

1 **Title.**

2 Differential *in vitro* activity of individual drugs and bedaquiline-rifabutin combinations against
3 actively multiplying and nutrient-starved *Mycobacterium abscessus*

4

5 **Running title.** (54 characters)

6 Bedaquiline-rifabutin activity against *M. abscessus*

7

8 **Authors.**

9 Jin Lee,^a Nicole Ammerman,^a Anusha Agarwal,^{a*} Maram Naji,^a Si-Yang Li,^a Eric Nuermberger^a

10

11 **Affiliations.**

12 ^aCenter for Tuberculosis Research, Department of Medicine, Johns Hopkins University School
13 of Medicine, Baltimore, Maryland, USA

14 *Present affiliation: Anusha Agarwal, Albany Medical College, Albany, New York, USA

15

16 **Corresponding author.**

17 Eric Nuermberger, enuermb@jhmi.edu

18 **ABSTRACT** (limit 250 words)

19 Current treatment options for lung disease caused by *Mycobacterium abscessus* complex
20 infections have limited effectiveness. To maximize the use of existing antibacterials and to help
21 inform regimen design for treatment, we assessed the *in vitro* bactericidal activity of single drugs
22 against actively multiplying and net non-replicating *M. abscessus* populations in nutrient-rich
23 and nutrient starvation conditions, respectively. As single drugs, bedaquiline and rifabutin
24 exerted bactericidal activity only against nutrient-starved and actively growing *M. abscessus*,
25 respectively. However, when combined, both bedaquiline and rifabutin were able to specifically
26 contribute bactericidal activity at relatively low, clinically relevant concentrations against both
27 replicating and non-replicating bacterial populations. The addition of a third drug, amikacin,
28 further enhanced the bactericidal activity of the bedaquiline-rifabutin combination against
29 nutrient-starved *M. abscessus*. Overall, these *in vitro* data suggest that bedaquiline-rifabutin may
30 be a potent backbone combination to support novel treatment regimens for *M. abscessus*
31 infections. This rich dataset of differential time- and concentration-dependent activity of drugs,
32 alone and together, against *M. abscessus* also highlights several issues affecting interpretation
33 and translation of *in vitro* findings.

34 **INTRODUCTION**

35 In the United States and around the world, there is mounting evidence that the prevalence of
36 chronic lung disease caused by infections with *Mycobacterium abscessus* complex has been
37 increasing (1-3). These infections, which primarily affect vulnerable populations with underlying
38 lung conditions such as cystic fibrosis, are particularly difficult to treat, and the limited treatment
39 options that exist are lengthy (1-2+ years in duration), associated with severe side effects, and
40 curative only about 50% of the time (3-5). This dearth of effective treatment options is largely
41 due to the intrinsic resistance of *M. abscessus* complex to most available antibacterials (2);
42 therefore, it is imperative to thoroughly investigate the potential of drugs known to have activity
43 against this complex.

44

45 Many drugs exert differential activity depending on the status of the bacterial population, such as
46 actively multiplying in nutrient-rich conditions versus non-replicating or slowly replicating in
47 resource-limited environments. Among mycobacteria, this phenomenon is clearly demonstrated
48 with the first-line tuberculosis (TB) drugs isoniazid and pyrazinamide, which have potent
49 bactericidal activity specifically against replicating and non-replicating *Mycobacterium*
50 *tuberculosis*, respectively (6). Importantly, drugs with bactericidal activity against non-
51 replicating persister *M. tuberculosis* populations, such as pyrazinamide, bedaquiline, and
52 rifamycins, are specifically associated with treatment-shortening in TB drug regimens (6-8). For
53 *M. abscessus* lung disease, the role of non-replicating persisters in disease and treatment has not
54 been established; however, the chronic nature of the disease, as well as the long duration of
55 treatment and the frequent occurrence or relapse after treatment, indicate that bacterial
56 persistence is likely to be an important factor.

57

58 In an effort to better understand how to maximize the use of currently available drugs for
59 treatment of *M. abscessus* lung disease, we evaluated bactericidal activity against both actively
60 multiplying and net non-replicating *M. abscessus* populations. Berube *et al.* and Yam *et al.* have
61 also previously considered the importance of evaluating drug activity against non-replicating *M.*
62 *abscessus*, and developed assays to generate populations of non-replicating *M. abscessus* via
63 nutrient starvation in phosphate-buffered saline (PBS) for 4 or 6 days (9, 10). While induction of
64 a non-replicating state by nutrient starvation cannot possibly represent all the different *in vivo*
65 niches that might limit bacterial multiplication and induce a persister phenotype, it is one of
66 several standard *in vitro* “persister” assays regularly used in TB drug development (6).
67 Furthermore, as environment bacteria, *M. abscessus* complex organisms may be well-adapted to
68 survival in nutrient-limited environments (11-13), which may contribute to the ability of these
69 organisms to persist in *in vivo* nutrient-deprived environments such as cystic fibrosis sputum and
70 biofilms in lung cavities and airways (14-16).

71

72 In this study, we evaluated the activity of a panel of drugs against *M. abscessus* populations
73 actively growing in nutrient-rich broth and against those that had been nutrient-starved in PBS
74 for up to 14 days prior to drug exposure. All drugs evaluated (amikacin, bedaquiline,
75 clarithromycin, clofazimine, imipenem, linezolid, and rifabutin) are either currently used for
76 treatment of *M. abscessus* lung disease and/or are considered potentially active against *M.*
77 *abscessus* based on preclinical studies (4, 5, 17-22). After an initial assessment of differential
78 bactericidal activity of each drug alone, we then evaluated the bactericidal activity of bedaquiline
79 and rifabutin combinations, with and without a third drug, amikacin, against actively growing

80 and nutrient-starved *M. abscessus* populations. In addition to providing a rich collection of
81 datasets that provide important information regarding the time- and concentration-dependent
82 activity of drugs alone and together against *M. abscessus*, this study also highlights key issues
83 regarding the interpretation and clinical translation of *in vitro* findings.

84

85 RESULTS

86 The wild type *M. abscessus* subsp. *abscessus* strain ATCC 19977 (representing a natural mixture
87 of about 90% smooth and 10% rough colony morphotypes) was used in all experiments. On a
88 genomic level, this commonly used laboratory strain clusters with clinical isolates within a major
89 circulating clone group of *M. abscessus* subsp. *abscessus* (23, 24).

90

91 ***In vitro* drug activity of single drugs against actively multiplying and nutrient-starved *M.***
92 ***abscessus*.** We first assessed the survival of *M. abscessus* in PBS plus 0.05% Tween 80; viable
93 bacterial counts remained relatively stable for up to 83 days (nearly 12 weeks) of incubation
94 (**Fig. S1**). We then evaluated the concentration-ranging activity of a panel of clinically relevant
95 drugs, namely amikacin, bedaquiline, clofazimine, imipenem, linezolid, rifabutin (**Fig. 1A-F**,
96 respectively; **Tables S1-S6**, respectively), and clarithromycin (**Fig. 2**; **Table S7**) against *M.*
97 *abscessus* populations that had been nutrient-starved for 7 days (NS-7) or 14 days (NS-14) prior
98 to drug exposure, as well as against *M. abscessus* populations actively growing in nutrient-rich
99 cation-adjusted Mueller-Hinton broth (CAMHB). For each drug, the concentration range tested
100 captured clinically achievable drug levels (25-31). Across these *in vitro* conditions, four general
101 patterns of bactericidal activity were observed: (i) bactericidal in CAMHB but little or no killing
102 in nutrient starvation conditions (linezolid, rifabutin, and clarithromycin [up to Day 7]); (ii) little

103 or no killing in CAMHB but bactericidal against nutrient-starved *M. abscessus* (bedaquiline);
104 (iii) bactericidal in all conditions (amikacin); and little to no killing in all conditions
105 (clofazimine, imipenem). For all drugs tested, concentration-dependent activity was observed in
106 permissive assay conditions. The minimum inhibitory concentration (MIC) and minimum
107 bactericidal concentration (MBC) values for each drug and assay condition are presented in

108 **Table S8.**

109

110 For drugs with differential activity in nutrient-rich and nutrient starvation conditions, the
111 observed bactericidal activity against *M. abscessus* in NS-7 conditions was sometimes
112 intermediate relative to the activity observed against bacteria in NS-14 conditions and bacteria in
113 CAMHB. For linezolid (**Fig. 1E**; **Table S5**) and clarithromycin (**Fig. 2**; **Table S7**), activity in
114 NS-7 was more similar to activity in NS-14 than in CAMHB. For bedaquiline (**Fig. 1B**; **Table**
115 **S2**) and rifabutin (**Fig. 1F**; **Table S6**), the bactericidal activity observed in NS-7 was in between
116 the activity observed in CAMHB and in NS-14.

117

118 Temporal differences in anti-*M. abscessus* activity were also observed between drugs. Across
119 conditions, bactericidal activity of bedaquiline was observed only during the first 3 days of drug
120 exposure (**Fig. 1B**); a similar pattern was observed for the limited bactericidal activity of
121 clofazimine in nutrient starvation conditions (**Fig. 1C**). Amikacin (**Fig. 1A**) and linezolid (**Fig.**
122 **1E**) had limited to no bactericidal activity during the first 3 days of exposure but were
123 bactericidal between days 3 and 7 of exposure in nutrient starvation and CAMHB conditions,
124 respectively. Rifabutin (**Fig. 1F**) had bactericidal activity during the first 3 days of exposure in
125 CAMHB but only after Day 3 in nutrient starvation conditions. For clarithromycin (**Fig. 2**),

126 concentration-independent bactericidal activity was observed during the first 3 days of drug
127 exposure in CAMHB, and then concentration-dependent activity was observed between days 3
128 and 7 of exposure. Because *M. abscessus* subsp. *abscessus* is known to have inducible resistance
129 to macrolides (32), we extended observation of clarithromycin activity up to 14 days. As
130 expected, loss of clarithromycin activity in CAMHB was observed between days 7 and 14 of
131 exposure.

132

133 ***In vitro* evaluation of bedaquiline and rifabutin combinations against actively multiplying**
134 **and nutrient-starved *M. abscessus*.** The differential activity patterns of drugs against *M.*
135 *abscessus* in nutrient-rich and nutrient starvation conditions highlighted potential drug
136 combinations which may have complementary activity in multidrug treatment regimens. Due to
137 the growing interest in both bedaquiline and rifabutin as treatment options for *M. abscessus*
138 infections (18, 19, 22, 33-36), we evaluated the bactericidal activity of bedaquiline and rifabutin
139 combinations against actively growing bacteria in nutrient-rich media and non-replicating
140 bacteria in NS-14 conditions. As it has been reported that rifabutin activity against actively
141 multiplying *M. abscessus* can differ when assays are conducted in CAMHB or in Middlebrook
142 7H9 broth containing 10% (v/v) Middlebrook oleic acid-albumin-catalase-dextrose (OADC)
143 supplement, a commonly used liquid medium for mycobacteria (17, 22), we included both types
144 of nutrient-rich media in these assays.

