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Abstract

Motivation: Gene-gene co-expression networks (GCN) are of biological interest for the useful information
they provide for understanding gene-gene interactions. The advent of single cell RNA-sequencing
allows us to examine more subtle gene co-expression occurring within a cell type. Many imputation
and denoising methods have been developed to deal with the technical challenges observed in single
cell data; meanwhile, several simulators have been developed for benchmarking and assessing these
methods. Most of these simulators, however, either do not incorporate gene co-expression or generate
co-expression in an inconvenient manner.

Results: Therefore, with the focus on gene co-expression, we propose a new simulator, ESCO, which
adopts the idea of the copula to impose gene co-expression, while preserving the highlights of available
simulators, which perform well for simulation of gene expression marginally. Using ESCO, we assess
the performance of imputation methods on GCN recovery and find that imputation generally helps GCN
recovery when the data are not too sparse, and the ensemble imputation method works best among
leading methods. In contrast, imputation fails to help in the presence of an excessive fraction of zero
counts, where simple data aggregating methods are a better choice. These findings are further verified
with mouse and human brain cell data.

Availability: The ESCO implementation is available as R package SplatterESCO
(https://github.com/JINJINT/SplatterESCO).

Contact: roeder@andrew.cmu.edu

1 Introduction disorders (Pang et al., 2020; Polioudakis ef al., 2019; Parikshak ef al.,
2013; Willsey et al., 2013).

Single-cell RNA sequencing (scRNA-seq), a recent breakthrough
technology that paves the way for measuring transcription at single cell
resolution to study precise biological functions, allows us to target gene
co-expression within homogeneous cell groups for the first time. Indeed,
early statistical models argued that genes within homogeneous cell groups
were independent (Quinn et al., 2018). However, they overlooked the
investigations from the biological end, which reveal that correlation arises
due to the stochastic nature of gene expression and gene regulation
dynamics (Raj et al., 2006).

scRNA-seq data present many challenges for co-expression analysis,
due to the sparsity of counts, which include many zeros, mainly arising

A synchronization between gene expression leads to gene co-expression.
Cell heterogeneity, due to cell type or cell cycle, can generate correlations
between genes that are highly expressed in similar cells. Alternatively, any
form of gene cooperation within a cell type, such as gene co-regulation,
also results in co-expression. To differentiate these two settings, we refer
them as the gene co-expression across heterogeneous cell groups and gene
co-expression within homogeneous cell groups respectively, throughout
this article. Understanding gene co-expression in the former setting helps
with cell-type identification, and in the latter setting, it helps detect
gene regulation relationships and can further provide insights into genetic

from low capture and sequencing efficiency in the data collecting process.
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Fig. 1. Gene co-expression is informative, but we lack satisfactory methods to simulate it for scRNA-seq data. A. Connection between gene regulation and gene co-expression. The left
panel shows the regulation relationship between the 19 genes in Gonadal Sex Determination (Rios et al., 2015), while the right panel shows Pearson’s correlation matrix for these 19 genes
with inferred expression (Pratapa et al., 2020). B. Connection between gene co-expression and cell group clusters. The correlation matrix of the 500 most significant marker genes of the five
major cell types from the Zeisel data (Zeisel et al., 2015) with corresponding gene types marked with a color bar on top, clustered using hierarchical clustering. C. The correlation matrix for
200 simulated genes from Splat (Zappia et al., 2017), without zero-inflation. D. The correlation matrix for 200 simulated genes from SymSim (Zappia et al., 2017), without zero-inflation.
The left and right panels show results with and without the cell confounding effect, respectively.

Sparsity occurs in both a gene- and a cell-specific manner and is observed
to have the greatest impact on genes that have low expression. An ever-
growing literature attempts to address these challenges using imputation
and other denoising methods (Chen et al., 2020; Gong et al., 2018; Huang
et al., 2018; Li and Li, 2018; Van Dijk et al., 2018; Eraslan et al., 2019;
Linderman et al., 2018). To systemically benchmark these methods, we
require realistic simulation tools to construct a ground truth for scRNA-seq
data with realistic technical noise; however, currently there is a paucity of
methods for this purpose.

Numerous scRNA-seq simulators using both non-parametric and
parametric approaches have been proposed during recent years, e.g.,
Splat (Zappia et al., 2017), SymSim (Zhang et al., 2019a), PROSSTT
(Papadopoulos et al., 2019), and SERGIO (Dibaeinia and Sinha, 2020).
Each of those methods focuses on producing realistic marginal behavior
of gene expression, and successfully modeling these features, as well as
capturing cell type heterogeneity. But, those simulators either ignore gene
co-expression, or they generate it in a way that is hard to benchmark.
Real data clearly display gene co-expression within homogeneous cell
groups (Fig. 1A) and gene co-expression across heterogeneous cell groups
(Fig. 1B). By contrast, almost all gene pairs show no correlation for
simulated data generated using Splat, even without the challenge of
added technical noise (Fig. 1C). While the data simulated by SymSim
may show a modest level of gene co-expression (Fig. 1D left panel),
that correlation arises from the cell type confounding', rather than true
gene-gene interaction (Fig. 1D right panel).

