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SUMMARY:

Deciphering mechanisms in cell fate decisions requires single-cell holistic
reconstructions of multi-dimensional epigenome in transcriptional regulation. Here we
develop CoTECH, a combinatorial barcoding method allowing for high-throughput
single-cell joint detection of chromatin occupancy and transcriptome. First, we used
CoTECH to examine bivalent histone marks (H3K4me3 and H3K27me3) with
transcription from naive to primed mouse embryonic stem cells. Concurrent bivalent
marks in pseudo-single cells linked via transcriptome were computationally derived,
resolving pseudotemporal bivalency trajectories and disentangling a context-specific
interplay between H3K4me3/H3K27me3 and transcription level. Next, CoTECH with
H3K27ac, an active enhancer marker, revealed the regulatory basis of
endothelial-to-hematopoietic transition in two waves of hematopoietic cells and
distinctive enhancer-gene linking schemes guiding hemogenic endothelial cell (HEC)
emergence, indicating a unique epigenetic control of transcriptional regulation for
hematopoietic stem cell priming. Together, CoTECH provides an efficient framework for
single-cell co-assay of chromatin occupancy and transcription, thus, enabling

higher-dimensional epigenomic reconstructions.
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INTRODUCTION

Single-cell transcriptome sequencing (scRNA-seq) has revolutionized our
understanding of cellular heterogeneity in physiological and pathological biological
processes (Bowling et al., 2020; Cao et al., 2019; Klein et al., 2015; Macosko et al., 2015;
Patel et al., 2014; Picelli et al., 2013; Pijuan-Sala et al., 2019; Regev et al., 2017,
Spanjaard et al., 2018; Tabula Muris et al., 2018; Tang et al., 2009; Zhou et al., 2016).
The transcriptome and cell identities of different cell types/states with the same DNA are
determined by multilayers of epigenetic information. Recently, technologies for
single-cell profiling of multi-dimensional chromatin states have been developed, such as
various scChlP-seq techniques for DNA-binding proteins and histone modifications (Ai et
al., 2019; Kaya-Okur et al., 2019; Ku et al., 2019; Rotem et al., 2015; Wang et al., 2019),
scATAC-seq for chromatin accessibility (Buenrostro et al., 2015), MNase-seq for
nucleosome positioning (Lai et al., 2018), scBS-seq for DNA methylome (Guo et al.,
2015) and scHiC for higher-order chromatin structure (Nagano et al., 2013). Although
these methods measure multiple modalities of single cells, each provides only specific
layers of cellular heterogeneities. To build connections across these layers in single cells,
innovative computational platforms emerge to integrate unpaired single-cell omics
datasets and project different molecular information into a common latent space
(Efremova and Teichmann, 2020; Stuart et al., 2019). However, existing strategies
require priori knowledge-based correspondence across multimodal omics datasets from
different experiments, limiting the ability to reconstruct an accurate view of functional
relationship between different modalities of epigenomic features and gene expression as

well as the crosstalk between different epigenetic layers.

More recently, unlike those profiling molecular layers one at a time, new approaches
have been developed to experimentally link the transcriptome and epigenome by
simultaneously measuring multi-omics in the same single cells, making it possible to

precisely analyze single-cell-resolved epigenomic regulation of gene expression and cell
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fate decisions. For example, several various single-cell co-assays (combined
scATAC-and scRNA-seq) for joint analysis of accessible chromatin and gene expression
have been developed, permitting inference of the correlation between cis-regulatory
elements and putative target genes (Cao et al., 2018; Chen et al., 2019; Clark et al.,

2018; Zhu et al., 2019) .

Apart from chromatin accessibility, other important molecular layers of the
epigenome are covalent modifications to histones and chromatin occupancy of DNA
binding proteins, providing a critical guidance for determining transcriptional outcomes
(Park, 2009). Two elegant studies demonstrated the proof-of-concept application of
simultaneously quantifying of protein—DNA interactions and transcriptome in single cells
by scDam&T-seq and scCC (Moudgil et al., 2020; Rooijers et al., 2019). Both methods
rely on a transgene expressing transcription factors or chromatin binding proteins
tethered to Escherichia coli DNA adenine methyltransferase (Dam) or piggyBac
transposase for scDam&T-seq and scCC, respectively, limiting the likelihood of wide
adoption and the potential implementations, in particular for studying clinical human
samples. Moreover, the same strategy cannot measure various histone modifications in

single cells.

