

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

1  
2     **Temporal stability of human sperm mosaic mutations results in life-long threat of**  
3     **transmission to offspring**  
4

5     Xiaoxu Yang<sup>1,2,7</sup>, Martin W. Breuss<sup>1,2,7</sup>, Xin Xu<sup>1,2</sup>, Danny Antaki<sup>1,2</sup>, Kiely N. James<sup>1,2</sup>,  
6     Valentina Stanley<sup>1,2</sup>, Laurel L. Ball<sup>1,2</sup>, Renee D. George<sup>1,2</sup>, Sara A. Wirth<sup>1,2</sup>, Beibei  
7     Cao<sup>1,2</sup>, An Nguyen<sup>1,2</sup>, Jennifer McEvoy-Venneri<sup>1,2</sup>, Guoliang Chai<sup>1,2</sup>, Shareef Nahas<sup>2</sup>,  
8     Lucitia Van Der Kraan<sup>2</sup>, Yan Ding<sup>2</sup>, Jonathan Sebat<sup>3,4,5,6</sup>, Joseph G. Gleeson<sup>1,2\*</sup>

9  
10    <sup>1</sup>Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA

11    <sup>2</sup>Rady Children's Institute for Genomic Medicine, San Diego, CA 92025, USA

12    <sup>3</sup>Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA  
13    92093, USA

14    <sup>4</sup>Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA

15    <sup>5</sup>Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093,  
16    USA

17    <sup>6</sup>Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA

18

19    <sup>7</sup>These authors contributed equally.

20

21    \*Correspondence to: [jogleeson@health.ucsd.edu](mailto:jogleeson@health.ucsd.edu)

22

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

### 23 **Summary**

24

25 **Every newborn harbors scores of new single nucleotide variants (SNVs) that may impact**  
26 **health and disease<sup>1-4</sup>; the majority of these are contributed by the paternal germ cells<sup>5</sup>. In**  
27 **some cases, these mutations are identifiable in a subset of the parents' cells—a**  
28 **phenomenon called mosaicism, which is capable of producing disease recurrence<sup>6-8</sup>.**  
29 **Here, we provide a comprehensive analysis of male gonadal mosaic mutations,**  
30 **employing 300x whole genome sequencing (WGS) of blood and sperm in 17 healthy**  
31 **individuals, including assessment across multiple samples and age groups.**  
32 **Approximately 1 in 15 healthy males is predicted to harbor a transmissible, likely**  
33 **pathogenic exonic variant that is mosaic in his sperm. In general, only a third of sperm**  
34 **mosaic mutations were detectable in blood cells, all were remarkably stable over the**  
35 **course of months to years, and 23% were present in 5% or more of sperm cells. There**  
36 **was no evidence of age-dependent clonal expansion or collapse, as seen in**  
37 **hematopoiesis. Thus, despite the observed increase of mutations in offspring of men**  
38 **with advanced paternal age, detectable sperm mosaicism remains stable, represents a**  
39 **life-long transmission risk to offspring, and suggests a testis stem cell niche that**  
40 **prevents widespread clonality.**

41

### 42 **Main**

43

44 Cellular proliferation and metabolism introduce mutations into the genome of every cell<sup>9-12</sup>. If  
45 these occur in embryogenesis, they may spread widely across or within tissues at appreciable  
46 allelic fractions (AF; i.e. fraction of mutant DNA molecules). These mutations are unable to  
47 transmit to offspring unless they are present within primordial germ cells (PGCs)<sup>9,13,14</sup>. We  
48 previously distinguished three types of sperm mosaicism<sup>7</sup>: 'Type I', occurring during or after the  
49 terminal spermatogonial stem cell division, with no chance of recurrence; 'Type II', occurring in  
50 spermatogonial stem cells, accumulating with paternal age, and possibly undergoing positive  
51 selection (i.e. 'selfish sperm' model)<sup>15</sup>; and 'Type III', occurring during embryogenesis of the  
52 father, contributing to PGCs and potentially other tissues. We found that Type III accounts for  
53 ~4% of paternally-phased mutations detected in offspring, in agreement with previous indirect  
54 estimates<sup>6,14,16</sup>.

55 Here, we study the landscape of sperm mosaicism to determine the number of  
56 transmissible mosaic SNVs (mSNVs) in healthy men, temporal stability within an individual, and

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

57 changes in old vs. young men. We used  $>300\times$  WGS from blood and sperm in 12 males aged  
58 18-22 years (young age; YA, ID01-12) to establish baseline mosaicism before any clonal  
59 selection might change abundance (Fig. 1a, Extended Data Fig. 1). We further collected  
60 multiple (up to 3) sperm samples for 9 of these individuals at  $\sim$ 6 month intervals. Finally, we  
61 assessed a cohort of 5 males aged 48-62 years (advanced age; AA, ID13-17). Together, these  
62 approaches revealed the inter-subject, intra-subject, and age-dependent variability of sperm and  
63 blood mosaicism.

64

### 65 **Detectable mosaicism is more common within than across tissues**

66

67 We employed a combination of state-of-the-art mosaic variant callers for mSNVs and mINDELs  
68 (small insertions and deletions), termed  $300\times$ MSMF (Extended Data Fig. 2a)<sup>7,17,18</sup>. This  
69 approach, which identifies both tissue-specific and tissue-shared variants, demonstrated  
70 sensitivity to  $\sim$ 1% AF and a validation rate of 97.5% on benchmarked data (Extended Data Fig.  
71 2b-d).

72 We found that each YA male harbored between 9-38 sperm-specific ('Sperm') (mean  $\pm$   
73 SD:  $23.1 \pm 9.0$ ; total: 277), 1-16 tissue-shared ('Shared') ( $10.3 \pm 5.5$ ; 123), and 23-54 blood-  
74 specific ('Blood') ( $39.4 \pm 9.1$ ; 473) variants (Fig. 1b, Extended Data Fig. 3a-c, Supplementary  
75 Dataset 1). Thus, an average of  $>30$  variants were detected in sperm with an average AF of  
76 4.8%; two-thirds of these were found exclusively in semen. Conversely, 80% of detected mosaic  
77 variants from blood were not identified in sperm, and thus likely not transmissible. The AFs of  
78 the *Shared* variants were higher than tissue-specific ones (Fig. 1c-e, Extended Data Fig. 3d-e)  
79 and correlated tightly in sperm and blood (Extended Data Fig. 3f). These results suggest an  
80 early developmental origin of *Shared* variants and a continuous accumulation of sperm- and  
81 blood-specific variants after progenitor lineage separation.

82

### 83 **Modest sperm mosaicism variation within an individual**

84

85 For 9 YA individuals, we obtained samples to measure the stability of sperm mosaicism over the  
86 course of one year (Fig. 2a). First, to assess whether new mosaic variants appeared over time,  
87 we performed  $300\times$ MSMF on two additional semen samples from ID04 and ID12 (Fig. 2b).  
88 Second, to accurately quantify the stability of mosaic variants, we performed targeted amplicon  
89 sequencing (TAS) for  $\sim$ 50% of *Sperm* and *Shared* candidate variants in sperm samples from YA  
90 individuals from up to two additional time points (Fig. 2c).

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

91 In the first approach, we detected 125 variants from ID04's and ID12's respective three  
92 semen samples. The AF of variants that were mosaic in sperm correlated tightly across time  
93 points (Extended Data Fig. 4a). For a number of variants that were close to the detection limit of  
94 WGS, we observed several that were absent in one or two of the sperm datasets, but in general  
95 new somatic variants did not appear or drop out.

96 Second, we employed TAS on sperm, blood, and saliva samples, with average read-  
97 depths >5000x. We confirmed 130 variants as mosaic in sperm, blood, or both, and subsets of  
98 these had two (n=105) or three (n=91) sperm or saliva (n=41) samples available  
99 (Supplementary Dataset 2). Saliva was tightly correlated to blood, consistent with leukocytes  
100 being a main sources of salivary DNA<sup>19</sup> (Extended Data Fig. 4b).

