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Abstract 
Sorghum Anthracnose and Black Sigatoka of bananas are problematic fungal diseases           

worldwide, with a particularly devastating impact on small-holder farmers in Sub-Saharan Africa.            

We screened a total of 1,227 bacterial isolates for antifungal activity against these pathogens              

using detached-leaf methods and identified 72 isolates with robust activity against one or both of               

these pathogens. These bacterial isolates represent a diverse set of five phyla, 14 genera and               

22 species, including taxa for which this is the first observation of fungal disease suppression.               

We identified biosynthetic gene clusters associated with activity against each pathogen.           

Through a machine learning workflow we discovered additional active isolates, including an            

isolate from a genus that had not been included in previous screening or model training.               

Machine-learning improved the discovery rate of our screen by 3-fold. This work highlights the              

wealth of biocontrol mechanisms available in the microbial world for management of fungal             

pathogens, generates opportunities for future characterization of novel fungicidal mechanisms,          

and provides a set of genomic features and models for discovering additional bacterial isolates              

with activity against these two pathogens. 

Introduction 
Sorghum (​Sorghum bicolor ​(L ​.​) Moench) is one of the top five cereal crops in the world                

agricultural economy, and second only to maize as a staple for food-insecure people in              

Sub-Saharan Africa ​(1)​. Production of sorghum in Africa is constrained by both abiotic and biotic               

factors. The major biotic constraint is the fungal disease sorghum anthracnose (SA), caused by              
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Colletotrichum sublineolum ​P. Henn. Kabat et Bub. Many sorghum landraces and improved            

varieties are susceptible to the foliar stage of the disease and yield losses ranging from 41% to                 

67% have been reported in Africa ​(2)​.  

Bananas and plantains (Musa spp.) are also of critical importance to food security and              

income generation for over 100 million people in Sub-Saharan Africa ​(3,4)​. As they produce              

fruits year round, these perennial plants are the backbone of many farming systems . They also                

protect the soil from erosion and are resistant to floods and drought. Black Sigatoka disease               

(BS), also known as black leaf streak, caused by the fungal species ​Mycosphaerella fijiensis​, is               

regarded as the most economically important leaf disease that affects bananas and plantains             

worldwide ​(5)​. The disease results in heavy losses and, in highly susceptible varieties, can lead               

to the total collapse of the plant.  

Bacteria provide a rich resource for the discovery of novel tools to manage plant              

diseases. Bacteria have co-inhabited many environments with fungal competitors for millions of            

years and have evolved mechanisms to antagonize and exclude a diverse range of fungal              

pathogens ​(6,7)​. To identify bacteria with these naturally-occurring antifungal activities, we           

recently completed a large screen of more than 1,227 bacterial isolates against SA and ​BS. We                

discovered 72 bacterial isolates that significantly and reproducibly reduced infection of leaf            

tissue (53 isolates in four phyla that controlled SA in sorghum leaf tissue, and 31 isolates in four                  

phyla that controlled BS in banana leaf tissue). These novel isolates provide potential new              

biological tools for managing the destructive effects of these pathogens.  

Our search for the best fungicidal candidate isolates was accelerated using genomics            

and machine learning to strategically select isolates from a large microbial culture collection.             

Through this extensive screening program, we used two distinct methods to identify genomic             

features (Biosynthetic Gene Cluster families or “BGC families”) that are predictive of bacterial             

activity against SA and BS. These features suggest an expanded pathogen spectrum for some              

known fungicidal molecules, include entirely novel molecules with unknown modes of action            

(MOA), and provide a foundation for further research. We provide representative sequences for             

the most predictive BGC families. 

Finally, to demonstrate the predictive value of the BGC families discovered in this work,              

we used machine learning models. We evaluated the strengths and limitations of multiple             

modeling frameworks ​in silico (including neural networks, random forests, and feature           

enrichment). We found that random forest models trained on oversampled data performed the             

best, followed closely by deep neural networks. In conjunction with these computational            
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evaluations, we selected 176 additional bacterial isolates using two of the machine learning             

methods and screened them for antifungal activities. This additional round of model-driven            

screening led to the identification of a new genus (which had not been included in previous                

screening or model training) with activity against both pathogens and a 3-fold increase in our               

screening discovery rate. We provide the resulting machine learning models as tools for the              

community. 

Materials and Methods 

Microbial isolation and genome sequencing 

Samples were collected from various soil samples, leaves, roots, insects, plants, 

amphibians, tubers, grain bin dust, and excrement. Samples were collected in the United States 

and Africa from 2013 to 2019 (Figure 1A). Rhizosphere samples were collected by washing soil 

attached to the roots with 0.1M sodium phosphate buffer (pH7) and filtering through a 40 μm 

filter. Insects and plant parts were ground with a mortar and pestle, mixed into a slurry with 0.1M 

sodium phosphate buffer (pH7) and filtered through a 40 μm filter. Environmental samples were 

plated on oxoid brilliance bacillus cereus agar (Thermo Fisher Scientific), luria-bertani agar 

(Thermo Fisher Scientific), or modified M9 minimal salts agar. Modified M9 salts consists of, per 

liter, 11.33g Na ​₂​HPO₄7H​₂​O, 3g KH​₂​PO₄, 1g NH₄Cl, 10g C₅H₈NNaO₄H​₂​O, 30g Molasses 

(Grandma’s Unsulphured Molasses), 2mM MgSO₄7H​₂​O, 0.2mM ZnSO₄7H​₂​O, 0.02mM 

FeSO₄7H​₂​O. All M9 minimal salts materials were ordered from Sigma-Aldrich unless otherwise 

stated. Isolates were grown in LB broth and frozen in 15% glycerol stocks. The AgBiome isolate 

collection served as a resource for this work, and at the time consisted of approximately 70,000 

isolates.  

