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Abstract 

Targeting intracellular pathways with peptide drugs is becoming increasingly desirable but often 

limited in application due to their poor cell permeability. Understanding cellular permeability of 

peptides remains a major challenge with very little structure-activity relationship known. 

Fortunately, there exist a class of peptides called Cell-Penetrating Peptides (CPPs), which have 

the ability to cross cell membranes and are also capable of delivering biologically active cargo into 

cells. Discovering patterns that make peptides cell-permeable have a variety of applications in drug 

delivery. In the current study, we build prediction models for CPPs exploring features covering a 

range of properties based on amino acid sequences, using Random forest classifiers which are 

often more interpretable than other ensemble machine learning algorithms. While obtaining 

prediction accuracies of ~96%, we also interpret our prediction models using TreeInterpreter, 

LIME and SHAP to decipher the contributions of important features and optimal feature space for 

CPP class. We propose that our work might offer an intuitive guide for incorporating features that 

impart cell-penetrability into the design of novel CPPs. 
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1 Introduction 

Cell-penetrating peptides (CPPs) are short peptides normally observed to be around 5-30 amino 

acids in length, which have an ability to enter the cells without irreversibly damaging the cell 

membrane (Milletti, 2012). They can also carry cargoes ranging from probes or therapeutics which 

can be small molecules, peptides or proteins into cells (Li et al., 2015). These properties make 

them attractive as potential drug delivery agents (Milletti, 2012; Heitz et al., 2009). While this 

method of cellular delivery is desirable, it is also associated with issues such as toxicity and 

immunogenic responses that render them undesirable (Dinca et al., 2016). Majority of 

therapeutically interesting peptides fail to permeate the cells, unable to find their protein targets. 

Peptide as drugs are more desirable as compared to small molecules especially when the target is 

a protein-protein interaction site and peptides exhibit higher specificity. Hence there is a need to 

understand the relationships between the sequences of the peptides and their ability to penetrate 

the cells.  

Over the years, with the increase in the availability of biological data for CPPs, several machine 

learning (ML) based predictors have emerged which are summarized elsewhere (Wei et al., 2018; 

Hansen et al., 2008; Su et al., 2019). Mining the characteristics of peptides such as amino acid 

composition, biochemical properties and many novel feature representation methods have been 

used in several predictors to obtain accuracies higher than 80%. While much progress has been 

made in developing new prediction algorithms, only a few studies have focused on understanding 

the feature contributions and optimal feature space of CPPs. This can help us create strategies for 

designing CPPs and introducing cell-penetrability into other peptides of our interest. Towards this 

aim, we review the previously available datasets to construct robust training data, build random 

forest-based prediction models and interpret the models using various methods of model 

explainability like TreeInterpreter, LIME and SHAP in an attempt to understand optimal feature 

space in CPPs. Interpreting prediction models is also necessary to build more trust in them. We 

test the sensitivity of our models to various feature vectors, class imbalance and sequence 

similarities in the training data. We also discuss a prediction model built for non-cationic CPPs 

and analyze feature preference in them as compared to the cationic class of CPPs. In the end, we 

discuss further challenges in the prediction of CPPs along with a few discrepancies which we 

found in the current datasets which might arrive due to different experimental conditions.  
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We present a faster, simpler and interpretable prediction model, without compromising on the 

accuracy and we believe this work helps in increasing our understanding of CPPs.  

2 Methods 

2.1 Algorithm Selection. 

We have built ML-based classification models for the prediction of CPPs. We chose a random 

forest classifier (RFC) (Breiman, 2001) which has been proven to be effective for classification 

tasks in many fields of computational biology (Wei, Xing, et al., 2017; Chen et al., 2015). It is 

quite robust in handling various data types at different scales and is resistant to overfitting (Trevor 

Hastie, Robert Tibshirani, 2009; Bénard et al., 2019). The main reason for us to choose RFC 

however is that they are often more interpretable and easier to analyze than many other ensemble 

ML algorithms (Ishwaran, 2007; Louppe, 2014). The RFC algorithm comprises of an ensemble of 

decision trees, each of which is grown by a subset of features selected from the input feature vector. 

