bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341149; this version posted October 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Predicting Cell-Penetrating Peptides: Building and Interpreting Random
Forest based prediction Models

Shilpa Yadahallil*, Chandra S. Vermal,2,3*

1Bioinformatics Institute A*-STAR (Agency for Science, Technology and Research), Singapore
2Department of Biological Sciences, National University of Singapore, Singapore

3School of Biological Sciences, Nanyang Technological University, Singapore

*To whom correspondence should be addressed.

Shilpa Yadahalli, Bioinformatics Institute (A*-STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671,
Singapore. E-mail: shilpasy@bii.a-star.edu.sg

Chandra Verma, Bioinformatics Institute (A*-STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671,
Singapore. E-mail: chandra@bii.a-star.edu.sg

Abstract

Targeting intracellular pathways with peptide drugs is becoming increasingly desirable but often
limited in application due to their poor cell permeability. Understanding cellular permeability of
peptides remains a major challenge with very little structure-activity relationship known.
Fortunately, there exist a class of peptides called Cell-Penetrating Peptides (CPPs), which have
the ability to cross cell membranes and are also capable of delivering biologically active cargo into
cells. Discovering patterns that make peptides cell-permeable have a variety of applications in drug
delivery. In the current study, we build prediction models for CPPs exploring features covering a
range of properties based on amino acid sequences, using Random forest classifiers which are
often more interpretable than other ensemble machine learning algorithms. While obtaining
prediction accuracies of ~96%, we also interpret our prediction models using Treelnterpreter,
LIME and SHAP to decipher the contributions of important features and optimal feature space for
CPP class. We propose that our work might offer an intuitive guide for incorporating features that
impart cell-penetrability into the design of novel CPPs.
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1 Introduction

Cell-penetrating peptides (CPPs) are short peptides normally observed to be around 5-30 amino
acids in length, which have an ability to enter the cells without irreversibly damaging the cell
membrane (Milletti, 2012). They can also carry cargoes ranging from probes or therapeutics which
can be small molecules, peptides or proteins into cells (Li et al., 2015). These properties make
them attractive as potential drug delivery agents (Milletti, 2012; Heitz et al., 2009). While this
method of cellular delivery is desirable, it is also associated with issues such as toxicity and
immunogenic responses that render them undesirable (Dinca et al.,, 2016). Majority of
therapeutically interesting peptides fail to permeate the cells, unable to find their protein targets.
Peptide as drugs are more desirable as compared to small molecules especially when the target is
a protein-protein interaction site and peptides exhibit higher specificity. Hence there is a need to
understand the relationships between the sequences of the peptides and their ability to penetrate
the cells.

Over the years, with the increase in the availability of biological data for CPPs, several machine
learning (ML) based predictors have emerged which are summarized elsewhere (Wei et al., 2018;
Hansen et al., 2008; Su et al., 2019). Mining the characteristics of peptides such as amino acid
composition, biochemical properties and many novel feature representation methods have been
used in several predictors to obtain accuracies higher than 80%. While much progress has been
made in developing new prediction algorithms, only a few studies have focused on understanding
the feature contributions and optimal feature space of CPPs. This can help us create strategies for
designing CPPs and introducing cell-penetrability into other peptides of our interest. Towards this
aim, we review the previously available datasets to construct robust training data, build random
forest-based prediction models and interpret the models using various methods of model
explainability like Treelnterpreter, LIME and SHAP in an attempt to understand optimal feature
space in CPPs. Interpreting prediction models is also necessary to build more trust in them. We
test the sensitivity of our models to various feature vectors, class imbalance and sequence
similarities in the training data. We also discuss a prediction model built for non-cationic CPPs
and analyze feature preference in them as compared to the cationic class of CPPs. In the end, we
discuss further challenges in the prediction of CPPs along with a few discrepancies which we

found in the current datasets which might arrive due to different experimental conditions.
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We present a faster, simpler and interpretable prediction model, without compromising on the

accuracy and we believe this work helps in increasing our understanding of CPPs.
2 Methods
2.1 Algorithm Selection.

