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Genomics-accelerated discovery of

diverse fungicidal bacteria
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Abstract

Sorghum Anthracnose and Black Sigatoka of bananas are problematic fungal diseases
worldwide, with a particularly devastating impact on small-holder farmers in Sub-Saharan Africa.
We screened a total of 1,227 bacterial isolates for antifungal activity against these pathogens
using detached-leaf methods and identified 72 isolates with robust activity against one or both of
these pathogens. These bacterial isolates represent a diverse set of five phyla, 14 genera and
22 species, including taxa for which this is the first observation of fungal disease suppression.
We identified biosynthetic gene clusters associated with activity against each pathogen.
Through a machine learning workflow we discovered additional active isolates, including an
isolate from a genus that had not been included in previous screening or model training.
Machine-learning improved the discovery rate of our screen by 3-fold. This work highlights the
wealth of biocontrol mechanisms available in the microbial world for management of fungal
pathogens, generates opportunities for future characterization of novel fungicidal mechanisms,
and provides a set of genomic features and models for discovering additional bacterial isolates

with activity against these two pathogens.

Introduction

Sorghum (Sorghum bicolor (L.) Moench) is one of the top five cereal crops in the world
agricultural economy, and second only to maize as a staple for food-insecure people in
Sub-Saharan Africa (1). Production of sorghum in Africa is constrained by both abiotic and biotic

factors. The major biotic constraint is the fungal disease sorghum anthracnose (SA), caused by

1. AgBiome Inc., Research Triangle Park, North Carolina, USA
* Corresponding author: mbiggs@agbiome.com


https://paperpile.com/c/83PQE1/OQxm
https://doi.org/10.1101/2020.10.16.343004
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.343004; this version posted October 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Colletotrichum sublineolum P. Henn. Kabat et Bub. Many sorghum landraces and improved
varieties are susceptible to the foliar stage of the disease and yield losses ranging from 41% to
67% have been reported in Africa (2).

Bananas and plantains (Musa spp.) are also of critical importance to food security and
income generation for over 100 million people in Sub-Saharan Africa (3,4). As they produce
fruits year round, these perennial plants are the backbone of many farming systems . They also
protect the soil from erosion and are resistant to floods and drought. Black Sigatoka disease
(BS), also known as black leaf streak, caused by the fungal species Mycosphaerella fijiensis, is
regarded as the most economically important leaf disease that affects bananas and plantains
worldwide (5). The disease results in heavy losses and, in highly susceptible varieties, can lead
to the total collapse of the plant.

Bacteria provide a rich resource for the discovery of novel tools to manage plant
diseases. Bacteria have co-inhabited many environments with fungal competitors for millions of
years and have evolved mechanisms to antagonize and exclude a diverse range of fungal
pathogens (6,7). To identify bacteria with these naturally-occurring antifungal activities, we
recently completed a large screen of more than 1,227 bacterial isolates against SA and BS. We
discovered 72 bacterial isolates that significantly and reproducibly reduced infection of leaf
tissue (53 isolates in four phyla that controlled SA in sorghum leaf tissue, and 31 isolates in four
phyla that controlled BS in banana leaf tissue). These novel isolates provide potential new
biological tools for managing the destructive effects of these pathogens.

Our search for the best fungicidal candidate isolates was accelerated using genomics
and machine learning to strategically select isolates from a large microbial culture collection.
Through this extensive screening program, we used two distinct methods to identify genomic
features (Biosynthetic Gene Cluster families or “BGC families”) that are predictive of bacterial
activity against SA and BS. These features suggest an expanded pathogen spectrum for some
known fungicidal molecules, include entirely novel molecules with unknown modes of action
(MOA), and provide a foundation for further research. We provide representative sequences for
the most predictive BGC families.

Finally, to demonstrate the predictive value of the BGC families discovered in this work,
we used machine learning models. We evaluated the strengths and limitations of multiple
modeling frameworks in silico (including neural networks, random forests, and feature
enrichment). We found that random forest models trained on oversampled data performed the

best, followed closely by deep neural networks. In conjunction with these computational
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evaluations, we selected 176 additional bacterial isolates using two of the machine learning
methods and screened them for antifungal activities. This additional round of model-driven
screening led to the identification of a new genus (which had not been included in previous
screening or model training) with activity against both pathogens and a 3-fold increase in our
screening discovery rate. We provide the resulting machine learning models as tools for the

community.

Materials and Methods

Microbial isolation and genome sequencing

Samples were collected from various soil samples, leaves, roots, insects, plants,
amphibians, tubers, grain bin dust, and excrement. Samples were collected in the United States
and Africa from 2013 to 2019 (Figure 1A). Rhizosphere samples were collected by washing soil
attached to the roots with 0.1M sodium phosphate buffer (pH7) and filtering through a 40 ym
filter. Insects and plant parts were ground with a mortar and pestle, mixed into a slurry with 0.1M
sodium phosphate buffer (pH7) and filtered through a 40 um filter. Environmental samples were
plated on oxoid brilliance bacillus cereus agar (Thermo Fisher Scientific), luria-bertani agar
(Thermo Fisher Scientific), or modified M9 minimal salts agar. Modified M9 salts consists of, per
liter, 11.33g Na:HPO.7H-0, 3g KH:PO., 1g NH.:Cl, 10g CsH:NNaO.H-0O, 30g Molasses
(Grandma’s Unsulphured Molasses), 2mM MgSO.7H-.0, 0.2mM ZnSO.7H-.0, 0.02mM
FeSO.7H.0O. All M9 minimal salts materials were ordered from Sigma-Aldrich unless otherwise
stated. Isolates were grown in LB broth and frozen in 15% glycerol stocks. The AgBiome isolate
collection served as a resource for this work, and at the time consisted of approximately 70,000

isolates.

