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Abstract  28 

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by 29 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 30 

poses a severe threat to humanity. Rapid and comprehensive analysis of both 31 

pathogen and host sequencing data is critical to track infection and inform 32 

therapies. In this study, we performed unbiased metatranscriptomic analysis of 33 

clinical samples from COVID-19 patients using a newly-developed RNA-seq 34 

library construction method (TRACE-seq), which utilizes tagmentation activity 35 

of Tn5 on RNA/DNA hybrids. This approach avoids the laborious and time-36 

consuming steps in traditional RNA-seq procedure, and hence is fast, sensitive 37 

and convenient. We demonstrated that TRACE-seq allowed integrated 38 

characterization of full genome information of SARS-CoV-2, putative pathogens 39 

causing coinfection, antibiotic resistance and host response from single throat 40 

swabs. We believe that the integrated information will deepen our 41 

understanding of pathogenesis and improve diagnostic accuracy for infectious 42 

diseases. 43 

  44 

Keywords: SARS-CoV-2, COVID-19, metatranscriptomics, coinfection, 45 

antibiotic resistance, host response, TRACE-seq, Tn5.  46 
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Introduction 47 

Longstanding, emerging, and re-emerging infectious diseases continuously 48 

threaten human health across centuries(1). Precise and rapid identification of 49 

pathogens from clinical samples is important for both guiding infection 50 

treatment strategies and monitoring novel infectious disease outbreaks, e.g. 51 

the outbreak of SARS-CoV-2, in the community. While most nucleic acid 52 

amplification-based and pathogen specific antibody detection-based molecular 53 

techniques only detect a limited number of pathogens and need their prior 54 

knowledge, metagenomic or meta-transcriptomic approaches allow for 55 

comprehensive and unbiased identification and characterization of microbiome 56 

directly from clinical specimens(2).  57 

 58 

Compared to meta-genomic sequencing, meta-transcriptomic sequencing has 59 

several distinct advantages: it permits detection of RNA viruses that would not 60 

be interpreted in metagenomic data, reveals transcriptionally active organism(s) 61 

which are more etiologically important, and indicates host immune response 62 

which is essential to distinguish true pathogens from colonizers(3-5). However, 63 

the laborious and time-consuming steps in traditional RNA-seq experiments  64 

hinder the development of meta-transcriptomic based clinical diagnostics for 65 

rapid pathogen identification. 66 

 67 

Very recently, we and others have independently developed a rapid and cost-68 

effective RNA-seq method, based on Tn5 tagmentation activity towards 69 

RNA/DNA hybrids(6, 7). Our method, termed “TRACE-seq”, enables rapid one-70 

tube library construction for RNA-seq experiments and shows excellent 71 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.15.340794doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.15.340794
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

performance in compsrison to traditional RNA-seq methods. We thus 72 

envisioned that this convenient and sensitive method could be applied to 73 

clinical specimens for unbiased meta-transcriptomic analysis. In this study, we 74 

modified the TRACE-seq procedure, shorten the total time and optimized 75 

analytical pipeline to meet the needs for clinical meta-transcriptomic diagnosis 76 

and analysis. We then applyed TRACE-seq to meta-transcriptomic sequencing 77 

of single throat swabs specimens from COVID-19 patients and healthy 78 

individuals. We found library construction of specimens could be accomplished 79 

in ~2h with high quality. Analysis of TRACE-seq meta-transcriptomic data of 13 80 

SARS-CoV-2 positive samples and 2 negative samples demonstrated the 81 

success of this method to sensitively detect SARS-CoV-2 with high coverage 82 

even for samples with relatively high Ct values, or to assemble unknown 83 

microbe genome de novo (using SARS-CoV-2 as an example). Moreover, 84 

TRACE-seq sensitively detected the microbiome and simultaneously allowed 85 

for interrogating antibiotic resistance and host responses. Taken together, 86 

TRACE-seq enables unbiased pathogen detection and could have broad 87 

applications in meta-transcriptomic study and clinical diagnosis.  88 

 89 

Results 90 

TRACE-seq enables metatranscriptomic analysis 91 

To perform metatranscriptomic analysis on clinical samples, such as throat 92 

swabs in this study, we made several modifications to TRACE-seq. First, to 93 

achieve unbiased sequencing of microbiome, we used both random hexamer 94 

and oligo d(T)23VN primers for reverse transcription, using approximately 1/10 95 