101 All mutations observed in sperm through TAS were detectable and correlated tightly  
102 across all semen samples within a subject (Fig. 2d). Variants were stable across one year, as  
103 AF change was typically below 2% (Fig. 2e). The variation across time points, however, was  
104 imperfectly correlated with the initially observed AF, and fold-change was as high as 1.5-2 for  
105 low AF variants (Extended Data Fig. 4c-e). This suggests that progenitors within a sub-lineage  
106 are at least partly coupled in their contribution to semen, likely due to non-random localization  
107 within or across the testes. Finally, in agreement with the absence of detectable selection, we  
108 noted no consistent linear changes, but rather random variation around a mean (Fig. 2f).  
109

### 110 **Age-dependent changes observed in blood-specific but not sperm-specific variants**

111  
112 In the 5 AA individuals that underwent 300×MSMF we detected 120 *Sperm*, 55 *Shared*, and  
113 1087 *Blood* mSNV/INDELs (Fig. 3a, Extended Data Fig. 5, Supplementary Dataset 1). AA  
114 individuals harbored a greater burden of *Blood* variants compared to YA; and two in particular,  
115 ID14 and ID17, had a further 5-fold increase, consistent with age-dependent 'clonal  
116 hematopoiesis'<sup>20,21</sup> (Fig. 3b). This phenomenon represents a loss of clonal diversity in the  
117 population of white blood cells as a result of selection or random drift with age<sup>22</sup>. *Shared* and  
118 *Sperm* variants, however, showed unchanged total numbers and mean AF across the age  
119 groups (Fig. 3c, Extended Data Fig. 6a-b), suggesting relative stability during aging.

120 Consistent with a positive selection for new somatic clones and their variants in  
121 hematopoietic lineages, we found a shift of *Blood* AFs towards lower abundance with age  
122 (Extended Data Fig. 6c-d). Unexpectedly, this was independent of whether the number of *Blood*  
123 variants was slightly (ID13, ID15, ID16) or greatly (ID14, ID17) increased, suggesting that

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

124 detectable changes in blood mosaicism precede the collapse of clonal diversity, and that these  
125 changes can be identified in with 300xMSMF as early as the 5<sup>th</sup> or 6<sup>th</sup> decade.

126

### 127 **Mutational mechanisms change during early development**

128

129 To increase the number of mosaic mutations available for aggregate analysis, we incorporated  
130 200x deep WGS of sperm and blood from a previous study of 8 different men (REACH)<sup>7,23,24</sup>  
131 and applied joint MSMF analysis. We found similar mosaicism patterns as in the YA and AA  
132 cohorts (Extended Data Fig. 7), and thus combined the previous 8 person and 17 person  
133 cohorts, yielding 522 *Sperm* and 251 *Shared* variants. In contrast, due to the clonal  
134 hematopoiesis detected in older men, we split blood-specific mosaicism into 473 'Blood-Y' (YA)  
135 and 1673 'Blood-A' (AA, REACH) variants (Fig. 4a). Of note, the last class was heavily biased  
136 towards three aged individuals with observed clonal hematopoiesis (Supplementary Dataset 1).  
137 These four aggregated classes were then used for a combined analysis of mutation features.

138 First, we contrasted substitution patterns of these four classes with matched  
139 permutations of variants from control germline mutations from the Simons Simplex Consortium<sup>3</sup>  
140 or gnomAD<sup>25</sup> (Fig. 4b, Extended Data Fig. 8a-e, Methods). The four mosaic classes showed  
141 distinct mutational patterns from controls. For instance, C>G and T>C mutations were depleted  
142 among mosaic variants. *Shared* variants additionally had higher levels of T>A and lower levels  
143 of C>T mutations, thought to result from oxidative deamination<sup>26</sup>. The latter suggests that the  
144 impact of this mutational origin is relatively reduced in early embryonic development and  
145 replaced by others.

146 Next, we assessed mutation enrichment within genomic features compared to matched  
147 permutations (Extended Data Fig. 8f; Supplementary Dataset 3; Methods). *Blood-A* showed the  
148 most relative depletions, from areas of active histone modifications, annotated genes, low  
149 nucleosome occupancy, and sites associated with early replication timing, possibly indicative of  
150 selective pressure on clonal hematopoiesis clones. *Shared* variants were enriched in areas  
151 associated with late replication timing. *Sperm* variants showed enrichment in transcription factor  
152 binding sites, and a depletion in areas bound by Topoisomerases. In addition, both *Sperm* and  
153 *Blood-Y* variants were increased in DNase I hypersensitive sites, suggesting that open  
154 chromatin is more mutable in these two lineages.

155 Together, *Sperm* and *Shared* variants comprised more than 700 sperm mosaic  
156 mSNV/INDELs across the 25 individuals with a long tail of low AF mutations that were  
157 predominantly sperm-specific (Extended Data Fig. 8f-g). While mutations mainly accumulate as

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

158 a function of cell cycle, some have suggested that this process is accelerated in less  
159 differentiated or early cells<sup>27,28</sup>, which would correlate with higher AFs. To assess this, we  
160 developed a quantitative metric termed ‘Mutation Factor’, which is defined by the rate of  
161 mutational accumulation as a function of predicted developmental ‘age’. We determined this  
162 metric by fitting a step-wise exponential regression with minimal loss to the ranked plot of  
163 mosaic variants (Extended Data Fig. 9a-e, Methods). We found almost identical Mutation  
164 Factors for *Shared* variants in blood and sperm, suggesting transmission to both tissues at  
165 stable fractions. *Sperm* and *Blood-Y* variants also had a comparable Mutation Factor,  
166 supporting a similar accumulation of mutations that was more dependent on the developmental  
167 time rather than the fate of the progenitors. *Shared* variants accumulated at a faster rate per  
168 cell cycle than *Sperm* or *Blood-Y* variants, as was postulated to result from DNA damage  
169 repair differences in early development<sup>27-29</sup>. *Blood-A*, however, had an even higher Mutation  
170 Factor than the other classes, likely reflecting of the dynamic changes in clonal proportions with  
171 aging. These observations were largely confirmed by quantile analysis of AF distributions  
172 (Extended Data Fig. 9f).

173

### 174 **One in 15 men harbors a likely pathogenic transmissible mutation in sperm**

175

176 Across all cohorts, men harbored an average of 30.9 sperm mosaic variants (*Sperm*: 20.9,  
177 *Shared*: 10.0) (Fig. 4c). Of these, 1.6 (*Sperm*: 1.1, *Shared*: 0.5) were exonic (Extended Data fig.  
178 10a), and 0.3 (*Sperm*: 0.2, *Shared*: 0.1) of ‘high-impact’, i.e. CADD<sup>30</sup> score—a metric that  
179 summarizes deleteriousness of a mutation—above 25 or predicted loss-of-function (C-LoF; Fig.  
180 4d, Supplementary Dataset 3). Thus, across 100 men, 28 are predicted to harbor a C-LoF  
181 variant in sperm at detectable AFs, and 7.2 in a haploinsufficient (HI) gene<sup>31</sup> (Fig. 4e),  
182 amounting to approximately 1 in 15 males; and—based on our observations in the YA and AA  
183 cohort—this risk should be stable for life. The intersection of these genes with the resultant  
184 disease in the setting of a mutation could define the disease-specific transmissible burden for  
185 conditions with near-Mendelian risk. For instance, 1.3 in 100 men are estimated to carry a  
186 mutation with potential to cause monogenetic autism spectrum disorder (Fig. 4e). For genes  
187 with lower risk of disease when mutated, the odds ratio of the disease (i.e. risk of disease when  
188 the gene is mutated) need also be taken into account.

189 Overall, most variants in the combined cohort were at AFs between 1-26% (Extended  
190 Data Fig. 10b), with the majority of sperm AFs—and thus likely transmission risks—below 5%  
191 (Fig. 4f), suggesting that the risk of transmission for any given variant is relatively low. But

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

192 approximately 1 in 5 variants had a higher AFs, and the majority of these were detectable in  
193 both blood and sperm. Adjusted for relative frequency and AF, *Sperm* and *Shared* variants  
194 represented a similar total transmissible burden. Assessment of sperm for mosaicism is critical  
195 to assess risk of transmission, because using blood as a surrogate will produce false-negatives  
196 as a result of sperm-specific variants and false-positives as a result of blood-specific variants,  
197 the latter increasing as a function of aging.