Isolate growth and handling

Bacterial isolates were cultured for two days in modified nutrient sporulation medium at
28°C (225 rpm). Modified nutrient sporulation medium consists of, per liter, 5g NaCl (Thermo
Fisher Scientific), 10g tryptone (Thermo Fisher Scientific), 8g nutrient broth (BD Biosciences),
0.14mM CaCl: (Sigma Aldrich), 0.2mM MgCl.6H-0O (Sigma Aldrich), and 0.01 mM MnCl:4H-.O

(Sigma Aldrich). Bacterial cells were collected and resuspended in 1 mM MgCl. solution.
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Sorghum Anthracnose screen

Sorghum cultivar 12-GS9016-KS585 seeds (supplied by Chromatin Inc.) were grown in
the greenhouse for a steady supply of disease-free leaf tissue. Fully expanded sorghum leaves
from 4-6 week old plants, were excised, and cut into equal pieces, 2.5 cm wide. To prepare the
inoculum, C. sublineolum isolated from sorghum in Texas was obtained from Dr. Thomas
Isakeit's laboratory at Texas A&M University, and grown on 20% Oatmeal agar
(MilliPORESiIGMa, Cat No. 03506), for 14 days. The actively growing fungal culture was
flooded with sterile distilled water to dislodge the spores. The concentration of the spore
suspension was then adjusted to 1x10° spores/ml. Tween 20 was added to the suspension at
the rate of 0.05%.

The bacterial strains were applied to the leaf pieces by spraying 120 yL of the bacterial
culture suspended in magnesium chloride buffer (1x108 CFU/ml) using a ribbed skirt fine mist
fingertip sprayer (ID-S009, Container & Packaging Supply, Eagle, ID), fitted to a 15 ml conical
centrifuge tube (Fisher Scientific, Cat No0.14-59-53A). The treated leaf pieces were then plated
on 1% water agar amended with 6-Benzylaminopurine (BAP) and incubated at room
temperature in the dark (Figure 1B). 24 hours post treatment, the leaf pieces were inoculated
with a 30 uL droplet of C. sublineolum spore suspension, applied on each side of the mid-rib.
The plates were then incubated in a growth chamber (Percival Scientific, Inc) set to a 12-hour
photoperiod, maintained at 25°C and 95% relative humidity. The experimental design was a
randomized complete block design with 3 replications.

Seven days post inoculation, the leaf pieces were assessed for anthracnose severity on
a scale of 0-4 according to (8), with few modifications (Figures 1B and 1C). 0-No symptoms or
chlorotic flecks, 1-hypersensitive reaction with no acervuli, 2-lesions with minute and few
acervuli, 3-lesions with minute and few acervuli £25% of the leaf tissue and 4-lesions with
acervuli covering 225% of the leaf surface. To identify isolates with robust, reproducible activity,
we performed a “confirmation screen” on all active isolates from the primary screen. The
confirmation screen was conducted using the same protocol as the primary. Data was analyzed
using analysis of variance (ANOVA) in JMP® (version 14.0.0; SAS Institute Inc., Cary, NC).
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Black Sigatoka screen

The susceptible musa cultivar Grand Nain (supplied by Green Earth, Melbourne, Florida)
was used in this experiment. Plants were maintained in the greenhouse for a constant supply of
disease-free leaves. A Mpycosphaerella fijiensis culture (ITC0489) obtained from the

International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria was used for inoculation.

Bacterial isolate application and inoculation were performed as follows: smaller leaf
pieces (4 cm long x 3 cm wide) were cut from the excised leaf. Two of these pieces were
placed in plastic petri dishes with an adaxial side appressed on water agar amended with 5
mg/liter gibberellic acid (Twizeyimana et al. 2007). Leaf pieces were sprayed with 120 pL of
bacterial isolate (1 x 108 CFU/ml of sterile distilled water) using a fingertip sprayer (Container &
Packaging Supply, Eagle, ID) fitted to a 15 ml conical centrifuge tube (Fisher Scientific, Cat
No.14-59-53A). Petri dishes with leaf pieces were incubated at room temperature in the dark.
24 hours later, leaf pieces in petri dishes were inoculated with a mycelial suspension of M.
fijiensis (120 pl per leaf piece) using a fingertip sprayer fitted to a 50 ml conical centrifuge tube.
The suspension contained mycelial fragments scraped from growing cultures that were cut into
smaller mycelial tips in sterile distilled water in 50 ml conical tubes using a homogenizer (Omni
International, Kennesaw, GA). The suspension was filtered through two layers of cheesecloth
and then stirred. 0.05% Tween 20 and 0.02% Silwet L-77 (Loveland Industries Inc., Greeley,
CO) were added. Using a hemocytometer, the suspension was adjusted with sterile distilled
water to a concentration of 1 x 10° mycelial fragments/ml. A day after inoculation, plates were
incubated in a growth chamber (Percival Scientific, Inc) set at 14 hours photoperiod, maintained
at 25°C and 90% relative humidity.

