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ABSTRACT 
 
Genetic testing is widely used in evaluating a patient’s predisposition for developing a 
malignancy. In the case of cancer, when a functionally impactful inherited mutation (i.e. genetic 
variant) is identified in a disease-relevant gene, the patient is at elevated risk of developing a 
lesion in their lifetime. Unfortunately, as the rate and coverage of genetic testing has 
accelerated, our ability to make informed assessments regarding the functional status of the 
variants has lagged. Currently, there are two main strategies for assessing variant functions: in 
silico predictions or in vitro testing. The first approach is to build generalist computational 
prediction software using theoretical parameters such as amino acid conservation as feature 
inputs. These types of software can classify any variant of any gene. Although versatile, their 
non-specific design and theoretical assumptions result in different models frequently producing 
conflicting classifications. The second approach is to develop gene-specific assays. Although 
each assay is tailored to the physiological function of the gene, this approach requires 
significant investments. Therefore, there is an urgent need for more practical, streamlined and 
cost-effective methods. To directly address these issues, we designed a new approach of using 
alterations in protein subcellular localization as a key indicator of loss of function. Thus, new 
variants can be rapidly functionalized by using high-content microscopy. To facilitate the 
analysis of large amounts of image data, we developed a new software, named MAPS for 
machine-assisted phenotype scoring, that utilizes deep learning (DL) techniques to extract and 
classify cell-level phenotypes. This new Python-based toolkit helps users leverage commercial 
cloud-based DL services that are easy to train and deploy to fit varying experimental conditions. 
Model training is entirely code-free and can be done with limited number of images. Users 
simply input the trained endpoints into MAPS to accomplish cell detection, phenotype 
discovery and phenotype classification. Thus, MAPS allows cell biologists to easily apply DL to 
accelerate their image analysis workflow. 
 
INTRODUCTION 
 
Extrapolating quantitative data from morphological observations enables rigorous statistical 
analyses; thus, it is a core objective of most cell biology studies. It is crucial that this step is 
carried out objectively so that one can interrogate the effects of different experimental 
conditions or variabilities between samples. Traditionally, quantification is accomplished by 
analyzing images using pre-determined criteria such as cell size, cell shape or protein 
translocation. However, recent technological advancements in microscopy, such as those in 
resolution and automation, have empowered us to capture images in greater detail or with 
higher throughput. However, these advancements also significantly increase the data burden, 
and the traditional way of manually adjudicating or measuring cellular and subcellular 
phenotypes cannot be scaled to keep up with the increasing data load. As a result, demands for 
automated image analysis strategies have surged. 
 
Computational image analysis techniques, which is a part of the larger interdisciplinary field of 
computer vision, can be grossly divided into those that utilize machine learning and those that 
do not. Classical computer vision algorithms are stable and efficient, and are already widely 
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used by cell biologists since many of them are packaged into open software platforms like 
ImageJ and CellProfiler [1]. On the other hand, machine learning techniques distinguish 
themselves by using iterative cycles of training and fitting that simulates the human learning 
process of decision making and are more flexible at adapting to the problem at the expense of 
training time. For instance, given a task of segmenting cells (i.e. detecting individual cell 
boundaries) in microscopy images, traditional computer vision techniques include thresholding, 
edge detection, or watershed, while machine learning techniques include clustering, artificial 
neural network, random forest or support vector machine [2]. Virtually all methods can achieve 
good performance if they are well-suited and finely tuned for the task. Also, different computer 
vision techniques are frequently used in concert when building up an image analysis pipeline. 
 
Machine learning, in particular, is an attractive solution for classifying image-based phenotypes 
due to its ability to extrapolate patterns in the data and make predictions. This approach has 
been used to screen cell size mutants and to screen small-molecule therapeutics [3,4]. The 
success of machine learning models requires careful feature engineering in which quantitative 
measures such as cell shape, pixel intensity and texture are derived from single-cell image data 
[5]. However, these features need to be predefined, and the initial high-dimensional feature 
space will require feature selection and feature reduction before it can be effectively used to 
train the machine learning classifier [6]. Thus, this type of analysis pipeline is usually hand-
tuned for each dataset and cannot easily incorporate new data or be transferred to a different 
dataset. 
 
