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ABSTRACT

Rationale-Vascular smooth muscle cell (VSMC) dysregulation is a hallmark of vascular
disease, including atherosclerosis. In particular, the majority of cells within atherosclerotic
lesions are generated from pre-existing VSMCs and a clonal nature has been documented
for VSMC-derived cells in multiple disease models. However, the mechanisms underlying
the generation of oligoclonal lesions and the phenotype of proliferating VSMCs are

unknown.

Objective-To understand the cellular mechanisms underlying clonal VSMC expansion in

disease.

Methods and Results—Here we analyse clonal dynamics in multi-color lineage-traced
animals over time after vessel injury. We demonstrate that VSMC proliferation is initiated in
a small fraction of VSMCs that initially expand clonally in the medial layer and then migrate
to form the oligoclonal neointima. Selective activation of VSMC proliferation also occurs in
vitro, suggesting that this is a cell-autonomous feature. Mapping of VSMC trajectories using
single-cell RNA-sequencing reveals a continuum of cellular states after injury and suggests
that VSMC proliferation initiates in cells that have downregulated the contractile phenotype
and show evidence of pronounced phenotypic switching. We show that proliferation is
associated with induced expression of stem cell antigen 1 (SCA1) and the expression
signature previously identified in SCA1+ VSMCs in healthy arteries. A remarkably increased
proliferation of SCA1+ VSMCs, directly validated in functional assays, indicates that SCA1+
VSMCs act as "first responders" in vascular injury. Early atherosclerotic lesions also had
clonal VSMC contribution and we show that the proliferation-associated injury response is
conserved in plaque VSMCs, extending these findings to atherosclerosis. Finally, we identify
VSMCs in healthy human arteries that correspond to the SCA1+ state in mouse VSMCs and
show that genes identified as differentially expressed in this human VSMC subpopulation

are enriched for genes showing genetic association with cardiovascular disease.

Conclusions—-We show that cell-intrinsic, selective VSMC activation drives clonal
proliferation after injury and in atherosclerosis. Our study suggests that healthy mouse and
human arteries contain VSMCs characterised by expression of disease-associated genes
that are predisposed for proliferation. Targeting such "first responder"” cells in patients
undergoing vascular surgery could effectively prevent injury-associated VSMC activation

and neoatherosclerosis.
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INTRODUCTION

Cardiovascular disease remains the leading cause of death worldwide according the World
Health Organization. Current treatment strategies focus on lipid lowering and blood pressure
regulation. However, recent genetic, cellular and molecular studies highlight an important
role for vessel wall cells in disease development'. Vascular smooth muscle cell (VSMC)
contractility controls vessel tone, but the cells display a remarkable phenotypic plasticity
characterized by downregulation of the contractile machinery (e.g. MYH11, ACTA2 and
CNNT1), concomitant increased expression of extracellular matrix (ECM) components (e.g.
Matrix gla protein, MGP, and collagen) and exit from quiescence?. Such classical VSMC
phenotypic switching ensures tissue homeostasis and enables physiological vessel
remodeling, but deregulated VSMC plasticity in cardiovascular disease contributes to lesion

development and arterial remodeling after surgical intervention'**.

VSMC-derived cells constitute the major cellular component of atherosclerotic lesions™.
Multi-color lineage tracing studies in mouse models show that lesional VSMCs are oligo-
clonal and generated from very few pre-existing VSMCs®'°. Similar clonal VSMC
contribution has also been observed in aortic dissection'' and after injury”. The oligoclonal
nature of intimal cells appears at odds with observations suggesting widespread VSMC

proliferation after injury'>'

, calling for analysis of whether lesional clonality of VSMC-derived
cells results from selective activation of a small number of VSMCs or if this is due to
differential survival of VSMC clones following a general proliferative response (discussed in

Liu&Gomez®).

Using single cell-RNA sequencing (scRNA-seq), we and others have delineated VSMC
heterogeneity in atherosclerotic lesions, including the demonstration of substantial variability
in expression of genes associated with cardiovascular disease'*'®. However, the diversity of
VSMCs in lesions does not inform about how VSMC investment in plaques is initiated,
particularly with regard to the resulting clonal outcome. We previously identified a small
subset of VSMCs in healthy mouse vessels marked by stem cell antigen 1 (SCA1), that have
reduced contractile gene expression and show increased expression of genes associated
with cell activation’. SCA1 is also induced in VSMCs in atherosclerosis and other disease

models'®"7

, suggesting that this VSMC subset is relevant for disease development. Whether
these atypical cells are functionally distinct is not known and the presence an equivalent

human cell population in healthy arteries remains to be demonstrated.
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By studying clonal dynamics and acute changes in scRNA-seq profiles in mouse models we
here provide evidence that cell-intrinsic mechanisms, associated with a primed cellular state
characterized by SCA1 expression, result in selective proliferation of a small number of
VSMCs in both atherosclerosis and after injury. We further demonstrate an 8-fold increased
proliferative capacity of SCA1-expressing VSMCs from healthy animals, suggesting that
these act as “first responder” cells that will rapidly start proliferating after insults. An
equivalent VSMC subpopulation displaying the primed gene expression signature is
identified through scRNA-seq analysis of healthy human arteries. Collectively, our data
suggests that selective activation of predisposed VSMCs could underlie the development of
human atherosclerosis and that targeting these cells could represent novel therapeutics in

atherosclerosis prevention.

METHODS (Extended methods are available in the Online-only Data Supplement).

Human tissue

Anonymized plaque-containing carotids and normal human aorta tissue was obtained from
patients undergoing carotid endarterectomy (50F, 75M, 74M, 54M) or either coronary artery
bypass or valve replacement (52M, 63F, 42M, 60M, 85M, 74M) respectively, under informed
consent using protocols approved by the Cambridge or Huntingdon Research Ethical

Committee.