We have built ML-based classification models for the prediction of CPPs. We chose a random
forest classifier (RFC) (Breiman, 2001) which has been proven to be effective for classification
tasks in many fields of computational biology (Wei, Xing, et al., 2017; Chen et al., 2015). It is
quite robust in handling various data types at different scales and is resistant to overfitting (Trevor
Hastie, Robert Tibshirani, 2009; Bénard et al., 2019). The main reason for us to choose RFC
however is that they are often more interpretable and easier to analyze than many other ensemble
ML algorithms (Ishwaran, 2007; Louppe, 2014). The RFC algorithm comprises of an ensemble of
decision trees, each of which is grown by a subset of features selected from the input feature vector.
The number of features for each tree is determined by multiple factors, such as the generalization
error, classifier strength, and inter-dependence within them (Breiman, 2001). We used scikit-
learn’s RFC library (Pedregosa et al., 2011) to build our models. The parameters used to build
RFC models are obtained by hyperparameter tuning method, GridSearchCV, from scikit-learn.

These parameters are mentioned in Supplementary information section 1 (SI-S1).
2.2 Dataset construction.
We have used the following datasets in our study (these are also listed in Table 2).

e Dataset A. Dataset from CellPPD (Gautam et al., 2013), downloaded from CPPsite 2.0
(Agrawal et al., 2016). There are a total of 1416 sequences in this dataset with an equal number
of CPPs and non-CPPs.

e Dataset B. ‘Benchmark’ dataset from CellPPD. These sequences referred by authors (Gautam
et al., 2013) as Benchmark dataset has a total of 343 sequences with 136 CPPs and 207 non-
CPPs.

e Dataset C. Dataset from SkipCPP-Pred (Weli, Tang, et al., 2017) has a total of 924 sequences
with an equal number of CPPs and non-CPPs.

e Dataset D. Dataset from KELM-CPPpred (Pandey et al., 2018) has a total of 826 sequences

with an equal number of CPPs and non-CPPs.
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We used these datasets as they are from state-of-the-art predictors, have high levels of predictive
performance and the datasets are publicly available.

Dataset E. Ensemble dataset: We build this dataset by combining above 4 datasets. Most of the
CPPs from the above datasets are from CPPsite 2.0 database, which is a golden source for CPPs,
hence we remove duplicate sequences after combining the above datasets. Further, we remove a
few entries with discrepancies in their labels across the sources (these entries are listed in SI-S2)
and we are left with 955 CPPs. This dataset is available on request.

Since it has been well established that balanced datasets perform better and that imbalanced
datasets present several different problems in ML methods (Sanders et al., 2011), we try to
maintain a similar number of CPP and non-CPP entries while training. However, we have also
compared the model performances with/without rebalancing the data points.

We also test the sensitivity of the model to sequence similarities in the training data by building
prediction models with/without sequence redundancy removal at various sequence identity cutoffs.
It should also be noted that we do not have sequences containing modified or non-natural amino

acids in our datasets.

2.3 Feature engineering.

Input peptide sequence

| I ! }
Amino acid Dipeptide Tripeptide Biochemical
frequencies frequencies frequencies properties

S

Combine the top
scoring features

Figure 1. Feature engineering approach adopted in the current work to deal with sparse feature vectors

Following types of feature vectors are used as an input to our RFC:

1. Amino Acid Frequencies (AAF)

2. DiPeptide Frequencies (DPF)

3. TriPeptide Frequencies (TPF)

4. BioChemical Properties (BCP)

5. Ensemble-feature vector (EnF): by combining top-scoring features from these four models.
We consider AAF, as it is known that certain types of residues are found with a higher frequency
in CPPs, as outlined in the compositional based model (Garg et al., 2005). DPF and TPF
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encapsulate information related to neighbouring residues, thus bringing in effects due to the order
of amino acids (Petrilli, 1993). All combinations of DPF (20x20), TPF (20x20x20) are used. List
of BCP features used is: net charge, isoelectric point, secondary structure prediction (DSSP),
molecular weight, hydropathy value (kyte-doolitle index), number of hydrogen bond donors and
acceptors and the difference between the numbers of hydrogen bond donors and acceptors.
Features like frequencies and molecular weight are normalized by the peptide length. To choose
the best possible feature vector and to deal with sparse nature of DPF, TPF, we train our model
with four sets of features separately and combine the top-scoring features from each set shown in
Figure 1. The model combining the top-scoring features is referred to as the Ensemble-Feature
(EnF) model. The distributions of lengths, amino acid compositions and biochemical features are
shown in SI-S3.

