

1 **Short title:** Apoplastic acidification from salinity stress

2

3

4

5 **Apical-root apoplastic acidification affects cell-wall extensibility in wheat under**
6 **salinity stress**

7

8 Yang Shao¹, Xiaohui Feng², Hiroki Nakahara¹, Muhammad Irshad³, A. Egrinya Enejji⁴,
9 Yuanrun Zheng⁵, Ping An^{1,*}

10

11 ¹Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori City
12 680-0001, Japan

13 ²Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources
14 Research, Institute of Genetics and Developmental Biology, Chinese Academy of
15 Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China

16 ³Department of Environmental Sciences, COMSATS Institute of Information
17 Technology, University Road, Abbottabad, Pakistan

18 ⁴Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources
19 Management, University of Calabar, 540271 Calabar, Nigeria

20 ⁵Key Laboratory of Resource Plants, Institute of Botany, Chinese Academy of
21 Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China

22

23 **One-sentence summary:**

24 Apoplastic acidification and differential expansin expression under salinity stress
25 inhibits root growth in salinity-sensitive, but not in salinity-tolerant, wheat cultivars.

26

27 **Author contributions:**

28 Y.S. and P.A. designed the experiments; Y.S., H.N. and, X.F. collected and analyzed

29 the data; M.I., E.E. and, Y.Z. provided scientific advice; Y.S. and P.A. wrote the
30 manuscript; and all authors read and approved the final version of the manuscript.

31

32 **Funding information:**

33 This study was partially funded by a Grant-in-Aid for Scientific Research (C) from
34 the Japan Society for the Promotion of Science [grant number 26450020].

35

36 *Corresponding author: Ping An

37 An.ping@tottori-u.ac.jp

38 TEL: +81-857-233411

39

40 Abstract

41 Plant salt tolerance is closely associated with a high rate of root growth. Although root
42 growth is governed by cell-wall and apoplastic pH, the relationship between these
43 factors in the root elongation zone under salinity stress remains unclear. Here, we
44 assess apoplastic pH, pH- and expansin-dependent cell-wall extensibility, and
45 expansin expression in the root elongation zone of salt-sensitive (Yongliang-15) and
46 -tolerant (JS-7) cultivars under salinity stress. A six-day 80 mM NaCl treatment
47 significantly reduced apical-root apoplastic pH, from 6.2 to 5.3, in both cultivars.
48 Using a pH-dependent cell-wall extensibility experiment, we found that, under 0 mM
49 NaCl treatment, the optimal pH for cell-wall loosening was 6.0 in the salinity-tolerant
50 cultivar and 4.6 in the salinity-sensitive cultivar. Under 80 mM treatment, a pH of 5.0
51 mitigated the cell-wall stiffness caused by salinity stress in the salinity-tolerant
52 cultivar, but promoted cell-wall stiffening in the salinity-sensitive cultivar. These
53 changes in pH-dependent cell-wall extensibility are consistent with differences in the
54 root growth of two cultivars under salinity stress. Exogenous expansin application,
55 and expansin expression experiments, we found that salinity stress altered expansin
56 expression, differentially affecting cell-wall extensibility under pH 5.0 and 6.0.
57 *TaEXPA7* and *TaEXPA8* induced cell-wall loosening at pH 5.0, whereas *TaEXPA5*
58 induced cell-wall loosening at pH 6.0. These results elucidate the relationship
59 between expansin and cell-wall extensibility in the root elongation zone, with
60 important implications for enhancing plant growth under salinity stress.

61

62 **Key words:** pH-dependent extensibility, cell-wall loosening, apoplastic acidification,
63 apical root, cell-wall creep, expansin, salinity stress

64

65

66 **Introduction**

67 Under abiotic stress, the primary cell wall of plants protects cell integrity and
68 regulates cell expansion and division (Cosgrove, 2018). When plants are exposed to
69 salinity stress, the cell wall, as the outmost layer of cells, is the first line of defense.
70 Salinity stress alters cell-wall structure (Koyro, 1997) and composition (Byrt et al.,
71 2018), factors closely associated with cell-wall extensibility. Salinity stress causes
72 changes in ion homeostasis and transportation across the cell wall. The roots can
73 extrude Na^+ ions out of cytosol (Munns et al., 2020). Na^+ extrusion alters the root
74 apoplastic microenvironment, which shifts the apoplastic pH away from the range that
75 favors cell-wall loosening (Byrt et al., 2018).

76 Studies on changes in apoplastic pH under salinity stress have focused mainly on
77 the leaves. Transient leaf-apoplast alkalization under salinity stress has been reported
78 in the field bean (Felle and Hanstein, 2002), barley (Felle et al., 2005), and maize
79 (Geilfus et al., 2017). Further, an eight-day NaCl treatment induced apoplastic
80 acidification in maize leaves (Zörb et al., 2015). However, there is limited information
81 about the long-term response of root apoplastic pH to salinity stress. Short-term
82 apoplastic alkalization in the root under salinity stress has been reported in
83 *Arabidopsis* (Gao et al., 2004), although that study does not clarify whether the
84 apoplastic alkalization occurred in the root elongation zone or in the mature zone.

85 Apoplastic pH regulates both cell-wall composition and extensibility.
86 pH-dependent cell-wall extensibility is explained according to the “acid growth
87 theory” (Rayle and Cleland, 1992): apoplastic acidification triggers cell-wall
88 loosening, resulting in cell elongation and expansion. In *Arabidopsis*, apoplastic pH
89 steers root growth (Barbez et al., 2017), promotes cell differentiation (Pacifici et al.,
90 2018), and regulates cell shape (Dang et al., 2020). The optimal pH for cell-wall
91 loosening differs between shoots and roots. In pea (*Pisum sativum*) grown under

92 hydroponic conditions, pH 3.0 buffer induced the maximum apical-root extensibility,
93 compared with pH values of 4.0–8.0 (Tanimoto et al., 2000). In wheat coleoptiles, the
94 optimum pH for cell-wall loosening is 4.0–4.5 (Gao et al., 2008). In maize, root
95 cell-wall extensibility decreased under low water potential (Wu et al., 1996), while
96 low apoplastic pH (pH 4.5) reverses this (Wu and Cosgrove, 2000). However,
97 apoplastic acidification in the root elongation zone does not increase maize growth
98 under salinity stress (Zidan et al., 1990).

99 Apoplastic pH-dependent cell-wall loosening is facilitated by expansins
100 (Cosgrove, 2005). Cellulose-xyloglucan-cellulose conjuncions form the main
101 load-bearing structures in the cell wall (Park and Cosgrove, 2012); expansin can bind
102 to hydrophilic regions on these conjuncions, unzipping the covalent bonds and
103 loosening the cell walls (Cosgrove, 2018). Expansin genes widely exist in plants. In
104 the wheat genome, the expansin gene superfamily contains over two hundred
105 expansin genes, more than in rice, *Arabidopsis*, and tomato (Han et al., 2019). Many
106 literatures have shown that expansin plays important roles under abiotic stress. In
107 wheat, drought stress makes cell walls more susceptible to exogenous expansin
108 treatment (Zhao et al., 2011). Under low-temperature stress, the expansin gene
109 *TaEXPA8* is highly expressed in a cold-tolerant wheat cultivar (Zhang et al., 2018); in
110 *Arabidopsis*, its overexpression improves cold tolerance (Peng et al., 2019). In wheat
111 under salinity- and PEG-induced stress, expansin gene expression differs between the
112 leaves and roots (Han et al., 2019), and in transgenic tobacco, overexpression of
113 wheat coleoptile expansin genes, such as *TaEXPA2* (Chen et al., 2017) and *TaEXPB23*
114 (Han et al., 2012) enhances root growth and salt tolerance. These studies reveal that,
115 under various types of abiotic stress, expansin acts as a phytohormone and ROS
116 regulator. In contrast, relationships between expansin expression and pH-dependent
117 cell-wall extensibility have not been widely studied.

118 Therefore, we aimed to clarify how the relationship between apoplastic pH and
119 expansin affects cell-wall extensibility under salinity stress. Using salinity-sensitive

120 and salinity-tolerant wheat cultivars, we examined changes in apical-root apoplastic
121 pH and cell-wall extensibility, using buffers with different pH values and exogenous
122 expansin treatments, and examined expansin gene expression. Understanding the
123 relationship between apoplastic pH and pH-dependent cell-wall extensibility under
124 salt stress is of great importance, first, to elucidate the mechanism of plant growth
125 regulation under salinity stress and, second, to improve the screening or breeding of
126 stress-adapted crop plants.

127

128 **Results**

129 ***The relationship between root growth and salt tolerance***

130 We treated two wheat cultivars, Yongliang-15 (YL-15; salinity-sensitive) and
131 JS-7 (salinity-tolerant), with NaCl at 0 mM and 100 mM. After 30 d of salinity stress,
132 YL-15 showed worse chlorosis than JS-7 (Supplemental Fig. S1). We therefore
133 consider YL-15 to be more sensitive to NaCl than JS-7. In the cultivation experiment
134 using filter-paper, JS-7 showed significantly faster root growth than YL-15, under
135 salinity stress (Supplemental Fig. S1B, C; Fig. 1A, B). After 4 d of 80 mM NaCl
136 treatment, JS-7 seedling root growth recovered and remained relatively high, whereas
137 the root growth rate of YL-15 was low (Fig. 1A). Because the root-growth rates of the
138 two cultivars differed significantly at day 6 of the salinity treatment, we analyzed the
139 apoplastic pH in the roots after 6 d of 80 mM NaCl treatment to investigate the effects
140 of Na⁺ ions on apoplastic pH.

141

142 ***Saline stress triggered acidification of apoplastic pH***

143 The 473/405 nm intensity ratio increased with the pH value of the medium (Fig.
144 2A, B). We used the ratio values to plot a calibration curve ranging from pH 4.0 to 7.0
145 (Fig. 2C). Moving away from the root tips, the apoplastic pH decreased, and the
146 region 1 mm from the root tips showed the lowest apoplastic pH, in both cultivars and

147 under both of the NaCl treatments (Fig. 2D). Therefore, in this study, we measured pH
148 at 1 mm from the root tip, as representative of the elongation zone. Based on Pritchard
149 et al. (1987), we measured pH at 5 mm from root tip, as representative of the mature
150 zone.

151 After irrigating wheat seedlings with 0 mM or 80 mM NaCl supplemented with
152 HPTS (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt) for 6 d, we measured
153 apoplastic pH in the root elongation and mature zones. Apoplastic pH was lower in
154 the root elongation zone than in the mature zone in both cultivars under both NaCl
155 treatments (Fig. 3A, B), and apoplastic pH was lower under the 80 mM treatment than
156 in the control, in both zones and cultivars (Fig. 3A, B). Under the 80 mM NaCl
157 treatment, apoplastic pH decreased from ~6.2 to ~5.2 in the elongation zone (Fig. 3B),
158 and from ~6.9 to ~6.1 in the mature zone, in both wheat cultivars (Fig. 3C). In
159 summary, salinity stress induced apoplastic acidification in the elongation and mature
160 zones in both cultivars.

