

1

2

3

4 **Diverse viral proteases activate the NLRP1 inflammasome**

5

6 **Authors**

7 Brian V. Tsu^{1†}, Christopher Beierschmitt^{1†}, Andrew P. Ryan¹, Rimjhim Agarwal², Patrick S.

8 Mitchell², Matthew D. Daugherty^{1*}

9 [†]These authors contributed equally to this work

10 ¹Division of Biological Sciences, University of California, San Diego, La Jolla, CA

11 ²Division of Immunology & Pathogenesis, University of California, Berkeley, CA

12

13 * To whom correspondence should be addressed: mddaugherty@ucsd.edu

14

15 **Keywords:**

16 Host-virus evolution, NLRP1 inflammasome, effector-triggered immunity, pathogen-encoded
17 proteases, picornaviruses

18

19

20 **ABSTRACT**

21

22 The NLRP1 inflammasome is a multiprotein complex that is a potent activator of inflammation.

23 Mouse NLRP1B can be activated through proteolytic cleavage by the bacterial Lethal Toxin

24 (LeTx) protease, resulting in degradation of the N-terminal domains of NLRP1B and liberation of

25 the bioactive C-terminal domain, which includes the caspase activation and recruitment domain

26 (CARD). However, a natural pathogen-derived effector that can activate human NLRP1 remains

27 unknown. Here, we use an evolutionary model to identify several proteases from diverse

28 picornaviruses that cleave human NLRP1 within a rapidly evolving region of the protein, leading

29 to host-specific and virus-specific activation of the NLRP1 inflammasome. Our work

30 demonstrates that NLRP1 acts as a “tripwire” to recognize the enzymatic function of a wide

31 range of viral proteases, and suggests that host mimicry of viral polyprotein cleavage sites can

32 be an evolutionary strategy to activate a robust inflammatory immune response.

33 **INTRODUCTION**

34

35 The ability to sense and respond to pathogens is central to the mammalian immune
36 system. However, immune activation needs to be properly calibrated, as an overactive immune
37 response can at times be as pathogenic as the pathogen itself. To ensure accurate
38 discrimination of self and non-self, innate immune sensors detect broadly conserved microbial
39 molecules such as bacterial flagellin or double-stranded RNA (Janeway, 1989). However, such
40 microbial patterns can be found on harmless and pathogenic microbes alike. More recently,
41 pathogen-specific activities such as toxins or effector enzymes have also been shown to be
42 targets of innate immune recognition (Jones, Vance, & Dangl, 2016; Mitchell, Sandstrom, &
43 Vance, 2019; Vance, Isberg, & Portnoy, 2009). Such a system for detection, termed effector-
44 triggered immunity (ETI), has been well-established in plants (Cui, Tsuda, & Parker, 2015; Jones
45 et al., 2016) and is emerging as an important means to allow the immune system to distinguish
46 pathogens from harmless microbes in animals (Fischer, Naseer, Shin, & Brodsky, 2020; Jones
47 et al., 2016).

48 Complicating the success of host detection systems, innate immune sensors are under
49 constant selective pressure to adapt due to pathogen evasion or antagonism of immune
50 detection. Such evolutionary dynamics, termed host-pathogen arms races, result from genetic
51 conflicts where both host and pathogen are continually driven to adapt to maintain a fitness
52 advantage. The antagonistic nature of these conflicts can be distinguished via signatures of
53 rapid molecular evolution at the exact sites where host and pathogen interact (Daugherty &
54 Malik, 2012; Meyerson & Sawyer, 2011; Sironi, Cagliani, Forni, & Clerici, 2015). Consistent with
55 their role as the first line of cellular defense against incoming pathogens, innate immune
56 sensors of both broad molecular patterns as well as specific pathogen-associated effectors
57 have been shown to be engaged in genetic conflicts with pathogens (Cagliani et al., 2014;
58 Chavarria-Smith, Mitchell, Ho, Daugherty, & Vance, 2016; Hancks, Hartley, Hagan, Clark, &

59 Elde, 2015; Tenthorey, Kofoed, Daugherty, Malik, & Vance, 2014; Tian, Pascal, & Monget,
60 2009).

61 Inflammasomes are one such group of rapidly evolving cytosolic immune sensor
62 complexes (Broz & Dixit, 2016; Chavarria-Smith et al., 2016; Evavold & Kagan, 2019; Rathinam
63 & Fitzgerald, 2016; Tenthorey et al., 2014; Tian et al., 2009). Upon detection of microbial
64 molecules or pathogen-encoded activities, inflammasome-forming sensor proteins serve as a
65 platform for the recruitment and activation of proinflammatory caspases including caspase-1
66 (CASP1) through either a pyrin domain (PYD) or a caspase activation and recruitment domain
67 (CARD) (Broz & Dixit, 2016; Rathinam & Fitzgerald, 2016). Active CASP1 mediates the
68 maturation and release of the proinflammatory cytokines interleukin (IL)-1 β and IL-18 (Broz &
69 Dixit, 2016; Rathinam, Vanaja, & Fitzgerald, 2012). CASP1 also initiates a form of cell death
70 known as pyroptosis (Broz & Dixit, 2016; Rathinam et al., 2012). Together, these outputs
71 provide robust defense against a wide array of eukaryotic, bacterial and viral pathogens (Broz &
72 Dixit, 2016; Evavold & Kagan, 2019; Rathinam & Fitzgerald, 2016).

73 The first described inflammasome is scaffolded by the sensor protein NLRP1, a member
74 of the nucleotide binding domain (NBD), leucine-rich repeat (LRR)-containing (NLR) superfamily
75 (Martinon, Burns, & Tschopp, 2002; Ting et al., 2008). NLRP1 has an unusual domain
76 architecture, containing a CARD at its C-terminus rather than the N-terminus like all other
77 inflammasome sensor NLRs, and a function-to-find domain (FIIND), which is located between
78 the LRRs and CARD (Ting et al., 2008). The FIIND undergoes a constitutive self-cleavage
79 event, such that NLRP1 exists in its non-activated state as two, noncovalently associated
80 polypeptides (D'Osualdo et al., 2011; Finger et al., 2012; Frew, Joag, & Mogridge, 2012), the N-
81 terminal domains and the C-terminal CARD-containing fragment.

82 The importance of the unusual domain architecture of NLRP1 for mounting a pathogen-
83 specific inflammasome response has been elucidated over the last several decades (Evavold &
84 Kagan, 2019; Mitchell et al., 2019; Taabazuing, Griswold, & Bachovchin, 2020). The first hint

85 that NLRP1 does not detect broadly conserved microbial molecules came from the discovery
86 that the *Bacillus anthracis* Lethal Toxin (LeTx) is required to elicit a protective inflammatory
87 response against *B. anthracis* infection via one of the mouse NLRP1 homologs, NLRP1B
88 (Boyden & Dietrich, 2006; Greaney et al., 2020; Moayeri et al., 2010; Terra et al., 2010).
89 Paradoxically, inflammasome activation is the result of site-specific cleavage in the N-terminus
90 of mouse NLRP1B by the Lethal Factor (LF) protease subunit of LeTx, indicating that protease-
91 mediated cleavage of NLRP1 does not disable its function but instead results in its activation
92 (Chavarria-Smith & Vance, 2013; Levinsohn et al., 2012). More recently, the mechanism by
93 which LF-mediated proteolytic cleavage results in direct NLRP1B inflammasome activation has
94 been detailed (Chui et al., 2019; Sandstrom et al., 2019). These studies revealed that
95 proteolysis of mouse NLRP1B by LF results in exposure of a neo-N-terminus, which is then
96 targeted for proteasomal degradation by a protein quality control mechanism called the “N-end
97 rule” pathway (Chui et al., 2019; Sandstrom et al., 2019; Wickliffe, Leppla, & Moayeri, 2008; Xu
98 et al., 2019). Since the proteasome is a processive protease, it progressively degrades the N-
99 terminal domains of NLRP1B, but is disengaged upon arriving at the self-cleavage site within
100 the FIIND domain. Degradation of the N-terminal domains thus releases the bioactive C-
101 terminal CARD-containing fragment of NLRP1B from its non-covalent association with the N-
102 terminal domains, which is sufficient to initiate downstream inflammasome activation (Chui et
103 al., 2019; Sandstrom et al., 2019). By directly coupling NLRP1 inflammasome activation to
104 cleavage by a pathogen-encoded protease, NLRP1 can directly sense and respond to the
105 activity of a pathogen effector. Such a model indicates that the N-terminal domains are not
106 required for NLRP1 activation per se, but rather serve a pathogen-sensing function.
107 Interestingly, the N-terminal “linker” region in mouse NLRP1B that is cleaved by LF is rapidly
108 evolving in rodents, and the analogous linker region is likewise rapidly evolving in primate
109 species (Chavarria-Smith et al., 2016). These data suggest that selection from pathogens has

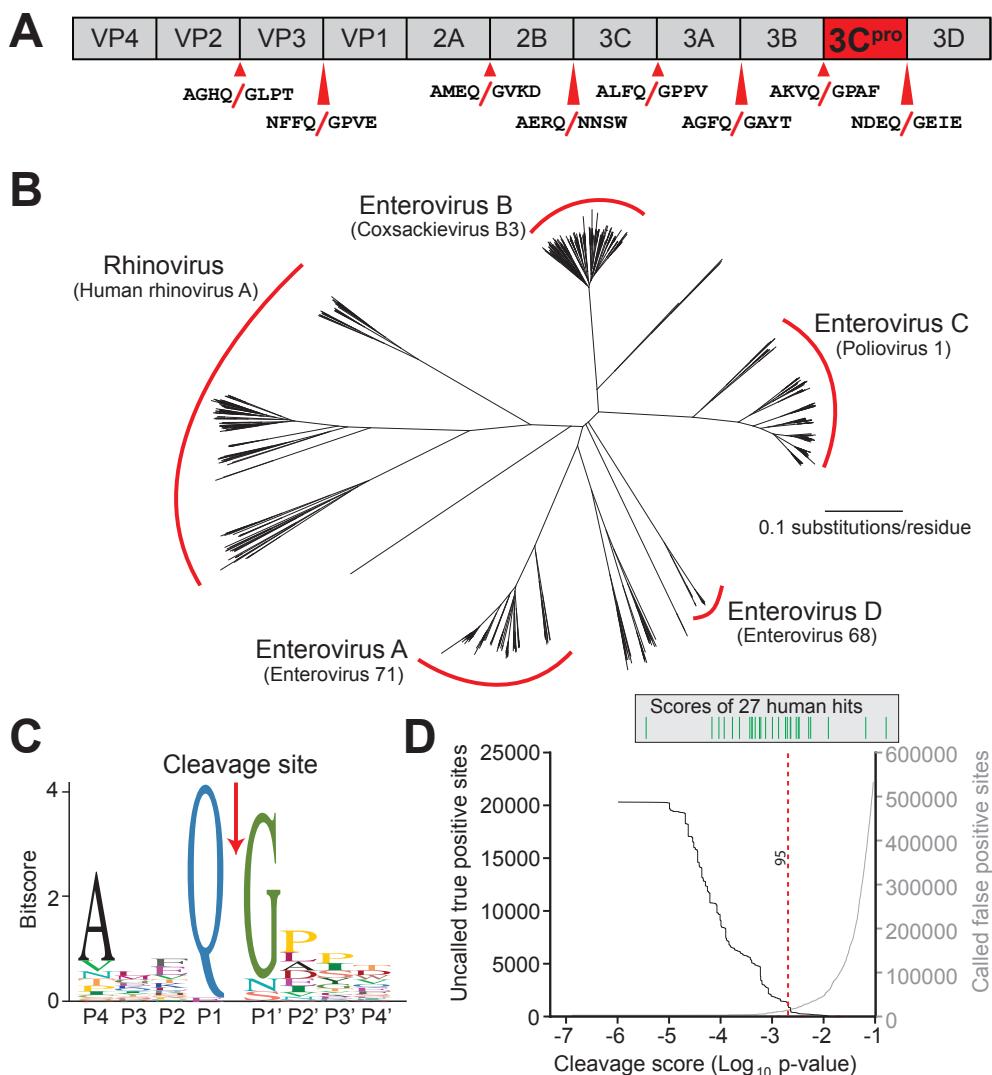
110 been driving diversification of this protease target region of NLRP1, possibly serving to bait
111 diverse pathogenic proteases into cleaving NLRP1 and activating the inflammasome responses.

112 Consistent with the rapid evolution in NLRP1 at the site of proteolytic cleavage, LF
113 neither cleaves nor activates human NLRP1 (Mitchell et al., 2019; Moayeri, Sastalla, & Leppla,
114 2012; Taabazuing et al., 2020). Despite this, human NLRP1 can also be activated by proteolysis
115 when a tobacco etch virus (TEV) protease site is engineered into the rapidly evolving linker
116 region of human NLRP1 that is analogous to the site of LF cleavage in mouse NLRP1B
117 (Chavarria-Smith et al., 2016). Thus, like mouse NLRP1B, it has been predicted that human
118 NLRP1 may serve as a “tripwire” sensor for pathogen-encoded proteases (Mitchell et al., 2019).

119 However, direct pathogen effectors that trigger human NLRP1 have remained unidentified.

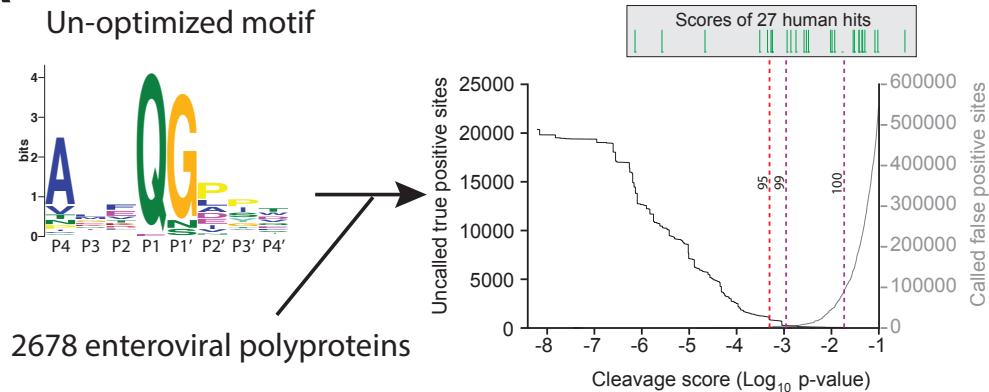
120 Here we investigate the hypothesis that viral proteases cleave and activate human
121 NLRP1. We reasoned that human viruses, many of which encode proteases as necessary
122 enzymes for their life cycle, may be triggers for NLRP1 activation. To pursue this hypothesis, we
123 focused on viruses in the *Picornaviridae* family, which encompass a diverse set of human
124 enteric and respiratory pathogens including coxsackieviruses, polioviruses and rhinoviruses
125 (Zell, 2018). These viruses all translate their genome as a single polyprotein, which is then
126 cleaved into mature proteins in at least six sites in a sequence-specific manner by a virally-
127 encoded 3C protease, termed 3C^{pro} (Laitinen et al., 2016; Solomon et al., 2010; Sun, Chen,
128 Cheng, & Wang, 2016; Zell, 2018). 3C^{pro} is also known to proteolytically target numerous host
129 factors, many of which are associated with immune modulation (Croft, Walker, & Ghildyal, 2018;
130 Huang et al., 2015; Lei et al., 2017; Mukherjee et al., 2011; Qian et al., 2017; C. Wang et al.,
131 2019; D. Wang et al., 2012; D. Wang et al., 2014; H. Wang et al., 2015; Wen et al., 2019; Xiang
132 et al., 2014; Xiang et al., 2016; Zaragoza et al., 2006). Because 3C^{pro} are evolutionarily
133 constrained to cleave several specific polyprotein sites and host targets for replicative success,
134 we reasoned that human NLRP1 may have evolved to sense viral infection by mimicking viral
135 polyprotein cleavage sites, leading to NLRP1 cleavage and inflammasome activation. Using an

136 evolution-guided approach, we now show that NLRP1 is cleaved in its rapidly evolving linker
137 region by several 3C^{pro} from picornaviruses, resulting in inflammasome activation. We find that
138 variation in the cleavage site among primates, and even within the human population, leads to
139 changes in cleavage susceptibility and inflammasome activation. Interestingly, we also observe
140 that proteases from multiple genera of viruses cleave human NLRP1 and mouse NLRP1B
141 at different sites, supporting a role for an evolutionary conflict between viral proteases and
142 NLRP1. Taken together, our work highlights the role of NLRP1 in sensing and responding to
143 diverse viral proteases by evolving cleavage motifs that mimic natural sites of proteolytic
144 cleavage in the viral polyprotein.


