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Abstract

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection,
poses a severe threat to humanity. Rapid and comprehensive analysis of both
pathogen and host sequencing data is critical to track infection and inform
therapies. In this study, we performed unbiased metatranscriptomic analysis of
clinical samples from COVID-19 patients using a newly-developed RNA-seq
library construction method (TRACE-seq), which utilizes tagmentation activity
of Tn5 on RNA/DNA hybrids. This approach avoids the laborious and time-
consuming steps in traditional RNA-seq procedure, and hence is fast, sensitive
and convenient. We demonstrated that TRACE-seq allowed integrated
characterization of full genome information of SARS-CoV-2, putative pathogens
causing coinfection, antibiotic resistance and host response from single throat
swabs. We believe that the integrated information will deepen our
understanding of pathogenesis and improve diagnostic accuracy for infectious

diseases.

Keywords: SARS-CoV-2, COVID-19, metatranscriptomics, coinfection,

antibiotic resistance, host response, TRACE-seq, Tn5.
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Introduction

Longstanding, emerging, and re-emerging infectious diseases continuously
threaten human health across centuries(1). Precise and rapid identification of
pathogens from clinical samples is important for both guiding infection
treatment strategies and monitoring novel infectious disease outbreaks, e.g.
the outbreak of SARS-CoV-2, in the community. While most nucleic acid
amplification-based and pathogen specific antibody detection-based molecular
techniques only detect a limited number of pathogens and need their prior
knowledge, metagenomic or meta-transcriptomic approaches allow for
comprehensive and unbiased identification and characterization of microbiome

directly from clinical specimens(2).

Compared to meta-genomic sequencing, meta-transcriptomic sequencing has
several distinct advantages: it permits detection of RNA viruses that would not
be interpreted in metagenomic data, reveals transcriptionally active organism(s)
which are more etiologically important, and indicates host immune response
which is essential to distinguish true pathogens from colonizers(3-5). However,
the laborious and time-consuming steps in traditional RNA-seq experiments
hinder the development of meta-transcriptomic based clinical diagnostics for

rapid pathogen identification.

Very recently, we and others have independently developed a rapid and cost-
effective RNA-seq method, based on TnS tagmentation activity towards
RNA/DNA hybrids(6, 7). Our method, termed “TRACE-seq”, enables rapid one-

tube library construction for RNA-seq experiments and shows excellent
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performance in compsrison to traditional RNA-seq methods. We thus
envisioned that this convenient and sensitive method could be applied to
clinical specimens for unbiased meta-transcriptomic analysis. In this study, we
modified the TRACE-seq procedure, shorten the total time and optimized
analytical pipeline to meet the needs for clinical meta-transcriptomic diagnosis
and analysis. We then applyed TRACE-seq to meta-transcriptomic sequencing
of single throat swabs specimens from COVID-19 patients and healthy
individuals. We found library construction of specimens could be accomplished
in ~2h with high quality. Analysis of TRACE-seq meta-transcriptomic data of 13
SARS-CoV-2 positive samples and 2 negative samples demonstrated the
success of this method to sensitively detect SARS-CoV-2 with high coverage
even for samples with relatively high Ct values, or to assemble unknown
microbe genome de novo (using SARS-CoV-2 as an example). Moreover,
TRACE-seq sensitively detected the microbiome and simultaneously allowed
for interrogating antibiotic resistance and host responses. Taken together,
TRACE-seq enables unbiased pathogen detection and could have broad

applications in meta-transcriptomic study and clinical diagnosis.