The number of features for each tree is determined by multiple factors, such as the generalization 

error, classifier strength, and inter-dependence within them (Breiman, 2001). We used scikit-

learn’s RFC library (Pedregosa et al., 2011) to build our models. The parameters used to build 

RFC models are obtained by hyperparameter tuning method, GridSearchCV, from scikit-learn. 

These parameters are mentioned in Supplementary information section 1 (SI-S1). 

2.2 Dataset construction.  

We have used the following datasets in our study (these are also listed in Table 2). 

• Dataset A. Dataset from CellPPD (Gautam et al., 2013), downloaded from CPPsite 2.0 

(Agrawal et al., 2016). There are a total of 1416 sequences in this dataset with an equal number 

of CPPs and non-CPPs.  

• Dataset B. ‘Benchmark’ dataset from CellPPD. These sequences referred by authors (Gautam 

et al., 2013) as Benchmark dataset has a total of 343 sequences with 136 CPPs and 207 non- 

CPPs. 

• Dataset C. Dataset from SkipCPP-Pred (Wei, Tang, et al., 2017) has a total of 924 sequences 

with an equal number of CPPs and non-CPPs.  

• Dataset D. Dataset from KELM-CPPpred (Pandey et al., 2018) has a total of 826 sequences 

with an equal number of CPPs and non-CPPs. 
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We used these datasets as they are from state-of-the-art predictors, have high levels of predictive 

performance and the datasets are publicly available.  

Dataset E. Ensemble dataset: We build this dataset by combining above 4 datasets. Most of the 

CPPs from the above datasets are from CPPsite 2.0 database, which is a golden source for CPPs, 

hence we remove duplicate sequences after combining the above datasets. Further, we remove a 

few entries with discrepancies in their labels across the sources (these entries are listed in SI-S2) 

and we are left with 955 CPPs. This dataset is available on request. 

Since it has been well established that balanced datasets perform better and that imbalanced 

datasets present several different problems in ML methods (Sanders et al., 2011), we try to 

maintain a similar number of CPP and non-CPP entries while training. However, we have also 

compared the model performances with/without rebalancing the data points.  

We also test the sensitivity of the model to sequence similarities in the training data by building 

prediction models with/without sequence redundancy removal at various sequence identity cutoffs. 

It should also be noted that we do not have sequences containing modified or non-natural amino 

acids in our datasets. 

2.3 Feature engineering.  

Figure 1. Feature engineering approach adopted in the current work to deal with sparse feature vectors  

Following types of feature vectors are used as an input to our RFC: 

1. Amino Acid Frequencies (AAF) 

2. DiPeptide Frequencies (DPF) 

3. TriPeptide Frequencies (TPF) 

4. BioChemical Properties (BCP) 

5. Ensemble-feature vector (EnF): by combining top-scoring features from these four models.  

We consider AAF, as it is known that certain types of residues are found with a higher frequency 

in CPPs, as outlined in the compositional based model (Garg et al., 2005). DPF and TPF 
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encapsulate information related to neighbouring residues, thus bringing in effects due to the order 

of amino acids (Petrilli, 1993). All combinations of DPF (20x20), TPF (20x20x20) are used. List 

of BCP features used is: net charge, isoelectric point, secondary structure prediction (DSSP), 

molecular weight, hydropathy value (kyte-doolitle index), number of hydrogen bond donors and 

acceptors and the difference between the numbers of hydrogen bond donors and acceptors. 

Features like frequencies and molecular weight are normalized by the peptide length. To choose 

the best possible feature vector and to deal with sparse nature of DPF, TPF, we train our model 

with four sets of features separately and combine the top-scoring features from each set shown in 

Figure 1. The model combining the top-scoring features is referred to as the Ensemble-Feature 

(EnF) model. The distributions of lengths, amino acid compositions and biochemical features are 

shown in SI-S3. 

2.4 Metrics used in the current study. 

To quantitatively measure the performance of the predictors we used following evolution metrics, 

balanced accuracy, F1 score, sensitivity, specificity, and elements of the confusion matrix, using 

scikit-learn. Balanced accuracy (Brodersen, K.H. et al 2010) is equivalent to normal accuracy with 

class balanced sample weights. In cases where the classifier does not perform equally well on 

either class due to an imbalanced test dataset, the balanced accuracy will drop to 1/(number of 

classes). The evaluation method used was k-fold cross-validation. 