145 **RESULTS**

146

147 **Human NLRP1 contains mimics of viral protease cleavage sites**


148 Our hypothesis that NLRP1 can sense viral proteases is based on two prior
149 observations. First, both human NLRP1 and mouse NLRP1B can be activated by N-terminal
150 proteolysis (Chavarria-Smith et al., 2016). Second, the linker in primate NLRP1, which is
151 analogous to the N-terminal disordered region of NLRP1B that is cleaved by LF protease, has
152 undergone recurrent positive selection (Chavarria-Smith et al., 2016), or an excess of non-
153 synonymous amino acid substitutions over what would be expected by neutral evolution
154 (Kimura, 1983). We reasoned that this rapid protein sequence evolution may reflect a history of
155 pathogen-driven selection, wherein primate NLRP1 has evolved to sense pathogen-encoded
156 proteases such as those encoded by picornaviruses. To test this hypothesis, we first generated
157 a predictive model for 3C^{pro} cleavage site specificity. We chose to focus on the enterovirus
158 genus of picornaviruses, as there is a deep and diverse collection of publicly available viral
159 sequences within this genus due to their importance as human pathogens including
160 coxsackieviruses, polioviruses, enterovirus D68 and rhinoviruses (Blom, Hansen, Blaas, &
161 Brunak, 1996; Pickett et al., 2012). We first compiled complete enterovirus polyprotein
162 sequences from the Viral Pathogen Resource (ViPR) database (Pickett et al., 2012) and
163 extracted and concatenated sequences for each of the cleavage sites within the polyproteins
164 (Figure 1A and 1B, Supplementary files 1 and 2). After removing redundant sequences, we
165 used the MEME Suite (Bailey et al., 2009) to create the following 3C^{pro} cleavage motif:
166 [A/Φ]XXQGXXX (where Φ denotes a hydrophobic residue and X denotes any amino acid),
167 which is broadly consistent with previous studies (Blom et al., 1996; Fan et al., 2020; Jagdeo et
168 al., 2018; O'Donoghue et al., 2012) (Figure 1C).

169 We next optimized our 3C^{pro} cleavage site motif prediction by querying against predicted
170 viral polyprotein and experimentally validated host cleavage sites (Laitinen et al., 2016),

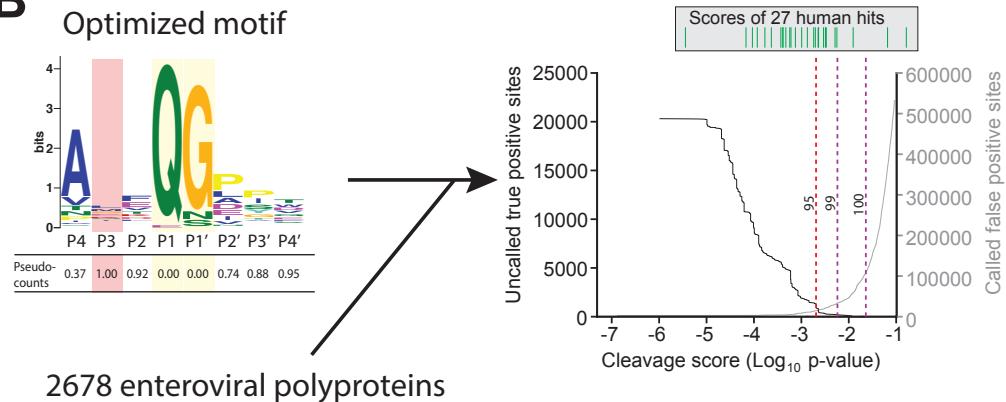


Figure 1. Conserved polyprotein cleavage sites across enteroviruses inform substrate specificity of the enteroviral 3C^{pro}. (A) Schematic of 3C^{pro} cleavage sites (red arrows) within the polyprotein of coxsackievirus B3 Nancy (CVB3), a model enterovirus. Shown are the eight amino acids flanking each cleavage site within the polyprotein. (B) Phylogenetic tree of 796 enteroviral polyprotein coding sequences depicting the major clades of enteroviruses sampled in this study with representative viruses from each clade in parentheses (Supplementary file 2). (C) Eight amino acid polyprotein cleavage motif for enteroviruses (labeled as positions P4 to P4') generated from the 796 enteroviral polyprotein sequences in (B) using the MEME Suite (Supplementary file 2). (D) Training set data used to determine the motif search threshold for FIMO (Supplementary files 1, 3 and 4). The X-axis represents a \log_{10} of the p-value reported by FIMO as an indicator for the strength of the cleavage motif hit (cleavage score). (Left) The Y-axis depicts the number of uncalled true positives, or motif hits that overlap with the initial set of 8mer polyprotein cleavage sites used to generate the motif, in the training set of enteroviral polyprotein sequences (black). (Right) The Y-axis depicts the number of called false positive sites, or any motif hits found in the polyprotein that are not known to be cleaved by 3C^{pro}, in the training set of enteroviral polyprotein sequences (gray). (Above) Each line depicts a single, experimentally validated case of enteroviral 3C^{pro} cleavage site within a human protein as reported in Laitinen et al, 2016 and is ordered along the x-axis by its resulting cleavage score. A vertical dotted line is used to represent the decided threshold that captures 95% of true positive hits and 16 out of 27 reported human hits (Figure 1 – figure supplement 1).

A

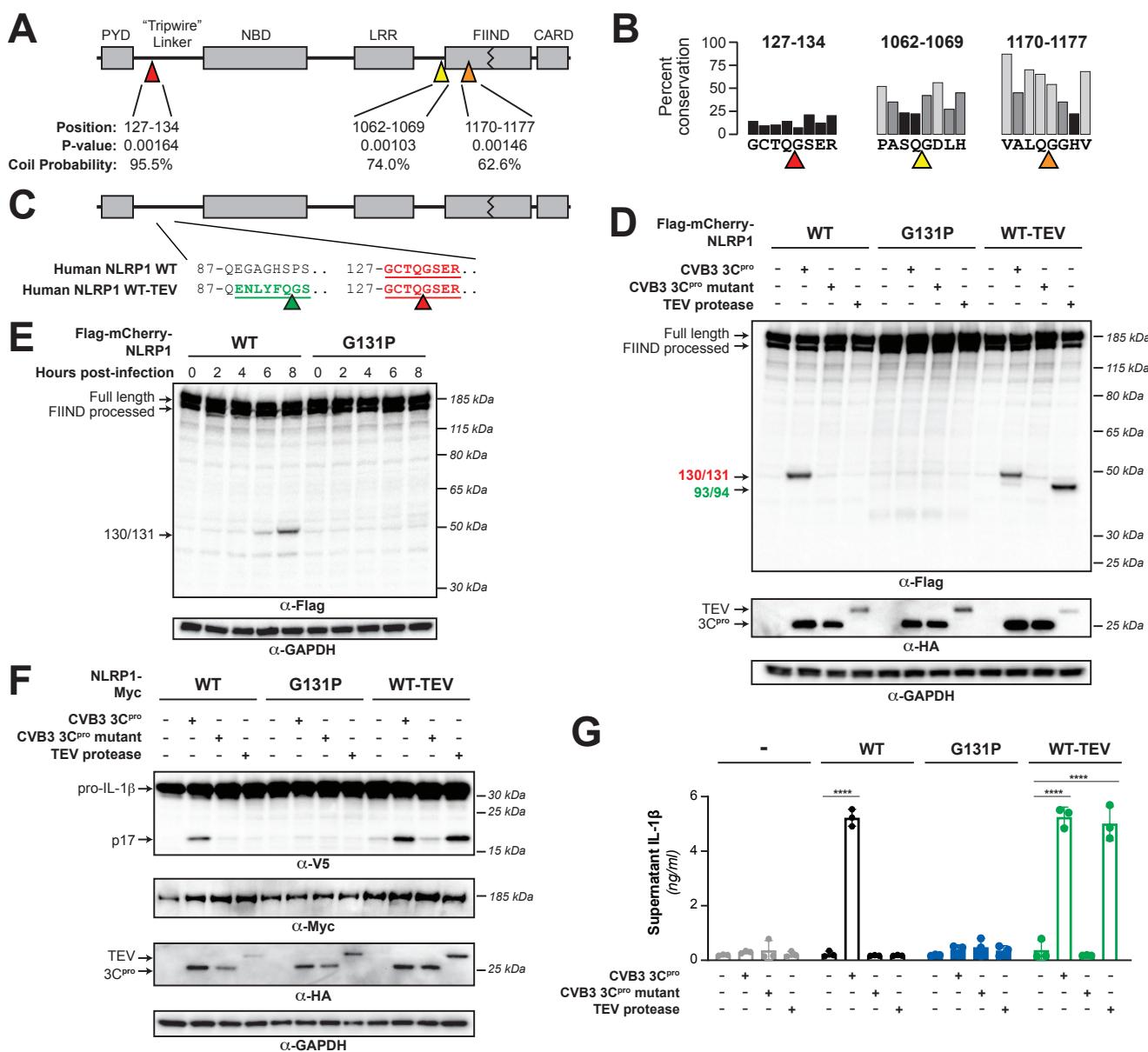
B

Figure 1 – figure supplement 1. Motif optimization enhances capture of known human targets of enteroviral 3C^{pro}. (A) As described in Figure 1B and 1C and Materials and Methods, the 8mer (P4-P4') 3C^{pro} polyprotein cleavage motif was initially generated from unique, concatenated 8mer cleavage sites across 796 enteroviral polyprotein sequences. To assess the capture capability of the motif on both virus and host targets, the motif was then used to conduct a low threshold (p-value = 0.1) FIMO (MEME Suite) search across training set of 2678 nonredundant enteroviral polyproteins from ViPR and 27 experimentally validated human targets of 3C^{pro} (Laitinen et al., 2016). In the graph, the X-axis represents a log₁₀ of the p-value reported by FIMO as an indicator for the strength of the cleavage motif hit, or cleavage score. The left Y-axis depicts the number of uncalled true positives, or motif hits within the enteroviral polyprotein training set that overlap with the initial set of 8mer polyprotein cleavage sites used to generate the motif (black). The right Y-axis depicts the number of called false positive sites, or any motif hits that are not true positives, in the training set of enteroviral polyprotein sequences (gray). (Above) Each line depicts a single, experimentally validated case of enteroviral 3C^{pro} cleavage site within a human protein as reported in Laitinen et al, 2016 and is ordered along the x-axis by its corresponding cleavage score. Vertical dotted lines are used to represent the decided thresholds for comparison of capture capability. Capture of human targets at 95%, 99%, or 100% capture of true positives in the polyprotein dataset corresponds to capture of 4, 7, and 16 human hits. (B) Pseudo-counts to the position-specific scoring matrix of the motif shown in (A) were adjusted by total information content where the two most information-dense positions P1 and P1' are assigned pseudocount = 0 and the least information-dense position P3 pseudocount = 1, and the remaining positions are assigned a pseudocount value relative to the most information-dense position P1. This optimized motif is then used to FIMO search against the same training set as described in (A). Capture of human targets at 95%, 99%, or 100% capture of true positives in the polyprotein dataset corresponds to capture of 16, 23, and 24 human hits.

171 allowing us to set thresholds for predicting new cleavage sites (Supplementary files 3 and 4).
172 Due to the low information content of the polyprotein motif (Figure 1C), such predictions are
173 necessarily a compromise between stringency and capturing the most known cleavage sites. In
174 particular, we wished to make sure that the model was able to capture a majority of
175 experimentally validated human hits (compiled in (Laitinen et al., 2016)) in addition to the known
176 sites of polyprotein cleavage (“true positives”), while minimizing the prediction of sites outside of
177 known polyprotein cleavage sites (“false positives”). By adjusting the model to allow greater
178 flexibility for amino acids not sampled in the viral polyprotein (see Methods and Figure 1 – figure
179 supplement 1 and Supplementary file 4), we were able to capture 95% of known viral sites and
180 the majority of the known human hits, while limiting the number of false negative hits within the
181 viral polyprotein (Figure 1D).

182

183 **The coxsackievirus B3 3C^{pro} cleaves and activates human NLRP1 at a predicted site
184 within the linker region.**

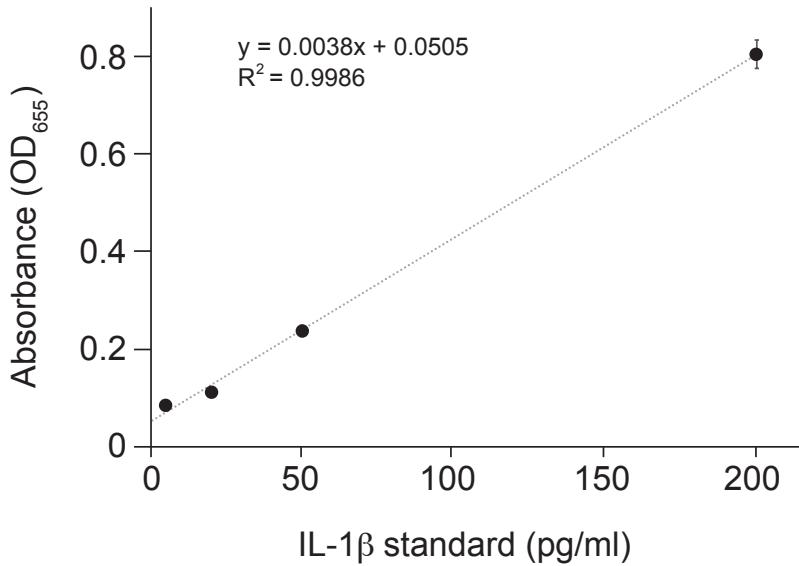

185 We next used our refined model to conduct a motif search for 3C^{pro} cleavage sites in
186 NLRP1 using Find Individual Motif Occurrences (FIMO) (Grant, Bailey, & Noble, 2011). We
187 identified three occurrences of the motif across the full-length human NLRP1 protein (Figure
188 2A). Of these sites, one in particular, 127-GCTQGSER-134, fell within the previously described
189 rapidly-evolving linker (Chavarria-Smith et al., 2016) and demonstrates the lowest percent
190 conservation across mammalian species at each of the predicted P4-P4' positions (Figure 2B).

191 To assess if human NLRP1 is cleaved by enteroviral 3C^{pro}, we co-expressed a N-
192 terminal mCherry-tagged wild-type (WT) human NLRP1 with the 3C^{pro} from the model
193 enterovirus, coxsackievirus B3 (CVB3) in HEK293T cells (Figure 2C). The mCherry tag
194 stabilizes and allows visualization of putative N-terminal cleavage products, similar to prior
195 studies (Chavarria-Smith et al., 2016). We observed that the WT but not catalytically inactive
196 (C147A) CVB3 3C^{pro} cleaved NLRP1, resulting in a cleavage product with a molecular weight

197 consistent with our predicted 3C^{pro} cleavage at the predicted 127-GCTQGSER-134 site (44
198 kDa) (Figure 2D). Based on the presence of a single cleavage product, we assume that the
199 other predicted sites are either poor substrates for 3C^{pro} or less accessible to the protease as
200 would be predicted from their NetSurfP-reported (Klausen et al., 2019) coil probability within
201 structured domains of the protein (Figure 2A and Figure 2 – figure supplement 1). To determine
202 if the cleavage occurs between residues 130 and 131, we mutated the P1' glycine to a proline
203 (G131P), which abolished 3C^{pro} cleavage of NLRP1 (Figure 2D). CVB3 3C^{pro} cleavage of
204 NLRP1 resulted in a similarly intense cleavage product when compared to the previously
205 described system in which a TEV protease site was introduced into the linker region of NLRP1
206 (Chavarria-Smith et al., 2016) (Figure 2D). Taken together, these results indicate that cleavage
207 of WT NLRP1 by a protease from a natural human pathogen is robust and specific.

208 During a viral infection, 3C^{pro} is generated in the host cell cytoplasm after translation of
209 the viral mRNA to the polyprotein and subsequent processing of the viral polyprotein into
210 constituent pieces (Laitinen et al., 2016). To confirm that 3C^{pro} generated during a viral infection
211 is able to cleave NLRP1, we virally infected cells expressing either WT NLRP1 or the
212 uncleavable (G131P) mutant. We observed accumulation of the expected cleavage product
213 beginning at six hours post-infection when we infected cells expressing WT NLRP1 and no
214 cleavage product when we infected cells expressing the 131P mutant (Figure 2E). These results
215 validate that CVB3 infection can result in rapid and specific cleavage of human NLRP1.