Animals and procedures

Animal experiments were approved by the local ethics committee and performed according
to UK Home Office regulation under project license P452C4595. All alleles have been
described previously; Myh11-CreERt2 (Myh11) confers expression of a tamoxifen-inducible
Cre recombinase in smooth muscle cells'®'?, Rosa26-Confetti (Confetti)?® and Rosa26-
EYFP (EYFP)*' are Cre-recombination reporter alleles, Ki67/RFP is an insertion in the Mki67
locus resulting in expression of a KI67/RFP fusion protein®? and the mutant Apoe allele
sensitizes mice to high fat diet (HFD)-induced atherosclerosis development?®. VSMC lineage
labeling was achieved by intraperitoneal tamoxifen injections (10x 0.1 mg tamoxifen over 2
weeks) followed by at least 1 week rest period for tamoxifen metabolism. Only male animals
were used as the Myh11-CreERt2 transgene is Y-linked. The left carotid artery was ligated
under the bifurcation with a silk suture under anesthesia (2.5-3% isofluorane by inhalation)
with subcutaneous pre-operative analgesic (~0.1 mg/kg body weight, Buprenorphine) as
described’. HFD (Special Diets Services, containing 21% fat and 0.2% cholesterol) was

administered for 9-24 weeks.
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Tissue analysis

Arteries were fixed, processed for whole mount and confocal imaging followed by cryo-
sectioning, or directly cryo-sectioned and stained as described’. Aortic tissue explants were
injured using a forceps pinch and embedded in Matrigel. Single cell suspensions were
generated by enzymatic digestion (Collagenase IV, Invitrogen and Elastase, Worthington)
for scRNA-seq library preparation, ImageStream analysis, flow cytometry and in vitro culture.

Antibodies used for staining are described in Table | of the Online-only Data Supplement.

Single cell-RNA sequencing

Mouse scRNA-seq datasets were generated from VSMC-lineage labeled cells isolated by
flow-assisted cell sorting (FACS) from ligated left carotid arteries of Myh11-EYFP-Ki67/RFP
animals 5 (D5) or 7 days (D7) after surgery, using the 10x chromium system (mouse D5,
mouse D7). The Smart-seq2 protocol was used to process index-sorted cells from Myh11-
EYFP-Ki67/RFP animals 7 days after surgery and control unligated animals. Human scRNA-
seq data were generated from medial cells isolated from a healthy aorta (65-year-old male).
Datasets were analyzed using the CRAN R package Seurat (v.3.1.2)**?° in R (v.3.6.2).
Differential expression analysis was done using DEseq2?°. Trajectory-inference was done
using the R package slingshot (v.1.4.0)*". Summarized expression level of gene subsets
was calculated and displayed as described'®. Scripts used for data analysis are available

upon request.

Data accessibility

The scRNA-seq datasets generated in this study (mouse D5 10x, mouse D7 10x, mouse D7
Smart-seq2, human 10x) have been deposited in the Gene Expression Omnibus (GEO)
repository; accession number will be made available prior to publication. The scRNA-seq
dataset of VSMC-lineage-labeled plaque cells from high fat diet-fed Myh11-Confetti-Apoe

animals is available from GEO (accession number: GSE117963).

Statistical analysis

Statistical analysis was performed in R, the Shapiro—Wilk test was used to ascertain normal
distribution, equal variance assessed using Bartlett or Levine tests. Tests used to assess
statistical significance are indicated in figure legends. Local regression analysis was used to
fit a LOESS curve of patch number. To assess statistical significance of SCA1 expression
status in the clonal proliferation assay, a generalized linear model was fitted for patch
number whereas multiple linear regression used for patch area, as the data showed equal

variance and linearity and the residuals were approximately normally distributed.
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RESULTS

Proliferation is restricted to a small subset of VSMCs after injury

To determine whether the observed oligoclonal VSMC contribution to vascular disease®”"’

results from selective cell activation or clonal competition following general activation of
VSMC proliferation® we employed the carotid ligation injury model. We previously showed
that 28 days after surgery, neointimal lesions are composed of large clones derived from

514 makes

pre-existing VSMCs’, and the acute, reproducible induction of VSMC proliferation
this model ideal for assessing the dynamics of such VSMC clone generation. Myh11-
CreERt2/Rosa26-Confetti+ (Myh11-Confetti) animals were used to lineage-label VSMCs
with one of 4 fluorescent proteins in a random fashion prior to surgery. We assessed the
VSMC injury-response at different timepoints after ligation by whole-mount confocal
microscopy (Figure 1A). Neointimal lesions were observed in most (15/16) animals analyzed
from 12 days after surgery (Figure 1B, Table Il and Figure | in the Online-only Data
Supplement), consistent with previous findings', and similar to day 28, these had
oligoclonal VSMC contribution. Contiguous patches of lineage-labeled VSMCs of a single
color were also identified in the medial layer of animals in 36 out of 43 injured arteries
(Figure 1C), whereas none were detected in control animals. No patches were observed
prior to day 5 (D5), where 2 of 3 arteries contained small medial patches (Figure 1C, D and
Table Il in the Online-only Data Supplement). Formation of medial VSMC patches prior to
neointimal invasion is in keeping with previous observations that medial proliferation
precedes neointimal formation™. Quantification of patches and their size distribution per
artery demonstrated a gradual increase in both number and size over time, with a possible
plateau after 2 weeks (Figure 1B-D). Interestingly, the number of intimal VSMC clones was
much lower than medial patch numbers, suggesting that neointimal lesions are generated by
a subset of the VSMCs that activate proliferation (Figure 1B, Figure IC in the Online-only
Data Supplement). This is consistent with a model where only a few VSMCs initiate

proliferation, whereas no evidence of clonal competition was observed.

Further supporting the idea that activation of proliferation is limited to a subset of VSMCs,
EdU incorporation was rarely detected in lineage-labeled VSMCs in D5 arteries (Figure ID in
the Online-only Data Supplement). Low VSMC proliferation frequency was confirmed by
FACS analysis of Myh11-CreERt2;Rosa26-EYFP;Ki67/RFP (Myh11-EYFP-Ki67/RFP)
animals, where tamoxifen injection results in EYFP+ VSMCs and where proliferating cells

express a Ki67-RFP reporter protein®? (Figure 1E). Double positive (EYFP+RFP+) cells were


https://doi.org/10.1101/2020.10.19.345769
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.19.345769; this version posted October 19, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

almost absent in healthy arteries, increased in frequency from D5, peaked at D8 and never
constituted more than 5% of all EYFP+ VSMCs.