145

146 First, the concentration-ranging activity of bedaquiline was evaluated alone and in combination
147 with rifabutin at 1, 2, or 4 μ g/mL. In CAMHB and 7H9 broth with 10% OADC, bedaquiline
148 alone had limited to no bactericidal activity, although the growth inhibitory activity (on a μ g/mL

149 basis) was greater in CAMHB (**Fig. 3A; Table S2**). The MIC of bedaquiline at Day 3 increased
150 32-fold, from 0.0625 $\mu\text{g}/\text{mL}$ in CAMHB to 2 $\mu\text{g}/\text{mL}$ in 7H9 broth (**Tables S2, S8**). When
151 combined with rifabutin, bedaquiline added concentration-dependent anti-*M. abscessus* activity
152 in both media types (**Fig. 3B-D; Table S9**). Although the activity of rifabutin alone was slightly
153 better (on a $\mu\text{g}/\text{mL}$ basis) in 7H9 broth than in CAMHB, bedaquiline added more bactericidal
154 activity in CAMHB. For example, in the presence of rifabutin at 1 $\mu\text{g}/\text{mL}$, adding bedaquiline at
155 0.0625 and 0.125 $\mu\text{g}/\text{mL}$ reduced Day 3 CFU counts by 1.17 and 2.54 \log_{10} CFU/mL,
156 respectively, compared to rifabutin alone in CAMHB; however, in 7H9 broth, bedaquiline at
157 these same concentrations reduced CFU counts by only 0.58 and 0.77 \log_{10} CFU/mL,
158 respectively, and $\geq 2 \log_{10}$ CFU/mL reduction compared to rifabutin alone was only achieved
159 with bedaquiline at 2 $\mu\text{g}/\text{mL}$ in 7H9 broth (**Fig. 3B; Table S9**). The magnitude of the
160 contribution of bedaquiline decreased with increasing concentration of rifabutin. In CAMHB, the
161 maximum bacterial reduction at Day 3 associated with bedaquiline was 2.82, 2.46, and 1.84 \log_{10}
162 CFU/mL when added to rifabutin at 1, 2, and 4 $\mu\text{g}/\text{mL}$, respectively; and in 7H9 broth, the
163 maximum reduction associated with bedaquiline was 2.36, 1.37, and 0.61 \log_{10} CFU/mL when
164 added to rifabutin at 1, 2, and 4 $\mu\text{g}/\text{mL}$, respectively. Overall, $\geq 1 \log_{10}$ CFU/mL killing between
165 Day 0 and Day 3 was achieved at rifabutin/bedaquiline combinations of 1/0.125, 2/0.125, and
166 4/0.06 $\mu\text{g}/\text{mL}$ in CAMHB and 1/4, 2/2, and 4/2 $\mu\text{g}/\text{mL}$ in 7H9 broth. Bacterial regrowth between
167 Day 3 and Day 7 was consistently observed in both media types.

168

169 As previously observed (**Fig. 1B, F**), bedaquiline alone had potent, concentration-dependent
170 bactericidal activity against *M. abscessus* that had been nutrient-starved for 14 days prior to drug
171 exposure, with all killing occurring during the first 3 days of drug exposure (**Fig. 3A**), and

172 rifabutin alone at 1, 2, or 4 $\mu\text{g}/\text{mL}$ had no bactericidal activity (**Fig. 3B-D**). During the first 3
173 days of exposure, the bactericidal activity of bedaquiline in the presence of rifabutin slightly
174 increased with each escalating concentration of rifabutin, and in contrast to bedaquiline alone,
175 this bactericidal activity extended up to Day 7 in a bedaquiline and rifabutin concentration-
176 dependent manner (**Fig. 3; Table S9**). The rifabutin/bedaquiline concentrations that resulted in
177 $\geq 2 \log_{10}$ CFU/mL killing compared to Day 0 were 1/0.25, 2/0.25, and 4/0.125 $\mu\text{g}/\text{mL}$ on Day 3
178 and 1/0.125, 2/0.0625, and 4/0.03125 $\mu\text{g}/\text{mL}$ on Day 7.

179
180 Next, the concentration-ranging activity of rifabutin was evaluated alone and in combination
181 with bedaquiline at 0.03125 and 0.125 $\mu\text{g}/\text{mL}$. As previously observed (**Fig. 1F**), rifabutin had
182 bactericidal activity against actively multiplying *M. abscessus*, and in this set of assays, rifabutin
183 alone had greater activity, on a $\mu\text{g}/\text{mL}$ basis, in CAMHB than in 7H9 broth (**Fig. 4A; Table S6**).
184 The MIC of rifabutin at Day 3 was similar in both media types (2 $\mu\text{g}/\text{mL}$ in CAMHB and 4
185 $\mu\text{g}/\text{mL}$ in 7H9 broth), but the concentration that resulted in $\geq 2 \log_{10}$ CFU/mL killing increased at
186 least 16-fold, from 4 $\mu\text{g}/\text{mL}$ in CAMHB to $>64 \mu\text{g}/\text{mL}$ in 7H9 broth (**Tables S6, S8**). In the
187 presence of bedaquiline, rifabutin contributed bactericidal activity at lower concentrations
188 compared to rifabutin alone. In CAMHB, rifabutin specifically contributed $\geq 1 \log_{10}$ CFU/mL kill
189 at 0.5 and 0.25 $\mu\text{g}/\text{mL}$ when combined with bedaquiline at 0.03125 and 0.125 $\mu\text{g}/\text{mL}$,
190 respectively, and in 7H9 broth, rifabutin contributed this same magnitude of killing at 2 and 4
191 $\mu\text{g}/\text{mL}$ when combined with bedaquiline at 0.03125 and 0.125 $\mu\text{g}/\text{mL}$, respectively (**Fig. 4B-C**;
192 **Table S10**). Overall, $\geq 2 \log_{10}$ CFU/mL killing between Day 0 and Day 3 was achieved at
193 bedaquiline/rifabutin combinations of 0.03125/2 and 0.125/0.25 $\mu\text{g}/\text{mL}$ in CAMHB and

194 0.03125/16 and 0.125/8 in 7H9 broth. Bacterial regrowth between Day 3 and Day 7 was
195 observed in both media types.

196

197 Because the bedaquiline concentration-ranging studies indicated that bactericidal activity of
198 bedaquiline/rifabutin combinations in NS-14 conditions continued up to Day 7 (**Fig. 3B-D**), we
199 evaluated the bactericidal activity of rifabutin concentration-ranging in combination with
200 bedaquiline for up to 14 days of exposure. Similar to our previous result (**Fig. 1F**), rifabutin
201 alone at concentrations ≤ 16 $\mu\text{g}/\text{mL}$ had little to no activity against *M. abscessus* in NS-14
202 conditions (**Fig. 4A; Table S6**). However, when combined with bedaquiline, rifabutin added
203 bactericidal activity. In the presence of bedaquiline at 0.03125 $\mu\text{g}/\text{mL}$, rifabutin specifically
204 contributed $\geq 1 \log_{10}$ CFU/mL killing at 1 and 0.5 $\mu\text{g}/\text{mL}$ on Days 7 and 14, respectively, and in
205 the presence of bedaquiline at 0.125 $\mu\text{g}/\text{mL}$, rifabutin specifically contributed $\geq 1 \log_{10}$ CFU/mL
206 killing at 0.5 and ≤ 0.125 $\mu\text{g}/\text{mL}$ on Days 7 and 14, respectively (**Fig. 4B-C; Table S10**). Overall,
207 the bacterial activity was similar at both concentrations of bedaquiline; the bedaquiline/rifabutin
208 concentrations that resulted in $\geq 2 \log_{10}$ CFU/mL killing compared to Day 0 were 0.03125/1 and
209 0.125/0.5 $\mu\text{g}/\text{mL}$ on Day 7 and 0.03125/1 and 0.125/0.25 $\mu\text{g}/\text{mL}$ on Day 14. In all combinations,
210 there was little additional bactericidal activity after Day 7, and there even appeared to be some
211 limited bacterial regrowth by Day 14.

212

213 **MIC/MBC of bedaquiline and rifabutin alone for *M. abscessus* in CAMHB and**
214 **Middlebrook 7H9 broth.** The two-drug combination assays plainly demonstrated that
215 bedaquiline was less active on a $\mu\text{g}/\text{mL}$ basis in 7H9 broth than in CAMHB. However, for
216 rifabutin, the results were less clear; in one assay, rifabutin alone appeared more active in 7H9

217 (Fig. 3), while in another assay, rifabutin appeared more active both alone and in combination in
218 CAMHB (Fig. 4). We therefore directly compared the MIC and MBC of each drug in both media
219 types, using the standard reading time of 3 days. Overall, both drugs exhibited greater activity on
220 a $\mu\text{g/mL}$ basis in CAMHB than in 7H9 broth (Fig. S2). Based on CFU counts, the bedaquiline
221 MIC increased 16-fold, from 0.0625 $\mu\text{g/mL}$ in CAMHB to 1 $\mu\text{g/mL}$ in 7H9 broth (Fig. S2A;
222 Table S2). Consistent with our previous results (Figs. 1B, 3A), bedaquiline had limited to no
223 bactericidal activity against actively multiplying bacteria in either media type. The rifabutin MIC
224 was 4 $\mu\text{g/mL}$ in CAMHB and 2 $\mu\text{g/mL}$ in 7H9 broth (Fig. S2B; Table S6); however, the overall
225 concentration-ranging activity of rifabutin was superior in CAMHB. As previously observed
226 (Fig. 1F), rifabutin had bactericidal activity in CAMHB, but had much more limited bactericidal
227 activity in 7H9 broth, a phenomenon not clearly captured by using MIC/MBC values as the read-
228 out.

229

230 ***In vitro* evaluation of bedaquiline combined with rifabutin and amikacin against actively
231 multiplying and nutrient-starved *M. abscessus*.** In both nutrient-rich and nutrient starvation
232 conditions, combinations of bedaquiline and rifabutin had improved bactericidal activity
233 compared to either drug alone. In the interest of regimen-building, we next evaluated the impact
234 of adding a third drug to the bedaquiline-rifabutin combination, and we selected amikacin due to
235 its observed bactericidal activity against actively multiplying and nutrient-starved bacteria (Fig.
236 1A). The concentration-ranging activity of bedaquiline in combination with rifabutin at 1 or
237 2 $\mu\text{g/mL}$ and amikacin at 4 or 16 $\mu\text{g/mL}$ was therefore assessed against *M. abscessus* in nutrient-
238 rich and NS-14 conditions. Due to the complexity of this study, we assessed activity in nutrient-
239 rich conditions using CAMHB only.

240

241 Consistent with our previous findings (**Figs. 1B, 3A**), bedaquiline alone had little to no
242 bactericidal activity in CAMHB (**Fig. 5A; Table S2**). When added to any concentration
243 combination of the amikacin/rifabutin backbone, bedaquiline did not add any activity during the
244 first 3 days of exposure; the bactericidal activity of the two-drug amikacin/rifabutin combination
245 was not different than the activity of amikacin/rifabutin plus bedaquiline at any concentration
246 tested (**Fig. 5B-E; Table S11**). After Day 3, concentration-dependent activity of bedaquiline was
247 observed in CAMHB; however, bedaquiline appeared to antagonize the amikacin/rifabutin
248 backbone when combined with the higher concentrations of amikacin and rifabutin. With
249 backbone amikacin/rifabutin concentrations of 4/2, 16/1, and 16/2 $\mu\text{g/mL}$, the addition of
250 bedaquiline at concentrations of ≤ 1 , ≤ 1 , and $\leq 0.25 \mu\text{g/mL}$, respectively, resulted in higher \log_{10}
251 CFU/mL at Day 7 than for the two-drug backbone alone (**Fig. 5C-E; Table S11**).

252

253 As previously observed in NS-14 conditions (**Figs. 1B, 3A**), bedaquiline alone exhibited
254 concentration-dependent bactericidal activity during the first 3 days of exposure (**Fig. 5A; Table**
255 **S2**). In contrast to what was observed in nutrient-rich broth, the combination of bedaquiline with
256 an amikacin/rifabutin backbone had greater bactericidal activity than the backbone alone and
257 also greater activity than bedaquiline alone; bedaquiline added concentration-dependent
258 bactericidal activity to each of the four backbone combinations (**Fig. 5B-E; Table S11**). In the
259 presence of any amikacin/rifabutin combination, the bacterial killing contributed specifically by
260 bedaquiline increased by $\geq 2 \log_{10}$ CFU/mL at bedaquiline concentrations of $\leq 0.03125 \mu\text{g/mL}$ at
261 Day 3 and $\leq 0.0078125 \mu\text{g/mL}$ at Day 7, compared to the killing attributed to bedaquiline alone.
262 The nutrient-starved *M. abscessus* population, which started at nearly 6 \log_{10} CFU/mL, fell

263 below the limit of detection ($0.48 \log_{10}$ CFU/mL) by Day 3 at the following concentrations of
264 amikacin/rifabutin/bedaquiline: 4/1/0.5, 4/2/1, 16/1/0.5, and 16/2/0.5 $\mu\text{g}/\text{mL}$ (**Table S11**).