Here we propose a new simulation tool, Ensemble Single-cell
expression simulator incorporating gene CO-expression, ESCO, which is
constructed as an ensemble of the best features among current simulators

! SymSim generates the gene expression for gene g in cell ¢ via a random
. . iid
product model, that is expression Ygc = AgTe, Where Ag kS F, and

itd e . .
Te & G. Once conditioning on the cell confounder 7, the correlation
between expression of genes g; and g2 disappears.

to preserve the marginal performance, while allowing easily incorporating
co-expression structure among genes using a copula. Particularly, ESCO
allows realistic simulation of a homogeneous cell group, heterogeneous
cell groups, as well as complex cell group relationships such as tree and
trajectory structure, together with a flexible input of co-expression. As
for technical noise, ESCO integrates the parametric and non-parametric
approaches in current literature and gives the user flexibility to choose.
In order to mimic a specific real data set, ESCO can estimate all the
hyperparameters in a feasible way for both a homogeneous cell group
or heterogeneous cell groups. ESCO is implemented in the R package
SplatterESCO, which is built upon the R package Splatter (Zappia
et al., 2017), in order to provide a unified software framework.

2 Methods
2.1 Models

Despite their differences, current simulation approaches arguably follow
a general flowchart (Fig. 2). For example, Splat (Zappia et al., 2017)
simulates scRNA-seq data using a hierarchical model in which the
gamma-Poisson distribution imposes a mean and variance trend; SymSim
(Zhang et al., 2019a) is based on a similar hierarchical model with
gene kinetics guiding the hyperparameter selection, a non-parametric
approach to introduce more realistic noise, and a focus on tree-structured
heterogeneity; PROSSTT (Papadopoulos ez al., 2019) aims to simulate
realistic cell trajectories using a model based on Brownian motion;
SERGIO (Dibaeinia and Sinha, 2020) starts from the gene regulation
relationship and solves a series of stochastic differential equations given
by gene kinetics to impose those regulations. The more complex non-
parametric modeling tends to fit data better than parametric modeling,
given that the aim is to mimic data for which the model has already been
trained. However, this approach is not practical for producing simulated
data similar to a new data set. For example, the non-parametric methods
like SymSim and SERGIO use grid search over a large number of tuning


https://doi.org/10.1101/2020.10.20.347211
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347211; this version posted October 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ESCO 3
A.
( o ) f ) 1 . - )
(a) Extrinsic Variation: Cetype (¢) Intrinsic Variation: v (d) Technical Noise:
© 3
3 1 R, ) Py ) (mRNA counts) o A AT
(regulating) producing) — J = 5
: me N eS L4
2\ 5 3 Kon ol H
:: Eal=lcs o
45123 Hs Kon U g Fapmenttin
o . 4y (decaying) Data Collecting Process
Cellular Heterogeneity Biological Gene Kinetic
True mRNAs Y,
v D 0.000.0.0 00 Juse
For cell ¢ of typ_(_edk and DE gene g : a Py (y(kg)(’)) - 4Y® i g ° oM ', . Amplification
DE factor f¥© % Fue Stochastic Process 202000202
& A=A °fk(C) +___ Fragmentation
(b) Base Level: 4, "4A J & 7¢"s e ——— T
8 Random Dot o Floo o Rlo W
Product Model s eees ng wees Ypﬁc) ~ F(y u-J-gc, -~-J~,,E) Observed mRNAs Z,.
Stable Distribution Noise Modeling
L J u J - J
B. Statistical estimation
Models
Biological Truth Technical Noise
Base Level Extrinsic Variation Intrinsic Variation GCN (Dropouts)
Splatter Gamma fold change Gamma-Poisson None Zero-Inflated
- Function of gene kinetics related hyper- Change of low-dim hyper- i .
SymSim parameters parameters Beta-Poisson None Down sampling
Weighted sum of low-dim expression |Fold change of low-dim expression Gamma-Poisson Yes None
PROSSTT program program
SERGIO Expression program guided by GRN | Mean change of master regulators Poission Yes Zero-Inflated
ESCO Empirical Mean fold change Gamma-Poisson Yes Zero-Inflated /
C )