Here, we develop a high-throughput method for single-cell joint detection of
chromatin occupancy and transcriptome. This approach, named CoTECH (combined
assay of transcriptome and enriched chromatin binding), adopts a combinatorial indexing
strategy (Cusanovich et al., 2015; Wang et al., 2019) to enrich chromatin fragments of
interest as reported in CoBATCH in combination with a modified Smart-seg2 procedure
(Picelli et al., 2014) to simultaneously capture the 3' mMRNA profiles in the same single
cells. To demonstrate the utility of CoTECH, we used it to study the relationship between
multiple histone modifications and gene expression in mouse embryonic stem cells

(mESCs) and the regulatory basis of endothelial-to-hematopoietic transition (EHT) in two
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waves of hematopoietic cells. Experimentally linking chromatin occupancy to
transcriptional outputs and inferred molecular association between multimodal omics
datasets made possible by CoTECH enables reconstructions of higher dimensional
epigenomic landscape, providing new insights into epigenome-centric gene regulation

and cellular heterogeneity in many biological processes.
RESULTS

Designing CoTECH for joint profiling of transcriptome and chromatin occupancy
in single cells

To accurately align the multi-layered omics information within the same cell, we
developed CoTECH, a method for a combinatorial indexing-based single-cell co-assay
for transcriptome and chromatin occupancy. Profiling chromatin parts in CoTECH is
based on our previously well-established CoBATCH (Wang et al., 2019) with a few
modifications that allow simultaneously measuring mRNA by the following steps (Figures
1 and S1; Table S1; STAR Methods): (i) Single cells on concanavalin A coated beads are
permeabilized and incubated with primary and secondary antibodies. (ii) Cells bound
with the antibody are distributed into a 96-well plate with protein A-fused Tn5 transposon
(PAT) assembled with a unique combination of T5 and T7 barcodes in each well. (iii) in
situ tagmentation of chromatin bound by the protein-antibody complex. (iv) Reverse
transcription of mRNA using oligo dT primer bearing an 8-bp well-specific first-round
RNA barcode and an 8-bp unique molecular identifier (UMI), and template switch using
TSO oligo. (v) Pooling and re-distribution of cells into multiple 96-/384-well plates. (vi)
Pre-amplification of cDNA and tagmented chromatin segments. (vii) DNA purification and
split into two halves for RNA- and DNA-devoted library preparation, separately. (viii) For
RNA-part, pre-amplified full-length cDNA is tagmented by transposon Tn5, and 3’ end of
the tagmented cDNA is amplified by introducing a second round of RNA index. (ix) For

DNA-part, chromatin DNA is amplified by using a pair of common adaptor primers in the
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Figure 1. Schematic design of CoTECH.

Single-cell suspension was incubated with antibody before FACS sorting 2,000 cells into
each well with a unique combination of barcoded adaptors with Tn5 fused to protein A as well
as barcoded primers for reverse transcription (RT). After tagmentation and RT, cells were
pooled together and redistributed into a number of secondary 96-well plates for pre-amplifi-
cation of both cDNA and genomic DNA parts. Samples were purified with AMPure XP beads
and divided into two halves for preparation of DNA and RNA libraries, respectively.
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first round and a pair of well-specific indexing primers in the second round of PCR.

To assess the ability of CoTECH based on combinatorial indexing to distinguish
single cells, we designed a proof-of-principle human-mouse “species-mixing” experiment
on H3K27ac and RNA in 1:1 mixed HEK293T and NIH 3T3 cells. We found that the
collision rate (the proportion of cells coincidentally receiving the same barcode
combination) was no more than 4% for both DNA and RNA portions, confirming a

successful indexing strategy for distinguishing single cells (Figures 2A and S2A-S2C).