265

266 DISCUSSION

267 This series of extended *in vitro* studies to evaluate the anti-*M. abscessus* activity of single drugs
268 and 2- and 3-drug combinations has provided substantial data supporting several key findings,
269 with the primary finding being that bedaquiline-rifabutin may be a promising backbone
270 combination for building novel *M. abscessus* treatment regimens. We demonstrated repeatedly
271 that, as a single drug, bedaquiline had bactericidal activity against nutrient-starved but not
272 against actively growing *M. abscessus* (**Figs. 1B, 3A, 5A, S2A; Table S2**), while the opposite
273 was observed for rifabutin (**Figs. 1F, 4A, S2B; Table S6**). Despite the differential activity of
274 each drug alone, when combined, bedaquiline and rifabutin each contributed bactericidal activity
275 in both nutrient-rich and nutrient starvation conditions (**Figs. 3B-D, 4B-C; Tables S9, S10**).

276

277 Rifabutin's bactericidal activity against *M. abscessus* in nutrient-rich conditions has been
278 previously reported (17, 22); however, the clinical relevance of this finding is complicated by
279 interpretation of achievable exposure levels of rifabutin in patients. In adults receiving the most
280 commonly administered daily dose of rifabutin (300 mg), the maximum plasma concentration
281 (C_{\max}) has been reported to range from 0.38-0.53 $\mu\text{g}/\text{mL}$ (37-39); however, the lung/plasma
282 concentration ratio for a 150 mg dose was reported to range from 1.4-8.6 (37). In all *in vitro*
283 conditions studied in here, rifabutin alone did not exhibit any static or bactericidal anti-*M.*
284 *abscessus* activity at concentrations $<1 \mu\text{g}/\text{mL}$ (**Table S6; Table S8**). However, in the presence
285 of bedaquiline, we have shown that rifabutin can contribute bactericidal activity at

286 concentrations achievable in plasma. When combined with bedaquiline in CAMHB, rifabutin
287 specifically added ≥ 1 log₁₀ CFU/mL killing at 0.25-0.50 $\mu\text{g}/\text{mL}$, and in NS-14 conditions,
288 rifabutin specifically contributed killing at $\leq 0.125 \mu\text{g}/\text{mL}$ (the lowest concentration tested) (Fig.
289 **4C; Table S10**). However, when combined with bedaquiline in 7H9 broth with 10% OADC,
290 rifabutin only added bactericidal activity at concentrations $\geq 2 \mu\text{g}/\text{mL}$. Sarathy *et al.* reported *in*
291 *vitro* additivity between rifabutin and bedaquiline by checkerboard assay against *M. abscessus*
292 subsp. *abscessus* strain Bamboo in 7H9 broth, with MIC readings (based on optical density) of
293 3.6 and 0.8 $\mu\text{g}/\text{mL}$ for rifabutin alone and combined with bedaquiline, respectively; however,
294 bactericidal activity could not be assessed using this assay method (40). Interestingly, Dick *et al.*
295 recently reported that rifabutin alone had significant *in vivo* bactericidal activity against *M.*
296 *abscessus* subsp. *abscessus* strain K21 in the lungs NOD.CB17-Prkdc^{scid}/NCrCrl mice; the
297 bacterial burden in the lungs of mice treated with rifabutin at 10 mg/kg for 10 days decreased
298 significantly more than in the lungs of untreated mice (18). Although the pharmacokinetics (PK)
299 of rifabutin in mice have not been well studied, mean C_{max} values in mice receiving 10 mg/kg
300 rifabutin have been reported to range from 1.65-2.41 $\mu\text{g}/\text{mL}$ (41, 42). PK issues aside, it is
301 difficult to compare our *in vitro* findings to the *in vivo* rifabutin activity reported by Dick *et al.*
302 because, with lung bacterial counts decreasing in untreated control mice (18), neither multiplying
303 nor stable bacterial populations were represented in this mouse model.
304
305 That bedaquiline has bacteriostatic activity but not bactericidal activity against actively-
306 multiplying *M. abscessus* has also been reported previously (43-45), and again the issue of
307 clinical relevance must be addressed. In patients with MDR-TB receiving the World Health
308 Organization-recommended bedaquiline dosing scheme (400 mg daily for the first two weeks

309 and 200 mg thrice weekly thereafter) (46), the steady-state bedaquiline plasma concentration has
310 been reported to be 0.9-1.2 $\mu\text{g}/\text{mL}$ (47-49). Day 3 MIC values in this study for bedaquiline in
311 CAMHB mostly ranged between 0.03125 and 0.0625 $\mu\text{g}/\text{mL}$, consistent with other reports of
312 bedaquiline MICs against *M. abscessus* clinical isolates (19, 43, 50), while in 7H9 broth, the
313 bedaquiline MIC (2 $\mu\text{g}/\text{mL}$) was above clinically achievable plasma concentrations (**Tables S2**,
314 **S8**). When combined with rifabutin, bedaquiline specifically contributed bactericidal activity at
315 clinically achievable plasma concentrations in all conditions tested (**Fig. 3B-D; Table S9**).
316 Therefore, combining bedaquiline and rifabutin permitted each drug to specifically contribute
317 bactericidal activity against actively multiplying and nutrient-starved *M. abscessus* populations
318 at clinically relevant drug plasma concentrations.

319
320 The *in vivo* activity of bedaquiline in *M. abscessus*-infected mice has been evaluated by several
321 groups. Lerat *et al.* reported that bedaquiline at 25 mg/kg had modest bactericidal activity against
322 *M. abscessus* ATCC 19977 in the lungs of nude mice after 2 months of treatment (51), and Le
323 Moigne *et al.* reported similar findings in the lungs of C3HeB/FeJ mice when bedaquiline was
324 administered at 30 mg/kg for up to 17 days (20). In both of these studies, the bacterial burden
325 also decreased in the lungs of untreated mice. Obregón-Henao *et al.* reported strong bactericidal
326 activity of bedaquiline treatment (30 mg/kg for 9 days) against *M. abscessus* subsp. *abscessus*
327 strain 103 in the lungs of GKO^{-/-} mice, in which the bacterial counts decreased in untreated mice,
328 and also in the lungs of SCID mice, in which the bacterial burden increased in untreated mice
329 (21). Comparison of these *in vivo* data with our *in vitro* data is again complicated by the nature
330 of the models, with most models experiencing natural bacterial clearance. However, for
331 bedaquiline, a true understanding of the bactericidal activity in mice must also take into account

332 the activity of the *N*-desmethyl metabolite to which bedaquiline is rapidly converted in mice (but
333 not in humans) (52). Without knowledge of the activity of the bedaquiline *N*-desmethyl
334 metabolite against *M. abscessus*, *in vivo* activity from mouse models cannot be directly
335 compared to *in vitro* findings.

336

337 How bedaquiline and rifabutin may act together against *M. abscessus* is not entirely clear. That
338 bedaquiline alone had greater anti-*M. abscessus* activity in nutrient starvation conditions is
339 consistent with its known activity against non-replicating *M. tuberculosis* *in vivo* (8, 53),
340 although it should be noted that potent bactericidal activity of bedaquiline against nutrient-
341 starved *M. tuberculosis* *in vitro* has not been clearly established (6, 54). It is possible that
342 rifabutin's inhibitory effect on actively multiplying *M. abscessus* renders the bacteria "non-
343 replicating" and thus more susceptible to killing by bedaquiline. However, in the presence of
344 rifabutin at 1 μ g/mL, a concentration which alone permitted bacterial growth, bedaquiline still
345 contributed bactericidal activity (**Fig. 3B**) Additionally, the magnitude of the bedaquiline-
346 specific bactericidal activity decreased with increasing concentration of rifabutin (**Fig. 3B-D**;
347 **Table S9**). These data suggest the bactericidal activity of bedaquiline against actively
348 multiplying bacteria was not solely driven by rifabutin's net effect on bacterial growth. As a
349 rifamycin, rifabutin inhibits DNA-dependent RNA polymerase and initiation of transcription.
350 Several groups have reported *in vitro* synergistic activity between rifabutin and clarithromycin
351 against *M. abscessus* (35, 36, 55), and Aziz *et al.* have specifically linked this synergism to
352 rifabutin-induced transcriptional inhibition of genes associated with inducible macrolide
353 resistance in *M. abscessus*, thus rendering the bacteria fully susceptible to clarithromycin (55). *In*
354 *vitro* exposure of actively-growing *M. tuberculosis* to bedaquiline has been shown to induce

355 specific transcriptional responses which may help the bacteria counteract ATP depletion, thus
356 causing the limited or delayed activity of bedaquiline (56, 57). If bedaquiline induces a similar
357 transcriptional response in *M. abscessus*, it is possible that co-exposure to rifabutin could inhibit
358 this response, thus rendering the bacterial population more vulnerable to ATP depletion and
359 killing by bedaquiline. Likewise, rifabutin may also suppress expression of genes encoding
360 efflux pumps, such as MmpS-MmpL pump systems which are known to be involved in the efflux
361 of and resistance to bedaquiline (58, 59).

362

363 Similarly intriguing is the apparent bedaquiline-associated bactericidal activity of rifabutin
364 against nutrient-starved *M. abscessus*. Typically, the rifamycins, especially rifampin and
365 rifapentine, are considered sterilizing drugs associated with the killing of non-replicating
366 mycobacteria *in vitro* and *in vivo* (6, 60, 61). In this study, rifabutin alone had almost no activity
367 in NS-14 conditions but did kill nutrient-starved *M. abscessus* in the presence of bedaquiline. It
368 is possible that additional suppression of transcription and translation caused by bedaquiline-
369 induced ATP depletion rendered the nutrient-starved bacteria more sensitive to transcriptional
370 inhibition by rifabutin. Clearly, additional studies are needed to better understand the nature of
371 the combined activity of bedaquiline and rifabutin against *M. abscessus*.

372

373 A second key finding of this study was that the addition of amikacin, an inhibitor of bacterial
374 translation, further enhanced the already potent bactericidal activity of bedaquiline and rifabutin
375 against nutrient-starved *M. abscessus*. When combined with any concentration of amikacin and
376 rifabutin tested, bedaquiline specifically contributed ≥ 1 \log_{10} CFU/mL killing at extremely low
377 concentrations of 0.0078-0.0157 $\mu\text{g}/\text{mL}$ (**Table S11**), indicating that the additional suppression

378 of protein synthesis due to amikacin further increased bacterial susceptibility to killing by
379 bedaquiline. However, the 3-drug relationship was more complicated when applied to actively
380 multiplying *M. abscessus*. In this setting, the rifabutin-amikacin combination was bactericidal,
381 and not only did bedaquiline not add bactericidal activity at concentrations <2 μ g/mL (**Table**
382 **S11**), but also interfered with the killing of rifabutin-amikacin when bedaquiline concentrations
383 were <0.5 μ g/mL (**Fig. 5D-E; Table S11**). There are very few reported studies in which the
384 combined activity of these drugs has been evaluated. Using the checkerboard method, Ruth *et al.*
385 reported indifferent activity (no synergy or antagonism) between bedaquiline and amikacin in
386 CAMHB against *M. abscessus* ATCC 19977 (45). Cheng *et al.* also used the checkerboard
387 method and found synergy between rifabutin and amikacin for *M. abscessus* ATCC 19977 in
388 CAMHB, but also reported that this synergy was only detected in approximately half of *M.*
389 *abscessus* clinical isolates tested (35). In our study, we evaluated only two concentrations each
390 of rifabutin and amikacin with a wide concentration range of bedaquiline, limiting our ability to
391 understand the specific role of rifabutin and amikacin in these 3-drug combinations.
392 Furthermore, while the amikacin concentrations (4 or 16 μ g/mL) were well below the reported
393 plasma C_{max} values (45-85 μ g/mL) in humans receiving amikacin at a standard dose of 15 mg/kg
394 (62), the rifabutin concentrations of 1 and 2 μ g/mL were just outside of the plasma concentration
395 range at the typical human dose. Additional studies are therefore needed to specifically evaluate
396 the role of each of these drugs in the 3-drug combination across different assay conditions.
397
398 While understanding the clinically achievable plasma concentrations of drugs is a very important
399 consideration when designing and interpreting *in vitro* studies, this single PK parameter cannot
400 necessarily predict drug activity *in vivo*. The impact of drugs on metabolic enzymes and

401 transporters in the liver and gut can lead to drug-drug interactions (DDIs) which raise or lower
402 drug levels to potentially unsafe or ineffective exposure levels. Rifamycins are known to induce
403 CYP3A4 expression, which can lead to decreased exposures of drugs metabolized by this
404 enzyme, including bedaquiline (30, 37, 61, 63). However, unlike rifampin and rifapentine,
405 rifabutin is a relatively weak inducer of CYP3A4 and has not been shown to significantly impact
406 bedaquiline exposures in humans (64, 65). As amikacin is an injectable agent primarily
407 eliminated by the kidneys (66), its exposures are unlikely to be affected by rifabutin, and we are
408 not aware of reported DDIs between amikacin with either rifabutin or bedaquiline.