216 Previous results with a TEV-cleavable human NLRP1 showed that cleavage by TEV
217 protease was sufficient to activate the human NLRP1 inflammasome in a reconstituted
218 inflammasome assay (Chavarria-Smith et al., 2016). Using the same assay, in which plasmids-
219 encoding human NLRP1, CASP1, ASC and IL-1 β are transfected into HEK293T cells, we tested
220 if the CVB3 3C^{pro} activates the NLRP1 inflammasome. We observed that the CVB3 3C^{pro} results
221 in robust NLRP1 inflammasome activation, as measured by CASP1-dependent processing of
222 pro-IL-1 β to the active p17 form (Figure 2F). To confirm that 3C^{pro}-induced inflammasome


Figure 2. Enterovirus 3C^{pro} cleaves human NLRP1 at the predicted site of mimicry and promotes pro-inflammatory cytokine release. (A) Schematic of the domain structure of NLRP1, with predicted cleavage sites (triangles). FIMO-reported p-values and average NetsurfP-reported coil probabilities (Figure 2 – figure supplement 1) are described at the predicted sites. (B) Percent conservation across 100 mammalian species at each position of each predicted 8mer cleavage site within human NLRP1. (C) Schematic of the human NLRP1 sequence used to assess enteroviral cleavage and activation. The predicted enteroviral cleavage site found in the linker region (127-GCTQGSER-134) is shown in red. Human NLRP1 WT-TEV contains an engineered TEV cleavage site between residues 93 and 94 (underlined green) in human NLRP1 WT. (D) Immunoblot depicting human NLRP1 cleavage by CVB3 3C^{pro} and TEV protease. HEK293T cells were co-transfected using 100ng of the indicated Flag-tagged mCherry-NLRP1 fusion construct and immunoblotted with the indicated antibodies. (E) Immunoblot depicting human NLRP1 cleavage at the indicated timepoints after infection with 250,000 PFU (MOI = ~1) CVB3. HEK293T cells were transfected using 100ng of either WT NLRP1 or NLRP1 G131P and infected 24-30 hours later. All samples were harvested 32 hours post-transfection and immunoblotted with the indicated antibodies. (F) Immunoblot depicting human NLRP1 activation (maturation of IL-1 β) by CVB3 3C^{pro} and TEV protease. HEK293T cells were co-transfected using 100ng of the indicated protease, 50ng V5-IL-1 β ,

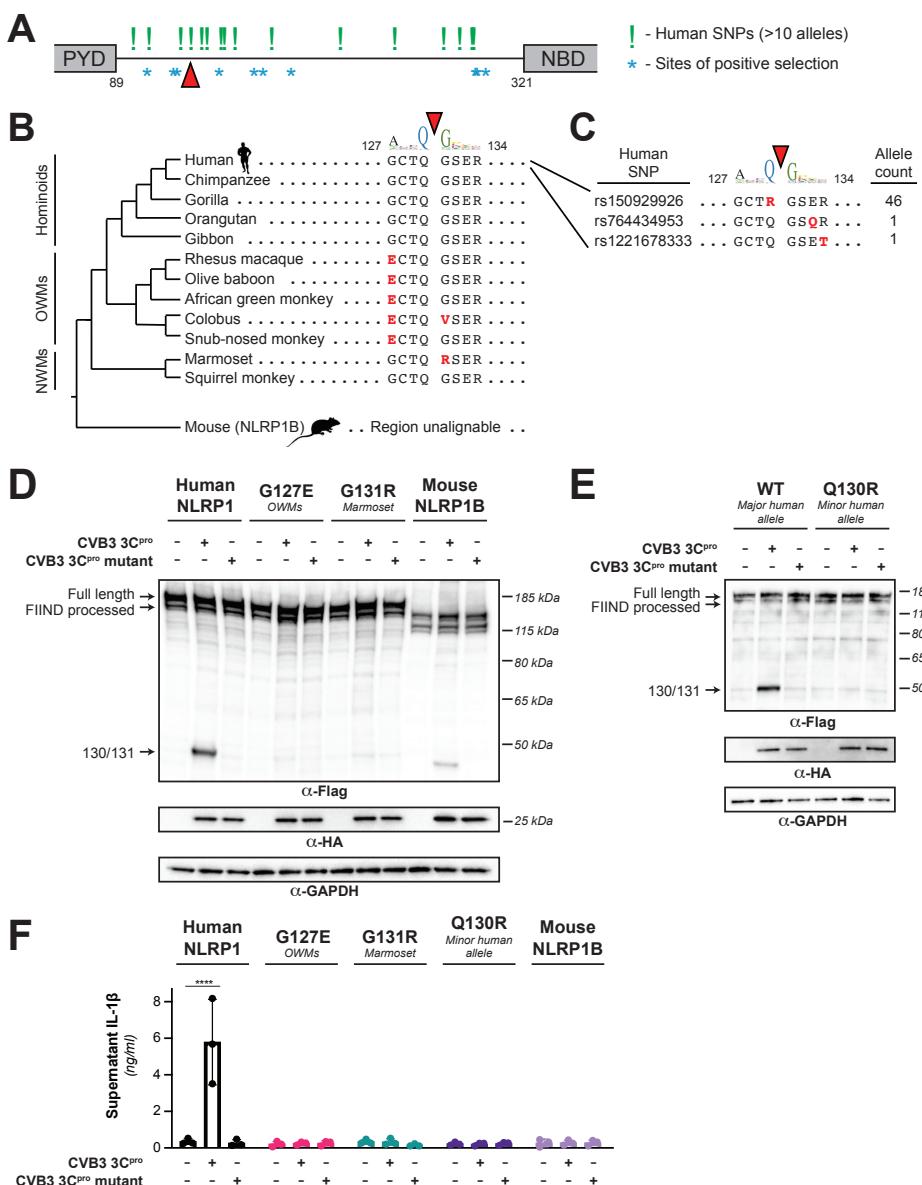
100ng CASP1, 5ng ASC, and 4ng of the indicated Myc-tagged NLRP1, and immunoblotted with the indicated antibodies. Appearance of the mature p17 band of IL-1 β indicates successful assembly of the NLRP1 inflammasome and activation of CASP1. (G) Bioactive IL-1 β in the culture supernatant was measured using HEK-Blue IL-1 β reporter cells, which express secreted embryonic alkaline phosphatase (SEAP) in response to extracellular IL-1 β . Supernatant from cells transfected as in (E) was added to HEK-Blue IL-1 β reporter cells and SEAP levels in the culture supernatant from HEK-Blue IL-1 β reporter cells were quantified by the QUANTI-Blue colorimetric substrate. Transfections were performed in triplicate and compared to the standard curve generated from concurrent treatment of HEK-Blue IL-1 β reporter cells with purified human IL-1 β (Figure 2 – figure supplement 2). Data were analyzed using two-way ANOVA with Sidak's post-test. **** = p < 0.0001.

Class: Buried (B), Exposed (E)	Amino Acid Position	Amino Acid	Relative Surface Accessibility	Absolute Surface Accessibility	Probability For Alpha-Helix	Probability For Beta-strand	Coil Probability
E	127	G	0.724	56.997	0.003	0.002	0.994
E	128	C	0.450	63.190	0.004	0.006	0.990
E	129	T	0.607	84.168	0.004	0.014	0.982
E	130	Q	0.597	106.589	0.004	0.022	0.974
E	131	G	0.534	42.063	0.012	0.016	0.972
E	132	S	0.601	70.429	0.018	0.023	0.960
E	133	E	0.557	97.244	0.025	0.068	0.908
E	134	R	0.456	104.412	0.016	0.127	0.857
E	1062	P	0.311	44.067	0.353	0.016	0.631
E	1063	A	0.435	47.991	0.389	0.029	0.582
E	1064	S	0.307	35.976	0.372	0.038	0.590
E	1065	Q	0.406	72.423	0.204	0.050	0.746
E	1066	G	0.384	30.211	0.136	0.068	0.797
E	1067	D	0.321	46.271	0.103	0.079	0.818
E	1068	L	0.321	58.772	0.058	0.055	0.887
E	1069	H	0.459	83.520	0.047	0.081	0.872
B	1170	V	0.085	13.065	0.087	0.811	0.102
B	1171	A	0.062	6.837	0.085	0.769	0.146
B	1172	L	0.165	30.146	0.087	0.399	0.514
E	1173	Q	0.519	92.645	0.078	0.213	0.709
E	1174	G	0.576	45.362	0.051	0.051	0.898
E	1175	G	0.490	38.555	0.033	0.028	0.938
E	1176	H	0.618	112.433	0.011	0.108	0.881
B	1177	V	0.144	22.068	0.008	0.171	0.821

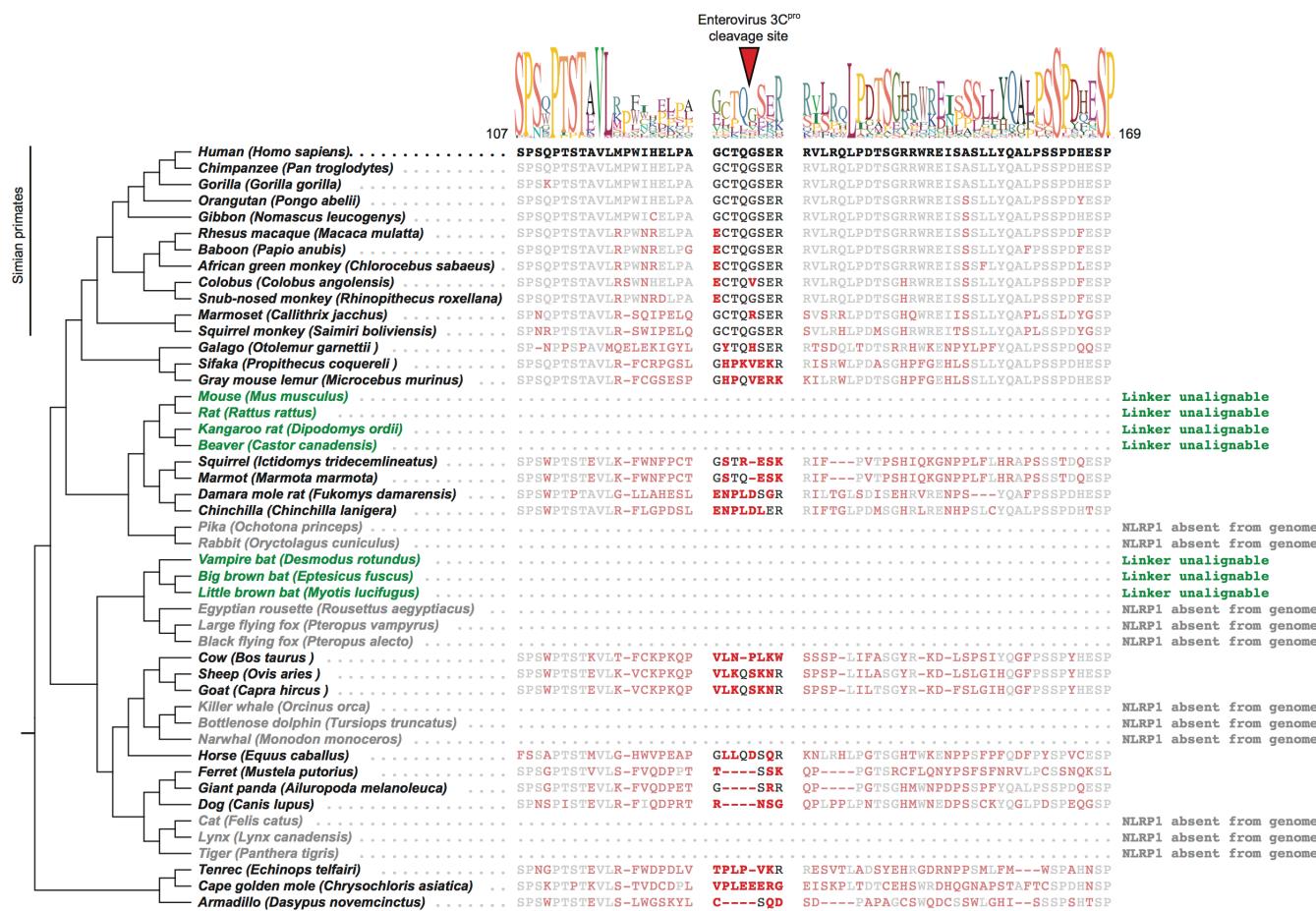
Figure 2 – figure supplement 1.

Tabular output of NetSurfP structural predictions for human NLRP1 describing the predicted class (buried or exposed), relative surface accessibility, absolute surface accessibility, probability for alpha-helix, probability for beta-strand, and coil probability for the amino acid positions within each predicted enteroviral 3C^{pro} cleavage site.

Figure 2 – figure supplement 2.


Standard curve for Figure 2G. Purified human IL-1 β was added in duplicate to the indicated final concentration to HEK-Blue IL-1 β reporter cells and SEAP activity was measured by increased absorbance at OD₆₅₅. The indicated linear fit was used to calculate absolute concentrations of bioactive IL-1 β from culture supernatants shown in Figure 2F. Note that supernatants from inflammasome-transfected cells was diluted 10-fold before addition to HEK-Blue IL-1 β reporter cells to ensure that levels fell within the linear range of the indicated standard curve. Standard curves were generated in an identical manner for each panel of HEK-Blue data shown.

223 activation resulted in release of bioactive IL-1 β from cells, we measured active IL-1 β levels in
224 the culture supernatant using cells engineered to express a reporter gene in response to
225 soluble, active IL-1 β . When compared to a standard curve (Figure 2 – figure supplement 2), we
226 found that 3C^{pro} treatment resulted in release of >4 ng/ml of active IL-1 β into the culture
227 supernatant (Figure 2G). Importantly, in both assays, 3C^{pro}-induced inflammasome activation
228 was comparable to TEV-induced activation and was ablated when position 131 was mutated,
229 validating that CVB3 3C^{pro} cleavage at a single site is both necessary and sufficient to activate
230 NLRP1 (Figure 2F and 2G).


231

232 **NLRP1 diversification across primates and within humans confers host differences in**
233 **susceptibility to viral 3C^{pro} cleavage and inflammasome activation**

234 Our evolutionary model in which NLRP1 is evolving in conflict with 3C^{pro} suggests that
235 changes in the NLRP1 linker region, both among primates and within the human population
236 (Figure 3A), would confer host-specific differences to NLRP1 cleavage and inflammasome
237 activation. To test this hypothesis, we aligned the linker regions from NLRP1 from diverse
238 mammals and human population sampling and compared the sequences around the site of
239 CVB3 3C^{pro} cleavage (Figure 3B and 3C and Figure 3 – figure supplement 1). We noted that
240 while a majority of primate NLRP1s are predicted to be cleaved similarly to the human ortholog,
241 several primate proteins would be predicted to not be cleaved by enteroviral 3C^{pro} as a result of
242 changes to either the P4, P1 or P1' residues. To confirm these predictions, we made the human
243 NLRP1 mutants G127E or G131R, which reflect the Old World monkey or marmoset residues at
244 each position, respectively. As predicted, both primate NLRP1 variants prevented 3C^{pro}
245 cleavage of NLRP1 (Figure 3D). These results indicate that multiple viral 3C^{pro} activate host
246 NLRP1 in a host specific manner and suggest that single changes within a short linear motif can
247 substantially alter cleavage susceptibility and inflammasome activation.

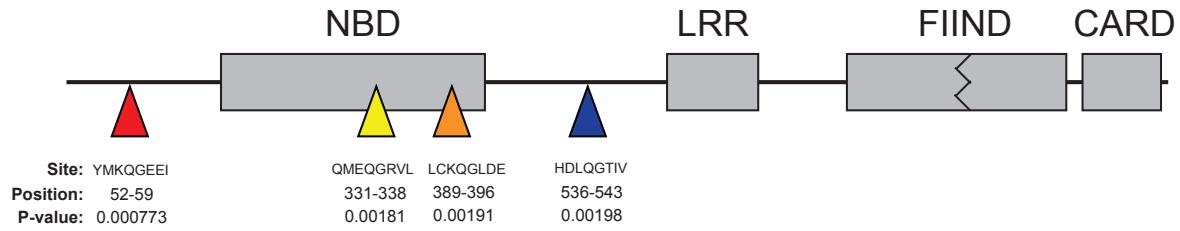

Figure 3. Naturally occurring cleavage site variants alter NLRP1 susceptibility to enteroviral 3C^{pro}. (A) Schematic of sites found to be evolving under positive selection (marked as *, from (Chavarria-Smith & Vance, 2013)) and human SNPs with at least 10 reported instances in the Genome Aggregation Database (GnomAD, (Karczewski et al., 2020)) (marked as !) within the linker region between the pyrin domain (PYD) and nucleotide binding domain (NBD) of NLRP1. The enteroviral 3C^{pro} cleavage site between position 130 and 131 is indicated by a red triangle. (B) Phylogenetic tree depicting the enteroviral 3C^{pro} cleavage site (red triangle) within NLRP1 across three clades of primates – hominoids, Old World monkeys (OWMs), and New World monkeys (NWMS). Mouse NLRP1B lacks any sequence that is alignable to this region of primate NLRP1 (see also Figure 3 – figure supplements 1 & 2). Amino acid differences to the human NLRP1 reference sequence are highlighted in red. Above the alignment is the enterovirus 3C^{pro} sequence logo shown in Figure 1. (C) GnomAD-derived allele counts of each missense human SNP (by reference SNP #) within the 8mer of the determined enteroviral 3C^{pro} cleavage site. (D-E) Immunoblot depicting CVB3 3C^{pro} cleavage susceptibility of the indicated 8mer site variants introduced into human NLRP1 or full-length wild-type mouse NLRP1B (D) or the cleavage susceptibility of human NLRP1 Q130R, a naturally occurring human population variant (E). (F) Release of bioactive IL-1 β into the culture supernatant as measured using HEK-Blue IL-1 β reporter cells as in Figure 2F. Data were analyzed using two-way ANOVA with Sidak's post-test. **** = $p < 0.0001$.

Figure 3 – figure supplement 1.

Mammalian NLRP1 phylogenomics and alignment of linker region. The indicated mammalian NLRP1 sequences were aligned and the region corresponding to residues 107-169 from human NLRP1 were extracted, which is anchored on both ends by well conserved proline and serine rich motifs. A consensus sequence generated from alignable sequences in this region is shown above the human sequence. The position of the CVB3 3C^{pro} cleavage site in human NLRP1 is shown, flanked by four amino acids on both sides (P4->P4'). In other mammals, residues that differ from the human sequence are shown in red. Within the aligned region that corresponds to the CVB3 3C^{pro} cleavage site, only simian primates have P4, P1 and P1' residues that would allow cleavage. The only other species that have a plausible cleavage site in this position are sheep and goats (P4 = Val, P1 = Gln, P1' = Ser), although those residues appear to have evolved independently at those positions. Two clades of species (the “mouse-related” clade of rodents and the microbat clade, marked as green) have NLRP1 protein sequences with N-terminal linkers that are unalignable to human NLRP1 in this region. Four additional clades (lagomorphs, megabats, cetaceans and felines, marked as grey) lack the NLRP1 gene altogether.

Mouse NLRP1B

Figure 3 – figure supplement 2.