Results

TRACE-seq enables metatranscriptomic analysis

To perform metatranscriptomic analysis on clinical samples, such as throat
swabs in this study, we made several modifications to TRACE-seq. First, to
achieve unbiased sequencing of microbiome, we used both random hexamer
and oligo d(T)23VN primers for reverse transcription, using approximately 1/10

total RNA extracted from a single throat swab as input. Secondly, we reduced
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97 the total time of library construction to around 2 hours (Figure 1a), which

98 enables TRACE-seq to be more compatible for clinical use, especially when

99  substantial numbers of specimens require investigation. Third, we developed a
100 tailored analytical pipeline of TRACE-seq to simultaneously identify known and
101 unknown pathogens and at the meanwhile to characterize host transcriptional
102  response in a single metatranscriptomic profiling reaction (Figure 1b). This new
103  pipeline allowed us to obtain rich information from the metatranscriptomic data
104  generated by the modified TRACE-seq.
105
106  Sensitive detection of SARS-CoV-2 genome
107  Since the samples were positive or suspected positive throat swabs from
108  COVID-19 patients, we asked whether the untargeted meta-transcriptomic
109  sequencing could yield a full genome sequence of SARS-CoV-2 virus. After
110 removing low quality reads and human reads, the remaining reads were
111 mapped to the SARS-CoV-2 reference genome Wuhan-Hu-1 (accession
112 number: NC_045512). Sequencing covered the reference genome from 171 bp
113 10 29,903 bp (0.57%-100%), with an average sequencing depth from 2.56x to
114  44,737% (Supplementary table 1). Four samples (B101, A193, B13, C1) with
115  low Ct values showed poor coverage and sequencing depth; the isolated RNA
116 samples from the throat swabs were repeatedly frozen and thawed, probably
117  compromising the integrity of RNA and hence were excluded. The other nine
118  samples were used for subsequent correlation analysis. Among the remaining
119  nine samples, the proportion of obtained reads of SARS-CoV-2, the coverage
120 to the reference genome, the average sequencing depth and the median

121 sequencing depth all showed a negative correlation with the Ct value of the
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122  samples (Spearman test, p < 0.05) (Figure 2a). In addition, the whole genome
123 sequence could be acquired from mapping-based approach when the Ct value
124  is as high as 32 (n=4, 44.44% of samples), with the average sequencing depth
125 of 131x. Even in samples with Ct values up to 35 (n=7, 77.78% of samples),
126  more than 94% of genome can be covered by TRACE-seq (Figure 2b,
127 Supplementary table 1, Supplementary figure 1).

128

129  Reconstruction of full-length genome of SARS-CoV-2

130  Ofthe 452,865 contigs (average 34,836, from 18,160 to 53,415) assembled de-
131 novo from non-human reads, 3,500 contigs (average 269, from 0 to 2,976) were
132  determined to be SARS-CoV-2 genome fragments. There were no SARS-CoV-
133 2 contigs in sample C31, B101 and B13. Most of contigs (n=3,461, 98.89%)
134  were less than 1,000 bp (Figure 2c). To determine the accuracy of this method
135 in acquisition of pathogen genome, all SARS-CoV-2 contigs were searched
136  against genomes of each sample. In contigs with matched length over 1,000
137 bp, most contigs (22/39, 56.41%) were completely consistent with their
138  corresponding genome (Figure 2d), while the other contigs had error bases
139 from 1to 7. In samples C14 and C13 with excellent coverage and depth, almost
140  full-length genome (29,793 bp and 29,825 bp) were obtained just from de-novo
141  assembly. Thus, TRACE-seq could enable the de-novo assembly of the
142  complete genome of unknown pathogens and be readily utilized to identify
143  emerging pathogens in patients with unknown etiology of infection and
144  efficiently complement routine diagnostics.

145

146  Unbiased identification of putative pathogens in addition to SARS-CoV-2
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147 It is widely reported that coinfection (multi-species infection) contributes to
148  enhanced morbidity and mortality, especially in elderly and immunosuppressed
149  influenza patients(8, 9). Thus, we were curious to see if our metatranscriptomic
150  sequencing approach could capture other pathogens in addition to SARS-CoV-
151 2. Indeed, alignment of TRACE-seq data to microbe reference databases
152  identified many bacteria, fungi and viruses in both patient and healthy samples
153  (Figure 3a). To assess whether COVID-19 patients and healthy individuals have
154  different microbe community in their throat, principal coordinates analysis
155 (PCoA) was conducted using relative abundance of the microbiome. We
156  observed that COVID-19 patients harbored a throat microbiome that is quite
157  different from healthy individuals (Figure 3b). In addition, sample C31 differed
158  significantly from other SARS-CoV-2 positive samples. Further investigation of
159  the relative abundance of probable respiratory pathogens revealed that patient
160 C31 contained the most abundant Klebsiella pneumoniae and Human
161 gammaherpesvirus 4, compared to other samples (Figure 3c), which might be
162  a cause of the separation between sample C31 and the rest of the SARS-CoV-
163 2 positive samples.