198

## 199 Discussion

200

201 Here we provide an overview of the landscape of sperm mosaicism through comprehensive  
202 assessment using deep WGS of sperm and blood across multiple men, multiple time points, and  
203 multiple ages. AFs correlated with tissue specificity of mutations, with *Shared* variants showing  
204 early embryonic origins and higher AFs, compared with *Sperm* or *Blood* variants showing  
205 origins after lineage separation with lower AFs. PGCs separate from somatic progenitors before  
206 the third week post conception in humans<sup>32</sup> (Extended Data Fig. 10d). Hematopoietic  
207 progenitors arise later from mesoderm, following germ layer specification<sup>33</sup>. Thus, *Blood*  
208 mutations detected in YA are—in contrast to *Sperm*—likely shared with other tissues. Our  
209 *Sperm* variant AFs estimate that the number of starting progenitors committed to the sperm  
210 lineage in development as 3-6 cells. It is difficult, however, to provide such an estimate for blood  
211 due to the changing nature of clonal composition over time.

212 *Shared* variants differed in their mutational accumulation speed from those that were  
213 tissue-specific, consistent with previous studies<sup>27,28</sup>, and where deficiencies in early repair  
214 mechanisms have been proposed as a possible explanation<sup>29</sup>. Supporting our idea that *Sperm*  
215 and *Blood* variants occur at a similar time in development, *Sperm* and *Blood*-Y mutations exhibit  
216 comparable mutational spectra and Mutation Factors. Due to the likely embryonic origin of  
217 detectable mosaic mutations, we observed a depletion of T>C variants that correlate with  
218 gonadal aging<sup>5,6</sup>. Thus, these mutations differ from those due to Type I or II mosaicism, which  
219 are sporadic or potentially accumulated with age, and which could be directly assessed with  
220 future single cell sperm sequencing studies.

221 Our analysis provides evidence that Type III sperm mosaic variants are stable in number  
222 and AF, likely across the entire lifetime of an individual. Thus, Type III variants represent a  
223 persistent, long-term transmission risk (Extended Data Fig. 10e). However, their relative  
224 contribution to disease risk actually declines with age, due to the increase of Type I and II  
225 mutations (Fig. 4g-h). These ideas are consistent with population analysis and recurrence risk

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

226 estimates that consider age<sup>6,14</sup>. Consequently, spermatogonial stem cells, despite proliferating  
227 throughout reproductive life, do not appear to exhibit detectable clonal collapse or expansion,  
228 likely a reflection of cellular dynamics in the testicular stem cell niche. Single cell sequencing  
229 identified almost 3% of sperm with karyotype defects<sup>34</sup>, but the degree to which they contribute  
230 to risk of disease in offspring remains unknown.

231 Previous work has demonstrated risk of clonal hematopoiesis with advancing age<sup>20,21,35</sup>.  
232 We provide genome-wide analysis documenting evidence for this phenomenon in individuals as  
233 young as 40s-50s, the earliest to date. Whereas *Blood* variants were substantially elevated in  
234 only some AA individuals, all AAs exhibited changes in AF spectrum compared with YA. While  
235 the origins of clonal hematopoiesis remain controversial<sup>22</sup>, there appear to be selective  
236 pressures during hematopoiesis in most or all aging individuals that do not extend to their  
237 gonadal lineage (Extended Data Fig. 10e).

238 Sporadic mutations are major contributors to congenital human disease<sup>4,36,37</sup>,  
239 compounded by increased parental age that correlates with *de novo* mutation burden<sup>1,5</sup>. While  
240 we do not address this problem directly, we provide a framework by which Type III mosaicism  
241 could be detected for genetic counselling decisions. We predict that approximately 1 in 300  
242 concepti harbors a variant that is likely pathogenic, causing miscarriage or congenital disease.  
243 As a consequence, for the monogenetic component of a well-studied disorder like autism, we  
244 estimate that ~15% are caused by transmitted Type III mosaicism (see Methods). We show that  
245 natural variation of sperm mosaicism in an individual is modest over time, and that these  
246 variants have their origin when the father (or future father) was an embryo himself. Our  
247 approach could be applied to formulate effective prevention strategies for potentially harmful  
248 mutations.

249

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

### 250 **Acknowledgements**

251 We thank the participants in this study for their contribution. We also thank Drs. Yong E. Zhang,  
252 Johannes C. M. Schlachetzki, and Alan Packer for feedback and suggestions. M.W.B. was  
253 supported by an EMBO Long-Term Fellowship (ALTF 174-2015), which is co-funded by the  
254 Marie Curie Actions of the European Commission (LTFCOFUND2013, GA-2013-609409), and  
255 an Erwin Schrödinger Fellowship by the Austrian Science Fund (FWF): J 4197-B30. This study  
256 was supported by grants to J.G.G. from the NIH (U01MH108898, R01NS083823), and the  
257 Simons Foundation Autism Research Initiative (SFARI, 571583). Sequencing support was  
258 provided by the Rady Children's Institute for Genomic Medicine. We thank R. Sinkovits, A.  
259 Majumdar, S. Strande, and the San Diego Supercomputer Center for hosting the computing  
260 infrastructure necessary for completing this project.

261

### 262 **Author Contributions**

263 M.W.B., X.Y., and J.G.G. conceived the project and designed the experiments. X.Y., M.W.B.,  
264 L.L.B., S.A.W., and G.C. performed the experiments. X.Y., X.X., M.W.B., D.A., R.D.G., B.C.,  
265 and A.N. performed the bioinformatic and data analyses. D.A. and J.S. performed the analyses  
266 of the REACH cohort. K.N.J., V.S., J.M.-V., and M.W.B. requested, organized, and handled  
267 patient samples. S.N., L.V.D.K., and YD performed sequencing analysis. M.W.B., X.Y., and  
268 J.G.G. wrote the manuscript. J.G.G. supervised the overall project. All authors have seen and  
269 commented on the manuscript prior to submission.

270

### 271 **Competing Interests Statement**

272 M.W.B., D.A., K.N.J., J.S., and J.G.G. are inventors on a patent (PCT/US2018/024878,  
273 WO2018183525A1) filed by UC, San Diego that is titled " Methods for assessing risk of or  
274 diagnosing genetic defects by identifying de novo mutations or somatic mosaic variants in  
275 sperm or somatic tissues ".

276

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

277 **References**

278 1 Kong, A. *et al.* Rate of de novo mutations and the importance of father's age to disease  
279 risk. *Nature* **488**, 471-475, doi:10.1038/nature11396 (2012).

280 2 Michaelson, J. J. *et al.* Whole-genome sequencing in autism identifies hot spots for de  
281 novo germline mutation. *Cell* **151**, 1431-1442, doi:10.1016/j.cell.2012.11.019 (2012).

282 3 Iossifov, I. *et al.* The contribution of de novo coding mutations to autism spectrum  
283 disorder. *Nature* **515**, 216-221, doi:10.1038/nature13908 (2014).

284 4 Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the generation and  
285 role of de novo mutations in health and disease. *Genome Biol* **17**, 241,  
286 doi:10.1186/s13059-016-1110-1 (2016).

287 5 Jonsson, H. *et al.* Parental influence on human germline de novo mutations in 1,548  
288 trios from Iceland. *Nature* **549**, 519-522, doi:10.1038/nature24018 (2017).

289 6 Jonsson, H. *et al.* Multiple transmissions of de novo mutations in families. *Nat. Genet.*  
290 **50**, 1674-1680, doi:10.1038/s41588-018-0259-9 (2018).

291 7 Breuss, M. W. *et al.* Autism risk in offspring can be assessed through quantification of  
292 male sperm mosaicism. *Nat Med* **26**, 143-150, doi:10.1038/s41591-019-0711-0 (2020).

293 8 Campbell, I. M. *et al.* Parental somatic mosaicism is underrecognized and influences  
294 recurrence risk of genomic disorders. *Am. J. Hum. Genet.* **95**, 173-182,  
295 doi:10.1016/j.ajhg.2014.07.003 (2014).