Fig. 2. Summary of simulators for scRNA-seq data. A. The general modeling flowchart of commonly used simulators. Simulators often start with (a) extrinsic variation that arose from cell

heterogeneity in the biological sense, and import this model to (b) the base expression mean generated for each gene, to formalize the heterogeneous expression means for a gene in a cell

of a particular cell type. Then, those means are used to generate the expression level, i.e., mRNA counts, by modeling the (c) intrinsic variation, i.e., the stochasticity of gene expression in

a cell with a defined base rate of expression. This process is often modeled by the gene kinetic model in biochemistry, which could be stated as a stochastic process in statistical terms. The

stable distribution of this stochastic process can usually be approximated by distributions like negative binomial / Poisson / beta Poisson. Finally, some simulators allow the generation of

technical noise (d) separately, by adding noise, step by step, to the true counts, to mimic the data collection process (the cartoon display is from Zhang et al. (2019a)). Usually, this stepwise

process is approximated by the zero-inflation model, where the true counts are set to zero with probability related to expression level. B. Summary of the current state of simulators following

the general modeling flowchart described above, with blue and orange text color indicating whether they use statistical estimation or grid search when fitting the simulator to a real data set.

The objective of ESCO is to create an ensemble of the best features among current simulators in each step, while allowing easily imposing co-expression structure among genes via a copula.

parameters. By contrast, the parametric Splat approach can be tuned to
data by fitting a one-step statistical regression model. ESCO also follows
the general flowchart in Fig. 2, but it aims to incorporate the best features
from the existing methods. Fig. 3 demonstrates the superiority of ESCO, as
itallows simulation of scRNA-seq data with various cell heterogeneity and
customized gene co-expression patterns. In this section, we elaborate on
the specific simulation models that ESCO adopts, following the framework
outlined in Fig. 2.

Base expression level We simulate base expression level in an empirical
way that allows inputting any density function, either non-parametric or
parametric. Particularly, we denote the base expression level for gene g as
Ag, and we let

iid

Ag ~ A forallg. )

Extrinsic variation The heterogeneity of cell groups is driven by the
differential expressed (DE) behavior among certain gene sets across
groups. Therefore we implement the cell group heterogeneity, i.e., the
extrinsic variation, via modeling the behavior of DE genes. We use the
random dot product model to introduce this heterogeneity by imposing
a DE factor generated separately on the otherwise homogeneous gene
expression means. Particularly, we generate the different cell group
structures we want, via modeling the DE factor in each of the following
ways.

A. Discrete cell groups: In order to generate clear and distinguishable
cell groups, we randomly split the set of DE genes into subsets, each is
identified as marker genes for a cell group. Then we simulate the DE factor

for each marker gene set as a LogNormal random variable with different
mean and variance indexed by group identity.

Particularly, denote the set of DE genes as GPF, and the marker gene set
{G*}E | for k cell groups such that G1UG2 - - -UGkU... GK = GPE,
we let the DE factor for each DE gene g in cell group k be

b h’gc if g € G¥;

1 otherwise,

@

where log h’; ud N(pg, 0k)-

B. Tree-structured cell groups: We utilize the idea in SymSim (Zhang
et al., 2019a), which makes the DE factor of similar cell groups more
related to each other. Particularly, we generate the DE factor from a
multivariate normal distribution, where the covariance matrix is given
by the tree structure of the data. Additionally, in order to assure the
identifiability of different cell groups, we introduce extra heterogeneity
via strengthening the DE factor for a small proportion of DE genes, which
are identified as marker genes in this setting (different from those in the
discrete cell group setting).

Specifically, given the similarity between cell groups by a K x K
correlation matrix 3 generated from the tree structure, and a set of DE
genes GPE, we firstly select a small proportion of GPF and split them into
the marker genes for each group G, G2, ..., G¥. We let the DE factor
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for each DE gene g in cell group k be

h = hEmk; itge G* 3
g hY; otherwise
where (log h;, ...,log h?) ud N(z,diag{o1,...,0K}),

with z := (2}

Lo N, ),

and m¥ > 1 is a scalar parameter controlling the level of the additional
heterogeneity for each group.

C. Continuous cell trajectories: We utilize the idea in PROSSTT
(Papadopoulos et al., 2019), which uses Brownian motion to generate
the DE factors, so that the smooth cell heterogeneity can be generated.
Particularly, for each gene in the DE gene set GPF, we simulate the DE
factor at each step ¢ in branch b with length T} as

fort=1,...,Tp :

1550 = exp (w§ ), @)

where wgt’b) = wét_l’b) + vs(,t_l’w

with v{"? = 0§71 L N(0, 2/T)).
In particular, we initialize
,b
Uéo ) ~ N(an'b);

0 if p(b) = 0;

(0,b) _ ’
Wg - (Tp by >p(b))
wy ,

otherwise.

Then, for each branch b, we randomly sample several time points to
generate the final cell samples, and let the “group” identity of cell sample
cbe k(c) = (t,b).