164

165 Among the probable respiratory pathogens listed in Figure 3c,

166  Stenotrophomonas maltophilia, Haemophilus parainfluenzae, Staphylococcus

167 aureus, Streptococcus pneumoniae, Haemophilus influenzae and
168  Acinetobacter baumannii are common commensal organism of the normal
169  oropharynx, however, they can also become opportunistic pathogens and
170  cause infectious disease, such as endocarditis, bacteremia and pneumonia(10-
171 13). Klebsiella pneumoniae, Stenotrophomonas maltophilia, Pseudomonas

7
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172 aeruginosa, Neisseria meningitidis and Legionella pneumophila cause disease
173 infrequently in normal hosts but can be a major cause of infection in patients
174  with underlying or immunocompromising conditions(14-18). Mycoplasma
175  pneumoniae is a type of “atypical” bacteria that commonly causes mild
176  infections of the respiratory system(19). As for identified fungi, Candida
177  dubliniensis and Candida albicans are both opportunistic yeast and can be
178  detected in the gastrointestinal tract in healthy adults; they were also known to
179  cause respiratory diseases (20-22). Human respirovirus 1, also known as
180  Human parainfluenza virus 1, is the most common cause of croup and also
181  associated with pneumonia. Human gammaherpesvirus 4 is one of the most
182 common viruses in human; it is best known as the cause of infectious
183  mononucleosis (23, 24), and is also constantly detected in lungs of patients with
184 idiopathic pulmonary fibrosis (25). In our results, a relatively high abundance of
185  Haemophilus parainfluenzae, Streptococcus pneumoniae, Acinetobacter
186  baumannii, Pseudomonas aeruginosa and Neisseria meningitidis were
187 identified in several SARS-CoV-2 positive samples compared with negative
188  samples, which indicated potential coinfection. Nevertheless, these data by
189 itself could not prove that COVID-19 patients were coinfected by these
190 identified microorganism; these data have to be carefully interpreted in the
191  clinical context.

192

193  Profiles of antibiotic resistance genes

194  Antimicrobial resistance has become a global issue. Pathogens with antibiotic
195 resistance are increasing and many pathogens are becoming multidrug-

196  resistant (26, 27). To characterize antibiotic resistance gene expression profiles,
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197 we aligned metatranscriptomic reads against the Comprehensive Antibiotic
198 Resistance Database (CARD) (28). On average, around 84 antibiotic
199 resistance genes were identified in SARS-CoV-2 positive samples, while only
200 around 23 genes were identified in negative samples. According to the CARD,
201  the identified antibiotic resistance genes confer resistance to 23 classes of
202  antibiotics. AlImost all resistance gene classes were more abundant in COVID-
203 19 patients compared to healthy individuals. Genes conferring resistance to
204  beta-lactam, aminoglycoside, tetracycline, phenicol, rifamycin, fluoroquinolone
205 and macrolide were the most abundant (Figure 3d). Overall, the distinct
206  microbiome, emergence of potential coinfection, and the elevated abundance
207  of antibiotic resistance genes provide new data for establishing clinical
208 therapeutic scheme during the treatment for COVID-19 patients.

209

210 Characterization of host response to SARS-CoV-2

211 Distinguishing infection from colonization remains challenging. Because host
212  transcriptional profiling has emerged as a promising diagnostic tool for
213  infectious diseases (29, 30), we next tested whether the host response to
214  SARS-CoV-2 could be simultaneously characterized by TRACE-seq mediated
215  metatranscriptomic analysis from throat swabs. As shown in Figure 3a, a
216  substantial percentage of the reads are derived from human, and an average
217 of 14,766 human genes with FPKM > 1 were detected per sample (Figure 4a,
218  Figure S2a and b). Based on the gene expression profiles, the relationships
219  between samples were inspected using a multidimensional scaling (MDS) plot
220  (Figure 4b). As expected, SARS-CoV-2 positive samples were clearly

