0.05) by
654  the >5kb LocDef, but not significant (FDR > 0.05) by EnTdef and not annotated by the GO
655 database; ii) FNs: GO terms identified as insignificant (FDR > 0.05) by the >5kb LocDef, but
656  significantly enriched (FDR < 0.05) by EnTDef and also annotated by the GO database. GO terms
657 were removed if they were annotated to < 4 (<10%) or > 30 (>90%) of the 34 used TFs to ensure
658 the possibility of having both true and false annotations present among the TFs, and only terms
659  with < 1000 total annotated genes were used in this analysis. For each GO term, the number of
660 FPs and FNs among the 34 TFs, detected using “>5kb’, were summarized, and the proportion of
661  FP and FN were calculated using the total number of positive TFs (FDR < 0.05) or negative TFs
662  (FDR > 0.05) by >5kb LocDef as the denominator, respectively. To summarize the significance
663 level of each FP or FN term in GSE testing, a meta-p-value was generated using Fisher’s method
664  [76] across the annotated TFs using the raw p-values from the >5kb LocDef or EnTDef approach,

665  respectively. Finally, the FP (or FN) GO terms were ranked by the proportion of FP (or FN)
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666  decreasingly and meta-p value increasingly, followed by redundant GO term filtering as described

667 above.

668

669 DATA AVAILABILITY
670 The top performing EnTDef and EnTDef.plus5kb have been included in the Bioconductor package

671  chipenrich (42) and the ChIP-Enrich website (https://chip-enrich.med.umich.edu). The peak-to-

672  gene assignment functionality provided by our GSE Suite (http://gsesuite.dcmb.med.umich.edu)

673 allows users to select all possible combinations of enhancer and/or enhancer-to-gene link
674 methods (as described in this study) and obtain the gene assignments for user uploaded genomic
675 regions based on the selected sources and methods. Genomic regions can also be assigned to
676  target genes based on other approaches (e.g. promoters, exons or anywhere in the genome using

677  the nearest distance method).
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687

688  FIGURE LEGENDS

689  Figure 1. Workflow for generating and evaluating EnTDefs. (A) Enhancers were defined by
690 ENCODE ChromHMM UCSC tracks, ENCODE DNase-seq hypersensitive sites (DHSs), Cap Analysis
691 Gene Expression (CAGE) experiment-derived enhancers from the FANTOMS project, and/or distal
692  and non-promoter DHS within 500kb of the correlated promoter DHSs from Thurman et al. (B)
693 The enhancer-target gene links were defined by ChIA-PET interactions from ENCODE ChIA-PET
694  data (ChlA), DNase-signal correlation-based links from Thurman et al, expression correlation-
695 based interactions from FANTOMS5, and/or interactions between enhancers and genes within
696 loop (L) boundaries of ChlA-PET with convergent CTCF motifs (L1 [one gene], L2 [< two gene] or
697 L3 [< three genes] were allowed). An enhancer can be assigned to multiple genes. To increase
698 the genome coverage, we allowed the extension of enhancers to 1kb (i.e. enhancer extension),
699 and assigned other regions outside of 5kb from a TSS to the nearest gene (i.e. “nearest_All”
700 additional links). All combinations of the above, allowing multiple at a time, defined the possible
701  Enhancer to Target gene Definitions (EnTDefs). (C) Left: 1,860 EnTDefs were generated and GOBP
702  GSE testing was performed on 87 ENCODE TF ChIP-seq datasets using each of the EnTDefs. By
703  comparing the significant GOBP terms identified by GSE with each EntDef to those assigned to
704  the TF by the GO database (“GO annotation”), the F1-score was calculated for each EnTDef-TF
705  pair. Right: the EnTDefs were ranked by average Fl-score across TFs in descending order. TF

706  paired Wilcoxon sum-rank test was performed between the top ranked EnTDef and each of the