Finally, we generate the base expression with an adjustment of library size
for each gene g in cell c as

Aae
¢ = Lc——=— foreachcell c,
Age = Le——%— f h cell &)
Zg Age
where Age A% )\gf;(C)’ ifg € G*%,
e Ags otherwise;

and log L. ud Fr,

where k(c) denotes the group identity of cell c.
Intrinsic variation

Marginal distribution: Gene expression in individual cells is an inherently
stochastic process (Raj et al., 2006). If the gene regulation is ignored,
this process is just a simple two state birth-death process. The steady-
state distribution for this stochastic process in most cases turns out to
be a Gamma-Poisson, Beta-Poisson, or Poisson, which is justified from
the theoretical biochemistry aspect (Griin et al., 2014; Kim and Marioni,
2013), the experimental data sampling aspect (Quinn et al., 2018), and also
the common observations from the data. Splat (Zappia et al., 2017) and
PROSSTT (Papadopoulos et al., 2019) utilize the negative binomial model
in the simulation of marginal gene expression; while SymSim (Zhang
et al., 2019a) uses a Beta-Poisson instead; SERGIO (Dibaeinia and Sinha,
2020) simulates the gene expression via solving the series of ordinary
differential equation functions following the literature about gene kinetics
with regulation (Schaffter et al., 2011).

ESCO adopts the negative binomial model, since it is widely accepted
in the literature and enjoys support from biochemistry, experimental
data sampling, and empirical observations. Particularly, following Splat
(Zappia et al., 2017), we can naturally enforce a mean-variance trend by
simulating the Biological Coefficient of Variation (BCV) for each gene.
BCV is defined as the square root of the standard deviation divided by
the mean, i.e., the square root of the coefficient of dispersion. It has
been pointed out (McCarthy et al., 2012) that one should not assume a
common dispersion for all the genes, as a gene-specific variation is often
detected in RNA-seq case studies. Splat simulates BCV as a weighted
sum of a common dispersion and a gene-specific dispersion, such that
some information can be shared across genes to benefit the estimation,
while preserving the gene-specific variation.

Particularly, we generate the marginal counts ?gc as:

- 1 1
Yoo~ NB(p— 351
gc gc-gc +

where Bge ~ (¢ + )\L) df /X2 (df);
gc

where ¢ is the common dispersion parameter, and df represents the

) (O]

degree of freedom of the X2, and N B represents the Negative Binomial
distribution.

Co-expression: The gene expression (either the truth or the observed) is
not necessarily independent even within cells of the same type, resulting
from gene regulation. Characterizing the joint distribution requires
solving the steady distribution of multiple correlated stochastic processes,
which usually does not have a closed-form solution and requires large
computational power (Pratapa et al., 2020; Dibaeinia and Sinha, 2020).
Since the marginal distribution of gene expression is understood fairly
well, naturally, we think of using the copula to model the gene dependence.
This idea is shown to be successful in Inouye ef al. (2017) to model bulk
RNA-seq data.

A copula is defined by a joint cumulative distribution function (CDF),
C(u) : [0,1]» — [0, 1] with uniform marginal distributions. One of
the most popular copula models is the Gaussian copula, which is defined
simply as:

O = Ny (@ ! (u1), @ (u2), ..., 27 (up)) M
where ®~1 denotes the inverse function of standard normal CDF, and
Ny, denotes the joint CDF of a multivariate normal random vector
with zero means and correlation matrix . Due to the well-known
consistency between X and the empirical Pearson correlation matrix, the
Gaussian copula allows for directly interpretable dependence simulation,
and therefore is adopted by ESCO.

Particularly, we generate true counts Yy via the following model:

Yge = NBy (271 (Xge)) forg=1,2,....p, ®)

where (X1c, Xoc, ..., Xpe) ~ N(0,X);

and N Bg_c1 is the quantile function of the Negative Binomial distribution
with parameters indexed by cell ¢ and gene g in equation (6), and X is the
target correlation matrix.

Technical noise: Currently, there are mainly two single cell library
preparation protocols: (1) full-length mRNAs profiling without the use
of UMIs (e.g., with a standard Smart-Seq protocol); and (2) profiling
only the end of the mRNA molecule with the addition of UMIs (e.g., 10x
Chromium). The former protocol is usually applied for a small number of
cells and with a large number of reads per cell, providing full information
on transcript structure. The latter is normally applied for many cells with
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shallower sequencing, and it is impacted less by amplification and gene
length biases. We focus on the UMI-based protocol in this paper because
it is usually less biased with greater sparsity.

There currently exist two approaches to simulate the technical noise:
one is based on data generating process, and the other is based on data
visualization and fitting. As an example of the former, SymSim (Zhang
et al., 2019a) uses the empirical approximation of the major steps in the
experimental procedures such as mRNA capture, PCR amplification, RNA
fragmentation, and sequencing, to directly imitate the technical noise. On
the other hand, Splat (Zappia et al., 2017) simulates the technical noise
by adopting a zero-inflation model, where the zero-inflation probability
relates to the gene expression level in a way that comes from the observed
trend in the real data.

