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16 Abstract

17 The current ecosystem of single cell RNA-seq platforms is rapidly

18 expanding, but robust solutions for single cell and single molecule full-

19 length RNA sequencing are virtually absent. A high-throughput so-

20 lution that covers all aspects is necessary to study the complex life

21 of mRNA on the single cell level. The Nanopore platform offers long

2 read sequencing and can be integrated with the popular single cell

23 sequencing method on the 10x Chromium platform. However, the

24 high error-rate of Nanopore reads poses a challenge in downstream

25 processing (e.g. for cell barcode assignment). We propose a solution

26 to this particular problem by using a hybrid sequencing approach on

27 Nanopore and Illumina platforms. Our software ScNapBar enables cell

28 barcode assignment with high accuracy, especially if sequencing satura-

29 tion is low. ScNapBar uses unique molecular identifier (UMI) or Naive

30 Bayes probabilistic approaches in the barcode assignment, depending

31 on the available Illumina sequencing depth. We have benchmarked the

32 two approaches on simulated and real Nanopore datasets. We further

33 applied ScNapBar to pools of cells with an active or a silenced non-

34 sense mediated RNA decay pathway. Our Nanopore read assignment

35 distinguishes the respective cell populations and reveals characteristic

36 nonsense-mediated mRNA decay events depending on cell status.
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» INTRODUCTION

a0 Full-length ¢cDNA sequencing allows us to investigate the differential iso-
a1 forms of transcripts, which is especially useful in studying the complex life of
22 mRNA. Compared to the [llumina sequencing approaches, third-generation
a3 sequencing generates much longer reads and thus avoids artifacts from tran-
s scriptome assembly, but often has limitations such as low throughput and
a5 poor base-calling accuracy. Two principal third-generation sequencing plat-
s forms exist: Oxford Nanopore Technologies (ONT) and Pacific Biosciences
a7 (PacBio) (Volden et al., 2018). Others and we chose the ONT platform to
a8 study full-length mRNA transcripts due to its better scalability and flex-
40 ibility (Lebrigand et all 2020)). Full-length transcriptome sequencing can
50 be taken to the single level by sequencing barcoded 10x Genomics cDNA
st libraries. However, this brings about certain challenges, which we address
52 in our work.

53 First, the native error rate of Nanopore DNA sequencing is < 5% on
s« the latest R10.3 platform (http://nanoporetech.com) as opposed to the
55 typical Illumina error rate of 0.1%. Due to its high error rate, barcode iden-
s tification and assignment are challenging for single-cell sequencing. In the
57 10X Genomics single-cell protocol, about 99% barcode sequences from Illu-
58 mina sequencing can be exactly matched to the 16-bp cell barcodes, while
5o with Nanopore sequencing, the exact matches are less than 50% (0.999'6 vs.
o0 0.95'0). Many experimental and computational approaches have been devel-
61 oped to correct Nanopore data. For example, the rolling circle to concate-
2 meric consensus (R2C2) approach can produce two million full-length cDNA
63 sequences per MinlION flow cell and achieved 98% accuracy (Volden et al.,
6« 2018;|Cole et al., 2020; Volden and Vollmers, 2020). Single-cell Nanopore se-
s quencing with UMIs (ScNaUmi-seq) can assign cellular barcode with 99.8%
66 accuracy (Lebrigand et al. 2020). However, R2C2 requires sufficient se-
67 quencing coverage to call consensus reads, and ScNaUmi-seq requires high
es sequencing depth to guarantee an adequate overlap of UMI sequences be-
6o tween Illumina and Nanopore libraries.

