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ABSTRACT

Mendelian Randomization (MR) exploits genetic variants as instrumental variables to estimate the causal effect of an “exposure”
trait on an “outcome” trait from observational data. However, the validity of such studies is threatened by population stratification,
batch effects, and horizontal pleiotropy. Although a variety of methods have been proposed to partially mitigate those problems,
residual biases may still remain, leading to highly statistically significant false positives in large genetic databases. Here,
we describe a suite of sensitivity analysis tools for MR that enables investigators to properly quantify the robustness of their
findings against these (and other) unobserved validity threats. Specifically, we propose the routine reporting of sensitivity
statistics that can be used to readily quantify the robustness of a MR result: (i) the partial R2 of the genetic instrument with
the exposure and the outcome traits; and, (ii) the robustness value of both genetic associations. These statistics quantify the
minimal strength of violations of the MR assumptions that would be necessary to explain away the MR causal effect estimate.
We also provide intuitive displays to visualize the sensitivity of the MR estimate to any degree of violation, and formal methods
to bound the worst-case bias caused by violations in terms of multiples of the observed strength of principal components, batch
effects, as well as putative pleiotropic pathways. We demonstrate how these tools can aid researchers in distinguishing robust
from fragile findings, by showing that the MR estimate of the causal effect of body mass index (BMI) on diastolic blood pressure
is relatively robust, whereas the MR estimate of the causal effect of BMI on Townsend deprivation index is relatively fragile.

M any fundamental questions in the social and med-
ical sciences are questions of cause and effect. For
instance, what are the social and health conse-

quences of obesity? In practice, however, it is often infea-
sible or unethical to perform a randomized controlled trial
to answer these types of questions. Moreover, observational
studies are prone to being biased due to the presence of unmea-
sured confounders. In such cases, the method of instrumental
variables1–4 (IVs) may be an appealing alternative, allowing
one to infer cause-effect relationships even in the presence
of unmeasured confounding between the exposure and the
outcome.

Mendelian randomization (MR) exploits genetic variants
associated with an “exposure” trait of interest as IVs to investi-
gate whether that exposure has a causal effect on an “outcome”
trait of interest5–11. The technique of MR has become a stan-
dard tool for inferring causal relationships, with numerous
applications published in medical, genetic and epidemiolog-
ical journals.6–14 This growth has been accelerated by the
availability of large genetic databases15 and Genome-Wide
Association Studies (GWAS) linking many genetic variants
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to complex phenotypes8. Nevertheless, the validity of MR
studies depends on its own set of assumptions, and this rapid
growth has not been accompanied with sufficient attention to
those assumptions16–19.

In particular, beyond being associated with the exposure,
for a genetic variant to be a valid IV it must must satisfy two
important and often (though not always20–22) untestable condi-
tions6–9: (i) it must not be itself confounded with the outcome
trait; and, (ii) it must affect the outcome trait only through
its effect on the exposure trait. These conditions may be vio-
lated in several ways due to populational and methodological
artifacts, as well as biological mechanisms. Most notably,
population stratification23–28 and batch effects28–30 are well
known sources of confounding biases in high-throughput ge-
nomic data. Likewise, many genetic variants tend to exert
horizontal pleiotropy, meaning they affect the outcome trait
through channels other than the exposure trait31, 32.

The prevailing method for dealing with population strat-
ification and batch effects in MR is to adjust for genomic
principal components and surrogate technical covariates rep-
resenting genomic batch or assessment centre19. In the case
of horizontal pleiotropy, researchers are advised to perform
alternative analyses, such as MR-Egger33 or MR-Presso34,
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Figure 1. Directed acyclic graphs (DAGs) illustrating the traditional MR assumptions and possible violations. Graphically, conditional on X ,
the genetic instrument Z is a valid IV for the causal effect of trait D on trait Y , if X blocks all paths from Z to Y on the graph where the edge
D→ Y is removed4. This condition holds in Figure 1a, in which X alone accounts for all population structure. However, in Figure 1b, X does
not account for all population structure (Wps), and valid MR requires conditioning on both X and Wps. Similarly, Figure 1c shows a violation
of the standard MR assumptions due to horizontal pleiotropy through trait Whp; again, valid MR requires conditioning on both X and Whp.

that rely on modified identification assumptions. Although
these methods have proved useful for partially mitigating these
problems, residual biases may still remain9, 35. Since those
biases are impervious to sample size, they may lead to highly
statistically significant false findings with large genomic data,
as we demonstrate later via simulations.

Here we build on recent developments of the sensitiv-
ity analysis literature in statistics36–40 to provide a suite of
sensitivity analysis tools for MR studies that quantifies the
robustness of inferences to the presence of residual popu-
lation stratification, batch effects, and horizontal pleiotropy.
Specifically, we introduce robustness values37 (RV) for MR,
summarizing the minimal strength that residual biases must
have (in terms of variance explained of the genetic instrument
and of the phenotypes) in order to explain away the MR causal
effect estimate. To increase transparency and facilitate the
assessment of the credibility of MR studies, we propose the
RV to be routinely reported alongside traditional p-values
(traditional p-values assume zero residual biases). We also
provide intuitive sensitivity plots that allow researchers to
quickly inspect how their inferences would have changed
under biases of any postulated strength. Finally, we show
how to place formal bounds on the worst-case bias caused
by putative unmeasured variables with strength expressed in
terms of multiples of the effect of observed variables, thereby
facilitating expert judgment regarding the plausibility of such
strong violations of the traditional MR assumptions.

We show how these techniques can aid researchers in as-
sessing the degree of robustness of a MR result by examining
two findings of highly-cited MR studies using the UK Biobank
dataset15—that body mass index (BMI) has a causal effect on
diastolic blood pressure (DBP) and Townsend deprivation in-
dex (deprivation)41–43. Sensitivity analysis reveals that, while
the MR estimate of the causal effect of BMI on DBP is ro-
bust to relatively strong residual confounding and horizontal
pleiotropy, the effect estimate of BMI on deprivation could be
nullified by biases as weak as a fraction of current putative
pleiotropic pathways, or a fraction of observed batch effects.