161 Further, we measured apoplastic pH by soaking the wheat roots in HPTS solution.
162 The HPTS fluorescence signal in the cytosol indicates that salinity stress disrupted
163 cell-membrane integrity (Supplemental Fig. S3A). Apoplastic pH is strongly
164 influenced by the medium's pH and by hydroponic conditions (Gao et al., 2004). After
165 irrigating the seedlings with the 0 mM or 80 mM NaCl treatment supplemented with
166 HPTS solution (pH 6.5), root elongation-zone apoplastic pH was higher than after the
167 soaking method (Fig. 3, S3B). Further, the HPTS dye was concentrated in the cell
168 walls, under both treatments. Therefore, the cell-wall acidification in the root
169 elongation zone under salinity stress was a direct result of the response of the roots.

170

171 ***Saline stress altered cell-wall extensibility and pH-dependent cell-wall extensibility***
172 ***in the roots***

173 Byrt et al. (2018) hypothesized that salinity stress alters apoplastic pH, thereby
174 inhibiting cell-wall loosening. To analyze differences in cell-wall extensibility

175 between the two cultivars, we assessed the effects of salinity stress and pH on the
176 cell-wall elasticity modulus (E_0) and extensibility coefficient (η_N) of the root tips.
177 Increases in E_0 and η_N are associated with reductions in cell-wall elasticity and creep,
178 respectively (Fig. 4). In both cultivars, E_0 was significantly higher under the 80 mM
179 NaCl treatment than in the control (Fig. 4A). In general, the increments in E_0 in
180 YL-15 were greater than those in JS-7, indicating that the root cell walls of YL-15
181 were stiffer than those of JS-7 under the 80 mM treatment. The differences in E_0 and
182 η_N obtained by varying the buffer pH indicate that, for the 0 mM NaCl treatment, the
183 optimal pH values for cell-wall loosening were 4.6 in the apical roots of YL-15 and
184 6.0 in segments of JS-7 (Fig. 4A, B); for the 80 mM NaCl treatment, a pH of 4.0–5.0
185 caused cell-wall stiffening in the apical roots of YL-15, whereas this pH range
186 loosened the cell walls in JS-7 (Fig. 4A, B). In summary, salinity stress stiffened the
187 cell walls and altered the pH-dependent cell-wall extensibility in the apical roots of
188 both cultivars. In contrast, the changes in apoplastic pH inhibited cell-wall loosening
189 in YL-15, but favored it in JS-7.

190

191 ***Changes in pH-dependent cell-wall extensibility and expansin expression under***
192 ***salinity stress***

193 We collected expansin-denatured root segments and extracted four sets of
194 expansin samples (from the two cultivars and two salinity treatments). The loosening
195 effects of exogenous expansins on cell walls were assessed under pH 5.0 and 6.0. The
196 expansin extracted from the root of JS-7 grown under the 80 mM NaCl treatment
197 (JS-7 80 mM) induced the lowest E_0 and η_N at pH 5.0, whereas that extracted from
198 YL-15 80 mM induced the highest E_0 and η_N at the same pH (Fig. 5A, B). The
199 apical-root cell walls of two cultivars showed different susceptibilities to the four sets
200 of expansin samples (Fig. 5C, D). The root segments grown under the 80 mM
201 treatment were more susceptible to the expansin extracted from JS-7 80 mM than to
202 that extracted from YL-15 80 mM (Fig. 5C, D). Three-way ANOVA revealed

203 significant effects on cell-wall extensibility of expansin, root segment, and the
204 interaction between expansin and buffer pH, but not of the interaction between root
205 segments and buffer pH (Table 1). The differences in cell-wall extensibility in
206 response to exogenous expansin treatment reveal that expansin determined
207 pH-dependent cell-wall extensibility. When apoplastic pH was at 5.0, expansin from
208 YL-15 80 mM induced cell-wall stiffness, whereas expansin from JS-7 80 mM
209 induced cell-wall loosening.

210 We further measured the expansin expression in the two cultivars under salinity
211 stress. Compared with expansin expression in the control, expression was inhibited in
212 the YL-15 80 mM root tips (except for *TaEXP*A5 and *TaEXP*A9 expression); in
213 contrast, in JS-7 80 mM, *TaEXP*5, *TaEXP*7, and *TaEXP*8 showed elevated expression.
214 Under the 80 mM NaCl treatment, the cultivars both showed reduced expression of
215 *TaEXP*A3, *TaEXP*A6, *TaEXP*B1, *TaEXP*B7, and *TaEXP*B10; the reductions did not
216 differ significantly different between the cultivars (Fig. 6). Under salinity stress,
217 elevated *TaEXP*A7 and *TaEXP*A8 expression mitigated cell-wall stiffness and
218 enhanced root growth in JS-7, the salinity-tolerant cultivar, via apoplastic
219 acidification (Fig. 7). In summary, the roots of JS-7 and YL-15 differentially
220 expressed the expansin genes under salinity stress, which altered the optimal pH for
221 cell-wall loosening.

222

223 **Discussion**

224 ***Long-term salt treatment reduced root-tip apoplastic pH***

225 Apoplastic pH steers cell elongation (Barbez et al., 2017), drives cell
226 differentiation (Pacifici et al., 2018), and regulates cell shape (Dang et al., 2020). For
227 both cultivars, we found the apoplastic pH was ~5.2 under 80 mM NaCl condition,
228 whereas the pH was at ~6.2 under 0 mM treatment, indicating that long-term salinity
229 stress significantly acidified the apical-root apoplast. However, previous studies have

230 found that the salinity stress induced transient alkalization in leaf apoplasts—from pH
231 4.2 to 4.5 in the faba bean (*Vicia faba*; Geilfus and Mühling, 2012) and from pH 4.7
232 to 5.1 in maize (Geilfus et al., 2015)—and in root apoplasts, from pH 6.4 to 6.8, in
233 *Arabidopsis* (Gao et al., 2004). Leaf apoplastic alkalization plays an important role in
234 stomatal movement (Geilfus et al., 2017). In *Arabidopsis* roots, apoplastic alkalization
235 may be associated with early growth arrest in response to the salinity stress (van Zelm
236 et al., 2020).

237 The extent of apoplastic acidification caused by long-term salinity stress may be
238 affected by ion-channel functioning and interactions between Na^+ ions and the cell
239 walls. Ion-channel proteins, such as SOS1 and PM-H⁺-ATPase, together pump more
240 than 95% of Na^+ ions back into the rhizosphere (Munns et al., 2020). In this
241 Na^+ -extrusion process, PM-H⁺-ATPase is activated to polarize the cell membrane.
242 SOS1 is then activated to pump Na^+ ions out of cytosol. Further, under salinity stress,
243 Na^+ ions interact with the polyglucuronic acid (PGA) in cell walls and release the H⁺
244 from the PGA carboxyl groups (Feng et al., 2018). These findings imply that salinity
245 stress causes apoplastic acidification in roots, especially in root tips, where the pH
246 determines the growth rate of roots.

247

248 ***Low apoplastic pH reduced cell-wall extensibility in the salt-sensitive cultivar under
249 salinity stress, which severely reduced cell elongation and root growth***

250 The extensibility parameters, E_0 and η_N , were higher in both cultivars under the
251 80 mM treatment, indicating the salinity stress stiffened the cell walls in both cultivars
252 (Fig. 4 A, B). Thus, the root-growth rates and final lengths of the two cultivars were
253 lower under salinity stress than under the control (Fig. 1 A, B). Under the 80 mM
254 treatment, JS-7 had faster root growth than YL-15, suggesting that JS-7 has superior
255 cell-elongation ability under salinity stress. Interestingly, we found that salinity stress
256 reduced apoplastic pH in the apical roots of both cultivars. However, apoplastic
257 acidification under salinity stress favored cell-wall loosening in JS-7, but had the

258 opposite effect in YL-15. The root growth of YL-15 was severely arrested under
259 salinity stress, more so than that of JS-7 (Fig. 1 A), indicating that changes in the
260 optimal pH for cell-wall loosening are important for root-growth regulation under
261 salinity stress. In summary, salinity stress reduced cell-wall extensibility in both
262 cultivars. However, apoplastic acidification and changes in expansin expression
263 differently regulated cell-wall extensibility in the two cultivars. As a result, under
264 salinity stress, apoplastic acidification further stiffened the root cell walls and slowed
265 root growth in YL-15, whereas, in JS-7, it loosened the root cell walls and mitigated
266 the inhibition of root growth triggered by Na^+ .

267

268 ***Expansin expression under salinity stress differ between the salinity-sensitive and***
269 ***-tolerant cultivars***

270 We found that the differences in pH-dependent cell-wall extensibility between the
271 sensitive and tolerant cultivars were associated with the differential expression of
272 α -expansins (Fig. 6). Expression levels of *TaEXPA7* and *TaEXPA8* were higher in JS-7
273 than in YL-15 under salinity stress; in JS-7, expansin caused cell-wall loosening in the
274 acidified apoplast. This suggests that *TaEXPA7* and *TaEXPA8* may contribute to
275 cell-wall loosening under the apoplastic acidification induced by salinity stress. The
276 elevated expression of *TaEXPA5* (Fig. 6) and cell-wall loosening at pH 6.0 (Fig. 5 A,
277 B), in both cultivars under the NaCl treatment, indicate that *TaEXPA5* may contribute
278 to the cell-wall loosening at pH 6.0. Our co-expression analysis showed the *TaEXPA5*
279 regulated the number of roots, whereas *TaEXPA7* and *TaEXPA8* were highly
280 associated with cell lengthening under various stresses (Supplemental Fig. S4).
281 *TaEXPA8* is reported to be closely related to cold tolerance in wheat (Zhang et al.,
282 2018), and the overexpression of *TaEXPA8* improves cold tolerance in transgenic
283 *Arabidopsis* (Peng et al., 2019). These results suggest the importance of *TaEXPA8* in
284 enhancing root growth under various abiotic stresses. A recent study shows that
285 *AtEXPA1* overexpression alters the optimal pH for cell-wall loosening in *Arabidopsis*

286 (Samalova et al., 2020). Therefore, the differential expansin expression between the
287 two wheat cultivars, both under normal conditions and salinity stress, suggests that
288 cell-wall loosening at pH 5.0 and pH 6.0 is caused by different expansin genes:
289 *TaEXPA7* and *TaEXPA8* may induce cell-wall loosening at pH 5.0, whereas *TaEXPA5*
290 may induce it at pH 6.0.