2.4 Metrics used in the current study.

To quantitatively measure the performance of the predictors we used following evolution metrics,
balanced accuracy, F1 score, sensitivity, specificity, and elements of the confusion matrix, using
scikit-learn. Balanced accuracy (Brodersen, K.H. et al 2010) is equivalent to normal accuracy with
class balanced sample weights. In cases where the classifier does not perform equally well on
either class due to an imbalanced test dataset, the balanced accuracy will drop to 1/(number of

classes). The evaluation method used was k-fold cross-validation.

2.5 Interpreting random forest predictions.

For interpreting the random forest predictions, we used the Treelnterpreter package
(https://pypi.org/project/treeinterpreter/). This package allows decomposition of each prediction
into bias and feature contribution values (Trevor Hastie, Robert Tibshirani, 2009). We analyzed
those decision trees which predict ‘CPP’ class from the Test data. We further filter them based on
their probability of prediction (at probability >0.65). Decision paths are extracted from these trees.
The feature contribution values obtained from these decision paths are plotted against their
respective features to study their optimal numbers for predicting the ‘CPP’ class. Due to the
random feature selection technique used in RFC algorithms, these values differ across the decision

trees, but the overall relative contribution was observed to be consistent in our models.
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3 Results

3.1 Performance of CPP prediction models with different feature vectors.

Dataset A Accuracy True True False Positive |False Negative| F1 score
(%) Positive (%)Negative (%) (%) (%)

Model AAF 91 90 92 8 1 0.90
Model DPF 90 88 92 8 12 0.89
Model TPF 86 82 91 9 2 0.84
Model BCP 91 90 92 8 9 0.90
Model EnF 94 92 96 4 8 0.95
Dataset B
Model AAF 89 91 90 1 9 0.87
Model DPF 83 83 83 17 17 0.77
Model TPF 83 74 93 7 26 0.79
Model BCP 88 83 93 7 17 0.85
Model EnF 82 74 88 1 12 0.75
Dataset C
Model AAF 89 83 95 5 17 0.88
Model DPF 88 82 94 6 18 0.87
Model TPF 83 73 95 2 34 0.78
Model BCP 90 87 94 6 13 0.80
Model EnF 90 85 95 5 15 0.89
Dataset D

Model AAF 84 83 86 14 17 0.83
Model DPF 82 75 90 10 25 0.80
Model TPF 76 95 55 45 5 0.77
Model BCP 82 80 84 16 20 0.80
Model EnF 87 86 87 13 14 0.86
Dataset E

Model AAF 91 91 93 7 9 0.90
Model DPF 90 88 93 7 12 0.89
Model TPF 87 88 85 15 12 0.84
Model BCP 91 91 92 8 9 0.90
Model EnF 96 92 97 3 9 0.93

Table 1. Performance of CPP prediction models with different sets of features on different datasets. Model
AAF - amino acid frequencies, DPF - dipeptide frequencies, TPF- tripeptide frequencies, BCP -
biochemical properties, EnF - ensemble featured vector. Dataset A: CellPPD, Dataset B: ‘benchmark’ from
CellPPD, Dataset C: SkipCPP-Pred, Dataset D: KELM data, Dataset E: Ensemble data. Balanced accuracy,
elements of the confusion matrix and F1 scores obtained on hold-out Test data are mentioned.

All ML algorithms highly depend on the training dataset and feature vector used in terms of
accuracy obtained (Su et al., 2020). Our results with 5 types of feature vectors on 5 types of
datasets are shown in Table 1. All the Datasets are divided into Training (80%) and hold-out Test
dataset (20%) and the values mentioned in Table 1 are on the Test dataset.

We get an accuracy of 94.5% for Dataset A which is similar to 92.85% obtained by their (Gautam

et al., 2013) support vector machine (SVM) algorithm. We get an accuracy of 90% on Dataset C
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which is similar to obtained by their RFC and SVM algorithms (Wei, Tang, et al., 2017). With
Dataset D, we get an accuracy of 87% which is similar to 86% obtained by their Neural Network
algorithm (Pandey et al., 2018). We get an accuracy of 82% on dataset B which was lowest among
these datasets.