Results

MR-SENSEMAKR overview—a suite of sensitivity analysis
tools for MR. We developed MR-SENSEMAKR, a suite of
sensitivity analysis tools for MR that allows researchers to
perform robust inferences of causal effect estimates in the
presence of violations of the standard MR assumptions. These
tools quantify both how much the inferences would have
changed under a postulated degree of violation, as well as the
minimal strength of violation necessary to overturn a certain
conclusion. MR-SENSEMAKR builds on an extension of the
“omitted variable bias” framework for regression analysis37, 38

to the Anderson-Rubin method44 and Fieller’s theorem45 for
testing null hypotheses in the IV setting. This approach has
a number of benefits, such as: (i) correct test size regardless
of instrument strength; (ii) handling multiple confounding
or pleiotropic effects acting simultaneously, possibly non-
linearly; (iii) providing simple sensitivity statistics for routine
reporting; and, (iv) exploiting expert knowledge to bound the
maximum strength of biases (see Methods for details).

Let D denote the “exposure” trait, Y the “outcome” trait,
and Z the genetic instrument (e.g, a polygenic risk score). Ad-
ditionally, let XXX denote a set of observed “control” covariates
which account for potential violations of the MR assumptions,
such as population stratification (e.g, genetic principal compo-
nents), batch effects (e.g, batch indicators) and traits that could
block putative horizontal pleiotropic pathways19. Traditional
MR analysis assumes that XXX is sufficient for making Z a valid
instrumental variable for identifying the effect of the exposure
trait D on the outcome trait Y . An example for which this is
the case is depicted in the directed acyclic graph (DAG) of
Figure 1a—in this example there are no pleiotropic pathways,
and although there is confounding due to population structure,
adjusting for XXX (say, genomic principal components and batch
indicators) is sufficient for eliminating all biases.

The problem arises, however, when XXX does not suffice for
making Z a valid instrument; instead, an extended set of con-
trol covariates would be necessary to do so, but some of these
variables are, unfortunately, unobserved. Figures 1b and 1c
illustrate two of such cases. In Figure 1b, although X accounts
for part of the confounding biases due to population structure
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(ps), it cannot account for all of it, and further adjustment
for Wps would be necessary for making Z a valid instrument.
In Figure 1c, we have a different type of problem; there, the
genetic instrument exerts horizontal pleiotropy (hp) through
trait Whp, which needs to be accounted for in a valid MR
analysis. In practice, of course, all these residual biases will
often be acting simultaneously—we denote by WWW the set of
all additional unmeasured variables that would be necessary
for making Z a valid genetic instrument.

In this setting, MR-SENSEMAKR answers the following
question: how strong would the unmeasured variables WWW have
to be such that, if accounted for in the analysis, they would
have changed the conclusions of the MR study? As has been
extensively discussed elsewhere7, 9, 16, 19, MR studies are more
reliable to test the presence or direction of a causal effect,
rather than to precisely estimate its magnitude. Thus, here
we focus on two problematic changes that WWW could cause—
turning a statistically significant result into an insignificant
one; or, leading to unbounded or uninformative confidence
intervals due to weak instruments (when using Fieller’s the-
orem, confidence intervals can be: (i) connected and finite;
(ii) the union of two disjoint unbounded intervals; or, (iii) the
whole real line; see Methods).

It can be shown that, given a significance level α , the
confidence interval for the MR causal effect is unbounded if,
and only if, we cannot reject the hypothesis that the genetic
association with the exposure is zero. Likewise, the MR causal
effect estimate is statistically insignificant if, and only if, we
cannot reject the hypothesis that the genetic association with
the outcome is zero (to understand this intuitively, recall that
the MR estimate is the ratio of the genetic association with the
outcome over the genetic association of the exposure. Note
this ratio is zero if the numerator is zero; likewise, the ratio
can be arbitrarily large if the denominator can be arbitrarily
close to zero). Therefore, the problem of sensitivity analysis
of the MR estimate can be reduced to the simpler problem of
sensitivity analysis of these two genetic associations.

MR-SENSEMAKR thus performs sensitivity analysis for the
MR causal effect estimate by examining how strong WWW needs
to be to explain away either the observed genetic association
with the exposure or the observed genetic association with
the outcome. It deploys two main tools for assessing the
sensitivity of these quantities. First, it computes key sensitivity
statistics suited for routine reporting37, including

• The partial R2 of the genetic instrument with the (ex-
posure/outcome) trait, revealing the minimal share of
residual variation that WWW needs to explain of the ge-
netic instrument in order to fully eliminate the genetic
association with the (exposure/outcome) trait;

• The robustness value (RV) of the genetic instrument
with the (exposure/outcome) trait, revealing the min-
imal share of residual variation (partial R2), both of
the genetic instrument and of the trait, that WWW needs to
explain in order to make the genetic association with
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2. Critical contour line. 
Confounders with strength 
below it are not strong enough 
to explain away the genetic 
association. Confounders with 
strength above it are.

1. Traditional MR t-value. 
Assumes zero residual biases.

3. Benchmarks. 
Here we have a bound on biases 
caused by residual population 
stratification as strong as observed 
principal components. In this 
example, a bias of such magnitude 
is still not sufficient to explain away 
the genetic association

Figure 2. Sensitivity contour plot with benchmark bounds. The
horizontal axis shows the partial R2 of unobserved variables WWW with
the genetic instrument; this corresponds to the percent of residual
variation of the genetic instrument explained by WWW . The vertical axis
shows the partial R2 of WWW with the trait of interest, which can be
either the exposure trait or the outcome trait; again, this stands for
the percent of residual phenotypic variance explained by WWW . Given
any pair of partial R2 values, the contour lines show the t-value that
one would have obtained for testing the significance of the genetic
association with the exposure/outcome trait, had a WWW with such
strengths been included in the analysis. The point represented by a
black triangle (left lower corner) shows the t-value of a traditional
MR study (i.e., t = 13)—note it assumes exactly zero biases due to
unobserved variables WWW . As we move along both axes, the biases
due to WWW get worse, and can eventually be strong enough to reduce
the t-value below a chosen critical level t∗, shown in the red dashed
line (e.g., t∗ ≈ 2 for a significance level of α = 5%). Unobserved
variables WWW with strength below the critical red line are not strong
enough to change the conclusions of the original MR study; on the
other hand, unobserved variables WWW with strength above the critical
red line are strong enough to be problematic. The point represented
by a red diamond bounds the maximum strength of WWW if it were as
strong as observed genomic principal components (1x PCs). They
show the maximum bias caused by residual population stratification,
if it had the same explanatory power as the PCs in explaining genetic
and phenotypic variation. In this example, the plot reveals that, even
if there were residual population stratification as strong as the first
genomic principal components, this would not be sufficient to make
the genetic association statistically insignificant (i.e., the adjusted
t-value accounting for a WWW with such strength is 7.88, which is
still above the critical threshold of t∗ ≈ 2). Finally, we note that
if the unobserved variable WWW is a singleton, then all the sensitivity
analysis results are exact. If WWW consists of multiple variables, then all
sensitivity analysis results are conservative, meaning that this is the
worst bias that a multivariate WWW could cause if it had such strengths.

the (exposure/outcome) trait statistically insignificant;
and,
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• Bounds on the maximum residual variation explained
by unmeasured variables WWW if they were as strong as:
(i) observed principal components; (ii) measured batch
effects; and, (iii) observed pleiotropic pathways.