To overcome this challenge, a specialized branch of machine learning, deep learning, has 
recently gained favor in the computer vision field. Deep learning is based on the use of multiple 
layers artificial neural networks and does not require features to be predefined. In computer 
vision applications, a series of convolutional filters are designed into the network to extract 
features from pixel-level data to train a deep neural network (i.e. convolutional neural network 
(CNN)) [7]. This learning structure is inherently flexible at handling a wide variety of image data, 
and trained networks can also be updated with new data through transfer learning [8]. Thus, 
CNNs have accelerated computer vision research because of their ability to solve challenging 
image processing problems, such as 2D/ 3D cell segmentation, organelle segmentation, cell 
detection and even false fluorescent labeling [9-12]. Further, deep learning techniques are well-
suited for automating the analysis of high-throughput (HTP) microscopy data. For instance, 
CNNs have been used to classify the localizations of fluorescently-tagged proteins in yeast from 
HTP microscopy images and achieved higher accuracy than traditional machine learning 
methods [10,13]. 
 
However, building deep learning models usually requires substantial programming knowledge 
that is beyond the means of most biologists. Here, we present a pipeline of using high-
throughput microscopy to rapidly detect changes in protein localisations caused by genetic 
variations. Using the tumor suppressor PTEN as proof-of-concept, we show that alterations in 
PTEN subcellular localization correlated with the pathogenicity of its missense mutations (ie. 
variants). We also demonstrated a custom-built automated image analysis tool kit that we call 
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MAPS (machine-assisted phenotype scoring) which will help cell biologists leverage the power 
of deep learning without the need to write any code for model building.  
 
RESULTS AND DISCUSSION 
 
Many efforts have been devoted to the classification of cancer-related genetic variants. One 
approach is to develop assays that interrogate the biochemical function of the protein product, 
and quantitatively measure how variants affect such function. This gene-specific approach has 
been applied to BRCA1 variants, where the homology-directed DNA repair function of BRCA1 is 
the key measure [14]; to EGFR variants, where the transforming potential of EGFR is used to 
assess its mutants [15]; and to TP53, where the anti-proliferative function of p53 is used to 
annotate its variants [16]. Alternatively, another approach is to develop gene-agnostic, 
generalizable assays by exploiting universal attributes of gene products. One technique 
measures the relative intracellular abundance of variants which correlate with their 
pathogenicity [17]. Another technique uses gene expression profiling to fingerprint the 
molecular functions of a gene and to reveal changes induced by its variants [18]. 
 
Previously, we developed a gene-specific assay for the tumor suppressor gene PTEN [19]. 
Although the assay is clinically relevant and scalable, we wanted to engineer a universal 
multiplexing assay that can be used to functionally assess potentially any gene without needing 
prior knowledge of gene function. It is well-recognized that the subcellular localizations of 
proteins are usually crucial for their functions. For instance, the DNA repair activities of p53 and 
BRCA1 are dependent on their localizations to the nucleus and mutations that disrupt their 
localizations will significantly impede their functions [20]. Thus, screening for mutations that 
alter the wildtype protein’s localization could potentially help discover evidence of 
pathogenicity.  
 
We first established the workflow for scoring the localizations of PTEN variants (Figure 1A). We 
cloned different PTEN alleles into an expression vector that expresses GFP and PTEN as a fusion 
protein interspersed by a P2A self-cleaving peptide, the same design as we previously published 
[19]. GFP and PTEN would then be expressed as individually folded proteins in 1:1 ratio. After 
transfection, we carried out immunofluorescence (IF) to visualize PTEN localizations. Finally, we 
used high-content microscopy to capture images and our custom software to perform 
automated image analysis and phenotype scoring. 
 
With the goal of streamlining automated phenotype scoring, we developed MAPS, which was 
designed to score variant localizations, but we anticipate it to have wider applications. MAPS 
has the following modules: (1) image pre-processing, (2) cell detection, (3) feature extraction/ 
phenotype discovery and (4) phenotype scoring (Figure 1B). Each of these modules can be 
executed independently, allowing users to incorporate or substitute their preferred software, 
such as specialized programs like CellProfiler or image analysis packages like MATLAB or 
OpenCV. The source codes of MAPS are clearly laid out in a series of Jupyter Notebooks, and 
each module is organized into their own Notebook, similar to the design principal of the Allen 
Cell Structure Segmenter [21]. To give a brief overview, the first deep learning model will 
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perform cell detection and isolate individual cells. After, we implemented manifold projection 
and clustering tools to help the user discover the different classes of phenotypes. Once the user 
defines the necessary phenotype classes, a final deep learning model will classify all cells 
identified by the cell detection module.  
 