291 Expansin genes expressed in wheat coleoptiles induce cell-wall loosening under
292 low apoplastic pH (pH of 4.0–4.5; Gao et al., 2008). Further, overexpression of the
293 expansin genes specifically expressed in wheat coleoptiles (such as *TaEXPB23* and
294 *TaEXPA2*) can enhance root growth under salinity stress (Han et al., 2012; Zhao et al.,
295 2012). These results are consistent with our findings. Thus, we conclude that, under
296 the apoplastic acidification caused by salinity stress, the salt-tolerant cultivar elevates
297 its expression of the expansin genes (such as *TaEXPA7* and *TaEXPA8*), which reduces
298 the optimal pH for cell-wall loosening from 6.0 to 5.0. This change in the optimal pH
299 for cell-wall loosening enables the salinity-tolerant cultivar to maintain a higher root
300 growth than the tolerant cultivar.

301 Further, based on the RNA-seq data from GenBank (accession SRP062745), we
302 found that certain α -expansin, β -expansin, and expansin-like A (*TaEXPLA*) genes are
303 highly expressed only under salinity stress (Supplemental Fig. S5). These
304 stress-specific expansin genes may play a critical role in responses to salinity stress.
305 The α -expansin, β -expansin, and expansin-like A genes related to salinity stress need
306 to be further studied.

307

308 ***How does the 'Kelvin-Voigt-Burgers' model reflect cell-wall extensibility under
309 salinity stress?***

310 Recently, many studies have applied atomic force microscopy (AFM) and
311 Young's modulus to assess cell-wall extensibility (Feng et al., 2018; Samalova et al.,
312 2020). However, Zhang et al. (2019) report that, although these approaches reveal
313 changes in cell-wall softness, they only partially reveal cell-wall creep and

314 extensibility. AFM assesses cell-wall softness by applying pressure to the cell-wall
315 surface, which does not account for extensibility. In the current study, we found that
316 exogenous expansin application changed root-tip thickness (Supplemental Fig. S6),
317 whereas endogenous expansin had no effect on cell-wall thickness. Samalova et al.
318 (2020) found that expansins were differentially localized in cell walls. Their results
319 indicate that differences in the spatial distribution of expansins regulate longitudinal
320 and horizontal cell-wall loosening, resulting in anisotropic cell growth. Therefore, it is
321 essential to study longitudinal cell-wall loosening in root segments, in order to assess
322 cell extensibility under salinity stress.

323 Salinity stress induces significant swelling in root tips, increasing the thickness of
324 apical roots (Feng et al., 2018). To avoid this effect when assessing cell-wall
325 extensibility, we used a ‘Kelvin-Voigt-Burgers’ (KVG) model. The KVG model has
326 been used to measure changes in root cell-wall extensibility in wheat roots (Ma et al.,
327 2004) and *Arabidopsis* stems (Shigeyama et al., 2016). The measurements of instant
328 extension and linear extension during constant stretching are used to calculate the E_0
329 and η_N parameters, respectively. In our study, the root segments were immersed in pH
330 buffers without any force being imposed on them. Therefore, the changes in E_0 that
331 we observed may relate to cell-wall softness (Fig. 4B, Fig. 5A). The η_N parameter, in
332 contrast, reflects the linear extension of cell walls under the constant stretching, which
333 relates to cell-wall creep.

334

335 ***Salinity stress altered cell-wall susceptibility to exogenous expansins, which was***
336 ***related to cell-wall composition***

337 Drought stress does not change the susceptibility of root cell walls to exogenous
338 expansin in wheat (Zhao et al., 2011). Interestingly, at pH 5.0, the expansin extracted
339 from JS-7 80 mM induced the highest root cell-wall η_N extensibility in YL-15 80 mM
340 roots, whereas that from YL-15 0 mM induced the lowest extensibility in YL-15 0
341 mM roots (Fig. 5 C, D). This indicates that salinity stress alters cell-wall susceptibility

342 to exogenous expansin in YL-15. Changes in cell-wall susceptibility to salinity stress
343 are related to cell-wall structure and composition. Salinity stress alters cell-wall
344 structure, resulting in a stiff and mesh-like network, suggesting an increase in
345 cellulose-xyloglucan conjuncions (Koyro, 1997). The increased xyloglucan then
346 strengthens the linkages between cellulose molecules; this process reduced the growth
347 rate in coffee (*Coffea arabica*) leaf cells under salinity stress (De Lima et al., 2014).
348 Thus, changes in cell-wall susceptibility to expansins may be closely related to
349 changes in cell-wall composition. Further research on changes in cell-wall properties
350 under salinity stress is necessary to elucidate cell-wall susceptibility to expansins.

351

352 **Conclusions**

353 Our analyses reveal that apoplastic acidification of apical roots in response to
354 salinity stress stiffens the cell-walls and inhibits root growth in the salt-sensitive
355 wheat cultivar. However, under salinity stress, elevated *TaEXPA7* and *TaEXPA8*
356 expression mitigates cell-wall stiffness and enhances root growth in the salt-tolerant
357 cultivar, via apoplastic acidification.

358

359 **Materials and Methods**

360 *Cultivation of wheat seedlings*

361 We used two spring wheat cultivars, Yongliang-15 (YL-15) and JS-7, that differ
362 in salinity tolerance (Supplemental Fig. S1). Seeds of the two cultivars were surface
363 sterilized in 70% ethanol for 5 min, then soaked in distilled water overnight. Twenty
364 seeds were placed in a line on a sheet of filter paper, which was then placed in a 24 ×
365 34 cm Ziploc bag and wetted with 50 ml distilled water. The seeds sprouted in growth
366 chambers (MLR-350 HT, SANYO, Moriguchi, Japan) at 28 °C. Starting two days

367 later, when the roots reached ca. 1.5 cm, 1/12 strength Hoagland solution, containing
368 various treatments, was applied to the roots every 2 d. Light was provided at 2000 lx
369 (16 h light / 8 h dark), and the chamber temperature was constant at 25 °C.

370

371 ***Apoplastic pH***

372 We used HPTS to investigate apoplastic pH in the elongation and mature zones at
373 a cellular resolution. HPTS, an extracellular pH indicator, has low toxicity because it
374 does not penetrate the cell membrane (Han and Burgess, 2010); it has been used to
375 assess cell-wall apoplastic pH in *Arabidopsis* roots and petals (Barbez et al., 2017;
376 Dang et al., 2020).

377 For imaging analysis of apoplastic pH in the root elongation zone, 50 ml of 0 mM
378 or 80 mM NaCl solution (1/12 Hoagland solution, pH 6.5), supplemented with 1 mM
379 HPTS, were applied to the two-day-old seedlings. After irrigating the plants with the
380 salt treatments containing HPTS, sin-days-old root of plants were sandwiched
381 between a cover glass and a 35-mm petri dish (with a 20 mm micro-well; Matsunami
382 Glass, Osaka, Japan). Root imaging was performed using a confocal laser scan
383 microscope (FV10-ASW; Olympus, Tokyo, Japan). Fluorescence signals for the
384 protonated HPTS (excitation at 405 nm) and deprotonated HPTS (excitation at 473
385 nm) were detected using a 60× oil-immersion objective lens. The ratiometric image
386 was obtained by dividing the signal intensity of the 473-nm channel by that of the
387 405-nm channel, for each pixel. For calibrating the HPTS dye, we stained the wheat
388 roots in medium of a given pH between 4.0 and 7.0, supplemented with 1 mM HPTS,
389 for 30 min. A best-fitting regression method was used to plot the calibration curve.
390 Image analysis was performed using Fiji software (<https://fiji.sc/>) and a customized
391 macro script (Barbez et al. 2017), with a slight modification (Supplemental Dataset
392 S1). The experiments were performed using at least six biological replicates.

393

394 ***Expansin extraction***

395 Expansin extraction was performed following Harrison et al. (2001), with a slight
396 modification. Roots (20 g) were homogenized in a blender with liquid nitrogen, and
397 macerated further with 100 ml of extraction buffer (comprising 10 mM 3-[N-
398 morpholino] propanesulphonic acid (MOPS)–NaOH buffer at pH 7.0, 0.5% (w/v)
399 cetyl trimethylammonium bromide, and 30% (w/v) glycerol), until the mixture
400 reached ambient temperature (24 °C). The extraction buffer was then collected and
401 filtered through Miracloth (Merck Millipore, MA, US). Three volumes of precooled
402 acetone were added to the extract, which was then incubated at –20 °C overnight. The
403 mixture was centrifuged at 5 000 ×g for 10 min at 4 °C, the supernatant was discarded,
404 and the protein pellet washed once with three volumes of acetone (–20 °C) before
405 freeze-drying. The dried pellets were stored at –20 °C. Protein was assayed using the
406 Bradford method, using a commercial kit (TaKaRa, Shiga, Japan). Before applying to
407 the root segments, each expansin pellet was diluted to 100 µg/ml.

408

409 ***Root extensibility***

410 As the root extensibility experiments and expansin extraction required many roots
411 (more than 1 000), we extended the experimental period to collect enough samples.
412 Roots tips of ten-day-old seedlings grown in 0 mM or 80 mM NaCl solutions (1/12
413 Hoagland solution, pH 6.5) were used to measure changes in cell-wall extensibility, at
414 various buffer-pH values and expansin concentrations. Root-tip extensibility was
415 determined following a method developed by Tanimoto et al. (2000). The root
416 extensibility experiments had two parts: Experiment I assessed changes in the
417 cell-wall extensibility of root segments at pH ranging from 3.0 to 6.0; Experiment II
418 assessed the effects of exogenous expansin on cell-wall extensibility using buffer at
419 pH 5.0 or pH 6.0.

420 In experiment I, root segments of 10 mm from the root tip were prepared by
421 placing them in boiling methanol (80 °C) for 3 min, according to McQueen-Mason et
422 al. (1992). Methanol-boiling treatment denatures the cells but partly preserves

423 expansin activity, whereas water-boiling denatures all expansins (McQueen-Mason et
424 al., 1992). Before the cell-wall extensibility measurement, the methanol-boiled root
425 segments were hydrated with distilled water at ambient temperature (24 °C) for 15
426 min, then incubated in citrate-phosphate buffer, with pH ranging from 3.0 to 6.0, for
427 more than 30 min under ambient temperature (24 °C). In experiment II, the root tips
428 were boiled in water, to entirely inactive the expansin. To obtain the exogenous
429 expansin for the later experiments, four sets of expansin samples were extracted, one
430 from each cultivar grown under each salinity treatment. After being hydrated with
431 distilled water, the water-boiled root segments were incubated with exogenous
432 expansin at pH 5.0 or 6.0 for more than 30 min.