2.5 Interpreting random forest predictions.  

For interpreting the random forest predictions, we used the TreeInterpreter package 

(https://pypi.org/project/treeinterpreter/). This package allows decomposition of each prediction 

into bias and feature contribution values (Trevor Hastie, Robert Tibshirani, 2009). We analyzed 

those decision trees which predict ‘CPP’ class from the Test data. We further filter them based on 

their probability of prediction (at probability >0.65). Decision paths are extracted from these trees. 

The feature contribution values obtained from these decision paths are plotted against their 

respective features to study their optimal numbers for predicting the ‘CPP’ class. Due to the 

random feature selection technique used in RFC algorithms, these values differ across the decision 

trees, but the overall relative contribution was observed to be consistent in our models. 
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3 Results 

3.1 Performance of CPP prediction models with different feature vectors. 

Dataset A Accuracy 

(%) 

True 

Positive (%) 

True 

Negative (%) 

False Positive 

(%) 

False Negative 

(%) 

F1 score 

Model AAF 91 90 92 8 1 0.90 

Model DPF 90 88 92 8 12 0.89 

Model TPF 86 82 91 9 2 0.84 

Model BCP 91 90 92 8 9 0.90 

Model EnF 94 92 96 4 8 0.95 

Dataset B       

Model AAF 89 91 90 1 9 0.87 

Model DPF 83 83 83 17 17 0.77 

Model TPF 83 74 93 7 26 0.79 

Model BCP 88 83 93 7 17 0.85 

Model EnF 82 74 88 1 12 0.75 

Dataset C       

Model AAF 89 83 95 5 17 0.88 

Model DPF 88 82 94 6 18 0.87 

Model TPF 83 73 95 2 34 0.78 

Model BCP 90 87 94 6 13 0.80 

Model EnF 90 85 95 5 15 0.89 

Dataset D       

Model AAF 84 83 86 14 17 0.83 

Model DPF 82 75 90 10 25 0.80 

Model TPF 76 95 55 45 5 0.77 

Model BCP 82 80 84 16 20 0.80 

Model EnF 87 86 87 13 14 0.86 

Dataset E       

Model AAF 91 91 93 7 9 0.90 

Model DPF 90 88 93 7 12 0.89 

Model TPF 87 88 85 15 12 0.84 

Model BCP 91 91 92 8 9 0.90 

Model EnF 96 92 97 3 9 0.93 

Table 1. Performance of CPP prediction models with different sets of features on different datasets. Model 

AAF - amino acid frequencies, DPF - dipeptide frequencies, TPF- tripeptide frequencies, BCP - 

biochemical properties, EnF - ensemble featured vector. Dataset A: CellPPD, Dataset B: ‘benchmark’ from 

CellPPD, Dataset C: SkipCPP-Pred, Dataset D:  KELM data, Dataset E: Ensemble data. Balanced accuracy, 

elements of the confusion matrix and F1 scores obtained on hold-out Test data are mentioned. 

All ML algorithms highly depend on the training dataset and feature vector used in terms of 

accuracy obtained (Su et al., 2020). Our results with 5 types of feature vectors on 5 types of 

datasets are shown in Table 1. All the Datasets are divided into Training (80%) and hold-out Test 

dataset (20%) and the values mentioned in Table 1 are on the Test dataset.  

We get an accuracy of 94.5% for Dataset A which is similar to 92.85% obtained by their (Gautam 

et al., 2013) support vector machine (SVM) algorithm. We get an accuracy of 90% on Dataset C 
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which is similar to obtained by their RFC and SVM algorithms (Wei, Tang, et al., 2017). With 

Dataset D, we get an accuracy of 87% which is similar to 86% obtained by their Neural Network 

algorithm (Pandey et al., 2018). We get an accuracy of 82% on dataset B which was lowest among 

these datasets. 