total RNA extracted from a single throat swab as input. Secondly, we reduced 96 
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the total time of library construction to around 2 hours (Figure 1a), which 97 

enables TRACE-seq to be more compatible for clinical use, especially when 98 

substantial numbers of specimens require investigation. Third, we developed a 99 

tailored analytical pipeline of TRACE-seq to simultaneously identify known and 100 

unknown pathogens and at the meanwhile to characterize host transcriptional 101 

response in a single metatranscriptomic profiling reaction (Figure 1b). This new 102 

pipeline allowed us to obtain rich information from the metatranscriptomic data 103 

generated by the modified TRACE-seq. 104 

  105 

Sensitive detection of SARS-CoV-2 genome 106 

Since the samples were positive or suspected positive throat swabs from 107 

COVID-19 patients, we asked whether the untargeted meta-transcriptomic 108 

sequencing could yield a full genome sequence of SARS-CoV-2 virus. After 109 

removing low quality reads and human reads, the remaining reads were 110 

mapped to the SARS-CoV-2 reference genome Wuhan-Hu-1 (accession 111 

number: NC_045512). Sequencing covered the reference genome from 171 bp 112 

to 29,903 bp (0.57%-100%), with an average sequencing depth from 2.56× to 113 

44,737× (Supplementary table 1). Four samples (B101, A193, B13, C1) with 114 

low Ct values showed poor coverage and sequencing depth; the isolated RNA 115 

samples from the throat swabs were repeatedly frozen and thawed, probably 116 

compromising the integrity of RNA and hence were excluded. The other nine 117 

samples were used for subsequent correlation analysis. Among the remaining 118 

nine samples, the proportion of obtained reads of SARS-CoV-2, the coverage 119 

to the reference genome, the average sequencing depth and the median 120 

sequencing depth all showed a negative correlation with the Ct value of the 121 
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samples (Spearman test, p < 0.05) (Figure 2a). In addition, the whole genome 122 

sequence could be acquired from mapping-based approach when the Ct value 123 

is as high as 32 (n=4, 44.44% of samples), with the average sequencing depth 124 

of 131×. Even in samples with Ct values up to 35 (n=7, 77.78% of samples), 125 

more than 94% of genome can be covered by TRACE-seq (Figure 2b, 126 

Supplementary table 1, Supplementary figure 1). 127 

  128 

Reconstruction of full-length genome of SARS-CoV-2 129 

Of the 452,865 contigs (average 34,836, from 18,160 to 53,415) assembled de-130 

novo from non-human reads, 3,500 contigs (average 269, from 0 to 2,976) were 131 

determined to be SARS-CoV-2 genome fragments. There were no SARS-CoV-132 

2 contigs in sample C31, B101 and B13. Most of contigs (n=3,461, 98.89%) 133 

were less than 1,000 bp (Figure 2c). To determine the accuracy of this method 134 

in acquisition of pathogen genome, all SARS-CoV-2 contigs were searched 135 

against genomes of each sample. In contigs with matched length over 1,000 136 

bp, most contigs (22/39, 56.41%) were completely consistent with their 137 

corresponding genome (Figure 2d), while the other contigs had error bases 138 

from 1 to 7. In samples C14 and C13 with excellent coverage and depth, almost 139 

full-length genome (29,793 bp and 29,825 bp) were obtained just from de-novo 140 

assembly. Thus, TRACE-seq could enable the de-novo assembly of the 141 

complete genome of unknown pathogens and be readily utilized to identify 142 

emerging pathogens in patients with unknown etiology of infection and 143 

efficiently complement routine diagnostics. 144 

 145 

Unbiased identification of putative pathogens in addition to SARS-CoV-2 146 
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It is widely reported that coinfection (multi-species infection) contributes to 147 

enhanced morbidity and mortality, especially in elderly and immunosuppressed 148 

influenza patients(8, 9). Thus, we were curious to see if our metatranscriptomic 149 

sequencing approach could capture other pathogens in addition to SARS-CoV-150 

2. Indeed, alignment of TRACE-seq data to microbe reference databases 151 

identified many bacteria, fungi and viruses in both patient and healthy samples 152 