Data recorded were the most progressed stage on inoculated leaves at the time of data
collection (9). Data were analyzed using analysis of variance (ANOVA) in PROC GLM of SAS
(version 9.4; SAS Institute Inc., Cary, NC) and significant differences (P < 0.05) were observed
among treatments. To identify isolates with robust, reproducible activity, we performed a
“confirmation screen” on all active isolates from the primary screen. The confirmation screen

was conducted using the same protocol as the primary.
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Figure 1. A. A high level overview of the bacterial isolation, storage and genome sequencing
pipeline. B. A high level overview of the leaf disk screens(comparable in principle between SA
and BS screens). Leaf disks were embedded in agar, and treated with resuspended bacterial
cells. After 24 hours, the leaf disks were treated with fungal spores and incubated for multiple
weeks. Scores were assigned by comparing leaf disk disease progression with inoculated and
non-inoculated controls. Disease control greater than 70% was considered “active”. C.
Examples of healthy (left) and diseased (right) sorghum leaf pieces. D. Examples of healthy
(left) and diseased (right) banana leaf pieces

Bacterial genomics

Bacterial isolates were grown in liquid culture, spun down, and DNA was isolated from
the cell pellets using MoBio microbial DNA isolation kits (Qiagen, Hilden, Germany). The
resulting DNA was quantified using a Quant iT PicoGreen assay (Invitrogen, Carlsbad, CA,
USA). One nanogram of quantified DNA was sheared enzymatically at 55°C for 5 min using the
lllumina Nextera XT tagmentation enzyme (lllumina, San Diego, CA, USA). Tagmented DNA
fragments were enriched by 10 cycles of PCR amplification using PCR master mix and primers

with the index from Illumina. Libraries were quantified by the KAPA SYBR fast quantitative PCR
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kit (Life Technologies, Carlsbad, CA, USA) and pooled at a 4 nM concentration. Libraries were
denatured with 0.2 N NaOH and sequenced on an lllumina HiSeq sequencing platform. lllumina
paired-end reads were demultiplexed using lllumina software bcl2fastq v2.18.0.12. Paired-end
reads were adapter and quality trimmed using cutadapt version 1.5 as recommended by
lllumina. Trimmed paired-end reads were assembled and reads were aligned back to the
consensus sequence using the CLC Genomics programs CLC Assembly Cell and CLC Mapper
from Qiagen.

Bacterial genomes were assigned taxonomic identifiers using the Genome Taxonomy
Database Toolkit version 1.0.2 (10-12). Biosynthetic gene clusters (BGCs) were annotated
using antiSMASH version 5 (13) with the following options enabled: taxon “bacteria”,
KnownClusterBlast against MIBIG (14) and General ClusterBlast, Active Site Finder, “pfam2go”
mapping, and Prodigal (15) as the gene finding tool. We used BiG-SCAPE with default settings
(16) to cluster BGCs into families (the default alignment is “glocal” and the default cutoff for

clustering into a family is a distance metric of 0.3).

Enrichment analysis and machine learning

Isolate feature enrichment and BGC family enrichment were calculated using a
hypergeometric distribution. Isolates were considered “active” if they controlled disease
progression by 70% or greater. Specifically, we estimated the cumulative probability that given
M isolates screened, with n of the total having a particular attribute (e.g. are derived from soil),
and N of the total displaying activity, that we would observe o or more active isolates with that
attribute by chance alone. Smaller probabilities indicate “enriched” attributes that are unlikely to
be so highly represented given chance alone, and that potentially have a meaningful biological
explanation. We leveraged the hypergeometric module in SciPy to calculate enrichment
p-values (17).

We used SciKit-Learn to split training and test sets, train random forest models and
generate predictions, perform cross validation, estimate permutation feature importance, and
evaluate model performance (18). Permutation feature importance (PFI) is a measure of how
model performance is affected by randomly shuffling feature columns. PFl is a more robust
measure of feature importance than random forest feature importance (19). Before
implementing the random forest models, we tested several configurations of random forest

hyperparameters, and selected ensembles of 5 trees with a maximum depth of 32 nodes to
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maximize recall in a 50-fold cross validation analysis. Oversampling was performed by
replicating all the active observations in the training data, thereby increasing the ratio of active
to inactive observations. Precision, recall and F1 scores were calculated using the SciKit-Learn
functions.

We used PyTorch (20) paired with Skorch (https://github.com/skorch-dev/skorch) to train

a deep neural network and generate predictions. We tested several configurations and selected
a 3-layer design with 10 fully-connected nodes and reLu activation in the first layer, 30%
dropout between the first and second layers during training, 10 fully-connected nodes and reLu
activation in the second layer, and a single sigmoid output node to predict the probability of
activity. We used a learning rate of 0.02, trained each model for 10 epochs using the Adam
optimizer and the binary cross entropy loss function.

To select additional isolates for screening, we selected representative “query” BGCs for
each enriched or important BGC family and clustered them with batches of BGCs from the
remainder of our collection using BiG-SCAPE with the same parameters. The BGCs that
clustered with a query BGC were assigned to the same family as the query.