409

410 In addition to considering the efficacy and safety implications of DDIs, we must also consider
411 that C_{max} may not be the PK parameter driving antibacterial activity. For example, for *M.*
412 *tuberculosis*, the ratio of area under the plasma concentration-time curve to MIC and the
413 C_{max} :MIC ratio have been shown to be important drivers of rifamycin and amikacin activity,
414 respectively (61, 67). Therefore, having reliable MIC estimates for drugs against *M. abscessus* is
415 critical for understanding exposure-activity relationships. This brings us to another key finding
416 of this study, namely the differences in bedaquiline and rifabutin activity observed in CAMHB
417 and 7H9 broth. For rifabutin, we usually observed that MIC values were similar in 7H9 and
418 CAMHB (**Table S8**), however, we observed that the bactericidal activity of rifabutin, either
419 alone or in combination with bedaquiline, was superior (on a μ g/mL basis) in CAMHB (**Figs.**
420 **3B-D, S2B; Tables S6, S8**). Aziz *et al.* and Johansen *et al.* reported that rifabutin had lower
421 MIC/MBC values against *M. abscessus* ATCC 19977 in 7H9 than in CAMHB (17, 22). For
422 bedaquiline, we repeatedly observed higher MIC values in 7H9 broth compared to CAMHB
423 (**Table S8**). Ruth *et al.* also reported that bedaquiline had a higher MIC against *M. abscessus*

424 ATCC 19977 in 7H9 broth than in CAMHB, but also found that the median MIC of clinical
425 isolates was lower in 7H9 than in CAMHB (45). In our work, the decreased bedaquiline activity,
426 alone or in combination with rifabutin, in 7H9 broth, often rendered bedaquiline inactive at
427 clinically achievable plasma levels. It is currently unclear what media condition better predicts
428 drug activity *in vivo*, which complicates interpretation of MIC/MBC values and associated
429 pharmacodynamic relationships.

430

431 Another key finding of this study was the differential activity of other anti-mycobacterial drugs
432 against actively growing and nutrient-starved *M. abscessus* populations. To our knowledge, the
433 activity of neither bedaquiline nor rifabutin against nutrient-starved *M. abscessus* has been
434 previously reported. Berube *et al.* used a resazurin-based readout (rather than CFU counts) to
435 evaluate the 2-day bactericidal activity of a panel of drugs against *M. abscessus* strain 103 that
436 had been nutrient-starved in PBS with tyloxapol for 4 days prior to drug exposure (9). Similar to
437 our findings, they found that amikacin exhibited bactericidal activity in these conditions, while
438 clarithromycin, imipenem, and linezolid had no bactericidal activity. Yam *et al.* directly
439 compared the 2-day MBC ($\geq 1 \log_{10}$ CFU/mL kill) of drugs against actively-growing *M.*
440 *abscessus* strain Bamboo and against bacteria that had been nutrient-starved in PBS with
441 tyloxapol for 6 days prior to drug exposure (10). Overall, we reported similar findings for
442 clofazimine, imipenem, amikacin, clarithromycin, and linezolid. Although Yam *et al.* reported
443 that clarithromycin and linezolid did not have bacterial activity in nutrient-rich conditions, CFU
444 counts were determined after only 2 days of drug exposure. In our study, we did not see killing
445 by each of these drugs in these conditions until between Day 3 and Day 7 of drug exposure
446 (**Figs. 1A, 1E, 2**); therefore, our findings are not necessarily discrepant.

447

448 These differences in nutrient starvation models highlight an additional key finding of this work,
449 namely that both the duration of drug exposure and the duration of nutrient starvation prior to
450 drug exposure can significantly impact the observed activity of drugs against *M. abscessus*. For
451 most drugs tested, the observed (or lack of) bactericidal activity did not differ in NS-7 versus
452 NS-14 conditions, suggesting that nutrient starvation for 7 days was sufficient to observe any
453 change in drug activity. However, for bedaquiline and rifabutin, the observed bactericidal
454 activity in NS-7 conditions appeared intermediate to the activity in CAMHB and NS-14
455 conditions, indicating that bacterial populations starved for 7 or 14 days were not equivalent in
456 terms of metabolic or other cellular programming involved in susceptibility to at least some
457 drugs. A similar effect has been reported for the drug pyrazinamide against nutrient-starved *M.*
458 *tuberculosis*, such that bactericidal activity increased with increasing duration of nutrient
459 starvation (68). Although we cannot know which duration of nutrient starvation (if any) is most
460 relevant to an *in vivo* condition, our data indicate that nutrient starvation for 14 days allows for
461 better overall discrimination of drug activity between nutrient-rich and nutrient starvation
462 conditions.

463

464 As already noted, the duration of drug exposure also impacted the assessment of drug activity.
465 For *M. abscessus* drug susceptibility testing in CAMHB, the recommended exposure time for
466 non-macrolides is 3 days (69). In both CAMHB and 7H9 broth, we often observed large
467 differences in observed growth inhibition between Day 3 and Day 7, with the activity of many
468 drugs and drug combinations decreasing after Day 3. For some drugs, this may be caused by
469 drug instability in aqueous media, as clearly demonstrated for imipenem and other β -lactams (70,

470 71). Therefore, for these drugs, a read-out at 3 days of exposure may be appropriate. For other
471 drugs, the importance and relevance of activity after 3 versus 7 days of drug exposure is less
472 clear. For the assessment of bactericidal activity, the situation becomes even more complicated
473 due to the diversity of time-dependent activity observed for different drugs. If, when appropriate,
474 drug stability issues were addressed by drug supplementation, it seems that activity after 7 days,
475 as opposed to after ≤ 3 days, of drug exposure could be more appropriate for understanding
476 bactericidal activity of drugs against *M. abscessus*. In one assay, we evaluated bactericidal
477 activity after 14 days of exposure in NS-14 conditions (Fig. 4), and we observed some apparent
478 bacterial growth between days 7 and 14, which was unexpected in nutrient starvation conditions.
479 Interestingly, it has been demonstrated that for other bacteria, *Escherichia coli* and *Bacillus*
480 *subtilis*, multiplication can occur in nutrient starvation conditions when starved bacterial cells
481 feed off of nutrients released from dead cells (72, 73). Although we cannot know if this
482 phenomenon was happening in our study, this highlights that we must think critically of what an
483 *in vitro* “nutrient-starved” environment represents. In the case of our study in NS-14 conditions,
484 it appears that assessment of bactericidal activity was most discernable between >3 but <14 days
485 of drug exposure. Understanding the best time point to assess activity is another critical variable
486 in understanding concentration-activity relationships for drugs against *M. abscessus*.

487
488 Finally, the ultimate goal of this work was to provide information about the potential clinical
489 utility of drug combinations. For *M. abscessus*, there is a notorious lack of predictability between
490 the *in vitro* and *in vivo* activity of drugs, and several potential reasons for such discordance have
491 been highlighted in this present work, including technical issues (media types, assay time points)
492 as well as issues related to combining drugs. For both bacteriologic and PK factors, the activity

493 of a drug alone does not necessarily predict the activity of a drug in combination. In TB drug and
494 regimen development, mouse models have been pivotal for bridging the gap from *in vitro* to
495 clinical studies (74). Ongoing efforts to develop and improve mouse models of *M. abscessus*
496 lung infection have already shown promise (20, 21, 51, 75, 76), but nearly all are complicated by
497 the lack of natural bacterial multiplication in the lungs. Thus, while this present series of *in vitro*
498 studies indicates that a bedaquiline-rifabutin combination has promising activity against *M.*
499 *abscessus*, further studies are needed to provide both the tools and the knowledge to translate the
500 clinical relevance of these findings.

501

502 METHODS

503 **Bacterial strain.** *M. abscessus* subsp. *abscessus* strain ATCC 19977 from the American Type
504 Culture Collection (ATCC) was used in all experiments. The colonies of this strain naturally
505 grow in two morphotypes: smooth (about 90% of the colonies) and rough (about 10% of the
506 colonies), and this wild type morphotype mixture was used in all assays. Aliquots of low-passage
507 bacterial master stock were stored at -80°C.

508

509 **Drugs.** Amikacin, clarithromycin, and clofazimine powders were purchased from Millipore
510 Sigma. Imipenem and rifabutin powders were purchased from Biosynth Carbosynth, and
511 bedaquiline and linezolid powders were provided by TB Alliance. For drug activity assays,
512 amikacin was dissolved in distilled water; all other drugs were dissolved in dimethyl sulfoxide
513 (DMSO). Drug solutions were filter-sterilized prior to use.

514

515 **Media.** The standard liquid growth medium used to initiate all bacterial cultures was
516 Middlebrook 7H9 broth supplemented with 10% (v/v) Middlebrook OADC supplement, 0.1%
517 (v/v) glycerol, and 0.05% (v/v) Tween 80. For drug activity assays, two types of media were
518 used: Middlebrook 7H9 broth supplemented with 10% (v/v) OADC and 0.1% (v/v) glycerol and
519 CAMHB; note that Tween 80 was not included in the media when drug activity was assessed.
520 The standard solid growth medium used for determination of CFU counts was non-selective
521 7H11 agar supplemented with 10% (v/v) OADC and 0.1% (v/v) glycerol (referred to as “non-
522 selective 7H11 agar”). Agar plates contained 20 mL agar in 100 × 15 mm disposable polystyrene
523 petri dishes. Difco BBL Mueller Hinton II broth (cation-adjusted) powder (*i.e.*, CAMHB
524 powder), Difco Middlebrook 7H9 broth powder, Difco Mycobacteria 7H11 agar powder, and
525 BBL Middlebrook OADC enrichment were manufactured by Becton, Dickinson and Company.
526 Glycerol and Tween 80 were purchased from Fisher Scientific.

527
528 **Drug activity assays in nutrient-rich media.** To start each experiment, a stock vial of *M.*
529 *abscessus* (frozen in standard growth medium) was thawed, added to fresh growth media, and
530 incubated at 37°C, shaking, until the optical density at 600 nm (OD₆₀₀) of the bacterial
531 suspension reached around 1 (approximately 10⁷-10⁸ CFU/mL), at which point assays were
532 initiated (*i.e.*, this was Day 0). Cultures were then diluted with appropriate assay media to an
533 OD₆₀₀ of 0.1. All drug activity assays were performed by broth macrodilution in a total volume
534 of 2.5 mL in 14-mL round-bottom polystyrene tubes with screw caps. Two-fold dilutions of drug
535 stock solutions were added to appropriate assay media in a total volume of 2.4 mL per tube, with
536 the concentration of DMSO never exceeding 4% (v/v). Then, 0.1 mL of the prepared bacterial
537 suspension (diluted to OD₆₀₀ of 0.1) was added to each tube of drug-containing media. Tubes

538 were vortexed and incubated at 37°C without shaking for the duration of the study. The Day 0
539 inoculum, as well as samples at each time point, were cultured for CFU determination.