We next performed CoTECH experiments on H3K4me3 and RNA in NIH 3T3 cells to
benchmark CoTECH and further evaluate the data quality. Reads from the RNA library
were highly enriched in exonic regions as demonstrated in the regions of Vim gene loci
from both aggregate CoTECH single-cell and bulk data (Figures 2B and S2D).
Expectedly, we observed strong H3K4me3 signals at the promoter region of the
representative gene for the corresponding DNA portion of CoTECH, low-input in situ
ChIP-seq, and bulk ChlP-seq datasets (Figure 2B). For DNA portion of CoTECH
experiments in NIH 3T3 cells, we acquired a median of 1,153 non-duplicated reads in
844 co-assayed cells, with a median FRIP (fraction of reads in peaks) of 62.9% (Figure
S2E). Global analysis revealed a high correlation (Pearson correlation coefficient, 0.92)
for the aggregate H3K4me3 signals between two CoTECH experiments. COTECH DNA
profiles markedly recapitulated those from in situ ChIP and bulk ChlP-seq at 25,311 peak
regions (Figures 2C and 2D). CoTECH RNA profiles were also highly reproducible
between two experiments (Pearson correlation coefficient, 0.87) (Figure 2E). The
CoTECH experiments on NIH 3T3 yielded a median of 3,490 UMIs (unique molecular
identifiers) per cell from 844 single cells (Figure 2F). We found 75% RNA reads mapped
to the mouse genome, with 40% of those mapped to exons (Figure S2D). Compared with
a recent high-throughput method in a different design, named scCC (Moudgil et al.,

2020), using a transgene expressing an exogenous TF-transposase fusion for profiling
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RNA and TF-DNA interactions, CoTECH captured more non-duplicated reads per cell in
DNA parts (~ 1,500 reads in COTECH versus ~ 10 reads in scCC) (Figures 2G, 2H and
S2F). We also benchmarked our CoTECH data alongside other high-throughput
multi-omics approaches (sci-CAR, Paired-seq and SNARE-seq)(Cao et al., 2018; Chen
et al., 2019; Zhu et al., 2019) but for joint assay of RNA and accessible chromatin. We
found that there were inappreciable differences in both the non-duplicated reads and
gene numbers detected per cell, while CoTECH exhibited markedly highest UMIs than
all of those (Figure S2G). Notably, optimizing the pre-amplification process for both DNA-
and RNA-devoted parts in K562 cells, we significantly improved the detection sensitivity
of DNA non-duplicated reads, yielding the median 3,023 reads (Figure S3). The
optimized protocol was then applied to the following CoTECH experiments. Taken
together, these results support that CoTECH is able to sufficiently capture both gene

expression and histone modifications in the same cell.

Profiling of bivalent histone marks in mESCs with CoTECH for reconstruction of
the gene-regulatory relationship

Next, we sought to explore the relationship between histone modifications
H3K4me3/H3K27me3 and transcription in single cells. After filtering out low-quality cells,
a total of 6,993 single cells with both chromatin occupancy and transcriptome were
obtained (3,907 cells for H3K4me3-RNA CoTECH and 3,086 cells for H3K27me3-RNA
CoTECH), with a median of 1,506 non-duplicated reads and 7,568 UMIs per cell, for
following analyses. Data quality in dual omics profiling was exemplified by specific
signals from CoTECH and public bulk datasets on genomic tracks at the Pou5f1 and
Gata2 gene loci, confirming the expected pattern for H3K4me3 (an active mark),
H3K27me3 (a repressive mark) and transcription in mESCs (Figure 3A). CoTECH
experiments in mMESCs presented a high robustness and reproducibility without batch

effect (Figures S4A-S4D). Using RNA profiles, cells were clustered into two

subpopulations (C1 and C2) annotated as “naive mESCs” and “primed mESCs”
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Figure 2. Assessing the ability of COTECH to capture histone mark and transcription in single cells.

(A) Scatter plot in the Human-mouse mix test for cells with both DNA and RNA profiles obtained.

(B) Track view displaying both H3K4me3 and RNA signals on a representative locus in NIH 3T3. Bulk H3K4me3
ChIP-seq and RNA-seq data were downloaded from GSM1544520 and GSM970853, respectively.