70 On the other hand, end-to-end solutions for barcode demultiplexing and
71 read quality filtering on the ONT platform are still in its infancy. For ex-
72 ample, Mandalorion uses BLAT (Kent, [2002) for barcode demultiplexing
73 (Byrne et al., [2017)). Porechop (https://github.com/rrwick/Porechop)
72 uses SeqAn (Doring et al., |2008) for adapter removal and barcode demul-
75 tiplexing in Nanopore sequencing, but it is based on the best alignment
76 which could be error-prone. Minibar (Krehenwinkel et al., 2019)), Deep-
77 binner (Wick et al.l [2018)), and DeePlexiCon (Smith et al., 2020) are only
78 suitable for multiplexing a few barcoded samples rather than the single-cell
79 library which contains several thousands of barcodes.

80 Therefore, we developed a software tool called ScNapBar (single-cell
s1  Nanopore barcode demultiplexer) that demultiplexes Nanopore barcodes
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82 and is particularly suited for low depth Illumina and Nanopore sequenc-
83 ing. We evaluated the performance of ScNapBar and demonstrated its high
s« accuracy in cell barcode assignment for simulated and real Nanopore data.
ss  Our workflow is presented in Fig.

» RESULTS

&7 Benchmarking the two ScNapBar run modes

88  ScNapBar offers to run modes. The first one uses cell barcode and UMI
8o information without any additional modeling aspect. The second one in-
90 troduces a probabilistic model, which performs very well in cases of low
o1 sequencing saturation (i.e. UMI coverage in Illumina data).

92 The UMI approach of ScNapBar

o3 The UMI approach requires a matching cell barcodes and UMI tag and
u was first developed in Sicelore (Lebrigand et al., 2020). Any cell barcode
95 predictions that are supported by the presence of both, barcode and UMI
o6 alignment, are very reliable. We performed an in silico benchmark of cell
o7 barcode assignment when both, cell barcode and UMI, are found in the
¢ Nanopore read. We observed an average specificity of 99.9% (ScNapBar)
% and 99.8% (Sicelore) over 100 averaged simulation runs (Fig. [2h). As ex-
w0 pected, sensitivity heavily depends on Illumina sequencing saturation (Fig.
w1 [2h). As the UMI approach relies on consistent genomic mappings for the
102 [llumina and Nanopore reads, other challenges include: insufficient or in-
103 accurate genome annotations causing wrong gene assignment; chimeric or
104 super-long Nanopore reads assigned to multiple genes increase the risk of
105 assigning a false UMI.

s The probabilistic approach of ScNapBar

107 Complementary to the UMI approach, we implemented a Bayesian approach
108 in ScNapBar, which covers the situation of low Illumina sequencing satura-
100 tion. In our second approach, UMI alignments are no longer used. ScNapBar
1o evaluates probability scores for each barcode alignment instead. Illumina se-
1 quencing saturation measures the uniqueness of the transcripts detected in
112 the [llumina library. Given that we have performed Illumina and Nanopore
13 sequencing in our approach, the Illumina sequencing saturation limits the
s overlap of cell barcodes and UMIs with the low depth Nanopore libraries.
s  To explore more realistic saturation scenarios, we estimated the Illumina
16 sequencing saturation for our pilot data set with the Cell Ranger software.
17 Herein, sequencing saturation is calculated as

Saturation =1 — (ndeduped reads/nreads) (1)
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118 where Ngeduped reads 1 the number of unique (valid cell-barcode, valid
1o UMI, gene) combinations among confidently mapped reads and ny¢qqs is the
120 total number of confidently mapped, valid cell-barcode, valid UMI reads.
121 For example, we have observed a saturation of 11.3% for our pilot data set.
122 We have simulated one million Nanopore reads with an error model,
123 which was estimated from our reference Nanopore libraries (see Methods)
124 using the same gene-barcode-UMI composition as given by the Illumina li-
125 brary and a sequencing saturation of 100%. We trained a Naive Bayes clas-
126 sifier (see Methods) from barcode and adapter alignments of one Nanopore
17 library, and applied the model for computing the likelihood of the matched
s barcodes P(r|b;) on the other library. Then we used the frequencies of
129 the given barcodes in the Illumina library as prior probabilities P(b;), and
130 calculated the posterior probability P(b;|r) from the likelihood and prior
131 probabilities. We scored each barcode alignment by multiplying the P(b;|r)
132 by 100, and assigned the best matching barcode with the highest score
133 (> 50) as predicted barcode assignment. Using the probability scores as
13¢  mentioned, ScNapBar correctly assigned 65.8% barcodes from one million
135 simulated Nanopore reads, of which 26.5% contains at least one mismatch
16 or indel (Suppl. Fig. [S1)).