Isolate growth and handling  

Bacterial isolates were cultured for two days in modified nutrient sporulation medium at 

28°C (225 rpm). Modified nutrient sporulation medium consists of, per liter, 5g NaCl (Thermo 

Fisher Scientific), 10g tryptone (Thermo Fisher Scientific), 8g nutrient broth (BD Biosciences), 

0.14mM CaCl ​₂​ (Sigma Aldrich), 0.2mM MgCl ​₂​6H​₂​O (Sigma Aldrich), and 0.01 mM MnCl ​₂​4H​₂​O 

(Sigma Aldrich). Bacterial cells were collected and resuspended in 1 mM MgCl ​₂​ solution. 
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Sorghum Anthracnose screen 

Sorghum cultivar 12-GS9016-KS585 seeds (supplied by Chromatin Inc.) were grown in            

the greenhouse for a steady supply of ​disease-free ​leaf tissue. Fully expanded sorghum leaves              

from 4–6 week old plants, were excised, and cut into equal pieces, 2.5 cm wide. To prepare the                  

inoculum, ​C. sublineolum isolated from sorghum in Texas was obtained from Dr. Thomas             

Isakeit’s laboratory at Texas A&M University, and grown on 20% Oatmeal agar            

(MilliPORESiGMa, Cat No. 03506), for 14 days. The actively growing fungal culture was             

flooded with sterile distilled water to dislodge the spores. The concentration of the spore              

suspension was then adjusted to 1×10 ​6 spores/ml. Tween 20 was added to the suspension at               

the rate of 0.05%. 

The bacterial strains were applied to the leaf pieces by spraying 120 μL of the bacterial                

culture suspended in magnesium chloride buffer (1×10 ​8 CFU/ml) using a ribbed skirt fine mist              

fingertip sprayer (ID-S009, Container & Packaging Supply, Eagle, ID), fitted to a 15 ml conical               

centrifuge tube (Fisher Scientific, Cat No.14-59-53A). The treated leaf pieces were then plated             

on 1% water agar amended with 6-Benzylaminopurine (BAP) and incubated at room            

temperature in the dark (Figure 1B). 24 hours post treatment, the leaf pieces were inoculated               

with a 30 µL droplet of ​C. sublineolum spore suspension, applied on each side of the mid-rib.                 

The plates were then incubated in a growth chamber (Percival Scientific, Inc) set to a 12-hour                

photoperiod, maintained at 25°C and 95% relative humidity. The experimental design was a             

randomized complete block design with 3 replications. 

Seven days post inoculation, the leaf pieces were assessed for anthracnose severity on             

a scale of 0-4 according to ​(8)​, with few modifications (Figures 1B and 1C). ​0-No symptoms or                 

chlorotic flecks, 1-hypersensitive reaction with no acervuli, 2-lesions with minute and few            

acervuli, 3-lesions with minute and few acervuli ≤25% of the leaf tissue and 4-lesions with               

acervuli covering ≥25% of the leaf surface. To identify isolates with robust, reproducible activity,              

we performed a “confirmation screen” on all active isolates from the primary screen. The              

confirmation screen was conducted using the same protocol as the primary. Data was analyzed              

using analysis of variance (ANOVA) in JMP® (version 14.0.0; SAS Institute Inc., Cary, NC). 
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Black Sigatoka screen 

The susceptible ​musa cultivar Grand Nain (supplied by ​Green Earth, Melbourne, Florida)            

was used in this experiment. Plants were maintained in the greenhouse for a constant supply of                

disease-free leaves. A ​Mycosphaerella fijiensis ​culture (ITC0489) obtained from the          

International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria was used for inoculation. 

 Bacterial isolate application and inoculation were performed as follows: smaller leaf           

pieces (4 cm long × 3 cm wide) were cut from the excised leaf. Two of these pieces were                   

placed in plastic petri dishes with an adaxial side appressed on water agar amended with 5                

mg/liter gibberellic acid (Twizeyimana et al. 2007). Leaf pieces were sprayed with 120 μL of               

bacterial isolate (1 × 10 ​8 CFU/ml of sterile distilled water) using a fingertip sprayer ​(Container &                

Packaging Supply, Eagle, ID) fitted to a 15 ml conical centrifuge tube (Fisher Scientific, Cat               

No.14-59-53A)​. Petri dishes with leaf pieces were incubated at room temperature in the dark.              

24 hours later, leaf pieces in petri dishes were inoculated with a mycelial suspension of ​M.                

fijiensis ​(120 μl per leaf piece) ​using a fingertip sprayer ​fitted to a 50 ml conical centrifuge tube ​.                  

The suspension contained mycelial fragments scraped from growing cultures that were cut into             

smaller mycelial tips in sterile distilled water in 50 ml conical tubes using a homogenizer (Omni                

International, Kennesaw, GA). The suspension was filtered through two layers of cheesecloth            

and then stirred. 0.05% Tween 20 and 0.02% Silwet L-77 (Loveland Industries Inc., Greeley,              

CO) were added. Using a hemocytometer, the suspension was adjusted with sterile distilled             

water to a concentration of 1 × 10 ​6 mycelial fragments/ml. A day after inoculation, plates were                

incubated in a growth chamber (Percival Scientific, Inc) set at 14 hours photoperiod, maintained              

at 25°C and 90% relative humidity. 