707  sequential ones to identify the set of best EnTDefs (top 1 until the rank with p value < 0.01).
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708  Figure 2. Characteristics of EnTDefs. (A) Overview of the characteristics of 1,860 EnTDefs
709 and >5kb LocDef ranked by Fl-score in descending order. Fl-score, sensitivity, specificity,
710 number of enhancers, average number of genes per enhancer, average number of enhancers per
711  gene, average proportion of caught TF peaks, average proportion of caught TF peaks outside of
712 5kb of TSSs, proportion of genome coverage, and whether the EnTDef was significantly better
713  than the >5kb LocDef are shown. (B) The frequency of each method (four enhancer definition
714  methods, with or without enhancer extension, seven enhancer-target gene link methods) among
715 the 741 EnTDefs that significantly outperformed the >5kb LocDef. For simplification, the
716  “nearest_all” additional link method was grouped in enhancer-target gene link method. (C) Bar
717  plot of average Fl-scores for the top 10 EnTDefs plus 5kb LocDef (blue bars), top 10 EnTDefs
718  (purple bars), nearest TSS method (pink bar), >5kb LocDef (mustard bar) and 5kb LocDef used by
719  PE.Approx (yellow bar), by GREAT (dark green bar) and by Fisher’s exact test (green bar). (D)
720  Distribution of average F1-scores of the top 10 EnTDefs used on evaluation ChIP-seq datasets or
721  testing ChIP-seq datasets. The dashed lines link the same EnTDefs used in the two different ChlP-

722  seq datasets. The p value of Wilcoxon signed-rank test was shown in the figure.

723  Figure 3. Evaluation of cell type-specific (CT)-EnTDefs and general EnTDefs. (A) Distribution of
724  the average Fl-scores of same-CT EnTDefs, diff-CT EnTDefs and general EnTDefs that were
725  applied on the same TF ChIP-seq data. (B) Correlation between average F1-scores calculated on
726  a TF in a particular cell type using CT-EnTDefs of the matched cell type (x-axis) and the ones
727  calculated on the same TF using CT-EnTDefs of a different cell type (y-axis). Each dot represents
728  an average Fl-score of a TF across EnTDefs, and each panel is one of four cell types (GM12878,

729  HI1HESC, K562 and MCF7) for which the CT-EnTDefs were created and evaluated, respectively. (C)
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730  Evaluation summary of different types of EnTDefs in four different cell types. Comparative
731  average Fl-scores associated with a particular cell type are grouped in a grey box: blue refers to
732 using the CT-EnTDef on a TF ChIP-seq from the same cell line, green refers to using the general
733 CT-EnTDef on that TF ChIP-seq, and red refers to using the diff-CT-EnTDef on TF ChIP-seqgs from

734 that TF ChIP-seq.

735  Figure 4. GO terms often missed or falsely identified by the nearest distance method of
736  assigning genomic regions to target genes. (A) Distribution of the rank-based inverse normal
737  transformation (INT) of average interceding gene numbers for the best EnTDef without the

I”

738  “nearest_all” addition. The top ranked enriched GO terms most likely or less likely to be identified
739 by nearest distance method were listed. (B) The enriched GO terms in the genes with fewest

740 interceding genes and the ones with the most interceding genes across the top 10 EnTDefs and

741  their associated -log10 Harmonic Mean (HM) FDR.

742  Figure 5. False positive and false negative GSE results by nearest distance assighment method.
743  (A) Examples of false positive (left) and false negative results. The false positive term blood vessel
744  morphogenesis was annotated with gene PROK1, the interceding genes between an enhancer
745  bound by a TF YY1 (peak:1503) and its target gene SLC16A4. The false negative term histone
746  modification was annotated with gene CHD3, a target gene of the enhancer bound by the TF CTCF
747  (peak:6206). (B) The false positive GO terms identified as enriched by the nearest distance
748  method, but not by the best performing EnTDef and not defined by the TFs’ GO annotation. (C)
749  The false negative GO terms which were failed to be identified by the nearest distance method,
750  butcorrectly identified by the best performing EnTDef and also defined by the TFs’ GO annotation.

751  The significance levels (-log10 Fisher’s FDR) are shown in dark blue for >5kb LocDef and dark red
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for the EnTDef. The numbers listed at the end of each paired bars are false positive rate (B) and

false negative rate (C).

Figure 6. User guidelines for selecting an appropriate enhancer-to-gene assignment method

(LocDef) for GSE testing. Depending on the specific research questions, three types of LocDefs

can be selected for GSE testing from the chipenrich R package: 1) “5kb” or “1kb” for promoter

regulation, 2) “enhancer” for distal regulation, and 3) “enhancer.5kb” for whole genome

regulation. Different LocDefs have different genome coverages as shown in the last column.

Options in other GSE testing software for genomic regions will differ. We no longer recommend

using nearest TSS method for Poly-Enrich analysis.
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Supp. Figure S5
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Supp. Figure S6
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