137 We estimate a user data specific error model, simulate data from which
138 users pick the Bayes score cutoff, which meets their requirements on sensitiv-
130 ity and specificity, respectively. We inspected the densities of the probability
190 scores by examining the ground-truth barcodes, and confirmed that the cor-
11 rect barcode assignments are enriched in high scoring barcodes (Suppl. Fig.
12 [S2b)).

143 Our probabilistic model outperforms Sicelore for cases where UMI infor-
124« mation is sparse and cannot be used to assign cell barcodes. In the absence
s of UMIs, ScNapBar reaches 97.1% specificity while Sicelore only reaches
us only 57.1% (Fig. 2b).

147 We examined performance metrics of cell barcode assignment over a
us range of score cutoffs (from 1 to 99), and the specificity increases while the
19 sensitivity decreases along with the increased thresholds (Suppl. Fig. [S3]).
150 We pooled the simulated results from FC1 and FC2 together, and use the
151 Sicelore assignments as baselines. As some cutoff thresholds, ScNapBar has
152 better F1 scores than Sicelore (e.g., cutoff=50), and ScNapBar score >90 is
153 as accurate as Sicelore with UMI from the Receiver-Operating Characteristic

15« (ROC) graph (Fig. k).

155 The runtime performance of ScNapBar

156 ScNapBar is based on the Needleman-Wunsch algorithm (gap-end free, semi-
157 global sequence alignment) of FLEXBAR (Dodt et al., 2012; Roehr et al.,
158 [2017) and Sicelore is based on the “brute force approach” which hashes all
159 possible sequence tag variants (including indels) up to a certain edit distance
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10 (2 or 3) of the given barcode sequences. The time complexity of ScNapBar
11 and Sicelore can be represented as Eq. [2a] and Eq. respectively.

T(n) o< (Ipos + lep)leben (2a)
lep)!
T(n) wzmnd} (2b)
Ned:
162 where 1y, is the number of nucleotides downstream of the adapter, and

163 lpos = 2npos+ 1 as Sicelore typically searches the same number of nucleotides
164 upstream and downstream of the ending position of the adapter. ng, stands
165 for the number of barcodes in the whitelist from Illumina sequencing. neq
166 18 typically two or three as larger edit distances increase runtime drastically
167 and are not necessary due to the increasing error rate. [y is the length of
168 the barcode and is 16 in this study.

160 We compared the runtime between ScNapBar and Sicelore with regards
170 to start positions of barcodes (number of nucleotides between adapter and
i1 barcode). We discovered that Sicelore may be orders of magnitude slower
12 than ScNapBar given the same search space (2,052 cellular barcodes, edit
1713 distance=3), but also its runtime increases exponentially as the barcode start
174 position increases(Fig. . Therefore, the default setting in Sicelore only
175 searches + 1-nt from the end of the adapter, which may limit the nucleotides
176 to search and cause false positives. We created 2x2 contingency tables of
177 the number of correct and false assignments caused by various factors (e.g.,
s indels > 3 against < 3), and performed Fisher’s test. The results showed
179 that the odds ratio of “barcode start position > 3” from Sicelore is 24.8,
180 while the odds ratio of the same test from ScNapBar is only 0.14 (Suppl.
181 Table . This implies allowing more nucleotides from the start of the
182 barcode can effectively reduce the false-positive rate, which is feasible using
183 less time with ScNapBar.