540

541 **Bacterial survival and drug activity assays in nutrient starvation conditions.** *M. abscessus*
542 stock was cultured in growth media to an OD₆₀₀ of around 1 as described for assays in nutrient-
543 rich media. The bacterial suspensions were then washed 3 times in PBS with 0.05% Tween 80 as
544 follows: culture was spun at 1900 rcf for 10 minutes, supernatant was removed, and cells were
545 resuspended to the original volume in PBS with 0.05% Tween 80. After the third wash, the
546 resuspended bacteria were incubated for nutrient starvation at 37°C for the indicated duration. To
547 monitor bacterial survival, samples were removed and cultured for CFU determination at the
548 indicated time points. For drug activity assays, after the appropriate duration of nutrient
549 starvation (7 or 14 days), the bacterial suspension was diluted with PBS to an OD₆₀₀ of 0.1 on
550 Day 0 of the assay. Two-fold dilutions of stock drug solutions were added to PBS without
551 Tween 80 in a total volume of 2.4 mL, and assay tubes were otherwise prepared as described for
552 drug activity assays in nutrient-rich media, except that PBS without Tween was used in place of
553 media.

554

555 **Quantitative cultures and CFU counting and analysis.** In all experiments at all time points,
556 CFU determination was done by plating serial 10-fold dilutions of bacterial suspensions on non-
557 selective 7H11 agar plates. CFU determination was done for all samples except when the
558 bacteria had overgrown and fallen out of suspension in a large clump that could not be visually
559 dispersed by vortexing. Serial dilutions were made in PBS without Tween by adding 0.1 mL
560 bacterial suspension (from assay tube or from previous 10-fold dilution) to 0.9 mL PBS.

561 Undiluted up to the 10^{-5} dilution were prepared for most samples, although the dilution range
562 was extended for some samples when a higher bacterial burden was anticipated. For plating, 0.5
563 mL was spread across the surface of the agar. Once all liquid was absorbed into the agar, the
564 plates were sealed in plastic bags and incubated at 37°C for 5-7 days. CFUs were then
565 counted/recorded for each plate. The dilution that yielded CFU counts between 10-120 and
566 closest to 50 was used to determine CFU/mL. The CFU/mL value (x) was log transformed as
567 $\log_{10}(x + 1)$ prior to analysis.

568

569 **MIC and MBC definitions.** The visual MIC was defined as the lowest drug concentration that
570 inhibited any bacterial growth as observed by the naked eye. The MIC based on CFU counts was
571 defined as the lowest drug concentration that inhibited growth by $\leq 0.1 \log_{10}$ CFU/mL compared
572 to Day 0. The MBC ($\geq 1 \log_{10}$ kill) and MBC ($\geq 2 \log_{10}$ kill) were defined as the lowest
573 concentration that decreased the bacterial count by ≥ 1 or $\geq 2 \log_{10}$ CFU/mL, respectively,
574 compared to Day 0.

575

576 **ACKNOWLEDGEMENTS**

577 This work was funded by the National Institutes of Health (R21-AI137814 to EN) and by the
578 Cystic Fibrosis Foundation (EN).

579

580 **REFERENCES**

581 1. Adjemian J, Olivier KN, Prevots DR. 2018. Epidemiology of pulmonary nontuberculous
582 mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010-
583 2014. Ann Am Thorac Soc 15:817-826. doi: 10.1513/AnnalsATS.201709-727OC.

584 2. Johansen MD, Herrmann JL, Kremer L. 2020. Non-tuberculous mycobacteria and the rise of
585 *Mycobacterium abscessus*. Nat Rev Microbiol 18:392-407. doi: 10.1038/s41579-020-0331-1.

586 3. Martiniano SL, Nick JA, Daley CL. 2019. Nontuberculous mycobacterial infections in cystic
587 fibrosis. Thorac Surg Clin 29:95-108. doi: 10.1016/j.thorsurg.2018.09.008.

588 4. Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, Leitch A, Loebinger
589 MR, Milburn HJ, Nightingale M, Ormerod P, Shingadia D, Smith D, Whitehead N, Wilson
590 R, Floto RA. 2017. British Thoracic Society guidelines for the management of non-
591 tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 72:ii1-ii64. doi:
592 10.1136/thoraxjnl-2017-210927.

593 5. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, Böttger EC, Brozek
594 J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras TK, Olivier KN,
595 Santin M, Stout JE, Tortoli E, van Ingen J, Wagner D, Winthrop KL. 2020. Treatment of
596 nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA
597 clinical practice guideline. Clin Infect Dis 71:905-913. doi: 10.1093/cid/ciaa1125.

598 6. Iacobino A, Piccaro G, Giannoni F, Mustazzoli A, Fattorini L. 2017. Fighting tuberculosis
599 by drugs targeting nonreplicating *Mycobacterium tuberculosis* bacilli. Int J Mycobacteriol
600 6:213-221. doi: 10.4103/ijmy.ijmy_85_17.

601 7. Grosset J. 1980. Bacteriologic basis of short-course chemotherapy for tuberculosis. Clin
602 Chest Med 1:231-241.

603 8. Hu Y, Pertinez H, Liu Y, Davies G, Coates A. 2019. Bedaquiline kills persistent
604 *Mycobacterium tuberculosis* with no disease relapse: an *in vivo* model of a potential cure. J
605 Antimicrob Chemother 74:1627-1633. doi: 10.1093/jac/dkz052.

606 9. Berube BJ, Castro L, Russell D, Ovechkina Y, Parish T. 2018. Novel screen to assess
607 bactericidal activity of compounds against non-replicating *Mycobacterium abscessus*. *Front*
608 *Microbiol* 9:2417. doi: 10.3389/fmicb.2018.02417.

609 10. Yam YK, Alvarez N, Go ML, Dick T. 2020. Extreme drug tolerance of *Mycobacterium*
610 *abscessus* "persisters". *Front Microbiol* 11:359. doi: 10.3389/fmicb.2020.00359.

611 11. Falkinham JO. 2013. Ecology of nontuberculous mycobacteria--where do human infections
612 come from? *Semin Respir Crit Care Med* 34:95-102. doi: 10.1055/s-0033-1333568.

613 12. Gebert MJ, Delgado-Baquerizo M, Oliverio AM, Webster TM, Nichols LM, Honda JR, Chan
614 ED, Adjemian J, Dunn RR, Fierer N. 2018. Ecological analyses of mycobacteria in
615 showerhead biofilms and their relevance to human health. *MBio* 9:1614. doi:
616 10.1128/mBio.01614-18.

617 13. Dowdell K, Haig SJ, Caverly LJ, Shen Y, LiPuma JJ, Raskin L. 2019. Nontuberculous
618 mycobacteria in drinking water systems - the challenges of characterization and risk
619 mitigation. *Curr Opin Biotechnol* 57:127-136. doi: 10.1016/j.copbio.2019.03.010.

620 14. Fennelly KP, Ojano-Dirain C, Yang Q, Liu L, Lu L, Progulske-Fox A, Wang GP, Antonelli
621 P, Schultz G. 2016. Biofilm formation by *Mycobacterium abscessus* in a lung cavity. *Am J*
622 *Respir Crit Care Med* 193:692-693. doi: 10.1164/rccm.201508-1586IM.

623 15. Høiby N, Bjarnsholt T, Moser C, Jensen PØ, Kolpen M, Qvist T, Aanaes K, Pressler T, Skov
624 M, Ciofu O. 2017. Diagnosis of biofilm infections in cystic fibrosis patients. *Apmis* 125:339-
625 343. doi: 10.1111/apm.12689.

626 16. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. 2015. Essential genome of
627 *Pseudomonas aeruginosa* in cystic fibrosis sputum. *Proc Natl Acad Sci U S A* 112:4110-
628 4115. doi: 10.1073/pnas.1419677112.

629 17. Aziz DB, Low JL, Wu ML, Gengenbacher M, Teo JWP, Dartois V, Dick T. 2017. Rifabutin
630 is active against *Mycobacterium abscessus* complex. *Antimicrob Agents Chemother*
631 61:e00155-17. doi: 10.1128/AAC.00155-17.

632 18. Dick T, Shin SJ, Koh WJ, Dartois V, Gengenbacher M. 2020. Rifabutin is active against
633 *Mycobacterium abscessus* in mice. *Antimicrob Agents Chemother* 64:e01943-19. doi:
634 10.1128/AAC.01943-19.

635 19. Brown-Elliott BA, Wallace RJ. 2019. *In vitro* susceptibility testing of bedaquiline against
636 *Mycobacterium abscessus* complex. *Antimicrob Agents Chemother* 63:e01919-18. doi:
637 10.1128/AAC.01919-18.

638 20. Le Moigne V, Raynaud C, Moreau F, Dupont C, Nigou J, Neyrolles O, Kremer L, Herrmann
639 JL. 2020. Efficacy of bedaquiline, alone or in combination with imipenem, against
640 *Mycobacterium abscessus* in C3HeB/FeJ mice. *Antimicrob Agents Chemother* 64:e00114-
641 20. doi: 10.1128/AAC.00114-20.

642 21. Obregón-Henao A, Arnett KA, Henao-Tamayo M, Massoudi L, Creissen E, Andries K,
643 Lenaerts AJ, Ordway DJ. 2015. Susceptibility of *Mycobacterium abscessus* to
644 antimycobacterial drugs in preclinical models. *Antimicrob Agents Chemother* 59:6904-6912.
645 doi: 10.1128/AAC.00459-15.

646 22. Johansen MD, Daher W, Roquet-Banères F, Raynaud C, Alcaraz M, Maurer FP, Kremer L.
647 2020. Rifabutin is bactericidal against intracellular and extracellular forms of *Mycobacterium*
648 *abscessus*. *Antimicrob Agents Chemother* [Online ahead of print]. doi: 10.1128/AAC.00363-
649 20.

650 23. Davidson RM, Hasan NA, Reynolds PR, Totten S, Garcia B, Levin A, Ramamoorthy P,
651 Heifets L, Daley CL, Strong M. 2014. Genome sequencing of *Mycobacterium abscessus*

652 isolates from patients in the United States and comparisons to globally diverse clinical
653 strains. *J Clin Microbiol* 52:3573-3582. doi: 10.1128/JCM.01144-14.

654 24. Davidson RM. 2018. A closer look at the genomic variation of geographically diverse
655 *Mycobacterium abscessus* clones that cause human infection and disease. *Front Microbiol*
656 9:2988. doi: 10.3389/fmicb.2018.02988.

657 25. Sturkenboom MGG, Simbar N, Akkerman OW, Ghimire S, Bolhuis MS, Alffenaar JC. 2018.
658 Amikacin dosing for MDR tuberculosis: a systematic review to establish or revise the current
659 recommended dose for tuberculosis treatment. *Clin Infect Dis* 67:S303-S307. doi:
660 10.1093/cid/ciy613.

661 26. van Heeswijk RP, Dannemann B, Hoetelmans RM. 2014. Bedaquiline: a review of human
662 pharmacokinetics and drug-drug interactions. *J Antimicrob Chemother* 69:2310-2318. doi:
663 10.1093/jac/dku171.

664 27. Holdiness MR. 1989. Clinical pharmacokinetics of clofazimine. A review. *Clin
665 Pharmacokinet* 16:74-85. doi: 10.2165/00003088-198916020-00002.

666 28. Rodloff AC, Goldstein EJ, Torres A. 2006. Two decades of imipenem therapy. *J Antimicrob
667 Chemother* 58:916-929. doi: 10.1093/jac/dkl354.

668 29. Roger C, Roberts JA, Muller L. 2018. Clinical pharmacokinetics and pharmacodynamics of
669 oxazolidinones. *Clin Pharmacokinet* 57:559-575. doi: 10.1007/s40262-017-0601-x.

670 30. Crabol Y, Catherinot E, Veziris N, Jullien V, Lortholary O. 2016. Rifabutin: where do we
671 stand in 2016? *J Antimicrob Chemother* 71:1759-1771. doi: 10.1093/jac/dkw024.

672 31. Rodvold KA. 1999. Clinical pharmacokinetics of clarithromycin. *Clin Pharmacokinet*
673 37:385-398. doi: 10.2165/00003088-199937050-00003.