The data and code developed for this work are publicly available on GitHub:

https://github.com/mbi2gs/fungicidal _bact genomics

Results

We initially screened 1,051 cultivable bacterial isolates against SA, and 559 of those
same isolates against BS. These 1,051 strains were isolated from 27 states in the United States
and five districts in Uganda, and were derived from 11 sample types (e.g. soil, plant tissue,
insects). We balanced taxonomic breadth and depth by screening more deeply among taxa with
well-known fungicidal activity (e.g. Bacilli and Pseudomonads) while also ensuring that we
sampled from the broader diversity of the collection. We refer to this first pool of tested bacterial
isolates as “diversity” screening (546 isolates against SA; 145 isolates against BS). In addition,
we included isolates that showed activity in other screens against different fungal pathogens,
referred to this pool as “spectrum” screening (291 isolates against SA; 259 isolates against BS).
Finally, in several cases when an isolate displayed activity against a pathogen, we followed up
by screening additional isolates from the collection with high degrees of genomic similarity to
that first active isolate. We refer to this pool of isolates as “genomic similarity” screening (214
against SA; 155 against BS).
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Figure 2. Scope of screening effort, and diverse isolates with confirmed fungicidal

activity. A. The alluvial diagram illustrates the source country, sample type (the less
abundant types were combined into “Other”), phylum membership and fungicidal activity of
the 1,227 isolates screened in this work. B. The cladogram in the center highlights the
diversity of the biocontrol isolates discovered in this work (five phyla represented by the
center branches, 14 genera, 22 species). Multiple isolates displayed activity against both
diseases (black leaf nodes). The outer ring shows the isolate prioritization strategies that led
to each discovery, including predictive models. The “false negative” isolate in purple was

predicted to be inactive by all modeling approaches and yet was found to be reproducibly
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active against SA.

Viewing the results from a taxonomic perspective, we discovered 156 isolates that
displayed primary activity against SA, BS or both, representing five phyla, 27 genera, and 37
species (based on Genome Taxonomy Database labels (11)). We found 72 reproducibly (active
again in the confirmation screen) active isolates against SA or BS in five phyla, 14 genera, and
22 species (Figure 2). Isolates that reproducibly controlled both SA and BS came from two
phyla, specifically, Proteobacteria and Firmicutes. The active isolate from the phylum
Firmicutes_| only controlled SA, the active isolate from the phylum Bacteroidota only controlled
BS, and the active isolates from Actinobacteriota only controlled one disease or the other
(Figure 2). Of the 95 genera screened against SA, 19 were active in the primary screen and
nine showed reproducible, robust control of SA in the confirmation. Of the 44 genera screened
against BS, 12 were active in the primary screen, and eight showed reproducible control of BS.
Viewing the results from a discovery rate perspective, of the 546 isolates from the diversity
screen against SA, 28 controlled SA in the primary (a discovery rate of 5.0%), and eight
repeated the control in the confirmation screen (a discovery rate of 1.5%). Of the 145 isolates
from the diversity screen against BS, 13 controlled the pathogen in the primary (a discovery rate
of 9.0%) and two repeated the control in the confirmation screen (a discovery rate of 1.4%).

We evaluated the association between fungicidal activity (against SA or BS), and the
associated taxonomy, source environment, isolation protocol, and geography. The metric used
was an “enrichment score” (see Materials and Methods). After False Discovery Rate (FDR)
correction, no p-values were below the chosen threshold of 0.05 (see Table 1). However, the
variables with the strongest association were taxonomic, specifically members of the class
Bacilli, where the species Bacillus velezensis were most enriched for activity against either
pathogen, The strongest non-taxonomic associations were with isolates from the soll
environment, and isolates from Uganda. Co-variances between each category are presented in

Supplemental Figure 2.

Table 1

Num Actives Total Strains FDR-corrected
Variable Category in Category in Category P-value p-value
species Bacillus velezensis 2 4 0.001 0.27

10
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family Bacillaceae 3 19 0.003 0.27
genus Bacillus 3 19 0.003 0.27
class Bacilli 6 118 0.004 0.27
phylum Firmicutes 6 118 0.004 0.27
sample_type Saill 4 48 0.005 0.27
country Uganda 3 32 0.012 0.58
species MA-N2 sp002009585 1 1 0.016 0.69
species Lysinibacillus pakistanensis 1 2 0.033 1.00
family Planococcaceae 2 19 0.036 1.00
order Bacillales_A 2 19 0.036 1.00
genus Paenibacillus_B 1 3 0.049 1.00
species Bacillus_A cereus 1 3 0.049 1.00
Paenibacillus_B
species sp001894745 1 3 0.049 1.00

To identify biosynthetic pathways associated with control of Colletotrichum and
Mycosphaerella, we generated genome assemblies for all isolates. We annotated the genomes
using antiSMASH, which produced multiple BGCs and BGC fragments per genome assembly.
We clustered the annotated BGCs and fragments into 2,770 families using BiG-SCAPE (see
Materials and Methods). We performed an enrichment analysis to associate isolate activity in
the SA primary screen with the presence or absence of each BGC family (Table 2). We found
that six of the top 12 BGC families most highly associated with SA control were homologous to
well-known fungicidal pathways such as Fengycin (21,22) and Pyrrolnitrin (23,24), validating the
enrichment approach for identifying biologically-relevant genomic features. Four of the top 12
families did not show significant homology to well-characterized BGCs (based on the
antiSMASH Known Cluster Blast against the MIBIG reference database). These four BGC
families are associated with the genus Bacillus_A. Three are described as bacteriocins and one
as non-ribosomal peptide synthetase-like (NRPS-like) (Table 2). These four BGC families
represent potentially novel biocontrol pathways and molecules with relevant activity against SA.