MR-SENSEMAKR also provides sensitivity contour plots37

that, given any hypothetical strength of WWW (measured in terms
of the partial R2 of WWW with the genetic instrument and with
the trait), allows researchers to investigate what would have
been the result of a significance test of the genetic association
with the (exposure/outcome) trait had a WWW with such strength
been incorporated in the analysis (see Figure 2). Finally,
these plots can also include several bounds on the maximum
amount of residual variation that WWW could explain, both of
the genetic instrument and of the (exposure/outcome) trait,
if WWW were multiple times stronger than observed variables.
Next, we apply these tools in a real example that examines
the robustness of previous MR findings regarding the causal
effect of BMI on blood pressure and deprivation41–43.

MR-SENSEMAKR helps distinguishing robust from fragile
findings. Previous studies41–43 used MR on the UK Biobank
data15 to assess the causal effect of body mass index (BMI)
on multiple outcome traits of interest. These MR analyses
found a statistically significant effect of BMI on diastolic
blood pressure (DBP)42 and on Townsend deprivation index
(deprivation)—a measure of socioeconomic status.41 Follow-
ing these studies, we filtered the data to only include people
with self-reported white British ancestry who were not closely
related, leaving a sample size of 291,274 people; the genetic
instrument consisted of a polygenic risk score (PRS) derived
from 97 SNPs previously found to be associated with BMI,
with external weights given by the effect sizes from the GI-
ANT study42, 46 (see Methods for details).

The first part of Table 1 reports the results of the tradi-
tional MR analysis of the effects of BMI both on DBP and
on deprivation. As it is usually recommended19 and follow-
ing the original studies, these MR analyses further adjust for:
age, gender, 20 leading genomic principal components, as-
sessment center, batch indicators, as well as smoking and
drinking status (both are putative pleiotropic pathways, espe-
cially for DBP47–52). In consonance with the previous studies,
we found that the conventional MR analyses lead to a positive
and statistically significant effects of BMI on both traits, at
the 5% significance level. The results, however, rely on the
assumptions of zero residual population stratification, zero
batch effects and zero horizontal pleiotropy, which are un-
likely to hold. We thus used MR-SENSEMAKR to investigate

the robustness of these findings to potential violations of the
standard MR assumptions.

We first examined the robustness of the genetic association
with the exposure trait (BMI). Recall that, if confounders are
strong enough to explain away the genetic association with
the exposure, this can lead to unbounded or uninformative
confidence intervals for the MR causal effect estimate—the
exercise we are performing here is thus tantamount to assess-
ing the “weak instrument” problem, except that now we are
accounting both for sampling uncertainty and potential un-
measured confounders. The results are shown in the section
entitled “Sensitivity PRS-Exposure” of Table 1. (Note the
results are the same both for DBP and deprivation, since the
exposure trait, BMI, is the same in both cases.) The first
sensitivity measure is the partial R2 of the PRS with BMI,
which amounted to 1.67%. Although this quantity is already
reported as a measure of instrument strength in many MR
studies19, it is perhaps less known that it is also a measure
of its robustness to extreme confounding. In particular, this
means that, even if the unmeasured variables WWW explained
all left-out variation in BMI, they would still need to account
for at least 1.67% of the variance of the genetic instrument,
otherwise WWW cannot explain away the genetic association with
the exposure. Next we obtained a robustness value of 11.88%
for the PRS-exposure association. This means that any un-
measured variables WWW that explain less than 11.88% of the
residual variation, both of the PRS and of BMI, are not strong
enough to make the genetic association with the exposure
statistically insignificant.

Next we examined the robustenss of the genetic asso-
ciation with the outcome traits; recall that any unobserved
variables capable of explaining away the genetic association
with the outcome trait are also capable of explaining away
the MR causal effect estimate. The results are shown in the
section entitled “Sensitivity PRS-Outcome” of Table 1, and
here we have two separate results for each trait. Specifically,
we obtained a partial R2 of the PRS with DBP of 0.035% and a
robustness value 1.47%. This means that, even if unobserved
variables explained all variation of DBP, they still need to
explain at least 0.035% of the residual variation of the genetic
instrument to fully account for the observed PRS-DBP asso-
ciation; moreover, the RV reveals that unobserved variables
need to account for at least 1.47% of either the variation of
genetic instrument or the variation of DBP to be sufficiently
strong to overturn the statistical significance found in the orig-
inal MR study. Moving to the next trait, the bottom row of
Table 1 shows the sensitivity statistics for the effect of BMI

Traditional MR Sensitivity PRS-Outcome Sensitivity PRS-Exposure

Outcome Risk Difference (95% CI) P-value Partial R2 RVα=0.05 Partial R2 RVα=0.05

DBP 0.145 (0.116 to 0.173) < 2×10−16 0.035% 1.47% 1.67% 11.88%Deprivation 0.033 (0.006 to 0.060) 0.017 0.002% 0.08%

Table 1. Traditional MR results and sensitivity analyses.
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on deprivation. Here we found a partial R2 of 0.002% and a
robustness value of 0.08%, revealing that much weaker resid-
ual biases would be able to overturn the MR effect estimate
of BMI on deprivation.

Confronted with those results, the next step is to make
plausibility judgments on whether unobserved variables with
the strengths revealed to be problematic can be ruled out. To
aid in these plausibility judgments, MR-SENSEMAKR com-
putes bounds on the amount of variance explained by the
unmeasured variables WWW if it were as strong as observed vari-
ables. For our running example, these bounds are shown
in Table 2; they reveal the maximum partial R2 of unob-
served variables WWW with the genetic IV and with the traits, if
it were as strong as: (i) 20 leading genomic principal compo-
nents (1 x PCs); (ii) observed batch and centre effects (1 x
Batch+Centre); and, finally, (iii) smoking and drinking status
(1 x Alc.+Smok.).