221  separated from negative samples. In addition, sample C31 differed significantly
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222  in host gene expression from other SARS-CoV-2 positive samples, which might
223  be caused by the relatively high abundance of Klebsiella pneumoniae and
224  Human gammaherpesvirus 4 identified in sample C31. To characterize the
225 ~common host response to SARS-CoV-2, we excluded sample C31 when
226  performing differential gene expression analysis between SARS-CoV-2 positive
227  and negative samples. We identified 153 differentially expressed genes, 149 of
228  which were up-regulated (Figure 4c, Figure S2c). Gene Ontology enrichment
229 analysis identified the top up-regulated biological processes to be immune
230 response, defense response, viral process and response to cytokine (Figure
231  4d). Further investigation revealed that a subset of up-regulated genes involve
232 in IL1B-associated inflammatory response (IL1B, IL8, IL36A, CXCR2, FOS,
233 ANXA1, CASP4, KRT16, S100A8, S100A9). Moreover, another subset of up-
234  regulated genes (ISG15, EGR1, IF127, IFIT2, IFIT3, IFITM1, IFITM2, IFITM3,
235 HLA-B, HLA-C) were enriched in type | interferon signaling pathway (Figure 4e).
236  These results were highly consistent with previously reported host response to
237  SARS-CoV-2 (31-33). Overall, metatranscriptomic data via TRACE-seq of
238 throat swab samples demonstrates reliable performance in characterization of
239  host transcriptional response to the infection of SARS-CoV-2.

240

241  Discussion

242  Although next generation sequencing holds a great potential to directly detect
243 known and unknown pathogens including viruses, bacteria, fungi and parasites
244 in a single application, the laborious and time-consuming steps in traditional
245  RNA library construction procedure hinders its clinical application. As a rapid

246  and convenient one-tube RNA-seq library construction method, TRACE-seq

10
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247  significantly lower the barrier for extensive application of unbiased RNA-seq in
248  clinical diagnosis. In addition, multiplexing libraries by utilizing Tn5 transposase
249  containing barcoded adaptors could enable sample investigation in a high-
250 throughput manner, particularly when comprehensive surveillance for emerging
251  pathogens is needed during a sudden disease outbreak.

252

253 It is very challenging to discriminate pathogens from background commensal
254  microbiota, since substantive bacteria or fungi can colonize multiple body sites
255  of healthy individuals. The microbe present at a relatively higher abundance in
256  patients compared to healthy individuals are often considered as a pathogen,
257  yet the abundance thresholds indicating infection is difficult to define based
258  solely on microbiome information. On the other hand, host transcriptional
259  profiling has been reported to distinguish infectious and noninfectious diseases
260  (30) and to further discriminate between virial and bacterial infections (29). A
261  previous study integrates host response and unbiased microbe detection for
262  lower respiratory tract infection diagnosis in critically ill adults, using both RNA-
263  seq and DNA-seq but yet lacking antibiotic resistance analysis (3). Another
264  study characterized microbial gene expression profiles (including antibiotic
265  resistance genes) using nasal and throat swab samples, and host response
266  using blood samples during influenza infection (34). To our knowledge, this is
267  the first study integrating unbiased pathogens detection, antibiotic resistance
268 and host response in a single approach with throat swabs from COVID-19
269  patients. In our results, SARS-CoV-2 positive and negative samples differed
270  significantly in both microbiome composition and host response. Among SARS-

271 CoV-2 positive samples, sample C31 harbored a throat microbiome and host

11
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272 response notably distinct from others, indicating sufficiently different pathogens
273  presentin patient C31 compared to other samples. Moreover, TRACE-seq hold
274  the potential to construct a network of microbiome composition, antibiotic
275  resistance and host response for characterizing the complex host-microbiome
276 interactions. Ideally, TRACE-seq data can be utilized to develop a model
277  combining pathogens metric, antibiotic resistance and host transcriptional
278  classifier for infectious diseases diagnosis. We believe that the integrated
279  information acquired from a TRACE-seq library will deepen our understanding
280 of pathogenesis, improve diagnostic accuracy and more precisely inform
281  optimal antimicrobial treatment for infectious diseases caused by not only
282 SARS-CoV-2 but also other pathogens and eventually facilitate the utility of
283  metatranscriptomic profiling as a routine diagnostic method.