184 We also performed real runtime comparison on barcode assignment on
185 the previously simulated one million Nanopore reads. In this test, we pro-
186 vided ScNapBar ten barcode white lists which contain from 1,000 to 10,000
157 most abundant barcodes, and ScNapBar’s runtime is only dependent on the
188 number of barcodes to search given the other factors are fixed in this study
w9 (Fig. [Ba). Then we tested Sicelore with searching parameters of barcode
10 edit distance between two and three, barcode start position from £2 bp to
11 14 bp, and UMI edit distance of 0. ScNapBar requires only one-fifth CPU
192 time than Sicelore when +4 bp barcode start position and three barcode
103 edit distance are considered in both programs (Fig. [3b)).
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1ws The performance of ScNapBar on the real data

105 The performance of ScNapBar on an Illumina library with high
196 sequencing saturations

197 We tested our ScNapBar software with the UMI approach (option 1) on the
108 dataset from the Sicelore paper (NCBI GEO GSE130708). Herein, Illumina
190 sequencing saturation reaches 90.5%. We extracted the UMI whitelists for
200 each gene or genomic window (500bp) from the Illumina library, and set the
200 minimum length of UMI match to 7 in ScNapBar. Sicelore and ScNapBar
202 assigned barcodes to 84.3% and 77.2% of the 9,743,819 Nanopore reads
203 (Suppl. Fig. , respectively. 88.4% of the assigned barcodes are identical.

204 The performance of ScNapBar on an Illumina library with low
205 sequencing saturations

206 We ran ScNapBar with the Bayesian approach (option 2) on our NMD
207 dataset, which only has an Illumina saturation of 11.3%. ScNapBar assigns
208 35.0% and 36.3% of the Nanopore reads to cell barcodes with probabil-
200 ity score >50, while Sicelore assigns 40.8% and 42.5% without using UMIs
210 (“Assigned to barcode” in Fig. and only assigns 4.0% and 4.2% of the
o Nanopore reads using the UMI approach for FC1 and FC2, respectively.
212 Based on our previous simulations, we estimate that a greater proportion
213 (also by absolute numbers) of ScNapBar assignments are correct (“Correctly
214 assigned” in Fig. .

25 Single cell clustering and splicing in a pool of wildtype and NMD
216 mutant cells.

217 Although alternative splicing increases the coding potential of the human
218 genome, aberrant isoforms are frequently generated that contain premature
219 termination codons (PTCs) (Lewis et al.| 2003). Regular stop codons are
20 normally located in the last exon of a transcript or at least 50 nucleotides up-
221 stream of the last exon-exon junction (Lindeboom et al., 2019). Alternative
222 splicing can result in PTCs by exon inclusion/exclusion events or can convert
23 normal stop codons into PTCs by splicing in the 3 UTR. Transcripts har-
24  boring PTCs are rapidly degraded by the nonsense-mediated mRNA decay
225 (NMD) machinery, not only to remove faulty mRNAs, but also to fine-tune
26 and regulate the transcriptome. 5-40% of all expressed human genes are di-
27 rectly or indirectly altered in expression levels, splicing pattern, or isoform
228 composition by the NMD pathway (Boehm et al.,2020). We have sequenced
29 a pool of NMD active and inactive cells and expect to see an enrichment of
230 transcripts with PTCs in GFP- cells.

231 We use the GFP label as an independent confirmation of cellular NMD
222 status and pooled data from both experiments (FC1 and FC2). For the
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233 Nanopore data, Seurat identifies 13,807 expressed genes across 1,850 cells.
3¢ We extracted the GFP+ barcodes from the Illumina reads mapping, and
235 rendered the corresponding cells in different colors in the t-SNE plots (Fig.
236 |4). The locations of the GFP+ cells appear in distinct sub-clusters in the
237 [llumina and Nanopore t-SNE plots.