Schematic of the domain structure of mouse NLRP1B, with predicted cleavage sites shown as colored triangles. FIMO-reported p-values are described at the predicted sites. Note that mouse NLRP1 genes, like those of many rodents, lack the N-terminal pyrin domain found in human NLRP1.

248 We further observed that this cleavage site is largely absent in non-primate species
249 (Figure 3 – figure supplement 1), suggesting that a 3C^{pro} cleavage site mimic emerged in simian
250 primates 30-40 million years ago. While many other mammalian species have a region that is
251 alignable to the primate linker, we noted that this region is unalignable to any sequence in the
252 linker region of NLRP1 proteins from rodents or bats (Figure 3B and Figure 3 – figure
253 supplement 1). Despite this, we found that there was weak cleavage of mouse NLRP1B at a site
254 closer to the N-terminus than the 127-GCTQGSER-134 site found in human NLRP1 (Figure
255 3D), suggesting that an independent cleavage site could have arisen elsewhere in mouse
256 NLRP1B. Indeed, our best prediction for a cleavage site in mouse NLRP1B is between residues
257 55 and 56 (52-YMKQGEEI-59, Figure 3 – figure supplement 2). These data suggest that NLRP1
258 in other mammals may have convergently evolved cleavage sites in the linker region despite not
259 having a cleavable sequence in the precise position that human NLRP1 is cleaved.

260 Differential host susceptibility to NLRP1 cleavage and activation extends to the human
261 population level. Using GnomAD (Karczewski et al., 2020), we sampled the alternative alleles
262 within the direct cleavage site (Figure 3C). While this region does not appear to be highly
263 polymorphic in humans, we note that one alternative allele (rs150929926) results in a Q130R
264 mutation and is present in >1 in every 1000 African alleles sampled. Introducing this mutation
265 into NLRP1, we find the Q130R mutation eliminates NLRP1 cleavage susceptibility to CVB3
266 3C^{pro} (Figures 3E). In the case of primate and human diversity alleles at the site of 3C^{pro}
267 cleavage, we also find that loss of cleavage susceptibility results in a loss of inflammasome
268 activation in response to 3C^{pro} (Figure 3F), supporting the aforementioned notion that single
269 changes in the linker region can have drastic impacts on the ability of different hosts to respond
270 to the presence of cytoplasmic 3C^{pro}.

271

272 **3C^{pro} from diverse picornaviruses cleave and activate human NLRP1.**

273 Our evolutionary model predicted that NLRP1 would be cleaved by a broad range of
274 3C^{pro} from viruses in the enterovirus genus (Figure 1B). To test this hypothesis, we cloned 3C^{pro}
275 from representative viruses from four additional major species of human enteroviruses:
276 enterovirus 71 (EV71, species: *Enterovirus A*), poliovirus 1 (PV1, species: *Enterovirus C*),
277 enterovirus D68 (EV68, species: *Enterovirus D*), human rhinovirus A (HRVA, species:
278 *Rhinovirus A*), in order to compare them to the 3C^{pro} from CVB3 (species: *Enterovirus B*) (Figure
279 4A). Confirming our computational prediction, and despite <50% amino acid identity between
280 some of these proteases (Figure 4 – figure supplement 1 and 2) we found that every tested
281 member of enterovirus 3C^{pro} was able to cleave NLRP1 between residues 130 and 131 (Figure
282 4B). Moreover, expression of every tested enterovirus 3C^{pro} resulted in activation of the
283 inflammasome in a manner that was dependent on cleavage at the 127-GCTQGSER-134 site
284 (Figure 4C).

285 Enteroviruses are only one genus within the broad *Picornaviridae* family of viruses. We
286 next asked if viruses in other *Picornaviridae* genera that infect humans are also able to cleave
287 and activate human NLRP1. We were unable to generate a robust sequence motif for every
288 genera of picornavirus due to lower depth of publicly available sequences. Instead, we cloned a
289 3C^{pro} from a representative of every genus of picornavirus that are known to infect humans:
290 encephalomyocarditis virus (EMCV, genus: *Cardiovirus*), parechovirus A virus (ParA, genus:
291 *Parechovirus*), Aichi virus (Aichi, genus: *Kobuvirus*), hepatitis A virus (HepA, genus:
292 *Hepatovirus*), salivirus A virus (SaliA, genus: *Salivirus*), and rosavirus A2 (Rosa2, genus:
293 *Rosavirus*). Each of these viral proteases is <20% identical to CVB3 3C^{pro} (Figure 4 – figure
294 supplement 2). Despite this, the sequence motif built from cleavage sites within the polyprotein
295 of these individual viruses is broadly consistent with the motif seen in enteroviruses (Figure 4A),
296 reflective of the strong evolutionary constraint on evolution of the sequence specificity of these
297 proteases. Interestingly, we found that there was substantial variation in NLRP1 cleavage sites
298 across these diverse 3C^{pro} even though most picornavirus proteases cleaved human NLRP1 to

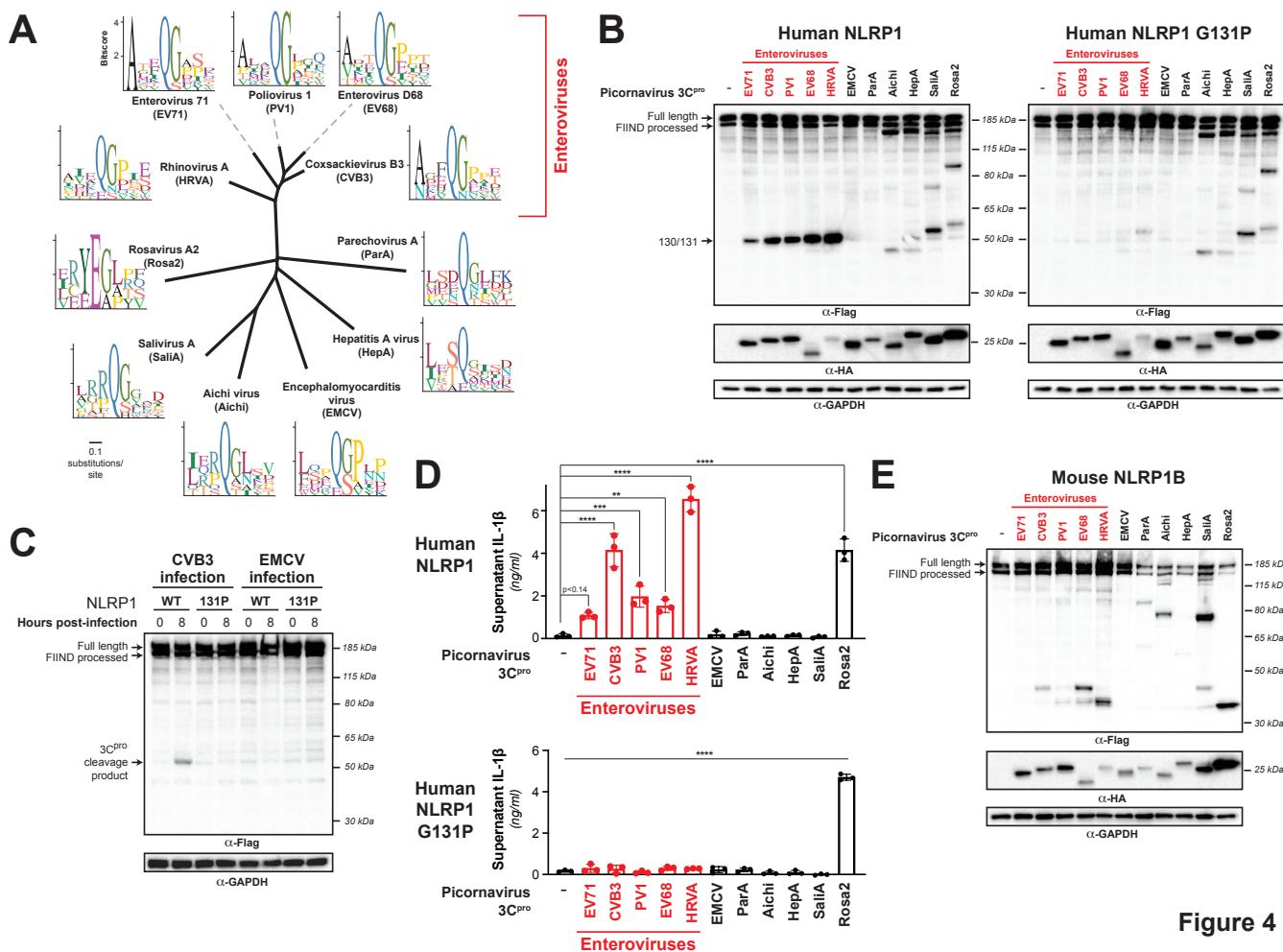


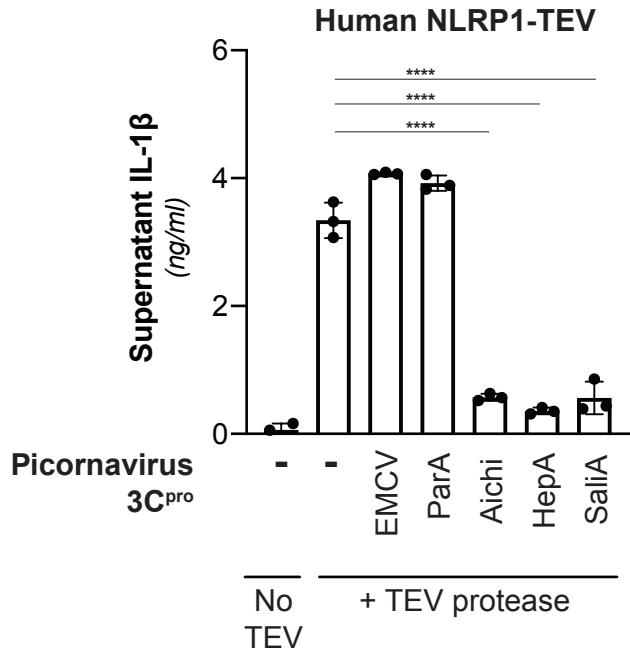
Figure 4

Figure 4. Diverse picornavirus 3C^{pro}s cleave and activate NLRP1 at independently evolved sites.

(A) Phylogenetic tree of 3C^{pro} protein sequences for the indicated picornaviruses (Figure 4 – figure supplement 1 and 2). Shown next to the virus name is the sequence motif generated from the known sites of 3C^{pro} polyprotein cleavage in that specific virus. (B) Immunoblot depicting human NLRP1 cleavage by the indicated picornaviral 3C^{pro}. Abbreviations are as in (A). Assays were performed as in Figure 2D. (left) Cleavage assays against WT NLRP1. (right) Human NLRP1 G131P mutant used in Figure 2. (C) Immunoblot depicting human NLRP1 cleavage at the indicated timepoints after infection with 250,000 PFU (MOI = ~1) CVB3 or EMCV. HEK293T cells were transfected using 100ng of either WT NLRP1 or NLRP1 G131P and infected 24-30 hours later. All samples were harvested 32 hours post-transfection and immunoblotted with the indicated antibodies (D) Release of bioactive IL-1 β into the culture supernatant as measured using HEK-Blue IL-1 β reporter cells as in Figure 2G. Data were analyzed using one-way ANOVA with Tukey's post-test. ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. (E) Immunoblot depicting mouse NLRP1B cleavage by numerous picornaviral 3C^{pro}. Assays were performed as in Figure 2D.

Coxsackievirus B3 3C _{pro}	1	GP--AFEFAVAMMK---RNSSTVKTEYG-----EFTMLGIYDRWAFLPRHAKPGP-----TILMN
Enterovirus D68 3C _{pro}	1	GP--GFDFAQAIMK---KNTVIARTEKG-----EFTMLGVYDRVAVIPTHASVGE-----IIYIN
Poliovirus 1 3C _{pro}	1	GP--GFDYAVAMAK---RNIVTATTSKG-----EFTMLGVHDNVAILPHTASPG-----SIVID
Rhinovirus A 3C _{pro}	1	GP--EEEFGRSILK---NNTCVITTDNG-----KFTGLGIYDFTLIIPTHADPGR-----EVQVN
Enterovirus 71 3C _{pro}	1	GP--SLDFALSLLR---RNIRQAQTDQG-----HFTMLGVDRLLAIPRHSQPGK-----TIWVE
Hepatitis A virus 3C _{pro}	1	S---TLETAGLVRK---NLVQFCVGKEKNCGVR---WVMNALGVKDQDWLLVPSHAYKFKEKYEMMEFYFNRRG
Rosavirus A2 3C _{pro}	1	GL--PQIYRPVVCNCFPINFYDCDPRDNARSGGVFTLTAVGMYDRTYICNAHGFKDA-----THIGLR
EMCV 3C _{pro}	1	GPNPTMDFEKFVAK--FVTAPIGFVYPTGV-----STQTCLLVKGRRTLAVNRHMAESD-----WTSIVVR
Aichi virus 3C _{pro}	1	G-----ISPAVPG-ISNNVVHVESGNGLNK---NVMSGFYIFSRFLLVPTHLREPH-----HTTLTVG
Salivirus A 3C _{pro}	1	G-----FDPAVMK-IMGNVDSFTLSGTKP--IWTMSCLWIGGRNLIAPSHAFVSD---EYEITHIRVG
Parechovirus A 3C _{pro}	1	AP---YDGQLEHHIISQMAYITGSTTG-----HITHCAGYQHDIEILHGHSIKYL---EQEEELTLHYK
		*
Coxsackievirus B3 3C _{pro}	51	DQEVGVLDAKEL-VDKDGTNLELTLLKLNRRNEKFRDIRGFLAKEEV---EVNEAVLAINTS-KFPNMYI
Enterovirus D68 3C _{pro}	51	DVETRVLDACAL-RDLTDTNLEITIVKLDRNQKFRDIRHFLPRCED---DYNDAVLSVHTS-KFPNMYI
Poliovirus 1 3C _{pro}	51	GKEVEILDAKAL-EDQAGTNLEITIITLKRNEKFRDIRPHIPTQIT---ETNDGVLIVNTS-KYPNMYV
Rhinovirus A 3C _{pro}	51	GIHTKVLDSDYL-YNRDGVKLEITVIKLDNEKFRDIRKYIPTED---DYPECNLALSAN-QVEPTII
Enterovirus 71 3C _{pro}	51	HKLLINVLDAVEL-VDEOGVNLLELTIVLTLDTNEKFRDIRKFIPEVIT---GASDAVLVINTE-HMPSMFV
Hepatitis A virus 3C _{pro}	63	GTYYISAGNVVIQSLDVGFDQDVLMKVPТИPKFRDITQHFIKKGDV-PRALNRLATLVTTV-NGTPMLI
Rosavirus A2 3C _{pro}	62	GRVYPSIEINKKHHVRNHRRTDLMIFQIPDGDVCRNIRLKYFRKSP---EAPSRSPAVMAVRGKFNIDV
EMCV 3C _{pro}	59	GVSHTRSSVKKIIAIAKAGKETDVSFIRLSSGGLFRDNTSKFVKASDVLP---HSSSPLIGIMNVDIPMMY
Aichi virus 3C _{pro}	55	ADTYDWATLQTO-----EFGEITIVHTPTSRQYKDMRRF1GAHP-----HPTGLLVSQF-KAAPLYV
Salivirus A 3C _{pro}	59	SRTLDVSRVTRV-----DDGEILSLLSVPDGPEHKSLIRYIRSAS-----PKSGILASKF-SDTPVVF
Parechovirus A 3C _{pro}	58	NKVFPIEQPSVTQVTLGGKPMIDLAVKCKLPLFRKKNSKYYTNKI-----GTESMLIWMTEQGIITK
Coxsackievirus B3 3C _{pro}	114	---PVGQVTEYGFNLNGGPTK-----RMLMYNFPTRAGQC _{GGV} LMS---TGKVLGIGHVGG-NGHQ-
Enterovirus D68 3C _{pro}	114	---PVGQVTNYGFNLNGGPTK-----RILMYNFPTRAGQC _{GGV} VTT---TGKVIGHVGG-NGAQ-
Poliovirus 1 3C _{pro}	114	---PVGAVTEQGYLNLGRQTA-----RILMYNFPTRAGQC _{GGV} ITC---TGKVIGHMHVGG-NGSH-
Rhinovirus A 3C _{pro}	114	---KVGDVVSYGNILLSGNQTA-----RMLKYNPPTKSGYCGGVLYK---IGQILGIHVGG-NGRD-
Enterovirus 71 3C _{pro}	114	---PVGDVVQYGFNLNSGKPTH-----RTMMYNPPTKAGQCGGVVTS---VGKIIIGIHIGG-NGRQ-
Hepatitis A virus 3C _{pro}	131	SEGPLKMEEKATYVHKKNDGTTVQAWRGKGEGLPGMCGGALVSSNQSIQNAILGIHVAG---GNSI
Rosavirus A2 3C _{pro}	127	---LATCVESFAVQMSGDVNY---GALRYHAMTPGCGAPLISNDKA-AEKVLGIGHMAS-NGAGI
EMCV 3C _{pro}	126	T---CTFLKAGVSVPVEQTQFN---HCHYKANTRKGWCGSAILADLGG-SKLLGFHSAG---SM-
Aichi virus 3C _{pro}	110	---RISDNRILLDLDPGVVVCK---QAYGYRAATFEGLCGSPLVTDPS-GVKILGLHVAGVAGTS-
Salivirus A 3C _{pro}	114	---SFWNNGKSHTPLPGVVDEK---DSFTYRCSSFQGLCGSPMIATDPG-GLGILGIHVAGVAGYN-
Parechovirus A 3C _{pro}	120	---VQRVHHSGGIKTRGTEST---KTISYTVKSCKGMC _{GG} LISKVEG-NFKILGMHIAG-NGEM-
		*** *
Coxsackievirus B3 3C _{pro}	169	GFSAA---LLKHYFNDE-----
Enterovirus D68 3C _{pro}	169	GFAAM---LLHSYFTDTQ-----
Poliovirus 1 3C _{pro}	169	GFAAA---LKRSYFTOSQ-----
Rhinovirus A 3C _{pro}	169	GFSAM---LLRSYFTDTQ-----
Enterovirus 71 3C _{pro}	169	GFCAG---LKRSYFASE-----
Hepatitis A virus 3C _{pro}	199	LVAKL---VTQEMFQNIKKIE-SQ
Rosavirus A2 3C _{pro}	187	AYGTS---VYQSDFENLE-----YE
EMCV 3C _{pro}	183	GVAASAIISQEMIDAVVQAFE-PQ
Aichi virus 3C _{pro}	170	GFSAP---IHP-ILGQITQFATTQO
Salivirus A 3C _{pro}	174	GFSAR---LTPERVQAFLSHLATPQ
Parechovirus A 3C _{pro}	179	GVAIPFNFLKNDMSD-----Q

Figure 4 – figure supplement 1.