Collectively, these data suggest that activation of VSMCs proliferation occurs at a low
frequency and that only a fraction of medial VSMC clones migrate across the inner elastic

lamina to form oligoclonal lesions.

VSMC investment in atherosclerotic plaques mimics the injury response

Almost all medial and intimal VSMC patches were restricted to arterial segments with
increased medial diameter. These remodeled segments or “bulges”, also displayed
disorganized cellular arrangement (Figure 2A-C, Figure IE in the Online-only Data
Supplement). Such remodeled segments were observed in all arteries displaying patches,
as well as in 2/5 arteries prior to day 5 (Table | in the Online-only Data Supplement) and did
not increase in length over time (Figure 2B). Despite the onset of VSMC proliferation,
reduced medial cell density was observed at early timepoints in injured arteries compared to
healthy controls (Figure 2C), in accordance with previous observations'*?®, Evidence of low
cellularity, defined as absence of both Confetti signal and nuclear staining, was more
pronounced in bulged regions compared to arterial segments without remodeling (Figure 2C,
D). This suggests that VSMC death and matrix remodeling occurs at the same time, or
precedes, VSMC proliferation. Notably, at all timepoints, a large number of “singlet” VSMCs
persisted, even within the bulged regions (Figure 2A, Figure IA, B in the Online-only Data
Supplement), demonstrating that despite a shared signaling environment, not all VSMCs

within bulges exit quiescence and initiate clonal expansion.

To assess whether selective VSMC proliferation also underlies oligoclonal VSMC
contribution observed in atherosclerosis®’, we analyzed Myh11-Confetti animals on an
Apoe™ background (Myh11-Confetti-Apoe) with tamoxifen-mediated VSMC-lineage-labeling
prior to feeding an atherogenic diet for 9-15 weeks. Analysis of early stage plaque (<50
Confetti+ cells per section) revealed VSMC investment to lesions from carotid arteries, aortic
root, arch and the descending aorta (Figure 2E). Like late stage lesions’, VSMC-derived
cells were typically only of a single color and where several Confetti colors were detected,
cells were arranged in a non-random manner (Figure 2E). Examples of individual VSMC
clones contributing exclusively to either cap or core was observed, and VSMC investment
was found in lesions that lacked an obvious fibrous cap structure (Figure 2E). The medial
layer generally remained mosaic with respect to Confetti protein expression, however,

evidence of medial VSMC patches expressing the Confetti color observed in lesion VSMC
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clones was often observed underneath the plaque, where medial cell disarray and breaks in
the elastic lamina were also detected (Figure 2E). Collectively, this analysis suggests that
selective activation of VSMC proliferation and other hallmarks of VSMC injury-responses are

also found in early atherogenesis.

Selective initiation of VSMC proliferation in vitro

To investigate whether the selective clonal expansion observed in vivo is intrinsic to VSMCs,
we cultured aortic tissue explants in vitro after introducing a forceps-pinch “injury” to promote
VSMC proliferation (Figure 3A). After culture, tissue explants displayed persistent mosaic
labeling in most regions but developed monochromatic patches similar to those observed in
vivo along tissue edges and at forceps pinch-injuries (Figure 3B). Quantification of
contiguous surfaces expressing the same Confetti protein (Figure Il in the Online-only Data
Supplement) confirmed that the vast majority of VSMC surfaces remained comparable in
size to those detected in freshly isolated vessels (Figure 3C). On average, 30.5 (£10.8,
S.E.M.) large VSMC patches were observed in 1 mm? tissue explants after 8 days of culture,
whereas these were rare at day 0 (2.2+1.3, Figure 3D). Confirming the idea that VSMC
patches resulted from selective proliferation of a small number of cells, similarly sized
patches were observed in tissue explants from animals with reduced labeling density (Figure

Il in the Online-only Data Supplement).

To test whether selective proliferation also occurred in freshly isolated, enzymatically
dissociated VSMCs, we designed an assay that allowed detection of emerging VSMC clones
while maintaining the cell-cell contacts required for VSMC survival. Single cell suspensions
of lineage-labeled VSMCs from Myh11-Confetti animals were mixed with wild-type VSMCs
and live cell imaging performed periodically over a 3-week period (Figure 3E). Most
Confetti+ cells in these cultures remained as "singlets" isolated by wild-type cells but
occasionally a small patch of lineage-labeled VSMCs of one color formed (Figure 3F); 1.1
(£0.1 S.E.M) patch-forming cells out of 1250 Confetti+ VSMCs seeded.

Collectively, the selective proliferation of a small fraction of VSMC-lineage labeled cells in

vitro indicates that activation of VSMC proliferation is a rare, cell-autonomous event.

A continuum of VSMC expression profiles are observed after injury

To assess whether the observed selective VSMC proliferation reflects a heterogeneous
injury response suggestive of distinct VSMC subpopulations, we generated single cell-RNA-
seq (scRNA-seq) profiles of VSMCs 7 days after injury. For this analysis, EYFP+ VSMCs
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were isolated from Myh11-EYFP-Ki67/RFP animals and enriched for proliferating, double
positive (EYFP+RFP+) cells by FACS. After quality control to remove cells with high
mitochondrial read percentage and low number of detected genes, the profiles of 1126 cells
were clustered and assessed for expression of markers of VSMC phenotypic state?® and
genes associated with VSMC-derived plaque cells (Lum, Tnfrs11b")(Figure 4A, B).

