

1 A Sea Change in Microbial Enzymes: Heterogeneous latitudinal and depth-related gradients in
2 bulk water and particle-associated enzymatic activities from 30°S to 59°N in the Pacific Ocean

3

4 John Paul Balmonte^{1,2*}, e-mail: jp.balmonte@gmail.com

5 ¹Department of Marine Sciences, The University of North Carolina at Chapel Hill, 3202 Venable
6 Hall, Chapel Hill, NC 27599, USA.

7 ²Department of Ecology and Genetics – Limnology, Uppsala University, Norbyvägen 18D,
8 Uppsala 752 36, Sweden.

9 Meinhard Simon³, e-mail: m.simon@icbm.de

10 ³Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-
11 von-Ossietzky-Street 9-11, 26129, Oldenburg, Germany.

12 Helge-Ansgar Giebel³, e-mail: giebel@icbm.de

13 ³Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-
14 von-Ossietzky-Street 9-11, 26129, Oldenburg, Germany.

15 Carol Arnosti¹, e-mail: arnosti@email.unc.edu

16 ¹Department of Marine Sciences, The University of North Carolina at Chapel Hill, 3202 Venable
17 Hall, Chapel Hill, NC 27599, USA.

18

19 *Corresponding author: John Paul Balmonte, e-mail: jp.balmonte@gmail.com

20 Running title: Enzymatic activity latitudinal and depth patterns

21 Keywords: microbial enzyme activities, organic matter, particles, latitudinal gradients,
22 mesopelagic, bathypelagic, Pacific Ocean

23 **Abstract**

24 Heterotrophic microbes initiate organic matter degradation using extracellular enzymes. Our
25 understanding of differences in microbial enzymatic capabilities, especially among particle-
26 associated taxa and in the deep ocean, is limited by a paucity of hydrolytic enzyme activity
27 measurements. Here, we measured the activities of a broad range of hydrolytic enzymes
28 (glucosidases, peptidases, polysaccharide hydrolases) in epipelagic to bathypelagic bulk water
29 (non-size fractionated), and on particles ($\geq 3 \mu\text{m}$) along a 9,800 km latitudinal transect from
30 30°S in the South Pacific to 59°N in the Bering Sea. Individual enzyme activities showed
31 heterogeneous latitudinal and depth-related patterns, with varying biotic and abiotic correlates.
32 With increasing latitude and decreasing temperature, lower laminarinase activities sharply
33 contrasted with higher leucine aminopeptidase (leu-AMP) and chondroitin sulfate hydrolase
34 activities in bulk water. Endopeptidases (chymotrypsins, trypsins) exhibited patchy spatial
35 patterns, and their activities can exceed rates of the widely-measured exopeptidase, leu-AMP.
36 Compared to bulk water, particle-associated enzymatic profiles featured a greater relative
37 importance of endopeptidases, a broader spectrum of polysaccharide hydrolases, and latitudinal
38 and depth-related trends that paralleled variations in particle fluxes. As water depth increased,
39 enzymatic spectra on particles and in bulk water became narrower, and diverged more from one
40 another. These distinct latitudinal and depth-related gradients of enzymatic activities
41 underscore the biogeochemical consequences of emerging global patterns of microbial community
42 structure and function, from surface to deep waters, and among particle-associated taxa.

43 **Introduction**

44 Heterotrophic microbial communities play a critical role in the global carbon cycle by
45 transforming and remineralizing up to 50% of marine primary production (Azam and Malfatti,
46 2007). To initiate these processes, marine heterotrophic microbes secrete hydrolytic enzymes
47 that cleave high molecular weight (HMW) compounds to sizes sufficiently small for bacterial
48 uptake (Weiss et al. 1991). Microbial enzyme activities therefore determine the nature and
49 quantity of compounds available to heterotrophic microbes for biomass incorporation or
50 respiration. Particulate or surface-adsorbed HMW substrates that remain unused in the water
51 column may eventually fuel benthic heterotrophic organisms, or be sequestered in sediments
52 over longer timescales (Arnosti, 2011). However, the specific substrates potentially accessible to
53 microbial communities across vast expanses in the oceans are not well characterized, due in part
54 to sparse enzyme activity measurements, particularly in deep waters and on particles.

55 Variations in hydrolytic enzyme activities in surface waters indicate that there are
56 spatially distinct microbial capabilities to initiate organic matter remineralization. Prominent
57 differences in enzyme activities emerge especially along latitudinal gradients (Arnosti et al. 2011;
58 Christian and Karl, 1995). Leucine aminopeptidase (leu-AMP) and β -glucosidase exhibit
59 contrasting trends with temperature and latitude in disparate locations (Christian and Karl,
60 1995). The rates and range of specific polysaccharide hydrolase activities peak in warm
61 temperate waters and decrease towards polar regions (Arnosti et al. 2011). With few exceptions
62 (Ladau et al. 2013), latitudinal trends for enzyme activities mimic those observed for microbial
63 community composition, diversity, and metabolic potentials (Fuhrman et al. 2008; Hewson et al.
64 2009; Pommier et al. 2007; Wietz et al. 2010; Ibarbalz et al. 2019). These findings suggest the
65 importance of variations in microbial community structure in shaping differences in microbial

66 enzymatic capabilities (Arnosti et al. 2011, Balmonte et al. 2019), and overall metabolic
67 potentials (Raes et al. 2011; Sunagawa et al. 2015; Salazar et al. 2019). However, environmental
68 conditions can be more proximate drivers of microbial function (Louca et al. 2016; Raes et al.
69 2011; Raes et al. 2018; Sunagawa et al. 2015). The extent to which these parameters correlate
70 with enzyme activities across large spatial scales remains to be tested.

71 Differences in microbial community composition and environmental conditions may lead
72 to changes in enzyme activities with depth. Based on several studies, the rates (Davey et al.
73 2001; Zaccone et al. 2003) and spectra of enzyme activities (D'Ambrosio et al. 2014; Hoarfrost et
74 al. 2017; Steen et al. 2012) decrease with depth, whereas cell-specific activities increase (Baltar
75 et al. 2009). However, detection of a wider spectrum of polysaccharide-hydrolyzing enzymes at
76 bottom waters in Guaymas Basin (Ziervogel and Arnosti, 2020) and at 500 m in the central
77 Arctic (Balmonte et al. 2018) compared to those in surface waters demonstrate the nuances of
78 these patterns. Greater similarity in enzyme activity depth profiles at a single station – than
79 across locations – highlights surface-to-deep ocean connectivity and spatial trends even in the
80 oceanic interior (Hoarfrost et al. 2017). With few enzyme activity measurements in deep waters,
81 however, understanding of microbial control on organic matter degradation remains particularly
82 limited in the mesopelagic and bathypelagic.

83 Delivery of organic matter from the surface to the deep ocean occurs in large part
84 through the sinking of particulate organic matter (POM). During transport, POM can become
85 fragmented through abiotic (i.e. shear stress) and biotic (e.g. enzymatic hydrolysis and
86 zooplankton feeding) processes (Briggs et al. 2020; Zhao et al. 2020). Intense enzymatic
87 hydrolysis of POM (Smith et al. 1992) – either via cell-bound or dissolved free enzymes –
88 underscores the importance of particle-associated taxa for POM degradation (Baltar et al. 2010;

89 Vetter et al. 1998, Zhao et al. 2020). A wider spectrum of enzyme activities has been detected
90 on particles than either the free-living fraction (D'Ambrosio et al. 2014) or in bulk waters
91 (Balmonte et al. 2018; Balmonte et al. 2020), observations that highlight the broad range of
92 enzymes required to degrade POM. However, these investigations have only been carried out in
93 a limited range of settings. Thus, possible variations in enzymatic capabilities of particle-
94 associated taxa with latitude and depth, which would influence particle export and transfer
95 efficiencies (Henson et al. 2012; Henson et al. 2019; Weber et al. 2016), remain underexplored.

96 Along a transect from 30°S in the South Pacific Gyre to 59°N in the Bering Sea, we
97 investigated latitudinal and depth-related variations in the rates and substrate spectra of
98 microbial enzyme activities in bulk seawater and on particles ($\geq 3 \mu\text{m}$). Based on previous
99 latitudinal patterns of enzyme activities in surface waters (Arnosti et al. 2011), we hypothesized
100 that the individual enzymes would exhibit varying patterns along latitudinal and depth
101 gradients, likely due to varying sources, controls, and temperature optima. We additionally
102 tested the hypothesis that patterns of particle-associated enzyme activities exhibit latitudinal
103 and depth-related patterns that differ from those measured in bulk water (non-size
104 fractionated), such that particle-associated taxa may be sources of distinct enzymatic activities.
105 Using a suite of structurally-diverse substrates, we measured potential rates of frequently and
106 infrequently-measured peptidases, glucosidases, and polysaccharide hydrolases. We identified
107 differences in microbial capabilities to initiate organic matter degradation across water masses,
108 and the extent to which differences in enzyme activities parallel emerging latitudinal patterns of
109 microbial community structure and metabolic potentials.

110

111 **Materials and Methods**

112 ***Cruise track and sample collection.*** Samples were collected during the SO248 cruise (30°S
113 to 60°N; Fig. 1a) on board R/V *Sonne* from May 3 to May 30, 2016. Bulk (non-size
114 fractionated) water samples were collected from 19 stations at different depths using 20 L Niskin
115 bottles mounted on a CTD rosette (Table S1). Additional water was collected to obtain
116 particles via gravity filtration through 3 µm pore-size, 47 mm Millipore membrane filters; the
117 volumes filtered for particle-associated analyses varied by depth and station (Table S2). All
118 incubations (described below) and gravity filtration setups were kept either at room temperature
119 (ca. 20°C), 15°C, or 4°C, depending on the ambient temperature of seawater (Table S1). Due to
120 the substantial workload involved in the sample program, nine of the 19 stations were
121 designated as ‘main stations’—locations at which peptidase, glucosidase, and polysaccharide
122 hydrolase activities were measured at five depths. At all main stations, four depths were
123 consistently sampled: surface, deep chlorophyll *a* maximum (DCM), 300 m, and 1000 m. For the
124 three remaining main stations, the fifth depth was either at 500 m (S1 and S2) or at 75 m (S7)
125 (Table S1). Additionally, particle-associated activities were also measured at all main stations at
126 the DCM, 300 m, and 1000 m. At the 12 other stations, only peptidase and glucosidase activities
127 were measured, and only in surface and DCM water.

128 ***Particulate organic carbon and nitrogen, chlorophyll a.*** Water samples (1.5 L to
129 6 L, depending on station and depth) were filtered onto pre-combusted (2 h, 450°C) and pre-
130 weighed GF/F filters (Whatman) for particulate organic carbon (POC) and particulate organic
131 nitrogen (PON) analysis. Filters were rinsed with distilled water to remove salt and kept frozen
132 at -20°C until analysis as previously described (Lunau et al. 2006). To measure chlorophyll *a*

133 (chl *a*), ca. 1 to 3 L of seawater was filtered through 25 mm GF/F filters (Whatman, Munich,
134 Germany). After filtration, filters were wrapped in foil and stored at -80°C prior to analyses.
135 Filters were crushed and extracted in 90% ice-cold acetone in the dark for 2 h. Concentrations
136 were measured using a fluorometer (Turner Designs) and calculated according to established
137 protocols (Tremblay et al. 2002). A standard solution of chl *a* was used for fluorescence
138 calibration (Sigma-Aldrich).