Starting with instrument strength, first note that all bounds
on the PRS and BMI columns of Table 2 are (substantially)
lower than than the RV of 11.88% for the genetic association
with BMI; this means that, even if WWW were as strong as those
variables, this would not be sufficient to result in a “weak
instrument” problem. Moreover, since all values of the PRS
column are less than the partial R2 of 1.67% of the variant-
exposure association , even a “worst-case” confounding that
explains 100% of the variance of BMI, and as strongly asso-
ciated with the genetic instrument as the observed variables,
cannot account for the observed association of the genetic in-
strument with the exposure. Moving to statistical significance
concerns, similar results hold for the PRS-DBP association.
Since the bounds on both columns, for the PRS (column 1)
and DBP (column 3), are below the robustness value of 1.47%,
Table 2 reveals that biases as strong as the observed variables
are not sufficient to make the MR causal effect estimate of
BMI on DBP statistically insignificant. However, in stark con-
trast, note that all bounds on the PRS and deprivation columns
are above the RV of 0.08% for deprivation, meaning that un-
observed variables WWW strong as those could easily overturn
the original MR analysis.

Table 1 forms our proposed minimal reporting for sensi-
tivity analysis in MR studies. Often, when supplemented with
bounds such as those of Table 2, these metrics are sufficient
to give a broad picture of the robustness of MR findings, as
demonstrated above. Researchers, however, can refine their
analyses and fully explore the whole range of robustness of
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Figure 3. Sensitivity contours for the null hypothesis of zero effect.

Bound partial R2 with genetic IV Bound partial R2 with trait

WWW as strong as PRS (Genetic IV) BMI (Exposure) DBP (Outcome) Deprivation (Outcome)

1 x PCs 0.20% 0.11% 0.05% 0.37%
1 x Batch+Centre 0.06% 0.07% 0.84% 15.76%
1 x Alc.+Smok. 0.10% 2.97% 0.34% 4.50%

Table 2. Bounds on the maximum explanatory power of WWW (partial R2), if it were as strong as: (i) 20 leading genomic principal components
(1 x PCs); (ii) observed batch and centre (1 x Batch+Centre); and, (iii) smoking and drinking status (1 x Alc.+Smok.).
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their inferences with sensitivity contour plots, placing sev-
eral different bounds on the strength of confounding multiple
times stronger than observed variables. The plots for DBP
and deprivation are shown in Figure 3 (see caption of Figure 2
for details on how to read the plot). For DBP, note that neither
residual population stratification up to 14x stronger than ob-
served principal components nor residual batch-effects up to
6x stronger than observed batch-effects are sufficient to make
the MR estimate statistically insignificant. Likewise, if resid-
ual pleiotropy were up to 7x stronger than important observed
pleiotropic pathways, such as alcohol and smoking, this is also
not sufficient to change the original conclusions. Finally, even
if unobserved variables WWW had the same explanatory power
of all the observed variables combined, this again would not
change the results for DBP. In contrast, the sensitivity plot for
deprivation reveals that the MR causal effect estimate of BMI
on deprivation is sensitive to confounding with explanatory
power as weak as a fraction (e.g, 0.5) of current observed
variables.

Putting these results in context requires assessing the qual-
ity of the benchmarks involved. For example, it is not unrea-
sonable to argue that genomic principal components correct
for most, or at least a large part, of population structure25,
and that it is thus implausible to imagine residual popula-
tion stratification multiple times stronger than what has been
already corrected by observed principal components. Bench-
marks for horizontal pleiotropy, on the other hand, require
specific knowledge of the aetiology of the disease under study,
or of the social process under investigation. In this applica-
tion, for instance, alcohol consumption is indeed suspected
to be an important channel for horizontal pleiotropy in the
case of DBP47, 48, and smoking also leads to a short-term in-
crease in blood pressure (although its long-term effects are
disputed)49–51. Therefore, one could plausibly argue that it
is unlikely (although, of course, not impossible) that residual
horizontal pleiotropy multiple times as strong as those still
remains. The case for deprivation, however, reveals a more
fragile finding; not only there is no a priori reason to sus-
pect that alcohol and smoking should be among the strongest
pleiotropic pathways, but the bounding exercise shows that
residual pleiotropy a fraction as strong as those could overturn
the original results.

Overall, the sensitivity analyses suggest that: (i) the ge-
netic association of the instrument (PRS) with the exposure
(BMI) is relatively robust, and that instrument strength is un-
likely to be an issue; (ii) that it would take substantial residual
confounding as well as substantial residual pleiotropic path-
ways to reverse the original MR finding of the causal effect
of BMI on DBP; and that, in contrast, (iii) the previous MR
causal effect estimate of BMI on deprivation is fragile, meat-
ning that there is little room for small residual biases, which
could easily overturn the original analysis.

Current proposals for MR “sensitivity analyses” can lead
to false positive findings in the presence of small residual
biases in large samples. Prevailing proposals for sensitiv-

ity analyses of MR studies have focused on replacing tradi-
tional instrumental variable assumptions with alternative as-
sumptions about how pleiotropy operates, such as the InSIDE
assumption33, 34. Although an improvement of traditional MR,
under the presence of residual population stratification, batch
effects, and certain forms of pleiotropy, such approaches may
still lead to statistically significant false findings given large
enough samples. Therefore, the sensitivity statistics and ex-
ercises we propose here can be a useful complement to those
alternative analyses.

To demonstrate this, we performed a simulation study in
which the InSIDE assumption is only slightly violated through
small pleoitropic effects via confounders of the exposure and
outcome trait. Our simulation largely follows the same spec-
ification of previous work34, 53, 54, with the following data-
generating model:

Wi =
J

∑
j=1

φiGi j + εi,W , Xi =
J

∑
j=1

δiGi j + εi,X (1)

Di =
J

∑
j=1

βiGi j +Xi +Wi +Ui + εi,D (2)

Yi = τDi +ηXi + γWi +Ui + εi,Y (3)

where Di is the exposure trait; Yi is the outcome trait; Wi is
an unobserved confounder, and Xi an observed confounder of
Di and Yi, both carriers of pleiotropy in a way that violates
the InSIDE assumption. The genetic variants Gi j are drawn
independently from a Binomial distribution, Binom(2,1/3);
the remaining error terms Ui, εi,W , εi,X , εi,D and εi,Y are drawn
from standard gaussians.