674 32. Nash KA, Brown-Elliott BA, Wallace RJ, Jr. 2009. A novel gene, *erm*(41), confers inducible
675 macrolide resistance to clinical isolates of *Mycobacterium abscessus* but is absent from
676 *Mycobacterium cheloneae*. *Antimicrob Agents Chemother* 53:1367-1376. doi:
677 10.1128/AAC.01275-08.

678 33. Kim DH, Jhun BW, Moon SM, Kim SY, Jeon K, Kwon OJ, Huh HJ, Lee NY, Shin SJ, Daley
679 CL, Koh WJ. 2019. *In vitro* activity of bedaquiline and delamanid against nontuberculous
680 mycobacteria, including macrolide-resistant clinical isolates. *Antimicrob Agents Chemother*
681 63:e00665-19. doi: 10.1128/AAC.00665-19.

682 34. Gumbo T, Cirrincione K, Srivastava S. 2020. Repurposing drugs for treatment of
683 *Mycobacterium abscessus*: a view to a kill. *J Antimicrob Chemother* 75:1212-1217. doi:
684 10.1093/jac/dkz523.

685 35. Cheng A, Tsai YT, Chang SY, Sun HY, Wu UI, Sheng WH, Chen YC, Chang SC. 2019. *In*
686 *vitro* synergism of rifabutin with clarithromycin, imipenem, and tigecycline against the
687 *Mycobacterium abscessus* complex. *Antimicrob Agents Chemother* 63:e02234-18. doi:
688 10.1128/AAC.02234-18.

689 36. Pryjma M, Burian J, Thompson CJ. 2018. Rifabutin acts in synergy and is bactericidal with
690 frontline *Mycobacterium abscessus* antibiotics clarithromycin and tigecycline, suggesting a
691 potent treatment combination. *Antimicrob Agents Chemother* 62:e00283-18. doi:
692 10.1128/AAC.00283-18.

693 37. Blaschke TF, Skinner MH. 1996. The clinical pharmacokinetics of rifabutin. *Clin Infect Dis*
694 22 Suppl 1:15. doi: 10.1093/clinids/22.Supplement_1.S15.

695 38. Skinner MH, Hsieh M, Torseth J, Pauloin D, Bhatia G, Harkonen S, Merigan TC, Blaschke
696 TF. 1989. Pharmacokinetics of rifabutin. *Antimicrob Agents Chemother* 33:1237-1241. doi:
697 10.1128/AAC.33.8.1237.

698 39. van Ingen J, Egelund EF, Levin A, Totten SE, Boeree MJ, Mouton JW, Aarnoutse RE,
699 Heifets LB, Peloquin CA, Daley CL. 2012. The pharmacokinetics and pharmacodynamics of
700 pulmonary *Mycobacterium avium* complex disease treatment. *Am J Respir Crit Care Med*
701 186:559-565. doi: 10.1164/rccm.201204-0682OC.

702 40. Sarathy JP, Ganapathy US, Zimmerman MD, Dartois V, Gengenbacher M, Dick T. 2020.
703 TBAJ-876, a 3,5-dialkoxypyridine analogue of bedaquiline, is active against *Mycobacterium*
704 *abscessus*. *Antimicrob Agents Chemother* 64:e02404-19. doi: 10.1128/AAC.02404-19.

705 41. Strolin Benedetti M, Pianezzola E, Brianceschi G, Jubes D, Della Bruna C, Rocchetti M,
706 Poggesi I. 1995. An investigation of the pharmacokinetics and autoinduction of rifabutin
707 metabolism in mice treated with 10 mg/kg/day six times a week for 8 weeks. *J Antimicrob*
708 *Chemother* 36:247-251. doi: 10.1093/jac/36.1.247.

709 42. Ji B, Truffot-Pernot C, Lacroix C, Ravaglione MC, O'Brien RJ, Olliari P, Roscigno G,
710 Grosset J. 1993. Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy
711 of tuberculosis in mice. *Am Rev Respir Dis* 148:1541-1546. doi:
712 10.1164/ajrccm/148.6_Pt_1.1541.

713 43. Dupont C, Viljoen A, Thomas S, Roquet-Banères F, Herrmann JL, Pethe K, Kremer L. 2017.
714 Bedaquiline inhibits the ATP synthase in *Mycobacterium abscessus* and is effective in
715 infected zebrafish. *Antimicrob Agents Chemother* 61:e01225-17. doi: 10.1128/AAC.01225-
716 17.

717 44. Lindman M, Dick T. 2019. Bedaquiline eliminates bactericidal activity of β -lactams against
718 *Mycobacterium abscessus*. *Antimicrob Agents Chemother* 63:e00827-19. doi:
719 10.1128/AAC.00827-19.

720 45. Ruth MM, Sangen JJN, Remmers K, Pennings LJ, Svensson E, Aarnoutse RE,
721 Zweijpfenning SMH, Hoefsloot W, Kuipers S, Magis-Escurra C, Wertheim HFL, van Ingen
722 J. 2019. A bedaquiline/clofazimine combination regimen might add activity to the treatment
723 of clinically relevant non-tuberculous mycobacteria. *J Antimicrob Chemother* 74:935-943.
724 doi: 10.1093/jac/dky526.

725 46. World Health Organization. 2019. WHO consolidated guidelines on drug-resistant
726 tuberculosis treatment. World Health Organization. Geneva, Switzerland.

727 47. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C,
728 Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van
729 Heeswijk RP, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, Mc
730 Neeley DF. 2009. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. *N Engl
731 J Med* 360:2397-2405. doi: 10.1056/NEJMoa0808427.

732 48. Perrineau S, Lachatre M, Le MP, Rioux C, Loubet P, Frechet-Jachym M, Gonzales MC,
733 Grall N, Bouvet E, Veziris N, Yazdanpanah Y, Peytavin G. 2019. Long-term plasma
734 pharmacokinetics of bedaquiline for multidrug- and extensively drug-resistant tuberculosis.
735 *Int J Tuberc Lung Dis* 23:99-104. doi: 10.5588/ijtld.18.0042.

736 49. Salinger DH, Nedelman JR, Mendel C, Spigelman M, Hermann DJ. 2019. Daily dosing for
737 bedaquiline in patients with tuberculosis. *Antimicrob Agents Chemother* 63:e00463-19. doi:
738 10.1128/AAC.00463-19.

739 50. Li B, Ye M, Guo Q, Zhang Z, Yang S, Ma W, Yu F, Chu H. 2018. Determination of MIC
740 distribution and mechanisms of decreased susceptibility to bedaquiline among clinical
741 isolates of *Mycobacterium abscessus*. *Antimicrob Agents Chemother* 62:e00175-18. doi:
742 10.1128/AAC.00175-18.

743 51. Lerat I, Cambau E, Roth dit Bettoni R, Gaillard JL, Jarlier V, Truffot C, Veziris N. 2014. *In*
744 *vivo* evaluation of antibiotic activity against *Mycobacterium abscessus*. *J Infect Dis* 209:905-
745 912. doi: 10.1093/infdis/jit614.

746 52. Rouan MC, Lounis N, Gevers T, Dillen L, Gilissen R, Raoof A, Andries K. 2012.
747 Pharmacokinetics and pharmacodynamics of TMC207 and its N-desmethyl metabolite in a
748 murine model of tuberculosis. *Antimicrob Agents Chemother* 56:1444-1451. doi:
749 10.1128/AAC.00720-11.

750 53. Kaushik A, Ammerman NC, Tyagi S, Saini V, Vervoort I, Lachau-Durand S, Nuermberger
751 E, Andries K. 2019. Activity of a long-acting injectable bedaquiline formulation in a
752 paucibacillary mouse model of latent tuberculosis infection. *Antimicrob Agents Chemother*
753 63:e00007-19. doi: 10.1128/AAC.00007-19.

754 54. Gengenbacher M, Rao SP, Pethe K, Dick T. 2010. Nutrient-starved, non-replicating
755 *Mycobacterium tuberculosis* requires respiration, ATP synthase and isocitrate lyase for
756 maintenance of ATP homeostasis and viability. *Microbiology* 156:81-87. doi:
757 10.1099/mic.0.033084-0.

758 55. Aziz DB, Go ML, Dick T. 2020. Rifabutin suppresses inducible clarithromycin resistance in
759 *Mycobacterium abscessus* by blocking induction of *whiB7* and *erm41*. *Antibiotics (Basel)*
760 9:72. doi: 10.3390/antibiotics9020072.

761 56. Koul A, Vranckx L, Dhar N, Göhlmann HWH, Özdemir E, Neefs JM, Schulz M, Lu P,
762 Mørtz E, McKinney JD, Andries K, Bald D. 2014. Delayed bactericidal response of
763 *Mycobacterium tuberculosis* to bedaquiline involves remodelling of bacterial metabolism.
764 Nat Commun 5:3369. doi: 10.1038/ncomms4369.

765 57. Peterson EJR, Ma S, Sherman DR, Baliga NS. 2016. Network analysis identifies Rv0324 and
766 Rv0880 as regulators of bedaquiline tolerance in *Mycobacterium tuberculosis*. Nat Microbiol
767 1:16078. doi: 10.1038/nmicrobiol.2016.78.

768 58. Richard M, Gutiérrez AV, Viljoen A, Rodriguez-Rincon D, Roquet-Baneres F, Blaise M,
769 Everall I, Parkhill J, Floto RA, Kremer L. 2019. Mutations in the MAB_2299c TetR
770 regulator confer cross-resistance to clofazimine and bedaquiline in *Mycobacterium*
771 *abscessus*. Antimicrob Agents Chemother 63:e01316-18. doi: 10.1128/AAC.01316-18.

772 59. Gutiérrez AV, Richard M, Roquet-Baneres F, Viljoen A, Kremer L. 2019. The TetR family
773 transcription factor MAB_2299c regulates the expression of two distinct MmpS-MmpL
774 efflux pumps involved in cross-resistance to clofazimine and bedaquiline in *Mycobacterium*
775 *abscessus*. Antimicrob Agents Chemother 63:e01000-19. doi: 10.1128/AAC.01000-19.

776 60. Ganapathy US, Dartois V, Dick T. 2019. Repositioning rifamycins for *Mycobacterium*
777 *abscessus* lung disease. Expert Opin Drug Discov 14:867-878. doi:
778 10.1080/17460441.2019.1629414.

779 61. Alfarisi O, Alghamdi WA, Al-Shaer MH, Dooley KE, Peloquin CA. 2017. Rifampin vs.
780 rifapentine: what is the preferred rifamycin for tuberculosis? Expert Rev Clin Pharmacol
781 10:1027-1036. doi: 10.1080/17512433.2017.1366311.

782 62. Van der Auwera P. 1991. Pharmacokinetic evaluation of single daily dose amikacin. J
783 Antimicrob Chemother 27 Suppl C:63-71. doi: 10.1093/jac/27.suppl_c.63.

784 63. United States Food and Drug Administration. 2019. SIRTURO™ (bedaquiline tablets), for
785 oral use, Initial U.S. Approval: 2012. Revised 2019. Reference ID: 4474884.

786 64. Healan AM, McLeod Griffiss J, Proskin HM, O'Riordan MA, Gray WA, Salata RA, Blumer
787 JL. 2017. Impact of rifabutin or rifampin on bedaquiline safety, tolerability, and
788 pharmacokinetics assessed in a randomized clinical trial with healthy adult volunteers.
789 Antimicrob Agents Chemother 62:e00855-17. doi: 10.1128/AAC.00855-17.

790 65. Svensson EM, Murray S, Karlsson MO, Dooley KE. 2015. Rifampicin and rifapentine
791 significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob
792 Chemother 70:1106-1114. doi: 10.1093/jac/dku504.

793 66. Leroy A, Humbert G, Oksenhendler G, Fillastre JP. 1978. Pharmacokinetics of
794 aminoglycosides in subjects with normal and impaired renal function. Antibiot Chemother
795 (1971) 25:163-180. doi: 10.1159/000401061.