Data recorded were the most progressed stage on inoculated leaves at the time of data                

collection ​(9)​. Data were analyzed using analysis of variance (ANOVA) in PROC GLM of SAS               

(version 9.4; SAS Institute Inc., Cary, NC) and significant differences (​P < 0.05) were observed               

among treatments. To identify isolates with robust, reproducible activity, we performed a            

“confirmation screen” on all active isolates from the primary screen. The confirmation screen             

was conducted using the same protocol as the primary.  
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Figure 1. A. ​ A high level overview of the bacterial isolation, storage and genome sequencing 
pipeline. ​B.​ A high level overview of the leaf disk screens(comparable in principle between SA 
and BS screens). Leaf disks were embedded in agar, and treated with resuspended bacterial 
cells. After 24 hours, the leaf disks were treated with fungal spores and incubated for multiple 
weeks. Scores were assigned by comparing leaf disk disease progression with inoculated and 
non-inoculated controls. Disease control greater than 70% was considered “active”. ​C. 
Examples of healthy (left) and diseased (right) sorghum leaf pieces. ​D.​ Examples of healthy 
(left) and diseased (right) banana leaf pieces 

Bacterial genomics 

Bacterial isolates were grown in liquid culture, spun down, and DNA was isolated from              

the cell pellets using MoBio microbial DNA isolation kits (Qiagen, Hilden, Germany). The             

resulting DNA was quantified using a Quant iT PicoGreen assay (Invitrogen, Carlsbad, CA,             

USA). One nanogram of quantified DNA was sheared enzymatically at 55°C for 5 min using the                

Illumina Nextera XT tagmentation enzyme (Illumina, San Diego, CA, USA). Tagmented DNA            

fragments were enriched by 10 cycles of PCR amplification using PCR master mix and primers               

with the index from Illumina. Libraries were quantified by the KAPA SYBR fast quantitative PCR               
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kit (Life Technologies, Carlsbad, CA, USA) and pooled at a 4 nM concentration. Libraries were               

denatured with 0.2 N NaOH and sequenced on an Illumina HiSeq sequencing platform. Illumina              

paired-end reads were demultiplexed using Illumina software bcl2fastq v2.18.0.12. Paired-end          

reads were adapter and quality trimmed using cutadapt version 1.5 as recommended by             

Illumina. Trimmed paired-end reads were assembled and reads were aligned back to the             

consensus sequence using the CLC Genomics programs CLC Assembly Cell and CLC Mapper             

from Qiagen. 

Bacterial genomes were assigned taxonomic identifiers using the Genome Taxonomy          

Database Toolkit version 1.0.2 ​(10–12)​. Biosynthetic gene clusters (BGCs) were annotated           

using antiSMASH version 5 ​(13) with the following options enabled: taxon “bacteria”,            

KnownClusterBlast against MIBiG ​(14) and General ClusterBlast, Active Site Finder, “pfam2go”           

mapping, and Prodigal ​(15) as the gene finding tool. We used BiG-SCAPE with default settings               

(16) to cluster BGCs into families (the default alignment is “glocal” and the default cutoff for                

clustering into a family is a distance metric of 0.3).  

Enrichment analysis and machine learning 

Isolate feature enrichment and BGC family enrichment were calculated using a           

hypergeometric distribution. Isolates were considered “active” if they controlled disease          

progression by 70% or greater. Specifically, we estimated the cumulative probability that given             

M ​isolates screened, with ​n of the total having a particular attribute (e.g. are derived from soil),                 

and ​N of the total displaying activity, that we would observe ​o or more active isolates with that                  

attribute by chance alone. Smaller probabilities indicate “enriched” attributes that are unlikely to             

be so highly represented given chance alone, and that potentially have a meaningful biological              

explanation. We leveraged the hypergeometric module in SciPy to calculate enrichment           

p-values ​(17)​.  

We used SciKit-Learn to split training and test sets, train random forest models and              

generate predictions, perform cross validation, estimate permutation feature importance, and          

evaluate model performance ​(18)​. Permutation feature importance (PFI) is a measure of how             

model performance is affected by randomly shuffling feature columns. PFI is a more robust              

measure of feature importance than random forest feature importance ​(19)​. Before           

implementing the random forest models, we tested several configurations of random forest            

hyperparameters, and selected ensembles of 5 trees with a maximum depth of 32 nodes to               
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maximize recall in a 50-fold cross validation analysis. Oversampling was performed by            

replicating all the active observations in the training data, thereby increasing the ratio of active               

to inactive observations. Precision, recall and F1 scores were calculated using the SciKit-Learn             

functions. 

We used PyTorch ​(20) paired with Skorch (​https://github.com/skorch-dev/skorch ​) to train          

a deep neural network and generate predictions. We tested several configurations and selected             

a 3-layer design with 10 fully-connected nodes and reLu activation in the first layer, 30%               

dropout between the first and second layers during training, 10 fully-connected nodes and reLu              

activation in the second layer, and a single sigmoid output node to predict the probability of                

activity. We used a learning rate of 0.02, trained each model for 10 epochs using the Adam                 

optimizer and the binary cross entropy loss function.  

To select additional isolates for screening, we selected representative “query” BGCs for            

each enriched or important BGC family and clustered them with batches of BGCs from the               

remainder of our collection using BiG-SCAPE with the same parameters. The BGCs that             

clustered with a query BGC were assigned to the same family as the query.  