Among the top 12 BGC families associated with activity against BS, there were four
BGC families that overlapped with enriched BGC families against SA, including nrps2943,
nrps4795, others2810, and pksother4889 (Supplemental Table 1). There were seven BGC

11
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families with homology to well-known fungicidal pathways, including Pyrrolnitrin, and
Zwittermycin A (25). There were also two BGC families associated with BS control that did not
show significant homology to well-characterized BGCs, and these were distinct from the four
novel BGC families associated with SA control. In this case, the two novel BGC families were
associated with the family Pseudomonadaceae and the genus Pseudomonas_E and were
described as a bacteriocin and a N-acetylglutaminylglutamine amide (NAGGN). These BGC
families represent potentially novel biocontrol pathways and molecules with relevant activity
against BS.

As an additional metric for associating BGC family with pathogen control, we built a
random forest classifier to predict isolate activity in each primary screen and calculated the
permutation feature importance of each BGC family (see Materials and Methods). There were
28 BGC families in the top 99th percentile for predicting SA control, and 19 for predicting BS
control (Table 2 and Supplemental Table 1). Among those associated with SA control, four BGC
families were selected by both the feature importance and enrichment methods. 15 of the 28
selected by feature importance were homologous to well-characterized BGCs, many of which
are known to be fungicidal or generally involved in microbial competition, including Zwittermycin
A (25,26) and the siderophore pyoverdine (27).13 of the 28 did not share significant homology
to well-characterized BGCs, and are described as bacteriocins, NRPSs, lanthipeptides and
PKSs. We found that many of the BGC families associated with activity against SA were
co-occurring throughout the isolates screened (Supplemental Figure 3). For example, we
observed clear clusters of BGC families with strong associations with Bacillus_A. Among the
BGC families associated with controlling BS (Supplemental Table 1), 11 of the 19 were
homologous to well-characterized BGCs, including Bacilysin (28). 8 of the 19 were not
significantly homologous to well-characterized BGCs, and are categorized as beta lactones,
linear azole-containing peptides (LAPs), bacteriocins and NRPSs. We found that many of these
BGC families associated with activity against BS were co-occurring throughout the isolates
screened (Supplemental Figure 3). For example, we observed clusters of BGC families strongly
affiliated with the species Pseudomonas_E protegens. These BGC families without significant
homology to well-described BGCs represent potentially novel biocontrol pathways and

molecules with relevant activity against SA and BS.

Table 2
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BGC Family ID 99th Top Predicted Product Homology to Known BGC Taxonomic Distribution

Percentile Enrichment Class
Importance Scores

ripps2539 -- bacteriocin
others2545 -- betalactone
terpene2537 - FALSE terpene
nrps2808 - FALSE NRPS
terpene4046 - FALSE terpene
ripps3967 - FALSE bacteriocin
nrps9204 - FALSE NRPS
others2542 - FALSE siderophore
ripps2548 - FALSE lanthipeptide
terpene6941 - FALSE terpene
nrps4047 - FALSE NRPS;T1PKS
ripps9214 - FALSE sactipeptide
nrps2540 - FALSE NRPS
ripps2935 - FALSE bacteriocin
nrps8318 - FALSE NRPS
others3835 - FALSE lanthipeptide
nrps2971 - FALSE NRPS
nrps10661 - FALSE NRPS
pksother8188 - FALSE T3PKS
nrps11511 - FALSE NRPS
ripps2937 - FALSE bacteriocin
nrps1086 - FALSE NRPS
terpenell261 - FALSE terpene
others11626 - FALSE lanthipeptide
ripps5084 - FALSE lanthipeptide
ripps7030 - FALSE bacteriocin

None
Elsinochrome A
Fengycin

Zwittermycin A

Molybdenum cofactor

Thiazostatin

Molybdenum cofactor

None
None
Petrobactin
None
None

Zwittermycin A

Thurincin H

Zwittermycin A
None

Polyoxypeptin

Zwittermycin A

None
None
None

Surfactin

None

Pyoverdine
None
Zwittermycin A

None

None

genus:Bacillus_A
genus:Bacillus_A
genus:Bacillus_A
genus:Bacillus_A
genus:Bacillus_A
genus:Pseudomonas_E
genus:Bacillus_A
genus:Bacillus_A
genus:Bacillus_A
genus:Bacillus_A
genus:Bacillus_A
species:gtdb_novel_strain
genus:Bacillus_A

species:Bacillus_A
thuringiensis_J

species:Bacillus_A
thuringiensis_J

genus:Bacillus_A
genus:Bacillus_A

species:Bacillus_A
thuringiensis_J

species:Pseudomonas_E
sp001547895

species:Bacillus subtilis
genus:Bacillus
genus:Bacillus

species:Bacillus_A
thuringiensis_J

species:Pseudomonas_E
chlororaphis

genus:Bacillus
genus:Bacillus_A
order:Bacillales

species:Brevibacillus
reuszeri_A
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nrps4051 FALSE - NRPS-like None genus:Bacillus_A

ripps3390 FALSE - bacteriocin None species:Bacillus_A toyonensis
species:Pseudomonas_E