A small group of cells (23 cells; cluster 11) clustered separately from the bulk of the
population, expressed Myh11 and other contractile genes, and no-to-low levels of
proliferation markers (Figure Il in the Online-only Data Supplement). The remaining cells
formed a single structure and selected marker genes showed overlapping expression
domains with gradually varying levels across the population; high expression of contractile
genes (Myh11)in cell clusters 1, 2, 3 and 6, "synthetic" genes (Mgp, Spp1, Col8a1) peaked
in clusters 0, 5, 7, 9 and 4 and proliferation markers (Mik67) were restricted to cells in
clusters 8 and 10 (Figure 4B). Interestingly, the expression domain of Ly6a, encoding SCA1
and expressed in rare cells prior to injury'®, was immediately adjacent to Mki67+ cells in
cluster 10. Similar overlapping gene expression gradients across the cells were observed for
cluster markers (Figure 4C, Table IIl in the Online-only Data Supplement) confirming that
rather than being formed by discrete cellular subsets, lineage-labeled cells represented a
continuum of varying cell states. We merged this unselected, but proliferation-enriched,
dataset with profiles of cells index-sorted for the VSMC-lineage label (EYFP) and the
Ki67/RFP reporter from injured vessels, or EYFP+ cells from control animals (Figure 4D).
This suggested that VSMCs post-injury display a spectrum of phenotypes from a contractile
Myh11-positive state similar to that seen in healthy vessels (cell clusters 1, 2, 3 and 6), to a
proliferative state characterized by high S and G2M scores (Figure 4A, B). In addition to
increasing levels of classical markers of a synthetic VSMC state, the total number of genes
detected also increased gradually along this axis (Figure 4B) indicative of increasing
activation level. These analyses show that the transcriptional signatures of proliferating
VSMCs substantially overlap with that of non-proliferating VSMCs after injury, suggesting

that cells adopt states along a trajectory from a quiescent-contractile to a proliferative state.

Evidence of segregated injury responses at the onset of VSMC proliferation

Our analysis suggests that VSMC proliferation does not result from activation of a distinct
subpopulation of VSMCs, but rather derives from cells displaying extensive phenotypic
switching. To investigate this idea further, we profiled cells 5 days after injury at the onset of
VSMC proliferation (Figure 1E). Similar to day 7, VSMCs formed a continuous population
displaying anticorrelated gradual changes in contractile and synthetic markers, with Mki67

expression restricted to cell cluster 9 (Figure 5A). Surprisingly, trajectory inference using the
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Slingshot algorithm?’, suggested the existence of two distinct VSMC injury-responses, of
which only one included proliferating cells in cluster 9 (Figure 5B), and partition-based graph
abstraction (PAGA)® analysis confirmed these trajectories (Figure IV in the Online-only Data
Supplement). As shown in Figure 5B, the pseudotime axes defining these two paths shared
a common origin in the Myh11-positive cell clusters. Genes showing significant changes in
expression (p-adj<0.05, log(fold change)>0.5) along pseudotime for Path1 or Path2 were
identified using generalized additive models (GAMs) and organized into gene clades based
on Pearson correlation (Figure 5B, lower panels, and Table IV in the Online-only Data
Supplement). Contractile genes (e.g. Myh11 and Acta2) and actin cytoskeleton organizers
(e.g. Rock1 and Lmod1) reduced expression along both pseudotime axes (Figure 5B, C and
Table IV in the Online-only Data Supplement). Genes with increased expression along the
trajectories also showed substantial overlap as well as some significant differences (Figure
5C and Table IV in the Online-only Data Supplement). Genes associated with cell cycle
regulation, such as Ccnd1 and Mki67 were specifically induced along Path1, whereas Path2-
induced genes were enriched for gene ontology (GO)-terms associated with protein folding
(Figure V and Table V in the Online-only Data Supplement). Several heat shock genes were
upregulated along both Path1 and Path2 (Figure 5B, C). To verify these findings and rule out
dissociation-associated gene-expression changes®!, we immunostained day 5 cryosections
for the heat-shock factor alpha-crystallin B chain (CRYAB). CRYAB was detected in ~30% of
Confetti+ cells in bulged regions (Figure 5D, n=3), whereas <7% of Confetti+ cells in non-
bulged regions of injured vessels were CRYAB+, similar to levels observed in control,
unligated animals (2%). This confirms the Cryab upregulation observed by scRNA-seq and
demonstrates a regional injury-associated VSMC response in bulged regions. Many bona
fide cell cycle genes, such as Pcna and TopZ2a, were restricted to the Mki67+ cell cluster 9
and mapped to Path1 gene clade 2 (Table IV in the Online-only Data Supplement). In
contrast, the expression domains of other Path1-induced genes (gene clades 1, 5, 7, 8, 10)
were broader and many overlapped both cells in cluster 9 and pre-proliferative cells in
cluster 3 (e.g. Fbin2, Lum, Ccnd1, Figure 5C). GO-term analysis of Path1-induced genes
revealed enrichment for genes associated with collagen biosynthesis and fibril formation
(e.g. Col1a2, Colb5a1 and Errfi1), extracellular matrix organization (e.g. Fbin2, Fn1, Lum),
response to wounding (e.g. Fgf2, Pdgfa) and substrate adhesion (e.g. Cdh13, Vcam1), in
addition to cell-cycle associated genes (Figure V and Table V in the Online-only Data

Supplement).

To evaluate the relevance of proliferation-associated, injury-induced genes in
atherosclerosis, we assessed the expression of Path1-induced genes in VSMC-derived

plaque cells'. This demonstrated anti-correlation with Myh11 levels and overlap between
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the injury-response genes and markers of phenotypically modulated VSMCs in lesions
(Chad, Ly6a, Figure 5E). Additionally, genes showing increased expression along the
proliferation-associated Path1 included factors previously associated with vascular disease,
such as Lum and Tnfrsf11b'>173234 We also detected FBLN2-expression (a Path1-induced
gene) in a subset of VSMC-derived plaques cells in Myh11-Confetti-Apoe animals, in
particular in the lesion core (Figure 5F). Importantly, FBLN2 was detected in aSMA-stained
cells in human carotid artery plaques (Figure 5G), indicating that this signature is also

relevant for human disease.

Taken together, we identify two related but distinct injury-responses in VSMCs. Interestingly,
Path2 is mainly characterized by enrichment for genes associated with protein folding, which
has been linked to cholesterol responses®. In contrast, genes defining Path1, which
represents a transition in cellular state associated with injury-induced VSMC proliferation,

are also expressed in human atherosclerosis.