(Figure 3a). To assess whether COVID-19 patients and healthy individuals have 153 

different microbe community in their throat, principal coordinates analysis 154 

(PCoA) was conducted using relative abundance of the microbiome. We 155 

observed that COVID-19 patients harbored a throat microbiome that is quite 156 

different from healthy individuals (Figure 3b). In addition, sample C31 differed 157 

significantly from other SARS-CoV-2 positive samples. Further investigation of 158 

the relative abundance of probable respiratory pathogens revealed that patient 159 

C31 contained the most abundant Klebsiella pneumoniae and Human 160 

gammaherpesvirus 4, compared to other samples (Figure 3c), which might be 161 

a cause of the separation between sample C31 and the rest of the SARS-CoV-162 

2 positive samples.  163 

 164 

Among the probable respiratory pathogens listed in Figure 3c, 165 

Stenotrophomonas maltophilia，Haemophilus parainfluenzae, Staphylococcus 166 

aureus, Streptococcus pneumoniae, Haemophilus influenzae and 167 

Acinetobacter baumannii are common commensal organism of the normal 168 

oropharynx, however, they can also become opportunistic pathogens and 169 

cause infectious disease, such as endocarditis, bacteremia and pneumonia(10-170 

13). Klebsiella pneumoniae, Stenotrophomonas maltophilia, Pseudomonas 171 
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aeruginosa, Neisseria meningitidis and Legionella pneumophila cause disease 172 

infrequently in normal hosts but can be a major cause of infection in patients 173 

with underlying or immunocompromising conditions(14-18). Mycoplasma 174 

pneumoniae is a type of “atypical” bacteria that commonly causes mild 175 

infections of the respiratory system(19). As for identified fungi, Candida 176 

dubliniensis and Candida albicans are both opportunistic yeast and can be 177 

detected in the gastrointestinal tract in healthy adults; they were also known to 178 

cause respiratory diseases (20-22). Human respirovirus 1, also known as 179 

Human parainfluenza virus 1, is the most common cause of croup and also 180 

associated with pneumonia. Human gammaherpesvirus 4 is one of the most 181 

common viruses in human; it is best known as the cause of infectious 182 

mononucleosis (23, 24), and is also constantly detected in lungs of patients with 183 

idiopathic pulmonary fibrosis (25). In our results, a relatively high abundance of 184 

Haemophilus parainfluenzae, Streptococcus pneumoniae, Acinetobacter 185 

baumannii, Pseudomonas aeruginosa and Neisseria meningitidis were 186 

identified in several SARS-CoV-2 positive samples compared with negative 187 

samples, which indicated potential coinfection. Nevertheless, these data by 188 

itself could not prove that COVID-19 patients were coinfected by these 189 

identified microorganism; these data have to be carefully interpreted in the 190 

clinical context. 191 

 192 

Profiles of antibiotic resistance genes  193 

Antimicrobial resistance has become a global issue. Pathogens with antibiotic 194 

resistance are increasing and many pathogens are becoming multidrug-195 

resistant (26, 27). To characterize antibiotic resistance gene expression profiles, 196 
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we aligned metatranscriptomic reads against the Comprehensive Antibiotic 197 

Resistance Database (CARD) (28). On average, around 84 antibiotic 198 

resistance genes were identified in SARS-CoV-2 positive samples, while only 199 

around 23 genes were identified in negative samples. According to the CARD, 200 

the identified antibiotic resistance genes confer resistance to 23 classes of 201 

antibiotics. Almost all resistance gene classes were more abundant in COVID-202 

19 patients compared to healthy individuals. Genes conferring resistance to 203 

beta-lactam, aminoglycoside, tetracycline, phenicol, rifamycin, fluoroquinolone 204 

and macrolide were the most abundant (Figure 3d). Overall, the distinct 205 

microbiome, emergence of potential coinfection, and the elevated abundance 206 

of antibiotic resistance genes provide new data for establishing clinical 207 

therapeutic scheme during the treatment for COVID-19 patients.  208 

 209 

Characterization of host response to SARS-CoV-2 210 

Distinguishing infection from colonization remains challenging. Because host 211 

transcriptional profiling has emerged as a promising diagnostic tool for 212 

infectious diseases (29, 30), we next tested whether the host response to 213 

SARS-CoV-2 could be simultaneously characterized by TRACE-seq mediated 214 

metatranscriptomic analysis from throat swabs. As shown in Figure 3a, a 215 

substantial percentage of the reads are derived from human, and an average 216 

of 14,766 human genes with FPKM > 1 were detected per sample (Figure 4a, 217 

Figure S2a and b). Based on the gene expression profiles, the relationships 218 

between samples were inspected using a multidimensional scaling (MDS) plot 219 

(Figure 4b). As expected, SARS-CoV-2 positive samples were clearly 220 

separated from negative samples. In addition, sample C31 differed significantly 221 
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in host gene expression from other SARS-CoV-2 positive samples, which might 222 