(C) Pearson correlation of H3K4me3 signals between two CoTECH experiments. Aggregate H3K4me3 signals were
log10 normalized.

(D) Average H3K4me3 signals from different datasets were plotted at the 2-kb flanking regions around the center of
25,311 peaks. Bulk data were from GSM1544520.

(E) Track view showing Pearson correlation of transcriptome between two CoTECH experiments. The transcription
level was normalized as TPM.

(F) The distribution of detected UMI between two CoTECH experiments in NIH 3T3 cells (n = 844).

(G-H) Violin plot showing the distribution of non-duplicated reads (DNA) (G), gene number (RNA) (H) in different
datasets across CoTECH and scCC (Moudgil et al., 2020). Processed data were downloaded from GSE148448.
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according to the expression of pluripotency marker genes (Figures 3B, 3C and S4E).
Independently, we also identified two clusters using either CoTECH H3K4me3 or
H3K27me3. 68.7% and 82.6% of co-assayed single cells from RNA-H3K4me3 and
RNA-H3K27me3 experiments exhibited concordant cluster assignment, respectively.
Most discordant cells at the border of C1 and C2 likely reflected an asynchronous
change between transcriptome and epigenome or suggested a need for considering
multimodal omics information together for cell clustering or definition during cell fate

transition (Figures 3D-3G).

A predominant view has asserted that H3K4me3 as an active mark on chromatin
plays an instructive role in transcriptional activation (Benayoun et al., 2014; Howe et al.,
2017; Ruthenburg et al., 2007). Next, we capitalized on joint multi-omics information by
CoTECH to revisit this question at single-cell and genome-wide spatial resolution.
Indeed, in agreement with previous reports on bulk ChlP-seq data, aggregate CoTECH
data in mESCs presented a positive correlation between the transcriptional level and
H3K4me3 signals on both the regions of transcription start site (TSS) £ 5 kb (Pearson
correlation coefficient; 0.75) and gene body + 100 kb (Pearson correlation coefficient;
0.79) (Figure 4A) (Barski et al., 2007; Santos-Rosa et al., 2002; Wang et al., 2008).
However, when examined at single cell resolution, this correlation was dramatically
reduced to 0.05 at TSS regions (Figure 4B), despite several pluripotency genes such as
Poubf1 and Kif4 still displayed an overall positive consistency (Figure 4C). Although it is
possible that the less significant correlation of H3K4me3 and gene expression at single
cells might be related with the data sparsity, this result also potentially reflected the
cell-to-cell asynchrony and variation on the molecular layers of transcriptome and

epigenome.

We examined the dynamic change in transcription and H3K4me3/H3K27me3 from

the naive to primed mESCs. We ordered single cells based on RNA profiles along a
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Figure 3. Single-cell joint detection of H3K4me3/H3K27me3 and transcription in mouse embryonic stem cells.
(A) Track view displaying both H3K4me3, H3K27me3 signals and transcription (RNA) on the representative locus in
mouse embryonic stem cells (MESCs). Bulk H3K4me3, H3K27me3 ChIP-seq and bulk RNA-seq data were downloaded
from GSM1000124, GSM1000089, and GSM723776, respectively.

(B-C) Dimension reduction of 6,993 single cells (both DNA and RNA detected) clustered by RNA profiles (B), and corre-
sponding H3K4me3 or H3K27me3 profiles (C) in mESCs.

(D-E) Diffusion map of 3,907 single cells (both DNA and RNA detected) clustered by H3K4me3 profiles (D) in mESCs.
Cells in the same clusters in both H3K4me3 and RNA data are labelled with “match”, otherwise labelled with “discordant”
in (E).