Alignment of 3C_{pro} used in this study. Sequences were aligned using MAFFT (Katoh & Standley, 2013) and used to generate the phylogenetic tree shown in Figure 4A. Asterisks indicate residues 100% conserved in all sequences. The position of the catalytic cysteine, analogous to C147 in CVB3 3C_{pro}, is highlighted in yellow.

Amino acid identity between 3Cpros (%)

	<i>CVB3</i>	<i>EV68</i>	<i>PV1</i>	<i>HRVA</i>	<i>EV71</i>	<i>HepA</i>	<i>Rosa2</i>	<i>EMCV</i>	<i>Aichi</i>	<i>SaliA</i>	<i>ParA</i>
<i>Coxsackievirus B3 3Cpro (CVB3)</i>		67.0	61.0	47.3	54.9	19.2	18.5	17.8	19.0	19.1	16.5
<i>Enterovirus D68 3Cpro (EV68)</i>	67.0		65.6	49.2	53.3	17.7	16.4	16.3	18.9	16.0	13.9
<i>Poliovirus 1 3Cpro (PV1)</i>	61.0	65.6		43.7	54.9	17.2	17.4	19.7	18.4	14.5	15.4
<i>Rhinovirus A 3Cpro (HRVA)</i>	47.3	49.2	43.7		45.6	17.2	18.9	16.3	19.9	20.0	15.4
<i>Enterovirus 71 3Cpro (EV71)</i>	54.9	53.3	54.9	45.6		15.4	17.0	16.8	16.4	16.6	18.0
<i>Hepatitis A virus 3Cpro (HepA)</i>	19.2	17.7	17.2	17.2	15.4		18.1	20.3	17.9	17.0	15.5
<i>Rosavirus A2 3Cpro (Rosa2)</i>	18.5	16.4	17.4	18.9	17.0	18.1		17.1	14.3	16.9	15.7
<i>EMCV 3Cpro (EMCV)</i>	17.8	16.3	19.7	16.3	16.8	20.3	17.1		16.1	23.7	16.0
<i>Aichi virus 3Cpro (Aichi)</i>	19.0	18.9	18.4	19.9	16.4	17.9	14.3	16.1		33.8	13.1
<i>Salivirus A 3Cpro (SaliA)</i>	19.1	16.0	14.5	20.0	16.6	17.0	16.9	23.7	33.8		13.5
<i>Parechovirus A 3Cpro (ParA)</i>	16.5	13.9	15.4	15.4	18.0	15.5	15.7	16.0	13.1	13.5	

Figure 4 – figure supplement 2.

Table of pairwise percent sequence identity of 3C^{pros} used in this study as determined from the alignment shown in Figure 4 – figure supplement 1.

Figure 4 – figure supplement 3.

Inhibition of NLRP1 activation by non-enteroviral 3C^{pro}. HEK293T cells were transfected with inflammasome components as in Figure 2E using 100ng TEV protease or pQCXIP empty vector, but with the additional inclusion of a non-enterovirus 3C^{pro} or empty vector (100ng). Release of bioactive IL-1 β into the culture supernatant was measured using HEK-Blue IL-1 β reporter cells as in Figure 2G. Data were analyzed using one-way ANOVA with Tukey's post-test comparing all conditions containing TEV protease. **** = p < 0.0001.

299 some degree (Figure 4B). For instance, while 3C^{pro} from EMCV and ParA did not cleave
300 NLRP1, we observed distinct cleavage sites for 3C^{pro} from Aichi, HepA, SaliA and Rosa2
301 (Figure 4B), all of which have at least one cleavage site predicted to occur in the linker region
302 (expected size between 40 kDa and 67 kDa). Confirming that these proteases cleave at a site
303 that is distinct from that of enteroviruses, the G131P NLRP1 mutant is still cleaved by the non-
304 enteroviral proteases (Figure 4B). To further confirm that cleavage (or lack thereof) of NLRP1 by
305 expression of 3C^{pro} alone is reflective of 3C^{pro} during viral infection, we infected cells expressing
306 WT or 131P NLRP1 with EMCV. Consistent with our co-transfection experiments, we see no
307 cleavage of NLRP1 when we infect with EMCV, despite seeing robust cleavage when we infect
308 with CVB3 (Figure 4C).

309 Surprisingly, when we interrogated NLRP1 inflammasome activation by 3C^{pros} from Aichi,
310 HepA, SaliA and Rosa2, all of which robustly cleave NLRP1 at a site in the linker region, we
311 found that only Rosa2 was able to activate the NLRP1 inflammasome (Figure 4D). While it is
312 possible that NLRP1 cleavage by 3C^{pro} from these other viruses is too weak or in a region that
313 may be inconsistent with activation, we also noted that there are obvious cleavage sites in
314 NLRP1 that are outside of the linker region and closer to the FIIND autocleavage site. Cleavage
315 at these sites in NLRP1, or cleavage of other host genes, may interfere with activation that may
316 have otherwise been induced by 3C^{pro} cleavage in the linker region. Indeed, we find that co-
317 expression of 3C^{pro} from Aichi, HepA, SaliA can attenuate NLRP1 activation by TEV protease
318 (Figure 4 – figure supplement 3), consistent with the idea that these three proteases can
319 actively block NLRP1 activation. Further investigation will be needed to determine the exact
320 mechanism by which this occurs. Nevertheless, our data demonstrate that non-enteroviral 3C^{pros}
321 can cleave NLRP1 at independent sites in the rapidly evolving linker region and can, in at least
322 one case, activate the human NLRP1 inflammasome.

323 To further test the hypothesis that diversity of 3C^{pro} impacts host NLRP1 targeting, we
324 compared the same 3C^{pro} panel against mouse NLRP1B (Figure 4E). Unlike 3C^{pro}-mediated

325 cleavage of human NLRP1, in which all enteroviral 3C^{pro} cleave human NLRP1 at the same site,
326 we found that even within enteroviruses there were differences in the ability to cleave NLRP1B
327 and the cleavage sites. Outside of enteroviruses, we again found differences in sites cleaved
328 within mouse NLRP1B. These data further support the model in which both host and viral
329 evolution, even within closely related host and viral species, shape the outcome of the
330 interaction between NLRP1 and 3C^{pro}.

331 **DISCUSSION**

332

333 Pathogens and their hosts are locked in a continual evolutionary conflict in which each
334 side is attempting to exploit the others' weakness. One particularly successful strategy that
335 pathogens have adopted is to exploit host processes that are highly constrained, leaving the
336 host little room to evolutionarily adapt to overcome the pathogen. For instance, molecular
337 mimicry of host proteins is commonly deployed by pathogens to antagonize host defenses, as it
338 limits the evolutionary options for the host to counter-evolve (Elde & Malik, 2009). Beyond
339 mimicry of entire proteins or protein domains, pathogens can also mimic so-called "short linear
340 motifs" (SLIMs) through evolution of only a small number of amino acids to hijack highly
341 conserved host processes such as post-translational modifications or binding by small protein
342 domains (Chemes, de Prat-Gay, & Sanchez, 2015; Hagai, Azia, Babu, & Andino, 2014). Though
343 these strategies are generally described as taking advantage of host evolutionary constraint,
344 pathogens also have potential weak points of evolutionary constraint. In particular, proteases
345 from positive-sense RNA viruses, such as picornaviruses, need to specifically cleave numerous
346 sites within the viral polyprotein in order to reproduce. Thus, changing protease specificity
347 requires concomitant changes to several independent cleavage sites, which is difficult to
348 accomplish in a single evolutionary step. On top of that, protease cleavage motifs often only
349 span a small number of amino acids (Schechter & Berger, 1967), potentially facilitating the
350 independent evolution of these SLIMs in host proteins.

351 Here we show that the inflammasome protein, NLRP1, serves as a sensor for diverse
352 proteases from the *Picornaviridae* family of human pathogens by mimicking the highly
353 conserved protease cleavage sites found within the viral polyproteins. By exploiting a
354 constrained feature of viral evolution and tying it to a pro-inflammatory immune response, such
355 a system allows the immune system to recognize and respond to a wide range of viral
356 proteases expressed in the host cytoplasm. NLRP1 represents one of the few known cases of

357 mammalian ETI (Cui et al., 2015; Fischer et al., 2020; Jones et al., 2016), where pathogen-
358 mediated cleavage of NLRP1 promotes its activation. By holding the small C-terminal CARD-
359 containing fragment in a non-covalent association with the larger N-terminal fragment, the
360 majority of the protein can serve as a sensor for pathogen-encoded effectors (Mitchell et al.,
361 2019; Taabazuing et al., 2020). This presents an opportunity to allow NLRP1 to evolve to be
362 recognized by pathogenic effectors, ultimately leading to degradation of the N-terminal
363 fragment. Indeed, mouse NLRP1B has been shown to be specifically cleaved by the protease-
364 containing secreted effector from *B. anthracis* (LF) as well as a being ubiquitylated by an E3-
365 ubiquitin ligase from *Shigella flexneri* (Sandstrom et al., 2019). While these two examples
366 provide evidence that the mouse NLRP1B inflammasome operates by a “functional degradation”
367 model, a direct pathogen-encoded activator of human NLRP1 has remained elusive. We now
368 show, using an evolution-guided approach, that proteases from diverse picornaviruses,
369 including human pathogens such as coxsackievirus B3 (CVB3), human rhinovirus A (HRVA),
370 enterovirus D68 (EV68) and poliovirus 1 (PV1) and rosavirus A2 (Rosa2), specifically cleave
371 several independently evolved sites in human NLRP1, leading to activation of the NLRP1
372 inflammasome and release of pro-inflammatory cytokines such as IL-1 β . Thus, our work has
373 identified viral proteases as the first known pathogen-encoded activators of human NLRP1.

374 We previously speculated that the unique domain architecture of NLRP1 would allow the
375 N-terminal linker of human NLRP1 to freely evolve to be recognized by pathogenic effectors.
376 Indeed, by harvesting publicly available enterovirus polyprotein sequences for known 3C^{pro}
377 cleavage sites, we created a 3C^{pro} cleavage motif that was used to successfully predict the site
378 of enterovirus 3C^{pro} cleavage at position 130-131 within the rapidly-evolving linker NLRP1.
379 Additionally, our finding that numerous enteroviruses also cleave at the Q130-G131 site and
380 activate pro-inflammatory cytokine release suggests that human NLRP1 serves as a general
381 enteroviral protease sensor by encoding a polyprotein cleavage site mimic. Our phylogenetic
382 assessment of the Q130-G131 3C^{pro} cleavage site in NLRP1 suggests that NLRP1 sensing of

383 enteroviruses at this specific site is an innovation in the primate lineage, and is largely absent in
384 all other mammalian lineages with exception of a possible independent acquisition by members
385 within the *Caprinae* subfamily of mammals (e.g. goats, sheep) (Figure 3 – figure supplement 1).
386 Interestingly, even within the primate lineage and a small fraction of the human population,
387 some primate orthologs and human variants are cleavage-resistant and therefore do not
388 activate the inflammasome upon cytoplasmic expression of 3C^{pro}. Such data may hint at three
389 different possible explanations for these changes. First, evolutionary drift in the absence of
390 pressure from pathogenic enteroviruses may account for loss of enterovirus 3C^{pro}
391 responsiveness in these genes. Second, selection to sense another viral protease may shape
392 the same region of the linker. Finally, while the ETI model of NLRP1 suggests that enteroviral
393 cleavage of NLRP1 has evolved to activate a beneficial immune response in certain contexts,
394 the effects of NLRP1 overactivation may be detrimental in other contexts. In human skin
395 keratinocytes, where NLRP1 is regarded as the key inflammasome, all components of the
396 NLRP1 inflammasome are basally expressed and thus poised to elicit an inflammatory response
397 (Zhong et al., 2016). Here, germline mutations in NLRP1 that result in overactivation can cause
398 growth of warts in the upper airway in a condition known as recurrent respiratory papillomatosis
399 (JRRP) (Drutman et al., 2019) and an increase in skin cancer susceptibility and skin disorders
400 such as multiple self-healing palmoplantar carcinoma (MSPC), familial keratosis lichenoides
401 chronica (FKLC) and auto-inflammation with arthritis and dyskeratosis (AIADK) (Grandemange
402 et al., 2017; Herlin et al., 2019; Soler et al., 2013; Zhong et al., 2016; Zhong et al., 2018).
403 Beyond the skin, NLRP1 is also basally expressed in tissues such as the gut and brain
404 (D'Osualdo et al., 2015; Kaushal et al., 2015; Kummer et al., 2007), which are sites of
405 picornavirus replication where overactivation upon infection may result in immunopathology.
406 Further *in vivo* studies, facilitated by our discovery of specific picornavirus proteases that cleave
407 mouse NLRP1B, will help determine the role of NLRP1 in antiviral immunity and/or
408 immunopathology during viral infection.

Intriguingly, 3C^{pros} from nearly every genus of human-infecting picornavirus can cleave NLRP1 somewhere in the rapidly evolving linker region between the PYD and NLR domain, although only enteroviruses cleave at the specific site between position 130 and 131. These data suggest that this extended linker, which we previously found showed widespread signatures of positive selection (Chavarria-Smith et al., 2016), may be convergently evolving to mimic cleavage sites from a diverse range of viruses at multiple independent sites. Supporting that model, we observe a similar phenomenon in mouse NLRP1B, where multiple viruses cleave at different sites within NLRP1. These data highlight the important functional differences in cleavage specificity between even closely related 3C^{pro} that are not accounted for by predictive models. Further studies will be required to understand the precise relationships between sites within NLRP1 and individual protease specificity. Intriguingly, not all of these cleavage events lead to inflammasome activation in the same way that enteroviral cleavage does, and we find evidence for antagonism of NLRP1 activation by some 3C^{pros}, suggesting that additional activities of 3C^{pro} may be the next step in the arms race, serving to prevent inflammasome activation even after the tripwire has been tripped.

424 Taken together, our work suggests that host mimicry of viral polyprotein cleavage motifs
425 could be an important evolutionary strategy in the ongoing arms race between host and viruses.
426 Indeed, one explanation for the somewhat surprising observation that the specificity of viral
427 proteases changes at all within a viral family such as the picornaviruses is that there is
428 evolutionary pressure from the host to evolve cleavage sites and protease specificity. Prior work
429 has highlighted the roles that viral proteases can play in antagonizing host immune factors and
430 driving host evolution to avoid being cleaved (Patel, Loo, Horner, Gale, & Malik, 2012; Stabell et
431 al., 2018). In that case, the viral proteases would evolve to antagonize new factors while
432 maintaining polyprotein cleavage. However, mimicry coupled with cleavage-activating immunity
433 as seen with NLRP1 could be an even stronger pressure to shape the protease specificity. By
434 turning the tables, these host processes may drive the type of functional diversification of viral

435 protease specificity as we observe in order to avoid cleaving NLRP1 and other similar ETI
436 factors. We expect that this work may lead to the discovery that such an evolutionary strategy
437 may be more broadly deployed at other sites of host-pathogen conflicts.

438 **MATERIALS AND METHODS**

439

440 **Motif generation and search**

441 To build the motif, 2658 nonredundant enteroviral polyprotein sequences were collected from
442 the Viral Pathogen Resource (ViPR) and aligned with 20 well-annotated reference enteroviral
443 polyprotein sequences from RefSeq (Supplementary file 1). P1 and P1' of the 8 annotated
444 cleavage sites across the RefSeq sequences served as reference points for putative cleavage
445 sites across the 2658 ViPR sequences, with the exception of enterovirus D polyproteins. The
446 3C^{pro} cleavage site for VP3-VP1 within polyproteins from the clade of enterovirus D have been
447 described to be undetectable and have thus been removed (Tan et al., 2013). Four amino acyl
448 residues upstream (P4-P1) and downstream (P1'-P4') of each cleavage site were extracted
449 from every MAFFT-aligned polyprotein sequence, resulting in 2678 sets of cleavage sites
450 (RefSeq sites included). Each set of cleavage sites representative of each polyprotein was then
451 concatenated. 1884 duplicates were removed from the 2678 concatenated cleavage sites. The
452 remaining 796 nonredundant, concatenated cleavage sites were then split into individual 8-mer
453 cleavage sites and the 6333 8-mers were aligned using MAFFT to generate Geneious-defined
454 sequence logo information at each aligned position. Pseudo-counts to the position-specific
455 scoring matrix were adjusted by total information content within each position relative to the two
456 most information-dense position P1 and P1' (pseudocount = 0) and the least information-dense
457 position P3 (pseudocount = 1). The 0.002 p-value threshold for FIMO motif searching against
458 human NLRP1 was determined to optimize the capture of 95% of initial input cleavage sites
459 within the set of 2678 whole enteroviral polyproteins and a majority sites within a previously
460 described dataset of enteroviral 3C^{pro} targets (Laitinen et al., 2016).