433 After being treated with various pH buffers or exogenous expansin concentrations,
434 we measured the extensibility parameters—the elasticity modulus (E_0) and viscosity
435 coefficient (η_N)—of the root specimens under a constant tensile force. Before the root
436 specimen was mounted between clips, the diameter of the root at ca. 5 mm from root
437 tip was measured using a microscope (Vitiny UM12, Taiwan, China; Supplemental
438 Fig. S3A). The extensibility of the root region between 3–8 mm from the root tip
439 measured using a creep meter (Yamaden RE2-33005C, Tokyo, Japan). A tensile force
440 of 0.05 N was found to be optimal for obtaining the typical extensibility curve, based
441 on a previous study (Tanimoto et al., 2000) and our preliminary tests. Roots were
442 stretched for 5 min and then released for 5 min. The experiments were performed
443 using at least 19 biological replicates. Details about the root extensibility
444 measurements are reported by Tanimoto et al. (2000).

445

446 ***Expansin expression and Co-expression analysis***

447 To evaluate changes in expansin expression in response to salinity stress, we
448 extracted the total mRNA from the root tips of YL-15 and JS-7 plants treated with 0
449 mM or 80 mM NaCl. We then analyzed the transcripts of selected expansin genes that
450 are highly expressed in wheat root tips, which we selected based on a previous study

451 (Lin et al., 2005).

452 We extracted the mRNA from 60–80 mg of wheat root tips that had been
453 subjected to 0 mM or 80 mM NaCl treatment. mRNA was extracted using a
454 NucleoSpin® RNA kit with rDNase (TaKaRa, Shiga, Japan). cDNA was synthesized
455 using a PrimeScript® RT Reagent Kit (TaKaRa, Shiga, Japan) according to the
456 manufacturer's instructions. Specific primer sequences for the expansin genes were
457 designed using the Triticeae Multi-omics Center primer server
458 (<http://202.194.139.32/PrimerServer>; Zhu et al., 2017), and specificity was checked
459 by blasting the sequences against IWGSC RefSeq annotation v1.1 (Appels et al.,
460 2018), shown in (Supplemental Table S1). Actin was used as the reference gene, and
461 we used actin primers from a previous study (Zhu et al., 2016). The qRT-PCR reaction
462 mixture included TB Green® Premix Ex Taq™ II (Takara, Shiga, Japan). The
463 qRT-PCR conditions were as follows: 95 °C for 30 s, followed by 40 cycles of 95 °C
464 for 5 s and 60 °C for 15 s. Three biological replicates were used for each sample. The
465 sequence data were analyzed using the $2^{-\Delta\Delta CT}$ method, according to the Minimum
466 Information for Publication of Quantitative Real-Time PCR Experiments (MIQE)
467 guidelines (Bustin et al., 2009).

468 *TaEXPA5-A, -B, -D* (gene ID: TraesCS3A02G165900, TraesCS3B02G199900,
469 TraesCS3D02G175800), *TaEXPA7-A, -B, -D* (gene ID: TraesCS1A02G212000,
470 TraesCS1B02G225700, TraesCS1D02G215100), and *TaEXPA8-A, -B, -D* (gene ID:
471 TraesCS3A02G187600, TraesCS3B02G217000, TraesCS3D02G191300) were
472 examined using the knowledge network generated by KnetMiner
473 (<http://knetminer.rothamsted.ac.uk>; Hassani-Pak et al., 2020). The expansin network
474 includes both wheat-specific information sources and cross-species information, from
475 *Arabidopsis*. Supplemental Dataset S2 shows how these genes are related to
476 transcription factors and functions. The alluvial diagram, reflecting the relationships
477 between the expansins, their transcription factors, and related functions, was
478 constructed using RAWGraphs (<https://rawgraphs.io/>; Mauri et al., 2017).

479

480 ***RNA-seq expression analysis***

481 We used the publicly available RNA-seq data generated from the bread-wheat
482 cultivars Chinese Spring and Qing Mai 6 to study wheat expansin gene expression
483 (GenBank accession SRP062745; Zhang et al., 2016). The expansin expression data
484 were obtained from the Triticeae Multi-omics Center
485 (<http://202.194.139.32/expression/index.html>). Euclidean-distance cluster analysis of
486 the RNA-seq data was conducted using TBtools (Chen et al., 2020).

487

488 ***Statistical analysis***

489 Statistical tests were performed using IBM Statistics 21 (SPSS Inc., Chicago, IL,
490 USA). Data-distribution normality was analyzed using the Shapiro-Wilk test. E_0 and
491 η_N were normalized via log-transformation. For pairwise comparisons, statistical
492 differences were detected using a Student's *t*-test. For comparing apoplastic pH
493 among the zones, cultivars, and treatments, the fluorescence intensity ratio (the
494 intensity at 473 nm divided by the intensity at 405 nm) data were analyzed using a
495 one-way ANOVA and Duncan's new multiple range test. To detect statistical
496 differences between the groups, in terms of root segments, expansin expression, and
497 pH, we used a three-way ANOVA with Bonferroni post-hoc tests. To compare
498 expansin expression between the cultivars, we used Student's *t*-tests and
499 Mann-Whitney tests.

500

501 **Responsibility**

502 The author responsible for contact and ensuring the distribution of materials integral
503 to the findings presented in this article in accordance with the Journal policy
504 described in the Instructions for Authors (<http://www.plantphysiol.org>) is Ping An
505 (An.ping@tottori-u.ac.jp).

506

507 **Supplemental data**

508 **Supplemental Figure S1.** Comparison of wheat cultivars Yongliang-15 (YL-15,
509 salinity-sensitive) and JS-7 (salinity-tolerant) under the control (0 mM NaCl) and
510 salinity stress (100 mM for the pot experiment, and 80 mM for the paper experiment).

511 **Supplemental Figure S2.** Wheat root thickness, measured under the 0 mM and 80
512 mM NaCl treatments.

513 **Supplemental Figure S3.** Apoplastic pH in the elongation zone of two wheat
514 cultivars under 0 mM and 80 mM NaCl treatments, after the seedlings were soaked in
515 HPTS solution for 30 min.

516 **Supplemental Figure S4.** The wheat genes, transcription factors, and functions
517 associated with *TaEXPA5*, *TaEXPA7*, *TaEXPA8*.

518 **Supplemental Figure S5.** Temporal expression analysis of wheat expansin genes in
519 two bread-wheat cultivars (Chinese spring and Qing Mai 6) roots under NaCl stress.

520 **Supplemental Table S1.** Primers used for qRT-PCR of wheat expansins.

521 **Supplemental Dataset S1.** Fiji script for ratiometric image conversion.

522 **Supplemental Dataset S2.** Transcription factors and functions associated with
523 *TaEXPA5*, *TaEXPA7* and *TaEXPA8*.

524 **Acknowledgments**

525 The authors are grateful to Mr. Michael Itam of ALRC, Tottori University, Japan,
526 and Dr. Jinghao Zhao of the Rice Research Institute, Sichuan Agricultural University,
527 China, for their helpful advice and discussion.

528

529

530

531 **Table 1.** Three-way ANOVA of the effects of root segment, expansin, and buffer pH
532 on the cell-wall elasticity parameter (E_0) and extensibility coefficient (η_N). After
533 immersion in exogenous expansin at pH 5.0 or 6.0 for 30 min, the root segments (3–8
534 mm from the root tip), of plants that had been subjected to 0 mM and 80 mM NaCl
535 treatments, were stretched under 0.05 N tensile force. The exogenous expansins were
536 extracted from the JS-7 and YL-15 wheat cultivars under 0 mM and 80 mM NaCl
537 treatments.

Dependent Variable: E_0				
Source	df	F-value	Probability	
Root segment	3	33.500	0.000	
Expansin	3	7.083	0.000	
Buffer pH	1	1.772	0.184	
Root segment * Expansin	9	3.041	0.001	
Root segment * Buffer pH	3	0.277	0.842	
Expansin * Buffer pH	3	5.778	0.001	
Root segment * Expansin * Buffer pH	9	1.253	0.260	

538

Dependent Variable: η_N				
Source	df	F-value	Probability	
Root segment	3	25.897	0.000	
Expansin	3	4.951	0.002	
Buffer pH	1	0.003	0.953	
Root segment * Expansin	9	2.089	0.029	
Root segment * Buffer pH	3	0.976	0.404	
Expansin * Buffer pH	3	2.196	0.088	
Root segment * Expansin * Buffer pH	9	1.089	0.369	

539

540

541 **Figure legends**

542 **Figure 1. Root-growth rate and total length of the Yongliang-15 (YL-15) and JS-7**
543 **wheat cultivars, under the control and salinity-stress treatments.**

544 (A) Root-growth rate of YL-15 and JS-7 under seven-day 0 mM and 80 mM NaCl
545 treatments. Growth rate was recorded daily. (B) Total root length of YL-15 and JS-7
546 under seven-day 0 mM and 80 mM treatments. The data are the mean \pm SE (n :
547 37–51).

548

549 **Figure 2. HPTS staining of wheat apical roots, and HPTS calibration.**

550 (A) HPTS staining of root cells. (Left) Protonated (acidic) version of HPTS (λ_{ex} 405
551 nm; λ_{em} 514 nm). (Middle) Deprotonated (basic) version of HPTS (λ_{ex} 473 nm; λ_{em}
552 514 nm). (Right) Ratiometric image: for each pixel, the 473 intensity is divided by the
553 405 intensity. (B) HPTS calibration. Apoplastic epidermal root-meristem 473/405
554 values, of seedlings incubated for 30 min in citrate-phosphate buffer, pH 4.2–7.0. (C)
555 Regression analysis-derived equation enabling calculation of apoplastic pH from the
556 obtained 473/405 values. (D) HPTS-stained root tip of six-day-old seedling under 0
557 mM and 80 mM NaCl treatments. The color key shows the 475/405 intensity ratio.
558 Scale bars: 20 μ m (A) and 50 μ m (B).

559

560 **Figure 3. Apoplastic pH in the root elongation and mature zone of Yongliang-15**
561 **(YL-15) and JS-7 wheat cultivars, under 0 mM and 80 mM NaCl treatments.**

562 (A) HPTS staining of root cells in the elongation (left) and mature (right) zones under
563 0 mM (top) and 80 (bottom) mM treatments, respectively. The color key indicates pH.
564 Scale bars: 20 μ m. (B) Analysis of apoplastic pH in elongation (left) under 0 mM
565 (green bars) and 80 mM (orange bars) NaCl treatments. (C) Analysis of apoplastic pH
566 in the elongation (left) and mature (right) zones under 0 (green bars) and 80 mM

567 (orange bars) NaCl treatments. The data are the mean \pm SE (n : 6–9 roots per data
568 point). The different lowercase letters above the bars identify groups that differ
569 significantly ($P < 0.05$).