SCA1 expression marks "first responder” VSMCs with increased proliferative
capacity

We previously identified a small subset of SCA1-expressing VSMCs in healthy arteries,
which express a "Response Signature" suggestive of cell activation'. The frequency of
SCA1+ cells increase in vascular disease''®% and the kinetics of SCA1 induction after
injury correlates with emergence of KI67+ cells (Figure 6A, Figure 1E). Further indicating an
association between SCA1 expression and VSMC proliferation, the Ly6a/SCA1 transcript
was detected in Path1-associated cells in the D5 scRNA-seq dataset and Ly6a/SCA1+ cells
were juxtaposed to Mki67+ cells, preceding those in pseudotime (Figure 6B). Interestingly,
the "Response Signature" expressed by SCA1-positive VSMCs in healthy arteries’ was also
induced in Path1-specific cells (Figure 6B), suggesting that SCA1 expression may mark

VSMC that have undergone partial transition towards a proliferative state.

To test whether functional differences are associated with the SCA1-expression in healthy
arteries, we analyzed FACS-isolated SCA1-positive and SCA1-negative lineage-labeled
EYFP+ VSMCs from non-injured Myh11-EYFP animals. SCA1-positive VSMCs had
remarkably reduced F-actin levels, demonstrated by significantly reduced phalloidin staining
compared to the SCA1-negative counterparts (Figure 6C, D, Figure VI in the Online-only
Data Supplement). Reduced F-actin in SCA1+ cells was accompanied by significantly lower

levels of ROCKH1, consistent with reduced Rock1 transcript levels along Path1 during the
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injury response (Figure 5C). To compare cell proliferation, we adapted the in vitro clonal
proliferation assay; mixing 500 SCA1+ or SCA1- EYFP+ cells from aortas of healthy, VSMC-
lineage traced animals with medial cells from wild-type animals and periodic live imaging
over 3 weeks of culture (Figure 6E). There was no difference in cell numbers 2 days after
seeding, demonstrating equal survival. However after 1 week of culture, significantly more
cells were detected in SCA1+ compared to SCA1- samples and this difference persisted
throughout the experiment (Figure 6E, F). The increasing cell number resulted from
emergence of coherent patches of EYFP+ cells (Figure 6E). In SCA1+ samples, 1-3 patches
were observed per well 1 week after seeding (2.4 patches per well on average). Patch
number remained approximately constant, whereas the size of individual patches increased
over time (Figure 6G, H). In contrast, wells containing SCA1- EYFP+ cells did not contain
patches after 1 week of culture (Figure 6G) and patches were observed at low frequency in

SCA1- cultures at later timepoints (4/18 wells).

This analysis demonstrates that SCA1-expressing cells in healthy vessels are phenotypically
and functionally distinct from the bulk of VSMCs. The 8-fold increased patch number and
faster kinetics of clone formation for SCA1+ VSMCs suggests that these cells might act as

"first responder” cells in healthy arteries exposed to disease-inducing stimuli.

Evidence for priming of VSMCs in human arteries

SCA1 does not have an obvious human orthologue, preventing direct translation to human
disease. Therefore, to assess whether healthy human arteries contain similarly primed cells,
we performed scRNA-seq of cells from the medial layer of a histologically normal human
aorta. Cells formed a single population that was split into 4 clusters without clearly defined
borders (Figure 7A). Most cells expressed a contractile MYH1 1+ signature, consistent with
the absence of signs of vascular disease, but reduced levels of contractile genes were
observed in cell cluster 3 and a subset of cells in cluster 0. Anti-correlating with MYH11,
gradually higher expression of COL8A1, MGP and other synthetic genes was detected
through clusters 2, 0 and 3, suggesting that different extents of phenotypic switching exist in
human vessels (Figure 7A). Transcripts for orthologues of injury-induced proliferation-
associated genes, including FBLN2 and LUM, were also detected in Cluster 0 and 3 (Figure
7A). To assess whether the healthy human aorta contains cells corresponding to those we
identified in mouse vessels, we first tested whether genes associated with Path1 in the
mouse D5 dataset show differential expression in cluster O versus cluster 1 (Figure 7B).
Path1 downregulated genes generally showed lower expression in cluster 0 versus cluster 1,

whereas most Path1-upregulated genes were detected at higher levels in Cluster 0. The
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“Response Signature” defining SCA1+ VSMCs in healthy mouse arteries'® also showed
pronounced differences across the human VSMC dataset, with low levels in cluster 1 and
high expression in some cells from cluster 0 and 3 (Figure 7C). This suggests heterogeneity
of VSMC in the medial layer of human aorta, with phenotypic modulation similar to that
found in SCA1+ mouse VSMCs in healthy arteries and after vascular injury. Interestingly,
only few genes from injury Path1-associated gene clade 2, that included most cell-cycle
genes, showed differential expression in the human dataset, consistent with the notion that

VSMCs in healthy arteries are largely quiescent (Figure 7B, yellow dots).

The analysis above suggested that medial cells in human arteries are defined by a
phenotypic spectrum, similar to what has been suggested®. To identify genes defining this
spectrum in an unbiased manner, trajectory-inference was used to generate a pseudotime
axis (Figure VIl in the Online-only Data Supplement), which showed strong correlation with
the Response Signature (R?>=0.66, Figure 7D). As expected, pseudotime-dependent genes
with reduced expression along the trajectory were detected at lower levels in cluster 0
compared to 1 (Figure 7E, blue dots), and were enriched for "muscle contraction" and "actin-
binding" GO-terms (Table VIl in the Online-only Data Supplement). Trajectory-induced
genes showed increased expression in cluster 0 vs cluster 1 (Figure 7E, red dots) and were
generally restricted to cells in cluster 3 and a subset of cluster 0 cells (Figure 7F).
Enrichment for GO-terms related to extracellular matrix modification, cell adhesion, tissue
development and response to TGF-beta (Figure VIl and Table VIl in the Online-only Data
Supplement) suggested that a VSMCs in healthy human vessels displaying evidence of
phenotypic activation. In line with this idea, pseudotime-induced genes included growth
factor binding proteins (LTBP2, HTRA1) and CXCL12 that encodes stromal cell-derived
factor 1 (SDF1) and is linked genetically to cardiovascular disease® . This analysis
suggested that human arteries contain a subpopulation of VSMCs in a state corresponding
to that defined by SCA1 expression in mouse. To verify this idea and add positional
information for such primed VSMCs, we stained healthy human aorta sections for FBLN2,
which is also pseudotime-induced in the human dataset (Figure 7F and Table VIl in the
Online-only Data Supplement). FBLN2+ cells were detected in the medial layer (Figure 7G)
— in addition to adventital and endothelial staining — but at lower frequency compared to in
lesions (Figure 5G). FBLN2+ medial cells did not cluster to specific regions that could
represent pre-atheromas not detected in histological examination, instead, we find that

FBLN2+ cells are dispersed in the medial layer of human arteries.