be caused by the relatively high abundance of Klebsiella pneumoniae and 223 

Human gammaherpesvirus 4 identified in sample C31. To characterize the 224 

common host response to SARS-CoV-2, we excluded sample C31 when 225 

performing differential gene expression analysis between SARS-CoV-2 positive 226 

and negative samples. We identified 153 differentially expressed genes, 149 of 227 

which were up-regulated (Figure 4c, Figure S2c). Gene Ontology enrichment 228 

analysis identified the top up-regulated biological processes to be immune 229 

response, defense response, viral process and response to cytokine (Figure 230 

4d). Further investigation revealed that a subset of up-regulated genes involve 231 

in IL1B-associated inflammatory response (IL1B, IL8, IL36A, CXCR2, FOS, 232 

ANXA1, CASP4, KRT16, S100A8, S100A9). Moreover, another subset of up-233 

regulated genes (ISG15, EGR1, IFI27, IFIT2, IFIT3, IFITM1, IFITM2, IFITM3, 234 

HLA-B, HLA-C) were enriched in type I interferon signaling pathway (Figure 4e). 235 

These results were highly consistent with previously reported host response to 236 

SARS-CoV-2 (31-33). Overall, metatranscriptomic data via TRACE-seq of 237 

throat swab samples demonstrates reliable performance in characterization of 238 

host transcriptional response to the infection of SARS-CoV-2.  239 

 240 

Discussion 241 

Although next generation sequencing holds a great potential to directly detect 242 

known and unknown pathogens including viruses, bacteria, fungi and parasites 243 

in a single application, the laborious and time-consuming steps in traditional 244 

RNA library construction procedure hinders its clinical application. As a rapid 245 

and convenient one-tube RNA-seq library construction method, TRACE-seq 246 
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significantly lower the barrier for extensive application of unbiased RNA-seq in 247 

clinical diagnosis. In addition, multiplexing libraries by utilizing Tn5 transposase 248 

containing barcoded adaptors could enable sample investigation in a high-249 

throughput manner, particularly when comprehensive surveillance for emerging 250 

pathogens is needed during a sudden disease outbreak. 251 

 252 

It is very challenging to discriminate pathogens from background commensal 253 

microbiota, since substantive bacteria or fungi can colonize multiple body sites 254 

of healthy individuals. The microbe present at a relatively higher abundance in 255 

patients compared to healthy individuals are often considered as a pathogen, 256 

yet the abundance thresholds indicating infection is difficult to define based 257 

solely on microbiome information. On the other hand, host transcriptional 258 

profiling has been reported to distinguish infectious and noninfectious diseases 259 

(30) and to further discriminate between virial and bacterial infections (29). A 260 

previous study integrates host response and unbiased microbe detection for 261 

lower respiratory tract infection diagnosis in critically ill adults, using both RNA-262 

seq and DNA-seq but yet lacking antibiotic resistance analysis (3). Another 263 

study characterized microbial gene expression profiles (including antibiotic 264 

resistance genes) using nasal and throat swab samples, and host response 265 

using blood samples during influenza infection (34). To our knowledge, this is 266 

the first study integrating unbiased pathogens detection, antibiotic resistance 267 

and host response in a single approach with throat swabs from COVID-19 268 

patients. In our results, SARS-CoV-2 positive and negative samples differed 269 

significantly in both microbiome composition and host response. Among SARS-270 

CoV-2 positive samples, sample C31 harbored a throat microbiome and host 271 
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response notably distinct from others, indicating sufficiently different pathogens 272 