We set the number of variants J = 90, similar to our pre-
vious BMI analysis, and consider genetic effects drawn from
an uniform distribution from 0.01 to 0.05 for φi, δi and βi.
The parameters η and γ give further control to the level of
pleiotropy, and here we set both to 0.05. To put this value
in context, for the usual simulated sample size considered
in previous work (10,000-30,000 individuals), this level of
pleitropy is small enough that it does not meaningfully affect
type I errors for MR-Egger. Here, however, we simulate larger
sample sizes, similar to those found in large genetic databases,
ranging from 100,000 to 500,000 individuals.

We investigated the performance of alternative MR meth-
ods in a two-sample Mendelian randomization setting, mean-
ing that only summary level data was used in the analyses, and
the genetic associations with the exposure trait and the out-
come trait were obtained in separate simulated data. Table 3
shows the results of 1,000 simulations of the data generat-
ing process for each of the sample sizes, considering two
cases: (i) a true null causal effect with τ = 0; (ii) and a true
positive causal effect of τ = 0.1. Note that Xi and Wi have
similar strengths—a fact that, if known, can be exploited for
sensitivity analysis.

We first focus on the case of a null causal effect. The first
three columns of the table shows the proportion of cases in
which the null hypothesis of zero effect was rejected, using
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Proportion of rejections of the null (5% significance level) RVα=0.05

Sample Size IVW MR-Presso MR-Egger Bound (W as strong as X) Min Max

Scenario 1: true null causal effect (τ = 0)
100,000 99% 99% 13% 3.0% 0% 1.1%
200,000 100% 100% 23% 2.6% 0% 0.9%
300,000 100% 100% 33% 2.1% 0% 1.0%
400,000 100% 100% 40% 1.7% 0% 0.9%
500,000 100% 100% 52% 1.2% 0% 0.8%

Scenario 2: true positive causal effect (τ = 0.1)
100,000 100% 100% 86% 90% 1.5% 3.6%
200,000 100% 100% 99% 99% 2.0% 3.5%
300,000 100% 100% 100% 100% 2.1% 3.5%
400,000 100% 100% 100% 100% 2.3% 3.4%
500,000 100% 100% 100% 100% 2.3% 3.4%

Table 3. Simulation of weak pleiotropic pathways violating the InSIDE assumption.

the three different MR methods: (i) the traditional inverse vari-
ance weighted (IVW); (ii) MR-Presso; and, (iii) MR-Egger.
Since the true causal effect is zero, these results indicate the
proportion of false positives. We see that IVW and MR-Presso
give similar results with a virtually 100% false positive rate
for all sample sizes, and that MR-Egger starts with a false pos-
itive rate of 13% for N = 100,000, and this rate grows up to
52% at N = 500,000. Next, the last three columns show how
the sensitivity exercises could help interpreting the results in
such cases. Starting with the fourth column, here we have
the proportion of false positives if the researcher knew that X
were among the most important pleiotropic pathways (such as,
in our previous example) and that residual pleiotropy could
be as strong as X . Using the bounding procedure delineated
in the previous section, if the researcher accounted for this
possibility of confounding as strong as X , she would then
only falsely conclude that there is an effect roughly around
1% to 3% of the time. Moreover, the last two columns show
the minimum and the maximum robustness values for the as-
sociation of the genetic instrument with the exposure, over
all simulations. Note these are the most extreme results one
could get, and they still always remain roughly below 1%,
correctly warning the researcher that residual biases of those
magnitudes are capable of overturning those MR findings.

We now turn to the second scenario, in which there is a
true positive causal effect of D on Y . Here all MR methods
correctly reject the null hypothesis of zero effect from 86% to
100% of the time. The challenge in this setting, thus, comes
not from rejecting the null hypothesis, but from the fact that
potential critics of the study could correctly be skeptical of
the results, and conjecture that the reason why the null was
rejected was simply due to residual pleiotropic pathways. To
mitigate those concerns, the researcher could again use the
bounding procedure, and around 90% to 100% of the time
she would conclude that one would still reject the null, even
when allowing for residual pleiotropy as strong as that due to

the observed X . Likewise, the results for the RV show that a
researcher would never obtain a robustness value below 1.5%,
meaning that, in all cases, the critic would need to argue that
biases of at least these magnitudes are plausible in order to
forcefully dismiss the observed MR finding.

The phenomenon demonstrated in the simulation is sim-
ply the well known but often overlooked fact that, with large
enough data, any residual bias will eventually be statistically
significant. It is for that reason that alternative analyses such
as MR-Egger and MR-Presso are bound to lead to false posi-
tives with large enough genetic databases, unless their modi-
fied identification assumptions also hold exactly. In contrast,
the sensitivity statistics we propose here, such as the partial
R2 and the RV, are directly quantifying the strength of biases
needed to overturn a finding—and they will simply converge
to their population values as the sample size increases.

Discussion
We have described a suite of sensitivity analysis tools for per-
forming valid MR inferences under the presence of residual
biases of any postulated strength. The approach we proposed
here starts from the premise that all MR studies will be im-
perfect in some way or another, but also that a study does not
have to be perfect in order to be informative—what matters is
not whether certain assumptions hold exactly, but the extent
to which certain conclusions are robust to violations of those
assumptions, and whether such strong violations are plausible.

We showed how two simple sensitivity statistics, the par-
tial R2 and the robustness value, can be used to easily com-
municate the minimum strength of residual biases necessary
to invalidate the results of a MR study. Since researchers are
already well advised to report the partial R2 of the genetic
instrument with the exposure trait, routinely reporting the
partial R2 of the genetic instrument with the outcome trait
and the robustness value is but a small addition to current
practices, and can greatly improve the transparency regarding
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the robustness of MR findings.
We also showed that, whenever researchers are able to

argue that, although not perfect, they have credibly accounted
for most of the population structure with genomic principal
components, most of possible batch effects with technical
dummies, and have measured known important pleiotropic
pathways, this knowledge can be leveraged to formally bound
the worst possible inferences due to residual biases. Such
bounding exercises can be an important piece of the scientific
debate when arguing in favor or against the robustness of a
certain finding.