The data and code developed for this work are publicly available on GitHub:             

https://github.com/mbi2gs/fungicidal_bact_genomics 

Results 
We initially screened 1,051 cultivable bacterial isolates against SA, and 559 of those             

same isolates against BS. These 1,051 strains were isolated from 27 states in the United States                

and five districts in Uganda, and were derived from 11 sample types (e.g. soil, plant tissue,                

insects). We balanced taxonomic breadth and depth by screening more deeply among taxa with              

well-known fungicidal activity (e.g. ​Bacilli ​and ​Pseudomonads​) while also ensuring that we            

sampled from the broader diversity of the collection. We refer to this first pool of tested bacterial                 

isolates as “diversity” screening (546 isolates against SA; 145 isolates against BS). In addition,              

we included isolates that showed activity in other screens against different fungal pathogens,             

referred to this pool as “spectrum” screening (291 isolates against SA; 259 isolates against BS).               

Finally, in several cases when an isolate displayed activity against a pathogen, we followed up               

by screening additional isolates from the collection with high degrees of genomic similarity to              

that first active isolate. We refer to this pool of isolates as “genomic similarity” screening (214                

against SA; 155 against BS).  

8 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.343004doi: bioRxiv preprint 

https://paperpile.com/c/83PQE1/u5b5
https://github.com/skorch-dev/skorch
https://github.com/mbi2gs/fungicidal_bact_genomics
https://doi.org/10.1101/2020.10.16.343004
http://creativecommons.org/licenses/by/4.0/


 

Figure 2. Scope of screening effort, and diverse isolates with confirmed fungicidal 
activity.​ ​A​. The alluvial diagram illustrates the source country, sample type (the less 

abundant types were combined into “Other”), phylum membership and fungicidal activity of 

the 1,227 isolates screened in this work. ​B. ​The cladogram in the center highlights the 

diversity of the biocontrol isolates discovered in this work (five phyla represented by the 

center branches, 14 genera, 22 species). Multiple isolates displayed activity against both 

diseases (black leaf nodes). The outer ring shows the isolate prioritization strategies that led 

to each discovery, including predictive models. The “false negative” isolate in purple was 

predicted to be inactive by all modeling approaches and yet was found to be reproducibly 
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active against SA. 

 

Viewing the results from a taxonomic perspective, we discovered 156 isolates that            

displayed primary activity against SA, BS or both, representing five phyla, 27 genera, and 37               

species (based on Genome Taxonomy Database labels ​(11)​). We found 72 reproducibly (active             

again in the confirmation screen) active isolates against SA or BS in five phyla, 14 genera, and                 

22 species (Figure 2). Isolates that reproducibly controlled both SA and BS came from two               

phyla, specifically, Proteobacteria and Firmicutes. The active isolate from the phylum           

Firmicutes_I only controlled SA, the active isolate from the phylum Bacteroidota only controlled             

BS, and the active isolates from Actinobacteriota only controlled one disease or the other              

(Figure 2). Of the 95 genera screened against SA, 19 were active in the primary screen and                 

nine showed reproducible, robust control of SA in the confirmation. Of the 44 genera screened               

against BS, 12 were active in the primary screen, and eight showed reproducible control of BS.                

Viewing the results from a discovery rate perspective, of the 546 isolates from the diversity               

screen against SA, 28 controlled SA in the primary (a discovery rate of 5.0%), and eight                

repeated the control in the confirmation screen (a discovery rate of 1.5%). Of the 145 isolates                

from the diversity screen against BS, 13 controlled the pathogen in the primary (a discovery rate                

of 9.0%) and two repeated the control in the confirmation screen (a discovery rate of 1.4%). 

We evaluated the association between fungicidal activity (against SA or BS), and the             

associated taxonomy, source environment, isolation protocol, and geography. The metric used           

was an “enrichment score” (see Materials and Methods). After False Discovery Rate (FDR)             

correction, no p-values were below the chosen threshold of 0.05 (see Table 1). However, the               

variables with the strongest association were taxonomic, specifically members of the class            

Bacilli, where the species ​Bacillus velezensis were most enriched for activity against either             

pathogen, The strongest non-taxonomic associations were with isolates from the soil           

environment, and isolates from Uganda. Co-variances between each category are presented in            

Supplemental Figure 2. 

 

Table 1      

Variable Category 
Num Actives 
in Category 

Total Strains 
in Category P-value 

FDR-corrected 
p-value 

species Bacillus velezensis 2 4 0.001 0.27 
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family Bacillaceae 3 19 0.003 0.27 

genus Bacillus 3 19 0.003 0.27 

class Bacilli 6 118 0.004 0.27 

phylum Firmicutes 6 118 0.004 0.27 

sample_type Soil 4 48 0.005 0.27 

country Uganda 3 32 0.012 0.58 

species MA-N2 sp002009585 1 1 0.016 0.69 

species Lysinibacillus pakistanensis 1 2 0.033 1.00 

family Planococcaceae 2 19 0.036 1.00 

order Bacillales_A 2 19 0.036 1.00 

genus Paenibacillus_B 1 3 0.049 1.00 

species Bacillus_A cereus 1 3 0.049 1.00 

species 
Paenibacillus_B 
sp001894745 1 3 0.049 1.00 

 

To identify biosynthetic pathways associated with control of ​Colletotrichum ​and          

Mycosphaerella​, we generated genome assemblies for all isolates. We annotated the genomes            

using antiSMASH, which produced multiple BGCs and BGC fragments per genome assembly.            