570

571 **Figure 4. Cell-wall elasticity parameter (E_0) and creep coefficient (η_N) in the**
572 **apical roots of Yongliang-15 (YL-15) and JS-7 wheat cultivars, under the 0 mM**
573 **and 80 mM NaCl treatments.**

574 E_0 (A) and η_N (B) of the cell-wall in the root tips (3–8 mm from root tip) of the two
575 wheat cultivars, at pH 3.0–6.0. The root tips were collected after 10-day 0 mM (left)
576 and 80 (right) mM NaCl treatments. The data are the mean \pm SE (n : 19–34). Asterisks
577 indicate a significant difference between the wheat cultivars (** $P < 0.01$, *** $P <$
578 0.001).

579

580 **Figure 5. Effects of exogenous expansins on cell-wall elasticity (E_0) and creep (η_N)**
581 **in the root tips of two wheat cultivars, Yongliang-15 (YL-15) and JS-7.**

582 E_0 (A) and η_N (B) of apical roots treated with four sets of expansin samples in pH 5.0
583 or pH 6.0 buffer. The data are the mean \pm SE (n = 69–79). Expansins were extracted
584 from the Yongliang-15 (YL-15) and JS-7 cultivars under the 0 mM and 80 mM NaCl
585 treatments. The different lowercase letters above the bars identify groups that differ
586 significantly ($P < 0.05$). Heatmap of the E_0 modulus (C) and η_N coefficient (D) of root
587 cell walls treated with the four sets of expansin samples, at pH 5.0 and pH 6.0.
588 Euclidean-distance cluster analysis of the E_0 and η_N data was conducted using
589 TBtools.

590

591 **Figure 6. Expression profiling of expansins in wheat roots under 80 mM NaCl**
592 **stress.**

593 The relative expression levels reflect expansin expression under the 80 mM treatment
594 relative to that under 0 mM treatment, in the Yongliang-15 (YL-15) and JS-7 cultivars.

595 Error bars: SEs of three biological replicates. Statistically significant differences
596 between YL-15 and JS-7 were calculated based on Student's *t*-tests: ** $P < 0.01$

597

598 **Figure 7. Schematic of the mechanism for mitigating root-growth inhibition**
599 **under salinity stress in the salt-tolerant wheat cultivar, JS-7.**

600 Long-term salinity stress triggers apoplastic acidification in the root elongation zone
601 in both JS-7 and YL-15, the salt-sensitive cultivar. In the salt-tolerant cultivar, Na^+
602 triggers elevated *TaEXPA7* and *TaEXPA8* expression, which contributes to cell-wall
603 loosening in the acidified apoplast. This cultivar can thereby maintain a higher
604 root-growth rate under salinity stress than the salt-sensitive cultivar.

605

606

607 **References**

608 **Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, et al** (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. *Science* **361**. doi: 10.1126/science.aar7191

612 **Barbez E, Dünser K, Gaidora A, Lendl T, Busch W** (2017) Auxin steers root cell expansion via apoplastic pH regulation in *Arabidopsis thaliana*. *Proc Natl Acad Sci USA* **114**: E4884–E4893

615 **Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al** (2009) The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. *Clin Chem* **55**: 611–622

619 **Byrt CS, Munns R, Burton RA, Gillham M, Wege S** (2018) Root cell wall solutions for crop plants in saline soils. *Plant Sci* **269**: 47–55

621 **Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R** (2020) TBtools - an integrative toolkit developed for interactive analyses of big biological data. *Mol Plant* **13**: 1194-1202

624 **Chen Y, Han Y, Kong X, Kang H, Ren Y, Wang W** (2017) Ectopic expression of wheat expansin gene *TaEXP2* improved the salt tolerance of transgenic tobacco by regulating Na^+/K^+ and antioxidant competence. *Physiol Plant* **159**: 161–177

627 **Cosgrove DJ** (2018) Diffuse growth of plant cell walls. *Plant Physiol* **176**: 16–27

628 **Dang X, Chen B, Liu F, Ren H, Liu X, Zhou J, Qin Y, Lin D** (2020) Auxin signaling-mediated apoplastic pH modification functions in petal conical cell shaping. *Cell Rep* **30**: 3904-3916.e3

631 **De Lima RB, Dos Santos TB, Vieira LGE, De Lourdes Lúcio Ferrarese M, Ferrarese-Filho O, Donatti L, Boeger MRT, De Oliveira Petkowicz CL** (2014)

633 Salt stress alters the cell wall polysaccharides and anatomy of coffee (*Coffea*
634 *arabica* L.) leaf cells. *Carbohydr Polym* **112**: 686–694

635 **Felle HH, Hanstein S** (2002) The apoplastic pH of the substomatal cavity of *Vicia*
636 *faba* leaves and its regulation responding to different stress factors. *J Exp Bot* **53**:
637 73–82

638 **Felle HH, Herrmann A, Hückelhoven R, Kogel KH** (2005) Root-to-shoot
639 signalling: Apoplastic alkalinization, a general stress response and defence factor
640 in barley (*Hordeum vulgare*). *Protoplasma* **227**: 17–24

641 **Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman**
642 **J, Steinhorst L, Schmitz-Thom I, et al** (2018) The FERONIA receptor kinase
643 maintains cell-wall integrity during salt stress through Ca^{2+} Signaling. *Curr Biol*
644 **28**: 666-675.e5

645 **Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C** (2004) Self-reporting
646 Arabidopsis expressing pH and $[\text{Ca}^{2+}]$ indicators unveil ion dynamics in the
647 cytoplasm and in the apoplast under abiotic stress. *Plant Physiol* **134**: 898–908

648 **Gao Q, Zhao M, Li F, Guo Q, Xing S, Wang W** (2008) Expansins and coleoptile
649 elongation in wheat. *Protoplasma* **233**: 73–81

650 **Geilfus CM, Mithöfer A, Ludwig-Müller J, Zörb C, Muehling KH** (2015)
651 Chloride-inducible transient apoplastic alkalinizations induce stomata closure by
652 controlling abscisic acid distribution between leaf apoplast and guard cells in
653 salt-stressed *Vicia faba*. *New Phytol* **208**: 803–816

654 **Geilfus CM** (2017) The pH of the apoplast: Dynamic factor with functional impact
655 under stress. *Mol Plant* **10**: 1371–1386

656 **Geilfus CM, Mühling KH** (2012) Transient alkalinization in the leaf apoplast of
657 *Vicia faba* L. depends on NaCl stress intensity: an in situ ratio imaging study.
658 *Plant, Cell Environ* **35**: 578–587

659 **Geilfus CM, Tenhaken R, Carpentier SC** (2017) Transient alkalinization of the leaf
660 apoplast stiffens the cell wall during onset of chloride salinity in corn leaves. *J*

661 Biol Chem **292**: 18800–18813

662 **Han J, Burgess K** (2010) Fluorescent indicators for intracellular pH. Chem Rev **110**:
663 2709–2728

664 **Han Y yang, Li A xiu, Li F, Zhao M rong, Wang W** (2012) Characterization of a
665 wheat (*Triticum aestivum* L.) expansin gene, *TaEXPB23*, involved in the abiotic
666 stress response and phytohormone regulation. Plant Physiol Biochem **54**: 49–58

667 **Han Z, Liu Y, Deng X, Liu D, Liu Y, Hu Y, Yan Y** (2019) Genome-wide
668 identification and expression analysis of expansin gene family in common wheat
669 (*Triticum aestivum* L.). BMC Genomics **20**: 101

670 **Harrison EP, McQueen-Mason SJ, Manning K** (2001) Expression of six expansin
671 genes in relation to extension activity in developing strawberry fruit. J Exp Bot
672 **52**: 1437–1446

673 **Hassani-Pak K, Singh A, Brandizi M, Hearnshaw J, Amberkar S, Phillips AL,**
674 **Doonan JH, Rawlings C** (2020) KnetMiner: a comprehensive approach for
675 supporting evidence-based gene discovery and complex trait analysis across
676 species. bioRxiv 2020.04.02.017004

677 **Koyro H-W** (1997) Ultrastructural and physiological changes in root cells of
678 sorghum plants (*Sorghum bicolor* x *S. sudanensis* cv. Sweet Sioux) induced by
679 NaCl. J Exp Bot **48**: 693–706

680 **Lin Z, Ni Z, Zhang Y, Yao Y, Wu H, Sun Q** (2005) Isolation and characterization of
681 18 genes encoding α - and β -expansins in wheat (*Triticum aestivum* L.). Mol
682 Genet Genomics **274**: 548–556

683 **Ma JF, Shen R, Nagao S, Tanimoto E** (2004) Aluminum targets elongating cells by
684 reducing cell wall extensibility in wheat roots. Plant Cell Physiol **45**: 583–589

685 **Mauri M, Elli T, Caviglia G, Ubaldi G, Azzi M** (2017) RAWGraphs: A visualisation
686 platform to create open outputs. ACM Int. Conf. Proceeding Ser. Association for
687 Computing Machinery, New York, USA, pp 1–5

688 **McQueen-Mason S, Durachko DM, Cosgrove DJ** (1992) Two endogenous proteins

689 that induce cell wall extension in plants. *Plant Cell* **4**: 1425–1433

690 **Munns R, Passioura JB, Colmer TD, Byrt CS** (2020) Osmotic adjustment and
691 energy limitations to plant growth in saline soil. *New Phytol* **225**: 1091–1096

692 **Pacifici E, Di Mambro R, Dello Ioio R, Costantino P, Sabatini S** (2018) Acidic cell
693 elongation drives cell differentiation in the *Arabidopsis* root. *EMBO J.* doi:
694 10.15252/embj.201899134

695 **Park YB, Cosgrove DJ** (2012) Changes in cell wall biomechanical properties in the
696 xyloglucan-deficient *xtt1/xtt2* mutant of *Arabidopsis*. *Plant Physiol* **158**:
697 465–475

698 **Peng LN, Xu YQ, Wang X, Feng X, Zhao QQ, Feng SS, Zhao ZY, Hu BZ, Li FL**
699 (2019) Overexpression of paralogues of the wheat expansin gene *TaEXPAs*
700 improves low-temperature tolerance in *Arabidopsis*. *Plant Biol* **21**: 1119–1131

701 **Pritchard J, Tomos AD, Wyn Jones RG** (1987) Control of wheat root elongation
702 growth: I. Effects of ions on growth rate, wall rheology and cell water relations. *J
703 Exp Bot* **38**: 948–959

704 **Rayle DL, Cleland RE** (1992) The acid growth theory of auxin-induced cell
705 elongation is alive and well. *Plant Physiol* **99**: 1271–1274