Finally, we remind readers that these tools cannot and
should not be used to replace expert judgment. On the con-
trary, the tools described here can aid leveraging certain types
of expert knowledge that would have been otherwise ne-
glected, such as judgments regarding the maximum plausible
strength of residual biases, or knowledge regarding the rela-
tive importance of certain causal pathways. In sum, strong
conclusions from Mendelian randomization studies still need
to rely on the quality of the research design, and substantive
understanding both of the genetic variants as well as the traits
under investigation.
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Methods

Study Design and Participants
Study population. The UK Biobank55 is a resource that
links genetic data to a variety of physiological and social traits
in a cohort of 503,325 British people aged 37-73 years. It has
been a valuable resource for estimating causal effects of expo-
sures on a multitude of outcomes using MR41–43. We filtered
the data to only include people with self-reported white British
ancestry who were not closely related, (e.g. no first, second, or
third degree relatives), as defined by pairs of individuals who
had a kinship coefficient < (1/2)(9/2) (following56), leaving
291,274 people. We also removed individuals who were not
measured for BMI (non-impedence). For our analysis of the
Lyall et al.42 study, we also excluded patients who responded
to a question on whether they were taking anti-hypertensive
medication with “don’t know”.

Polygenic Risk Score. The Polygenic Risk Scores (PRS)
was constructed in the same manner as in Lyall et al.42. This
PRS score was derived from 97 SNPs that were genome-wide
significantly associated with BMI in the GIANT consortium
study46. Two of these SNPs were not directly genotyped in
the UK Biobank, and two failed Hardy-Weinberg equilibrium,
leaving 93 SNPs to comprise the PRS. The PRS was computed
as a weighted score based on these SNPs, with the weights
derived from the effect estimated reported by GIANT (β per
1-SD unit of BMI)42, 46. We used the exact same weights
computed by Lyall et al.42.

Exposure, outcome and control traits. During the initial
visit to the UK Biobank assessment center, height was mea-
sured to the nearest centimeter using a Seca 202 device and
weight was measured to the nearest 0.1 kilogram using a
Tanita BC418MA body composition analyser. These mea-
surements were subsequently used to calculate body mass
index (BMI), in kg/m2 (field category ID: 21001). The two
outcomes of interest were the Townsend deprivation index and
diastolic blood pressure. The Townsend deprivation index was
calculated using the postcode of the participant at the time of
recruitment (field category ID: 189). Diastolic blood pressure
was obtained by an automated reading from an Omron blood
pressure monitor (field category ID: 4079).

In our analyses, we adjusted for age, sex, assessment
centre, genetic batch effects, drinking and smoking status,
given by the following variables: “Sex” (field category ID:
31); “Age when attended assessment centre" (field category
ID: 21003); “UK Biobank assessment centre” (field category
ID: 54); “Genotype measurement batch” (field category ID:
22000); “Smoking status” (field category ID: 20116); “Fre-
quency of drinking alcohol” (field category ID: 20414); “Al-
cohol intake frequency” (field category ID: 1558).

Statistical Methods
Traditional Mendelian Randomization. Suppose we are in-
terested in assessing the causal effect of an exposure trait D on

an outcome trait Y , by performing a Mendelian Randomiza-
tion study with a polygenic risk score (PRS) Z = ∑

k
j=1 β jG j

(comprised of a linear combination of SNPs G j with weights
β j) as the putative instrumental variable. Note the weights β j
of the PRS could have been obtained either from external data
(such as a previous GWAS), or via cross-validation as well as
other methods9. To give credibility to the study, the researcher
considers a set of observed control covariates XXX that accounts
for potential IV violations of population stratification, batch
effects and horizontal pleiotropy19. That is, XXX consists of,

XXX = {XXXps, XXXbatch, XXXhp, XXX ind}

Where XXXps denotes the variables to adjust for population strat-
ification, such as, for instance, genomic principal components;
XXXbatch denotes variables to adjust for batch effects, for exam-
ple, dummy variables for the assessment centre and genotype
batches; XXXhp denotes measured variables which are suspected
to be capable of blocking suspected pleoitropic pathways; and,
finally, XXX ind are participant characteristics that are usually in-
cluded in MR, such as the age and sex of the individual.

The traditional MR estimate of the causal effect of D on Y ,
here denoted by τ̂res, would consist of the ratio of the genetic
association with the outcome trait, β̂Y Z|XXX , and the genetic
association with the exposure trait, β̂DZ|XXX , after adjusting for
observed covariates XXX , namely,

τ̂res =
β̂Y Z|XXX

β̂DZ|XXX

Confidence intervals that have nominal coverage regardless
of instrument strength can be obtained via Fieller’s theorem45

or via the Anderson-Rubin regression44. These confidence
intervals can be of three forms: (i) a connected closed in-
terval [a,b]; (ii) the union of disjoint unbounded intervals,
(−∞,a] ∪ [b,∞); or, (iii) the whole real line (−∞,∞).

Violation of traditional assumptions. The traditional MR
estimate, τ̂res, however adjusts for XXX only, and it is unlikely
that XXX controls for all possible threats to the study validity.
Instead, the researcher would have preferred to have also ad-
justed for additional unobserved variables WWW to satisfy the
MR assumptions. For instance, we would like to have con-
trolled for the true population indicators WWW ps instead of its
approximation as recovered by the principal components XXXps;
likewise, the researcher suspects that XXXhp is not enough to
block all pleiotropic pathways, and would have liked to have
further adjusted for covariates WWW hp.

In sum, instead, of performing the MR analysis using XXX
alone, resulting in τ̂res as our MR estimate, the researcher
would have wanted to compute instead

τ̂ =
β̂Y Z|XXXWWW

β̂DZ|XXXWWW

which adjusts for the extended set of covariates {XXX ,WWW}, such
that Z is a valid instrument for estimating the causal effect of D
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on Y , conditional on {XXX ,WWW}. Likewise, confidence intervals
should have also been computed adjusting for {XXX ,WWW}. How
would accounting for the omitted variables WWW have changed
our inferences regarding the causal effect of D on Y ?

The sensitivity analysis of the MR estimate can be re-
duced to the sensitivity of the genetic associations. We
now explain how to perform sensitivity analysis within the
Anderson-Rubin (AR) approach44, which as we show is also
numerically equivalent to Fieller’s proposal45 when consider-
ing a single instrumental variable Z. Here we take an exact
algebraic approach—that is, all results here hold both for
sample or population estimates.