nrps4795 FALSE NRPS Pyoverdine protegens

ripps4045 FALSE - bacteriocin;LAP None genus:Bacillus_A
species:Pseudomonas_E

nrps2943 FALSE NRPS Lipopeptide 8D1-1/2 protegens

others2810 FALSE - other Pyrrolnitrin class:Gammaproteobacteria
species:Pseudomonas_E

pksother4889 FALSE PKS-like Anikasin protegens

nrps4050 FALSE - NRPS Bacillibactin genus:Bacillus_A

To demonstrate the predictive value of the activity-associated BGC families, we
developed computational tools that would increase the discovery rate of fungicidal isolates
(Figure 3A). We compared an enrichment-based prioritization method “ER” with random forest
models (both standard “RF” and trained on over-sampled data “RFOS”; see Materials and
Methods), and a deep neural network “NN” (Figure 3A). We selected an oversampling factor of
13 for the RFOS model based on cross-validation (Supplemental Figure 5). We used only the
diversity screening isolates data to train the models. During 100-fold cross-validation with
75/25% training/test split of the data, we repeated the process of feature selection described
above (i.e. enrichment and permutation feature importance) using only the subset of training
data. After feature selection with the RF, the same features were used to train the NN. As a null
model, random isolates were predicted to be active at the same discovery rate as the diversity
screen (i.e. 5%). All models were trained to predict activity in the primary screen against SA. We
found that all four prioritization tools performed better than the null model in terms of the F1
statistic (p-value of 2x107 by Kruskal-Wallis test, followed by one-sided Mann—-Whitney U tests
with p-values < 3x10*) (Figure 3B). The ER method was the poorest performer of the four
methods tested, while the RFOS and the deep neural network were the best performers. The
RFOS average F1 score was significantly better than ER (p-value < 0.05 by one-sided
Mann-Whitney U tests), largely due to the RFOS precision scores. The NN method displayed

the best recall, increasing the average recall by 6.5-fold compared to the null.

14


https://doi.org/10.1101/2020.10.16.343004
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.343004; this version posted October 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

O PyTorch
A anti SK4RCH
BiGSCAPE BGC Family @ featn & sciry
|B1 B2 ... BN |Activity .
PSR ST TN T M -"U Strainl |1 0 ... 0 Feature Enrichment
e |’ g K Dg-_g sran2(0 0 10 | 0 Random Forest
e cmcica Sa Deep Neural Network

A A N A R M z StramM O 1 O p
Microbial BGC annotations BGC families Presence of BGC families Computational tools
Genomes as features for predicting for prioritizing

activity in each assay isolates for screening

\ F1 Score Precision Recall

'6_1-‘ 01 01 012 012 005 H0.14 019 0.16 0.11 H0.09 0.07 0.12 0.3 0.05

HO 0 014 012 0 " O 0 0.17 0.09 .o 0 012 017 0
= cugm o 0

F1 Score Precision Recall

o
o
o

0 001 0 002 |/HO 0 001 0 003 |HO 0 0.01 0.05 002
0 0 0 0 po o] 0 0 0 Ho 0 0 o 0

o
i
o
~

o
N
o
)

Ly

Performance Metric Value
Performance Metric Value 6

w) (7)) w n n 0]
xr L Oz e @wuoze xuwo rue oz e uoz e xuoze
w o w 2 8 w o w 2 8 w o w0 w o w 2 S w e ow==z © w @ o Z2
33 24 A 24 o o o o x o 4
Modeling Approach Modeling Approach

Figure 3. Machine learning workflow and in silico results. A. Machine learning workflow,
starting from genome assembilies, annotating BGCs with antiSMASH, clustering BGCs into
families, aggregating the presence or absence of each BGC family in each genome, and
finally, selecting features and training models. B. Comparing prioritization methods by
100-fold cross validation on the primary screening data. Each iteration of the cross-validation
split the data randomly into training and test sets, selected features and trained models on the
training data, then predicted activity in the test data. ER (enrichment-based prioritization,
where any isolate with one or more enriched BGCs was predicted to be active), RF (random
forest model), RFOS (random forest with oversampling), NN (deep neural network), Rand (a
random, null model based on the discovery rate from the training data). All prioritization
methods outperformed the null model. Both RFOS and NN outperformed the ER and RF
models. The mean (p) and median () values for each set of simulations are indicated above
each distribution. C. Each iteration of this cross-validation held out all the members of a
particular genus as the test set. In this case, all methods were indistinguishable from the null
(Kruskal-Wallis test), indicating that generally speaking, the BGC families defined here are
only predictive within a genus. The mean (u) and median () values for each set of
simulations are indicated above each distribution.

To determine the extent to which the best performing cross validation iterations were due
to taxonomic similarity between the training set and the test set (assuming that more related
isolates between the two would improve observed model performance), we compared the
Jaccard similarity of the set of genera in the training and test data to the model performance and
found no significant correlation (correlation coefficient of 0.097 and a p-value of 0.34 by

Spearman’s Rank Correlation; see Supplemental Figure 6). While this result would suggest that
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taxonomic overlap between training does not affect model performance (which is unlikely), we
also repeated the cross-validation evaluation. This time, instead of random training/test splits,
we kept out a single genus at each iteration as the test set. We found that under these
conditions, the models failed to outperform the null model (p-value 0.13 by Kruskal-Wallis test),
suggesting that the BGC families used to train the models tend to be predictive at the genus
level or lower (Figure 3C).