706 **Samalova M, Elsayad K, Melnikava A, Peaucelle A, Gahurova E, Gumulec J,
707 Spyroglou I, Zemlyanskaya E V, Ubogoeva E V, Hejatko J** (2020)
708 Expansin-controlled cell wall stiffness regulates root growth in *Arabidopsis*.
709 bioRxiv 2020.06.25.170969

710 **Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, Kawakami
711 N** (2016) α -Xylosidase plays essential roles in xyloglucan remodelling,
712 maintenance of cell wall integrity, and seed germination in *Arabidopsis thaliana*.
713 *J Exp Bot* **67**: 5615–5629

714 **Tanimoto E, Fujii S, Yamamoto R, Inanaga S** (2000) Measurement of viscoelastic
715 properties of root cell walls affected by low pH in lateral roots of *Pisum sativum*
716 L. *Plant Soil* **226**: 21–28

717 **Wu Y, Cosgrove DJ** (2000) Adaptation of roots to low water potentials by changes in
718 cell wall extensibility and cell wall proteins. *J Exp Bot* **51**: 1543–1553

719 **Wu Y, Sharp RE, Durachko DM, Cosgrove DJ** (1996) Growth maintenance of the
720 maize primary root at low water potentials involves increases in cell-wall
721 extension properties, expansin activity, and wall susceptibility to expansins. *Plant*
722 *Physiol* **111**: 765–772

723 **van Zelm E, Zhang Y, Testerink C** (2020) Salt tolerance mechanisms of plants.
724 *Annu Rev Plant Biol* **71**: 403–433

725 **Zhang JF, Xu YQ, Dong JM, Peng LN, Feng X, Wang X, Li F, Miao Y, Yao SK,**
726 **Zhao QQ, et al** (2018) Genome-wide identification of wheat (*Triticum aestivum*)
727 expansins and expansin expression analysis in cold-tolerant and cold-sensitive
728 wheat cultivars. *PLoS One* **13**: e0195138

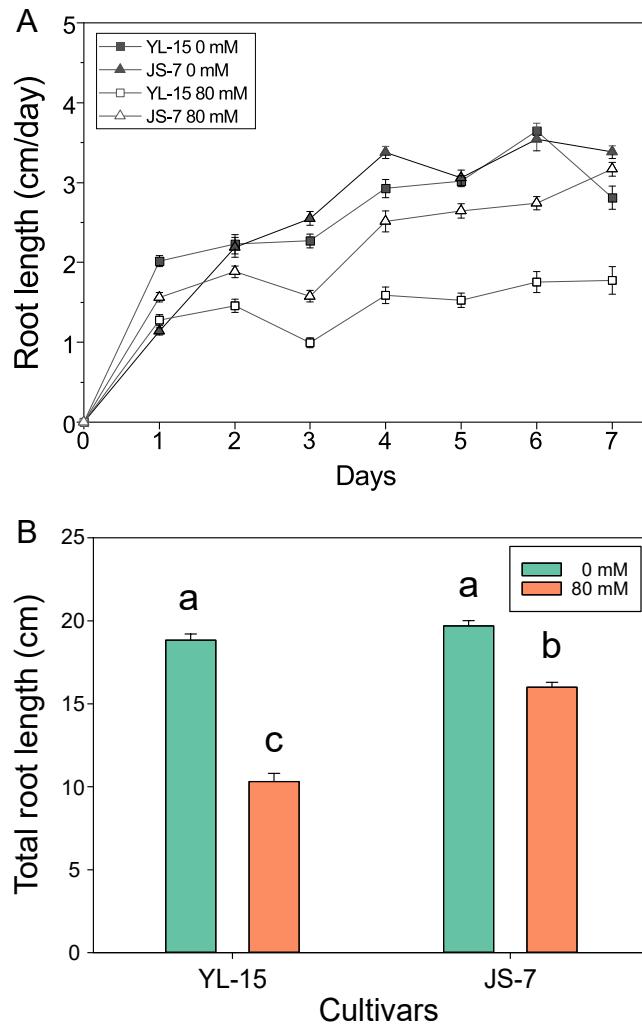
729 **Zhang T, Tang H, Vavylonis D, Cosgrove DJ** (2019) Disentangling loosening from
730 softening: insights into primary cell wall structure. *Plant J* **100**: 1101–1117

731 **Zhang Y, Liu Z, Khan AA, Lin Q, Han Y, Mu P, Liu Y, Zhang H, Li L, Meng X,**
732 **et al** (2016) Expression partitioning of homeologs and tandem duplications
733 contribute to salt tolerance in wheat (*Triticum aestivum* L.). *Sci Rep* **6**: 1–10

734 **Zhao M rong, Han Y yang, Feng Y nan, Li F, Wang W** (2012) Expansins are
735 involved in cell growth mediated by abscisic acid and indole-3-acetic acid under
736 drought stress in wheat. *Plant Cell Rep* **31**: 671–685

737 **Zhao M rong, Li F, Fang Y, Gao Q, Wang W** (2011) Expansin-regulated cell
738 elongation is involved in the drought tolerance in wheat. *Protoplasma* **248**:
739 313–323

740 **Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S** (2016) Nax
741 loci affect SOS1-like Na^+/H^+ exchanger expression and activity in wheat. *J Exp*
742 *Bot* **67**: 835–844

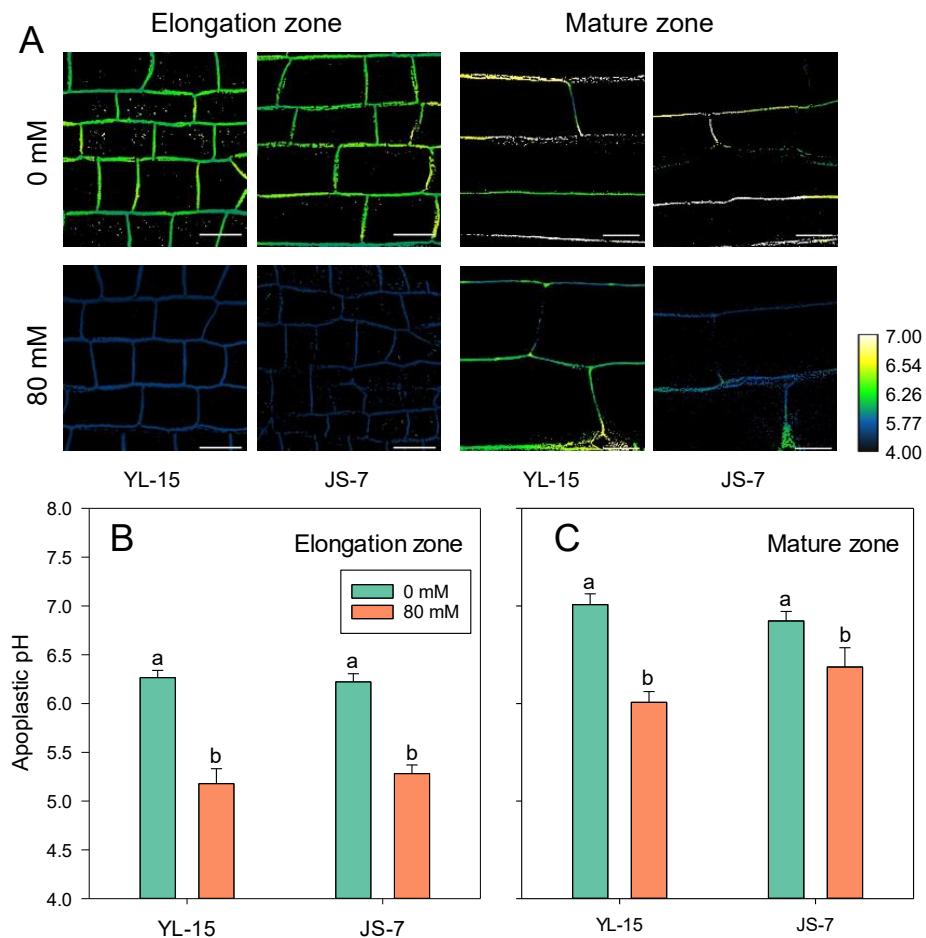

743 **Zhu T, Liang C, Meng Z, Li Y, Wu Y, Guo S, Zhang R** (2017) PrimerServer: a
744 high-throughput primer design and specificity-checking platform. *bioRxiv*

745 181941

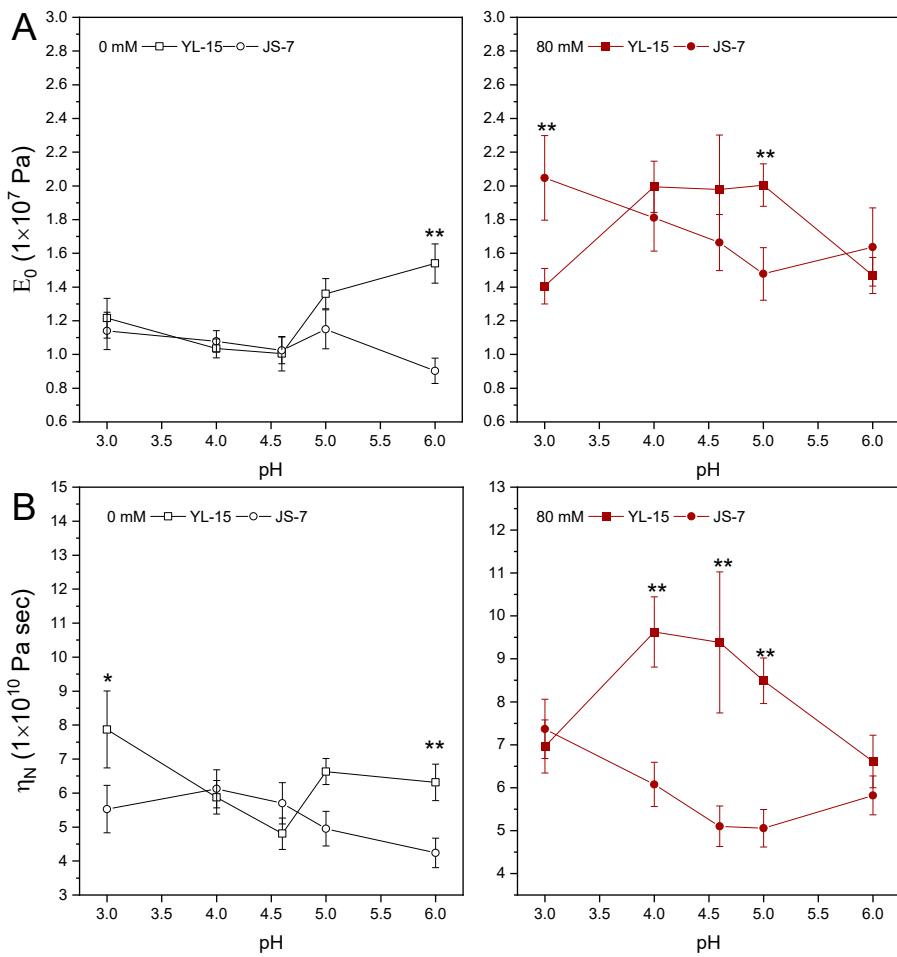
746 **Zidan I, Azaizeh H, Neumann PM** (1990) Does salinity reduce growth in maize root
747 epidermal cells by inhibiting their capacity for cell wall acidification? *Plant
748 Physiol* **93**: 7–11

749 **Zörb C, Mühling KH, Kutschera U, Geilfus CM** (2015) Salinity stiffens the
750 epidermal cell walls of salt-stressed maize leaves: Is the epidermis
751 growth-restricting? *PLoS One* **10**: e0118406

752


Figure 1. Root-growth rate and total length of the Yongliang-15 (YL-15) and JS-7 wheat cultivars, under the control and salinity-stress treatments.