To understand CPPs at basic amino acid composition level we trained the model with AAF, DPF 

and TPF. This shows that the average occurrence of positively charged amino acids (Arg, and Lys) 

is higher in CPPs. While we know this already, we are interested in investigating the contribution 

of these features in making them cell-penetrating. From our results summarized in Table 1, we 

obtained highest accuracy with EnF vector followed by AAF/BCP, DPF and TPF, in almost all 

datasets. The feature vector of DPF and TPF is a sparse matrix as the total number of features are 

20x20, 20x20x20 of which most of the values are 0 due to short lengths of peptides. These models 

do not converge and also have lesser accuracy than others. Hence by taking only important features 

from them and combining them in EnF, retains neighbouring information and increases accuracy 

along with helping us understand the preference of selective dipeptides/tripeptides in CPPs.  

Five-fold cross-validation accuracy on the training datasets using EnF vector is as following: 

Dataset A: 0.92 ± 0.03, B: 0.87 ± 0.07, C: 0.89 ± 0.05, D: 0.84 ± 0.08, E: 0.93 ± 0.02. Dataset B 

and D have lower accuracy values and higher standard deviation. Overall, the performance of the 

model built with Dataset E using EnF vector was observed to be best in terms of this evaluation 

method and it also has the lowest standard deviation (more details in SI-S11). We will be using 

this prediction model for further evaluation and analysis of features. Precision/Recall values 

calculated on Dataset E are shown in SI-S4.  

3.2 Testing for the sensitivity of the model towards sequence redundancy and imbalance. 

To test the sensitivity of the model to sequence similarity, we have built two more prediction 

models where we remove sequences with more than 80% and 90% sequence identities from the 

training datasets. We use CDHIT (Huang,Y. et al. (2010) for this reduction. We find that the prediction 

accuracy decreases by ~10% in these models (SI-S5). CPPs are very sensitive to the changes in 

amino acid sequences. e.g. 2 mutations in Penetratin makes it a non-CPP (Fischer et al., 2000). If 

we are too strict with our reduction, we risk losing valuable information and will have smaller data 

for training Hence our results are not surprising and are actually in agreement with previous 

studies. (Holton et al., 2013). 
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To check the sensitivity of our model towards the changes in the size of the classes (CPP and non-

CPP), we build prediction models using various resampling techniques. We noticed that these 

resampling techniques are quite sensitive to the feature vector used and for the current dataset, 

they do not improve the performance of the model significantly. Results from three resampling 

techniques (over-sampling the minority class, under-sampling the majority class and SMOTE) are 

discussed in further details (SI-S6). 

3.3 Analysis of important features.  

Figure 2. Feature importance score from the EnF prediction model 

Figure 2 is a bar graph of feature importance score (FIS) from our EnF model trained on Dataset 

E (values in SI-S7). The isoelectric point emerges as the property with the highest FIS followed 

by the ‘difference between the number of hydrogen bond donor atoms and the number of hydrogen 

bond acceptor atoms’ and net charge. We also find that the top six features i.e. Isoelectric point, 

the difference between the number of hydrogen bond donor/acceptor atoms, Net charge, Number 

of Arginines, hydropathy value and molecular weight are sufficient to obtain an accuracy of ~89%. 

We have not carried out further ‘feature selection' as the main aim of the study is to understand the 

contribution of various sequential features in making a peptide cell-penetrating. 

In our AAF model, amino acids with the highest FIS are Arg, Glu, Lys, Asp, Leu.  The 10 most 

important dipeptides are RR, KK, KR, RK, LA, WK, AL, RW, RI, RL and 10 most important 
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tripeptides are RRR, KKK, KKR, KRK, RRA, RRQ, RKK, RWR, RQR, GRR. This begins to 

provide guidance for combinations of amino acids to engineer cell-permeability in a peptide; for 

example, what may be the best amino acid in combination with Arg. Our observations are 

supported by a few previous studies (Park et al., 2002). 