present in patient C31 compared to other samples. Moreover, TRACE-seq hold 273 

the potential to construct a network of microbiome composition, antibiotic 274 

resistance and host response for characterizing the complex host-microbiome 275 

interactions. Ideally, TRACE-seq data can be utilized to develop a model 276 

combining pathogens metric, antibiotic resistance and host transcriptional 277 

classifier for infectious diseases diagnosis. We believe that the integrated 278 

information acquired from a TRACE-seq library will deepen our understanding 279 

of pathogenesis, improve diagnostic accuracy and more precisely inform 280 

optimal antimicrobial treatment for infectious diseases caused by not only 281 

SARS-CoV-2 but also other pathogens and eventually facilitate the utility of 282 

metatranscriptomic profiling as a routine diagnostic method.  283 

 284 

Materials and methods 285 

Ethics statement 286 

The study and use of all samples were approved by the Ethics Committee of 287 

Wuhan Institue of Virology (No. WIVH17202001). 288 

 289 

Sample collection and nucleotide extraction 290 

Respiratory specimens (swabs) collected from patients admitted to various 291 

Wuhan health care facilities were immediately placed into sterile tubes 292 

containing 3 ml of viral transport media (VTM). The swabs were deactivated by 293 

heating at 56℃ for 30 minutes in a biosafety level 2 (BSL 2) laboratory at the 294 

Wuhan Institute of Virology in Zhengdian Park with personal protection 295 

equipment for biosafety level 3 (BSL 3) laboratory. Total nucleic acids were 296 
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extracted using QIAamp 96 virus Qiacube HT kit on QIAxtractor Automated 297 

extraction (Qiagen, US) following the manufacturer’s instructions.  298 

 299 

TRACE-seq library preparation and sequencing 300 

TRACE-seq libraries were constructed using TruePrep® RNA Library Prep Kit 301 

for Illumina (Vazyme, TR502-01) according to the manufacturer’s instructions 302 

with several modifications. 1/10 volume of total nucleic acids extracted from 303 

each swab was used for each library. After 18 PCR cycles, the library was 304 

purified using 0.8X Agencourt AMPure XP beads (Beckman Coulter) and eluted 305 

in 20 μl nuclease-free water. The concentration of resulting libraries was 306 

determined by Qubit 3.0 fluorometer with the Qubit dsDNA HS Assay kit 307 

(Invitrogen) and the size distribution of libraries was assessed by Agilent 2100 308 

Bioanalyzer. Finally, libraries were sequenced on the Illumina Hiseq X10 309 

platform which generated 2 x 150 bp of paired-end raw reads. 310 

 311 

Data preprocessing 312 

Raw reads from sequencing were firstly subjected to Trim Galore (v0.6.4_dev) 313 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) for quality 314 

control and adaptor trimming. The minimal threshold of quality was 20, and the 315 

minimal length of reads to remain was set as 20 nt.  316 

 317 

Host transcriptional profiling analysis  318 

Filtered reads were mapped to human genome (hg19) and transcriptome using 319 

STAR (v2.7.1a) (35). The FPKM value for annotated genes was calculated by 320 

cuffnorm (v2.2.1) (36), and genes with FPKM > 1 were considered to be 321 
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expressed. Multidimensional scaling and differential gene expression analysis 322 

were conducted using EdgeR (v3.28.1) (37) with gene count data generated by 323 

HTSeq (v0.11.2) (38). Gene Ontology Enrichment Analysis for biological 324 

processes was performed by DAVID (v6.8) (39) with all significantly up-325 

regulated genes as input. Due to the redundancy of enriched GO terms, GO 326 

terms and their p values were further summarized using REViGO (40). The top 327 

10 enriched representative GO terms were plotted.  328 

 329 

Discrimination and de-novo assembly of SARS-CoV-2 330 

After removal of human reads, the remaining data were aligned to the reference 331 

genome of Wuhan-Hu-1 (GenBank accession number: NC_045512) using 332 

Bowtie2 (v2.2.9) (41) for SARS-CoV-2 identification. The coverage and 333 

sequencing depth of SARS-CoV-2 genome were calculated by Samtools (v1.9) 334 

(42). On the other hand, to verify the method could screen for aetiologic agents 335 

and obtain pathogen genome, all non-human reads were processed for de-336 

novo assembly using MEGAHIT (v1.2.9) with default parameters (43), and then 337 

all contigs were searched against NCBI nt database using blastn for 338 

classification(44). As for accuracy of assembly sequences, contigs determined 339 

to come from SARS-CoV-2 were performed blastn (with the parameter “-outfmt 340 

3”) to display the differences with corresponding genome. 341 

 342 

Microbiome analysis 343 

After removing human reads, the remaining reads were subjected to microbial 344 

taxonomic classification using Kraken2 (v2.0.8-beta) (45) with a custom 345 

database. To build the custom database, standard RefSeq complete bacterial 346 
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genomes were downloaded through “kraken2-build --download-library bacteria” 347 

and complete genomes of human viruses and genome assemblies of fungi 348 

were downloaded from NCBI’s RefSeq and added to the custom database’s 349 

genomic library using the “--add-to-library” switch. Principal coordinate analysis 350 