To understand CPPs at basic amino acid composition level we trained the model with AAF, DPF
and TPF. This shows that the average occurrence of positively charged amino acids (Arg, and Lys)
is higher in CPPs. While we know this already, we are interested in investigating the contribution
of these features in making them cell-penetrating. From our results summarized in Table 1, we
obtained highest accuracy with EnF vector followed by AAF/BCP, DPF and TPF, in almost all
datasets. The feature vector of DPF and TPF is a sparse matrix as the total number of features are
20x20, 20x20x20 of which most of the values are 0 due to short lengths of peptides. These models
do not converge and also have lesser accuracy than others. Hence by taking only important features
from them and combining them in EnF, retains neighbouring information and increases accuracy
along with helping us understand the preference of selective dipeptides/tripeptides in CPPs.
Five-fold cross-validation accuracy on the training datasets using EnF vector is as following:
Dataset A: 0.92 + 0.03, B: 0.87 + 0.07, C: 0.89 + 0.05, D: 0.84 + 0.08, E: 0.93 £ 0.02. Dataset B
and D have lower accuracy values and higher standard deviation. Overall, the performance of the
model built with Dataset E using EnF vector was observed to be best in terms of this evaluation
method and it also has the lowest standard deviation (more details in SI-S11). We will be using
this prediction model for further evaluation and analysis of features. Precision/Recall values

calculated on Dataset E are shown in SI-S4.
3.2 Testing for the sensitivity of the model towards sequence redundancy and imbalance.

To test the sensitivity of the model to sequence similarity, we have built two more prediction
models where we remove sequences with more than 80% and 90% sequence identities from the
training datasets. We use CDHIT (Huang,Y. et al. (2010) for this reduction. We find that the prediction
accuracy decreases by ~10% in these models (SI-S5). CPPs are very sensitive to the changes in
amino acid sequences. e.g. 2 mutations in Penetratin makes it a non-CPP (Fischer et al., 2000). If
we are too strict with our reduction, we risk losing valuable information and will have smaller data
for training Hence our results are not surprising and are actually in agreement with previous
studies. (Holton et al., 2013).
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To check the sensitivity of our model towards the changes in the size of the classes (CPP and non-
CPP), we build prediction models using various resampling techniques. We noticed that these
resampling techniques are quite sensitive to the feature vector used and for the current dataset,
they do not improve the performance of the model significantly. Results from three resampling
techniques (over-sampling the minority class, under-sampling the majority class and SMOTE) are
discussed in further details (SI-S6).

3.3 Analysis of important features.
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Figure 2. Feature importance score from the EnF prediction model

Figure 2 is a bar graph of feature importance score (FIS) from our EnF model trained on Dataset
E (values in SI-S7). The isoelectric point emerges as the property with the highest FIS followed
by the ‘difference between the number of hydrogen bond donor atoms and the number of hydrogen
bond acceptor atoms’ and net charge. We also find that the top six features i.e. Isoelectric point,
the difference between the number of hydrogen bond donor/acceptor atoms, Net charge, Number
of Arginines, hydropathy value and molecular weight are sufficient to obtain an accuracy of ~89%.
We have not carried out further ‘feature selection' as the main aim of the study is to understand the
contribution of various sequential features in making a peptide cell-penetrating.

In our AAF model, amino acids with the highest FIS are Arg, Glu, Lys, Asp, Leu. The 10 most
important dipeptides are RR, KK, KR, RK, LA, WK, AL, RW, RI, RL and 10 most important
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tripeptides are RRR, KKK, KKR, KRK, RRA, RRQ, RKK, RWR, RQR, GRR. This begins to
provide guidance for combinations of amino acids to engineer cell-permeability in a peptide; for
example, what may be the best amino acid in combination with Arg. Our observations are
supported by a few previous studies (Park et al., 2002).