We clustered the annotated BGCs and fragments into 2,770 families using BiG-SCAPE (see             

Materials and Methods). We performed an enrichment analysis to associate isolate activity in             

the SA primary screen with the presence or absence of each BGC family (Table 2). We found                 

that six of the top 12 BGC families most highly associated with SA control were homologous to                 

well-known fungicidal pathways such as Fengycin ​(21,22) and Pyrrolnitrin ​(23,24)​, validating the            

enrichment approach for identifying biologically-relevant genomic features. Four of the top 12            

families did not show significant homology to well-characterized BGCs (based on the            

antiSMASH Known Cluster Blast against the MIBiG reference database). These four BGC            

families are associated with the genus ​Bacillus_A​. Three are described as bacteriocins and one              

as non-ribosomal peptide synthetase-like (NRPS-like) (Table 2). These four BGC families           

represent potentially novel biocontrol pathways and molecules with relevant activity against SA​. 

​Among the top 12 BGC families associated with activity against BS, there were four               

BGC families that overlapped with enriched BGC families against SA, including nrps2943,            

nrps4795, others2810, and pksother4889 (Supplemental Table 1). There were seven BGC           
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families with homology to well-known fungicidal pathways, including Pyrrolnitrin, and          

Zwittermycin A ​(25)​. There were also two BGC families associated with BS control that did not                

show significant homology to well-characterized BGCs, and these were distinct from the four             

novel BGC families associated with SA control. In this case, the two novel BGC families were                

associated with the family Pseudomonadaceae and the genus ​Pseudomonas_E and were           

described as a bacteriocin and a N-acetylglutaminylglutamine amide (NAGGN). These BGC           

families represent potentially novel biocontrol pathways and molecules with relevant activity           

against BS​. 

As an additional metric for associating BGC family with pathogen control, we built a              

random forest classifier to predict isolate activity in each primary screen and calculated the              

permutation feature importance of each BGC family (see Materials and Methods). There were             

28 BGC families in the top 99th percentile for predicting SA control, and 19 for predicting BS                 

control (Table 2 and Supplemental Table 1). Among those associated with SA control, four BGC               

families were selected by both the feature importance and enrichment methods. 15 of the 28               

selected by feature importance were homologous to well-characterized BGCs, many of which            

are known to be fungicidal or generally involved in microbial competition, including Zwittermycin             

A ​(25,26) and the siderophore pyoverdine ​(27)​.13 of the 28 did not share significant homology               

to well-characterized BGCs, and are described as bacteriocins, NRPSs, lanthipeptides and           

PKSs. We found that many of the BGC families associated with activity against SA were               

co-occurring throughout the isolates screened (Supplemental Figure 3). For example, we           

observed clear clusters of BGC families with strong associations with ​Bacillus_A​. Among the             

BGC families associated with controlling BS (Supplemental Table 1), 11 of the 19 were              

homologous to well-characterized BGCs, including Bacilysin ​(28)​. 8 of the 19 were not             

significantly homologous to well-characterized BGCs, and are categorized as beta lactones,           

linear azole-containing peptides (LAPs), bacteriocins and NRPSs. We found that many of these             

BGC families associated with activity against BS were co-occurring throughout the isolates            

screened (Supplemental Figure 3). For example, we observed clusters of BGC families strongly             

affiliated with the species ​Pseudomonas_E protegens​. These BGC families without significant           

homology to well-described BGCs represent potentially novel biocontrol pathways and          

molecules with relevant activity against SA and BS​. 

 

Table 2      
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BGC Family ID 99th 