296 9 Freed, D., Stevens, E. L. & Pevsner, J. Somatic mosaicism in the human genome.  
297 *Genes (Basel)* **5**, 1064-1094, doi:10.3390/genes5041064 (2014).

298 10 D'Gama, A. M. & Walsh, C. A. Somatic mosaicism and neurodevelopmental disease.  
299 *Nat Neurosci* **21**, 1504-1514, doi:10.1038/s41593-018-0257-3 (2018).

300 11 McConnell, M. J. *et al.* Intersection of diverse neuronal genomes and neuropsychiatric  
301 disease: The Brain Somatic Mosaicism Network. *Science* **356**,  
302 doi:10.1126/science.aal1641 (2017).

303 12 Wang, Y. *et al.* Comprehensive identification of somatic nucleotide variants in human  
304 brain tissue. *bioRxiv* (2020).

305 13 Campbell, I. M., Shaw, C. A., Stankiewicz, P. & Lupski, J. R. Somatic mosaicism:  
306 implications for disease and transmission genetics. *Trends Genet* **31**, 382-392,  
307 doi:10.1016/j.tig.2015.03.013 (2015).

308 14 Campbell, I. M. *et al.* Parent of origin, mosaicism, and recurrence risk: probabilistic  
309 modeling explains the broken symmetry of transmission genetics. *Am. J. Hum. Genet.*  
310 **95**, 345-359, doi:10.1016/j.ajhg.2014.08.010 (2014).

311 15 Goriely, A. & Wilkie, A. O. Paternal age effect mutations and selfish spermatogonial  
312 selection: causes and consequences for human disease. *Am. J. Hum. Genet.* **90**, 175-  
313 200, doi:10.1016/j.ajhg.2011.12.017 (2012).

314 16 Rahbari, R. *et al.* Timing, rates and spectra of human germline mutation. *Nat. Genet.* **48**,  
315 126-133, doi:10.1038/ng.3469 (2016).

316 17 Dou, Y. *et al.* Accurate detection of mosaic variants in sequencing data without matched  
317 controls. *Nat Biotechnol* **38**, 314-319, doi:10.1038/s41587-019-0368-8 (2020).

318 18 Breuss, M. W. *et al.* Somatic mosaicism in the mature brain reveals clonal cellular  
319 distributions during cortical development. *bioRxiv* (2020).

320 19 Theda, C. *et al.* Quantitation of the cellular content of saliva and buccal swab samples.  
321 *Sci Rep* **8**, 6944, doi:10.1038/s41598-018-25311-0 (2018).

322 20 Jaiswal, S. *et al.* Age-related clonal hematopoiesis associated with adverse outcomes.  
323 *N. Engl. J. Med.* **371**, 2488-2498, doi:10.1056/NEJMoa1408617 (2014).

324 21 Catlin, S. N., Busque, L., Gale, R. E., Guttorp, P. & Abkowitz, J. L. The replication rate of  
325 human hematopoietic stem cells in vivo. *Blood* **117**, 4460-4466, doi:10.1182/blood-2010-  
326 08-303537 (2011).

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

327 22 Zink, F. *et al.* Clonal hematopoiesis, with and without candidate driver mutations, is  
328 common in the elderly. *Blood* **130**, 742-752, doi:10.1182/blood-2017-02-769869 (2017).

329 23 Bandler, W. M. *et al.* Paternally inherited cis-regulatory structural variants are  
330 associated with autism. *Science* **360**, 327-331, doi:10.1126/science.aan2261 (2018).

331 24 Bandler, W. M. *et al.* Frequency and Complexity of De Novo Structural Mutation in  
332 Autism. *Am. J. Hum. Genet.* **98**, 667-679, doi:10.1016/j.ajhg.2016.02.018 (2016).

333 25 Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in  
334 141,456 humans. *Nature* **581**, 434-443, doi:10.1038/s41586-020-2308-7 (2020).

335 26 Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic  
336 instability in cancer. *Cell* **168**, 644-656, doi:10.1016/j.cell.2017.01.002 (2017).

337 27 Huang, A. Y. *et al.* Distinctive types of postzygotic single-nucleotide mosaisms in  
338 healthy individuals revealed by genome-wide profiling of multiple organs. *PLoS Genet.*  
339 **14**, e1007395, doi:10.1371/journal.pgen.1007395 (2018).

340 28 Ye, A. Y. *et al.* A model for postzygotic mosaisms quantifies the allele fraction drift,  
341 mutation rate, and contribution to de novo mutations. *Genome Res.* **28**, 943-951,  
342 doi:10.1101/gr.230003.117 (2018).

343 29 Gao, Z. *et al.* Overlooked roles of DNA damage and maternal age in generating human  
344 germline mutations. *Proc. Natl. Acad. Sci.* **116**, 9491-9500,  
345 doi:10.1073/pnas.1901259116 (2019).

346 30 Kircher, M. *et al.* A general framework for estimating the relative pathogenicity of human  
347 genetic variants. *Nat. Genet.* **46**, 310-315, doi:10.1038/ng.2892 (2014).

348 31 Samocha, K. E. *et al.* A framework for the interpretation of de novo mutation in human  
349 disease. *Nat. Genet.* **46**, 944-950, doi:10.1038/ng.3050 (2014).

350 32 De Felici, M. in *Oogenesis* 19-37 (Springer, 2013).

351 33 Dzierzak, E. & Speck, N. A. Of lineage and legacy: the development of mammalian  
352 hematopoietic stem cells. *Nat Immunol* **9**, 129-136, doi:10.1038/ni1560 (2008).

353 34 Bell, A. D. *et al.* Insights into variation in meiosis from 31,228 human sperm genomes.  
354 *Nature* **583**, 259-264, doi:10.1038/s41586-020-2347-0 (2020).

355 35 Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis  
356 harbouring AML-associated mutations is ubiquitous in healthy adults. *Nature  
357 communications* **7**, 12484, doi:10.1038/ncomms12484 (2016).

358 36 Deciphering Developmental Disorders, S. Prevalence and architecture of de novo  
359 mutations in developmental disorders. *Nature* **542**, 433-438, doi:10.1038/nature21062  
360 (2017).

361 37 Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. *Nat Rev  
362 Genet* **13**, 565-575, doi:10.1038/nrg3241 (2012).

363 38 Wu, H., de Gannes, M. K., Luchetti, G. & Pilsner, J. R. Rapid method for the isolation of  
364 mammalian sperm DNA. *Biotechniques* **58**, 293-300, doi:10.2144/000114280 (2015).

365 39 Genomes Project, C. *et al.* A global reference for human genetic variation. *Nature* **526**,  
366 68-74, doi:10.1038/nature15393 (2015).

367 40 Cibulskis, K. *et al.* Sensitive detection of somatic point mutations in impure and  
368 heterogeneous cancer samples. *Nat Biotechnol* **31**, 213-219, doi:10.1038/nbt.2514  
369 (2013).

370 41 Kim, S. *et al.* Strelka2: fast and accurate calling of germline and somatic variants. *Nat.  
371 Methods* **15**, 591-594, doi:10.1038/s41592-018-0051-x (2018).

372 42 Xia, Y., Liu, Y., Deng, M. & Xi, R. Pysim-sv: a package for simulating structural variation  
373 data with GC-biases. *BMC Bioinformatics* **18**, 53, doi:10.1186/s12859-017-1464-8  
374 (2017).

375 43 Krzywinski, M. *et al.* Circos: an information aesthetic for comparative genomics. *Genome  
376 Res.* **19**, 1639-1645, doi:10.1101/gr.092759.109 (2009).

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

377 44 Untergasser, A. *et al.* Primer3--new capabilities and interfaces. *Nucleic Acids Res.* **40**,  
378 e115, doi:10.1093/nar/gks596 (2012).

379 45 Untergasser, A. *et al.* Primer3Plus, an enhanced web interface to Primer3. *Nucleic Acids*  
380 *Res.* **35**, W71-74, doi:10.1093/nar/gkm306 (2007).

381 46 Alexandrov, L. B. *et al.* Signatures of mutational processes in human cancer. *Nature*  
382 **500**, 415-421, doi:10.1038/nature12477 (2013).