284

285 Materials and methods

286  Ethics statement

287  The study and use of all samples were approved by the Ethics Committee of
288  Wuhan Institue of Virology (No. WIVH17202001).

289

290 Sample collection and nucleotide extraction

291  Respiratory specimens (swabs) collected from patients admitted to various
292  Wuhan health care facilities were immediately placed into sterile tubes
293  containing 3 ml of viral transport media (VTM). The swabs were deactivated by
294  heating at 56°C for 30 minutes in a biosafety level 2 (BSL 2) laboratory at the
295 Wuhan Institute of Virology in Zhengdian Park with personal protection

296  equipment for biosafety level 3 (BSL 3) laboratory. Total nucleic acids were

12
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297  extracted using QlAamp 96 virus Qiacube HT kit on QlAxtractor Automated
298  extraction (Qiagen, US) following the manufacturer’s instructions.

299

300 TRACE-seq library preparation and sequencing

301 TRACE-seq libraries were constructed using TruePrep® RNA Library Prep Kit
302  for lllumina (Vazyme, TR502-01) according to the manufacturer’s instructions
303  with several modifications. 1/10 volume of total nucleic acids extracted from
304 each swab was used for each library. After 18 PCR cycles, the library was
305  purified using 0.8X Agencourt AMPure XP beads (Beckman Coulter) and eluted
306 in 20 pl nuclease-free water. The concentration of resulting libraries was
307 determined by Qubit 3.0 fluorometer with the Qubit dsDNA HS Assay kit
308  (Invitrogen) and the size distribution of libraries was assessed by Agilent 2100
309 Bioanalyzer. Finally, libraries were sequenced on the lllumina Hiseq X10
310 platform which generated 2 x 150 bp of paired-end raw reads.

311

312 Data preprocessing

313  Raw reads from sequencing were firstly subjected to Trim Galore (v0.6.4_dev)
314  (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) for quality
315  control and adaptor trimming. The minimal threshold of quality was 20, and the
316  minimal length of reads to remain was set as 20 nt.

317

318 Host transcriptional profiling analysis

319 Filtered reads were mapped to human genome (hg19) and transcriptome using
320 STAR (v2.7.1a) (35). The FPKM value for annotated genes was calculated by

321  cuffnorm (v2.2.1) (36), and genes with FPKM > 1 were considered to be

13
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322 expressed. Multidimensional scaling and differential gene expression analysis
323  were conducted using EdgeR (v3.28.1) (37) with gene count data generated by
324 HTSeq (v0.11.2) (38). Gene Ontology Enrichment Analysis for biological
325 processes was performed by DAVID (v6.8) (39) with all significantly up-
326 regulated genes as input. Due to the redundancy of enriched GO terms, GO
327 terms and their p values were further summarized using REViGO (40). The top
328 10 enriched representative GO terms were plotted.

329

330 Discrimination and de-novo assembly of SARS-CoV-2

331  After removal of human reads, the remaining data were aligned to the reference
332 genome of Wuhan-Hu-1 (GenBank accession number: NC_045512) using
333 Bowtie2 (v2.2.9) (41) for SARS-CoV-2 identification. The coverage and
334  sequencing depth of SARS-CoV-2 genome were calculated by Samtools (v1.9)
335 (42). On the other hand, to verify the method could screen for aetiologic agents
336 and obtain pathogen genome, all non-human reads were processed for de-
337  novo assembly using MEGAHIT (v1.2.9) with default parameters (43), and then
338 all contigs were searched against NCBI nt database using blastn for
339 classification(44). As for accuracy of assembly sequences, contigs determined
340 to come from SARS-CoV-2 were performed blastn (with the parameter “-outfmt
341  3”) to display the differences with corresponding genome.