We carried out pilot experiments to test the pipeline. We first localized PTEN in the non-
tumorigenic human breast epithelia cell line MCF10A via IF. Wildtype PTEN has been reported 
to shuttle between the cytoplasm and the plasma membrane, which is essential for its tumor 
suppressor function in dephosphorylating phosphatidylinositol-3,4,5 trisphosphate [22]. 
Although PTEN does not contain canonical nuclear localization signals (NLS), nuclear PTEN is 
apparent in quiescent cells, but not normally found in dividing cells [23]. Consistently, we 
noticed that wildtype PTEN localized mostly in the cytosol with minor PM staining, but is 
excluded from the nucleus. In contrast, the localization of a known tumour-associated loss of 
function variant, C124R [24,25], was predominantly nuclear (Figure 2). Since there were clear 
differences in the localizations of selected PTEN alleles, we felt confident to use alterations in 
PTEN localizations as the key phenotypic measure for scoring variant function. 
 
Next, we acquired images using HTP microscopy. We expected that automated microscopy 
instruments and experiments will inevitably generate sub-optimal images such as those that are 
out of focus or those that contain artifacts including air bubbles, scratches or foreign fibers may 
be present. Images with these aberrations will need to be removed to maintain the quality of 
downstream analyses. Thus, after automated image acquisition, a pre-processing step is 
necessary to perform quality control (QC). Conventional image analysis pipelines would expect 
users to remove these problematic images prior to analysis. However, automated microscopes 
can easily generate gigabytes of image data, making manually screening and excluding 
problematic images time consuming and undesirable. A number of strategies are available to 
perform image QC, such as building custom software solutions [26] or using the QC pipeline 
implemented in CellProfiler’s MeasureImageQuality module [27]. In order to integrate 
seamlessly with the other modules, we implemented custom functions to compute focus 
measures using OpenCV. We used Variance of Laplacian as the focus measure which measures 
the amount of edges in an image, so that an in-focus images will have high variance, and a 
blurry image will have low variance (Figure 3A) [28,29]. However, images containing artifacts 
such as air bubbles or overexposed cells (due to cells overexpressing the target protein) will 
create high amount of edges and be mis-labeled as in-focus images. To overcome these issues, 
we implemented image dilation to remove the edges from air bubbles (Figure 3B), and masking 
followed by Gaussian blurring to remove edges from overexposed cells (Figure 3C). After 
screening and mitigating these artifacts that affected focus measure calculations, we achieved 
on average over 90% accuracy in removing out of focus images. 
 
After image QC, we need to isolate individual cells to extract cell-level features. Cell detection 
places bounding boxes around each cell object, and is different from cell segmentation which 
aims to identify cell boundaries as defined by the plasma membrane (e.g. in mammalian cells) 
or by the cell wall (e.g. in yeast cells). We realized that in certain cases cell segmentation would 
be desirable, but cell detection was well-suited for our application. To carry out cell detection, 
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we took advantage of the Custom Vision module of Azure, Microsoft’s cloud-based machine 
learning platform. We trained a custom cell detection model on Azure and used the endpoint to 
predict bounding boxes on all of our HTP microscopy images. To improve the performance of 
the Azure model, we implemented augmentation strategies, a common technique used in CNN 
training [9], to boost the training data. These included image rotation, flipping, contrast 
adjustments, color inversions and adding noise (Figure 4A). We boosted training data from 148 
to 2200 images, and achieved 9.8% improvement in precision and 3.4% in recall (Figure 4B). 
 
Perhaps the most noteworthy distinction between our image analysis pipeline and others is 
that we let users build experiment-specific deep learning models using commercial solutions. 
Since imaging experimental conditions vary greatly, it is more practical for users to train and 
deploy their specific cell detection and phenotype scoring models instead of providing pre-
trained models in order to achieve the best accuracy. Also, because deep learning is 
computation heavy, and users typically have different computer hardware with varying 
capabilities, we considered using cloud computing platforms will provide the most consistent 
training and prediction performance at a fraction of the cost of purchasing new hardware. After 
testing the leading cloud machine learning platform, including Microsoft Azure, Amazon AWS 
and IBM Watson, Azure has the most intuitive graphical user interface. Importantly, the Custom 
Vision module on Azure allows users to create computer vision models entirely code free, and 
can achieve reasonable performance using very few training images (as little as 20 images). This 
is immensely more convenient than building deep learning models from scratch because doing 
so typically require hundreds if not thousands of curated images for training and validation [7]. 
 