Percentile 

Importance 

Top 

Enrichment 

Scores 

Predicted Product 

Class 
Homology to Known BGC Taxonomic Distribution 

ripps2539 TRUE TRUE bacteriocin None genus:Bacillus_A 

nrps2550 TRUE TRUE NRPS Elsinochrome A genus:Bacillus_A 

others2545 TRUE TRUE betalactone Fengycin genus:Bacillus_A 

pksnrp3708 TRUE TRUE NRPS;T1PKS Zwittermycin A genus:Bacillus_A 

terpene2537 TRUE FALSE terpene Molybdenum cofactor genus:Bacillus_A 

nrps2808 TRUE FALSE NRPS Thiazostatin genus:Pseudomonas_E 

terpene4046 TRUE FALSE terpene Molybdenum cofactor genus:Bacillus_A 

ripps3967 TRUE FALSE bacteriocin None genus:Bacillus_A 

nrps9204 TRUE FALSE NRPS None genus:Bacillus_A 

others2542 TRUE FALSE siderophore Petrobactin genus:Bacillus_A 

ripps2548 TRUE FALSE lanthipeptide None genus:Bacillus_A 

terpene6941 TRUE FALSE terpene None species:gtdb_novel_strain 

nrps4047 TRUE FALSE NRPS;T1PKS Zwittermycin A genus:Bacillus_A 

ripps9214 TRUE FALSE sactipeptide Thurincin H 
species:Bacillus_A 

thuringiensis_J 

nrps2540 TRUE FALSE NRPS Zwittermycin A 
species:Bacillus_A 

thuringiensis_J 

ripps2935 TRUE FALSE bacteriocin None genus:Bacillus_A 

nrps8318 TRUE FALSE NRPS Polyoxypeptin genus:Bacillus_A 

others3835 TRUE FALSE lanthipeptide Zwittermycin A 
species:Bacillus_A 

thuringiensis_J 

nrps2971 TRUE FALSE NRPS None 
species:Pseudomonas_E 

sp001547895 

nrps10661 TRUE FALSE NRPS None species:Bacillus subtilis 

pksother8188 TRUE FALSE T3PKS None genus:Bacillus 

nrps11511 TRUE FALSE NRPS Surfactin genus:Bacillus 

ripps2937 TRUE FALSE bacteriocin None 
species:Bacillus_A 

thuringiensis_J 

nrps1086 TRUE FALSE NRPS Pyoverdine 
species:Pseudomonas_E 

chlororaphis 

terpene11261 TRUE FALSE terpene None genus:Bacillus 

others11626 TRUE FALSE lanthipeptide Zwittermycin A genus:Bacillus_A 

ripps5084 TRUE FALSE lanthipeptide None order:Bacillales 

ripps7030 TRUE FALSE bacteriocin None 
species:Brevibacillus 

reuszeri_A 
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nrps4051 FALSE TRUE NRPS-like None genus:Bacillus_A 

ripps3390 FALSE TRUE bacteriocin None species:Bacillus_A toyonensis 

nrps4795 FALSE TRUE NRPS Pyoverdine 
species:Pseudomonas_E 

protegens 

ripps4045 FALSE TRUE bacteriocin;LAP None genus:Bacillus_A 

nrps2943 FALSE TRUE NRPS Lipopeptide 8D1-1/2 
species:Pseudomonas_E 

protegens 

others2810 FALSE TRUE other Pyrrolnitrin class:Gammaproteobacteria 

pksother4889 FALSE TRUE PKS-like Anikasin 
species:Pseudomonas_E 

protegens 

nrps4050 FALSE TRUE NRPS Bacillibactin genus:Bacillus_A 

 

To demonstrate the predictive value of the activity-associated BGC families, we           

developed computational tools that would increase the discovery rate of fungicidal isolates            

(Figure 3A). We compared an enrichment-based prioritization method “ER” with random forest            

models (both standard “RF” and trained on over-sampled data “RFOS”; see Materials and             

Methods), and a deep neural network “NN” (Figure 3A). We selected an oversampling factor of               

13 for the RFOS model based on cross-validation (Supplemental Figure 5). We used only the               

diversity screening isolates data to train the models. During 100-fold cross-validation with            

75/25% training/test split of the data, we repeated the process of feature selection described              

above (i.e. enrichment and permutation feature importance) using only the subset of training             

data. After feature selection with the RF, the same features were used to train the NN. As a null                   

model, random isolates were predicted to be active at the same discovery rate as the diversity                

screen (i.e. 5%). All models were trained to predict activity in the primary screen against SA. We                 

found that all four prioritization tools performed better than the null model in terms of the F1                 

statistic (p-value of 2×10 ​-7 by Kruskal–Wallis test, followed by one-sided Mann–Whitney U tests             

with p-values < 3×10 ​-4​) (Figure 3B). The ER method was the poorest performer of the four                

methods tested, while the RFOS and the deep neural network were the best performers. The               

RFOS average F1 score was significantly better than ER (p-value < 0.05 by one-sided              

Mann-Whitney U tests), largely due to the RFOS precision scores. The NN method displayed              

the best recall, increasing the average recall by 6.5-fold compared to the null.  

 

14 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.343004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.343004
http://creativecommons.org/licenses/by/4.0/


 

Figure 3. Machine learning workflow and ​in silico ​ results. A.​ Machine learning workflow, 
starting from genome assemblies, annotating BGCs with antiSMASH, clustering BGCs into 
families, aggregating the presence or absence of each BGC family in each genome, and 
finally, selecting features and training models.​ B​. Comparing prioritization methods by 
100-fold cross validation on the primary screening data. Each iteration of the cross-validation 
split the data randomly into training and test sets, selected features and trained models on the 
training data, then predicted activity in the test data. ER (enrichment-based prioritization, 
where any isolate with one or more enriched BGCs was predicted to be active), RF (random 
forest model), RFOS (random forest with oversampling), NN (deep neural network), Rand (a 
random, null model based on the discovery rate from the training data). All prioritization 
methods outperformed the null model. Both RFOS and NN outperformed the ER and RF 
models. The mean (μ) and median ( ) values for each set of simulations are indicated aboveμ  
each distribution. ​C. ​Each iteration of this cross-validation held out all the members of a 
particular genus as the test set. In this case, all methods were indistinguishable from the null 
(Kruskal–Wallis test), indicating that generally speaking, the BGC families defined here are 
only predictive within a genus. The mean (μ) and median ( ) values for each set ofμ  
simulations are indicated above each distribution. 

 

To determine the extent to which the best performing cross validation iterations were due              

to taxonomic similarity between the training set and the test set (assuming that more related               

isolates between the two would improve observed model performance), we compared the            

Jaccard similarity of the set of genera in the training and test data to the model performance and                  

found no significant correlation (correlation coefficient of 0.097 and a p-value of 0.34 by              

Spearman’s Rank Correlation; see Supplemental Figure 6). While this result would suggest that             
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taxonomic overlap between training does not affect model performance (which is unlikely), we             

also repeated the cross-validation evaluation. This time, instead of random training/test splits,            

we kept out a single genus at each iteration as the test set. We found that under these                  

conditions, the models failed to outperform the null model (p-value 0.13 by Kruskal–Wallis test),              

suggesting that the BGC families used to train the models tend to be predictive at the genus                 

level or lower (Figure 3C). 