796 67. Srivastava S, Modongo C, Siyambalapitiyage Dona CW, Pasipanodya JG, Deshpande D,
797 Gumbo T. 2016. Amikacin optimal exposure targets in the hollow-fiber system model of
798 tuberculosis. Antimicrob Agents Chemother 60:5922-5927. doi: 10.1128/AAC.00961-16.

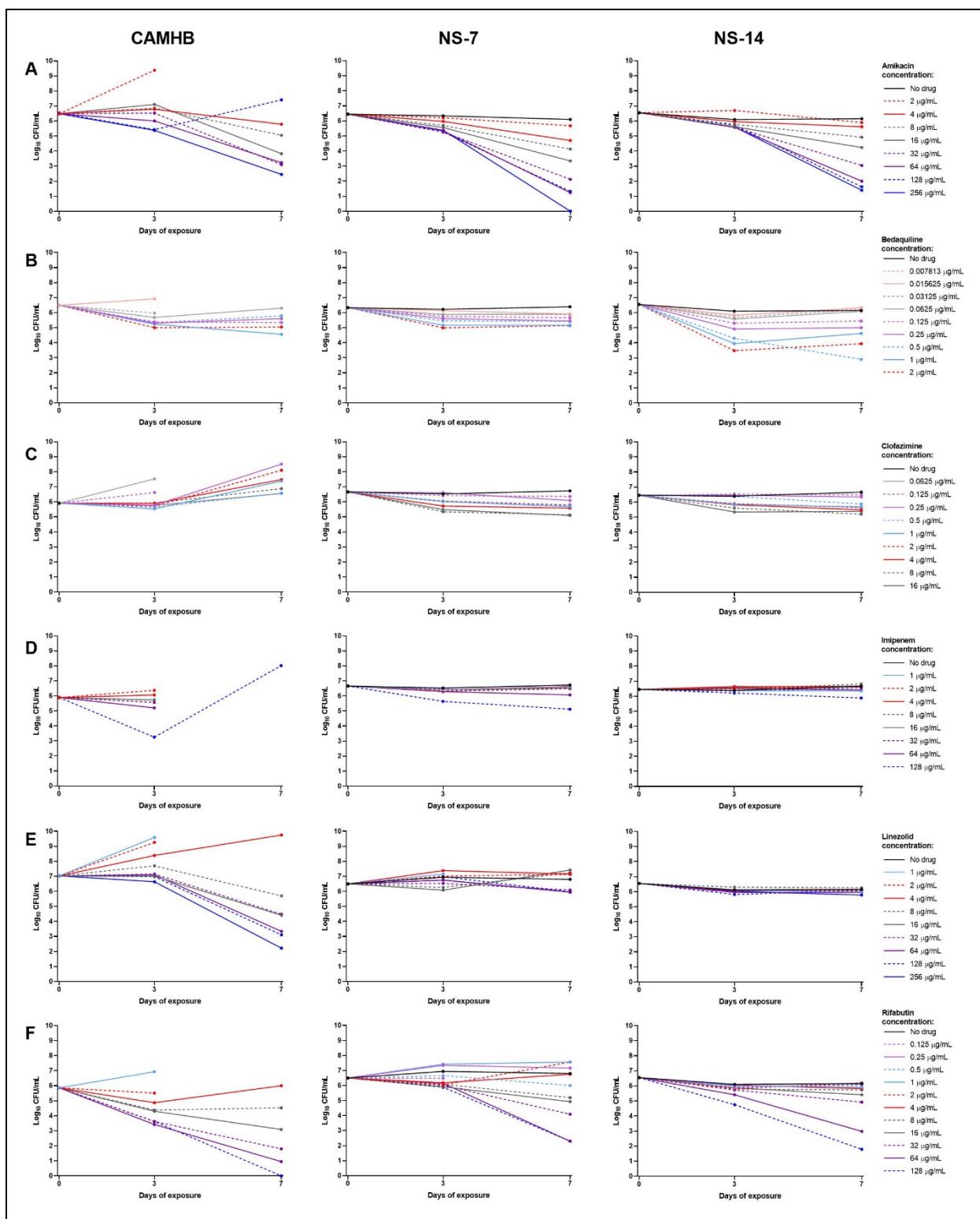
799 68. Huang Q, Chen ZF, Li YY, Zhang Y, Ren Y, Fu Z, Xu SQ. 2007. Nutrient-starved
800 incubation conditions enhance pyrazinamide activity against *Mycobacterium tuberculosis*.
801 Chemotherapy 53:338-343. doi: 10.1159/000107723.

802 69. Clinical and Laboratory Standards Institute, (CLSI). 2018. Susceptibility Testing of
803 Mycobacteria, *Nocardia* spp., and Other Aerobic Actinomycetes. 3rd Ed. CLSI standard
804 M24.

805 70. Kaushik A, Ammerman NC, Lee J, Martins O, Kreiswirth BN, Lamichhane G, Parrish NM,
806 Nuermberger EL. 2019. *In vitro* activity of the new β -lactamase inhibitors relebactam and

807 vaborbactam in combination with β -lactams against *Mycobacterium abscessus* complex
808 clinical isolates. *Antimicrob Agents Chemother* 63:e02623-18. doi: 10.1128/AAC.02623-18.

809 71. Rominski A, Schulthess B, Müller DM, Keller PM, Sander P. 2017. Effect of β -lactamase
810 production and β -lactam instability on MIC testing results for *Mycobacterium abscessus*. *J*
811 *Antimicrob Chemother* 72:3070-3078. doi: 10.1093/jac/dkx284.

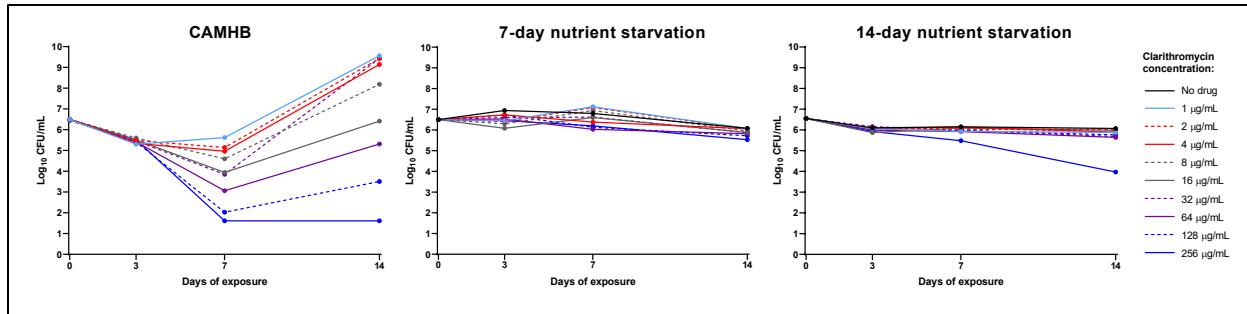

812 72. González-Pastor JE, Hobbs EC, Losick R. 2003. Cannibalism by sporulating bacteria.
813 *Science* 301:510-513. doi: 10.1126/science.1086462.

814 73. Takano S, Pawlowska BJ, Gudelj I, Yomo T, Tsuru S. 2017. Density-dependent recycling
815 promotes the long-Term survival of bacterial populations during periods of starvation. *mBio*
816 8:2336. doi: 10.1128/mBio.02336-16.

817 74. Nuermberger EL. 2017. Preclinical efficacy testing of new drug candidates. *Microbiol Spectr*
818 5:TBTB-2017. doi: 10.1128/microbiolspec.TBTB2-0034-2017.

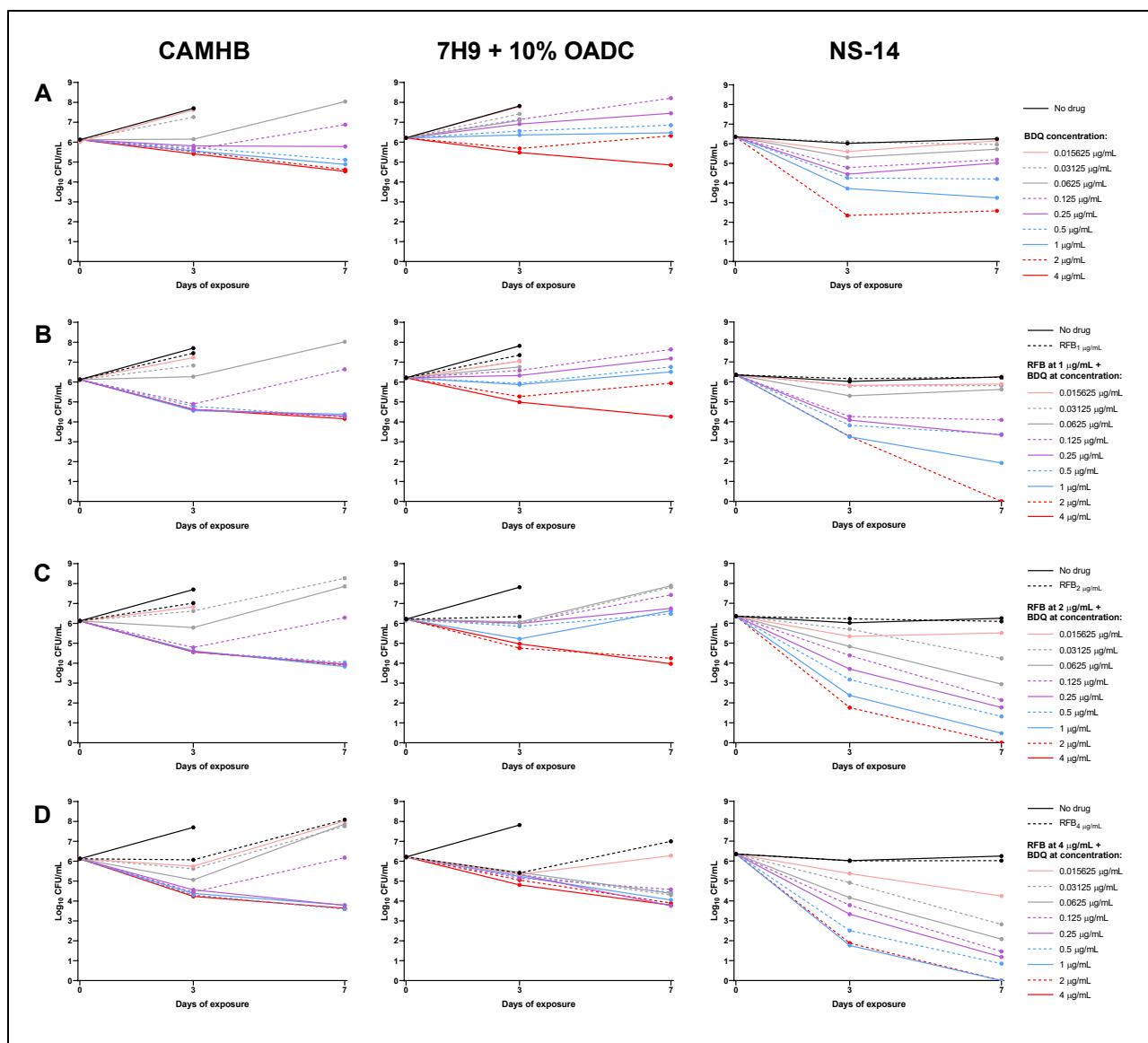
819 75. Maggioncalda EC, Story-Roller E, Mylius J, Illei P, Basaraba RJ, Lamichhane G. 2020. A
820 mouse model of pulmonary *Mycobacteroides abscessus* infection. *Sci Rep* 10:3690-1. doi:
821 10.1038/s41598-020-60452-1.

822 76. Story-Roller E, Maggioncalda EC, Lamichhane G. 2019. Synergistic efficacy of β -lactam
823 combinations against *Mycobacterium abscessus* pulmonary infection in mice. *Antimicrob*
824 *Agents Chemother* 63:2613. doi: 10.1128/AAC.00614-19.