One common approach of phenotype classification is to first quantitatively measure cell 
morphologies followed by training a ML classifier using the quantified measurements as 
features [5,30]. It is necessary then to explicitly define these cell-level features, such as cell size, 
cell shape or pixel intensity [5]. This approach was the standard practice before deep learning 
became practical and is still widely used today. Alternatively, a different approach is to carry 
out feature extraction using a convolutional network, which replaces handcrafting features 
[11]. This is the preferred solution because the same CNN structure can be used to analyze a 
wide variety of dataset and does not require expert knowledge in designing the types of 
features to extract. Since we aimed to maximize flexibility, we chose the second approach to 
only broadly define PTEN’s localization pattern and use CNN to carry out the classification. 
 
The next step in the pipeline was to discover all relevant phenotypes that we planned to train 
the final classifier. Specifically, we needed to carefully inspect the cropped cells for any 
unexpected phenotype or outliers. We also should remove low quality images such as objects 
that were mis-identified as cells. Thus, we implemented useful functions to facilitate visual 
inspections by clustering cells that show similar morphologies and by generating cell galleries. 
We designed two different methods to extract cell-level features. The first method involves 
applying convolutional filters to the input image, followed by parallel stacking of the convolved 
layers. Then, all layers are flattened to generate a high-dimensional dataframe (Figure 5A). 
Finally, we used t-SNE to generate a 2D manifold projection of all the cells, and randomly 
inserted the original cell images to facilitate manual inspection (Figure 5B). We also applied 
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spectral clustering to group cells with similar morphologies. The combination of these 
techniques helped reveal that the red cluster consisted of junk data from inaccurate cell 
detection, and cells in the green cluster were too small to be useful for phenotype scoring 
(Figure 4B). Consequently, we eliminated images from the red and green clusters. The second 
method is by using a deep autoencoder (Figure 5C). The autoencoder has a contracting path 
that is very useful for dimensionality reduction and feature learning [31]. After using the 
autoencoder to perform feature extraction, we similarly generated a t-SNE projection followed 
by spectral clustering and embedding a cell gallery (Figure 5d). In this example, junk data was 
grouped into the green cluster, and small cells were in the red cluster. Therefore, either 
approach can help us quickly remove potentially confounding data, allowing us to focus on 
inspecting a more manageable subset of images. 
 
After inspecting the remaining images, we discovered that there were three main patterns of 
PTEN localizations common to all tested variants: non-nuclear, nuclear and diffused (Figure 6A). 
We trained another classification model on Azure, and plug the endpoint into our script to 
perform automated phenotype scoring based on these three classes. We analyzed wildtype 
PTEN and 7 variants: G44D, C124R, G127R, M134I, R173H, Y180H and P246L (Figure 6B). Using 
our imaging pipeline and MAPS, we were able to analyze large number of cells (n= 350-700). 
Importantly, we noticed that very few wildtype cells had nuclear PTEN localization, whereas the 
non-functional variant C124R had significantly higher nuclear PTEN (10% vs 52%), consistent 
with our initial observation (Figure 2). We also looked up the loss of function (LOF) scores that 
we previously measured for these variants using a spheroid assay (Figure 6C, [19]). Notably, we 
found that the percentage of cells with nucleus-localized PTEN correlated strongly with LOF 
scores (Figure 6D, Pearson’s correlation = 0.737). There were two outliers: R173H had a low LOF 
score but high nuclear PTEN; G127R had the highest LOF score in our test, but its nuclear PTEN 
was similar to that of C124R or M134I. We suspected that assessing variant function by 
subcellular localization may be more sensitive than the spheroid assay, but the spheroid assay 
can detect a higher degree of LOF. More testing might be able to further dissect the pros and 
cons of either approaches. 
 
In conclusion, we developed MAPS specifically to automate phenotype scoring of high-content 
microscopy data, and used it to score the localizations of PTEN variants. MAPS stands out for 
other software tools in that it allows users to build custom deep learning object identification 
and classification models using Microsoft’s Azure cloud computing platform, completely code-
free. We hope MAPS can help empower cell biologists with the power of deep learning even if 
they do not have the expertise in AI. Finally, assessing variant function using high-content 
microscopy is a simple and easy to scale approach, and could be more cost-effective than 
developing gene-specific assays. 
 