In parallel to the in silico validation of the predictive value of the enriched BGC families,
we also completed an in vivo validation. In contrast to the in silico validation where we could
simulate hundreds of experiments, we performed a single in vivo validation. We applied two
computational models to predict control of SA from among the larger AgBiome bacterial culture
collection. We selected BGC features using enrichment and random forest feature importance,
based on an older version of the SA screen data set (the BGC features used in this in vivo
validation exercise are listed in Supplemental Table 2 and representative sequences are
provided in the supplemental materials). To query the collection for isolates with BGCs in the
enriched families, we annotated BGCs using antiSMASH across the entire collection, and then
used BIG-SCAPE to cluster batches of 200 BGCs together with the queries, using the same
clustering parameters as the original clustering job that defined the families. We identified
17,163 isolates that contained at least one representative of the enriched BGC families.

Using two predictive tools (ER and RFOS), we selected 176 isolates from the 17,163
enriched isolates. First, we selected isolates that contained at least one member from the 12
enriched BGC families (ignoring the BGC families identified by permutation feature importance).
A large proportion of those isolates belonged to only a few genera, particularly Bacillus_A. In
order to increase the diversity of the validation set, we required that half of the predicted active
isolates come from non-Bacillus_A genera. Second, we applied the RFOS model to predict
control of SA. We used all fungal-control-associated BGC families as features, trained with
13-fold oversampling, and required that half of the predicted isolates come from non-Bacillus_A
genera. Finally as a post hoc analysis (not to select the 176), we applied the NN model to
predict activity of the 176 isolates. We observed that the enrichment method was far more likely
to predict that an isolate would be active, and uniquely prioritized 36 isolates, sharing 66 with
the RFOS model and 81 with the NN model. The RFOS model prioritized 20 unique solates, and
shared 47 with the NN model. The NN model did not prioritize any unique isolates because it

was applied post-hoc. 20 of the 176 isolates were predicted to be inactive by all three models,
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one of which was found to be active (this “false negative” isolate was classified as a Bacillus

altitudinis; see Figure 2).
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Figure 4. Predictive models improved discovery rate. The hit rate in the primary and
confirmation screens is shown by the bars, and the fold improvement compared to the
diversity screen (a random set of microbes from the collection) is displayed above each bar.
RFOS improved the discovery rate by 3-fold in the primary screen, and by 5.4-fold in the
confirmation screen.

We found that the RFOS primary discovery rate (precision) was 3-fold greater than the
historical discovery rate of the diversity screen (p-value of 3.7x10° by one-sided two-proportions
Z test) (Figure 4). In other words, using the RFOS model, we discovered 3-fold more active
isolates for the effort than we would have by screening a random, diverse set of isolates from
the collection. The confirmation discovery rate was even higher: 5.4-fold greater than the
diversity screen (p-value of 6.2x10° by one-sided two-proportions Z test) (Figure 4).
Additionally, the RFOS model achieved 72% recall, correctly predicting 23 of the 32 total active
isolates (p-value of 0.002, compared to 1,000 draws using a random model based on the
baseline diversity screen discovery rate of 5.0%) (Supplemental Figure 7). Notably, the RFOS
method did not discover any novel taxa that were not already represented in the training set.
Most of the true positives were classified as members of the genus Pseudomonas_E, while
most of the true negatives, false negatives and false positives were classified as members of

Bacillus_A. Taking into account the SA confirmation screen results (which were not used to train
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the model), the model precision was not statistically different from the null model, but the recall
was exceptionally high, where the RFOS model correctly predicted 11 of the 12 (92%) isolates
that reproducibly controlled SA (p-value < 0.001, compared to 1,000 random draws).

The NN model did not perform as well as the RFOS model in the context of this post-hoc
analysis. We found that the NN primary discovery rate was 1.9-fold greater than the diversity
screen discovery rate (p-value of 0.01 by one-sided two-proportions Z test), and the
confirmation discovery rate was 2.5-fold greater than the diversity screen (p-value of 0.03 by
one-sided two-proportions Z test) (Figure 4). The precision was not statistically different from the
null model, but the recall was better than the null (p-value of 0.098 compared to 1,000 random
draws) (Supplemental Figure 7). Recall was not significantly better than the null model when
predicted the results of the SA confirmation screen—the NN model correctly predicted two of 12
(17%) isolates that reproducibly controlled SA (p-value of 0.12, compared to 1,000 random
draws). In contrast to the RFOS model, the true and false positives consisted primarily of
members of the genera Bacillus_A, while most true negatives were classified as Bacillus, and
most false negatives were classified as Pseudomonas_E.

Finally, we found that the ER primary discovery rate was 2.4-fold greater than the
diversity screen discovery rate (p-value of 7.4x10° by one-sided two-proportions Z test), and the
confirmation discovery rate was 2.9-fold greater than the diversity screen (p-value of 6.1x10° by
one-sided two-proportions Z test) (Figure 4). The ER method outperformed the null model in
terms of recall (Supplemental Figure 7). It correctly predicted 19 of the 32 (59.4%)
SA-controlling isolates in the primary screen (p-value of 0.007 compared to 1,000 random
draws), and three of the 12 actives against SA in the confirmation screen (p-value of 0.031
compared to 1,000 random draws). To describe model performance in taxonomic terms, most of
the true and false positives were classified as Bacillus_A, most of the true negatives as Bacillus,
and most of the false negatives as Pseudomonas_E and Lysobacter.