4 Discussion 

4.1 Decision tree path analysis. 

Interpreting predictions from ML models can be challenging but is an important step to build trust 

in them and to increase our understanding of the underlying biological phenomena; also observed 

and discussed in (Yuan et al., 2020). To make our prediction model easily interpretable and 

intuitive, we used a decision path analysis approach. In RFC, the decision paths from the root of 

the decision trees to the leaf represent classification rules used by the decision trees to reach a 

prediction. In order to understand the CPP prediction rules, we need to analyze these decision 

paths. We have used the TreeInterpreter package as described in Methods for this purpose. The 

decision tree contribution of each feature is not a single predetermined value but depends on the 

rest of the feature vector, i.e. all values are relative. Feature vectors determine the decision path 

that traverses the tree and thus the contributions that are passed along the way. Hence, we obtain 

a range of contribution values for each feature. Even though these values can vary depending on 

the members in the Test data, they can guide us in the design of novel CPPs. 

4.1a Optimal values of biochemical properties 

 
(a) 

 
(b) 
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(c)  

 
(d)  

Figure 3. Decision tree path analysis. The contributions obtained from this analysis for important features 

are shown: (a) isoelectric point, (b) net charge, (c) the difference between the number of hydrogen bond 

donor and acceptor and (d) molecular weight. X-axis is the value of a feature calculated and each point on 

Y-axis is the contribution returned by a decision path of a particular decision tree. The proposed optimal 

feature space is encircled by dotted lines. 

Inferring optimal feature space from ML models can be a difficult task especially for such short 

peptides and will depend on adequacy of the training data. However, we have attempted to study 

this using decision path analysis approach. From Figure 3, we observe that isoelectric point above 

10, a minimum net charge of 3, hbond donor-acceptor difference of ‘25-50’ and molecular weight 

of less than 2000 Da have emerged as the optimal range of values to be a CPP. Although it may 

be argued that several parameters are highly dependent on each other, these numbers do provide 

good guidance for design purposes. 

4.1b Arginines and positive charges in CPPs.  

 
(a) 

 
(b)  
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Figure 4. Decision tree path analysis. The contribution values for (a) Arginines (R) and (b) Lysines (K). 

X-axis is the value of a feature calculated and each point on Y-axis is the contribution returned by a decision 

path of a particular decision tree. The proposed optimal feature space is encircled by dotted lines. 

The presence of Arg in CPPs has been explored and highlighted for many years and most of the 

CPPs are Arg rich (Schmidt et al., 2010; Allolio et al., 2018) and as expected, this is been 

recapitulated in our model too. From our feature contribution analysis (Figure 4) we see that the 

optimal number of Arg residues for most CPPs is between ~6 and 10 (~17 to 30% of the sequence 

length). The minimum number of ~6 is also in agreement with previous studies (Wender et al., 

2000). In this study Rothbard et. al. prepared a series of TAT peptide (arginine-rich CPP extracted 

from HIV) mutations and systematically compared their cellular uptake using flow cytometry 

experiments with those of poly-Arginines of various lengths. The observation that the peptides 

with high isoelectric points (>10) dominate amongst CPPs (Figure 3) is in accord with the pKa of 

Arg which is 12.5 (pKa of Lys is 10.5). It has been shown in computational (Yoo and Cui, 2008) 

as well as experimental studies (Fitch et al., 2015) that Arg predominantly remains protonated 

under physiological conditions as well as inside a lipid membrane. In addition, the Arg sidechain 

also engages in the maximum number of hydrogen bonds than other amino acid sidechains and 

this is likely very relevant for the interactions of the peptide with the phospholipid membranes; for 

example, the ability to form multiple hydrogen bonds has been shown to be critical for the 

interactions of Arg-like sidechains with membranes (Fitch et al., 2015; Yoo and Cui, 2008; Li et 

al., 2013).  

It was also interesting to observe that Arg, Lys, Leu contribute positively while Glu, Asp contribute 

negatively (SI-S8). Arg and Glu have similar FIS but opposite feature contribution values. This 

suggests the absence of Glu might be as important as the presence of Arg in a CPP. The decision 

path analysis of all other amino acids is discussed in SI-S8. 

4.1c Prediction model for non-cationic CPPs.  