(PCoA) of relative abundances of microbial taxa at the genus level was done 351 

using cmdscale command in R. Distances between samples were calculated 352 

using Morisita-horn dissimilarity index by vegdist command from vegan 353 

package version 2.5-6 (https://CRAN.R-project.org/package=vegan). The 354 

antibiotic resistance genes were annotated by aligning the filtered 355 

metatranscriptomic reads to the Comprehensive Antibiotic Resistance 356 

Database (CARD). Antibiotic resistance genes with more than 10 completely 357 

matching reads were considered. The relative expression of antibiotic 358 

resistance genes were determined as RPM (reads per million non-host reads). 359 

All corresponding graphs were plotted using R scripts by RStudio (v1.2.5033) 360 

(https://rstudio.com/).  361 
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 491 

 492 

Figure 1. Workflow of TRACE-seq enabled metatranscriptomic sequencing for 493 

clinical diagnosis. a. A wet lab protocol of TRACE-seq starting with total RNA 494 

extracted from throat swabs of COVID-19 patients. b. A dry lab pipeline 495 

including known and unknown pathogens identification and host response 496 

characterization. 497 
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 499 

Figure 2. Genome coverage of SARS-CoV-2. a. Correlation between SARS-500 

CoV-2 sequencing reads and Ct value in 13 positive samples. From the left 501 

to the right: the correlation of the ratio of SARS-CoV-2 reads, the coverage 502 

of SARS-CoV-2 genome, the average sequencing depth, the median 503 

sequencing depth and the Ct value of each sample are shown in order. The 504 

red dots represent samples with abnormal sequencing results, and linear 505 

regression indicates the relationship between the sequencing data and the 506 

Ct value of samples with normal sequencing results (blue dots). b. Genome 507 

coverage of sequenced samples across the SARS-CoV-2 genome. The x 508 

axis represents the virus genome position, y axis represents the log10 depth 509 

of each site. Lines in red represent the mean sequencing depth, lines in blue 510 

represent the median sequencing depth, and areas in grey represent 25th to 511 
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75th percentile of sequencing depth. c. Length distribution of contigs matched 512 

SARS-CoV-2. The x axis represents each sample, and the y axis represents 513 

log10 lengths of contigs matched SARS-CoV-2. d. De novo assembly results 514 

of SARS-CoV-2. The graph shows contigs only when the length of matched 515 

to the SARS-COV-2 genome over 1,000 bp. The y axis represents length of 516 

contigs of each sample (the x axis). Different colors represent the number of 517 

error bases (shown in legends) in each contig relative to previously known 518 

genome sequences. 519 

   520 
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 521 

Figure 3. Microbiome profiles in COVID-19 patients and healthy individuals. a. 522 

Histogram showing percentage of reads mapping to human, viruses, bacteria 523 

and fungi for the individual samples. b. PCoA of microbiome using relative 524 

abundance at the genus level. c. Heatmap showing relative abundance of 525 

potential respiratory pathogens identified in SARS-CoV-2 positive and negative 526 

samples. RPM: reads per million non-host reads. d. Heatmap displaying 527 

relative abundance of antibiotic resistance genes in SARS-CoV-2 positive and 528 

negative samples. 529 
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 531 

Figure 4. Profiling of host transcriptional response. a. Bar plot showing gene 532 

numbers detected in each sample. b. MDS plot showing variation among 533 

samples based on host transcriptional profiles. c. Volcano plot showing 534 

differentially expressed genes between SARS-CoV-2 positive and negative 535 

samples. Significantly up- and down-regulated genes (padj < 0.05, 536 

|log2FoldChage| > 1) are highlighted in red and blue, respectively. d. Bar plot 537 

of the most enriched Gene Ontology terms. e. Heatmap presenting the 538 

differentially expressed immune response related genes between SARS-CoV-539 

2 positive and negative samples.  540 
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