461

462 **NetSurfP**

463 Prediction of the coil probability across human NLRP1 (NCBI accession NP_127497.1) was
464 conducted using the protein FASTA as the input for the NetSurfP web server
465 (<http://www.cbs.dtu.dk/services/NetSurfP/>).

466

467 **Sequence alignments, phylogenetic trees and NLRP1 phylogenomics**

468 Complete polyprotein sequences from 796 picornaviruses with non-redundant 3C^{pro} cleavage
469 sites (see “Motif generation and search” section above) were downloaded from ViPR.
470 Sequences were aligned using MAFFT (Katoh & Standley, 2013) and a neighbor-joining
471 phylogenetic tree was generated using Geneious software (Kearse et al., 2012). An alignment
472 and phylogenetic tree of all of the 3C^{pro} sequences used in this study was generated similarly.
473 To identify mammalian NLRP1 homologs, and species that lack NLRP1, the human NLRP1
474 protein sequence was used to query the RefSeq protein sequence database, a curated
475 collection of the most well-assembled genomes, using BLASTp (Altschul et al., 1997).
476 Sequences were downloaded and aligned using MAFFT implemented in Geneious software.
477 Consensus sequence logos shown were generated using Geneious software. We determined
478 that NLRP1 was “absent” from a clade of species using the following criteria: (1) when
479 searching with human NLRP1, we found an obvious homolog of another NLRP protein
480 (generally NLRP3, NLRP12 or NLRP14) but no complete or partial homolog of NLRP1 and (2)
481 this absence was apparent in every member of the clade of species (>2 species) in the RefSeq
482 database.

483

484 **Plasmids and constructs**

485 For NLRP1 cleavage assays, the coding sequences of human NLRP1 WT, human NLRP1
486 mutants (G131P, G131R, Q130R, G127E), human NLRP1 TEV or mouse NLRP1B were cloned
487 into the pcDNA5/FRT/TO backbone (Invitrogen, Carlsbad, CA) with an N-terminal 3xFlag and
488 mCherry tag. For NLRP1 activation, the coding sequences of human NLRP1 WT (NCBI

489 accession NP_127497.1), human NLRP1 mutants (G131P, G131R, Q130R, G127E), human
490 NLRP1 TEV or mouse NLRP1B (mouse strain 129 allele, NCBI accession AAZ40510.1) were
491 cloned into the pQCXIP vector backbone (Takara Bio, Mountain View, CA) with a C-terminal
492 Myc tag. Vectors containing the coding sequences of human NLRP1 TEV (NLRP1-TEV2), ASC,
493 CASP1, IL-1 β -V5, and TEV protease (Chavarria-Smith et al., 2016) were generous gifts from
494 Dr. Russell Vance, UC Berkeley. Single point mutations were made using overlapping stitch
495 PCR. A list of primers used to generate the wild-type and mutant NLRP1 constructs are
496 described in Supplementary file 5.

497
498 CVB3 3C^{pro} and EMCV 3C^{pro} were cloned from CVB3-Nancy and EMCV-Mengo plasmids
499 (generous gifts from Dr. Julie Pfeiffer, UT Southwestern). Remaining 3C^{pro} sequences were
500 ordered as gBlocks (Integrated DNA Technologies, San Diego, CA). Each 3C^{pro} was cloned with
501 an N-terminal HA tag into the QCXIP vector backbone. Catalytic mutations were made using
502 overlapping stitch PCR. A list of primers and gBlocks used to generate the protease constructs
503 are described in Supplementary file 5.

504
505 Following cloning, all plasmid stocks were sequenced across the entire inserted region to verify
506 that no mutations were introduced during the cloning process.

507

508 **Cell culture and transient transfection**

509 All cells are routinely tested for mycoplasma by PCR kit (ATCC, Manassas, VA) and grown in
510 complete media containing DMEM (Gibco, Carlsbad, CA), 10% FBS (Peak Serum, Wellington,
511 CO), and appropriate antibiotics (Gibco, Carlsbad, CA). For transient transfections, HEK293T
512 cells were seeded the day prior to transfection in a 24-well plate (Genesee, El Cajon, CA) with
513 500 μ l complete media. Cells were transiently transfected with 500ng of total DNA and 1.5 μ l of
514 Transit X2 (Mirus Bio, Madison, WI) following the manufacturer's protocol. HEK-Blue IL-1 β

515 reporter cells (Invivogen, San Diego, CA) were grown and assayed in 96-well plates (Genesee,
516 El Cajon, CA).

517

518 **NLRP1 cleavage assays**

519 100ng of human NLRP1 WT, human NLRP1 mutants (G131P, G131R, Q130R, G127E), human
520 NLRP1 TEV or mouse NLRP1B tagged with mCherry, 3xFLAG and Myc was co-transfected
521 with 250ng of HA-tagged protease-producing constructs. Twenty-four hours post-transfection,
522 the cells were harvested, lysed in 1x NuPAGE LDS sample buffer (Invitrogen, Carlsbad, CA)
523 containing 5% β -mercaptoethanol (Fisher Scientific, Pittsburg, PA) and immunoblotted with
524 antibodies described below.

525

526 **Viral stocks and viral infections**

527 CVB3 and EMCV viral stocks were generated by co-transfection of CVB3-Nancy or EMCV-
528 Mengo infectious clone plasmids with a plasmid expressing T7 RNA polymerase (generous gifts
529 from Dr. Julie Pfeiffer, UT Southwestern) as previously described (McCune, Lanahan, tenOever,
530 & Pfeiffer, 2020). Supernatant was harvested, quantified by TCID50 on HEK293T cells, and
531 frozen in aliquots at -80°C.

532

533 For viral infections, cells in 24-well plates were transfected with the indicated NLRP1 plasmid
534 and infected with 250,000 PFU (MOI = ~1) of the indicated virus for the indicated times. All
535 samples were collected 32 hours after transfection. The cells were harvested, lysed in 1x
536 NuPAGE LDS sample buffer (Invitrogen, Carlsbad, CA) containing 5% β -mercaptoethanol
537 (Fisher Scientific, Pittsburg, PA) and immunoblotted with antibodies described below.

538

539 **NLRP1 activity assays**

540 5ng of ASC, 100ng of CASP1, 50ng of IL-1 β -V5, and 100ng of various protease-producing
541 constructs were co-transfected with 4ng of either pQCXIP empty vector, wild-type or mutant
542 pQCXIP-NLRP1-Myc constructs. Twenty-four hours post-transfection, the cells were harvested
543 and lysed in 1x NuPAGE LDS sample buffer containing 5% β -mercaptoethanol and
544 immunoblotted with antibodies described below or culture media was harvested for
545 quantification of IL-1 β levels by HEK-Blue assays (see below).

546

547 **HEK-Blue IL-1 β assay**

548 To quantify the levels of bioactive IL-1 β released from cells, we employed HEK-Blue IL-1 β
549 reporter cells. In these cells, binding to IL-1 β to the surface receptor IL-1R1 results in the
550 downstream activation of NF- κ B and subsequent production of secreted embryonic alkaline
551 phosphatase (SEAP) in a dose-dependent manner. SEAP levels are detected using a
552 colorimetric substrate assay, QUANTI-Blue (Invivogen, San Diego, CA) by measuring an
553 increase in absorbance at OD₆₅₅.

554

555 Twenty-four hours after transfection of HEK293T cells with inflammasome components and
556 3C^{pro} (see NLRP1 activity assays above), 10 μ l of the culture supernatants was added to HEK-
557 Blue IL-1 β reporter cells plated in 96-well format in a total volume of 200 μ l per well. On the
558 same plate, serial dilutions of recombinant human IL-1 β (Invivogen, San Diego, CA) were added
559 in order to generate a standard curve for each assay. Twenty-four hours later, SEAP levels
560 were assayed by taking 20 μ l of the supernatant from HEK-Blue IL-1 β reporter cells and adding
561 to 180 μ l of QUANTI-Blue colorimetric substrate following the manufacturer's protocol. After
562 incubation at 37°C for 30-60 minutes, absorbance at OD₆₅₅ was measured on a BioTek Cytation
563 5 plate reader (BioTek Instruments, Winooski, VT) and absolute levels of IL-1 β were calculated

564 relative to the standard curve. All assays, beginning with independent transfections, were
565 performed in triplicate.

566

567 **Immunoblotting and antibodies**

568 Harvested cell pellets were washed with 1X PBS, and lysed with 1x NuPAGE LDS sample
569 buffer containing 5% β -mercaptoethanol at 98C for 10 minutes. The lysed samples were spun
570 down at 15000 RPM for two minutes, followed by loading into a 4-12% Bis-Tris SDS-PAGE gel
571 (Life Technologies, San Diego, CA) with 1X MOPS buffer (Life Technologies, San Diego, CA)
572 and wet transfer onto a nitrocellulose membrane (Life Technologies, San Diego, CA).

573 Membranes were blocked with PBS-T containing 5% bovine serum albumin (BSA) (Spectrum,
574 New Brunswick, NJ), followed by incubation with primary antibodies for V5 (IL-1 β), FLAG
575 (mCherry-fused NLRP1 for protease assays), Myc (NLRP1-Myc for activation assays), HA (viral
576 protease), or GAPDH. Membranes were rinsed three times in PBS-T then incubated with the
577 appropriate HRP-conjugated secondary antibodies. Membranes were rinsed again three times
578 in PBS-T and developed with SuperSignal West Pico PLUS Chemiluminescent Substrate
579 (Thermo Fisher Scientific, Carlsbad, CA). The specifications, source and clone info for
580 antibodies are described in Supplementary file 6.

581 **ACKNOWLEDGEMENTS**

582

583 We thank members of the Daugherty laboratory and members of the San Diego Program in
584 Immunology for helpful suggestions and Andrew Sandstrom and members of the Daugherty
585 laboratory for critical reading of the manuscript. This work was supported by the National
586 Institutes of Health (R35 GM133633), Pew Biomedical Scholars Program and Hellman Fellows
587 Program to M.D.D, T32 GM007240 to B.V.T., C.B. and A.P.R, a National Science Foundation
588 graduate research fellowship (2019284620) to C.B., and a Jane Coffin Childs Memorial Fund for
589 Medical Research postdoctoral fellowship to P.S.M.

590 **REFERENCES**

591

592 Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J.
593 (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search
594 programs. *Nucleic Acids Res*, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

595 Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., . . . Noble, W. S.
596 (2009). MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res*,
597 37(Web Server issue), W202-208. doi:10.1093/nar/gkp335

598 Blom, N., Hansen, J., Blaas, D., & Brunak, S. (1996). Cleavage site analysis in picornaviral
599 polyproteins: discovering cellular targets by neural networks. *Protein Sci*, 5(11), 2203-
600 2216. doi:10.1002/pro.5560051107

601 Boyden, E. D., & Dietrich, W. F. (2006). Nalp1b controls mouse macrophage susceptibility to
602 anthrax lethal toxin. *Nat Genet*, 38(2), 240-244. doi:10.1038/ng1724

603 Broz, P., & Dixit, V. M. (2016). Inflammasomes: mechanism of assembly, regulation and
604 signalling. *Nat Rev Immunol*, 16(7), 407-420. doi:10.1038/nri.2016.58

605 Cagliani, R., Forni, D., Tresoldi, C., Pozzoli, U., Filippi, G., Rainone, V., . . . Sironi, M. (2014).
606 RIG-I-like receptors evolved adaptively in mammals, with parallel evolution at LGP2 and
607 RIG-I. *J Mol Biol*, 426(6), 1351-1365. doi:10.1016/j.jmb.2013.10.040

608 Chavarria-Smith, J., Mitchell, P. S., Ho, A. M., Daugherty, M. D., & Vance, R. E. (2016).
609 Functional and Evolutionary Analyses Identify Proteolysis as a General Mechanism for
610 NLRP1 Inflammasome Activation. *PLoS Pathog*, 12(12), e1006052.
611 doi:10.1371/journal.ppat.1006052

612 Chavarria-Smith, J., & Vance, R. E. (2013). Direct proteolytic cleavage of NLRP1B is necessary
613 and sufficient for inflammasome activation by anthrax lethal factor. *PLoS Pathog*, 9(6),
614 e1003452. doi:10.1371/journal.ppat.1003452

615 Chemes, L. B., de Prat-Gay, G., & Sanchez, I. E. (2015). Convergent evolution and mimicry of
616 protein linear motifs in host-pathogen interactions. *Curr Opin Struct Biol*, 32, 91-101.
617 doi:10.1016/j.sbi.2015.03.004

618 Chui, A. J., Okondo, M. C., Rao, S. D., Gai, K., Griswold, A. R., Johnson, D. C., . . . Bachovchin,
619 D. A. (2019). N-terminal degradation activates the NLRP1B inflammasome. *Science*,
620 364(6435), 82-85. doi:10.1126/science.aau1208

621 Croft, S. N., Walker, E. J., & Ghildyal, R. (2018). Human Rhinovirus 3C protease cleaves
622 RIPK1, concurrent with caspase 8 activation. *Sci Rep*, 8(1), 1569. doi:10.1038/s41598-
623 018-19839-4

624 Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-triggered immunity: from pathogen
625 perception to robust defense. *Annu Rev Plant Biol*, 66, 487-511. doi:10.1146/annurev-
626 arplant-050213-040012

627 D'Osualdo, A., Anania, V. G., Yu, K., Lill, J. R., Kaufman, R. J., Matsuzawa, S., & Reed, J. C.
628 (2015). Transcription Factor ATF4 Induces NLRP1 Inflammasome Expression during
629 Endoplasmic Reticulum Stress. *PLoS One*, 10(6), e0130635.
630 doi:10.1371/journal.pone.0130635

631 D'Osualdo, A., Weichenberger, C. X., Wagner, R. N., Godzik, A., Wooley, J., & Reed, J. C.
632 (2011). CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like
633 domain. *PLoS One*, 6(11), e27396. doi:10.1371/journal.pone.0027396

634 Daugherty, M. D., & Malik, H. S. (2012). Rules of engagement: molecular insights from host-
635 virus arms races. *Annu Rev Genet*, 46, 677-700. doi:10.1146/annurev-genet-110711-
636 155522

637 Drutman, S. B., Haerynck, F., Zhong, F. L., Hum, D., Hernandez, N. J., Belkaya, S., . . .
638 Casanova, J. L. (2019). Homozygous NLRP1 gain-of-function mutation in siblings with a
639 syndromic form of recurrent respiratory papillomatosis. *Proc Natl Acad Sci U S A*,
640 116(38), 19055-19063. doi:10.1073/pnas.1906184116

641 Elde, N. C., & Malik, H. S. (2009). The evolutionary conundrum of pathogen mimicry. *Nat Rev Microbiol*, 7(11), 787-797. doi:10.1038/nrmicro2222

642

643 Evavold, C. L., & Kagan, J. C. (2019). Inflammasomes: Threat-Assessment Organelles of the

644 Innate Immune System. *Immunity*, 51(4), 609-624. doi:10.1016/j.jimmuni.2019.08.005

645 Fan, X., Li, X., Zhou, Y., Mei, M., Liu, P., Zhao, J., . . . Yi, L. (2020). Quantitative Analysis of the

646 Substrate Specificity of Human Rhinovirus 3C Protease and Exploration of Its Substrate

647 Recognition Mechanisms. *ACS Chem Biol*, 15(1), 63-73.

648 doi:10.1021/acschembio.9b00539

649 Finger, J. N., Lich, J. D., Dare, L. C., Cook, M. N., Brown, K. K., Duraiswami, C., . . . Gough, P.

650 J. (2012). Autolytic proteolysis within the function to find domain (FIIND) is required for

651 NLRP1 inflammasome activity. *J Biol Chem*, 287(30), 25030-25037.

652 doi:10.1074/jbc.M112.378323

653 Fischer, N. L., Naseer, N., Shin, S., & Brodsky, I. E. (2020). Publisher Correction: Effector-

654 triggered immunity and pathogen sensing in metazoans. *Nat Microbiol*, 5(3), 528.

655 doi:10.1038/s41564-020-0682-4

656 Frew, B. C., Joag, V. R., & Mogridge, J. (2012). Proteolytic processing of Nlrp1b is required for

657 inflammasome activity. *PLoS Pathog*, 8(4), e1002659. doi:10.1371/journal.ppat.1002659

658 Grandemange, S., Sanchez, E., Louis-Plence, P., Tran Mau-Them, F., Bessis, D., Coubes, C., .

659 . . Genevieve, D. (2017). A new autoinflammatory and autoimmune syndrome

660 associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with

661 arthritis and dyskeratosis). *Ann Rheum Dis*, 76(7), 1191-1198.