Interestingly, of the 23 genes associated with the SNP-27 coronary artery disease risk score

panel® that were included in our dataset, 11 showed differential expression along the
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trajectory; including TCF21, CXCL12 and ADAMTS?7 (p<0.005; Figure 7H). This statistically
significant enrichment strongly indicates that the changes along the pseudotime axis are

relevant for human cardiovascular disease.

DISCUSSION

Using an acute model of VSMC proliferation, we demonstrate that oligoclonal VSMC
contribution to lesion formation results from selective activation of proliferation in very few
pre-existing VSMCs and provide evidence that this mechanism is shared at early stages of
atherosclerotic plaque formation. Immediately after injury, VSMCs form a continuous
spectrum of phenotypes where a pseudotime axis connects quiescent cells with a contractile
signature to proliferative cells. Cells along this trajectory include SCA1-expressing cells that
share characteristics of the atypical VSMC we previously identified in healthy arteries'. The
increased proliferative capacity observed for SCA1+ VSMCs further supports the notion that
these cells are predisposed to react to activating signals. The demonstration that healthy
human arteries also display transcriptional heterogeneity for genes linked genetically to
cardiovascular disease, and contain cells displaying significant similarities to the SCA1+
cells in mouse arteries, suggests that VSMC priming could also underlie vascular

pathologies in humans.

In addition to the pseudotime axis resulting in cell proliferation (Path1), we find evidence for
another VSMC response at early timepoints after injury (Path2). Both response trajectories
show increased expression of ECM-related factors and reduced contractile gene expression
suggesting that both represent induction of a "synthetic state". Increased expression of
structural components and regulators of the ECM is consistent with the observation that
VSMC proliferation is observed in arterial segments showing pronounced remodeling of the
vessel wall (Figure 2). Yet, only a fraction of VSMCs within the arterial "bulges" exit
quiescence to initiate proliferation and, while substantial VSMC loss is observed, most cells
within these remodeled arterial segments remain as singlets. This selective VSMC activation
and oligoclonality of lesional VSMCs appears at odds with the gradually changing cells
states observed in scRNA-seq where SCA1 expressing cells partially overlap proliferating
cells. We suggest that, rather than being a dedicated progenitor population, some cells are
predisposed, or primed, for proliferation. In accordance with this idea, SCA1+ VSMCs show
an 8-fold increased proliferation frequency in vitro, although proliferation was also observed

in SCA1- cells, albeit with slower kinetics. We speculate that formation of patches in SCA1-
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sorted samples result from the induction of a Sca1 signature previously seen in cultured
VSMCs™. An alternative idea is that activation of VSMC proliferation induce negative
feedback mechanisms to prevent neighboring cells from exiting quiescence akin to lateral
inhibition. Experimental testing of these ideas is not trivial. Firstly, SCA1 is expressed by
other cell types in the vasculature, necessitating a dual lineage labeling approach®*°.
Secondly, current SCA1-Cre drivers are not sufficiently highly expressed in medial cells to
yield recombination-induced cell labeling*’, probably due to the relatively lower expression
level of Ly6a transcripts in VSMCs compared to, for example, adventitial and endothelial

cells™.

The transcriptional signature defined by the contractile-to-proliferative axis in post-injury
VSMCs shares considerable overlap with transcriptional states of VSMC-derived cells in
other vascular disease models, including atherosclerosis and aneurysm'>"73234 e
therefore propose that the mechanisms acting at the onset of VSMC proliferation after injury
also regulate early steps of atherosclerotic plaque development. Consistently, we observe
clonal VSMC contribution at early stages of plaque development, even before formation of
the fibrous cap, in contrast to a study suggesting that VSMC investment results from
migration along the fibrous cap and that VSMC-derived cells in the plaque core are derived
from expanding aSMA+ cells'®. Despite these apparent discrepancies, our findings are in
accordance with the idea of a phenotypically modulated, plastic cell state that underpins
atherosclerotic lesion VSMC infiltration. Such a state has been defined by expression of

Lgals3, which is present prior to cap formation®? and also SCA1'6.17:33

, consistent with the
observation of proliferation-associated SCA1+ cells in our dataset. We did not observe
VSMC-derived cells expressing an osteochondrocytic signature present in atherosclerotic
lesions'®*, Whether this is due to model-specific differences or the time point of analysis
remains to be determined. However, we note that the osteochondrocytic phenotype is more
pronounced at late time points and was not observed in studies limited to early-mid stage

disease3>%,

Our study identifies additional phases of activation where VSMCs that could be subject to
regulation, including VSMC priming, cell cycle activation, VSMC loss and migration across

the intimal layer. Understanding how documented regulators of VSMC function in

1,36,41

disease and novel pathways - such as retinoic acid signaling and efferocytosis identified

by scRNA-seq analysis of atherosclerotic plaque cells'®*

- impact on these mechanisms will
provide important insight into how targeting of vessel wall cells could be achieved to limit cell

accumulation and disease severity. The existence of cells in human arteries that correspond
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to the murine SCA1+ VSMCs and the genetic evidence linking variable expression to