(F-G) Diffusion map of 3,086 single cells (both DNA and RNA detected) clustered by H3K27me3 profiles (F) in mESCs.
Cells in the same clusters in both H3K27me3 and RNA data are labelled with “match”, otherwise labelled with “discor-
dant” in (G).
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pseudotime trajectory by Monocle 2 (Figures S4F and S4G). Out of most differentially
expressed 129 genes, the pluripotency genes were downregulated and
ribosomal-protein genes were upregulated along pseudotime, consistent with
previously reported (Fortier et al., 2015). These genes in the single-cell matrix were
clustered into 3 classes according to the dynamic expression pattern along pseudotime
(Figures 4D and 4E). Interestingly, H3K4me3 signals gradually decayed in all classes
despite at differential decelerating rates along pseudotime. However, H3K27me3 signals
first quickly increased and plateaued in class 1. Class 2 exhibited a gradual increase in
transcription, but with H3K27me3 increasing first and then slowly decreasing.
Surprisingly, similar to the H3K27me3 pattern in class 2, class 3 displayed a gradual
decrease in transcription along pseudotime. Likewise, we examined these dynamic
patterns on constitutive genes in three quantiles ranked by the transcription level, finding
no change in each molecular level along pseudotime and suggesting the specificity
identified from most differentially expressed genes (Figures 4F and 4G). Together, our
data indicated that H3K4me3 and H3K27me3 played context-specific roles in gene
transcriptional regulation during cell fate dynamics, and that the current link between

H3K4me3 and transcription may not in general support the instructive role.

Reconstruction of single-cell histone bivalency dynamics in mESCs

Until now, simultaneously measuring more than two histone marks in single cells has
been unattainable. We attempted to fill this gap through integrating separate CoTECH
experiments with one on one histone mark together with transcriptome. We reasoned
that single cells were subjected to CoTECH for RNA and one histone mark per
experiment but multiple marks in single cells can be derived through the shared
transcriptome. Towards this goal, we established an analytical framework to explore the
relationship of multiple histone marks and transcriptome. By merging single cells with the
closest transcriptome but with different histone marks from separate CoTECH

experiments, a “pseudosingle cell” can be derived,. Histone bivalent domains have
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Figure 4. COTECH reveals both coupling and uncoupling of dynamic histone modifications and transcrip-
tion from naive to primed mESCs.

(A) Moving average plots showing correlation between RNA and H3K4me3 signals at TSS £ 5 kb (green) and gene
body + 100 kb (magenta) using aggregate CoTECH data.

(B) Distribution of correlation between RNA and H3K4me3 signals in single cells.

(C) Scatter plots showing the spearman correlation coefficients of H3K27me3 versus RNA signals (x axis) and
H3K4me3 versus RNA (y axis). Each dot represents one gene (top 2,000 variable genes were used).

(D) Heatmap showing the normalized RNA signals of differentially expressed genes across 6,993 mESCs (left),
normalized H3K4me3 (middle) signals in 3,907 cells and H3K27me3 (right) signals in 3,086 cells at gene body +
100-kb regions. 129 differentially expressed genes were clustered to three clades. The columns represent single
cells ordered by pseudotime.

(E) Aggregate curves showing average RNA , H3K4me3, H3K27me3 signals in (D) of three gene classes as in (D).
(F) Heatmap showing the normalized RNA signlas of differentially expressed genes across 6,993 mESCs (left),
normalized H3K4me3 (middle) signals in 3,907 cells and H3K27me3 (right) signals in 3,086 cells at gene body +
100 kb regions. 3,104 unchanged genes were divided into three groups based on the expression level. The
columns represent single cells ordered by pseudotime.

(G) Aggregate curves showing average RNA, H3K4me3, H3K27me3 signals in (F) of three gene classes as in (F).


https://doi.org/10.1101/2020.10.15.339226
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.339226; this version posted October 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