662 doi:10.1136/annrheumdis-2016-210021

663 Grant, C. E., Bailey, T. L., & Noble, W. S. (2011). FIMO: scanning for occurrences of a given

664 motif. *Bioinformatics*, 27(7), 1017-1018. doi:10.1093/bioinformatics/btr064

665 Greaney, A. J., Portley, M. K., O'Mard, D., Crown, D., Maier, N. K., Mendenhall, M. A., . . .

666 Moayeri, M. (2020). Frontline Science: Anthrax lethal toxin-induced, NLRP1-mediated IL-

667 1beta release is a neutrophil and PAD4-dependent event. *J Leukoc Biol.*
668 doi:10.1002/JLB.4HI0320-028R

669 Hagai, T., Azia, A., Babu, M. M., & Andino, R. (2014). Use of host-like peptide motifs in viral
670 proteins is a prevalent strategy in host-virus interactions. *Cell Rep*, 7(5), 1729-1739.
671 doi:10.1016/j.celrep.2014.04.052

672 Hancks, D. C., Hartley, M. K., Hagan, C., Clark, N. L., & Elde, N. C. (2015). Overlapping
673 Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a
674 Common Mechanism of Pathogen Antagonism and Escape. *PLoS Genet*, 11(5),
675 e1005203. doi:10.1371/journal.pgen.1005203

676 Herlin, T., Jorgensen, S. E., Host, C., Mitchell, P. S., Christensen, M. H., Laustsen, M., . . .
677 Mogensen, T. H. (2019). Autoinflammatory disease with corneal and mucosal
678 dyskeratosis caused by a novel NLRP1 variant. *Rheumatology (Oxford)*.
679 doi:10.1093/rheumatology/kez612

680 Huang, L., Liu, Q., Zhang, L., Zhang, Q., Hu, L., Li, C., . . . Weng, C. (2015).
681 Encephalomyocarditis Virus 3C Protease Relieves TRAF Family Member-associated
682 NF-kappaB Activator (TANK) Inhibitory Effect on TRAF6-mediated NF-kappaB Signaling
683 through Cleavage of TANK. *J Biol Chem*, 290(46), 27618-27632.
684 doi:10.1074/jbc.M115.660761

685 Jagdeo, J. M., Dufour, A., Klein, T., Solis, N., Kleifeld, O., Kizhakkedathu, J., . . . Jan, E. (2018).
686 N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus
687 B3 3C Proteinases That Modulate Virus Infection. *J Virol*, 92(8). doi:10.1128/JVI.02211-
688 17

689 Janeway, C. A., Jr. (1989). Approaching the asymptote? Evolution and revolution in
690 immunology. *Cold Spring Harb Symp Quant Biol*, 54 Pt 1, 1-13.
691 doi:10.1101/sqb.1989.054.01.003

692 Jones, J. D., Vance, R. E., & Dangl, J. L. (2016). Intracellular innate immune surveillance
693 devices in plants and animals. *Science*, 354(6316). doi:10.1126/science.aaf6395

694 Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alfoldi, J., Wang, Q., . . .
695 MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in
696 141,456 humans. *Nature*, 581(7809), 434-443. doi:10.1038/s41586-020-2308-7

697 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
698 improvements in performance and usability. *Mol Biol Evol*, 30(4), 772-780.
699 doi:10.1093/molbev/mst010

700 Kaushal, V., Dye, R., Pakavathkumar, P., Foveau, B., Flores, J., Hyman, B., . . . LeBlanc, A. C.
701 (2015). Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates
702 inflammatory interleukin-1-beta production and axonal degeneration-associated
703 Caspase-6 activation. *Cell Death Differ*, 22(10), 1676-1686. doi:10.1038/cdd.2015.16

704 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., . . . Drummond, A.
705 (2012). Geneious Basic: an integrated and extendable desktop software platform for the
706 organization and analysis of sequence data. *Bioinformatics*, 28(12), 1647-1649.
707 doi:10.1093/bioinformatics/bts199

708 Kimura, M. (1983). *The neutral theory of molecular evolution*. Cambridge Cambridgeshire ; New
709 York: Cambridge University Press.

710 Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sonderby, C. K., . . .
711 Marcatili, P. (2019). NetSurfP-2.0: Improved prediction of protein structural features by
712 integrated deep learning. *Proteins*, 87(6), 520-527. doi:10.1002/prot.25674

713 Kummer, J. A., Broekhuizen, R., Everett, H., Agostini, L., Kuijk, L., Martinon, F., . . . Tschopp, J.
714 (2007). Inflammasome components NALP 1 and 3 show distinct but separate expression
715 profiles in human tissues suggesting a site-specific role in the inflammatory response. *J
716 Histochem Cytochem*, 55(5), 443-452. doi:10.1369/jhc.6A7101.2006

717 Laitinen, O. H., Svedin, E., Kapell, S., Nurminen, A., Hytonen, V. P., & Flodstrom-Tullberg, M.
718 (2016). Enteroviral proteases: structure, host interactions and pathogenicity. *Rev Med
719 Virol*, 26(4), 251-267. doi:10.1002/rmv.1883

720 Lei, X., Zhang, Z., Xiao, X., Qi, J., He, B., & Wang, J. (2017). Enterovirus 71 Inhibits Pyroptosis
721 through Cleavage of Gasdermin D. *J Virol*, 91(18). doi:10.1128/JVI.01069-17

722 Levinsohn, J. L., Newman, Z. L., Hellmich, K. A., Fattah, R., Getz, M. A., Liu, S., . . . Moayeri, M.
723 (2012). Anthrax lethal factor cleavage of Nlrp1 is required for activation of the
724 inflammasome. *PLoS Pathog*, 8(3), e1002638. doi:10.1371/journal.ppat.1002638

725 Martinon, F., Burns, K., & Tschopp, J. (2002). The inflammasome: a molecular platform
726 triggering activation of inflammatory caspases and processing of proIL-beta. *Mol Cell*,
727 10(2), 417-426. doi:10.1016/s1097-2765(02)00599-3

728 McCune, B. T., Lanahan, M. R., tenOever, B. R., & Pfeiffer, J. K. (2020). Rapid Dissemination
729 and Monopolization of Viral Populations in Mice Revealed Using a Panel of Barcoded
730 Viruses. *J Virol*, 94(2). doi:10.1128/JVI.01590-19

731 Meyerson, N. R., & Sawyer, S. L. (2011). Two-stepping through time: mammals and viruses.
732 *Trends Microbiol*, 19(6), 286-294. doi:10.1016/j.tim.2011.03.006

733 Mitchell, P. S., Sandstrom, A., & Vance, R. E. (2019). The NLRP1 inflammasome: new
734 mechanistic insights and unresolved mysteries. *Curr Opin Immunol*, 60, 37-45.
735 doi:10.1016/j.coim.2019.04.015

736 Moayeri, M., Crown, D., Newman, Z. L., Okugawa, S., Eckhaus, M., Cataisson, C., . . . Leppla,
737 S. H. (2010). Inflammasome sensor Nlrp1b-dependent resistance to anthrax is mediated
738 by caspase-1, IL-1 signaling and neutrophil recruitment. *PLoS Pathog*, 6(12), e1001222.
739 doi:10.1371/journal.ppat.1001222

740 Moayeri, M., Sastalla, I., & Leppla, S. H. (2012). Anthrax and the inflammasome. *Microbes
741 Infect*, 14(5), 392-400. doi:10.1016/j.micinf.2011.12.005

742 Mukherjee, A., Morosky, S. A., Delorme-Axford, E., Dybdahl-Sissoko, N., Oberste, M. S., Wang,
743 T., & Coyne, C. B. (2011). The coxsackievirus B 3C protease cleaves MAVS and TRIF
744 to attenuate host type I interferon and apoptotic signaling. *PLoS Pathog*, 7(3), e1001311.
745 doi:10.1371/journal.ppat.1001311

746 O'Donoghue, A. J., Eroy-Reveles, A. A., Knudsen, G. M., Ingram, J., Zhou, M., Statnekov, J. B.,
747 . . . Craik, C. S. (2012). Global identification of peptidase specificity by multiplex
748 substrate profiling. *Nat Methods*, 9(11), 1095-1100. doi:10.1038/nmeth.2182

749 Patel, M. R., Loo, Y. M., Horner, S. M., Gale, M., Jr., & Malik, H. S. (2012). Convergent
750 evolution of escape from hepaciviral antagonism in primates. *PLoS Biol*, 10(3),
751 e1001282. doi:10.1371/journal.pbio.1001282

752 Pickett, B. E., Greer, D. S., Zhang, Y., Stewart, L., Zhou, L., Sun, G., . . . Scheuermann, R. H.
753 (2012). Virus pathogen database and analysis resource (ViPR): a comprehensive
754 bioinformatics database and analysis resource for the coronavirus research community.
755 *Viruses*, 4(11), 3209-3226. doi:10.3390/v4113209

756 Qian, S., Fan, W., Liu, T., Wu, M., Zhang, H., Cui, X., . . . Qian, P. (2017). Seneca Valley Virus
757 Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS,
758 TRIF, and TANK for Cleavage. *J Virol*, 91(16). doi:10.1128/JVI.00823-17

759 Rathinam, V. A., & Fitzgerald, K. A. (2016). Inflammasome Complexes: Emerging Mechanisms
760 and Effector Functions. *Cell*, 165(4), 792-800. doi:10.1016/j.cell.2016.03.046

761 Rathinam, V. A., Vanaja, S. K., & Fitzgerald, K. A. (2012). Regulation of inflammasome
762 signaling. *Nat Immunol*, 13(4), 333-342. doi:10.1038/ni.2237

763 Sandstrom, A., Mitchell, P. S., Goers, L., Mu, E. W., Lesser, C. F., & Vance, R. E. (2019).
764 Functional degradation: A mechanism of NLRP1 inflammasome activation by diverse
765 pathogen enzymes. *Science*, 364(6435). doi:10.1126/science.aau1330

766 Schechter, I., & Berger, A. (1967). On the size of the active site in proteases. I. Papain.
767 *Biochem Biophys Res Commun*, 27(2), 157-162. doi:10.1016/s0006-291x(67)80055-x

768 Sironi, M., Cagliani, R., Forni, D., & Clerici, M. (2015). Evolutionary insights into host-pathogen
769 interactions from mammalian sequence data. *Nat Rev Genet*, 16(4), 224-236.
770 doi:10.1038/nrg3905

771 Soler, V. J., Tran-Viet, K. N., Galiacy, S. D., Limviphuvadh, V., Klemm, T. P., St Germain, E., . . .
772 . Young, T. L. (2013). Whole exome sequencing identifies a mutation for a novel form of
773 corneal intraepithelial dyskeratosis. *J Med Genet*, 50(4), 246-254.
774 doi:10.1136/jmedgenet-2012-101325

775 Solomon, T., Lewthwaite, P., Perera, D., Cardosa, M. J., McMinn, P., & Ooi, M. H. (2010).
776 Virology, epidemiology, pathogenesis, and control of enterovirus 71. *Lancet Infect Dis*,
777 10(11), 778-790. doi:10.1016/S1473-3099(10)70194-8

778 Stabell, A. C., Meyerson, N. R., Gullberg, R. C., Gilchrist, A. R., Webb, K. J., Old, W. M., . . .
779 Sawyer, S. L. (2018). Dengue viruses cleave STING in humans but not in nonhuman
780 primates, their presumed natural reservoir. *eLife*, 7. doi:10.7554/eLife.31919

781 Sun, D., Chen, S., Cheng, A., & Wang, M. (2016). Roles of the Picornaviral 3C Proteinase in the
782 Viral Life Cycle and Host Cells. *Viruses*, 8(3), 82. doi:10.3390/v8030082

783 Taabazuing, C. Y., Griswold, A. R., & Bachovchin, D. A. (2020). The NLRP1 and CARD8
784 inflammasomes. *Immunol Rev*. doi:10.1111/imr.12884

785 Tan, J., George, S., Kusov, Y., Perbandt, M., Anemuller, S., Mesters, J. R., . . . Hilgenfeld, R.
786 (2013). 3C protease of enterovirus 68: structure-based design of Michael acceptor
787 inhibitors and their broad-spectrum antiviral effects against picornaviruses. *J Virol*, 87(8),
788 4339-4351. doi:10.1128/JVI.01123-12

789 Tenthorey, J. L., Kofoed, E. M., Daugherty, M. D., Malik, H. S., & Vance, R. E. (2014). Molecular
790 basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. *Mol
791 Cell*, 54(1), 17-29. doi:10.1016/j.molcel.2014.02.018

792 Terra, J. K., Cote, C. K., France, B., Jenkins, A. L., Bozue, J. A., Welkos, S. L., . . . Bradley, K.
793 A. (2010). Cutting edge: resistance to *Bacillus anthracis* infection mediated by a lethal

794 toxin sensitive allele of Nalp1b/Nlrp1b. *J Immunol*, 184(1), 17-20.

795 doi:10.4049/jimmunol.0903114

796 Tian, X., Pascal, G., & Monget, P. (2009). Evolution and functional divergence of NLRP genes
797 in mammalian reproductive systems. *BMC Evol Biol*, 9, 202. doi:10.1186/1471-2148-9-
798 202

799 Ting, J. P., Lovering, R. C., Alnemri, E. S., Bertin, J., Boss, J. M., Davis, B. K., . . . Ward, P. A.
800 (2008). The NLR gene family: a standard nomenclature. *Immunity*, 28(3), 285-287.
801 doi:10.1016/j.jimmuni.2008.02.005

802 Vance, R. E., Isberg, R. R., & Portnoy, D. A. (2009). Patterns of pathogenesis: discrimination of
803 pathogenic and nonpathogenic microbes by the innate immune system. *Cell Host
804 Microbe*, 6(1), 10-21. doi:10.1016/j.chom.2009.06.007

805 Wang, C., Fung, G., Deng, H., Jagdeo, J., Mohamud, Y., Xue, Y. C., . . . Luo, H. (2019). NLRP3
806 deficiency exacerbates enterovirus infection in mice. *FASEB J*, 33(1), 942-952.
807 doi:10.1096/fj.201800301RRR

808 Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., . . . Xiao, S. (2012). Foot-and-mouth
809 disease virus 3C protease cleaves NEMO to impair innate immune signaling. *J Virol*,
810 86(17), 9311-9322. doi:10.1128/JVI.00722-12

811 Wang, D., Fang, L., Wei, D., Zhang, H., Luo, R., Chen, H., . . . Xiao, S. (2014). Hepatitis A virus
812 3C protease cleaves NEMO to impair induction of beta interferon. *J Virol*, 88(17), 10252-
813 10258. doi:10.1128/JVI.00869-14

814 Wang, H., Lei, X., Xiao, X., Yang, C., Lu, W., Huang, Z., . . . Wang, J. (2015). Reciprocal
815 Regulation between Enterovirus 71 and the NLRP3 Inflammasome. *Cell Rep*, 12(1), 42-
816 48. doi:10.1016/j.celrep.2015.05.047

817 Wen, W., Yin, M., Zhang, H., Liu, T., Chen, H., Qian, P., . . . Li, X. (2019). Seneca Valley virus
818 2C and 3C inhibit type I interferon production by inducing the degradation of RIG-I.
819 *Virology*, 535, 122-129. doi:10.1016/j.virol.2019.06.017

820 Wickliffe, K. E., Leppla, S. H., & Moayeri, M. (2008). Killing of macrophages by anthrax lethal
821 toxin: involvement of the N-end rule pathway. *Cell Microbiol*, 10(6), 1352-1362.
822 doi:10.1111/j.1462-5822.2008.01131.x

823 Xiang, Z., Li, L., Lei, X., Zhou, H., Zhou, Z., He, B., & Wang, J. (2014). Enterovirus 68 3C
824 protease cleaves TRIF to attenuate antiviral responses mediated by Toll-like receptor 3.
825 *J Virol*, 88(12), 6650-6659. doi:10.1128/JVI.03138-13

826 Xiang, Z., Liu, L., Lei, X., Zhou, Z., He, B., & Wang, J. (2016). 3C Protease of Enterovirus D68
827 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7. *J Virol*, 90(3),
828 1613-1621. doi:10.1128/JVI.02395-15

829 Xu, H., Shi, J., Gao, H., Liu, Y., Yang, Z., Shao, F., & Dong, N. (2019). The N-end rule ubiquitin
830 ligase UBR2 mediates NLRP1B inflammasome activation by anthrax lethal toxin. *EMBO*
831 *J*, 38(13), e101996. doi:10.15252/embj.2019101996

832 Zaragoza, C., Saura, M., Padalko, E. Y., Lopez-Rivera, E., Lizarbe, T. R., Lamas, S., &
833 Lowenstein, C. J. (2006). Viral protease cleavage of inhibitor of kappaBalpha triggers
834 host cell apoptosis. *Proc Natl Acad Sci U S A*, 103(50), 19051-19056.
835 doi:10.1073/pnas.0606019103

836 Zell, R. (2018). Picornaviridae-the ever-growing virus family. *Arch Virol*, 163(2), 299-317.
837 doi:10.1007/s00705-017-3614-8

838 Zhong, F. L., Mamai, O., Sborgi, L., Boussofara, L., Hopkins, R., Robinson, K., . . . Reversade,
839 B. (2016). Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer
840 Susceptibility Syndromes via Inflammasome Activation. *Cell*, 167(1), 187-202 e117.
841 doi:10.1016/j.cell.2016.09.001

842 Zhong, F. L., Robinson, K., Teo, D. E. T., Tan, K. Y., Lim, C., Harapas, C. R., . . . Reversade, B.
843 (2018). Human DPP9 represses NLRP1 inflammasome and protects against
844 autoinflammatory diseases via both peptidase activity and FIIND domain binding. *J Biol*
845 *Chem*, 293(49), 18864-18878. doi:10.1074/jbc.RA118.004350

846

847

848 **FIGURE LEGENDS**

849

850 **Figure 1. Conserved polyprotein cleavage sites across enteroviruses inform substrate**
851 **specificity of the enteroviral 3C^{pro}.** (A) Schematic of 3C^{pro} cleavage sites (red arrows) within
852 the polyprotein of coxsackievirus B3 Nancy (CVB3), a model enterovirus. Shown are the eight
853 amino acids flanking each cleavage site within the polyprotein. (B) Phylogenetic tree of 796
854 enteroviral polyprotein coding sequences depicting the major clades of enteroviruses sampled
855 in this study with representative viruses from each clade in parentheses (Supplementary file 2).
856 (C) Eight amino acid polyprotein cleavage motif for enteroviruses (labeled as positions P4 to
857 P4') generated from the 796 enteroviral polyprotein sequences in (B) using the MEME Suite
858 (Supplementary file 2). (D) Training set data used to determine the motif search threshold for
859 FIMO (Supplementary files 1, 3 and 4). The X-axis represents a log₁₀ of the p-value reported by
860 FIMO as an indicator for the strength of the cleavage motif hit (cleavage score). (Left) The Y-
861 axis depicts the number of uncalled true positives, or motif hits that overlap with the initial set of
862 8mer polyprotein cleavage sites used to generate the motif, in the training set of enteroviral
863 polyprotein sequences (black). (Right) The Y-axis depicts the number of called false positive
864 sites, or any motif hits found in the polyprotein that are not known to be cleaved by 3C^{pro}, in the
865 training set of enteroviral polyprotein sequences (gray). (Above) Each line depicts a single,
866 experimentally validated case of enteroviral 3C^{pro} cleavage site within a human protein as
867 reported in Laitinen et al, 2016 and is ordered along the x-axis by its resulting cleavage score. A
868 vertical dotted line is used to represent the decided threshold that captures 95% of true positive
869 hits and 16 out of 27 reported human hits (Figure 1 – figure supplement 1).