Understandably, current CPP datasets are dominant in cationic peptides. So, to understand the 

characteristics of non-cationic CPPs, we created a dataset of sequences which do not have Arginine 

and Lysine residues. This dataset has a smaller number of sequences, <200 (the sequences having 

at least one Arg/Lys are in the range of ~700). These sequences were then divided into 90% for 

training and 10% for testing and the prediction accuracy obtained was ~90%. Contributions for a 

few biochemical features extracted from this model are discussed below.  
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(a)  

 
 (b) 

 
(c)   

  
(d)  

Figure 5. Decision tree path analysis for ‘non-cationic’ CPP prediction model. The contributions obtained 

from this analysis for important features are shown: (a) isoelectric point, (b) net charge, (c) the difference 

between the number of hydrogen bond donor and acceptor and (d) molecular weight. X-axis is the value of 

a feature calculated and each point on Y-axis is the contribution returned by a decision path of a particular 

decision tree. The proposed optimal feature space is encircled by dotted lines.  

It is clear that in the absence of Arg/Lys, the net charge contributions hint at minimizing the 

number of negative charges and this is also reflected in lower contributions from the isoelectric 

point. Interestingly we observe positive contribution from peptides with net-charge near -1 and 0. 

We also notice that the distribution of molecular weights shifts towards lower values; yet the 

optimal positive contributions are for molecular weights <2000 Da, as in the case of the full dataset 

(Figure 3). In the absence of donor atoms from Arg and Lys, the only donors are from 

Ser/Thr/Asn/Gln/His/Trp sidechains, while the acceptors from Asp/Glu/Ser/Thr dominate and this 

is reflected in our model. The amino acids with positive feature contributions in this model are 

Leu, His and Pro (SI-S9). In our model using the full dataset, Leu was observed to contribute 
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positively (following charged residues). Leu is mostly present in amphipathic CPPs such as pVEC. 

It was also observed that transmembrane helices are enriched in Leu residues and oligoleucines 

can insert themselves into membranes (Gurezka et al., 1999; Deber and Stone, 2019). It will be 

interesting to probe further the role of Leu in CPPs.  However, we must admit that we have very 

few non-cationic sequences for this model and the results may change if we manage to find more 

such sequences. 

4.2 Comparison with other interpretability methods 

(a) 

Prediction probabilities 

 
 

 

 

 

 

(b) 

 

Figure 6. (a) Results from LIME. Column 1 shows the prediction probability for each class (non-CPP - 0 

or CPP - 1). Column 2 shows the feature contributions towards each class, with orange colours referring to 

CPP and blue colours referring to non-CPP. Column 3 lists the properties corresponding to this particular 

data point. (b) Results from SHAP: Features shown in red have a positive contribution to CPP class when 

their value is higher. The output value shown in bold is the average prediction probability. 

We have used two other interpretability methods, LIME (Ribeiro et al., 2016) and SHAP 

(Lundberg et al., 2018) which are shown to be good methods for explaining ML models. SHAP 

also uses the TreeInterpreter package as used in this work in their ‘tree explainer’ module. LIME 

interprets the model locally by fitting a linear model on a locally perturbed dataset while analyzing 

a decision tree at a time. Contribution values obtained using LIME on one of the datapoints from 

the Test data is shown in Figure 6 a, these match closely with our analysis. Output obtained using 
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SHAP’s ‘tree explainer’ is shown in Figure 6 b. LIME interprets one decision tree at a time and 

SHAP provides average feature contribution values whereas our interpretation method provides 

contribution values for all trees from the RFC model (Figure. 3, 4, 5). The contribution values 

given by each tree are relative values and depend on the features chosen to build that particular 

tree, and we may lose information by averaging. We plot values from all decision trees to 

understand the optimal spaces of each feature; however, we do not capture the interactions between 

the features. More results from LIME and SHAP are discussed in SI-S10 in further details. 

4.3 Importance of our Ensemble Feature vector and its role in predicting borderline CPPs 

Our EnF model is able to correctly predict peptides which have the same amino acid composition 

but different sequences and belong to different CPP class. (i)  pVEC, a CPP derived from Cadherin, 

(LLIILRRRIRKQAHAHSK) and scrambled pVEC (Elmquist et al. 2006) (IAARIKLRSRQHIKLRHL) 

have the same amino acid composition but only pVEC is CPP. (ii) Penetratin vs its non-CPP 

version (Fischer et al., 2000). These two examples are incorrectly predicted when only AAF or 

BCP features are used. 