Let Y and D denote (n× 1) vectors containing the out-
come and exposure of interest for each of the n observations,
respectively. Now let τ denote the causal effect of interest, and
define a new variable Yτ0 := Y − τ0D, in which we subtract
from Y the causal effect of D, considering a hypothetical value
for τ , say, τ0. Next consider the following linear regression,

Yτ0 = φ̂τ0Z +XXX η̂τ0 +WWW γ̂τ0 + ε̂τ0 (4)

Where Z is a (n×1) vector with the genetic instrument; XXX is a
(n× p) matrix of observed covariates, including the constant;
and WWW is a (n×k) matrix of unobserved covariates the analyst
wished to have measured in order to make Z a valid instru-
ment. Here φ̂τ0 , η̂τ0 , γ̂τ0 are the OLS coefficient estimates of
the regression of Yτ0 on Z,XXX ,WWW , and ε̂τ0 its corresponding
residual.

Note that, if τ = τ0 and if Z is valid instrument conditional
on XXX ,WWW , then we must have that Yτ0 ⊥⊥ Z|XXX ,WWW , and thus that
φτ0 = 0. Following this logic, the AR confidence interval with
significance level α is defined as all values of τ0 such that we
cannot reject the null hypothesis H0 : φτ0 = 0 at the chosen
significance level. More precisely,

CIAR(α) =
{

τ0 ; t2
φ̂τ0
≤ t∗2α,df

}
(5)

Where t
φ̂τ0

is the t-value for the null hypothesis H0 : φτ0 = 0
and t∗

α,df is the critical threshold of the t-distribution for a sig-
nificance level α and df degrees of freedom. This confidence
interval can be obtained analytically as a function of the ge-
netic association with the exposure and the genetic association
with the outcome, which is now useful to write out explicitly.

By appealing to the Frisch–Waugh–Lovell (FWL) theo-
rem57–59, we can write φ̂τ0 as,

φ̂τ0 =
cov(Y⊥XXXWWW − τ0D⊥XXXWWW ,Z⊥XXXWWW )

var(Z⊥XXXWWW )

=
cov(Y⊥XXXWWW ,Z⊥XXXWWW )

var(Z⊥XXXWWW )
− τ0

cov(D⊥XXXWWW ,Z⊥XXXWWW )

var(Z⊥XXXWWW )

= β̂Y Z|XXXWWW − τ0β̂DZ|XXXWWW (6)

Where Y⊥XXXWWW denotes the variable Y after removing the com-
ponents linearly explained by XXX and WWW , and β̂Y Z|XXXWWW denotes
the regression coefficient of Z on Y (the genetic association

with the outcome) after adjusting for both XXX and WWW ; β̂DZ|XXXWWW
denotes the regression coefficient of Z on D (the genetic as-
sociation with the exposure) after adjusting for XXX and WWW .
Likewise, the estimated variance of φ̂τ0 can be written as,

v̂ar(φ̂τ0) =
var(Y⊥ZXXXWWW − τ0D⊥ZXXXWWW )

var(Z⊥XXXWWW )
×df−1

=

(
var(Y⊥ZXXXWWW )

var(Z⊥XXXWWW )
+ τ

2
0

var(D⊥ZXXXWWW )

var(Z⊥XXXWWW )

−2τ0
cov(Y⊥ZXXXWWW ,D⊥ZXXXWWW )

var(Z⊥XXXWWW )

)
×df−1

= v̂ar(β̂Y Z|XXXWWW )+ τ
2
0 v̂ar(β̂DZ|XXXWWW )

−2τ0ĉov
(

β̂Y Z|XXXWWW , β̂DZ|XXXWWW

)
(7)

To construct the confidence interval, we need to find all values
of τ0 such that the following inequality holds,

φ̂ 2
τ0

v̂ar(φ̂τ0)
≤ t∗2α,df =⇒ φ̂

2
τ0
− v̂ar(φ̂τ0)t

∗2
α,df ≤ 0 (8)

Squaring and rearranging terms we obtain the following quadratic
inequality,

(
β̂

2
DZ|XXXWWW − v̂ar(β̂DZ|XXXWWW )× t∗2α,df

)
︸ ︷︷ ︸

a

τ
2
0

+2
(

ĉov(β̂Y Z|XXXWWW , β̂DZ|XXXWWW )× t∗2α,df− β̂Y Z|XXXWWW β̂DZ|XXXWWW

)
︸ ︷︷ ︸

b

τ0

+
(

β̂
2
Y Z|XXXWWW − v̂ar(β̂Y Z|XXXWWW )× t∗2α,df

)
︸ ︷︷ ︸

c

≤ 0 (9)

These conditions are exactly Fieller’s solution to the con-

fidence interval of the ratio τ =
βY Z|XXXWWW
βDZ|XXXWWW

.
Our task has thus simplified to find all values of τ0 that

makes the above quadratic equation, with coefficients a, b
and c, non-positive. But here we have special interest in
two specific cases: (i) when the confidence interval for τ

is unbounded; and, (ii) when the confidence interval for τ

includes zero.
Let us first consider the case of unbounded confidence

intervals. Note this happens when a < 0, which means the
quadratic curve in Equation 9 will be concave (will have a
“∩” shape)—as we increase τ0 to plus or minus infinity, the
inequality is bound to hold and the confidence interval will be
unbounded. Also note that a < 0 if, and only if,

β̂
2
DZ|XXXWWW − v̂ar(β̂DZ|XXXWWW )× t∗2α,df ≤ 0 =⇒

β̂DZ|XXXWWW

ŝe(β̂DZ|XXXWWW )
= t

β̂DZ|XXXWWW
≤ t∗α,df (10)
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Sensitivity Analysis Interpretation

Of the genetic association with the exposure

The sensitivity of the genetic association with the exposure reveals the stability
of the MR causal effect estimate. Biases strong enough to result in a failure of
rejection that the genetic association with the exposure is zero, also lead to
unbounded confidence intervals for the MR causal effect estimate.

Of the genetic association with the outcome

The sensitivity of the genetic association with the outcome is equivalent to
the sensitivity of the MR causal effect estimate with respect to the zero null
hypothesis. Biases strong enough to result in a failure of rejection that the
genetic association with the outcome is zero equally result in a failure to reject
the null hypothesis that the MR causal effect estimate is zero.