139 ***Bacterial abundance, production, growth rates, substrate turnover.*** Bacterial
140 abundances were determined by SybrGreen I (Invitrogen) DNA staining on board using a BD
141 Accuri C6 flow cytometer (Biosciences), after the protocol of Giebel et al. (2019). Bacterial
142 biomass production rates were quantified using ¹⁴C-leucine incorporation (Simon and Azam,
143 1989; Simon et al. 2004). Briefly, 10 mL of triplicate water samples and a formaldehyde killed
144 control (1% vol:vol) were incubated at *in situ* temperature with ¹⁴C-leucine (334 Ci mmol⁻¹;
145 Hartmann Analytics, Braunschweig, Germany) at a final concentration of 20 nM, and stored in
146 the dark. After 2-10 h, formaldehyde was added to stop bacterial ¹⁴C-leucine incorporation.
147 Samples were then filtered using 0.2 µm nitrocellulose filters (25 mm), extracted with ice cold
148 5% trichloroacetic acid, and analyzed by radioscantillation counting. Bacterial production rates
149 were calculated using a conversion factor of 3.05 kg C mol⁻¹ leucine⁻¹ (Simon and Azam, 1989).
150 Bacterial growth rates (μ day⁻¹) were calculated as:

151
$$\mu = \ln(B_1) - \ln(B_0)$$

152 B_0 and B_1 (B_0+BP) are bacterial biomass at t_0 and t_1 , respectively. Bacterial biomass was
153 calculated from bacterial cell numbers, assuming a carbon content of 20×10^{-15} g C cell⁻¹ (Simon

154 and Azam, 1989), and BP is bacterial biomass produced over 24 h and measured by leucine
155 incorporation, as mentioned above.

156 Turnover rate constants of dissolved free amino acids (DFAA), acetate, and glucose were
157 measured through the incorporation of a mix of ³H-DFAA (mean specific activity 2.22 TBq
158 mmol-1, Hartmann Analytic), ³H-glucose (2.22TBq mmol-1, Hartmann Analytic) and ³H-acetate
159 (0.925 TBq mmol-1229, Hartmann Analytic), following previously established procedures and
160 calculations (Simon and Rosenstock, 2007). Note that these rates yield conservative values, as
161 the assay captures only substrates incorporated into biomass and neglects that fractions taken
162 up into the cytosol and respired.

163 ***Bulk seawater enzyme activity assays.*** Peptide and glucose substrate analogs were
164 used to measure peptidase and glucosidase activities, respectively (Hoppe, 1983). Exo-acting
165 (terminal cleaving) leucine-aminopeptidase (leu-AMP) activities were measured using the
166 methylcoumarin (MCA)-labelled substrate analog Leucine-MCA (Leu). Activities of the endo-
167 acting (mid-chain cleaving) chymotrypsins (chym) and trypsins (tryp) were assayed using the
168 following MCA-labeled substrates: Alanine-Alanine-Phenylalanine (AAF-chym), Alanine-
169 Alanine-Proline-Phenylalanine (AAPF-chym), Phenylalanine-Serine-Arginine (FSR-tryp), and
170 Butyloxycarbonyl-Glutamine-Alanine-Arginine (QAR-tryp). Glucosidase activities were
171 measured using the following methylumbelliferyl (MUF)-labelled compounds: α -glucopyranoside
172 (α -glu) and β -glucopyranoside (β -glu). Whereas Leu, α -glu, and β -glu have been used in a wide
173 range of environmental settings, substrate proxies measuring chymotrypsin and trypsin activities
174 have been used only in a limited number of systems (e.g., Arnosti, 2015; Balmonte et al. 2019;
175 Balmonte et al. 2020; Bong et al. 2013; Obayashi and Suzuki, 2005; Steen and Arnosti, 2013).

176 Incubations for bulk water peptidase and glucosidase activity were set up in flat bottom,
177 black 96-well plates. Triplicate wells were set up for live bulk water, as well as for killed controls
178 prepared using cooled, autoclaved ambient seawater. Substrates – prepared in DMSO at a stock
179 concentration of 5 mM – were added to the triplicate live and killed control wells (200 μ L) to a
180 final concentration of 100 μ M, which we assumed was at or near substrate saturation based on
181 previous studies using some of the same substrates in the subarctic Pacific (Fukuda et al. 2000).
182 Fluorescence was measured using a Tecan Infinite F200 plate reader (Austria) with excitation
183 and emission wavelengths of 360 and 460 nm, respectively, at several timepoints: immediately
184 after substrate addition (t0), 12 h (t1), 24 h (t2), and 48 h (t3). Fluorescence values were
185 converted to concentrations of hydrolyzed substrate using a standard curve of fluorescence vs.
186 different concentrations of MCA or MUF fluorophores. Rates were normalized by the volume of
187 incubation and averaged across triplicates. Only rates for t1 are reported in this study.

188 Fluorescently labeled polysaccharides were used to measure polysaccharide hydrolase
189 activities (Arnosti 2003). These substrates include pullulan [α (1,6)-linked maltotriose], laminarin
190 [β (1,3-glucose)], xylan (xylose), fucoidan (sulfated fucose), arabinogalactan (arabinose and
191 galactose), and chondroitin sulfate (sulfated *N*-acetylgalactosamine and glucuronic acid)
192 (Arnosti, 2003; Teske et al. 2011). The monomer constituents of these polysaccharides are
193 widely detected in the marine water column (Benner, 2002), largely from algal and
194 phytoplankton sources (Painter, 1983). Genes for enzymes that hydrolyze these polysaccharides
195 have also been detected among various bacterial taxa (Alderkamp et al. 2007; Elifantz et al.
196 2008; Neumann et al. 2015; Teeling et al. 2012). Incubations to measure bulk water
197 polysaccharide hydrolase activities follow an established protocol (Arnosti, 2003).

198 Triplicate incubations and a singleton killed control were prepared in 15 mL centrifuge
199 tubes. The killed control was prepared using cooled, autoclaved ambient seawater.
200 Polysaccharide substrates were added (one per tube) to a final concentration of 3.5 μ M
201 monomer equivalent, except for fucoidan, which was added to a final concentration of 5.0 μ M
202 monomer equivalent due to low labeling density of the polysaccharide. The incubations were
203 subsampled at the following timepoints: immediately at substrate addition (t0), plus 5 d (t1), 10
204 d (t2), 15 d (t3), and 25 d (t4). To subsample the 15 mL incubations, 2 mL were collected from
205 each incubation, and filtered through a 0.2 μ m surfactant-free cellulose acetate (SFCA) filter.
206 The filtrate was collected in a 2 mL centrifuge tube, and frozen at -20°C until further analysis.
207 Changes in substrate molecular weight over time were measured via gel permeation
208 chromatography, and hydrolysis rates were calculated as previously described (Arnosti, 2003).
209 Only maximum potential rates, which occur at different timepoints, are reported in the main
210 text; data for all timepoints are available as Supplementary Information (Fig. S6e-f).

211 ***Particle-associated enzyme activity assays.*** Filters (3 μ m pore size) used to collect
212 particles via gravity filtration (see Section 2.1) were cut into evenly-sized 1/12th pieces using
213 sterile razor blades (Balmonte et al. 2018). Particle-associated enzyme activities (glucosidase,
214 peptidase, polysaccharide hydrolase) were measured using two different incubation setups.
215 Particle-associated peptidase and glucosidase activities measured in duplicate by submerging
216 two particle-containing filter pieces (each 1/12th of entire filter) in separate 4 mL cuvettes
217 containing cooled, autoclaved ambient seawater. A single killed control was prepared by
218 submerging a sterile filter piece (1/12th of unused filter) in 4 mL of cooled, autoclaved ambient
219 seawater. Substrates were added to a final concentration of 100 μ M. At four timepoints – upon

220 addition of substrate (t0), 24 h (t1), 48 (t2), and 72 h (t3) – live duplicates and killed control
221 singleton were subsampled by pipetting 3 x 200 μ L (for technical triplicates) per incubation from
222 each 4 mL cuvette into a 96 well plate for fluorescence measurement. Fluorescence values were
223 converted to hydrolysis rates as described above for bulk water enzymatic assays, but were
224 normalized to the volume of filtrate that passed through the 3 μ m filter (Table S2). Since
225 hydrolysis was well advanced at t1, only values at 24 h (t1) were included in this study. The
226 percentage of rates measured in bulk water that can be attributed to the particle-associated
227 fraction was calculated using the following equation:

228
$$\% \text{ particle-associated} = (\text{Rate}_{\text{particle}}/\text{Rate}_{\text{bulk}}) \times 100\%.$$

229 A value of 0 indicates that no rate for a specific enzyme was measured in the particle-
230 associated fraction, whereas a value of 100% indicates that the rate measured for a specific
231 enzyme was entirely particle-associated. A reported value of 100% may be due to three reasons:
232 (1) enzyme-specific rates for bulk water and the particle-associated fraction were equivalent, (2)
233 rates for bulk water were less than those for the particle-associated fraction, or (3) rates for bulk
234 water were absent, and rates for specific enzymes were only detectable in the particle-associated
235 fraction. While the resulting % particle-associated would be greater than 100% for scenario (2),
236 we only report a maximum of 100%. For scenario (3), the equation would not be possible, in
237 which case we manually inserted 100%.

238 Incubations to measure particle-associated polysaccharide hydrolase activities were set
239 up in 15 mL centrifuge tubes filled with cooled, autoclaved ambient seawater (Balmonte et al.
240 2018). Filter pieces (1/12th) containing particles were submerged, and polysaccharide substrates
241 were added to a final concentration of 3.5 μ M monomer equivalent, with the exception of
242 fucoidan (5 μ M). Incubations were subsampled by drawing 2 mL, and filtering through a 0.2 μ m

243 SFCA filter. The filtrate was captured in a 2 mL centrifuge tube and stored at -20°C until
244 further processing in-lab. As with the bulk rates, only the maximum potential particle-associated
245 rates, measured at different timepoints, are discussed in this study; the remaining timepoint
246 data are available in the Supplementary Information (Fig. S7f).

247 ***Data visualization and statistical analyses.*** Ocean Data View (ODV) was used to
248 create a station map, as well as to plot temperature and salinity. All enzyme activity and
249 correlation plots were visualized on R using the package ‘ggplot2’ and ‘corrplot’, respectively.
250 For bulk peptidase activities in surface waters and DCM, a curve was fitted, specifying the
251 ‘loess’ model, and a 95% confidence interval was calculated. Non-metric multidimensional
252 scaling (NMDS) through the R package ‘vegan’ was used to ordinate bulk versus particle-
253 associated rates using the Bray-Curtis dissimilarity index; the statistical significance of the
254 difference between these groups was tested using PerMANOVA (999 permutations) through the
255 function ‘adonis’ in the R package ‘vegan’. To measure the β -diversity of peptidase and
256 glucosidase activities per depth, the Bray-Curtis dissimilarities of sample data points (based on
257 bulk or particle-associated enzymatic profiles) to the per-depth group mean centroid was
258 calculated using the function ‘betadisper’ in the R package ‘vegan’. Correlation plots were based
259 on the Pearson correlations between enzyme activities and multiple biotic and abiotic
260 parameters. Correlation analyses were separately run using data from all depths, as well as data
261 from individual depth realms (e.g. epipelagic, mesopelagic, and bathypelagic). Shannon indices
262 were calculated based on an established equation fitted for enzyme activities (Steen et al. 2010).
263 ***Data availability.*** Hydrographic data are available in the PANGAEA repository
264 (Badewien et al. 2016). Enzyme activity data are available in the BCO-DMO database (Arnoldi,

265 2020a, 2020b, 2020c, 2020d). Data for bacterial cell counts, bacterial production rates, growth
266 rates, substrate turnover rates, POC and PON concentrations, and C:N ratios are available in
267 the PANGAEA repository (Giebel et al. 2020). Only a portion of the dataset by Giebel et al.
268 (2020)—from stations and depths where enzymatic activity data were measured (Table S1)—
269 were used for this manuscript.