There are both pros and cons with regard to these two approaches. The
empirical approach facilitates the generation of more realistic noise, but
suffers from finding appropriate configuration to match a particular data
set (actually, SymSim uses a grid search to do the matching). In contrast,
the parametric approach allows a one-step estimation of the parameters
from the real data, but can suffer from poor goodness-of-fit due to the
mismatch of models. Therefore, ESCO integrates both procedures and
gives users the freedom to choose between the two. Particularly, as for the
empirical approach from SymSim, one may resort to Fig. 2 B and Zhang
et al. (2019a) for details. While as for the parametric approach from Splat,
the observed counts Zg. from the data is generated via the following

Zge = Yge(1 — Dyc) )
where Dg. ~ Ber(mge)

1
1+ exp {—k(log (Agc) — x0)}’

where 74 denotes the probability of zero-inflation, given the expression
mean Agc, Ber denotes the Bernoulli distribution, and Z4. denotes the

with mge =

final observed counts.

2.2 Estimation

ESCO facilitates mimicking any particular data set, consisting of
either homogeneous or heterogeneous cell groups, by estimating the
hyperparameters from the data. Through learning the parameters in the
parametric model, this approach fits data as well as possible (Fig. 4),
given the limitations of the parametric choice.

Next, we elaborate on our specific estimation strategies. Recall that
ESCO takes a hierarchical modeling approach, paired with a copula. As
such, an empirical Bayesian approach to parameter estimation would be
appropriate. However, it is usually infeasible to compute the solution.
Therefore, we follow Splat and estimate the parameters in each layer
separately. Particularly, we assume the data are already normalized (i.e.,
no batch effect arises due to technical reason) and have disjoint marker
gene sets across cell types, and consider the three estimation tasks in the
following.

Estimating the heterogeneity We have introduced three types of
heterogeneity of gene expression (discrete, tree, and trajectory), but we
only present an estimation procedure for the discrete one here, leaving the
more complex structure of the other two models to future work. Following
our modeling of the discrete heterogeneous cell groups, we first split all
the genes to DE and non-DE genes based on their AUC scores in cell
group prediction using SC3 (Kiselev et al., 2017), provided that we already
have the true cell group annotation. Particularly, we use 0.7 as our cutting
threshold of the AUC score, i.e., classifying the genes with AUC score no
less than 0.7 as DE genes and the others as non-DE genes.

We then use the DE genes to estimate the DE factors. Particularly, we
divide those DE genes into marker genes for each cell group based on

their classification result from SC3 (Kiselev et al., 2017). We assume that
the mean distribution of marker genes in their marked cell group follows
the same distribution in the other cell group and a DE factor that follows
LogNormal distribution indexed by the cell type. Therefore, we estimate
the DE factor for marker genes of cell group £ via fitting a LogNormal
distribution on the ratio of their sample mean within cell group & and those
outside cell group k.

Estimating the intrinsic variation

Marginal: As for estimating the parameters related to marginal intrinsic
variation, we follow the technique used in Splat (Zappia et al., 2017),
with a few refinements. We allow non-parametric fitting of the library
size distribution and base mean distribution, which can be done quickly
by computing the empirical CDF and also later on sampled from using
Metropolis-Hastings sampling due to the univariate nature. One may refer
to Zappia et al. (2017) for further details about the estimation procedure
for other marginal parameters included in the algorithm, such as BCV and
outlier.

Copula: To circumvent challenges due to technical noise and sparse counts,
we cluster similar cells and form metacells (Baran et al., 2019) and then
estimate 3 for equation (8). As an integrated version of the original real
data, the size of metacells must be carefully selected so that the technical
variation can be reduced, while some biological variation can be preserved.
We refer the reader to the source paper of MetaCell (Baran et al., 2019)
for further details.

A more statistically convincing approach would be the non-parametric
estimation procedure called SKEPTIC (Liu et al., 2012), which is built for
a continuous marginal paired with a Gaussian copula. However, SKEPTIC
is derived assuming a continuous marginal without additional noise. In our
case, the data are discrete, and the underlying truth is severely masked by
the additional zeros, so we find it challenging to recover signals from
real data. Therefore, we did not consider this direction, though careful
adjustment of the estimation procedure and corresponding consistency
under the discrete marginals masked by false zeros is worth attention in
future work.