238 We characterized the structural changes of the assembled Nanopore tran-
230 scripts based on our customized transcriptome annotations using NMD Clas-
220 sifier (Hsu et all |2017). The pool of SMG7-KO/SMG6-KD (GFP-) cells
2s1 harbors almost twice as many inclusion/exclusion events, which lead to the
22 formation of a PTC (Suppl. Fig. . We quantified the expression level
23 of 14,185 known NMD transcripts annotated by Ensembl release 101. Af-
24 ter removing the non-expressed transcripts from the both flow cell runs,
25 the remaining 6,423 NMD transcripts have shown significantly higher NMD
26 transcript expression in the SMG7-KO/SMG6-KD (GFP-) cells than the
27 WT (GFP+) cells (Suppl. Fig. [S9b). We reason that the lowered NMD
28 response is clearly visible by the enrichment of PTC-containing transcripts
29 in the pool of SMG7-KO/SMG6-KD (GFP-) cells. Consequently, the cell
250 barcode assignments meet our ”biological” expectations.

251 We investigated a well-established NMD target SRSF2 in detail (Sureau
252 |et al,|2001). The wildtype isoforms are present in both GFP+/- cells, while
253 in the GFP- cells, the PTC-containing isoforms are more abundant in the
s GFP- cells (Suppl. Fig. [S10a)). The view on the SRSF2 genome locus
25 confirmed the different splicing junctions between two cell types (Suppl.
26 Fig. [S10b). The inclusion of exon 3 (middle) is clearly favored GFP- cells.

» DISCUSSION

28 The current ecosystem of single-cell RNA-seq platforms is rapidly expand-
250 ing, but robust solutions for single-cell and single-molecule full-length RNA
260 sequencing are virtually absent. In our manuscript, we combined Oxford
261 Nanopore single-molecule sequencing of 10x Genomics cDNA libraries and
262 developed a novel software tool to arrive at single-cell, single-molecule, full
263 ¢cDNA length resolution. In contrast to Lebrigand et al. (2020), our Bayesian
264 method for cell barcode assignment performs superior in situation of low se-
265 quencing saturation. We could track in a well-controlled setting, i.e. by
266 using GFP labeled cells and strong transcriptome pertubations, full-length
267 transcript information at a single-cell level. We have identified differential
265 RNA splicing linked to NMD pathway activity across our cell population.
260 Our high-throughput full-length RNA sequencing solution is a necessary
270 step forward towards studying the complex life of mRNA on single-cell level.
on1 - This opens up unprecedented opportunities in low saturation settings such
o2 as multiplexed CRISPR-based screens.
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s MATERIALS AND METHODS

o Single cell samples preparation and experiment

a5 We performed an experiment using two different Flp-In-T-REx-293 cell lines:
276 the wild type cell line with stably integrated FLAG-emGFP and a SMG7
277 knockout (KO) cell line (generated and established in Boehm et al.| (2020))).
s Wild type cells (GFP+) were transfected with siRNA against Luciferase and
279 the SMG7 KO cells (GFP-) were transfected with an siRNA against SMG6.
280 Two days after siRNA transfection, we mixed both cell types at a 1:1 ratio
231 with a target of 2,000 cells in total. A ¢cDNA library was prepared according
282 to the 10x Genomics Chromium Single Cell 3’ Reagent Kit User Guide (v3
253 Chemistry) from the pool of cells. The final libraries contain the P5 and
28« P7 primers. The P5 read contains 21-nt adaptor sequence, 16-nt cellular
285 barcode, 12-nt UMI, and polyA-tail, followed by cDNA sequences.

6 Illumina reads processing and identification of cellular bar-
267 codes

288 We used 10X Genomics Cell Ranger 3.1 (https://github.com/10XGenomics/
280 cellranger) to map the Illumina reads onto the reference genome. In
200 our NMD dataset, the DNA sequences of luciferase were appended to the
201 reference genome, and therefore the GFP+ cells can be called from Cell
202 Ranger. Cell Ranger also corrects the sequencing errors in the barcode and
203 unique molecular identifier (UMI) sequences. Cell Ranger estimates the
24 number of cells using a Good-Turing frequency estimation model (https:
205 //support.10xgenomics.com), and characterized the identified barcodes
206 into the cell-associated and background-associated barcodes. We used the
207 cell-associated barcode sequences as the cellular barcode whitelist in the fol-
208 lowing analyses. Our CellRanger analysis estimated 2,052 sequenced cells