270

271 **Results**

272 ***Environmental context.*** The transect stations covered a wide range of environmental
273 gradients (Fig. 1a). Surface water temperatures varied from 4.2°C at S18 (57°N) to 30.4°C at
274 S05 (5°S) (Fig. 1b). Surface water salinity ranged from 32.90 PSU at S19 (58.9°N), up to 35.92
275 PSU at S01 (30°S) (Fig. 1c); Table S1). At 300 m and below, temperature was highest (16.1°C)
276 at 300 m at S02 (27°S) and lowest (1.0°C) at 4000 m at S04 (10°S). POC in surface waters
277 covered a narrow range of ca. 28-32 $\mu\text{g L}^{-1}$ from 20°S to 20°N (Fig. S1a). POC increased
278 gradually in the North Pacific Subtropical Gyre, peaking at ca. 160 $\mu\text{g L}^{-1}$ at the southern edge
279 of the North Pacific Polar Frontal zone (NPPF; 40°N), comparable to the highest value at 60°N
280 in the Bering Sea. POC at the DCM paralleled surface water trends from 20°S to 20°N, but
281 values did not peak with the same intensity at 40°N (Fig. S1a). POC at the DCM reached its
282 highest concentration also at 59°N, but was only ca. 103 $\mu\text{g L}^{-1}$. In the surface and DCM, PON
283 trends mirrored surface water POC trends (Fig. S1b), yielding relatively consistent POC:PON
284 ratios in surface waters and at the DCM (Fig. S1c). In mesopelagic waters (300 m) and below,
285 POC and PON concentrations were low (Fig. S1a,b), but with POC:PON ratios higher than in
286 the epipelagic (Fig. S1c).

287 ***Bacterial counts, production, and growth.*** In surface waters, total bacterial cell
288 counts were highest in the northernmost latitudes, reaching values of 1.81×10^6 cells mL^{-1} at
289 40°N , and peaking at 2.17×10^6 cells mL^{-1} at 54°N in the Bering Sea. At the DCM, bacterial cell
290 counts were comparable to those in surface waters from 30°S until 40°N , but became decoupled
291 further north. Highest bacterial cell counts at the DCM were measured at 40°N , at ca. 1.04×10^6
292 cells mL^{-1} . At depths of 300 m and below, cell counts were generally an order of magnitude
293 lower than values from the epipelagic (Fig. S1d).

294 Bacterial production patterns deviated from bacterial cell count trends. In surface
295 waters, two peaks were observed for bacterial production: ca. $1170 \text{ ng C L}^{-1} \text{ hr}^{-1}$ at 5°S (S05),
296 and ca. $1282 \text{ ng C L}^{-1} \text{ hr}^{-1}$ at 16°N (S09) (Fig. S1e). At the South Pacific Subtropical Gyre (30°S
297 to 10°S), bacterial production remained low, ranging from 0.3 to $15.7 \text{ ng C L}^{-1} \text{ hr}^{-1}$. Bacterial
298 production rates north of the second peak were in the range of 50.3 to $321 \text{ ng C L}^{-1} \text{ hr}^{-1}$.
299 Bacterial production rates at the DCM throughout the transect remained low to moderate, only
300 reaching ca. $248 \text{ ng C L}^{-1} \text{ hr}^{-1}$. Trends for bacterial growth rates paralleled those for bacterial
301 protein production (Fig. S1f).

302 ***Latitudinal trends in bulk peptidase and glucosidase activities.*** Peptidase and
303 glucosidase activities showed distinct latitudinal trends at the surface and DCM (Fig. 2a). Leu-
304 AMP exhibited strong latitudinal variation, with lowest activities in the North Pacific
305 subtropical gyre (15°N), and gradually increasing activities with increasing latitude (Fig. 2a),
306 which peaked in the Bering Sea (Fig. S2a). The positive correlation of leu-AMP activities with
307 latitude was higher at the surface ($R^2 = 0.77$, $p < 0.001$) than at the DCM ($R^2 = 0.46$, $p <$
308 0.001). An even stronger — but negative — correlation was observed between leu-AMP

309 activities and temperature, both for surface ($R^2 = 0.83$, $p < 0.001$) and DCM ($R^2 = 0.49$, $p <$
310 0.001). No other peptidase or glucosidase activities exhibited a significant relationship with
311 latitude. Moreover, leu-AMP (exopeptidase) activities exhibited gradual transitions with
312 latitude, whereas the chymotrypsin and trypsin (endopeptidase) activities were highly patchy.
313 Substantial patchiness is evident in the broad 95% confidence interval for the fitted curve for
314 the endopeptidases (Fig. 2a). All endopeptidase activities exhibited distinct latitudinal patterns,
315 even those within the same enzyme class (e.g. AAF-chym vs. AAPF-chym, QAR-tryp vs. FSR-
316 tryp), and display decoupled trends between surface waters and the DCM (Fig. 2a).

317 Endopeptidase patchiness largely drives differences in enzymatic spectra (Fig. S2a) and
318 summed (combined) peptidase and glucosidase activities (Fig. S2b). For example, in the
319 equatorial surface water (S06), all endopeptidases showed moderate to high activities, but this
320 station was adjacent to two stations in which all endopeptidases either exhibited low or no
321 activities (Fig. S2a). Hence, patchiness among summed rates is also observed, with the three
322 highest values in surface waters observed at the northernmost station in the Bering Sea (60°N,
323 S19), 40°N (S13), and at the equator (Fig. S2b).

324 ***Depth-related trends in bulk peptidase and glucosidase activities.*** Substantial
325 variations in enzymatic profiles were apparent with increasing depth. Within the epipelagic,
326 surface and DCM patterns were frequently decoupled (Fig. 2a, S2a, S2b). For instance, low rates
327 at 5°S (S05) surface water contrasted with the high rates of a wide range of peptidases and
328 glucosidases at the DCM (Fig. S2a). Moreover, consistently high summed rates in surface waters
329 and DCM were only observed at 40°N (S13); the two other peak summed rates at the DCM
330 were measured at 47.5°N (S15) and 5°S (Fig. S2b).

331 The spectrum of enzyme activities became more limited with increasing depth (Fig. S3a),
332 and latitudinal patterns observed in the upper water column were also attenuated at depth (Fig.
333 S3b). With few exceptions (Fig. S3b), this trend resulted in generally lower summed rates (Fig.
334 S3c) and Shannon indices (Fig. S3d) in the deepest waters, driven most proximately by
335 decreasing rates of endopeptidase activities (Fig. 2b), often to undetectable levels (Fig. S3a). In
336 contrast, exo-acting leu-AMP and β -glucosidase activities in bottom waters were measured at
337 rates either comparable to — or higher than — those in the upper water column (Fig. 2b, S3a).
338 Hence, depth-averaged rates of glucosidase and peptidase activities demonstrate notable enzyme-
339 specific patterns with increasing depth (Fig. 2b).

340 ***Particle-associated versus bulk water peptidase and glucosidase trends.***

341 Enzyme activities on particles were distinct from those detected in bulk waters (Fig. 3a)
342 (PerMANOVA, Bray-Curtis, $R^2 = 0.37$, $p < 0.001$). Bulk water and particle-associated enzyme
343 activities also became more dissimilar with increasing depth, evident in the ordination as
344 overlapping data points at the DCM, but near-complete separation of points at 1000 m (Fig.
345 3a). Particle-associated enzyme activities exhibited more variability—visible with loose
346 clustering of data points—than patterns observed in bulk water (Fig. 3a). This activity
347 variability on particles increased deeper in the water column, but bulk water enzyme activities
348 showed the opposite trend (Fig. 3b). Results were similar when comparing bulk water and
349 particle-associated results both at 24 h (Fig. 3a-c), or at 12 h and 24 h, respectively (Fig. S4a-c).

350 Quantifying the percent contribution of particle-associated hydrolysis rates to bulk
351 hydrolysis rates revealed substantial differences in relative proportions of most enzyme activities
352 on particles compared to the bulk water. Whereas leu-AMP, at most, was ca. 18% particle-

associated at the equator, glucosidase and endopeptidase activities were 100% particle-associated in some locations and depths (Fig. 3c). Remarkably, the most frequently-detected enzyme activities on particles at 1000 m were α -glucosidase, AAPF-chym, FSR-tryp, albeit at very low rates (Fig. S5a). The high relative importance of α -glucosidase and endopeptidases on particles persisted throughout the entire latitudinal transect.

358 Most particle-associated enzyme activities peaked in warm tropical and sub-tropical
359 waters (Fig. S5a) and decreased with increasing latitude, mirroring trends in bulk water. High
360 rates and a wider spectrum of enzyme activities were observed at the equator (S06) and at 5°N
361 (S07) (Fig. S5b). Summed particle-associated activities in the DCM and at 300 m were highest
362 at the equator and decreased towards the poles (Fig. S5c). Summed rates also declined with
363 depth, accompanied by lower Shannon values (Fig. S5d); however, the steepest depth-related
364 decreases were observed in equatorial waters. At 1000 m, peptidase and glucosidase activities
365 were patchy, with no easily distinguishable spatial trend (Fig. S5a,b).

366 *Latitudinal variations in bulk polysaccharide hydrolase activities.* Robust
367 differences in polysaccharide hydrolase activities were observed throughout the transect, with
368 the most prominent shift at 45°N (S14), within the NPPF (Fig. 4). At this station and those
369 further north, enzymatic profiles were marked by higher chondroitin sulfate hydrolase activities
370 than observed elsewhere (Fig. 4, S6a-b). As a consequence, chondroitin hydrolysis rates
371 correlated positively with latitude ($R^2 = 0.43$, $p < 0.001$). In contrast, laminarinase activities
372 peaked in equatorial and adjacent waters (S01-S10), decreased towards the northernmost
373 latitudes, and correlated positively with temperature at all depths (see Section 3.9). Xylan was
374 hydrolyzed most rapidly in the low and mid-latitudes, but exhibited no significant relationship

375 with latitude. The highest summed polysaccharide hydrolase rates in surface waters were
376 observed at the equator (S06), due in large part to high laminarinase and xylanase rates (Fig.
377 S6b). Pullulanase activities were measurable at most stations down to depths of 300 m, but also
378 did not feature a strong latitudinal trend (Fig. S6a). Neither arabinogalactan nor fucoidan were
379 hydrolyzed in bulk waters. Thus, polysaccharide hydrolases demonstrate individual latitudinal
380 patterns, similar to findings for peptidases and glucosidases.

381 ***Depth-related differences in bulk polysaccharide hydrolase activities.*** Lower
382 rates and more limited spectra of polysaccharide hydrolases characterized deep versus surface
383 waters (Fig. 4, S6b). Summed rates remained comparable from surface waters to 300 m — at
384 times with the highest summed rates detected at the DCM or at 300 m (Fig. S6b). Accordingly,
385 highest Shannon values were frequently observed at the DCM or 300 m (Fig. S6d). Moreover,
386 the depth of steep attenuation of rates and enzymatic spectra varied by latitude. In the low to
387 mid-latitudes (S01-S10), rates and enzymatic spectra decreased markedly from 300 m to 1000 m,
388 whereas those in high latitudes remained comparable over the same depth range (Fig. 4, S5b).

389 ***Particle-associated polysaccharide hydrolase activities.*** The relative
390 contributions of polysaccharide hydrolases differed on particles (Fig. 5) compared to bulk waters
391 (PerMANOVA, Bray-Curtis, $R^2 = 0.39$, $p < 0.001$), despite not being visible in the NMDS
392 ordination (Fig. S7a,b). Wider spectra of polysaccharide hydrolases were measured on particles
393 at the same station and depth (Fig. 5). This trend was largely concentrated in low latitudes and
394 especially pronounced at 300 m at S02, and at the DCM and 300 m at S07—locations in which
395 fucoidan was hydrolyzed on particles but not in bulk water (Fig. 5). Moreover, at the DCM at
396 S07, five polysaccharides were hydrolyzed on particles, whereas only two were hydrolyzed in

397 bulk water (Fig. 4). Less pronounced examples, which nevertheless demonstrate wider spectra on
398 particles, were evident throughout the low latitudes.