383 47 Canela, A. *et al.* Genome Organization Drives Chromosome Fragility. *Cell* **170**, 507-521  
384 e518, doi:10.1016/j.cell.2017.06.034 (2017).

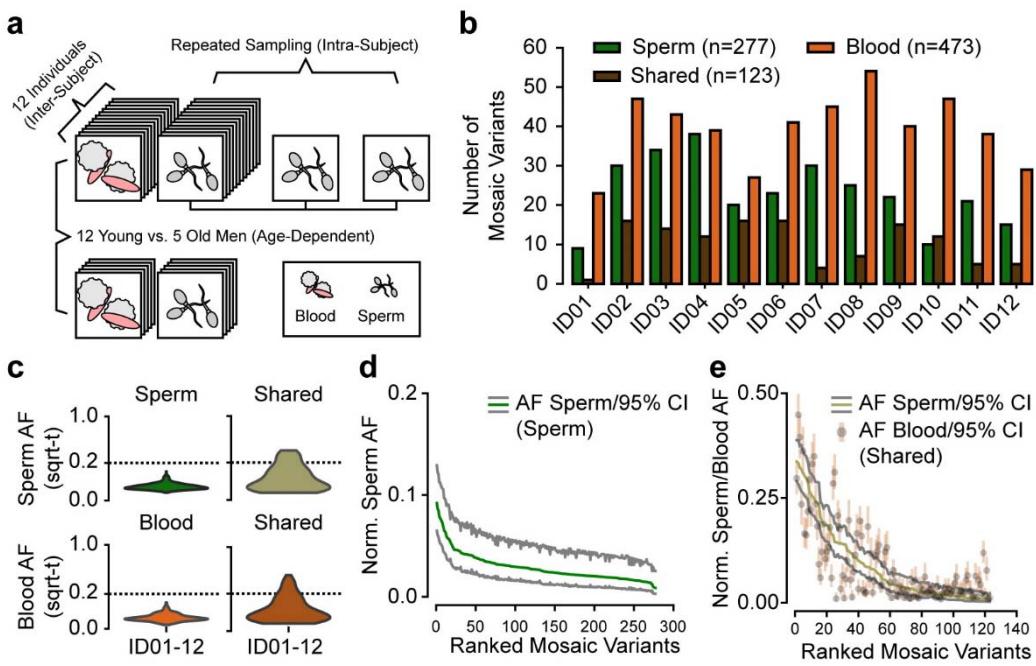
385 48 Hansen, R. S. *et al.* Sequencing newly replicated DNA reveals widespread plasticity in  
386 human replication timing. *Proc. Natl. Acad. Sci.* **107**, 139-144,  
387 doi:10.1073/pnas.0912402107 (2010).

388 49 Valouev, A. *et al.* Determinants of nucleosome organization in primary human cells.  
389 *Nature* **474**, 516-520, doi:10.1038/nature10002 (2011).

390 50 Wang, M. & Wei, L. iFish: predicting the pathogenicity of human nonsynonymous  
391 variants using gene-specific/family-specific attributes and classifiers. *Sci Rep* **6**, 31321,  
392 doi:10.1038/srep31321 (2016).

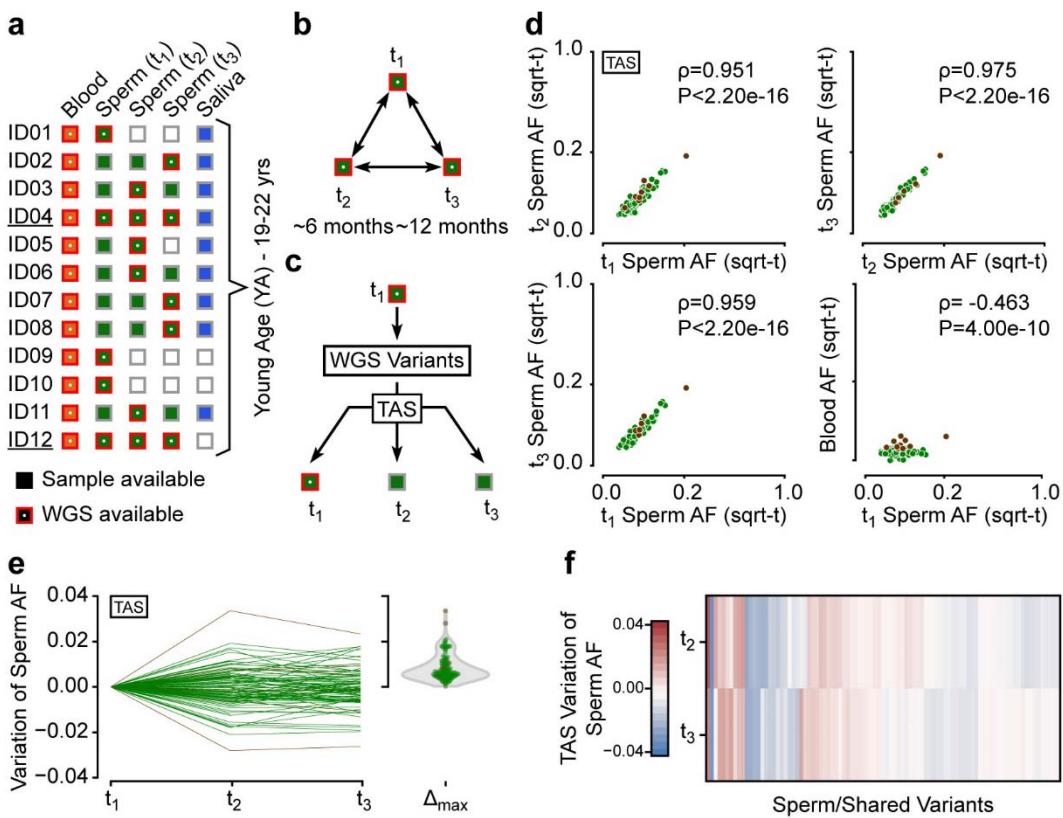
393 51 Wang, M., Tai, C., E, W. & Wei, L. DeFine: deep convolutional neural networks  
394 accurately quantify intensities of transcription factor-DNA binding and facilitate  
395 evaluation of functional non-coding variants. *Nucleic Acids Res.* **46**, e69,  
396 doi:10.1093/nar/gky215 (2018).

397 52 Dou, Y. *et al.* Postzygotic single-nucleotide mosaisms contribute to the etiology of  
398 autism spectrum disorder and autistic traits and the origin of mutations. *Hum Mutat* **38**,  
399 1002-1013, doi:10.1002/humu.23255 (2017).


400 53 Homsy, J. *et al.* De novo mutations in congenital heart disease with neurodevelopmental  
401 and other congenital anomalies. *Science* **350**, 1262-1266, doi:10.1126/science.aac9396  
402 (2015).

403 54 Yang, X. *et al.* Genomic mosaicism in paternal sperm and multiple parental tissues in a  
404 Dravet syndrome cohort. *Sci Rep* **7**, 15677, doi:10.1038/s41598-017-15814-7 (2017).