been defined as the regions co-enriched for H3K4me3 and H3K27me3, mostly around
developmental genes (Bernstein et al., 2006; Harikumar and Meshorer, 2015). Using this
framework, we analyzed the bivalency dynamics in mESCs (Figure 5A; STAR Methods).
In general, we merged 20 single cells into one pseudosingle cell, and integrated the
omics information from H3K4me3, H3K27me3 and gene expression. Second, we
defined a bivalency score (Dainese et al.,, 2020) by calculating H3K4me3 and
H3K27me3 signals in the pseudosingle cells using the equitation detailed in STAR
Methods. We first tested the feasibility of this bivalency score by using bulk data. Genes
marked with both H3K4me3 and H3K27me3 displayed a high bivalency score (e.g. Drd5)
while genes marked with either one presented a low bivalency score (e.g. Halr1 and
Hotair). This finding was also cross-verified as genes with high bivalency scores were
largely overlapped with the previously established bivalent gene list (Bernstein et al.,
2006) (Figures S5A and S5B). Next, we examined the bivalency dynamics during
transition from naive to primed state. Single cells were ordered along pseudotime and
603 genes with most variable bivalency scores were clustered into three groups:
decreased (cluster 1), transiently noticeable (cluster 2) and increased (cluster 3) (Figures
5B-5D). However, the expression of most genes was not yet evidently detected at this
timepoint (Figure 5C). Gene Ontology term enrichment analysis revealed that cluster 1
was linked with G-protein coupled receptor signaling pathway. Cluster 2 was related to
the regulation of B cell differentiation. Cluster 3 was involved in functions related to
embryonic morphogenesis and organism growth (Figures 5D and 5E). This finding was
also verified by specific inspection of the dynamics of the bivalency score, H3K4me3,
H3K27me3, RNA around representative genes including two pluripotency genes along

pseudotime (Figures 5F and S5C).

CoTECH identifies differential mechanisms in cell fate decisions during
endothelial-to-hematopoietic transition in two waves of hematopoietic cells

We applied CoTECH to study complex biological processes in vivo. Hemogenic
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Figure 5. Single-cell reconstructions of dynamic trajectories of chromatin bivalency and transcription from
naive to primed mESCs.

(A) The framework for pseudo-single-cell reconstructions of bivalent chromatin modifications. The pseudotemporal
trajectory of chromatin bivalency (H3K4me3 and H3K27me3) and gene expression in pseudo-single cells was estab-
lished by using single-cell transcriptome as the anchor.

(B) Heatmap showing the bivalency score of genes in three groups. Representative genes are listed alongside the
heatmap.

(C) Heatmap showing the expression level of genes as identified in (B) across single cells .

(D) Line plots showing the dynamic patterns of chromatin bivalency in genes from three groups. Red line indicates the
average score in each group.

(E) GO term functional enrichment (Biological Processes) of three gene clusters as in (B).

(F) Examples for the dynamic changes of H3K4me3, H3K27me3, RNA, and the bivalency score at representative
genes along the pseudotime.


https://doi.org/10.1101/2020.10.15.339226
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.339226; this version posted October 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

endothelium in yolk sac (YS) contributes to Erythroid-Myeloid Progenitors (EMP)
lineages as the pro-definitive wave of hematopoietic cell formation. As the definitive
wave, the Aorta-Gonad-Mesonephros (AGM) is the major source of self-renewal
hematopoietic stem cells (HSCs) through endothelial-to-hematopoietic transition (EHT)
in the early embryo (Dzierzak and Bigas, 2018; Hou et al., 2020; Lilly et al., 2016; Palis,
2016). To understand the difference in the regulatory basis leading to programmed cell
fate decisions in EHT between AGM and YS, we performed CoTECH for H3K27ac (an
active enhancer mark)(Creyghton et al., 2010) and RNA in CD31" endothelial cells
enriched by fluorescence-activated cell sorting (FACS) in AGM and YS of E9.5 and
E10.5 mouse embryos (Figure 6A). We obtained a total of 512 AGM cells and 220 YS

cells passing quality control filter for subsequent analysis (STAR Methods).

To define cell identities or states by a higher-dimensional reconstruction of two
molecular layers of single-cell data, we used multi-omics factor analysis (MOFA)
(Argelaguet et al., 2018) to analyze single-cell H3K27ac and transcriptome profiles of
AGM and YS cells. Both transcription and H3K27ac data of the same single cells were
used as input for unsupervised dimensionality reduction in MOFA analysis. Having
performed cell clustering followed by the pseudotime ordering, we identified different
subpopulations annotated by specific marker genes’ expression: early EC (Pecam1, Pf4,
Mest), late EC (Pecam1, Cald1, Egfi7), and HEC (Pecam1, Itgb3, Runx1) for AGM cells,
and EC (Pecam1, Cdhb, Ccnd2), HEC (Pecam1, Itgb3, Runx1), and EC-mes (EC with
mesenchymal features) (Pecam1, Col1a1, Col1a2) in YS cells (Figures 6B, 6C and
S6A-S6F). Pseudotime analysis evidenced the transition from the endothelial to
hematopoietic state during lineage specification in both AGM and YS (Figure 6D). The
dynamic trend in both gene expression and H3K27ac signals at the corresponding
gene-enhancer linked regions was well correlated along pseudotime, indicating the
pivotal role for lineage-specific enhancers in regulating cell fate decisions during EHT