(A) Root-growth rate of YL-15 and JS-7 under seven-day 0 mM and 80 mM NaCl treatments. Growth rate was recorded daily. (B) Total root length of YL-15 and JS-7 under seven-day 0 mM and 80 mM treatments. The data are the mean \pm SE ($n: 37-51$).


Figure 2. HPTS staining of wheat apical roots, and HPTS calibration.

(A) HPTS staining of root cells. (Left) Protonated (acidic) version of HPTS ($\lambda_{\text{ex}} 405 \text{ nm}$; $\lambda_{\text{em}} 514 \text{ nm}$). (Middle) Deprotonated (basic) version of HPTS ($\lambda_{\text{ex}} 473 \text{ nm}$; $\lambda_{\text{em}} 514 \text{ nm}$). (Right) Ratiometric image: for each pixel, the 473 intensity is divided by the 405 intensity. (B) HPTS calibration. Apoplastic epidermal root-meristem 473/405 values, of seedlings incubated for 30 min in citrate-phosphate buffer, pH 4.2–7.0. (C) Regression analysis-derived equation enabling calculation of apoplastic pH from the obtained 473/405 values. (D) HPTS-stained root tip of six-day-old seedling under 0 mM and 80 mM NaCl treatments. The color key shows the 473/405 intensity ratio. Scale bars: 20 μm (A) and 50 μm (B).

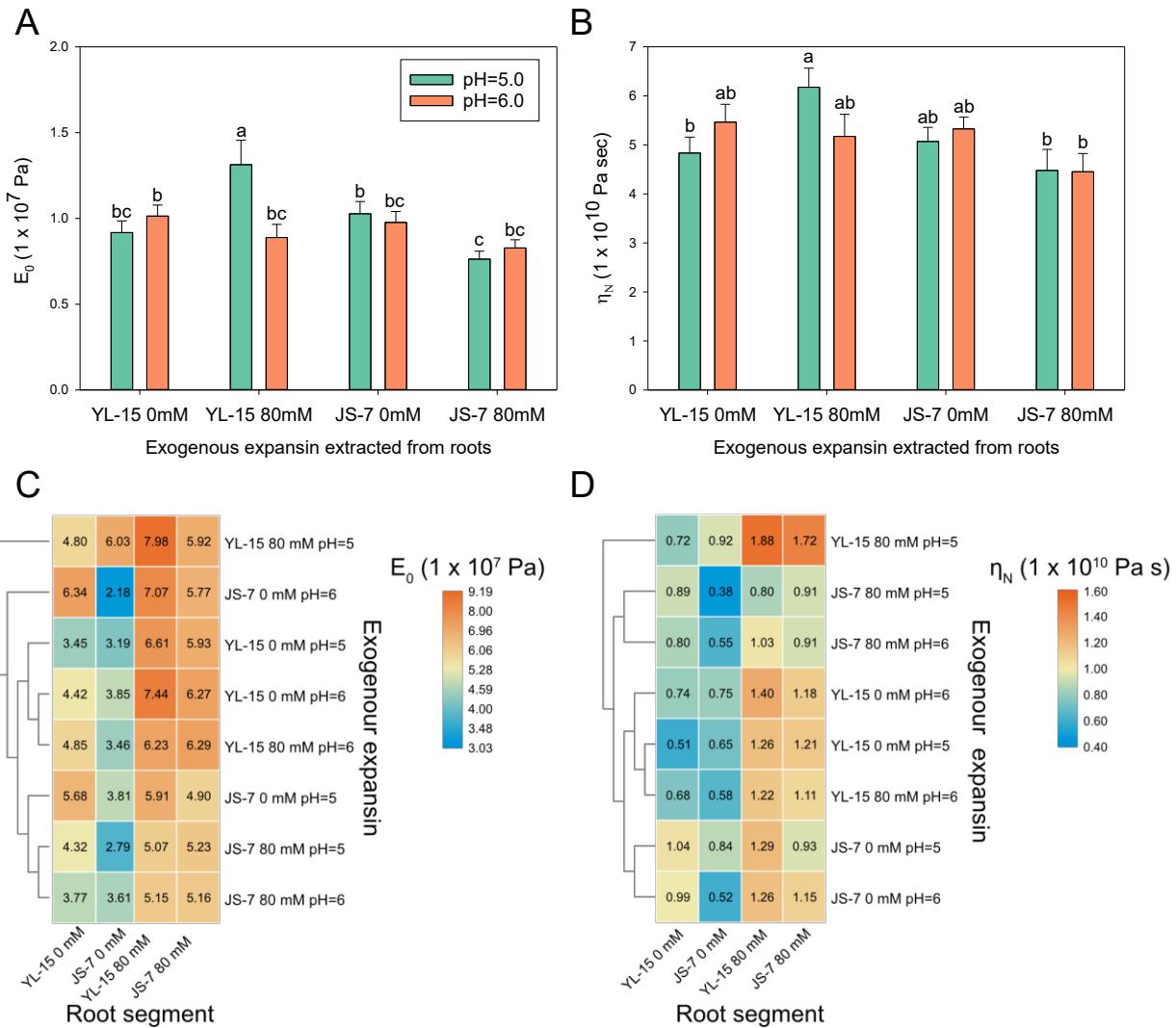


Figure 3. Apoplastic pH in the root elongation and mature zone of Yongliang-15 (YL-15) and JS-7 wheat cultivars, under 0 mM and 80 mM NaCl treatments.

(A) HPTS staining of root cells in the elongation (left) and mature (right) zones under 0 mM (top) and 80 (bottom) mM treatments, respectively. The color key indicates pH. Scale bars: 20 μ m. (B) Analysis of apoplastic pH in elongation (left) under 0 mM (green bars) and 80 mM (orange bars) NaCl treatments. (C) Analysis of apoplastic pH in the elongation (left) and mature (right) zones under 0 (green bars) and 80 mM (orange bars) NaCl treatments. The data are the mean \pm SE (n : 6–9 roots per data point). The different lowercase letters above the bars identify groups that differ significantly ($P < 0.05$).

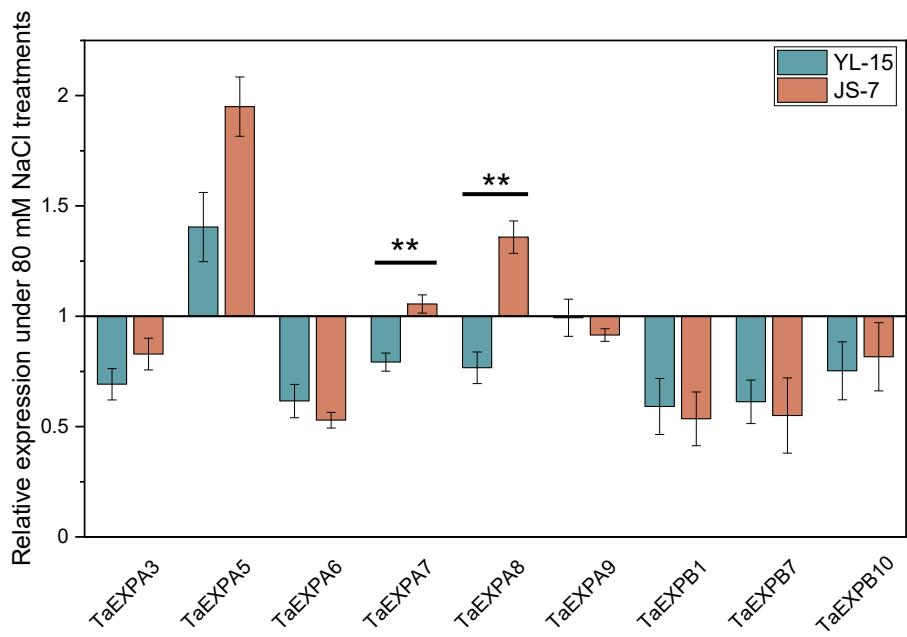
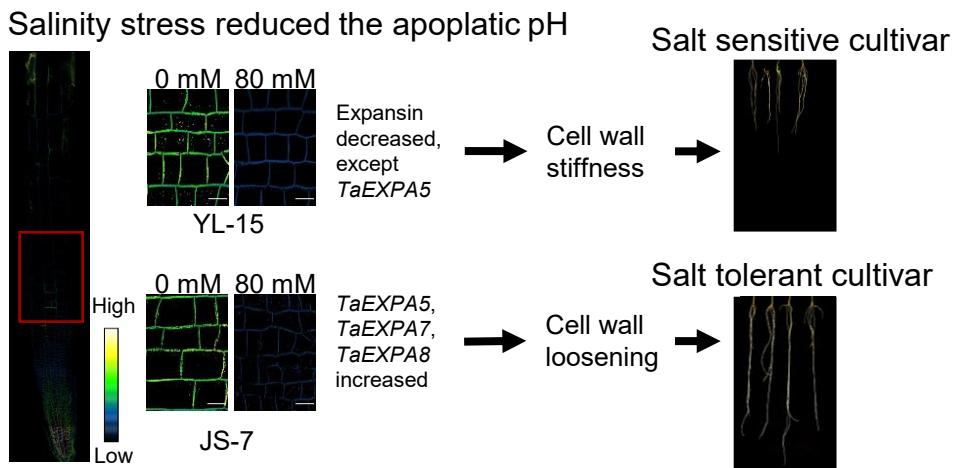


Figure 4. Cell-wall elasticity parameter (E_0) and creep coefficient (η_N) in the apical roots of Yongliang-15 (YL-15) and JS-7 wheat cultivars, under the 0 mM and 80 mM NaCl treatments. E_0 (A) and η_N (B) of the cell-wall in the root tips (3–8 mm from root tip) of the two wheat cultivars, at pH 3.0–6.0. The root tips were collected after 10-day 0 mM (left) and 80 (right) mM NaCl treatments. The data are the mean \pm SE (n : 19–34). Asterisks indicate a significant difference between the wheat cultivars (** P < 0.01, *** P < 0.001).