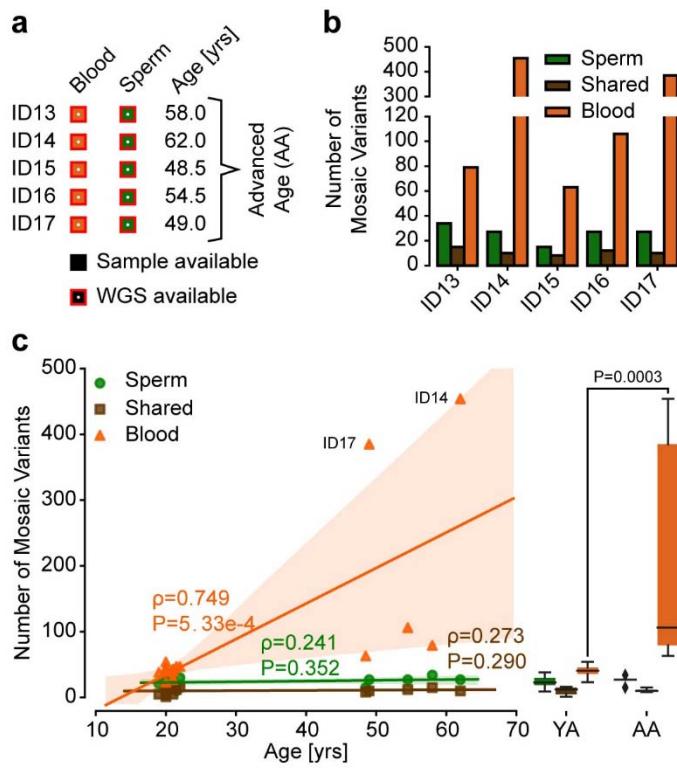
405


Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

406 **Figures**

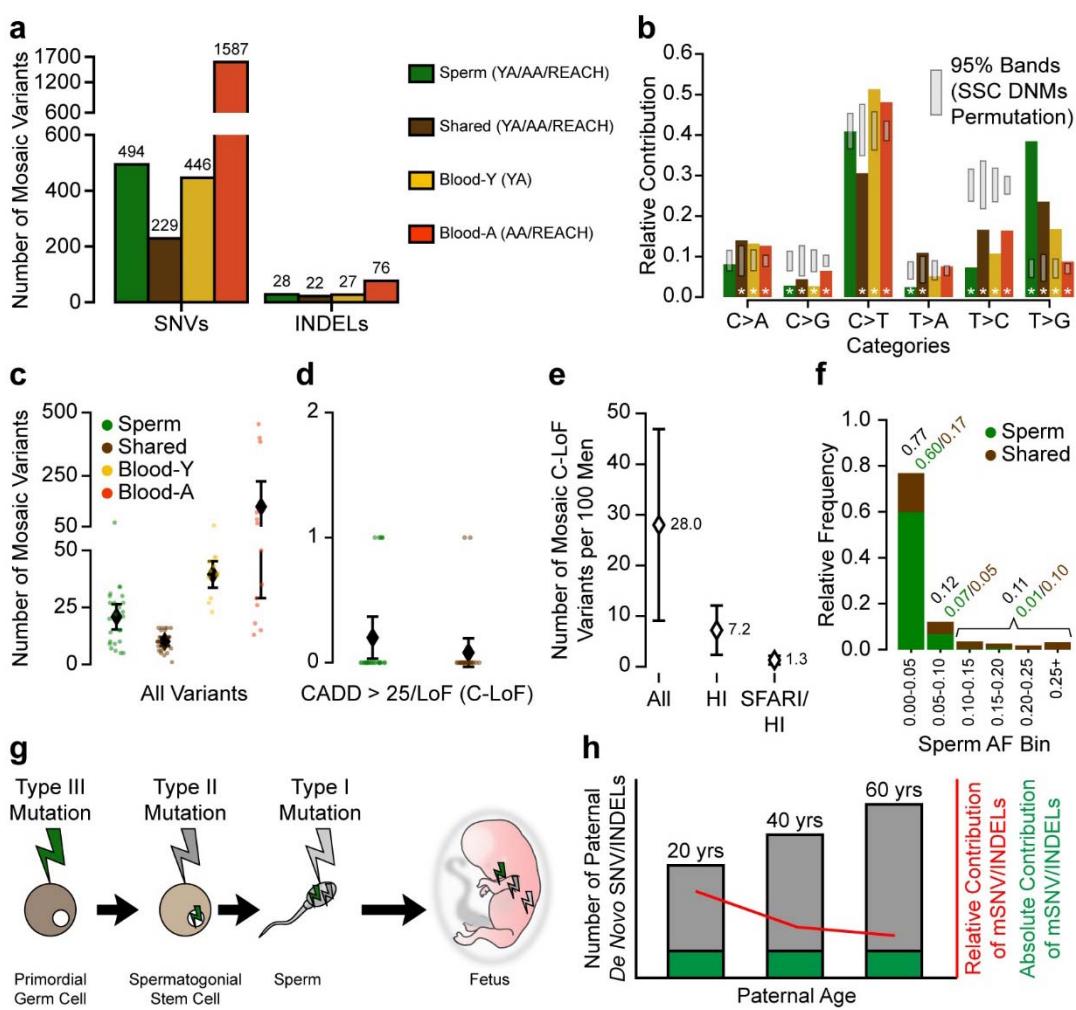


407  
408 **Figure 1. Analysis in 12 young aged men uncovers the landscape of sperm mosaicism. a,**  
409 Sampling strategy: 12 healthy males of young age (YA, 18-22 years, blood and up to 3 sperm  
410 samples) and 5 healthy males of advanced age (AA, >48 years, blood and 1 sperm sample).  
411 Samples subjected to 300x whole-genome sequencing (WGS). **b**, Number of detected mosaic  
412 variants per individual from each class (Sperm, Shared, Blood), typically there are more Blood  
413 than Shared or Sperm. **c**, AF distribution (square root-transformed; sqrt-t) of Sperm, Shared,  
414 and Blood variants in the entire YA cohort. Shared variants show higher peak and overall AF  
415 compared to Sperm and Blood. **d-e**, Ranked plot of the estimated sperm and blood AF with 95%  
416 confidence intervals (exact binomial CIs) from the YA cohort, grouped by the classes described  
417 above. Sperm (d) variants showed steeper decay curves, indicating a relative lower mutation or  
418 higher expansion rate. Shared variants (e) showed a shallower decay and higher AF, indicating  
419 a different speed for the accumulation of mutations during early embryonic development.  
420


Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals



421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433


**Figure 2. Sperm mosaic variants showed temporal stability within an individual.** **a**, Available blood, sperm, and saliva samples for ID01-12 and their WGS status. ID04 and ID12 had three samples subjected to WGS. **b**, Analysis strategy for ID04 and ID12. **c**, Assessment of a subset of sperm mosaic variants called by WGS through targeted amplicon sequencing (TAS) in all available samples of an individual. Note that TAS typically has >5000x, resulting in increased sensitivity. **d**, Pair-wise AF comparison of sperm mosaic variants across the YA cohort by TAS. All tested variants were detected in all available sperm samples. Each plot shows Spearman's  $\rho$  and  $P$ -value across all variants. **e**, Sperm AF changes for each tested variant. Variation was typically below 0.02. Violin plot shows the maximal, absolute change for each variant. **f**, Heatmap of AF variation relative to  $t_1$  for variants with 3 available samples. No patterns of clear linear increase or decrease were observed.

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals



434  
435 **Figure 3. Blood but not Sperm variants increase with age. a,** Available samples and ages  
436 for AA cohort individuals. **b,** Number of variants detected in the 5 AA individuals. Sperm mosaic  
437 variants were comparable to the YA cohort, but *Blood* variants were increased. **c,** Combined  
438 analysis of the number of YA and AA mosaic variants relative to the age of individuals. Left  
439 panel shows the data points, a regression line, and its 95% CI. Right panel shows a combined  
440 boxplot of all data points. For each of the three mosaic classes a two-tailed Mann-Whitney test  
441 was performed (Mann-Whitney U: *Sperm* 23, *Shared* 29.5, *Blood* 0; P-value: *Sperm* 0.4866,  
442 *Shared* 0.9764, *Blood* 0.0003).  
443

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals



444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464

**Figure 4. Sperm mosaicism accounts for a life-long transmission risk, by which approximately 7 in 100 males carry a high-impact, likely pathogenic mutation.** **a**, Combination of the YA, AA, and REACH cohorts based on variant classes. Due to the previous analysis, *Blood* variants were split into *Blood-Y* from YA and *Blood-A* from AA and REACH, whereas *Sperm* and *Shared* variants were combined across cohorts. **b**, Single nucleotide substitution profiles of variant groups from a. Grey bands: 95% permutation intervals calculated from 10,000 random permutations of Simons Simplex Consortium *de novo* mutations (DNMs) from healthy siblings as baseline. Mosaic variants differed from permutations in several categories (asterisks). **c** and **d**, Detectable mosaic variants in each category for all variants (c) and *Sperm* and *Shared* for variants with a CADD score >25 or a loss-of-function prediction (d, C-LoF). Shown are data from each man, with mean with 95% confidence intervals. **e**, Estimated number of males per 100 (with 95% CI) with a detectable C-LoF variant (All), in a haploinsufficient (HI) gene, or in a haploinsufficient gene in the SFARI gene list (SFARI/HI). **f**, Relative frequency of AF categories, binned by 5% or above 25% for *Sperm* and *Shared* variants. The majority of mutations are <5% AF; however, most were not shared with blood. **g** and **h**, Three types of sperm mosaic variants. Type III are acquired during embryogenesis of the man, Type II accumulate during aging in spermatogonial stem cells, and Type I are acquired during or after meiosis. (g). While absolute contributions of Type III mutations are stable as men age, their relative contribution drops due to an age-dependent accumulation of other mutation types (h).