Estimating the technical noise ESCO also allows estimation of the
median zero-inflation and shape parameters in equation (9). Though
Splat already includes the corresponding estimation via fitting a logistic
regression between the log-transformed gene mean and their observed
zeros proportions, it is biased towards inflating the probability of excess
zeros, as can be understood via the following reasoning:

Given areal scRNA-seq data set Z € RPX"™ where each element Z, gc
is the observed count of the expression of gene g in cell ¢, let

Tge = P{Zgc = 0}. (10)

Splat estimates Tl';c via fitting a logistic function to model the relationship
between the log means of the normalized counts and the proportion of cell
samples that are zero for each gene. Then Splat plugs the estimation 7y
in place of 74, in equation (9) to simulate ch,

Zge = Yge(1 — Dgyc), where Dge ~ Ber(Tgc). (11)
and ?qc is the imitation of the true counts Yy for gene g in cell ¢ simulated
in the previous steps.

Assuming the estimation of 7r‘;C is accurate and the simulated true
counts Yy well mimics the real truth Yy, then this approach would cause

more sparsity than expected, since the proportion of zeros in the simulated
observation will be

P{Zge = 0} = P{Vye = 0} + P{Yye £ 0, Dyge = 1}
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Fig. 3. ESCO can simulate scRNA-seq data of various cell heterogeneity and gene co-expression. A. The simulation results for one homogeneous cell group consisting of 200 cells and
500 genes. The first panel displays the heatmap of log2 transformed normalized simulated expression data, where rows represent genes and columns represent cells; 30% of genes are
chosen to be co-expressed genes, and the rest are independent genes. The following displays depict, in order, the given correlation structure for co-expressed genes, the simulated correlation
structure among those co-expressed genes without noise, and that with technical noise, and the simulated correlation structure for independent genes. B. The simulation results for three
discrete heterogeneous cell groups consisting of 500 cells and 1000 genes. 30% of the genes are chosen to be cell-type DE genes and presumably co-expressed, among which each marks
one cell type. Another 10% of genes are chosen to be housekeeping genes, and also presumably co-expressed. The rest are independent non-DE genes. The first display shows the heatmap
of log2 transformed normalized simulated data, where different gene types (rows) and cell types (columns) are marked with color bars on the margin. The following displays depict, in order
in each row, the given correlation structure for both marker genes of Group2 and co-expressed housekeeping genes, the simulated correlation structure among those co-expressed genes
without noise, and that with technical noise; and, at the end of each row the simulated correlation structure among all DE genes across all cells, and that among all independent genes across
all cells, with corresponding gene types marked with a color bar on top. C. The simulation results for five heterogeneous cell groups that follow a tree structure given in the first panel.
‘We simulate 1000 cells and 2000 genes: 30% of genes are chosen to be DE genes and presumably co-expressed, among which 5% are markers; the rest are independent non-DE genes.
The second panel shows the heatmap of log2 transformed normalized simulated data. Different cell types are marked with color bars on the column margin, together with the hierarchical
clustering of cells. The following displays depict, in order, the resulting correlation structure among all marker genes across all cells, with corresponding gene types marked with a color bar
on top; the given correlation structure for co-expressed marker genes of Neuronl cells, and the resulting correlation structure among those co-expressed genes. D. The simulation results
for five heterogeneous cell groups that follow a smooth cell trajectory structure given in the first panel. There are 1000 cells and 2000 genes; 30% of genes are chosen to be DE genes and
presumably co-expressed, and the rest are independent non-DE genes. The following displays depict, in order, the heatmap of log2 transformed normalized simulated data for all DE genes
in one continuous path (i.e., branches 1 — 2 — 5), with branch ID marked with a color bar on top; the UMAP for the first two dimensions of the simulated data; the given correlation
structure for all DE genes across one branch (branch 1), and the resulting correlation structure simulated of those genes.
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Fig. 4. ESCO can learn both the cell heterogeneity and gene co-expression from the data. A. The generation process of gene co-expression for one homogeneous cell group from real data
using ESCO. Particularly, the example is for 500 randomly selected genes in pyramidal CA1 cell type (911 cells) from Zeisel data. B. The comparison of marginal features of real data consist
of 500 randomly selected genes in pyramidal CA1 cell type (911 cells) extracted from Zeisel data, and the corresponding simulated data using different simulators. Particularly, Lun (Lun
etal., 2016) is one of the earliest scRNA-seq simulators, which has been found to be suboptimal (Zappia et al., 2017). We include it here as a clear contrast with the state-of-art methods. C.
The comparison of real data consist of 4000 most differential expressed genes in three cell types (astrocytes_ependymal, endothelial_mural, microglia) of 526 cells in total extracted from
Zeisel data, and the corresponding simulated data using ESCO. While the UMAP depiction differs somewhat, the expression and co-expression patterns match closely.

where (*) is true since ?gc and ﬁgc are independent once condition on 3 Results

Age. Therefore, Recall that a particularly prominent aspect of noise that complicates

P{Z\gc — 0} = ]P){i}gc — 0} + ]P){?gc #0)Rge scRNA—seg data analysis is sparsity due to low cagture and sequencing
efficiency in the data collecting process. Excess sparsity has been shown to