399 Latitudinal and depth-related variations were observed for particle-associated activities,
400 based on entire spectra (Fig. 5, S7c) and for individual enzymes (Fig. S7d). Summed rates in the
401 DCM were higher in low latitudes than in high latitudes, with a peak at 10°S (S04) (Fig. S7c).
402 With increasing depth, summed rates decreased, although at several stations these values were
403 higher at 300 m than in the DCM (Fig. S7c). Enzyme-specific latitudinal trends were also
404 observed on particles, and featured higher laminarinase and xylanase activities in low latitudes,
405 but high chondroitin activities in high latitudes, particularly in the DCM (Fig. S7d). At 1000 m,
406 only laminarinase activities were consistently detected; activities of other polysaccharide
407 hydrolases were rarely detected. This increasingly limited spectrum of particle-associated
408 activities (Fig. 5) parallels the depth-related trend observed in bulk water, for polysaccharide
409 hydrolases, as well as peptidases and glucosidases.

410 As with patterns observed for particle-associated peptidases and glucosidases, the depth
411 of steep attenuation of rates and enzymatic spectra for particle-associated polysaccharide
412 hydrolases show pronounced latitudinal differences. High rates and wide spectra of particle-
413 associated polysaccharide hydrolases in low latitudes—particularly visible from 27°S to 22°N
414 (S02-S10)—were sharply attenuated from 300 m to 1000 m (Fig. 5). In contrast, particle-
415 associated rates in the DCM and at 300 m in the high latitudes were comparable to those at
416 1000 m, and with little loss of polysaccharide hydrolase activities, particularly in the two
417 northernmost stations (S16 and S18) (Fig. 5).

418 ***Abiotic and biotic correlates of enzyme activities.*** Correlations between enzyme
419 activities and physicochemical and bacterial parameters demonstrated varying trends based on
420 enzyme class (e.g., peptidases, glucosidases, and polysaccharide hydrolases), activity source (i.e.
421 bulk water vs. particles) and spatial scale (i.e., all depths vs. individual depths). Using data
422 from all depths, more statistically significant abiotic and biotic correlates were identified for
423 peptidases and glucosidases (Fig. 6a, 6b) than for polysaccharide hydrolases (Fig. 6c, 6d). Leu-
424 AMP in bulk waters exhibited more significant correlations than other peptidases and
425 glucosidases (Fig. 6a). Among the polysaccharide hydrolases, chondroitin sulfate hydrolysis
426 correlated with the most variables (Fig. 6c). Particle-associated peptidases and glucosidases
427 exhibited positive relationships with temperature, fluorescence, cell counts, and bacterial
428 production (Fig. 6b), as well as co-occurrence patterns, evident by positive relationships with
429 each other; such a trend was not observed among particle-associated polysaccharide hydrolases.
430 Finally, most enzyme activities were decoupled from turnover of amino acids, glucose, and
431 acetate (Fig. 6a-d).

432 As a caveat, many of the correlations identified using data from all depths (Fig. 6a-d)
433 persisted or differed from those observed when data were sub-divided by different depths (i.e.
434 epipelagic, mesopelagic, bathypelagic) (Fig. S8-S11), illustrating the scale dependence of these
435 relationships. Numerous correlations of leu-AMP with biotic and abiotic parameters persisted
436 throughout the water column, the most consistent of which is its negative relationship with
437 temperature (Fig. S8a-d). Many of the correlates for particle-associated peptidases and
438 glucosidases, as well the positive co-occurrence patterns, identified at all depths were undetected
439 in the depth-separated analyses (Fig. S9a-d). Relationships between latitude and rates of several

440 particle-associated peptidases and glucosidases were negative in datasets from all depths (Fig.
441 6b) and separately from the epipelagic (Fig. S9b) and mesopelagic (Fig. S9c), but positive in the
442 bathypelagic (Fig. S9d). Among polysaccharide hydrolases, both in bulk waters (Fig. S10a-d)
443 and on particles (Fig. S11a-d), few parameters correlated with enzyme activities; the range and
444 strength of correlates even decreased with increasing depth. However, the most robust
445 correlation was the consistent positive relationship of laminarinase activities with temperature,
446 observed in all iterations of the analysis (Fig. S10a-d, S11a-d).

447

448 Discussion

449 ***Heterogeneous latitudinal and depth-related trends.*** Marine microbial communities
450 exhibit substantial latitudinal and depth-related heterogeneity in their enzymatic capabilities to
451 initiate OM degradation across a 9,800 km transect between the South Pacific Gyre and the
452 Bering Sea. This “sea change” in enzymes across latitudes, depth, and the distinctions in bulk
453 water vs. particle-associated patterns is summarized in Figure 7. Latitudinal trends are enzyme-
454 specific (Figs. 2, 4): With increasing latitude, chondroitinase activities increase, but leucine
455 aminopeptidase and laminarinase activities decrease (Fig. 7); activities of other peptidase and
456 polysaccharide hydrolase exhibit significant spatial patchiness (Fig. 2-5). Enzymatic spectra —
457 that is, the range of measurable activities at a given location (e.g., Fig. S2a, 4, 5) — become
458 narrower with increasing latitude and depth (Fig. 7). These latitudinal (Arnosti et al. 2011) and
459 depth-related trends (Hoarfrost et al. 2017; Balmonte et al. 2018), previously observed in bulk
460 water, are also demonstrable in the particle-associated fraction. More importantly, differences in
461 enzymatic activities in bulk water and on particles increase with increasing depth (Fig. 3b, 7),

462 indicating that particle-associated taxa produce a set of enzymes that differ in range and
463 proportions from those of their free-living counterparts. This multidimensional view of spatial
464 heterogeneity in enzymatic patterns (Fig. 7) suggests different sources, controls, and substrate
465 specificity of microbially-produced enzymes across considerable depths and distances.

466 Biotic and abiotic correlates for enzyme activities provide hints of potential controls and
467 sources that differ both within and across enzyme classes, and on particles versus in bulk water
468 (Fig. 6). Peptidase and glucosidase activities more frequently exhibit significant correlations
469 with measured physicochemical and bacterial parameters (Fig. 6a,b) than do polysaccharide
470 hydrolase activities (Fig. 6c,d). When all depths are considered, several peptidase and
471 glucosidase activities correlate with factors related to primary production, including particulate
472 organic carbon, particulate organic nitrogen, and chl *a* concentrations (Fig. 6a,b). Particle-
473 associated peptidase and glucosidase activities across all depths (Fig. 6b) positively correlate
474 with cell counts and bacterial production. These findings suggest that particulate matter derived
475 largely from primary production is broken down to dissolved substrates (Fig. 7) and fuel
476 biomass production of free-living bacteria that dominate in particle-poor pelagic environments
477 (Smith et al. 1992). Moreover, variations in enzyme activities thus cannot be explained by
478 individual variables, or by a common set of parameters. This result is consistent with previous
479 findings from a large latitudinal gradient in surface waters (Arnosti et al. 2011) and in depth
480 transects along a shorter latitudinal gradient in the Atlantic (Hoarfrost and Arnosti, 2017).

481 Correlates are rarely observed for polysaccharide hydrolases, suggesting that other
482 factors likely better account for differences in these enzyme activities. The ability to degrade
483 and utilize polysaccharides is a complex trait, requiring more genes to carry out these functions
484 than simpler traits (Berlemont and Martiny, 2016). As a consequence, distribution of

485 polysaccharide utilization among microorganisms is phylogenetically narrow – or restricted to a
486 limited range of taxa. Hence, differences in microbial community composition may correspond to
487 variations in polysaccharide hydrolase activities measured in low vs. high latitudes (Fig. 7).
488 Latitudinal differences in marine microbial communities, both in structure and in function
489 (Ghiglione et al. 2012; Sul et al. 2013; Ibarbalz et al. 2019; Salazar et al. 2019) support this
490 explanation. In particular, rapid changes in epipelagic microbial community metagenomes and
491 metatranscriptomes were detected at 40°N (Salazar et al. 2019) in the transition from thermally-
492 stratified to well-mixed polar waters (Behrenfeld et al. 2006). Similarly, polysaccharide hydrolase
493 profiles shifted markedly along the transect between the subtropical/temperate North Pacific
494 and the sub-Arctic Pacific (S14, 45°N; Table S1), characterized by high chondroitin sulfate
495 hydrolase and low laminarinase activities (Figs. 4, 5, 7). While the ecological boundary was
496 identified among stations predominantly in the North Atlantic (Salazar et al. 2019), the
497 transition from thermally-stratified to a well-mixed regime is also evident in the Pacific Ocean
498 temperature profiles (Fig. 1b). Thus, a similar ecological boundary for microbial communities in
499 the Pacific Ocean may have influenced spatial patterns of polysaccharide hydrolase activities.

500 Notably, the rates and spectrum of peptidase, glucosidase and polysaccharide hydrolase
501 activities (Fig. 4, 5, S3a, S5b) decrease with increasing depth, and individual enzymes exhibit
502 distinct patterns (Fig. 2b). Lower rates and limited enzymatic spectra in deeper waters (Fig. 7)
503 are in accordance with previous enzyme activity depth profiles measured in the South and
504 Equatorial Atlantic Ocean (Hoarfrost et al. 2017), Gulf of Mexico (Steen et al. 2012), and the
505 central Arctic (Balmonte et al. 2018). These depth-related enzymatic patterns may indicate a
506 widespread microbial strategy: compared to their deep water counterparts, microbial
507 communities in surface waters invest greater resources to readily produce a more diverse set of

508 enzymes to access the frequently-replenished organic matter supply in the upper water column
509 (Fig. 7). However, microbial potential to produce many of these enzymes (Balmonte et al. 2019)
510 and their substrate transporters (Bergauer et al. 2018; Zhao et al. 2020) exist in deep waters as
511 in surface waters. The extent to which these enzymes are produced is therefore partially
512 controlled by the availability of organic matter exported from surface waters (Fig. 7).

513 ***Contrasting enzyme patterns on particles.*** Distinct proportions and often wider
514 enzymatic spectra are detected on particles (Fig. 4, S5b) than in bulk seawater (Fig. 5, S3a),
515 indicating the importance of particle-associate taxa for enzyme production even down to the
516 bathypelagic (Fig. 7). Detection of genes encoding secretory CAZymes and peptidases, as well as
517 transcripts and proteins for OM hydrolysis that likely belong to particle-associated taxa in the
518 bathypelagic support this interpretation (Zhao et al. 2020). While the contribution of cell-bound
519 vs. dissolved secreted enzymes cannot be ascertained from our measurements, a previous study
520 suggests that much of the particle-associated enzymatic activities are likely due to enzymes
521 secreted into the particle matrix (Zhao et al. 2020). Further, endo-acting peptidase activities can
522 at times be attributed only to the particle-associated fraction (Fig. 3c, S5b). In contrast, only a
523 minor fraction of exo-acting peptidase activities—measured here using the leucine substrate—is
524 detected on particles (Fig. 3c). Endo-acting enzymes thus likely play a critical role in
525 degradation of particles, as previously observed among polysaccharide hydrolases in the North
526 Atlantic (D'Ambrosio et al. 2014), the central Arctic (Balmonte et al. 2018), and a northeast
527 Greenland fjord (Balmonte et al. 2020). Although their activities vary regionally, endo-acting
528 enzymes produced by particle-associated microbial communities likely play a widespread role in

529 efficient degradation of protein and carbohydrate constituents of particulate matter (Obayashi
530 and Suzuki, 2005) from surface to deep waters (Fig. 7).