465 **Methods**

466

467 **Subject recruitment.** 17 healthy males were enrolled according to approved human subjects  
468 protocols from the Institutional Review Board (IRB) of the University of California for blood,  
469 saliva, and semen sampling (140028, 161115). All participants signed informed consents  
470 according to the IRB requirement, and the study was performed in accordance with Health  
471 Insurance Portability and Accountability Act (HIPAA) Privacy Rules. None of the participants  
472 reported severe psychological conditions or showed significant signs of neurological disorders,  
473 infectious diseases, or cancer. Semen and blood samples were collected for all subjects (ID01-  
474 17). ID01-08 and ID11 further provided saliva samples. ID05 further provided a second semen  
475 sample approximately half a year after first collection; ID02-04, ID06-S08, ID11, and ID12  
476 provided a total of 3 samples within ~12 months.

477

478 **DNA extraction for blood and saliva.** Genomic DNA was extracted from peripheral blood and  
479 saliva samples containing buccal cells using the Puregene kit (Qiagen, #158389) following the  
480 manufacturers' recommendations.

481

482 **Sperm extraction.** Extraction of sperm cell DNA from fresh ejaculates was performed as  
483 previously described<sup>7,38</sup>. In short, sperm cells were isolated by centrifugation of the fresh (up to  
484 2 days) ejaculate over an isotonic solution (90%) (Sage/Origio, ART-2100; Sage/Origio, ART-  
485 1006) using up to 2 mL of the sample. Following a washing step, quantity and quality were  
486 assessed using a cell counting chamber (Sigma-Aldrich, BR717805-1EA). Cells were pelleted  
487 and lysis was performed by addition of RLT lysis buffer (Qiagen, 79216), Bond-Breaker TCEP  
488 solution (Pierce, 77720), and 0.2 mm stainless steel beads (Next Advance, SSB02) on a  
489 Disruptor Genie (Scientific Industries, SI-238I). The lysate was processed using reagents and  
490 columns from an AllPrep DNA/RNA Mini Kit (Qiagen, 80204). Concentration of the final eluate  
491 was assessed employing standard methods. Concentrations ranged from ~0.5-300 ng/μl.

492

493 **WGS of sperm and blood samples.** WGS sequencing was performed as described before<sup>18</sup>.  
494 In short, a total of 1.0 μg of extracted DNA was used as the starting material for PCR-free library  
495 construction (KAPA HyperPrep PCR-Free Library Prep kit; Roche, #KK8505); libraries were  
496 then mechanically sheared (Covaris microtube system; Covaris, # SKU 520053) to obtain ~400  
497 base pairs (bp) fragments. Then Illumina dual index adapter were ligated to these DNA  
498 fragments. Following beads-based double size selection (300-600 bp), the concentration of  
499 ligated fragments in each library was quantified (KAPA Library Quantification Kits for Illumina  
500 platforms; Roche/KAPA Biosystems, # KK4824). Libraries with concentrations of more than 3  
501 nM and fragments with peak size 400 bp were sequenced on an Illumina Novaseq 6000 S4  
502 and/or S2 Flow Cell (FC), in 6-8 independent pools. The target for whole genome sequencing  
503 with high quality sequencing raw data was 120 GB or greater with a Q30 >90% per library per  
504 sequencing run. In case the first sequencing run generated less than that, additional sequencing  
505 was performed by sequencing the same library on a Novaseq 6000 S2 FC with 2x101 read  
506 length. Raw data was processed through the DRAGEN platform to generate BAM files.

507

508 **WGS data processing and germline variant calling.** Raw data was aligned to the GRCh37d5  
509 reference genome, sorted, and PCR duplicates were removed by a DRAGEN platform. Reads  
510 aligned to the INDEL regions were realigned with GATK's (v3.8.1) RealignerTargetCreator and  
511 IndelRealigner following the GATK best practice. Base quality scores were recalibrated using  
512 GATK's (v3.8.1) BaseRecalibrator and PrintReads. Read groups were renamed by Picard's  
513 (v2.20.7) AddOrReplaceReadGroups command. Germline SNVs and INDELs were detected by  
514 GATK's (v3.8.1) HaplotypeCaller. The distribution of library DNA insertion was assessed by

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

515 Picards' (v2.20.7) CollectInsertSizeMetrics. The depth of coverage was analyzed by GATK's  
516 (v3.8.1) DepthOfCoverage command.  
517

518 **Principle component analysis (PCA) of genetic origins of the assessed individuals.** In  
519 order to determine the origins of the included individuals, heterozygous variants generated by  
520 GATK's (v3.8.1) HaplotypeCaller were output in genomic VCF format and genotyped across  
521 samples by using the GATK's (v3.8.1)'s GenotypeGVCFs and CombineGVCFs; in addition all  
522 variants from dbSNP (v137) were added. The VCF file was reformed by BCFtools (v1.10.32)  
523 and converted to bfiles by PLINK (v1.90b6.16). Single nucleotide polymorphisms (SNPs) were  
524 extracted from both the samples in this study and samples from the 1000 Genomes phase 3<sup>39</sup>  
525 and merged together; any SNP that overlapped with the repeat mask region was removed. PCA  
526 was carried out by PLINK (v1.90b6.16) and the results were plotted in R (v3.5.1).  
527

528 **Mosaic SNV/INDEL detection pipeline in WGS data (300xMSMF).** Mosaic single nucleotide  
529 variants/mosaic small (typically below 20 bp) INDELs were called by using a combination of four  
530 different computational methods based on previous published and adapted pipelines<sup>7,18</sup>: the  
531 intersection of variants from the paired-mode of GATK's (v4.0.4) Mutect2<sup>40</sup> (paired mode) and  
532 Strelka2<sup>41</sup> (v 2.9.2) (set on 'pass' for all variant filter criteria) for sample-specific variants; or  
533 single-mode of Mutect2 (with an in-house panel of normal) followed by MosaicForecast<sup>17</sup>  
534 (v0.0.1) for sample-specific or tissue-shared variants. For the YA cohort, the panel of normal is  
535 generated using a "leave one out" strategy, by excluding samples from each individual; for the  
536 AA and REACH cohort, all samples from the YA were used to generate the panel of normal.  
537 Variants were excluded if they 1] resided in segmental duplication regions as annotated in the  
538 UCSC genome browser (UCSC SegDup) or RepeatMasker regions, 2] resided within a  
539 homopolymer or dinucleotide repeat with more than 3 units, 3] overlapped with annotated  
540 germline INDELs, 4] did not show a minimum of 3 alternative reads, or 5] were detected more  
541 than once across multiple individuals. We further removed any variants with a population allele  
542 frequency (AF) >0.001 in gnomAD<sup>25</sup> (v 2.1.1) or >0 for variants only detected by  
543 MosaicForecast<sup>17</sup>. To avoid binomial sampling bias and false positive signal from copy  
544 number/structural variations or non-annotated repetitive regions, we randomly chose 1600  
545 single nucleotide polymorphism from dbSNP (v137), estimated the 95% confidence interval of  
546 all those variants in each sample respectively, and excluded variants whose coverage is not  
547 within this CI. Finally, variants with an AF>0.35 in both sperm and blood (or >0.7 for sex  
548 chromosomes) were considered likely germline variants and removed. Variants with a lower CI  
549 of AF<0.001 were also removed. Fractions of mutant alleles for variants called in one sample  
550 were calculated in the other sample with the exact binomial confidence intervals using scripts  
551 described below. If a variant was only detected in one tissue, mosaicism in the second tissue  
552 was confirmed if a minimum of 3 alternative reads were present. Scripts for variant filtering and  
553 annotations are provided on GitHub  
554 ([https://github.com/shishenyxx/Sperm\\_control\\_cohort\\_mosaicism](https://github.com/shishenyxx/Sperm_control_cohort_mosaicism)).  
555