cardiovascular disease highlight this cell population a promising starting point.
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Figure 1. Analysis of clonal dynamics after vascular injury. A, Representative examples of whole-
mounted left carotid arteries after ligation surgery in VSMC lineage-labeled Myh11-Confetti animals. Left
panels show signals for all Confetti proteins in the whole vessel (scalebar = 500 um) and a magnified
segment of arteries (scalebar = 100 um) analyzed at day 10 (top) and 28 (lower) after surgery. Right panels
only show signals for the Confetti yellow fluorescent protein (YFP)-reporter for the magnified arterial
segment. Far-right panels show YFP only (top) and YFP+DAPI (lower) in magnified views of boxed regions,
with VSMC singlets and small (top, Day 10, scalebar = 30 um) and large VSMC patch (lower, Day 28,
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scalebar = 40 um). B-D, Quantification of neointimal (B) or medial VSMC patch numbers (C) and the size
distribution of medial patches (D) over time after injury in a total of 43 arteries. B, C, Dots show values for
individual arteries, blue line shows local polynomial regression (LOESS) regression and grey area
represents the 95% confidence interval. D, The fraction of small (circles), medium (squares) and large
patches (triangles) are shown for each analysis time point. Mean and S.E.M. for each timepoint are
indicated. Asterisks indicate statistically significant change over time for all size groups (P<0.05) according to
a Kruskal-Wallis test. E, The fraction of EYFP+ cells expressing the Ki67/RFP reporter in a FACS analysis of
VSMCs from Myh11-EYFP-Ki67/RFP animals. Dots show values for individual arteries (32 total), bars
represent mean and error bars indicate standard deviation.
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Figure 2: Early atherosclerotic plagues share the selective VSMC proliferation and remodeling of the
vessel wall observed after injury. A, Confocal image (max projection) of Myh11-Confetti carotid artery
analyzed 15 days (D15) after ligation, showing co-localization of patches with "bulged"” regions of increased
medial diameter. Signals for all Confetti proteins (left) or yellow fluorescent (YFP) only (middle) are shown
(scalebar = 300 um). Right panels show magnified views of boxed regions with examples of a patch (top) or
a non-patch VSMC singlet (middle) in a bulged region, and several VSMC singlets in an un-remodeled, non-
bulged arterial segment (lower right panel). Scalebar = 30 um. B, Length of bulged region in carotid arteries
analyzed at indicated times after ligation. Dots show bulge length in individual arteries (43 total), bars show
mean and error bars indicate standard deviation. Asterisks indicate P<0.05, Welch'’s t-test. C, Cross-section
of carotid arteries analyzed 5 days after ligation (left) or from unligated animal (right). Scalebar = 50 um.
Middle panel shows magnified view of boxed region from D5 artery (scalebar = 30 um). Arrows point to
medial VSMC patches. Signals for Confetti and DAPI are shown. D, Percentage of medial area without
Confetti and DAPI signal in virtual cross-sections from whole mounted arteries 2-7 days after ligations (see
Figure IE in the Online-only Data Supplement). Cross-sections from bulged (circles) or non-bulged regions
(squares) were analyzed separately (each dot shows mean of 3-5 cross-sections per artery). Asterisks
indicate P<0.05, Mann-Whitney U test. E, Representative confocal image (single Z-plane), showing VSMC
contribution to early lesions in lineage-labeled Myh11-Confetti-Apoe animals (n=5, 9-15 weeks high fat diet).
Confetti and DAPI signals are shown. Magnified views of boxed regions are shown on the right. Scalebar =
100 um (left), 30 um (top right) or 50 um (lower right).
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Figure 3: Selective activation of VSMC proliferation in vitro. A, Schematic of tissue explant forceps-
pinch-injury-assay. B, Confocal images (max projection) of tissue explants before (Day O, left) or after (Day
8, right) culture. Magnified views of boxed regions are shown in lower panels, where arrowheads point to
monochromatic VSMC patches within or adjacent to forceps pinch injury. Scalebar = 200 um (top left), 150
pm (top right), 50 um (lower left), 70 um (lower right). C-D, Quantification of Confetti+ regions in tissue
explants before (DO) or after (D8) culture, done using surface-rendering in Imaris. C, volumes of individual
surfaces are shown separately for each Confetti protein. Thresholds for day 0 surface volumes indicated by
dotted lines. D, the number of surfaces exceeding day 0 thresholds is shown for each explant. Symbols and
colors indicate explants from the same animal. Three animals (1-2 explants per timepoint from each animal)
were analysed. Asterisks indicate P<0.05, Welch’s t-test. E, Confocal live cell image of VSMCs from Myh11-
Confetti and wild type animals (mixed 1:3) after 2 weeks of culture (top). Lower panels show magnified views
of boxed regions with representative VSMC patch (lower left) or non-expanded singlet Confetti+ cells (lower
right). F, Quantification of number of Confetti+ patches per well. Dots show mean of 3 wells per animal.
Mean and S.E.M. from 4 animals, analyzed separately, are shown. Scalebar = 500 um (top), 100 um (lower
panels).
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Figure 4: Gradual changes from the contractile to a proliferation-associated expression signature. A,
Uniform Manifold Approximation and Projection (UMAP) showing the cell cluster map for scRNA-seq (10x
Chromium) analysis of 1103 VSMC-lineage label positive cells from ligated left carotid arteries 7 days after
surgery. A cell cluster representing a minor VSMC population (cluster 11, 23 cells) is not shown, see Figure
Il in the Online-only Data Supplement. B, UMAP plots showing gene count, cell cycle scores and expression
level of marker genes using grey-blue scales. C, Heatmap showing expression of the top cluster markers
using a scale from purple (low) to yellow (high). Cells are arranged according to clusters as identified in top
bar using color scale from panel A. D, UMAP of integrated dataset (10x and Smart-seq2 datasets, both Day
7), split by dataset. Colors show cell cluster identity (10x dataset, left) and index-sort identity (Smart-seq2
dataset, right) with cells from unligated control animals in black, and cells from ligated left carotid arteries 7
days after surgery in red (Ki67/RFP+) or grey (Ki67/RFP-).
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Figure 5: Identification of genes associated with onset of VSMC proliferation. A, Uniform Manifold