4 Discussion

4.1 Decision tree path analysis.

Interpreting predictions from ML models can be challenging but is an important step to build trust
in them and to increase our understanding of the underlying biological phenomena; also observed
and discussed in (Yuan et al., 2020). To make our prediction model easily interpretable and
intuitive, we used a decision path analysis approach. In RFC, the decision paths from the root of
the decision trees to the leaf represent classification rules used by the decision trees to reach a
prediction. In order to understand the CPP prediction rules, we need to analyze these decision
paths. We have used the Treelnterpreter package as described in Methods for this purpose. The
decision tree contribution of each feature is not a single predetermined value but depends on the
rest of the feature vector, i.e. all values are relative. Feature vectors determine the decision path
that traverses the tree and thus the contributions that are passed along the way. Hence, we obtain
a range of contribution values for each feature. Even though these values can vary depending on

the members in the Test data, they can guide us in the design of novel CPPs.

4.1a Optimal values of biochemical properties
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Figure 3. Decision tree path analysis. The contributions obtained from this analysis for important features
are shown: (a) isoelectric point, (b) net charge, (c) the difference between the number of hydrogen bond
donor and acceptor and (d) molecular weight. X-axis is the value of a feature calculated and each point on
Y-axis is the contribution returned by a decision path of a particular decision tree. The proposed optimal
feature space is encircled by dotted lines.

Inferring optimal feature space from ML models can be a difficult task especially for such short
peptides and will depend on adequacy of the training data. However, we have attempted to study
this using decision path analysis approach. From Figure 3, we observe that isoelectric point above
10, a minimum net charge of 3, hbond donor-acceptor difference of ‘25-50” and molecular weight
of less than 2000 Da have emerged as the optimal range of values to be a CPP. Although it may
be argued that several parameters are highly dependent on each other, these numbers do provide

good guidance for design purposes.

4.1b Arginines and positive charges in CPPs.
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Figure 4. Decision tree path analysis. The contribution values for (a) Arginines (R) and (b) Lysines (K).
X-axis is the value of a feature calculated and each point on Y-axis is the contribution returned by a decision
path of a particular decision tree. The proposed optimal feature space is encircled by dotted lines.

The presence of Arg in CPPs has been explored and highlighted for many years and most of the
CPPs are Arg rich (Schmidt et al., 2010; Allolio et al., 2018) and as expected, this is been
recapitulated in our model too. From our feature contribution analysis (Figure 4) we see that the
optimal number of Arg residues for most CPPs is between ~6 and 10 (~17 to 30% of the sequence
length). The minimum number of ~6 is also in agreement with previous studies (Wender et al.,
2000). In this study Rothbard et. al. prepared a series of TAT peptide (arginine-rich CPP extracted
from HIV) mutations and systematically compared their cellular uptake using flow cytometry
experiments with those of poly-Arginines of various lengths. The observation that the peptides
with high isoelectric points (>10) dominate amongst CPPs (Figure 3) is in accord with the pKa of
Arg which is 12.5 (pKa of Lys is 10.5). It has been shown in computational (Yoo and Cui, 2008)
as well as experimental studies (Fitch et al., 2015) that Arg predominantly remains protonated
under physiological conditions as well as inside a lipid membrane. In addition, the Arg sidechain
also engages in the maximum number of hydrogen bonds than other amino acid sidechains and
this is likely very relevant for the interactions of the peptide with the phospholipid membranes; for
example, the ability to form multiple hydrogen bonds has been shown to be critical for the
interactions of Arg-like sidechains with membranes (Fitch et al., 2015; Yoo and Cui, 2008; Li et
al., 2013).

It was also interesting to observe that Arg, Lys, Leu contribute positively while Glu, Asp contribute
negatively (SI-S8). Arg and Glu have similar FIS but opposite feature contribution values. This
suggests the absence of Glu might be as important as the presence of Arg in a CPP. The decision

path analysis of all other amino acids is discussed in SI-S8.

4.1c Prediction model for non-cationic CPPs.