The ER method (uniquely among the three computational methods used) discovered
active isolates from a novel genus which was not present in the training data—Bacillus |
endophyticus. These Bacillus_| isolates were prioritized by the enrichment method based on the
presence of the BGC family “nrps2550”. The BGC family “nrps2550” shares homology with the
BGC known to produce Elsinochrome A. Elsinochrome A is a perylenequinone, a family of
molecules which are known to exhibit fungicidal activity by production of reactive oxygen
species (29,30).
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Discussion

Many of the isolates with confirmed activity against SA and BS are from taxonomic
groups that have long been known to exhibit fungicidal properties, specifically Lysobacter (31),
and a variety of Pseudomonads and Bacilli (Table 1) (32). Some taxa discovered in this work
had not been reported to control fungal disease before, including Paenibacillus_B sp001894745
(sometimes labeled in NCBI as Paenibacillus alvei or lacking species classification), MA-N2
sp002009585, a member of the family Micrococcaceae (labeled in NCBI as a member of the
genus Arthrobacter and lacking a species identifier), a novel member of the genus
Glutamicibacter, and a novel member of the family Planococcaceae. The broad diversity of
bacterial taxa capable of controling SA and BS suggests the widespread impact of
bacterial-fungal interactions over the course of evolutionary time (33). The diversity also
suggests that bacteria yet harbor many untapped opportunities for fungal control, both in
agricultural and medical applications.

The gene clusters we observed to be enriched and predictive of bacterial anti-SA and
anti-BS activity were a mix of homologs to well-studied BGCs and novel, uncharacterized BGCs.
Many of the BGC families are highly homologous to the characterized BGCs for known
fungicidal compounds (e.g. Pyrrolnitrin, Zwittermycin, Fengycin, and Surfactin). This is a strong
validation of the approaches (enrichment and permutation feature importance) we used to rank
BGC families, and is encouraging of future work to characterize the novel BGCs we observed. It
is unclear, based on genome assemblies alone, to what extent these BGCs with homology to
known BGCs produce identical, or merely related, compounds. It is also likely that some of the
BGCs we found to be associated with antifungal activity are simply correlated with the
taxonomic group that exhibited activity and are unrelated to the mode of action. A similar
challenge is that singleton BGCs representing novel antifungal pathways cannot be detected by
the approach used here. The nature of the training data make it impossible to determine which
BGC families actually cause anti-SA or -BS activity. Therefore, it is necessary to do more
in-depth studies to demonstrate causation, and to elucidate potential MOAs associated with
BGC families discovered here.

Regardless of whether the BGCs discovered here represent the actual source of
antifungal activity or are merely correlated with it, they are predictive of antifungal activity

against SA and BS. Interestingly, we observed in silico that it is rare for BGC families to be
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predictive of activity outside the genus level (Figure 3C). In some cases we observed that the
predictive models could correctly predict activity among isolates from a genus not represented
in the training data, but In silico, these cases were rare and were not common enough to
differentiate from random chance. It is unclear whether the genus-level limit to BGC predictive
value is reflective of biology (i.e. antifungal MOAs tend to be limited to within a bacterial genus)
or whether it is an artifact of the way we defined and ranked BGC families. For example, despite
the in silico results, in the validation experiment the enrichment method did in fact lead us to
discover a novel genus. The discovery of a novel genus was possibly a stroke of luck, but it is
also likely that some antifungal BGC families span and are predictive across broader taxonomic
groups. An example in our training data of such a BGC family is “others2810” (Table 2), which
can be found (in our data set) across the class Gammaproteobacteria. In the validation
experiment, the BGC family “nrps2550"—which was limited to the genus Bacillus_A in the
training set—was the clue that led to the discovery of activity against SA by a member of the
genus Bacillus_I. By predicting activity based on genomic features rather than whole-genome
homology or taxonomic relatedness, it becomes possible to anchor predictions on features that
have been broadly inherited or horizontally dispersed. In this way, genomic features act as
stepping stones to new taxa with potentially novel properties for SA or BS control.

Broader and deeper data sets are needed if we wish to predict SA or BS control with
more confidence. While every computational approach we tested performed significantly better
than the random, null model for predicting activity in the primary assay (Figure 3B), none of the
modeling approaches achieved average F1 scores greater than 20%, or maximum F1 scores
greater than 40%. The relatively low model confidence highlights the complex nature of
antifungal interactions, which can be influenced by subtle differences between isolates. Small
changes in BGC enzymes may result in the production of different metabolites, which may or
may not be antifungal. Small changes to promoters, signalling molecules, or growth conditions
can all have a large impact on the observed antifungal activity against SA or BS. Furthermore, it
is likely that many active isolates employed unique modes of action which could not be used to
predict activity in any other isolates. All of this simply points to the need for more screening
data, and the use of input features capable of capturing more subtle differences between
isolates. Regardless, we found that RFOS and NN models performed the best in silico (Figure
3), and that predictive models improved the efficiency of our screening efforts (Figure 4). There
is a lot left to learn and discover about bacterial control of SA and BS, and computational

models will continue to accelerate the discovery effort.
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