200 (Suppl. Table .

w0 INanopore reads processing, mapping, and gene assignment

300 We sequenced the two independently prepared Nanopore libraries from the
sz same cDNA on two Nanopore R9.4 GridION flow cells (FC1 and FC2).
303 The base-calling of Nanopore reads was done using Guppy v3.3.3, resulting
34 13,126,013 and 11,923,896 reads, respectively. We aligned the Nanopore
305 reads onto the corresponding reference genome using minimap2 v2.17 (Li,
s06 [2018) in the spliced alignment mode (-ax splice). The two Nanopore runs
307 yielded 11,158,994 and 10,164,820 mappable reads, respectively. We further
s08  assigned gene names to Nanopore reads using the “TagRead WithGeneExon”
300 program from the Drop-seq tools (Macosko et al.l 2015). We assembled all
si0 the Nanopore reads and extended transcriptome annotations using StringTie
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su v2.1.1 (Pertea et al., |2015). The FPKM level of the assembled transcripts
si2 - were quantified using Ballgown v2.14.1 (Frazee et al., [2015).

sz Identification of the adapter, barcode, UMI, and polyA-tail
su sequences from Nanopore reads

sis - We removed the cDNA sequences from Nanopore reads, and extracted up
3.6 to 100bp from both ends. We developed a modified version of FLEXBAR
siz - (Dodt et al., 2012; Roehr et al., 2017)) to align P1 primer adapter sequence
sis with the following parameters (“-ao 10 -ae 0.3 -ag -2 -hr T -hi 10 -he 0.3
s -be 0.2 -bg -2 -bo 5 -ul 26 -kb 3 -fl 100”). Then we aligned the Nanopore
320 reads that have valid adapters to the cellular barcodes which have been
321 previously identified by Cell Ranger. We scanned the poly-A sequences using
32 the homopolymer-trimming function of FLEXBAR downstream of the cell
323 barcode. Once the poly-A sequences were found, the UMI sequences between
522 the poly-A and barcode were searched using MUMmer 4.0 (Margais et al.,
225 2018) (with parameters “-maxmatch -b -c¢ -1 7 -F”) and in-house scripts
326 against the Illumina UMIs of the same cell and the same gene or genomic
27 regions (£ 500bp from each end of the reads). In the end, ScNapBar output
328 the alignment score of the adapter, the number of mismatches and indel
320 from the barcode alignment, the length of poly-A and UMI sequences, as
a0 well as the length of the gap between the barcode and adapter. We use
331 these features to estimate the likelihood of the barcode assignment in the
sz following steps (Fig. [1).

;3 Simulation and engineering of discriminative features from
s the barcode and adapter alignments

335 We characterized the correct and false barcode assignment by simulating
s3s  Nanopore reads. We created some artificial template sequences which con-
337 tain only the P1 primer, cellular barcode, and UMI sequences at the same
s frequencies as the Illumina library, followed by 20bp oligo-dT and 32bp
330 ¢DNA sequences. In the next step, we first used NanoSim (Yang et al., [2017))
30 to estimate the error profile of our Nanopore library, then we generated one
31 million Nanopore reads from the artificial template using the NanoSim sim-
a2 ulator with the previously estimated error profile. We aligned the simulated
a3 Nanopore reads to the adapter and barcode sequences using ScNapBar. We
32 compared the sequences in the simulated Nanopore reads and the sequences
s from the artificial template, and labeled the assigned barcode as correct or
us false accordingly. By comparing sequence and alignment features of correct
a7 and false assignments, we found that the two categories (false, true) could
us  be discriminated by these features (Suppl. Fig. . We then assessed
39 the importance of each feature towards the correctness of the assignment
0 (Suppl. Fig. . As these features are uncorrelated (Suppl. Fig. ,
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51 we train a Naive Bayes model from these features to predict the likelihood
352 of the correctness of a barcode assignment.

i3 Calculate cell barcode posterior probability using prior prob-
4 abilities from the Illumina data set

355 We denote by, by, - - - , by, as barcodes that match to read r and define P(b]|r)
356 as the probability that barcode by was sequenced given r is observed. Fol-
37 lowing Bayes’ theorem, P(b;|r) could be computed as in Eq. and further
s computed as in Eq. according to the total probability theorem.