Understandably, current CPP datasets are dominant in cationic peptides. So, to understand the
characteristics of non-cationic CPPs, we created a dataset of sequences which do not have Arginine
and Lysine residues. This dataset has a smaller number of sequences, <200 (the sequences having
at least one Arg/Lys are in the range of ~700). These sequences were then divided into 90% for
training and 10% for testing and the prediction accuracy obtained was ~90%. Contributions for a

few biochemical features extracted from this model are discussed below.
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Figure 5. Decision tree path analysis for ‘non-cationic’ CPP prediction model. The contributions obtained
from this analysis for important features are shown: (a) isoelectric point, (b) net charge, (c) the difference
between the number of hydrogen bond donor and acceptor and (d) molecular weight. X-axis is the value of
a feature calculated and each point on Y-axis is the contribution returned by a decision path of a particular
decision tree. The proposed optimal feature space is encircled by dotted lines.

It is clear that in the absence of Arg/Lys, the net charge contributions hint at minimizing the
number of negative charges and this is also reflected in lower contributions from the isoelectric
point. Interestingly we observe positive contribution from peptides with net-charge near -1 and 0.
We also notice that the distribution of molecular weights shifts towards lower values; yet the
optimal positive contributions are for molecular weights <2000 Da, as in the case of the full dataset
(Figure 3). In the absence of donor atoms from Arg and Lys, the only donors are from
Ser/Thr/Asn/GIn/His/Trp sidechains, while the acceptors from Asp/Glu/Ser/Thr dominate and this
is reflected in our model. The amino acids with positive feature contributions in this model are

Leu, His and Pro (SI-S9). In our model using the full dataset, Leu was observed to contribute
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positively (following charged residues). Leu is mostly present in amphipathic CPPs such as pVEC.
It was also observed that transmembrane helices are enriched in Leu residues and oligoleucines
can insert themselves into membranes (Gurezka et al., 1999; Deber and Stone, 2019). It will be
interesting to probe further the role of Leu in CPPs. However, we must admit that we have very
few non-cationic sequences for this model and the results may change if we manage to find more

such sequences.

4.2 Comparison with other interpretability methods

@ 0 1
Prediction probabilities HbDonorAcceptorDiff . HbDonorAcceptorDiff24.00

0.13
0 IsoclectricPoint > 11.17 IsoelectricPoint
1 bq 0.10
m MolWt <= 1671.95
0.08

Hbacceptors <= 6.00

(b)

higher = lower
base value output value

0.5053 0.5551 0.6038 0.6505 06945 0.71 07352

- DIR) ) ) 200 ) ) ) { {{{

RRR=2 =0 G=0 D=0 SS_H=05454 F=0 RR=3 R=6 net_charge =6 Hbacceptors =0 IsoelectricPoint = 12.7 ' HbDonorAcceptorDiff = 30 ' hydropathy = 0.5364 V=2

Figure 6. (a) Results from LIME. Column 1 shows the prediction probability for each class (non-CPP - 0
or CPP - 1). Column 2 shows the feature contributions towards each class, with orange colours referring to
CPP and blue colours referring to non-CPP. Column 3 lists the properties corresponding to this particular
data point. (b) Results from SHAP: Features shown in red have a positive contribution to CPP class when
their value is higher. The output value shown in bold is the average prediction probability.

We have used two other interpretability methods, LIME (Ribeiro et al., 2016) and SHAP
(Lundberg et al., 2018) which are shown to be good methods for explaining ML models. SHAP
also uses the Treelnterpreter package as used in this work in their ‘tree explainer’ module. LIME
interprets the model locally by fitting a linear model on a locally perturbed dataset while analyzing
a decision tree at a time. Contribution values obtained using LIME on one of the datapoints from

the Test data is shown in Figure 6 a, these match closely with our analysis. Output obtained using
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SHAP’s ‘tree explainer’ is shown in Figure 6 b. LIME interprets one decision tree at a time and
SHAP provides average feature contribution values whereas our interpretation method provides
contribution values for all trees from the RFC model (Figure. 3, 4, 5). The contribution values
given by each tree are relative values and depend on the features chosen to build that particular
tree, and we may lose information by averaging. We plot values from all decision trees to
understand the optimal spaces of each feature; however, we do not capture the interactions between
the features. More results from LIME and SHAP are discussed in SI-S10 in further details.