531 Latitudinal differences in particle-associated enzyme activities (Fig. 7) and the depths at
532 which they sharply decline are robust, and may be linked to latitudinal differences in particle
533 export and transfer efficiencies (Marsay et al. 2015; Weber et al. 2016; Henson et al. 2012;
534 Henson et al. 2019). Low particle export efficiency at low latitudes (Henson et al. 2012) indicates
535 intense remineralization in the epipelagic, consistent with the high and wide-ranging particle-
536 associated enzymatic activities in our low latitude stations (Fig. 7). Such intense particulate
537 matter degradation results in rapid particle flux attenuation (Marsay et al. 2015) and, thus, low
538 particle transfer efficiencies (Weber et al. 2016), coincident with lower rates of particle-
539 associated enzyme activities in low latitude deep waters (Fig. 5, S5b). In contrast, less intense
540 remineralization in the epipelagic at high latitudes (Henson et al. 2012; Marsay et al. 2015)
541 result in high particle export and transfer efficiencies to deep waters (Weber et al. 2016). High
542 particle fluxes likely sustain the wide range of particle associated activities still detectable in the
543 mesopelagic-bathypelagic transition at high latitudes (Fig. 5, S5b). That the highest total
544 organic carbon concentration exported to sediments was measured in the northernmost station
545 of the transect (Pohlner et al. 2017) indicates high particle export and transfer in the Bering
546 Sea. As a caveat, recent findings demonstrate substantial differences in within-region particle
547 export and transfer efficiencies (Henson et al. 2019). Nevertheless, we hypothesize that
548 latitudinal differences in the enzymatic capabilities of particle-associated taxa (Fig. 7) may
549 additionally influence variations in particle export and transfer efficiencies, consistent with
550 observations of a primary role of particle fragmentation for particle fluxes (Briggs et al. 2020).

551 Finally, with increasing depth, peptidase and glucosidase activities became increasingly
552 divergent between bulk water and particles (Fig. 3a, 7). This pattern bears a striking
553 resemblance to that observed among bulk seawater and particle-associated bacterial community
554 composition in the central Arctic (Balmonte et al. 2018). Microbial decision to remain particle-
555 attached or detach can be predicted by the optimal foraging theory and patch use dynamics
556 (Yawata et al. 2020). In particle-poor environments, such as the deep ocean, microbes increase
557 residence time on particles to maximize fitness and avoid long search times for other particles.
558 Reduced frequency of detachment would yield increasingly divergent particle-attached versus
559 free-living taxa with increasing depth, with clear consequences in enzymatic patterns (Fig. 3a,
560 7). Longer particle residence time and distinct within-particle microbial community development
561 trajectories (Thiele et al. 2015) could lead to large differences in particle-attached microbial
562 community composition and activities in deep waters. Accordingly, variability in particle-
563 associated enzyme activity patterns increased with increasing depth, but decreased for bulk
564 water patterns (Figs. 3b, 7). These patterns are consistent with increased variability among deep
565 water particle-associated microbial communities, due to regional differences in environmental
566 conditions and particle quality and quantity (Salazar et al. 2016); such patterns are not evident
567 for free-living taxa. A depth-related decrease in β -diversity in microbial metabolic potentials
568 (Sunagawa et al. 2015) is consistent with enzymatic patterns in bulk water, but not on particles,
569 reflecting the largely free-living lifestyle of microbes in the deep due to particle patchiness.
570 Distinct bulk water and particle-associated enzyme patterns underscore the importance of
571 particles in shaping microbial biogeochemical roles throughout the water column (Fig. 7).
572

573 **Conclusion**

574 Latitudinal and depth differences in enzyme activities indicate substantial variations in
575 microbial capabilities to degrade organic matter (Fig. 7). Enzyme-specific spatial trends and
576 correlates, and different relative proportions of enzyme activities in bulk water and on particles,
577 suggest varying sources, kinetics, and controls. Nevertheless, several features of enzyme activities
578 can be generalized. Microbial communities employ narrower enzymatic spectra with increasing
579 depth in bulk water and on particles, highlighting the importance of organic matter nature and
580 quantity in structuring these patterns (Fig. 7). Moreover, activities of rarely-measured
581 endopeptidases can exceed leucine aminopeptidase activities, especially on particles. Collectively,
582 activities of a broad range of enzymes display latitudinal and depth-related trends in organic
583 matter degradation consistent with emerging patterns of microbial community structure and
584 function, and particles fluxes on a global scale.

585 **References**

586 Alderkamp, A.-C., M. Van Rijssel, and H. Bolhuis. 2007. Characterization of marine bacteria
587 and the activity of their enzyme systems involved in degradation of the algal storage
588 glucan laminarin. *FEMS Microbiol. Ecol.* 59: 108-117

589 Arnosti, C. 2003. Fluorescent derivatization of polysaccharides and carbohydrate-containing
590 biopolymers for measurement of enzyme activities in complex media. *J. Chromatogr. B.*
591 793: 181-191

592 Arnosti, C. 2011. Microbial Extracellular Enzymes and the Marine Carbon Cycle. *Annu. Rev.*
593 *Mar. Sci.* Vol 3. pp 401-425

594 Arnosti, C. 2020a. Microbial enzyme activities: glucosidase and peptidase activities of bulk
595 seawater samples from the RV\Sonne cruise SO248 in the South and North Pacific,
596 along 180 W, May, 2016. *Biological and Chemical Oceanography Data Management*
597 *Office (BCO-DMO)*. Dataset version 2018-07-31. doi:10.26008/1912/bco-dmo.743224.1
598 Accessed 2020-01-10

599 Arnosti, C. 2020b. Microbial enzyme activities: glucosidase and peptidase activities of gravity
600 filtered seawater samples from the RV\Sonne cruise SO248 in the South and North
601 Pacific, along 180 W, May, 2016. *Biological and Chemical Oceanography Data*
602 *Management Office (BCO-DMO)*. Dataset version 2018-07-31. doi:10.26008/1912/bco-
603 dmo.743320.1 Accessed 2020-01-10

604 Arnosti, C. 2020c. Microbial enzyme activities: polysaccharide hydrolase activities in bulk
605 seawater samples from the RV\Sonne cruise SO248 in the South and North Pacific,
606 along 180 W, May, 2016. *Biological and Chemical Oceanography Data Management*

607 Office (BCO-DMO). Dataset version 2018-07-31. doi:10.26008/1912/bco-dmo.743054.1

608 Accessed 2020-01-10

609 Arnosti, C. 2020d. Microbial enzyme activities: polysaccharide hydrolase activities of gravity

610 filtered seawater samples from the R/V Sonne cruise SO248 in the South and North

611 Pacific, along 180 W, May, 2016. Biological and Chemical Oceanography Data

612 Management Office (BCO-DMO). Dataset version 2018-07-31. doi:10.26008/1912/bco-

613 dmo.743274.1 Accessed 2020-01-10

614 Arnosti, C. 2015. Contrasting strategies in microbial degradation of organic matter in the water

615 column and sediments: An example from Arctic fjords of Svalbard. Mar. Chem. 168: 151-

616 156

617 Arnosti, C., A.D. Steen, K. Ziervogel, S. Ghobrial, and W.H. Jeffrey. 2011. Latitudinal

618 Gradients in Degradation of Marine Dissolved Organic Carbon. PLoS ONE 6: e28900

619 Azam, F. and F. Malfatti. 2007. Microbial structuring of marine ecosystems (vol 5, pg 782-791,

620 2007). Nature Rev. Microbiol. 5: 966-U923.

621 Badewien, T.H., H. Winkler, K.L. Arndt, and M. Simon. 2016. Physical oceanography during

622 SONNE cruise SO248 (BacGeoPac). Institute for Chemistry and Biology of the Marine

623 Environment, Carl-von-Ossietzky University of Oldenburg, Germany, PANGAEA,

624 <https://doi.org/10.1594/PANGAEA.864673>

625 Balmonte, J.P., A. Teske, and C. Arnosti. 2018. Structure and function of high Arctic pelagic,

626 particle-associated and benthic bacterial communities. Environ. Microbiol. 20: 2941-2954.

627 Balmonte, J.P., A. Buckley, A. Hoarfrost, S. Ghobrial, K. Ziervogel, A. Teske, and others. 2019.

628 Community structural differences shape microbial responses to high molecular weight

629 organic matter. Environ. Microbiol. 21: 557-571.

630 Balmonte, J.P., H. Hasler-Sheetal, R.N. Glud, T.J. Andersen, M.K. Sejr, M. Middelboe, and
631 others. 2020. Sharp contrasts between freshwater and marine microbial enzymatic
632 capabilities, community composition, and DOM pools in a NE Greenland fjord. Limnol.
633 Oceanogr. 65: 77-95.

634 Baltar, F., J. Aristegui, E. Sintes, H.M. van Aken, J.M. Gasol, and G.J. Herndl. 2009.
635 Prokaryotic extracellular enzymatic activity in relation to biomass production and
636 respiration in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ.
637 Microbiol. 11: 1998-2014.

638 Baltar, F., J. Arístegui, J.M. Gasol, E. Sintes, H.M. van Aken, and G.J. Herndl. 2010. High
639 dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquat.
640 Microb. Ecol. 58: 287-302.

641 Behrenfeld, M.J., R.T. O'Malley, D.A. Siegel, C.R. McClain, J.L. Sarmiento, G.C. Feldman,
642 and others. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:
643 752-755.

644 Benner, R. 2002. Chemical Composition and Reactivity: p. 59-90. In D. A. Hansell and C. A.
645 Carlson [eds.], Biogeochemistry of marine dissolved organic matter. Elsevier.

646 Bergauer, K., A. Fernandez-Guerra, J.A.L. Garcia, R.R. Sprenger, R. Stepanauskas, and M.G.
647 Pachiadaki. 2018. Organic matter processing by microbial communities throughout the
648 Atlantic water column as revealed by metaproteomics. Proc. Natl. Acad. Sci. USA 115:
649 E400-E408.

650 Berlemont, R and A.C. Martiny. 2016. Glycoside hydrolases across environmental microbial
651 communities. PLoS Comp. Biol. 12: e1005300.

652 Bong C.W., Y. Obayashi, and S. Suzuki. 2013. Succession of protease activity in seawater and
653 bacterial isolates during starvation in a mesocosm experiment. *Aquat. Microb. Ecol.* 69:
654 33-46

655 Briggs, N, G. Dall'Olmo, and H. Claustre. 2020. Major role of particle fragmentation in
656 regulating biological sequestration of CO₂ by the oceans. *Science* 367: 791-793.

657 Christian, J.R. and D.M. Karl. 1995. Bacterial ectoenzymes in marine waters: Activity ratios
658 and temperature responses in three oceanographic provinces. *Limnol. Oceanogr.* 40: 1042-
659 1049.

660 D'Ambrosio, L., K. Ziervogel, B. MacGregor, A. Teske, and C. Arnosti. 2014. Composition and
661 enzymatic function of particle-associated and free-living bacteria: a coastal/offshore
662 comparison. *ISME J.* 8: 2167-2179.

663 Davey, K.E., R.R. Kirby, C.M. Turley, A.J. Weightman, and J.C. Fry. 2001. Depth variation of
664 bacterial extracellular enzyme activity and population diversity in the northeastern
665 North Atlantic Ocean. *Deep Sea Res. Part II Top. Stud. Oceanogr.* 48: 1003-1017.

666 Elifantz, H., L.A. Waidner, M.T. Cottrell, and D.L. Kirchman. 2008. Diversity and abundance
667 of glycosyl hydrolase family 5 in the North Atlantic Ocean. *FEMS Microbiol. Ecol.* 63:
668 316-327.

669 Fuhrman, J.A., J.A. Steele, I. Hewson, M.S. Schwalbach, M.V. Brown, and J.L. Green. 2008. A
670 latitudinal diversity gradient in planktonic marine bacteria. *Proc. Natl. Acad. Sci. USA.*
671 105: 7774-7778.

672 Fukuda, R, Y. Sohrin, N. Saotome, H. Fukuda, T. Nagata, and I. Koike. 2000. East—west
673 gradient in ectoenzyme activities in the subarctic Pacific: Possible regulation by zinc.
674 *Limnol. Oceanogr.* 45: 930-939.

675 Ghiglione, J.F., P.E. Galand, T. Pommier, C. Pedros-Alio, E.W. Maas, K. Bakker, and others.

676 2012. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc.

677 Natl. Acad. Sci. USA. 109: 17633-17638.

678 Giebel, H.A., M. Wolterink, T. Brinkhoff, and M. Simon (2019). Complementary energy

679 acquisition via aerobic anoxygenic photosynthesis and carbon monoxide oxidation by

680 Planktomarina temperata of the Roseobacter group. FEMS Microbiology Ecology 95(5):

681 fiz050.