In parallel to the ​in silico validation of the predictive value of the enriched BGC families,                

we also completed an ​in vivo validation. In contrast to the ​in silico ​validation where we could                 

simulate hundreds of experiments, we performed a single ​in vivo validation. We applied two              

computational models to predict control of SA from among the larger AgBiome bacterial culture              

collection. We selected BGC features using enrichment and random forest feature importance,            

based on an older version of the SA screen data set (the BGC features used in this ​in vivo                   

validation exercise are listed in Supplemental Table 2 and representative sequences are            

provided in the supplemental materials). To query the collection for isolates with BGCs in the               

enriched families, we annotated BGCs using antiSMASH across the entire collection, and then             

used BIG-SCAPE to cluster batches of 200 BGCs together with the queries, using the same               

clustering parameters as the original clustering job that defined the families. We identified             

17,163 isolates that contained at least one representative of the enriched BGC families.  

Using two predictive tools (ER and RFOS), we selected 176 isolates from the 17,163              

enriched isolates. First, we selected isolates that contained at least one member from the 12               

enriched BGC families (ignoring the BGC families identified by permutation feature importance).            

A large proportion of those isolates belonged to only a few genera, particularly ​Bacillus_A​. In               

order to increase the diversity of the validation set, we required that half of the predicted active                 

isolates come from non-​Bacillus_A genera. Second, we applied the RFOS model to predict             

control of SA. We used all fungal-control-associated BGC families as features, trained with             

13-fold oversampling, and required that half of the predicted isolates come from non-​Bacillus_A             

genera. Finally as a ​post hoc analysis (not to select the 176), we applied the NN model to                  

predict activity of the 176 isolates. We observed that the enrichment method was far more likely                

to predict that an isolate would be active, and uniquely prioritized 36 isolates, sharing 66 with                

the RFOS model and 81 with the NN model. The RFOS model prioritized 20 unique solates, and                 

shared 47 with the NN model. The NN model did not prioritize any unique isolates because it                 

was applied ​post-hoc​. 20 of the 176 isolates were predicted to be inactive by all three models,                 
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one of which was found to be active (this “false negative” isolate was classified as a ​Bacillus                 

altitudinis​; see Figure 2).  

 

Figure 4. ​ ​Predictive models improved discovery rate​. The hit rate in the primary and 
confirmation screens is shown by the bars, and the fold improvement compared to the 
diversity screen (a random set of microbes from the collection) is displayed above each bar. 
RFOS improved the discovery rate by 3-fold in the primary screen, and by 5.4-fold in the 
confirmation screen. 

 

We found that the RFOS primary discovery rate (precision) was 3-fold greater than the              

historical discovery rate of the diversity screen (p-value of 3.7×10 ​-6 by one-sided two-proportions             

Z test) (Figure 4). In other words, using the RFOS model, we discovered 3-fold more active                

isolates for the effort than we would have by screening a random, diverse set of isolates from                 

the collection. The confirmation discovery rate was even higher: 5.4-fold greater than the             

diversity screen (p-value of 6.2×10 ​-6 by one-sided two-proportions Z test) (Figure 4).            

Additionally, the RFOS model achieved 72% recall, correctly predicting 23 of the 32 total active               

isolates (p-value of 0.002, compared to 1,000 draws using a random model based on the               

baseline diversity screen discovery rate of 5.0%) (Supplemental Figure 7). Notably, the RFOS             

method did not discover any novel taxa that were not already represented in the training set.                

Most of the true positives were classified as members of the genus ​Pseudomonas_E​, while              

most of the true negatives, false negatives and false positives were classified as members of               

Bacillus_A​. Taking into account the SA confirmation screen results (which were not used to train               
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the model), the model precision was not statistically different from the null model, but the recall                

was exceptionally high, where the RFOS model correctly predicted 11 of the 12 (92%) isolates               

that reproducibly controlled SA (p-value < 0.001, compared to 1,000 random draws).  

The NN model did not perform as well as the RFOS model in the context of this ​post-hoc                  

analysis. We found that the NN primary discovery rate was 1.9-fold greater than the diversity               

screen discovery rate (p-value of 0.01 by one-sided two-proportions Z test), and the             

confirmation discovery rate was 2.5-fold greater than the diversity screen (p-value of 0.03 by              

one-sided two-proportions Z test) (Figure 4). The precision was not statistically different from the              

null model, but the recall was better than the null (p-value of 0.098 compared to 1,000 random                 

draws) (Supplemental Figure 7). Recall was not significantly better than the null model when              

predicted the results of the SA confirmation screen—the NN model correctly predicted two of 12               

(17%) isolates that reproducibly controlled SA (p-value of 0.12, compared to 1,000 random             

draws). In contrast to the RFOS model, the true and false positives consisted primarily of               

members of the genera ​Bacillus_A​, while most true negatives were classified as ​Bacillus, ​and              

most false negatives were classified as ​Pseudomonas_E​.  

Finally, we found that the ER primary discovery rate was 2.4-fold greater than the              

diversity screen discovery rate (p-value of 7.4x10 ​-5 by one-sided two-proportions Z test), and the              

confirmation discovery rate was 2.9-fold greater than the diversity screen (p-value of 6.1x10 ​-3 by              

one-sided two-proportions Z test) (Figure 4). The ER method outperformed the null model in              

terms of recall (Supplemental Figure 7). It correctly predicted 19 of the 32 (59.4%)              

SA-controlling isolates in the primary screen (p-value of 0.007 compared to 1,000 random             

draws), and three of the 12 actives against SA in the confirmation screen (p-value of 0.031                

compared to 1,000 random draws). To describe model performance in taxonomic terms, most of              

the true and false positives were classified as ​Bacillus_A​, most of the true negatives as ​Bacillus​,                

and most of the false negatives as ​Pseudomonas_E ​and ​Lysobacter​.  