4.3 Importance of our Ensemble Feature vector and its role in predicting borderline CPPs

Our EnF model is able to correctly predict peptides which have the same amino acid composition
but different sequences and belong to different CPP class. (i) pVEC, a CPP derived from Cadherin,
(LLIILRRRIRKQAHAHSK) and scrambled pVEC (Elmquist et al. 2006) (IAARIKLRSRQHIKLRHL)
have the same amino acid composition but only pVEC is CPP. (ii) Penetratin vs its non-CPP
version (Fischer et al., 2000). These two examples are incorrectly predicted when only AAF or

BCP features are used.

4.4 Comparison with other prediction models.

CPP prediction model Accuracy Algorithm Dataset
reference (number of sequences)

(A Dobchev, 2010) 83% Artificial Neural Network 100

(Sanders et al., 2011) 75% Support Vector Machine 145

(Gautam et al., 2013) 94% Support Vector Machine 1416
(Dataset A in current study)

(Chen et al., 2015b) 83% Random Forest Classifier 145

(Tang et al., 2016) 83% Support Vector Machine 925

(Wei, Tang, et al., 2017) 91% 2-layered prediction framework based 924
on Random Forest method (Dataset C in current study)

(Pandey et al., 2018) 88 % Neural Network (Extreme Learning 826
Machine) (Dataset D in current study)

Current Prediction model 96% Random Forest Method 2207

Table 2. A brief summary of other predictors.
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We observed that combining datasets from different sources resulted in reduced bias and increased
quality of the dataset. Table 2 summarizes details of the datasets we have selected. Gautam et al.
have used their prediction model to design new CPP sequences, using SVM scores; however, their
model is unable to extract specific guidelines in terms of answering questions such as: which amino
acids can be incorporated to make a peptide CPP. For this reason, in the current study, we discuss

more intuitive design strategies at the basic amino acid property level.

As an additional control, we also build a prediction model with the SVM algorithm of Gautam et
al. This SVM model (hyperparameters used after tuning are: RBF kernel, scaled g, c=15,
tolerance= 1E-07) applied to their dataset gave us an accuracy of ~96%, which is similar to what
they report. The accuracy obtained using SVM on our Dataset E was 90% (with the same
hyperparameters mentioned above). It was noted that in the case of SVM, feature
scaling/normalization was necessary and without it, the accuracy obtained was only ~75%. One of
the main advantages of using RFC is that it requires very minimal data processing and does not
require operations such as feature scaling or transformational operations like PCA (Trevor Hastie,
Robert Tibshirani, 2009). For this reason, it was easier to rationalize and interpret the feature
contribution scores obtained. In addition, even in situations where the dataset is sparse, as is the
case with our dipeptide and tripeptide composition matrix, scaling is not recommended (Hoaglin
et al., 1983).

4.5 Limitations of current prediction models.

A major challenge faced by developers of prediction models for CPPs is the quality of available
experimental data. These data come from diverse sources and hence are not normalized against the
variation in experimental conditions. (i) a high variation in the length of CPPs (5 to 30 amino
acids), (ii) a small number of experimentally verified non-CPPs and (iii) variable experimental
conditions (concentration, cell lines, etc.) for experimentally validated CPPs; the ability of CPPs
to permeate cells depends considerably on these conditions, making the available data hard to
integrate into composite datasets. (iv) CPPs enter the cell by various mechanisms and thus have
different biochemical properties (Lindgren and Langel, 2011). Some may go inside by passive
diffusion; some may go actively (energy-dependent) and hence the properties of the peptide are
different for a different class which can add more challenges into prediction. As a result of these
issues, the design of a novel CPP is difficult, despite high prediction accuracies in the prediction

models. Many sequences in the current training datasets have very similar amino acid
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compositions. We need a larger variety of CPP sequences and normalized, consistent experimental
data. At times the data is mislabeled as it comes from experiments carried out under varying
conditions (SI-S2). The need for a large number of validated negative data is also equally important
to increase the predictive performance of the algorithms (Wei et al., 2014). Most of the negative
sequences in the training datasets come from randomly generated sequences or randomly picked
sequences from Uniprot (Gautam et al., 2013; Sanders et al., 2011). Hopefully, the future will
witness richer data from experiments on CPPs and on many classes of CPPs, thus improving the
training of models and hence their predictive abilities.
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