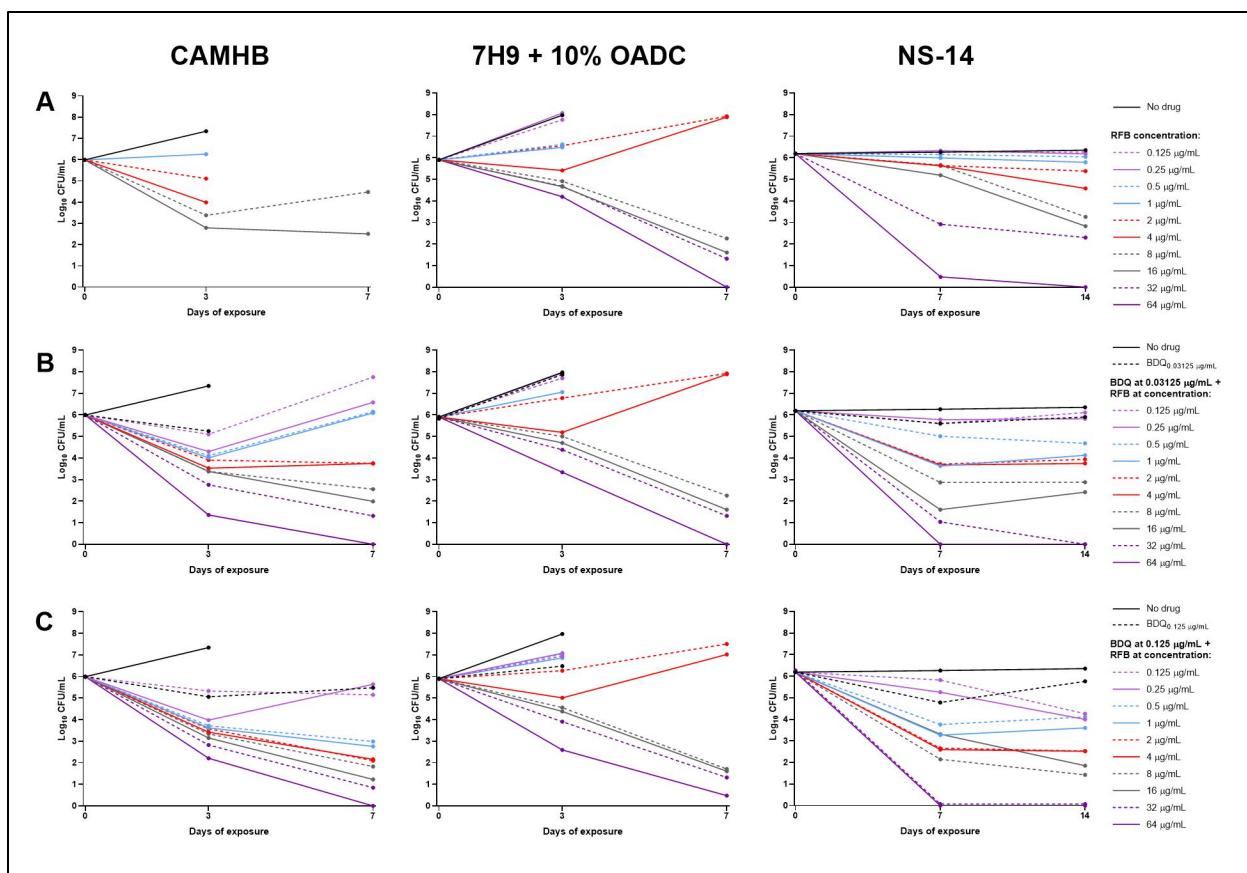
825

826 **Figure 1. *In vitro* drug activity against actively growing and nutrient-starved *M. abscessus*.**

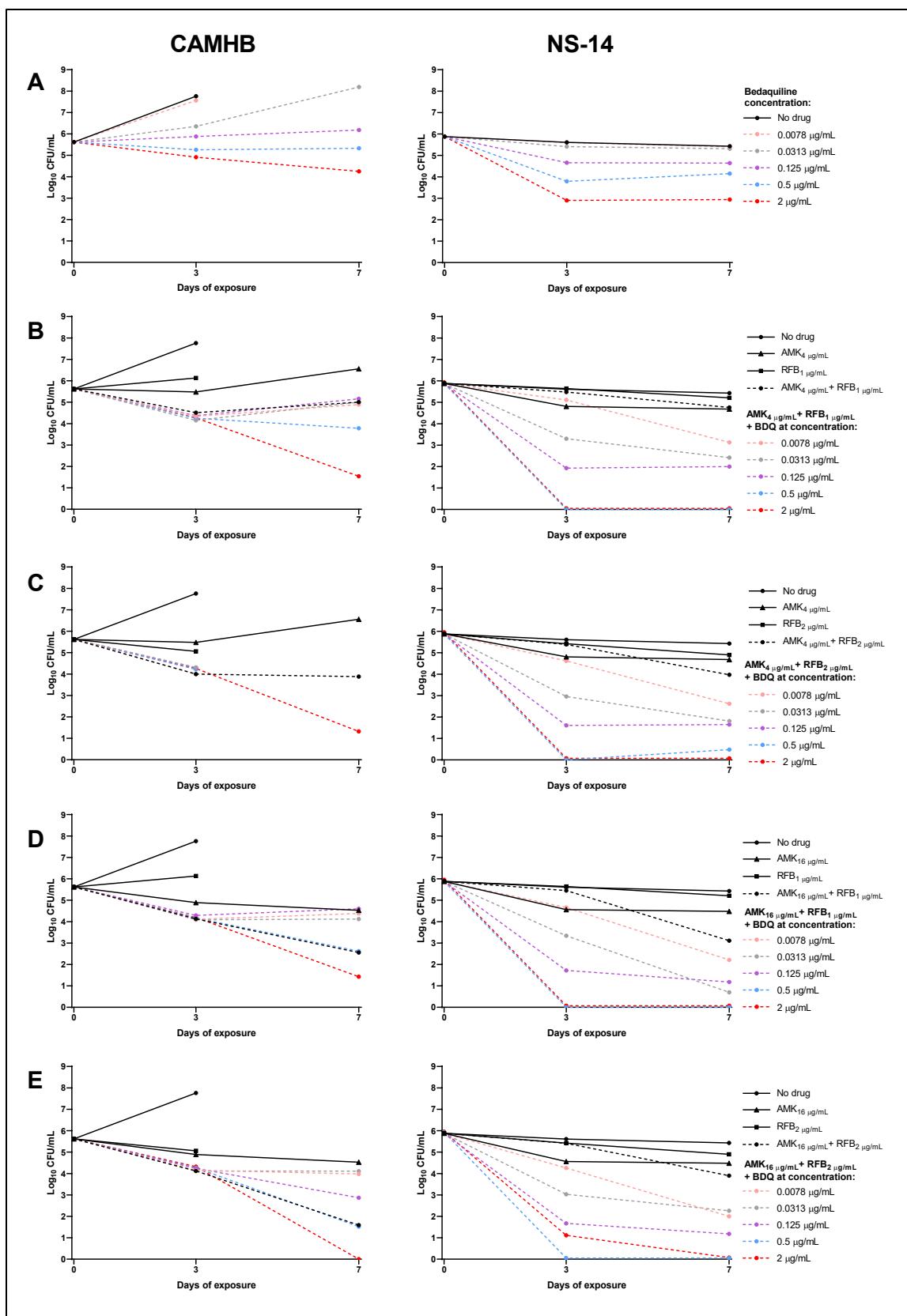

827 Bacterial populations were exposed to amikacin (A), bedaquiline (B), clofazimine (C), imipenem

828 (D), linezolid (E), and rifabutin (F) for up to 7 days in the following conditions: cation-adjusted
829 Mueller-Hinton broth (CAMHB) (left panel); nutrient-starved for 7 days prior to drug exposure
830 (middle panel); and nutrient-starved for 14 days prior to drug exposure (right panel). Overgrowth
831 and clumping of bacteria in CAMHB precluded CFU determination; this occurred with all no
832 drug controls and some of the samples with lower drug concentrations at Day 3 and/or Day 7.
833 The lower limit of detection was $0.48 \log_{10}$ CFU/mL. All CFU data are provided in **Tables S1-**
834 **S6.**

835


836 **Figure 2. *In vitro* clarithromycin activity against actively growing and nutrient-starved *M.*
837 *abscessus*.** Bacterial populations were exposed to clarithromycin for up to 14 days in the
838 following conditions: cation-adjusted Mueller-Hinton broth (CAMHB) (left panel); nutrient-
839 starved for 7 days prior to drug exposure (middle panel); and nutrient-starved for 14 days prior to
840 drug exposure (right panel). Over growth and clumping of bacteria precluded CFU determination
841 in the no drug control in CAMHB were actively multiplying and overgrew/clumped, precluding
842 accurate CFU determination. The lower limit of detection was $0.48 \log_{10}$ CFU/mL. All CFU data
843 are provided in **Tables S7**.

844


845 **Figure 3. *In vitro* activity of bedaquiline (BDQ) alone and in combination with rifabutin**
 846 **(RFB) against actively growing and nutrient-starved *M. abscessus*.** Bacterial populations
 847 were exposed to bedaquiline alone (**A**), or bedaquiline plus rifabutin at fixed concentrations of
 848 1 µg/mL (**B**), 2 µg/mL (**C**), or 4 µg/mL (**D**) in the following conditions: cation-adjusted Mueller-
 849 Hinton broth (CAMHB, left panel); 7H9 broth with 10% Middlebrook oleic acid-albumin-
 850 dextrose-catalase (OADC) supplement (middle panel); and nutrient-starved in PBS for 14 days
 851 (NS-14) prior to drug exposure (right panel). Overgrowth and clumping of bacteria in CAMHB

852 or 7H9 broth precluded CFU determination for the no drug controls and some samples with
853 lower drug concentrations at Day 7. The lower limit of detection was $0.48 \log_{10}$ CFU/mL. All
854 CFU data are provided in **Tables S2, S9**.

855

856 **Figure 4. *In vitro* activity of rifabutin (RFB) alone and in combination with bedaquiline**
 857 **(BDQ) against actively growing and nutrient-starved *M. abscessus*.** Bacterial populations
 858 were exposed to rifabutin alone (A), or rifabutin plus bedaquiline at fixed concentrations of
 859 0.03125 $\mu\text{g}/\text{mL}$ (B), or 0.125 $\mu\text{g}/\text{mL}$ (C) in the following conditions: cation-adjusted Mueller-
 860 Hinton broth (CAMHB, left panel); 7H9 broth with 10% Middlebrook oleic acid-albumin-
 861 dextrose-catalase (OADC) supplement (middle panel); and nutrient-starved in PBS for 14 days
 862 (NS-14) prior to drug exposure (right panel). Overgrowth and clumping of bacteria in CAMHB
 863 or 7H9 broth precluded CFU determination for the no drug controls and some samples with
 864 lower drug concentrations at Day 3 or Day 7. The lower limit of detection was 0.48 \log_{10}
 865 CFU/mL. All CFU data are provided in **Tables S6, S10**.

867 **Figure 5. *In vitro* activity of bedaquiline (BDQ) alone and in combination with rifabutin
868 (RFB) and amikacin (AMK) against actively growing and nutrient-starved *M. abscessus*.**

869 Bacterial populations were exposed to bedaquiline alone (**A**), or bedaquiline plus rifabutin at
870 fixed concentrations of 1 μ g/mL (**B, D**) or 2 μ g/mL (**C, E**), and amikacin at fixed concentrations
871 of 4 μ g/mL (**B, C**) or 16 μ g/mL (**C, D**), in the following conditions: cation-adjusted Mueller-
872 Hinton broth (CAMHB, left panel); 7H9 broth with 10% Middlebrook oleic acid-albumin-
873 dextrose-catalase (OADC) supplement (middle panel); and nutrient-starved in PBS for 14 days
874 (NS-14) prior to drug exposure (right panel). Overgrowth and clumping of bacteria in CAMHB
875 or 7H9 broth precluded CFU determination for the no drug controls and some samples with
876 lower drug concentrations at Day 7. The lower limit of detection was 0.48 \log_{10} CFU/mL. All
877 CFU data, including data for additional bedaquiline concentrations not included in the graphs,
878 are provided in **Tables S2, S11**.