682 Giebel, H.A, K.L. Arndt KL, C. Arnosti, T.H. Badewien, I. Bakenhus, J.P. Balmonte, and

683 others. 2020: Hydrography, Biogeochemistry, microbial population, growth and substrate

684 dynamics between subarctic and subantarctic waters in the Pacific Ocean during the

685 cruises SO248 and SO254 with RV Sonne. PANGAEA,

686 <https://doi.pangaea.de/10.1594/PANGAEA.918500>

687 Henson, S., F. Le Moigne, and S. Giering. 2019. Drivers of Carbon Export Efficiency in the

688 Global Ocean. Global Biogeochem. Cycles 33: 891-903.

689 Henson, S.A., R. Sanders, and E. Madsen. 2012. Global patterns in efficiency of particulate

690 organic carbon export and transfer to the deep ocean. Global Biogeochem. Cycles 26.

691 Hoarfrost, A. and C. Arnosti. 2017. Heterotrophic Extracellular Enzymatic Activities in the

692 Atlantic Ocean Follow Patterns Across Spatial and Depth Regimes. Front. Mar. Sci. 4.

693 Ibarbalz, F.M., N. Henry, M.C. Brandão, S. Martini, G. Busseni, H. Byrne, and others. 2019.

694 Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 179: 1084-

695 1097.e1021.

696 Ladau J, T.J. Sharpton, M.M. Finucane, G. Jospin, S.W. Kembel, J. O'Dwyer, and others. 2013.

697 Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 7: 1669-

698 1677.

699 Louca, S., L.W. Parfrey, and M. Doebeli. 2016. Decoupling function and taxonomy in the global

700 ocean microbiome. *Science* 353: 1272-1277.

701 Lunau, M., A. Lemke, O. Dellwig, and M. Simon (2006). Physical and biogeochemical controls

702 of microaggregate dynamics in a tidally affected coastal ecosystem. *Limnol. Oceanogr.*

703 51: 847-859.

704 Marsay, C.M., R.J. Sanders, S.A. Henson, K. Pabortsava, E.P. Achterberg, R.S. Lampitt. 2015.

705 Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean.

706 Proc. Natl. Acad. Sci. USA. 112: 1089-1094.

707 Neumann, A.M., J.P. Balmonte, M. Berger, H.A. Giebel, C. Arnosti, S. Voget and others. 2015.

708 Different utilization of alginate and other algal polysaccharides by marine Alteromonas

709 macleodii ecotypes. *Environ. Microbiol.* 10: 3857-3868

710 Obayashi, Y. and S. Suzuki. 2005. Proteolytic enzymes in coastal surface seawater: Significant

711 activity of endopeptidases and exopeptidases. *Limnol. Oceanogr.* 50: 722-726.

712 Painter, T.J. 1983. Algal Polysaccharides: p. 195-285. In G. O. Aspinall [ed], *The*

713 polysaccharides, v. 2. Academic Press.

714 Pohlner, M., J. Degenhardt, A.J.E. von Hoyningen-Huene, B. Wemheuer, N. Erlmann, B.

715 Schnetger, and others. 2017. The Biogeographical Distribution of Benthic Roseobacter

716 Group Members along a Pacific Transect Is Structured by Nutrient Availability within

717 the Sediments and Primary Production in Different Oceanic Provinces. *Front. Microbiol.*

718 8.

719 Pommier, T., B. Canbäck, L. Riemann, K.H. Bostrom, K. Simu, P. Lundberg, and others. 2007.

720 Global patterns of diversity and community structure in marine bacterioplankton. *Molec.*

721 *Ecol.* 16: 867-880.

722 Raes, E.J., L. Bodrossy, J. van de Kamp, A. Bissett, M. Ostrowski, M.V. Brown, and others.

723 2018. Oceanographic boundaries constrain microbial diversity gradients in the South

724 Pacific Ocean. *Proc. Natl. Acad. Sci. USA.* 115: E8266-E8275.

725 Raes, J., I. Letunic, T. Yamada, L.J. Jensen, and P. Bork. 2011. Toward molecular trait-based

726 ecology through integration of biogeochemical, geographical and metagenomic data.

727 *Molec. Syst. Biol.* 7.

728 Salazar, G., F.M. Cornejo-Castillo, V. Benítez-Barrios, E. Fraile-Nuez, X.A. Álvarez-Salgado,

729 C.M. Duarte, and others. 2016. Global diversity and biogeography of deep-sea pelagic

730 prokaryotes. *ISME J.* 10: 596-608.

731 Salazar, G., L. Paoli, A. Alberti, J. Huerta-Cepas, H.J. Ruscheweyh, M. Cuenca, and others.

732 2019. Gene Expression Changes and Community Turnover Differentially Shape the

733 Global Ocean Metatranscriptome. *Cell* 179: 1068-1083.e1021.

734 Simon, M. and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine

735 bacteria. *Mar. Ecol. Prog. Ser.* 51: 201-213.

736 Simon, M, B. Rosenstock, and W. Zwisler. 2004. Coupling of epipelagic and mesopelagic

737 heterotrophic picoplankton production to phytoplankton biomass in the Antarctic polar

738 frontal region. *Limnol. Oceanogr.* 49: 1035-1043.

739 Smith, D.C., M. Simon, A.L. Alldredge, and F. Azam. 1992. Intense hydrolytic enzyme activity

740 on marine aggregates and implications for rapid particle dissolution. *Nature* 359: 139-142.

741 Steen, A.D., K. Zervogel, S. Ghobrial, and C. Arnosti. 2012. Functional variation among
742 polysaccharide-hydrolyzing microbial communities in the Gulf of Mexico. *Mar. Chem.*
743 138: 13-20.

744 Steen A.D., and C. Arnosti. 2013. Extracellular peptidase and carbohydrate hydrolase activities
745 in an Arctic fjord (Smeerenburgfjord, Svalbard). *Aquat. Microb. Ecol.* 69: 93-99.

746 Sul, W.J., T.A. Oliver, H.W. Ducklow, L.A. Amaral-Zettler, and M.L. Sogin. 2013. Marine
747 bacteria exhibit a bipolar distribution. *Proc. Natl. Acad. Sci. USA.* 110: 2342-2347.

748 Sunagawa, S., L.P. Coelho, S. Chaffron, J.R. Kultima, K. Labadie, G. Salazar G, and others.
749 2015. Structure and function of the global ocean microbiome. *Science* 348.

750 Teeling, H., B.M. Fuchs, D. Becher, C. Klockow, A. Gardebrecht, C.M. Bennke, and others.
751 2012. Substrate-controlled succession of marine bacterioplankton populations induced by
752 a phytoplankton bloom. *Science* 336: 608-611.

753 Teeling, H., B.M. Fuchs, C.M. Bennke, K. Krüger, M. Chafee, L. Kappelmann, and others.
754 2016. Recurring patterns in bacterioplankton dynamics during coastal spring algae
755 blooms. *eLife* 5: e11888.

756 Teske, A., A. Durbin, K. Zervogel, C. Cox, and C. Arnosti. 2011. Microbial Community
757 Composition and Function in Permanently Cold Seawater and Sediments from an Arctic
758 Fjord of Svalbard. *Appl. Environ. Microbiol.* 77: 2008-2018.

759 Thiele, S., B.M. Fuchs, R. Amann, and M.H. Iversen. 2015. Colonization in the Photic Zone and
760 Subsequent Changes during Sinking Determine Bacterial Community Composition in
761 Marine Snow. *Appl. Environ. Microbiol.* 81: 1463-1471.

762 Vetter, Y.A., J.W. Deming, P.A. Jumars, and B.B. Krieger-Brockett. 1998. A Predictive Model
763 of Bacterial Foraging by Means of Freely Released Extracellular Enzymes. *Microb. Ecol.*
764 36: 75-92.

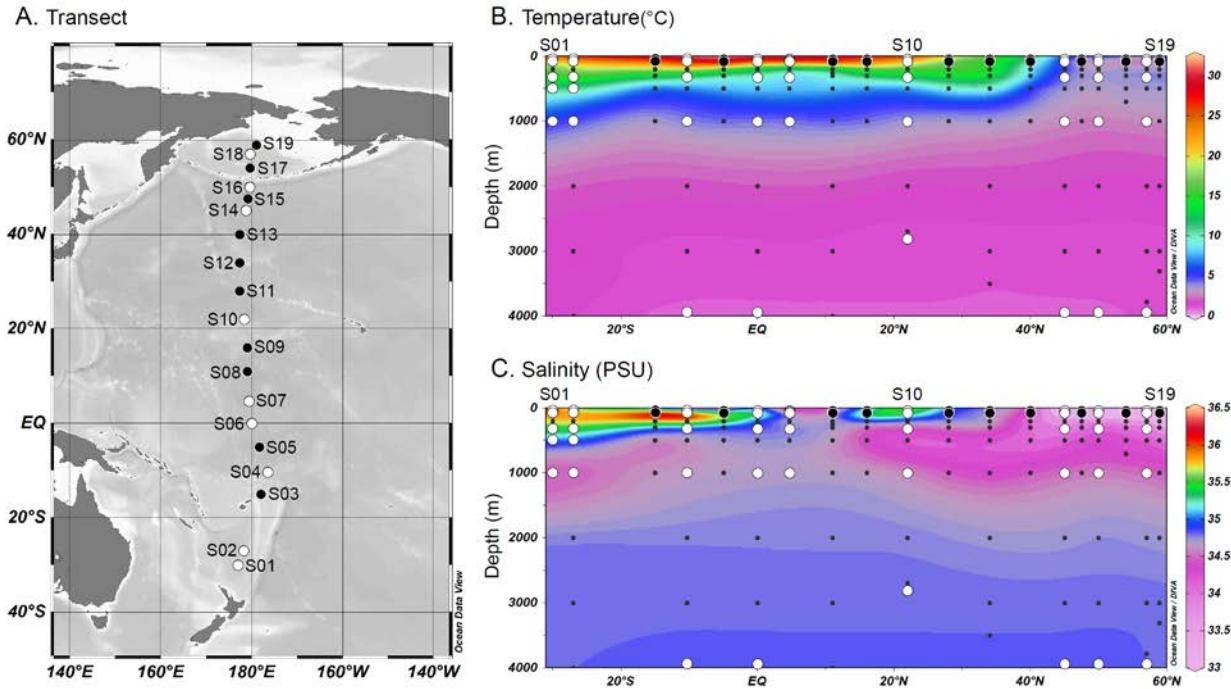
765 Weber, T., J.A. Cram, S.W. Leung, T. DeVries, and C. Deutsch. 2016. Deep ocean nutrients
766 imply large latitudinal variation in particle transfer efficiency. *Proc. Natl. Acad. Sci.*
767 USA. 113: 8606-8611.

768 Weiss, M.S., U. Abele, J. Weckesser, W. Welte, E. Schiltz, and G.E. Schulz. 1991. Molecular
769 architecture and electrostatic properties of a bacterial porin. *Science* 254: 1627-1630.

770 Wietz, M., L. Gram, B. Jørgensen, and A. Schramm (2010). Latitudinal patterns in the
771 abundance of major marine bacterioplankton groups. *Aquat. Microb. Ecol.* 61: 179.