(Figures 6E-6H). The EHT in YS and AGM was accompanied by the dynamic change of
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a set of core TFs (such as RUNX1 and SPI1) whose motif enrichment scores were
calculated by chromVAR (Schep et al.,, 2017) in accordance with corresponding TF
genes’ expression (Figures S6G-S6J). We hypothesized that different regulatory
mechanisms underlying transitioning in two waves of hematopoietic formation may
explain the AGM-EHT path leading to definitive HSCs with potentials to reconstitute full
blood lineages. Interestingly, the average number of enhancer peaks regulating
corresponding target genes in YS-EHT cells was significantly higher than that in
AGM-EHT cells at + 500 kb around the differentially expressed genes (DEGs) (P value =
3.3e-4, Mann-Whitney test) (Figures 61 and 6J). We further identified AGM-EC biased,
YS-EC biased, and common enhancer regions defined by the H3K27ac signals around
the £ 100 kb of genes. Hoxb4 is known to promote the acquisition of an HE identity and,
thus, enforces early definitive hematopoietic processes (McGrath and Palis, 1997;
Teichweyde et al., 2018). Consistently, we found that the H3K27ac signals around Hoxb4
in AGM was significantly upregulated in AGM than that in YS (false discovery rate
(FDR)<0.05 and log2 fold change (FC)>0.5), while the Meis1 gene loci exhibited a higher
enhancer activity in YS (Figure 6K). Next, we linked the target genes Hoxb4 and Meis1
to the regulatory peaks based on the covariance of H3K27ac signals and gene
expression across co-assayed single cells. The inferred enhancer-Hoxb4 and
enhancer-Meis1 pairs displayed highly selective enrichment in AGM-EHT and YS-EHT,
respectively (Figures 6L and 6M). Runx1, an important regulator of hematopoiesis, is
required for the formation of HSC and YS-derived EMPs from hemogenic endothelium
during embryogenesis (Gao et al., 2018; Palis, 2016; Yzaguirre et al., 2018). Likewise,
evident enhancer-Runx1 links were identified both in AGM-EHT and YS-EHT cells, whilst
more profound in YS-EHT at this stage (Figure S6K).

DISCUSSION

In sum, we present CoTECH, a method that enables the simultaneous detection of
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Figure 6. Linking enhancers to regulated genes reveals mechanisms underlying endothelial-to-hematopoietic
transition in YS and AGM.

(A) Experimental design using CoTECH for analyzing chromatin regulation of gene expression during endothelial-to-
hematopoietic transition (EHT) from yolk sac (YS) and aorta—gonad—mesonephros (AGM) tissues.

(B-C) UMAP projection based on the MOFA factors inferred using 512 AGM cells (B) and 220 YS cells (C).

(D) Pseudotime anslysis of AGM-EHT and YS-EHT.

(E) Heatmaps showing RNA (left) and H3K27ac (right) signals at gene-correlated peaks in 175 AGM cells. The rows
represent 115 DEGs.

(F) Line plots showing average RNA , H3K27ac signals of two gene clusters as in (E).

(G) Heatmaps showing RNA (left) and H3K27ac (right) signasl at gene-correlated peaks in 122 YS cells. The rows
represent 104 DEGs.

(H) Line plots showing average RNA, H3K27ac signals of two gene clusters as in (G).

() Distribution of peak numbers of genes shown in (E) around TSS + 500 kb of genes.

(J) Distribution of peak numbers of genes shown in (G) around TSS % 500 kb of genes.