342

343  Microbiome analysis

344  After removing human reads, the remaining reads were subjected to microbial
345 taxonomic classification using Kraken2 (v2.0.8-beta) (45) with a custom

346  database. To build the custom database, standard RefSeq complete bacterial

14
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347 genomes were downloaded through “kraken2-build --download-library bacteria”
348 and complete genomes of human viruses and genome assemblies of fungi
349  were downloaded from NCBI's RefSeq and added to the custom database’s
350 genomic library using the “--add-to-library” switch. Principal coordinate analysis
351  (PCoA) of relative abundances of microbial taxa at the genus level was done
352 using cmdscale command in R. Distances between samples were calculated
353 using Morisita-horn dissimilarity index by vegdist command from vegan
354 package version 2.5-6 (https://CRAN.R-project.org/package=vegan). The
355 antibiotic resistance genes were annotated by aligning the filtered
356 metatranscriptomic reads to the Comprehensive Antibiotic Resistance
357 Database (CARD). Antibiotic resistance genes with more than 10 completely
358 matching reads were considered. The relative expression of antibiotic
359 resistance genes were determined as RPM (reads per million non-host reads).
360  All corresponding graphs were plotted using R scripts by RStudio (v1.2.5033)
361  (https://rstudio.com/).
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Figure 1. Workflow of TRACE-seq enabled metatranscriptomic sequencing for
clinical diagnosis. a. A wet lab protocol of TRACE-seq starting with total RNA
extracted from throat swabs of COVID-19 patients. b. A dry lab pipeline
including known and unknown pathogens identification and host response

characterization.
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500 Figure 2. Genome coverage of SARS-CoV-2. a. Correlation between SARS-
501 CoV-2 sequencing reads and Ct value in 13 positive samples. From the left
502  to the right: the correlation of the ratio of SARS-CoV-2 reads, the coverage
503 of SARS-CoV-2 genome, the average sequencing depth, the median
504  sequencing depth and the Ct value of each sample are shown in order. The
505 red dots represent samples with abnormal sequencing results, and linear
506 regression indicates the relationship between the sequencing data and the
507  Ct value of samples with normal sequencing results (blue dots). b. Genome
508 coverage of sequenced samples across the SARS-CoV-2 genome. The x
509 axis represents the virus genome position, y axis represents the log10 depth
510  of each site. Lines in red represent the mean sequencing depth, lines in blue
511 represent the median sequencing depth, and areas in grey represent 25" to
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512 75™ percentile of sequencing depth. c. Length distribution of contigs matched
513 SARS-CoV-2. The x axis represents each sample, and the y axis represents
514 log1o lengths of contigs matched SARS-CoV-2. d. De novo assembly results
515  of SARS-CoV-2. The graph shows contigs only when the length of matched
516  to the SARS-COV-2 genome over 1,000 bp. The y axis represents length of
517 contigs of each sample (the x axis). Different colors represent the number of
518  error bases (shown in legends) in each contig relative to previously known

519 genome sequences.
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522  Figure 3. Microbiome profiles in COVID-19 patients and healthy individuals. a.
523  Histogram showing percentage of reads mapping to human, viruses, bacteria
524  and fungi for the individual samples. b. PCoA of microbiome using relative
525 abundance at the genus level. ¢. Heatmap showing relative abundance of
526  potential respiratory pathogens identified in SARS-CoV-2 positive and negative
527 samples. RPM: reads per million non-host reads. d. Heatmap displaying
528  relative abundance of antibiotic resistance genes in SARS-CoV-2 positive and

529  negative samples.
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532  Figure 4. Profiling of host transcriptional response. a. Bar plot showing gene
533 numbers detected in each sample. b. MDS plot showing variation among
534 samples based on host transcriptional profiles. ¢. Volcano plot showing
535  differentially expressed genes between SARS-CoV-2 positive and negative
536 samples. Significantly up- and down-regulated genes (padj < 0.05,
537 |log2FoldChage| > 1) are highlighted in red and blue, respectively. d. Bar plot
538 of the most enriched Gene Ontology terms. e. Heatmap presenting the
539 differentially expressed immune response related genes between SARS-CoV-

540 2 positive and negative samples.
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