Figure 5. Effects of exogenous expansins on cell-wall elasticity (E_0) and creep (η_N) in the root tips of two wheat cultivars, Yongliang-15 (YL-15) and JS-7.

E_0 (A) and η_N (B) of apical roots treated with four sets of expansin samples in pH 5.0 or pH 6.0 buffer. The data are the mean \pm SE ($n = 69$ –79). Expansins were extracted from the Yongliang-15 (YL-15) and JS-7 cultivars under the 0 mM and 80 mM NaCl treatments. The different lowercase letters above the bars identify groups that differ significantly ($P < 0.05$). Heatmap of the E_0 modulus (C) and η_N coefficient (D) of root cell walls treated with the four sets of expansin samples, at pH 5.0 and pH 6.0. Euclidean-distance cluster analysis of the E_0 and η_N data was conducted using TBtools.

Figure 6. Expression profiling of expansins in wheat roots under 80 mM NaCl stress.

The relative expression levels reflect expansin expression under the 80 mM treatment relative to that under 0 mM treatment, in the Yongliang-15 (YL-15) and JS-7 cultivars. Error bars: SEs of three biological replicates. Statistically significant differences between YL-15 and JS-7 were calculated based on Student's *t*-tests: ** $P < 0.01$

Figure 7. Schematic of the mechanism for mitigating root-growth inhibition under salinity stress in the salt-tolerant wheat cultivar, JS-7.

Long-term salinity stress triggers apoplastic acidification in the root elongation zone in both JS-7 and YL-15, the salt-sensitive cultivar. In the salt-tolerant cultivar, Na^+ triggers elevated *TaEXP47* and *TaEXP48* expression, which contributes to cell-wall loosening in the acidified apoplast. This cultivar can thereby maintain a higher root-growth rate under salinity stress than the salt-sensitive cultivar.

Parsed Citations

Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. *Science* 361. doi: 10.1126/science.aar7191
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barbez E, Dünser K, Gaidora A, Lendl T, Busch W (2017) Auxin steers root cell expansion via apoplastic pH regulation in *Arabidopsis thaliana*. *Proc Natl Acad Sci USA* 114: E4884–E4893
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al (2009) The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. *Clin Chem* 55: 611–622
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Byrt CS, Munns R, Burton RA, Gillham M, Wege S (2018) Root cell wall solutions for crop plants in saline soils. *Plant Sci* 269: 47–55
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools - an integrative toolkit developed for interactive analyses of big biological data. *Mol Plant* 13: 1194–1202
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen Y, Han Y, Kong X, Kang H, Ren Y, Wang W (2017) Ectopic expression of wheat expansin gene *TaEXPB2* improved the salt tolerance of transgenic tobacco by regulating Na⁺/K⁺ and antioxidant competence. *Physiol Plant* 159: 161–177
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cosgrove DJ (2018) Diffuse growth of plant cell walls. *Plant Physiol* 176: 16–27
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dang X, Chen B, Liu F, Ren H, Liu X, Zhou J, Qin Y, Lin D (2020) Auxin signaling-mediated apoplastic pH modification functions in petal conical cell shaping. *Cell Rep* 30: 3904–3916.e3
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

De Lima RB, Dos Santos TB, Vieira LGE, De Lourdes Lúcio Ferrarese M, Ferrarese-Filho O, Donatti L, Boeger MRT, De Oliveira Petkowicz CL (2014) Salt stress alters the cell wall polysaccharides and anatomy of coffee (*Coffea arabica* L.) leaf cells. *Carbohydr Polym* 112: 686–694
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Felle HH, Hanstein S (2002) The apoplastic pH of the substomatal cavity of *Vicia faba* leaves and its regulation responding to different stress factors. *J Exp Bot* 53: 73–82
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Felle HH, Herrmann A, Hückelhoven R, Kogel KH (2005) Root-to-shoot signalling: Apoplastic alkalinization, a general stress response and defence factor in barley (*Hordeum vulgare*). *Protoplasma* 227: 17–24
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, et al (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca²⁺ Signaling. *Curr Biol* 28: 666–675.e5
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting *Arabidopsis* expressing pH and [Ca²⁺] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. *Plant Physiol* 134: 898–908
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gao Q, Zhao M, Li F, Guo Q, Xing S, Wang W (2008) Expansins and coleoptile elongation in wheat. *Protoplasma* 233: 73–81
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Geilfus CM, Mithöfer A, Ludwig-Müller J, Zörb C, Muehling KH (2015) Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed *Vicia faba*. *New Phytol* 208: 803–816
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Geilfus CM (2017) The pH of the apoplast: Dynamic factor with functional impact under stress. *Mol Plant* 10: 1371–1386
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Geilfus CM, Mühling KH (2012) Transient alkalinization in the leaf apoplast of *Vicia faba* L. depends on NaCl stress intensity: an in situ ratio imaging study. *Plant, Cell Environ* 35: 578–587
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Geilfus CM, Tenhaken R, Carpenter SC (2017) Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves. *J Biol Chem* 292: 18800–18813
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. *Chem Rev* 110: 2709–2728

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Han Y yang, Li Axiu, Li F, Zhao M rong, Wang W (2012) Characterization of a wheat (*Triticum aestivum* L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. *Plant Physiol Biochem* 54: 49–58

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Han Z, Liu Y, Deng X, Liu D, Liu Y, Hu Y, Yan Y (2019) Genome-wide identification and expression analysis of expansin gene family in common wheat (*Triticum aestivum* L.). *BMC Genomics* 20: 101

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Harrison EP, McQueen-Mason SJ, Manning K (2001) Expression of six expansin genes in relation to extension activity in developing strawberry fruit. *J Exp Bot* 52: 1437–1446

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hassani-Pak K, Singh A, Brandizi M, Hearnshaw J, Amberkar S, Phillips AL, Doonan JH, Rawlings C (2020) KnetMiner: a comprehensive approach for supporting evidence-based gene discovery and complex trait analysis across species. *bioRxiv* 2020.04.02.017004

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Koyer H-W (1997) Ultrastructural and physiological changes in root cells of sorghum plants (*Sorghum bicolor* x *S. sudanensis* cv. Sweet Sioux) induced by NaCl. *J Exp Bot* 48: 693–706

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lin Z, Ni Z, Zhang Y, Yao Y, Wu H, Sun Q (2005) Isolation and characterization of 18 genes encoding α - and β -expansins in wheat (*Triticum aestivum* L.). *Mol Genet Genomics* 274: 548–556

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ma JF, Shen R, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. *Plant Cell Physiol* 45: 583–589

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mauri M, Elli T, Caviglia G, Ubaldi G, Azzi M (2017) RAWGraphs: A visualisation platform to create open outputs. *ACM Int. Conf. Proceeding Ser. Association for Computing Machinery*, New York, USA, pp 1–5

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. *Plant Cell* 4: 1425–1433

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Munns R, Passioura JB, Colmer TD, Byrt CS (2020) Osmotic adjustment and energy limitations to plant growth in saline soil. *New Phytol* 225: 1091–1096

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pacifici E, Di Mambro R, Dello Iorio R, Costantino P, Sabatini S (2018) Acidic cell elongation drives cell differentiation in the *Arabidopsis* root. *EMBO J.* doi: 10.15252/embj.201899134

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Park YB, Cosgrove DJ (2012) Changes in cell wall biomechanical properties in the xyloglucan-deficient *xxt1/xxt2* mutant of *Arabidopsis*. *Plant Physiol* 158: 465–475

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Peng LN, Xu YQ, Wang X, Feng X, Zhao QQ, Feng SS, Zhao ZY, Hu BZ, Li FL (2019) Overexpression of paralogues of the wheat expansin gene TaEXPB8 improves low-temperature tolerance in *Arabidopsis*. *Plant Biol* 21: 1119–1131

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pritchard J, Tomos AD, Wyn Jones RG (1987) Control of wheat root elongation growth: I. Effects of ions on growth rate, wall rheology and cell water relations. *J Exp Bot* 38: 948–959

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. *Plant Physiol* 99: 1271–1274

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Samalova M, Elsayad K, Melnikava A, Peaucelle A, Gahurova E, Gumulec J, Spyroglou I, Zemlyanskaya E V, Ubogoeva E V, Hejatkova J (2020) Expansin-controlled cell wall stiffness regulates root growth in *Arabidopsis*. *bioRxiv* 2020.06.25.170969

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, Kawakami N (2016) α -Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in *Arabidopsis thaliana*. *J Exp Bot* 67: 5615–5629

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tanimoto E, Fujii S, Yamamoto R, Inanaga S (2000) Measurement of viscoelastic properties of root cell walls affected by low pH in lateral roots of *Pisum sativum* L. *Plant Soil* 226: 21–28

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu Y, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. *J Exp*

Bot 51: 1543–1553

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu Y, Sharp RE, Durachko DM, Cosgrove DJ (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. *Plant Physiol* 111: 765–772

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. *Annu Rev Plant Biol* 71: 403–433

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang JF, Xu YQ, Dong JM, Peng LN, Feng X, Wang X, Li F, Miao Y, Yao SK, Zhao QQ, et al (2018) Genome-wide identification of wheat (*Triticum aestivum*) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars. *PLoS One* 13: e0195138

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang T, Tang H, Vavylonis D, Cosgrove DJ (2019) Disentangling loosening from softening: insights into primary cell wall structure. *Plant J* 100: 1101–1117

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang Y, Liu Z, Khan AA, Lin Q, Han Y, Mu P, Liu Y, Zhang H, Li L, Meng X, et al (2016) Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (*Triticum aestivum* L.). *Sci Rep* 6: 1–10

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao M rong, Han Y yang, Feng Y nan, Li F, Wang W(2012) Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. *Plant Cell Rep* 31: 671–685

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao M rong, Li F, Fang Y, Gao Q, Wang W(2011) Expansin-regulated cell elongation is involved in the drought tolerance in wheat. *Protoplasma* 248: 313–323

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S (2016) Nax loci affect SOS1-like Na⁺/H⁺ exchanger expression and activity in wheat. *J Exp Bot* 67: 835–844

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhu T, Liang C, Meng Z, Li Y, Wu Y, Guo S, Zhang R (2017) PrimerServer: a high-throughput primer design and specificity-checking platform. *bioRxiv* 181941

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zidan I, Azaizeh H, Neumann PM (1990) Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? *Plant Physiol* 93: 7–11

Zörb C, Mühlung KH, Kutschera U, Geilfus CM (2015) Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: Is the epidermis growth-restricting? *PLoS One* 10: e0118406