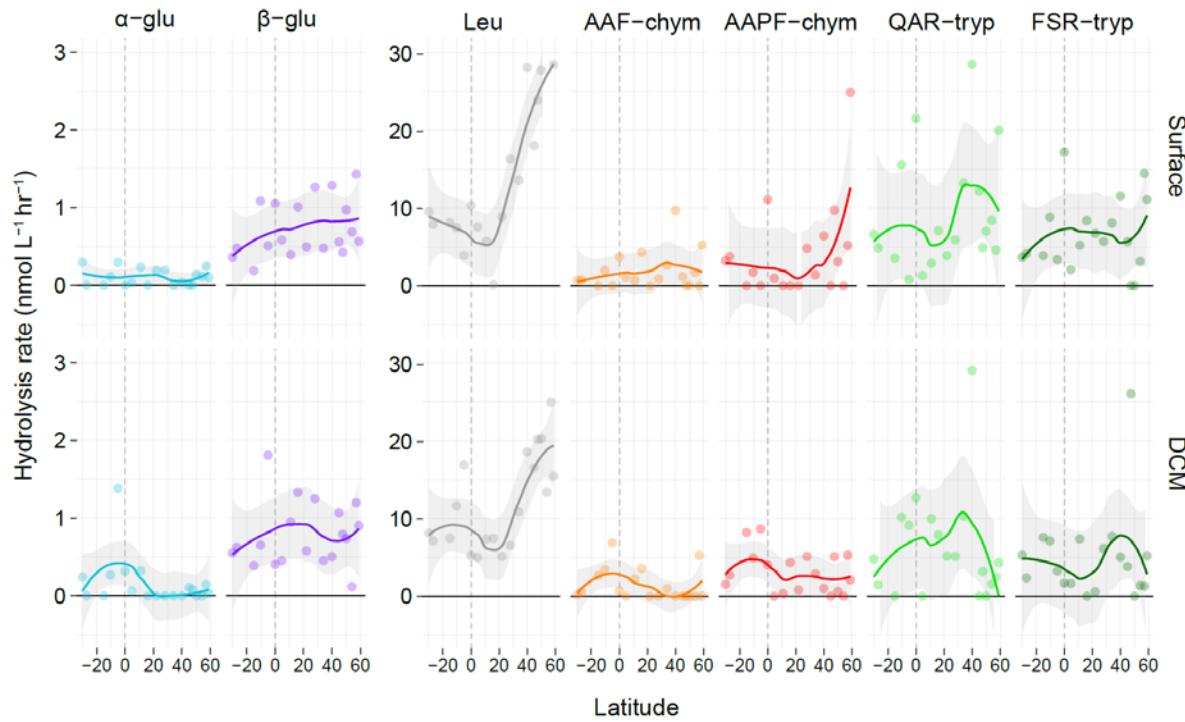
772 Zaccone, R., L.S Monticelli, A. Seritti, C. Santinelli, M. Azzaro, A. Boldrin, and others. 2003.
773 Bacterial processes in the intermediate and deep layers of the Ionian Sea in winter 1999:
774 Vertical profiles and their relationship to the different water masses. *J. Geophys. Res.*
775 Oceans 108.

776 Zhao, Z, F. Baltar, and G.J. Herndl. 2020. Linking extracellular enzymes to phylogeny indicates
777 a predominantly particle-associated lifestyle of deep-sea prokaryotes. *Sci. Adv.*
778 6:eaaz4354


779 Zervogel, K. and C. Arnosti. 2020. Substantial Carbohydrate Hydrolase Activities in the Water
780 Column of the Guaymas Basin (Gulf of California). *Front. Mar. Sci.* 6.

781

782 **Acknowledgements**


783 We thank the captain, crew, and scientific party of R/V Sonne for their excellent fieldwork
784 support. Additionally, we thank Sherif Ghobrial, Karylle Abella-Hall, and Sarah Brown for
785 assistance with sample processing. The cruise (SO248) was funded by the German Federal
786 Ministry of Education and Research (BMBF) within the BacGeoPac project (03G0248A). JPB
787 and CA were supported by NSF (OCE-1332881 and OCE-1736772 to CA). JPB was additionally
788 funded by a UNC Dissertation Completion Fellowship, UNC Global Partnership Award, and a
789 Carl Tryggers Postdoctoral Fellowship at Uppsala University. MS and HAG were also supported
790 by Deutsche Forschungsgemeinschaft within the Collaborative Research Center Roseobacter
791 (TRR51).

Main Figures

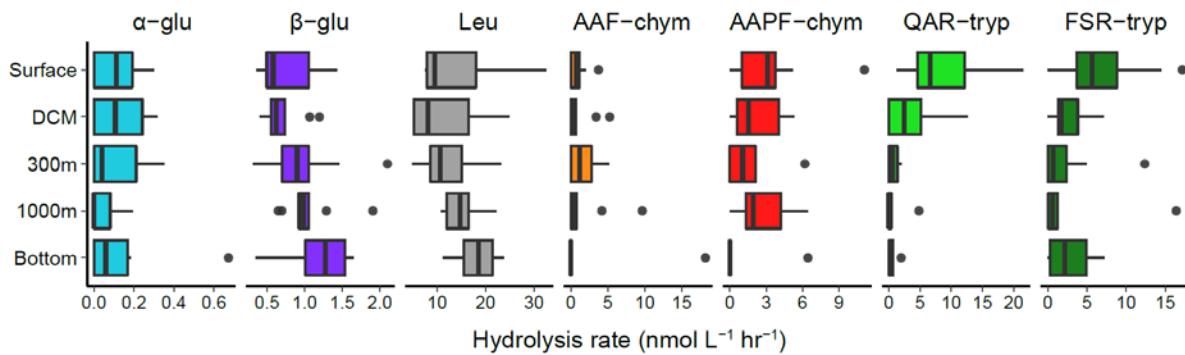
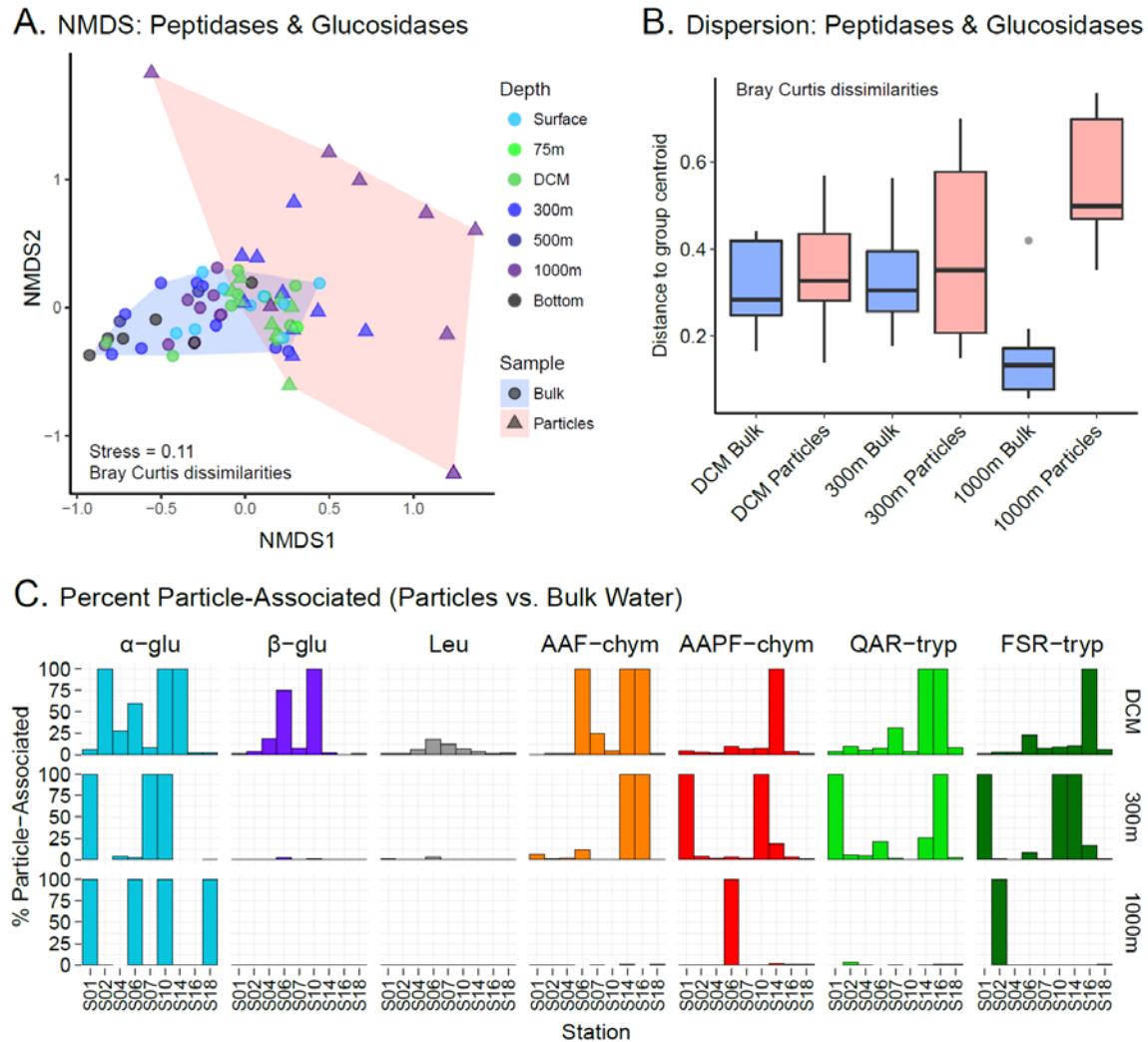
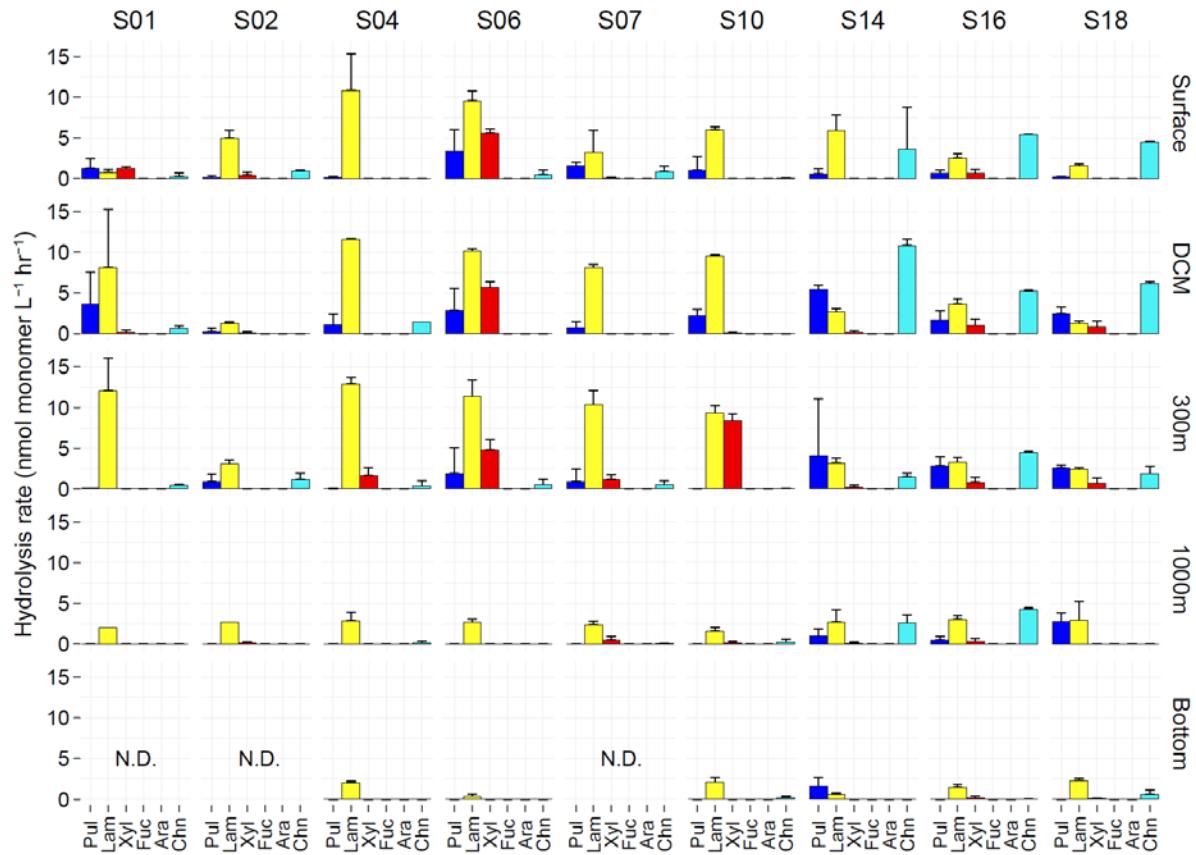
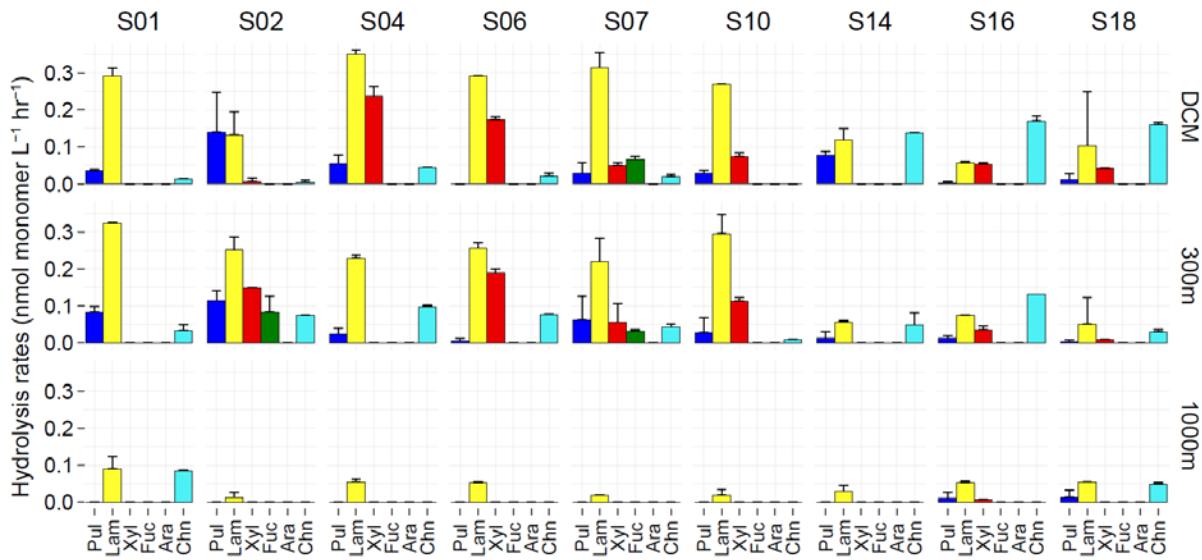
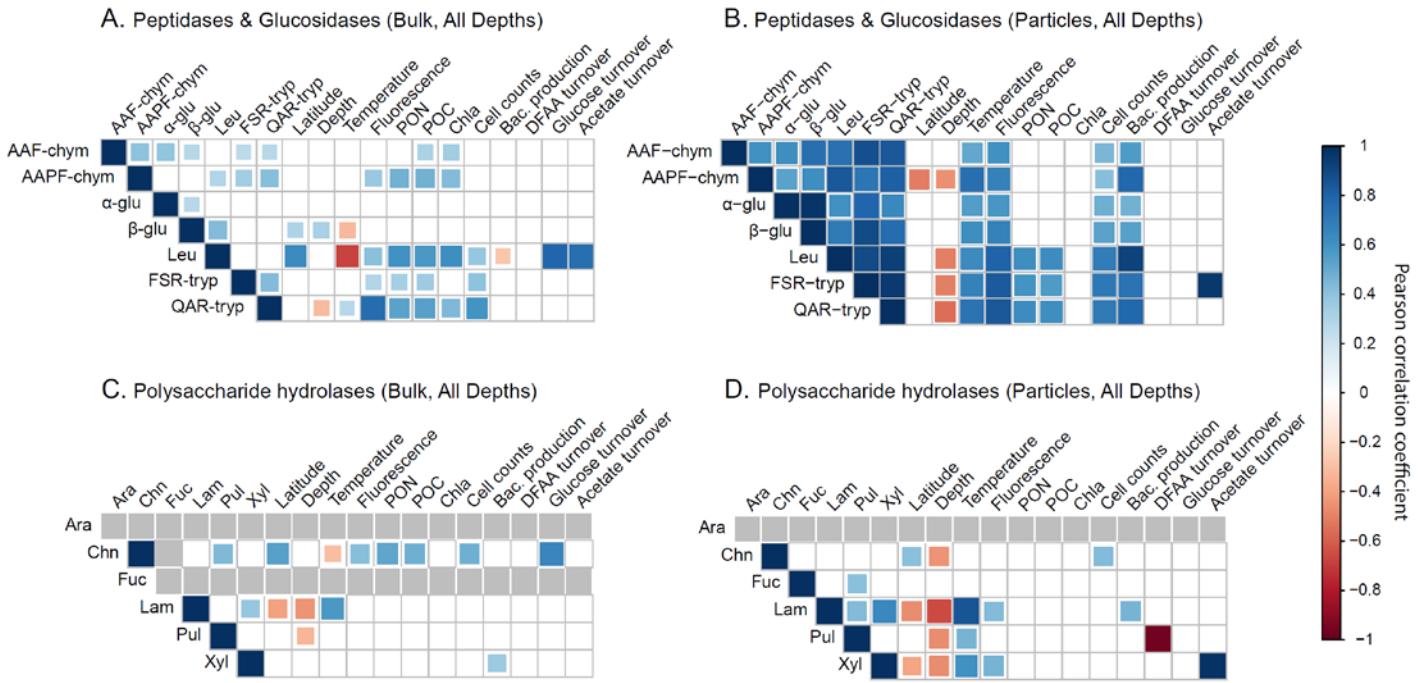