> P{Yyc = 0}7gc + P{Yyc # 0}7ge corrupt the analysis of sScCRNA-seq data in many ways (e.g., cell clustering,

= Fge = W; . = P{Zy = 0}, (13) trajectory inference, ]?E gene detection, etc.). ITnputation methods can

generally help according to several benchmarking efforts (Zhang and

From the above calculation, one simple correction for this bias uses: Zhang, 2018; Andrews and Hemberg, 2018). However, the influence of
sparsity on gene co-expression, particularly within the homogeneous cell

= Tge — P{Yyc =0} (14) group, has been overlooked by many. ESCO provides an easy way to fill

9¢ 1-— P{?gc =0} in the gap, as it allows for the generation of flexible gene co-expression as

. . . ) a ground truth. In the following we present a systematic evaluation of the
as the plug-in for equation (9). Particularly, ESCO approximates

P{Yc = 0} using the CDF of Poisson with mean Ay at zero.
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Fig. 5. Application of ESCO in benchmarking imputation for gene co-expression recovery. A. Evidence that sparsity attenuates gene co-expression. The top panel depicts the histogram
of Pearson’s correlations for the 1000 highest expressed (/20-10% quantile) genes and 1000 moderately expressed genes (260-70% quantile) in Velmeshev scRNA-seq data. The bottom
figure depicts the histogram of Pearson’s correlations for the same genes as in the top panel, but using the corresponding bulk data. B. The performance of different imputation methods
on recovering the gene co-expression. We simulate 1000 genes and 200 cells for three cell groups, using the parameters estimated from the Zeisel data, and aggregate the results from 10

replicates. The corresponding ARI score and AUC score (represented by each row) of each imputation method versus different sparsity levels (represented by zero proportion) on different

types of gene co-expression (represented by each column, respectively, as marker genes, housekeeping genes, DE genes) are plotted. C. Verification of the findings of imputation using real

data. (a) The correlation matrix of marker genes before and after imputation of Zeisel data, across cell types (five in total) and within one cell type (interneurons). (b) The correlation matrix

of marker genes before and after the imputation of the Velmeshev data. (¢) The correlation matrix of marker genes of the Velmeshev data after AOB and BigScale aggregation.

performance of imputation methods on the recovery of gene co-expression
using ESCO.

3.1 Sparsity attenuates the gene co-expression.

First, we show that sparsity indeed impedes the recovery of gene co-
expression in scCRNA-seq data. Highly expressed genes are much less
likely to suffer from technical noise, as they have sufficient replicates
to be detected in the data collecting process, in contrast to relatively lowly
expressed genes. To illustrate this point we contrast gene co-expression for
marker genes in sScCRNA-seq data (Velmeshev et al., 2019) to bulk RNA-seq
data (Parikshak er al., 2016). Genes are classified as high or mid, based
on their expression values. In sScRNA-seq data, the mid-genes demonstrate
substantially less correlation when compared to the high-genes (Fig. SA
top panel). But in the bulk RNA-seq data, mid and high-genes demonstrate

equivalent levels of correlation (Fig. SA bottom panel). Because we expect
little, if any, impact of technical noise in bulk data, and similar levels of
correlation for marker genes in these two data sources, this investigation
suggests that sparsity attenuates measured correlation of gene expression
in scRNA-seq data. Thus we look to imputation for improved performance.

3.2 Imputation can help recover GCN with moderate
sparsity.

Working with Zeisel data (Zeisel et al., 2015), we consider a subset
of data consisting of the 4000 most differentially expressed genes and
526 cells from three cell types (astrocytes_ependymal, endothelial-mural,
microglia) that have distinct marker genes. We simulate data from 1000
genes and 200 cells with hyperparameters estimated from the real data,
while manually changing the sparsity level such that the zero proportion
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ranges from 60% to 90% (the real data has ~ 43% zeros), and aggregate
the results over replicates. We evaluate ARI and AUC score for each
imputation method under a range of sparsity levels (i.e., zero proportion)
for various gene sets of interest (Fig. SB). Specifically, we choose the
number of clusters in ARI, calculated via a grid search over a range of
clusters numbers (2-9 in our case), with the highest score. Additionally, we
calculate AUC by assigning gene pairs as connected or un-connected based
on the co-expression significance in permutation testing of the simulated
truth. We then assess the prediction accuracy (AUC scores) of connections
for each imputation methods using their estimated co-expression. All the
results are averaged over 10 replicates. We observe that:

1. generally, when facing moderate sparsity, all the imputation methods
beat the un-imputed raw data, depicted by the bold dashed black line;
the performance of imputation gets worse with excessive sparsity;

3. as for a comparison among different methods, there is no universal
winner for all settings, but the ensemble method, depicted by the bold
black line, provides the best or close to the best performance across
all settings we considered.