(K) MA plot (log-ratio by mean average) comparing H3K27ac profiles between YS-EC and AGM-earlyEC. H3K27ac
signals were calculated by counting the reads at the genes £100-kb regions and normalized by read depth.

(L-M) Examples for inferred enhancer-to-target gene links for Hoxb4 (L) and Meis1 (M) in YS-EC, YS-HEC, AGM-EC,
and AGM-HEC.
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gene expression and chromatin occupancy in thousands of single cells per experiment.
CoTECH allowed assembling bivalent histone marks H3K4me3 and H3K27me3 in
pseudosingle cells to delineate dynamic bivalency scores from the naive to primed
mESCs. Applying CoTECH to understanding of cell fate regulation in complex biological
processes in vivo, we demonstrated that AGM-EHT and YS-EHT exhibit distinct
underlying gene programs, which are further regulated by different enhancer-target gene
links with more enhancers per gene in YS-EHT cells. This finding may have an important
implication in deciphering HSC cell fate decisions and directing in vitro HSC

reprogramming strategy for potential regenerative medicine.

CoTECH is easy-to-use for general biomedical laboratories with following
advantages: First, the throughput can be scaled up to far greater numbers by simply
redistributing cells to many 96- or 384-well plates in secondary indexing step; Second,
no specialized devices are required to carry out CoTECH experiments, whose libraries
can be readily sequenced on the standard sequencing recipe at the low cost, obviating
the custom sequencing inaccessible to most laboratories. Third, COTECH enables RNA
and parallel processing of multiple histone marks that can be distinguished by different

barcodes in single experiment, thus eliminating the potential batch effect;

A recent high-throughput method, scCC-seq, was developed for joint profiling of
transcriptome and transcription factor binding sites (Moudgil et al., 2020). Unlike
scCC-seq requiring a transgene expressing the transposase in fusion with a TF gene of
interest, COTECH is able to capture histone modifications as well as endogenous DNA
binding proteins in principle, presenting more than two orders of magnitude in the DNA
reads per cell than the former. Similar to scCC-seq, the method scDam&T-seq also relies
on a transgenic expression of protein of interest, although it produces the comparable
numbers in DNA and RNA reads per cell (Rooijers et al., 2019). However, scDam&T-seq
is intrinsically at the lower throughput as based on physical isolation of single cells in 96-

or 384-well plates. As with comparable quality and throughput in both DNA and RNA
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parts with sci-CAR in joint profiling of chromatin accessibility and gene expression,

CoTECH can be easily applied to analyze complex tissue samples in patients.

We foresee that CoTECH finds wide applications in studying gene regulation and
cell fate decisions. Gene expression is not the only factor that contributes to cellular
heterogeneity. Epigenetic factors such as histone modifications, nucleosome occupancy,
DNA methylation and chromatin conformation architecture also play active roles in
transcriptional regulation and cellular heterogeneity (Efremova and Teichmann, 2020;
Eisenstein, 2020; Kelsey et al., 2017; Schier, 2020; Shema et al., 2019; Zhu et al., 2020).
CoTECH provides an opportunity for reconstruction of multimodal omics information in
pseudosingle cells. It is imprecise to link two populations defined by different omics data.
CoTECH makes it possible for integrating multilayers of molecular profiles as a
higher-dimensional regulome for accurately defining cell identity (Chen et al., 2018). In
this study, we exemplified in-silico assembly of bivalent histone marks in pseudosingle
cell with the transcriptome as an anchor, demonstrating the single-cell resolved
bivalency trajectory during the naive to primed pluripotency transition. We believe that
this can be applied to unfold the regulatory relationship between many histone

modifications and chromatin binding proteins.

As with existing technologies for profiling multimodal omics in single cells, CoTECH
data are still sparse. In the future, this will be improved through differently designed
biochemistry. Similar to SNARE-seq, CoTECH can also be employed in the
droplet-based procedure to reduce the hands-on time. Nevertheless current limitations,
CoTECH provides a valuable tool for using multiomics molecular information to define
cell fate determinants and potentially assemble a compendium of histone modifications
and chromatin binding proteins. We further envision that CoTECH is useful to identify the

rare but unannotated cell types for functional validation.
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