Approximation and Projection (UMAP) showing cluster map (left) and expression level of marker genes using
a grey-blue scale (right) in a scRNA-seq (10x Chromium) dataset of 4469 VSMC-lineage label positive cells
from ligated left carotid arteries 5 days after surgery. B, Top panels are UMAPSs showing only cells that are
part of Path1l (left) or Path2 (right) with pseudotimes for each path indicated using a yellow-red (Pathl, left)
or yellow-green scale (Path2, right). Lower panels show heatmaps of genes with significant path-associated
expression (p-adj<0.05, log(fold-change)>0.5), clustered into 10 (Path1, left) or 5 (Path2, right) gene clades.
C, UMAP showing expression of trajectory-associated genes using a grey-blue scale. D, Representative
immunofluorescence staining for Crystallin Alpha B (CRYAB, magenta) in cryo-section from a bulged region
of a left carotid artery from a VSMC lineage-labeled Myh11-Confetti animal 5 days after ligation surgery (n=3
animals). Arrowheads point to CRYAB+Confetti+ cells and arrows indicate CRYAB-Confetti+ cells. Signals
for CRYAB (magenta), Confetti proteins and DAPI (white) are shown as indicated. Green autofluorescence
from the elastic laminae outlines the medial layer. Scalebar = 30 um. E, UMAP of scRNA-seq dataset from
VSMC-lineage-labeled cells from Myh11-Confetti-Apoe animals fed a high fat diet (Dobnikar et al., 2018).
Left panel show summarized expression of genes with Pathl-induced expression in the mouse D5 dataset
(Pathl gene clades 1, 2, 5, 7, 8, 10) on a scale from blue (low) to red (high). Right panels show expression
of VSMC-derived cell markers (Myh11: contractile, Ly6a: mesenchymal stem cell-like; Chad:
osteochondrogenic; Cd68: macrophage) in grey-blue scales. F, Immunofluorescence staining for FBLN2
(magenta) in arterial cryo-sections from VSMC-lineage-labeled Myh11-EYFP-Apoe animals fed a high fat
diet for 24 weeks. The left panel shows a merge with signals for the EYFP VSMC-lineage label (yellow).
Green autofluorescence from the elastic laminae outlines the medial layer. Arrows point to EYFP+FBLN2+
cells. P: plaque, M: Medial layer, L: Lumen. Scalebar = 100 um. G, Immunohistochemistry co-staining for
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FBLN2 (brown) and aSMA (blue) in FFPE sections from human carotid artery plaques. Representative of
samples from 4 patients. Scalebar = 200 um.
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Figure 6: SCA1 marks VSMCs with increased proliferative capacity. A, Percentage of EYFP+ VSMCs
expressing SCAL in left carotid arteries of Myh11-EYFP-Ki67/RFP animals analyzed by FACS, showing
mean * standard deviation at indicated timepoints after ligation (total 32). B, UMAP of D5 scRNA-seq
dataset showing expression of Ly6a/SCA1 using a scale from grey-blue (left) or summarized expression of
the "Response Signature" identified in SCA1+ VSMCs from healthy arteries (Dobnikar et al., 2018) on a
blue-red scale (right). C, ImageStream bright field (BF) and fluorescence images of medial cells from the
aorta of VSMC lineage-labeled Myh11-EYFP animals stained for SCA1 (red), ROCK1 (orange) and F-actin
(magenta, phalloidin) with VSMC-lineage label (EYFP) in green. D, Quantification of mean fluorescence
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intensity (MFI, top panels) and dot plots showing intensity (lower panels) for F-Actin (left) and ROCKZ1 (right)
in EYFP+SCA1+ (red crosses) and EYFP+SCAL1- (black circles) cells gated as shown in Figure VI of the
Online-only Data Supplement. Cells from 3 animals were analyzed separately, indicated by dots in top
panels, that also show mean and S.E.M. Asterisks indicate P<0.05, t-test. E, Live cell confocal images of
500 EYFP+SCALl+ (top) or EYFP+SCAL1- (lower) cells from Myh11-EYFP animals mixed with 4500 medial
cells from wild type animals in a 96-well plate. Cells were imaged at indicated timepoints using Opera Phenix
system. EYFP signals are shown in green. Scalebar = 100 um. F-H, Quantification of cell count per well (F),
number of patches per well (G) and mean area of patches per well (H) for wells containing EYPF+SCA1+
(squares, solid lines) and EYFP+SCAL- cells (circles, dotted lines) at indicated timepoints post seeding.
Plots show mean and S.E.M of cells from three animals analyzed separately. Statistical significance of cell
count differences at individual days was tested by ANOVA (F); patch numbers were fitted to a generalized
linear model (G); multiple linear regression was performed of log transformed data for patch area (H).
Asterisks indicate P<0.05.
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Figure 7: A subpopulation of human VSMCs in healthy arteries expressing a primed gene signature.
A, Uniform Manifold Approximation and Projection (UMAP) of 10X chromium dataset of 1978 medial cells
from a healthy human aorta showing cluster map (top) and expression level of marker genes using a grey-
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blue scale. B, Volcano plot showing differential expression between cluster 0 and cluster 1 cells. Only genes
showing Pathl-induced (red, Pathl gene clades 1, 5, 7, 8, 10), Path1l-down-regulated (blue, Path1 gene
clades 3, 4, 9) or cell-cycle-associated (yellow, Pathl gene clade 2) expression in the mouse D5 dataset are
shown. C, UMAP of human dataset showing the summarized expression of the "Response Signature"
identified in SCA1+ VSMCs from healthy arteries (Dobnikar et al., 2018), shown on human UMAP in a blue-
red scale. D, Scatter plot showing Module Score for the Response Signature versus the trajectory-inferred
pseudotime for human scRNA-seq dataset, correlation coefficient 0.66. Cells are color-coded by cluster
identity. E, Volcano plot showing differential expression between cluster 0 and cluster 1 cells. Only the top
200 genes with significant pseudotime-dependent expression that are expressed in both clusters (170 genes
total, blue = pseudotime-downregulated genes; red = pseudotime-upregulated). F, Heatmap showing
expression levels (on a scale from blue to red) of the top 100 genes with pseudotime-dependent gene
expression (p-adj<0.005). Cells are ordered by pseudotime and top bar indicates cell cluster affiliation.
Genes are clustered by Pearson correlation into 3 gene clades. G, Immunohistochemistry co-staining for
FBLN2 (brown) and aSMA (blue) in FFPE section from healthy human aorta. Representative of six patients.
Scalebar = 200 um. H, Heatmap showing expression of the 11 genes included in the 27-SNP genetic risk
score for coronary artery disease events (Mega et al., 2015), which show significant pseudotime-associated
expression (p-adj<0.005). Cells are ordered by pseudotime and top bar indicates cell cluster affiliation.
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