P(r|by)P(by)
P(r)
_ P(rlb) P(5) )
P(r|by)P(b1) + - - - + P(r[bn) P(bn)

359 where P(r|by) and P(r|b,) are computed by the Naive Bayes predictor,
s0 and priors P(by) and P(b,) can be estimated from the observed barcode
61 counts in Illumina sequencing. For practical reasons, as the probabilities
362 for the unaligned barcodes that contain a lot of mismatches are pretty low,
33 we add a pseudocount of 1 to the denominator to represent them. Because
¢ we have sequenced the same library twice using the Nanopore and Illumina
365 sequencer, we assume prior probabilities P(b) are the same for the Nanopore
ss6  and the Illumina platform (Suppl. Fig. .

P(bilr) = (3a)

7 Quality assessment and clustering of the single-cell libraries

s A meta gene body coverage analysis confirmed the near full-length character
s0  of the Nanopore approach (Suppl. Fig. . After assigning gene names
sro and cell barcodes to the Nanopore reads, we processed the gene-barcode
sr1 - expression matrix using Seurat v3.1.1 (Butler et al., [2018) by keeping the
s genes expressed in minimal three cells, and cells with more than 200 genes
a3 expressed. We then scaled the expression matrix by a factor of 10,000 and
sna  log-normalized, and performed the t-SNE analysis.

w» DATA DEPOSITION

srs  All sequencing data were deposited in NBCI’s SRA database (accession
s7 number ). ScNapBar workflow (code and tutorial) is available at https:
szs |//github.com/dieterich-lab/single-cell-nanopore.
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Figure 1: Combined Single-cell Illumina and Nanopore sequencing
strategy. GFP-+/- cells are pooled and sequenced on the Illumina and
Nanopore platform. The Nanopore platform generates long cDNA sequenc-
ing read that are used in barcode calling and estimating read error param-
eters. The Illumina data are used to estimate the total number of cells in
sequencing and the represented cell barcodes. The simulated data are then
used to parameterize a Bayesian model of barcode alignment features to
discriminate correct vs. false barcode assignments. This model is then used
on the real data to assign cell barcodes to Nanopore reads. The GFP label
and known NMD transcripts can be used to validate this assignment.
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Figure 2: Sensitivity and specificity of ScNapBar and Sicelore on
100 Illumina libraries with different levels of saturation. (a) Bar-
code assignment with UMI matches. (b) Barcode assignment without UMI
matches (ScNapBar score >50). (c¢) Benchmark of the specificity and sen-
sitivity of the Illumina library with 100% saturation. We compared the
barcode assignments with ScNapBar score >1-99, and the assignments from
Sicelore with UMI support are roughly equivalent to the ScNapBar score
>90.
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Figure 3: Sicelore and ScNapBar CPU time comparison. (a) ScNap-
Bar CPU time depends on the number of whitelist barcodes (allowing an edit
distance of >2 and and offset of up to 4bp between adapter and barcode).
Gray area represents the standard deviation for 10 runs. (b) Comparison
of ScNapBar and Sicelore CPU times. Benchmark was measured using one
million barcode sequences and 2,052 barcodes in the whitelist.
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Figure 4: The t-SNE plots of gene-cell matrices. (a) Illumina. (b)

Nanopore.
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Figure 5: Number of the Nanopore reads identified by ScNapBar
and Sicelore from each step. The number of the correctly assigned reads
is calculated from the specificity of the assignment in the simulation.
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