Table 4. The sensitivity of the MR causal effect estimate can be decomposed into the sensitivity of its two components: the sensitivity of the
genetic association with the exposure and the sensitivity of the genetic association with the outcome.

That is, the confidence interval for τ will be unbounded if
and only if we cannot reject that the genetic association with
the exposure is zero.

We now turn our attention to the null hypothesis of zero
effect, that is, H0 : τ = 0. Notice in this case the first two
terms of the quadratic equation, a and b, vanish. What we
have left is only the term c which will be negative if, and only
if,

β̂
2
Y Z|XXXWWW − v̂ar(β̂Y Z|XXXWWW )× t∗2α,df ≤ 0 =⇒

β̂Y Z|XXXWWW

ŝe(β̂Y Z|XXXWWW )
= t

β̂Y Z|XXXWWW
≤ t∗α,df (11)

In other words, the null hypothesis of zero effect for the
causal effect is not rejected if, and only if, the null hypothesis
of zero association between the instrument Z with the outcome
Y is also not rejected.

We have thus simplified the sensitivity analysis of the MR
estimate to the sensitivity analysis of the two genetic asso-
ciations. If WWW is strong enough to explain away the genetic
association with the exposure, then WWW is strong enough to
make the the causal effect arbitrarily large in either direction.
If WWW is strong enough to explain away the genetic association
with the outcome trait, than WWW is strong enough to explain
away the MR estimate. This is summarized in Table 4.

Since we have reduced the problem of sensitivity analysis
of MR to the problem of sensitivity analysis of the genetic
associations, we can leverage all tools of Cinelli and Hazlett37

for our problem. Here we thus review the main sensitivity
analysis results of Cinelli and Hazlett, in the context of the
genetic association with the outcome. All results below, of
course, also apply to the genetic association with the exposure,
by just replacing Y with D where appropriate.

Sensitivity formulas for the genetic associations. Con-
sider first a univariate W and let R2

Z∼W |X denote the partial
R2 of W with the genetic instrument and let R2

Y∼W |Z,X denote
the partial R2 of W with the outcome trait. Given the ob-
served genetic association β̂Y Z|XXX and its estimated standard

error ŝe(β̂Y Z|XXX ), adjusting for XXX alone, the estimate and stan-
dard error we would have obtained further adjusting for W
can be recovered with37 ,

β̂Y Z|XXXW = β̂Y Z|XXX ± ŝe(β̂Y Z|XXX )

√√√√R2
Y∼W |Z,X R2

Z∼W |X

1−R2
Z∼W |X

(df)

(12)

and,

ŝe(β̂Y Z|XXXW ) = ŝe(β̂Y Z|XXX )

√√√√1−R2
Y∼W |Z,X

1−R2
Z∼W |X

(
df

df−1

)
(13)

Where here now df denote the degrees of freedom of the AR
regression actually run. These formulas allow us to investi-
gate how the estimate, standard error, t-values, p-values or
confidence intervals would have changed, under a confounder
W of any postulated strength, as parameterized by R2

Z∼W |X
and R2

Y∼W |Z,X. For a singleton W these formulas are exact,
and for multivariate WWW , it can further be shown that these for-
mulas are conservative, barring an adjustment on the degrees
of freedom37 (that is, these are the worse biases a multivariate
WWW could cause). These formulas form the basis of the contour
plots shown in Figure 2.

Bounds on the partial R2 of W based on observed covari-
ates. Where investigators are unable to make direct claims
on the strength of W , it may be helpful to consider relative
claims, by positing, for instance, that W is no stronger than
some observed covariate X j. For that, consider a confounder
orthogonal to the observed covariates, ie., W ⊥ X and define

kZ :=
R2

Z∼W |X− j

R2
Z∼X j |X− j

, kY :=
R2

Y∼W |X− j ,Z

R2
Y∼X j |X− j ,Z

. (14)

where X− j represents the vector of covariates X excluding X j.
Then the strength of W can be bounded by37,

R2
Z∼W |X = kZ f 2

Z∼X j |X− j
, R2

Y∼W |Z,X ≤ η
2 f 2

Y∼X j |X− j ,Z

(15)
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where η is a scalar computed from kY , kZ and R2
Z∼X j |X− j

(see

Cinelli and Hazlett37 for details).

Sensitivity statistics for routine reporting. The previous
results allow us to perform sensitivity analysis to confounding
of any postulated strength. However, widespread adoption of
sensitivity analysis benefits from simple metrics that users can
report to quickly summarize the robustness of their results.
With that in mind, Cinelli and Hazlett37 introduced two sen-
sitivity statistics for routine reporting: the Robustness Value
(RV) and the partial R2.

Let f := | fY∼Z|X| denote the absolute value of the partial
Cohen’s f of the genetic instrument with the outcome.1 Now
also re-scale the critical threshold, f ∗α := |t∗

α,df−1|/
√

df−1,
and define fα := f − f ∗α . The robustness value RVα is defined
as the minimal strength of association that W must have, both
with the genetic instrument Z and the outcome trait Y , in order
to make the genetic association with the outcome statistically
insignificant. This is given by37

RVα =



0, if fα < 0

1
2

(√
f 4
α +4 f 2

α − f 2
α

)
, if f ∗α ≤ f < f ∗−1

α

f 2− f ∗2α

1+ f 2 , otherwise.

(16)

Any W with both strength of associations below RVα is
not sufficiently strong to make the genetic association with
the outcome statistically insignificant, and, thus, also not
sufficiently strong to make the MR causal effect estimate
statistically insignificant. On the other hand, any W with both
strength of associations above RVα is sufficiently strong to
do so.

Moving to the partial R2, in addition to quantifying how
much variation of the outcome trait is explained by the ge-
netic instrument, the partial R2 also tells us how robust the
genetic association with the outcome is to an “extreme sensi-
tivity scenario.” More precisely, suppose that the unobserved
variable W explained all residual variance of the outcome
trait. Then, for W to bring the genetic association to zero, it
must explain at least as much residual variation of the genetic
instrument as the residual variation of the outcome trait that
the genetic instrument currently explains37. Mathematically,
if RY∼W |Z,X = 1, then for W to make β̂Y Z|XXXW = 0, we need
to have that R2

Z∼W |X ≥ R2
Y∼Z|X.

1The partial Cohen’s f 2 can be written as f 2
Y∼Z|X =R2

Y∼Z|X/(1−R2
Y∼Z|X).
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