4.4 Comparison with other prediction models. 

CPP prediction model 

reference 

Accuracy Algorithm Dataset 

(number of sequences) 

 (A Dobchev, 2010) 83% Artificial Neural Network 100 

 (Sanders et al., 2011) 75% Support Vector Machine 145 

 (Gautam et al., 2013) 94% Support Vector Machine 1416 

(Dataset A in current study) 

(Chen et al., 2015b) 83% Random Forest Classifier 145 

 (Tang et al., 2016) 83% Support Vector Machine 925 

 (Wei, Tang, et al., 2017) 

 

91% 2-layered prediction framework based 

on Random Forest method 

924 

(Dataset C in current study) 

 (Pandey et al., 2018) 88 % Neural Network (Extreme Learning 

Machine) 

826 

(Dataset D in current study) 

Current Prediction model 96% Random Forest Method 2207 

Table 2. A brief summary of other predictors. 
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We observed that combining datasets from different sources resulted in reduced bias and increased 

quality of the dataset. Table 2 summarizes details of the datasets we have selected. Gautam et al. 

have used their prediction model to design new CPP sequences, using SVM scores; however, their 

model is unable to extract specific guidelines in terms of answering questions such as: which amino 

acids can be incorporated to make a peptide CPP. For this reason, in the current study, we discuss 

more intuitive design strategies at the basic amino acid property level. 

As an additional control, we also build a prediction model with the SVM algorithm of Gautam et 

al. This SVM model (hyperparameters used after tuning are: RBF kernel, scaled g, c=15, 

tolerance= 1E-07) applied to their dataset gave us an accuracy of ~96%, which is similar to what 

they report. The accuracy obtained using SVM on our Dataset E was 90% (with the same 

hyperparameters mentioned above). It was noted that in the case of SVM, feature 

scaling/normalization was necessary and without it, the accuracy obtained was only ~75%. One of 

the main advantages of using RFC is that it requires very minimal data processing and does not 

require operations such as feature scaling or transformational operations like PCA (Trevor Hastie, 

Robert Tibshirani, 2009). For this reason, it was easier to rationalize and interpret the feature 

contribution scores obtained. In addition, even in situations where the dataset is sparse, as is the 

case with our dipeptide and tripeptide composition matrix, scaling is not recommended  (Hoaglin 

et al., 1983). 

4.5 Limitations of current prediction models.  

A major challenge faced by developers of prediction models for CPPs is the quality of available 

experimental data. These data come from diverse sources and hence are not normalized against the 

variation in experimental conditions. (i) a high variation in the length of CPPs (5 to 30 amino 

acids), (ii) a small number of experimentally verified non-CPPs and (iii) variable experimental 

conditions (concentration, cell lines, etc.) for experimentally validated CPPs; the ability of CPPs 

to permeate cells depends considerably on these conditions, making the available data hard to 

integrate into composite datasets. (iv) CPPs enter the cell by various mechanisms and thus have 

different biochemical properties (Lindgren and Langel, 2011). Some may go inside by passive 

diffusion; some may go actively (energy-dependent) and hence the properties of the peptide are 

different for a different class which can add more challenges into prediction. As a result of these 

issues, the design of a novel CPP is difficult, despite high prediction accuracies in the prediction 

models. Many sequences in the current training datasets have very similar amino acid 
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compositions. We need a larger variety of CPP sequences and normalized, consistent experimental 

data. At times the data is mislabeled as it comes from experiments carried out under varying 

conditions (SI-S2). The need for a large number of validated negative data is also equally important 

to increase the predictive performance of the algorithms (Wei et al., 2014). Most of the negative 

sequences in the training datasets come from randomly generated sequences or randomly picked 

sequences from Uniprot (Gautam et al., 2013; Sanders et al., 2011). Hopefully, the future will 

witness richer data from experiments on CPPs and on many classes of CPPs, thus improving the 

training of models and hence their predictive abilities.  
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