MATERIALS AND METHODS 
 
Cell Culture  
The PTEN-/- cell line (MCF10A background) was purchased from Horizon Discovery and verified 
by western blotting. Cell were cultured according to published protocols [32] and were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.342915doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342915
http://creativecommons.org/licenses/by-nc-nd/4.0/


maintained in a 37°C incubator with 5% CO2. Mycoplasma was tested monthly by direct DNA 
staining with DAPI. 
 
Plasmids and Transfections  
PTEN expression vectors were generated as previously described [19]. Transfection was carried 
out 24 hours after seeding 50,000 cells in a 12-well dish containing 22x22mm glass coverslips 
(Thermo Fisher Scientific) using Lipofectamine 2000 (Thermo Fisher Scientific) according to 
manufacturer’s protocols. Successful transfection was confirmed by direct visualization of GFP 
expression using a fluorescent microscope. 
 
Immunofluorescence 
24 hours after transfection, cells were fixed using 4% paraformaldehyde in PBS. Cells were 
permeabilized with 0.1% triton x-100 in PBS, blocked with 10% BSA, and incubated overnight 
with rabbit PTEN antibody (138G6, Cell Signaling Technology). Coverslips were then incubated 
with mouse anti-rabbit Alexa Fluor 568-conjugated antibody (Invitrogen), followed by DAPI, and 
mounted using ProLong Gold antifade mountant (Thermo Fisher Scientific). 
 
High-content microscopy 
Images were acquired using a Cellomics Arrayscan (Cellomics Inc.). using a 20x objective. 500 
images were acquired per coverslip at 3 channels (green/ red/ blue) per image. 
 
MAPS custom software 
MAPS was written in Python 3.6.10. Other packages include numpy (1.18.1), pandas (1.0.3), 
opencv-python (4.1.1.26) and matplotlib (3.1.3). All codes are available at: 
https://github.com/jessecanada/MAPS. 
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Figure 1. (A) Work�ow for expressing and visualizing variants via immuno�uorescence and high-content microscopy. (B) Work�ow 
for the MAPS software: (1) Images acquired by high-content microscopy are �rst pre-processed for quality control (see Figure 3). (2) 
The �rst deep neuro network (DNN-1) detects individual cells, giving rise to an initial cell collection (see Figure 4). (3) Feature 
extraction and 2D manifold embedding help identify unique phenotypes and eliminate outliers (see Figure 5). (4) DNN-2 performs 
automated phenotype scoring 
(see Figure 6).
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Figure 2

PTEN widltype GFP reporter merged
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Figure 2. Representative images of the localizations of wildtype and C124R allelic variant of PTEN as visualized via 
immuno�uorescence. PTEN and the GFP reporter were expressed in 1:1 ratio.
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Figure 3. Functional details of image pre-processing and quality control. (A) Laplacian variance is used as a focus measure 
operator to di�erentiate blurry and in-focus images. (B and C) Artifacts such as air bubbles or overexposed cells interfere with 
focus measure calculations and are further processed to obtain accurate focus measures. 
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Figure 4
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Figure 4. (A) Sample images from training augmentation. The original image (top left) underwent di�erent brightness and 
contrast (bc) adjustments, color inversion (�ip color), noise addition and rotation. (B) The precision and recall performances 
of the Azure object detection model before and after training augmentation.
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Figure 5.  Feature extraction and manifold projection techniques to assist phenotype discovery. (A) Work�ow for feature 
extraction by parallelly stacking convolutional layers followed by �attening them. (B) The �attened layer then underwent 
dimensionality reduction by t-SNE into 2 components and projected onto a 2D scatter plot. Spectral clustering was applied to 
�nd the decision boundaries, and original images of the inputs were also plotted onto the scatter plot. (C) Work�ow for 
feature learning by using a deep autoencoder. Left, schematics of an autoencoder, but only the encoder portion was used to 
�nd the latent representation of the input. Right, the encoder architecture. (D) Similar to (B), but the encoded latent 
representations were the inputs of t-SNE.
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Figure 6. (A) Representative images of the three PTEN localization classes that were used to train the �nal classi�cation model on 
Azure. (B) Results of automated phenotype scoring for wildtype PTEN and seven variants. (C) LOF scores for the same variants as in 
(B) taken from a previously published spheroid assay. (D) Scatter plot showing the correlations between the LOF scores and the 
percentage of cells with nuclear PTEN for the seven tested variants. The best �t line is also shown.
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