Figure 1. Map of stations from the South Pacific to the Bering Sea (A), temperature (B) and salinity (C) along the transect. Large black circles denote the stations where only bulk water peptidase and glucosidase were measured at the surface and DCM. White circles denote the stations where the full spectrum of enzymatic assays was carried out at all depths.


A. Bulk Water, Surface & DCM, All Stations


B. Bulk Water, All Depths, Main Stations


Figure 2. Bulk (non-size fractionated) glucosidase and peptidase activities in surface waters and at the deep chlorophyll maximum (DCM) at all stations (A), and at all depths for the main stations (B). Negative latitudes are those south of the equator. Note that DCM and bottom water depths vary by station, and x-axis scales differ by substrate. Gray shading (A) represents 95% confidence interval.


Figure 3. Non-metric multidimensional scaling (NMDS) plot of bulk water (blue) and particle-associated (pink) glucosidase and peptidase activities using the Bray-Curtis dissimilarity index (A). Bray-Curtis based group dispersions of bulk water and particle-associated glucosidase and peptidase activities, measured as distances of sample rates to group centroid at the DCM, 300 m (mesopelagic), and 1000 m (bathypelagic) (B). Proportion of bulk water glucosidase and peptidase activities attributable to the $\geq 3 \mu\text{m}$ particle-associated fraction (C). Note that bulk water peptidase and glucosidase rates used here were measured at the 24 h (t2) timepoint, for direct comparison to the particle-associated rates at the 24 h (t1) timepoint.

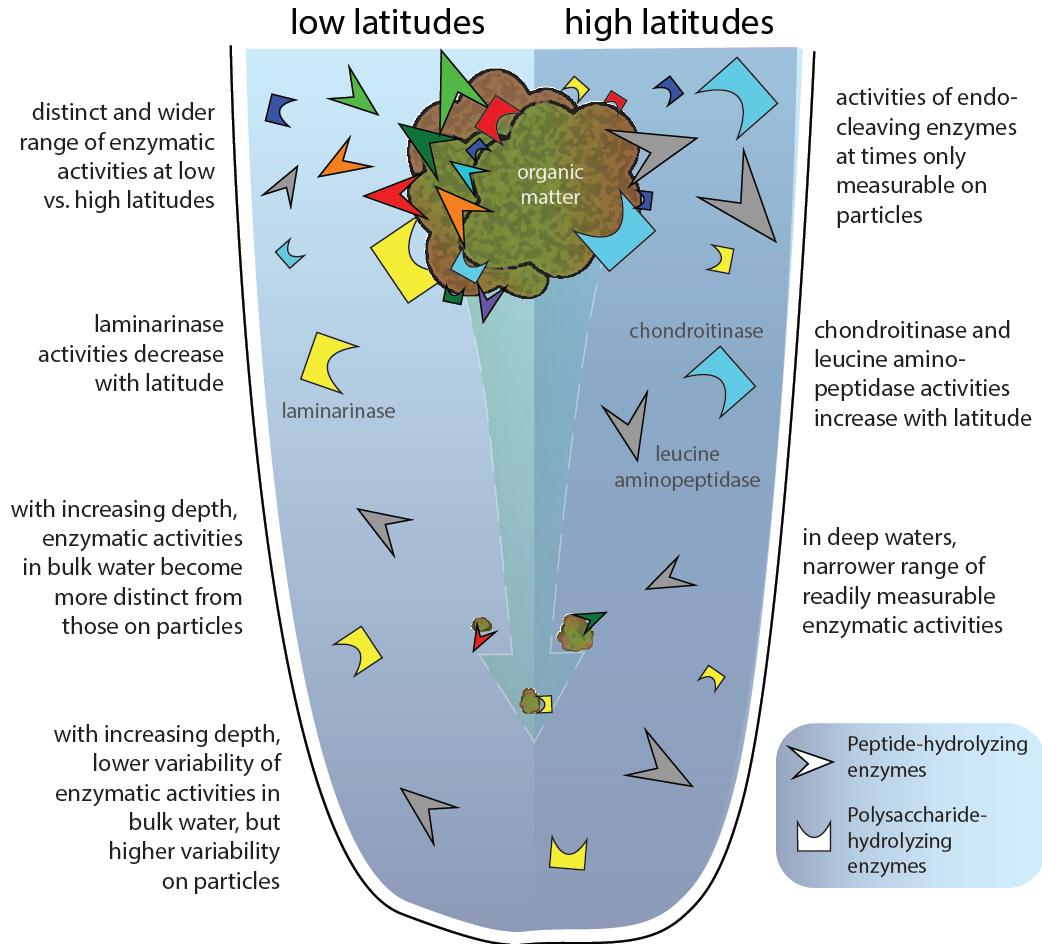

Figure 4. Polysaccharide hydrolase activities in bulk water. Note that data presented are maximum rates, which occurred at different timepoints. Pul = Pullulan, Lam = Laminarin, Xyl = Xylan, Fuc = Fucoidan, Ara = Arabinogalactan, Chn = Chondroitin Sulfate, N.D. = No Data. Error bars represent standard deviation between replicates.

Figure 5. Polysaccharide hydrolase activities on $\geq 3\mu\text{m}$ particles. Note that data presented are maximum rates measured at different timepoints. Rates were normalized by volume of water filtered to obtain particles. Pul = Pullulan, Lam = Laminarin, Xyl = Xylan, Fuc = Fucoidan, Ara = Arabinogalactan, Chn = Chondroitin Sulfate. Error bars represent standard deviation between replicates.

Figure 6. Pearson correlations between enzyme activities measured environmental and bulk bacterial activity parameters at all depths, separated by enzyme class and sample type: bulk water (A) and particle-associated (B) glucosidases and peptidases, as well as bulk water (C) and particle-associated (D) polysaccharide hydrolases. Non-significant correlations ($p < 0.05$) are shown as empty boxes. No rate data due to undetectable enzymatic activities are shown as gray boxes. Rates analyzed for panel (A) include bulk water rates from all stations.

Figure 7. A Sea Change in Microbial Enzymes – a summary of trends in microbial enzymatic activities in bulk water and on particles in the open ocean, which differ in spectra and relative importance along latitudinal and depth gradients. Enzyme classes (i.e. peptidases vs. polysaccharide hydrolases) are represented by different shapes, and colors are consistent with the substrates used to measure their activities (Figs. 2-5).