The ER method (uniquely among the three computational methods used) discovered           

active isolates from a novel genus which was not present in the training data—​Bacillus_I              

endophyticus​. These ​Bacillus_I isolates were prioritized by the enrichment method based on the             

presence of the BGC family “nrps2550”. The BGC family “nrps2550” shares homology with the              

BGC known to produce Elsinochrome A. Elsinochrome A is a perylenequinone, a family of              

molecules which are known to exhibit fungicidal activity by production of reactive oxygen             

species ​(29,30)​.  
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Discussion 
Many of the isolates with confirmed activity against SA and BS are from taxonomic              

groups that have long been known to exhibit fungicidal properties, specifically ​Lysobacter ​(31)​,             

and a variety of Pseudomonads and Bacilli (Table 1) ​(32)​. Some taxa discovered in this work                

had not been reported to control fungal disease before, including ​Paenibacillus_B sp001894745            

(sometimes labeled in NCBI as ​Paenibacillus alvei or lacking species classification), MA-N2            

sp002009585, a member of the family Micrococcaceae (labeled in NCBI as a member of the               

genus ​Arthrobacter and lacking a species identifier), a novel member of the genus             

Glutamicibacter​, and a novel member of the family Planococcaceae. The broad diversity of             

bacterial taxa capable of controlling SA and BS suggests the widespread impact of             

bacterial-fungal interactions over the course of evolutionary time ​(33)​. The diversity also            

suggests that bacteria yet harbor many untapped opportunities for fungal control, both in             

agricultural and medical applications. 

The gene clusters we observed to be enriched and predictive of bacterial anti-SA and              

anti-BS activity were a mix of homologs to well-studied BGCs and novel, uncharacterized BGCs.              

Many of the BGC families are highly homologous to the characterized BGCs for known              

fungicidal compounds (e.g. Pyrrolnitrin, Zwittermycin, Fengycin, and Surfactin). This is a strong            

validation of the approaches (enrichment and permutation feature importance) we used to rank             

BGC families, and is encouraging of future work to characterize the novel BGCs we observed. It                

is unclear, based on genome assemblies alone, to what extent these BGCs with homology to               

known BGCs produce identical, or merely related, compounds. It is also likely that some of the                

BGCs we found to be associated with antifungal activity are simply correlated with the              

taxonomic group that exhibited activity and are unrelated to the mode of action. A similar               

challenge is that singleton BGCs representing novel antifungal pathways cannot be detected by             

the approach used here. The nature of the training data make it impossible to determine which                

BGC families actually cause anti-SA or -BS activity. Therefore, it is necessary to do more               

in-depth studies to demonstrate causation, and to elucidate potential MOAs associated with            

BGC families discovered here. 

Regardless of whether the BGCs discovered here represent the actual source of            

antifungal activity or are merely correlated with it, they are predictive of antifungal activity              

against SA and BS. Interestingly, we observed ​in silico that it is rare for BGC families to be                  
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predictive of activity outside the genus level (Figure 3C). In some cases we observed that the                

predictive models could correctly predict activity among isolates from a genus not represented             

in the training data, but ​In silico​, these cases were rare and were not common enough to                 

differentiate from random chance. It is unclear whether the genus-level limit to BGC predictive              

value is reflective of biology (i.e. antifungal MOAs tend to be limited to within a bacterial genus)                 

or whether it is an artifact of the way we defined and ranked BGC families. For example, despite                  

the ​in silico results, in the validation experiment the enrichment method did in fact lead us to                 

discover a novel genus. The discovery of a novel genus was possibly a stroke of luck, but it is                   

also likely that some antifungal BGC families span and are predictive across broader taxonomic              

groups. An example in our training data of such a BGC family is “others2810” (Table 2), which                 

can be found (in our data set) across the class Gammaproteobacteria. In the validation              

experiment, the BGC family “nrps2550”—which was limited to the genus ​Bacillus_A ​in the             

training set—was the clue that led to the discovery of activity against SA by a member of the                  

genus ​Bacillus_I​. By predicting activity based on genomic features rather than whole-genome            

homology or taxonomic relatedness, it becomes possible to anchor predictions on features that             

have been broadly inherited or horizontally dispersed. In this way, genomic features act as              

stepping stones to new taxa with potentially novel properties for SA or BS control.  

Broader and deeper data sets are needed if we wish to predict SA or BS control with                 

more confidence. While every computational approach we tested performed significantly better           

than the random, null model for predicting activity in the primary assay (Figure 3B), none of the                 

modeling approaches achieved average F1 scores greater than 20%, or maximum F1 scores             

greater than 40%. The relatively low model confidence highlights the complex nature of             

antifungal interactions, which can be influenced by subtle differences between isolates. Small            

changes in BGC enzymes may result in the production of different metabolites, which may or               

may not be antifungal. Small changes to promoters, signalling molecules, or growth conditions             

can all have a large impact on the observed antifungal activity against SA or BS. Furthermore, it                 

is likely that many active isolates employed unique modes of action which could not be used to                 

predict activity in any other isolates. All of this simply points to the need for more screening                 

data, and the use of input features capable of capturing more subtle differences between              

isolates. Regardless, we found that RFOS and NN models performed the best in silico ​(Figure               

3), and that predictive models improved the efficiency of our screening efforts (Figure 4). There               

is a lot left to learn and discover about bacterial control of SA and BS, and computational                 

models will continue to accelerate the discovery effort. 
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