870

871 **Figure 2. Enterovirus 3C^{pro} cleaves human NLRP1 at the predicted site of mimicry and**
872 **promotes pro-inflammatory cytokine release.** (A) Schematic of the domain structure of
873 NLRP1, with predicted cleavage sites (triangles). FIMO-reported p-values and average

874 NetsurfP-reported coil probabilities (Figure 2 – figure supplement 1) are described at the
875 predicted sites. (B) Percent conservation across 100 mammalian species at each position of
876 each predicted 8mer cleavage site within human NLRP1. (C) Schematic of the human NLRP1
877 sequence used to assess enteroviral cleavage and activation. The predicted enteroviral
878 cleavage site found in the linker region (127-GCTQGSER-134) is shown in red. Human NLRP1
879 WT-TEV contains an engineered TEV cleavage site between residues 93 and 94 (underlined
880 green) in human NLRP1 WT. (D) Immunoblot depicting human NLRP1 cleavage by CVB3 3C^{pro}
881 and TEV protease. HEK293T cells were co-transfected using 100ng of the indicated Flag-
882 tagged mCherry-NLRP1 fusion plasmid constructs with 250ng of the indicated protease
883 construct and immunoblotted with the indicated antibodies. (E) Immunoblot depicting human
884 NLRP1 cleavage at the indicated timepoints after infection with 250,000 PFU (MOI = ~1) CVB3.
885 HEK293T cells were transfected using 100ng of either WT NLRP1 or NLRP1 G131P and
886 infected 24-30 hours later. All samples were harvested 32 hours post-transfection and
887 immunoblotted with the indicated antibodies (F) Immunoblot depicting human NLRP1 activation
888 (maturation of IL-1 β) by CVB3 3C^{pro} and TEV protease. HEK293T cells were co-transfected
889 using 100ng of the indicated protease, 50ng V5-IL-1 β , 100ng CASP1, 5ng ASC, and 4ng of the
890 indicated Myc-tagged NLRP1, and immunoblotted with the indicated antibodies. Appearance of
891 the mature p17 band of IL-1 β indicates successful assembly of the NLRP1 inflammasome and
892 activation of CASP1. (G) Bioactive IL-1 β in the culture supernatant was measured using HEK-
893 Blue IL-1 β reporter cells, which express secreted embryonic alkaline phosphatase (SEAP) in
894 response to extracellular IL-1 β . Supernatant from cells transfected as in (E) was added to HEK-
895 Blue IL-1 β reporter cells and SEAP levels in the culture supernatant from HEK-Blue IL-1 β
896 reporter cells were quantified by the QUANTI-Blue colorimetric substrate. Transfections were
897 performed in triplicate and compared to the standard curve generated from concurrent treatment

898 of HEK-Blue IL-1 β reporter cells with purified human IL-1 β (Figure 2 – figure supplement 2).

899 Data were analyzed using two-way ANOVA with Sidak's post-test. **** = p < 0.0001.

900

901 **Figure 3. Naturally occurring cleavage site variants alter NLRP1 susceptibility to**
902 **enteroviral 3C^{pro}.** (A) Schematic of sites found to be evolving under positive selection (marked
903 as *, from (Chavarria-Smith & Vance, 2013)) and human SNPs with at least 10 reported
904 instances in the Genome Aggregation Database (GnomAD, (Karczewski et al., 2020)) (marked
905 as !) within the linker region between the pyrin domain (PYD) and nucleotide binding domain
906 (NBD) of NLRP1. The enteroviral 3C^{pro} cleavage site between position 130 and 131 is indicated
907 by a red triangle. (B) Phylogenetic tree depicting the enteroviral 3C^{pro} cleavage site (red triangle)
908 within NLRP1 across three clades of primates – hominoids, Old World monkeys (OWMs), and
909 New World monkeys (NWMs). Mouse NLRP1B lacks any sequence that is alignable to this
910 region of primate NLRP1 (see also Figure 3 – figure supplements 1 & 2). Amino acid differences
911 to the human NLRP1 reference sequence are highlighted in red. Above the alignment is the
912 enterovirus 3C^{pro} sequence logo shown in Figure 1. (C) GnomAD-derived allele counts of each
913 missense human SNP (by reference SNP #) within the 8mer of the determined enteroviral 3C^{pro}
914 cleavage site. (D-E) Immunoblot depicting CVB3 3C^{pro} cleavage susceptibility of the indicated
915 8mer site variants introduced into human NLRP1 or full-length wild-type mouse NLRP1B (D) or
916 the cleavage susceptibility of human NLRP1 Q130R, a naturally occurring human population
917 variant (E). (F) Release of bioactive IL-1 β into the culture supernatant as measured using HEK-
918 Blue IL-1 β reporter cells as in Figure 2G. Data were analyzed using two-way ANOVA with
919 Sidak's post-test. **** = p < 0.0001.

920

921 **Figure 4. Diverse picornavirus 3C^{pro}s cleave and activate NLRP1 at independently evolved**
922 **sites.** (A) Phylogenetic tree of 3C^{pro} protein sequences for the indicated picornaviruses (Figure

923 4 – figure supplement 1 and 2). Shown next to the virus name is the sequence motif generated
924 from the known sites of 3C^{pro} polyprotein cleavage in that specific virus. (B) Immunoblot
925 depicting human NLRP1 cleavage by the indicated picornaviral 3C^{pro}. Abbreviations are as in
926 (A). Assays were performed as in Figure 2D. (left) Cleavage assays against WT NLRP1. (right)
927 Human NLRP1 G131P mutant used in Figure 2. (C) Immunoblot depicting human NLRP1
928 cleavage at the indicated timepoints after infection with 250,000 PFU (MOI = ~1) CVB3 or
929 EMCV. HEK293T cells were transfected using 100ng of either WT NLRP1 or NLRP1 G131P
930 and infected 24-30 hours later. All samples were harvested 32 hours post-transfection and
931 immunoblotted with the indicated antibodies (D) Release of bioactive IL-1 β into the culture
932 supernatant as measured using HEK-Blue IL-1 β reporter cells as in Figure 2G. Data were
933 analyzed using one-way ANOVA with Tukey's post-test. ** = p < 0.01, *** = p < 0.001, **** = p <
934 0.0001. (E) Immunoblot depicting mouse NLRP1B cleavage by numerous picornaviral 3C^{pro}.
935 Assays were performed as in Figure 2D.

936
937 **Figure 1 – figure supplement 1.** Motif optimization enhances capture of known human targets
938 of enteroviral 3C^{pro}. (A) As described in Figure 1B and 1C and Materials and Methods, the 8mer
939 (P4-P4') 3C^{pro} polyprotein cleavage motif was initially generated from unique, concatenated
940 8mer cleavage sites across 796 enteroviral polyprotein sequences. To assess the capture
941 capability of the motif on both virus and host targets, the motif was then used to conduct a low
942 threshold (p-value = 0.1) FIMO (MEME Suite) search across training set of 2678 nonredundant
943 enteroviral polyproteins from ViPR and 27 experimentally validated human targets of 3C^{pro}
944 (Laitinen et al., 2016). In the graph, the X-axis represents a log₁₀ of the p-value reported by
945 FIMO as an indicator for the strength of the cleavage motif hit, or cleavage score. The left Y-axis
946 depicts the number of uncalled ‘true positives’, or motif hits within the enteroviral polyprotein
947 training set that overlap with the initial set of 8mer polyprotein cleavage sites used to generate

948 the motif (black). The right Y-axis depicts the number of called false positive sites, or any motif
949 hits that are not true positives, in the training set of enteroviral polyprotein sequences (gray).
950 (Above) Each line depicts a single, experimentally validated case of enteroviral 3C^{pro} cleavage
951 site within a human protein as reported in Laitinen et al, 2016 and is ordered along the x-axis by
952 its corresponding cleavage score. Vertical dotted lines are used to represent the decided
953 thresholds for comparison of capture capability. Capture of human targets at 95%, 99%, or
954 100% capture of true positives in the polyprotein dataset corresponds to capture of 4, 7, and 16
955 human hits. (B) Pseudo-counts to the position-specific scoring matrix of the motif shown in (A)
956 were adjusted by total information content where the two most information-dense positions P1
957 and P1' are assigned pseudocount = 0 and the least information-dense position P3
958 pseudocount = 1, and the remaining positions are assigned a pseudocount value relative to the
959 most information-dense position P1. This optimized motif is then used to FIMO search against
960 the same training set as described in (A). Capture of human targets at 95%, 99%, or 100%
961 capture of true positives in the polyprotein dataset corresponds to capture of 16, 23, and 24
962 human hits.

963

964 **Figure 2 – figure supplement 1.**

965 Tabular output of NetSurfP structural predictions for human NLRP1 describing the predicted
966 class (buried or exposed), relative surface accessibility, absolute surface accessibility,
967 probability for alpha-helix, probability for beta-strand, and coil probability for the amino acid
968 positions within each predicted enteroviral 3C^{pro} cleavage site.

969

970 **Figure 2 – figure supplement 2.**

971 Standard curve for Figure 2G. Purified human IL-1 β was added in duplicate to the indicated final
972 concentration to HEK-Blue IL-1 β reporter cells and SEAP activity was measured by increased

973 absorbance at OD₆₅₅. The indicated linear fit was used to calculate absolute concentrations of
974 bioactive IL-1 β from culture supernatants shown in Figure 2G. Note that supernatants from
975 inflammasome-transfected cells was diluted 10-fold before addition to HEK-Blue IL-1 β reporter
976 cells to ensure that levels fell within the linear range of the indicated standard curve. Standard
977 curves were generated in an identical manner for each panel of HEK-Blue data shown.

978

979 **Figure 3 – figure supplement 1.**

980 Mammalian NLRP1 phylogenomics and alignment of linker region. The indicated mammalian
981 NLRP1 sequences were aligned and the region corresponding to residues 107-169 from human
982 NLRP1 were extracted, which is anchored on both ends by well conserved proline and serine
983 rich motifs. A consensus sequence generated from alignable sequences in this region is shown
984 above the human sequence. The position of the CVB3 3C^{pro} cleavage site in human NLRP1 is
985 shown, flanked by four amino acids on both sides (P4->P4'). In other mammals, residues that
986 differ from the human sequence are shown in red. Within the aligned region that corresponds to
987 the CVB3 3C^{pro} cleavage site, only simian primates have P4, P1 and P1' residues that would
988 allow cleavage. The only other species that have a plausible cleavage site in this position are
989 sheep and goats (P4 = Val, P1 = Gln, P1' = Ser), although those residues appear to have
990 evolved independently at those positions. Two clades of species (the “mouse-related” clade of
991 rodents and the microbat clade, marked as green) have NLRP1 protein sequences with N-
992 terminal linkers that are unalignable to human NLRP1 in this region. Four additional clades
993 (lagomorphs, megabats, cetaceans and felines, marked as grey) lack the NLRP1 gene
994 altogether.

995

996 **Figure 3 – figure supplement 2.**

997 Schematic of the domain structure of mouse NLRP1B, with predicted cleavage sites shown as
998 colored triangles. FIMO-reported p-values are described at the predicted sites.

999

1000 **Figure 4 – figure supplement 1.**

1001 Alignment of 3C^{pros} used in this study. Sequences were aligned using MAFFT (Katoh &
1002 Standley, 2013) and used to generate the phylogenetic tree shown in Figure 4A. Asterisks
1003 indicate residues 100% conserved in all sequences. The position of the catalytic cysteine,
1004 analogous to C147 in CVB3 3C^{pro}, is highlighted in yellow.

1005

1006 **Figure 4 – figure supplement 2.**

1007 Table of pairwise percent sequence identity of 3C^{pros} used in this study as determined from the
1008 alignment shown in Figure 4 – figure supplement 1.

1009

1010 **Figure 4 – figure supplement 3.**

1011 Inhibition of NLRP1 activation by non-enteroviral 3C^{pro}. HEK293T cells were transfected with
1012 inflammasome components as in Figure 2E using 100ng TEV protease or pQCXIP empty
1013 vector, but with the additional inclusion of a non-enterovirus 3C^{pro} or empty vector (100ng).
1014 Release of bioactive IL-1 β into the culture supernatant was measured using HEK-Blue IL-1 β
1015 reporter cells as in Figure 2G. Data were analyzed using one-way ANOVA with Tukey's post-
1016 test comparing all conditions containing TEV protease. **** = p < 0.0001.

1017 **SUPPLEMENTARY FILES**

1018

1019 **Supplementary file 1 – Related to Figure 1.**

1020 **Training set of enteroviral polyproteins.** Accession IDs are listed for all polyproteins used to
1021 benchmark the motif search described in Figure 1D and Figure 1 – figure supplement 1. The
1022 8mer cleavage sites and concatenated 8mer sequences are included.

1023

1024 **Supplementary file 2 – Related to Figure 1.**

1025 **Enteroviral polyproteins with unique 8mer 3C^{pro} cleavage site concatenations.** Accession
1026 IDs are listed for all polyproteins used to create the search motif shown in Figure 1C and Figure
1027 1 – figure supplement 1 and the enteroviral phylogenetic tree in Figure 1B. The 8mer cleavage
1028 sites and concatenated 8mer sequences are included.

1029

1030 **Supplementary file 3 – Related to Figure 1.**

1031 **Un-optimized 3C^{pro} cleavage motif scores for true positive, false positive and human sites**
1032 **within the enteroviral polyprotein and human training sets.** FIMO-generated p-values and
1033 $\log_{10}(p\text{-value})$ represent the cleavage score at the provided matched sequence, where (A) is the
1034 un-optimized 3C^{pro} cleavage motif scores for true positive hits within enteroviral polyprotein
1035 dataset, (B) is the un-optimized 3C^{pro} cleavage motif scores for false positive hits within
1036 enteroviral polyprotein dataset where unique site matches are shown (26062), and (C) is the un-
1037 optimized 3C^{pro} cleavage motif scores for reported human cleavage sites from the Laitinen et al
1038 2016 dataset.

1039

1040 **Supplementary file 4 – Related to Figure 1.**

1041 **Optimized 3C^{pro} cleavage motif scores for true positive, false positive and human sites**
1042 **within the enteroviral polyprotein and human training sets.** FIMO-generated p-values and

1043 $\log_{10}(p\text{-value})$ represent the cleavage score at the provided matched sequence, where (A) is the
1044 optimized 3C^{pro} cleavage motif scores for true positive hits within enteroviral polyprotein dataset,
1045 (B) is the optimized 3C^{pro} cleavage motif scores for false positive hits within enteroviral
1046 polyprotein dataset where unique site matches are shown (24437), and (C) is the optimized
1047 3C^{pro} cleavage motif scores for reported human cleavage sites from the Laitinen et al 2016
1048 dataset.

1049

1050 **Supplementary file 5 – Related to Figure 2-4.**

1051 **List of primers and gBlocks used to clone protease- and NLRP1-encoded vectors.** Names
1052 and notes contain details on the restriction enzyme sites or point mutations encoded.

1053

1054 **Supplementary file 6 – Related to Figure 2-4.**

1055 **List of antibodies used for immunoblots.** Manufacturer and dilutions used are noted.

1056

1057 **Supplementary file 7 – Related to Figure 4-4.**

1058 **List of accession numbers used for sequence alignments.**

1059