In the following section, we aim to verify our findings of imputation
using real scRNA-seq data. It is conjectured that the co-expression of
marker genes in the mouse brain will be similar to that of the human
brain. Therefore, we expect the recovered gene correlation from a data set
measuring mouse brain will follow a similar pattern to those from the data
set measuring the human brain. Particularly, we use Zeisel data (Zeisel
et al., 2015) for the mouse brain and Velmeshev data (Velmeshev et al.,
2019) for the human brain. The Zeisel data have deeper sequencing for
single cells and consequently are less noisy, with less sparsity, compared
with the Velmeshev data, which have a much greater number of nuclei
sampled, each with fewer reads. Therefore, we can see the influence
of the sparsity level on gene co-expression by directly comparing these
two data sets. We select five common cell types in both data sets and
use the Zeisel data as the benchmark. We evaluate the correlation matrix
of marker genes before and after imputation of Zeisel data, across cell
types and within one cell type (i.e., interneurons). Fig. SC(a) plots both
the gene co-expression across heterogeneous cell groups and gene co-
expression within homogeneous cell groups before and after imputation
with Enlmpute method (Zhang et al., 2019b) using Zeisel data, while
Fig. 5C(b) plots the same results but using the Velmeshev data. We
can see that for the Zeisel data (moderate level of sparsity), imputation
enhances the gene co-expression pattern both within homogeneous and
across heterogeneous cell groups. In contrast, for the Velmeshev data
(excessive sparsity), imputation fails to help much to recover the gene
co-expression across heterogeneous cell groups pattern, while failing
utterly for gene co-expression within homogeneous cell groups, which
is expected, as it is a harder task. This investigation supports some of our
findings of imputation, i.e., imputation can generally help, but may fail as
sparsity levels increase to a very high level.

3.3 Data aggregating is a better way to recover GCN with
excessive sparsity.

Despite the excessive sparsity in the Velmeshev data, these data have the
advantage of abundant numbers of cells, which inspired us to explore
another approach for recovering gene co-expression: data aggregation that
utilizes the abundance of measured cells. We introduce two methods below,
a simple heuristic (AOB) and a complex algorithm (BigSCale).

Averaging over cell bags. If one has successfully assigned the cell type
labels, one may be able to use the simple procedure of averaging gene
expression over random splits within cell types, and then compute the
gene co-expression based on those averaged values (Polioudakis et al.,

2019). We will refer to this procedure as AOB (Averaging Over Bags).
The only tuning parameter here is the bag size, which should be chosen
carefully so that we can mitigate the influence of sparsity and other noise,
while still maintaining some variability among samples.

Pre-clustering and transforming the expression value. More recently, a
method called BigSCale (Iacono et al., 2019) was developed for the
problem of recovering GCN in a similar, but more complex way. This
algorithm first clusters cells sharing highly similar transcriptomes together,
and then treats them as biological replicates to evaluate the noise and an
indirect measure of correlation. This method works well when there is a
sufficiently large number of cells for meaningful cell clusters to form, but
it is pretty computationally challenging.

We find both methods work well in recovering gene co-expression
across heterogeneous cell groups (Fig. 5C(c)), though neither successfully
recover gene co-expression within homogeneous cell groups. Future
efforts are needed to recover these subtle signals.

4 Discussion

In this paper, we propose a new scRNA-seq simulator, ESCO, which
borrows the good features of the current state of art simulators in
an ensemble, while for the first time, allowing both interpretable and
controllable gene co-expression generation. Specifically, ESCO allows
realistic simulation of various cell group structure, ranging from simple
homogeneous cell groups to tree-structured discrete cell groups to
continuously changing cell trajectories, together with gene co-expression.
ESCO outperforms other methods as it preserves the highlights of all the
other existing simulators in one R package, including the hierarchical semi-
parametric modeling of homogeneous groups from Splat, the tree-structure
generation from SymSim, and the trajectory generation from PROSSTT,
all while interjecting gene-gene interactions. Specifically, ESCO allows
the flexible generation of both gene co-expression across heterogeneous
cell groups arising from a cell group structure and gene co-expression
within homogeneous cell groups arising from gene-gene interaction in one
functional cell group, which have been overlooked and underdeveloped in
other methods.

There is still much room for future work in this area. The efficient
estimation of the hyperparameters from the real data in the tree-
structured cell group and continuous cell trajectories scenario still needs
improvement. Currently, most simulators rely on a grid search of
parameters to find parameters that fit a particular data, but these parameter
choices do not extend to new settings, and it is extremely challenging to
simulate data similar to new data sets. The ability to simulate realistic batch
effects in various settings is also not satisfactory in the current methods.
ESCO, which mimics Splat in this regard, shares this shortcoming. A
careful, deep-dive to produce realistic batch effects is needed.
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