556 **Simulation analysis to determine the sensitivity of 300xMSMF.** To determine the sensitivity  
557 for detecting mosaic variants, we created simulated datasets that contained known mosaic  
558 variants at low frequencies. We first randomly generated 10,000 variants from chromosome 22  
559 based on GRCh37d5 as our set of mosaic variants. We then used Pysim<sup>42</sup> to simulate Illumina  
560 paired-end sequencing reads with a NovaSeq 6000 error model from the GRCh37d5 reference  
561 chromosome 22 and a version of chromosome 22 that contained the alternate alleles from our  
562 10,000 mosaic variants. These two sets of reads were then combined to create a series of  
563 datasets with mosaic variants at 1, 2, 3, 4, 5, 10, 15, 20, 25, and 50% AF, at coverages at 50x,  
564 100x, 200x, 300x, 400x, and 500x depth. Reads were mapped to GRCh37d5 using BWA  
565 (v0.7.8) mem, processed with Picard's (v2.20.7) MarkDuplicates, and INDELs were realigned

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

566 and base quality scores recalibrated as described above. We applied our somatic variant calling  
567 pipelines containing GATK's (v4.0.4) Mutect2 (single mode and paired mode), Strelka2 (v  
568 2.9.2), and MosaicForecast (v0.0.1) to detect mosaic variants at each AF and each depth. We  
569 further applied the same filters we used for the genomic regions; as we excluded the repetitive  
570 and segmental duplication regions, only 75% of the genomic region remained valid. The  
571 sensitivity and recovery rate of the pipeline was then determined through these data.  
572

573 **Visualization of genomic distribution of mosaic variants.** The genomic distribution pattern of  
574 mosaic variants and the allelic fractions of different variants across the genome was presented  
575 using Circos<sup>43</sup> (v0.69-6).  
576

577 **Targeted amplicon sequencing (TAS) and experimental benchmark of the SNV/INDEL  
578 calling pipeline.** TAS analysis was first applied to 185 variants from the previously published  
579 200x WGS sequencing results<sup>7</sup> to experimentally confirm the validation rate of the new pipeline.  
580 PCR products for sequencing were designed with a target length of 160-190 bp with primers  
581 being at least 60 bp away from the base of interest. Primers were designed using the command-  
582 line tool of Primer3<sup>44,45</sup> with a Python (v3.7.3) wrapper<sup>7</sup>. PCR was performed according to  
583 standard procedures using GoTaq Colorless Master Mix (Promega, M7832) on sperm, blood,  
584 and an unrelated control. Amplicons were enzymatically cleaned with ExoI (NEB, M0293S) and  
585 SAP (NEB, M0371S) treatment. Following normalization with the Qubit HS Kit (ThermFisher  
586 Scientific, Q33231), amplification products were processed according to the manufacturer's  
587 protocol with AMPure XP Beads (Beckman Coulter, A63882) at a ratio of 1.2x. Library  
588 preparation was performed according to the manufacturer's protocol using a Kapa Hyper Prep  
589 Kit (Kapa Biosystems, KK8501) and barcoded independently with unique dual indexes (IDT for  
590 Illumina, 20022370). The libraries were sequenced on an Illumina HiSeq 4000 platform with 100  
591 bp paired-end reads. After determining the validation rate of the new pipeline, TAS was further  
592 performed for a subset of called variants on the different sperm time points, blood, saliva, and  
593 unrelated control sample to quantify the AFs and to extend analysis to tissues that were not  
594 subjected to WGS.  
595

596 **Data analysis for TAS.** Reads from TAS were mapped to the GRCH37d5 reference genome by  
597 BWA mem and processed according to GATK (v3.8.2) best practices without removing PCR  
598 duplicates. Putative mosaic sites were retrieved using SAMtools (v1.9) mpileup and pileup  
599 filtering scripts described in previous TAS pipelines<sup>7</sup>. Variants were considered mosaic if 1] their  
600 lower 95% exact binomial CI boundary was above the upper 95% CI boundary of the control; 2]  
601 their AF was >0.5%. Sperm samples from the YA cohort were labeled as time point 1 ( $t_1$ ),  $t_2$  and  
602  $t_3$ , based on the date of sample collection.  $t_1$  was used as an anchor to determine absolute and  
603 relative (i.e. fold change) AF differences of the same variant measured across samples.  
604

605 **Mutational signature analysis.** Mutational signatures were determined for each variant by  
606 retrieving the tri-nucleotide sequence context using Python (v3.5.4) with pysam (v0.11.2.2) and  
607 plotting the trans- or conversion based on the pyrimidine base of the original pair similar to  
608 previous studies<sup>46</sup>. Mutational signatures from *de novo* mutations in the Simons Simplex  
609 Consortium cohort (from healthy siblings) and general mutations from gnomAD were obtained  
610 by retrieving SNVs present in their respective, publicly available VCFs. In order to obtain a 95%  
611 band of expectation, an equivalent number of variants was randomly chosen from the Simons  
612 Simplex Consortium or gnomAD VCF. This process was performed for a total of 10,000 times to  
613 obtain a distribution and the 2.5th and 97.5th percentile of the simulated mutational signatures.  
614 Significance was reported if a mutational signature was outside the permuted 95% bands.  
615

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

616 **Step-wise exponential regression model for the burden of variants.** In order to model the  
617 exponential decay of the variants, a step-wise exponential regression model was made based  
618 on the following assumptions: 1] variants happening at roughly the same cell division during  
619 early embryonic development have similar allelic fractions in different individuals; 2] during early  
620 embryonic development the number of cells are growing exponentially but at different rates  
621 across tissues due to varying growth rates and cell death; 3] the spontaneous mutation rate is  
622 stable within each category; 4] the number of mosaic variants occurring in each cell generation  
623 is in proportion with the number of cells in that generation. For each group of ranked variants  
624 from an already developed tissue (sperm or blood), during the  $t^{th}$  cell division, we assume that  
625 all variants came from a starting population of  $\frac{1}{AF_t}$  variants, and  $AF_0$  is estimated from the exact  
626 binomial CI of the highest AFs found in each group. Based on assumption 2 the mutation is  
627 accumulated at a speed of  $\theta$  ( $\theta \geq 1$  and  $\theta \leq 2$ ). For the  $t^{th}$  cell division,  
628 the average  $AF_t = AF_0 \cdot \frac{1}{\theta^t}$ ,

629 and the number of expected variants with this  $AF_t$  is  $N_t = \left\lfloor \frac{1}{AF_t} \right\rfloor$ ,

630 we rank the  $AF_t$  to get an estimated rank vector

631  $E^T = \{AF_0 \quad AF_1 \quad AF_1 \quad \dots \quad AF_t \quad AF_t \quad \dots \quad AF_t \quad AF_t\}_{N_t \text{ elements}}$ ,

632 to get a best estimation of  $E^T$  towards the observed ranked AF vector  $O^T$ , we defined the loss  
633  $L = \sum |E^T - O^T|$ .

634 By minimizing  $L$ , we obtained the best estimation of the ranked AF curve. We finally defined a  
635 *Mutation Factor* =  $\frac{1}{1-\theta}$  as the output to reflect the mutation burden from embryonic  
636 development to the time of sampling. The higher the mutation burden, the higher the mutation  
637 factor, in order to reach the accumulated number of ranked variants.

638 **Assessment of mosaic variants overlap with different genomic features.** In order to assess  
639 the distribution of mosaic variants and their overlap with genomic features, an equal number of  
640 variants (mSNV/INDELS that were *Sperm*, *Shared*, *Blood-Y*, and *Blood-A*) was randomly  
641 generated with the BEDTools (v2.27.1) shuffle command within the region from Strelka 2  
642 without the subtracted regions (e.g. repeat regions). This process was repeated 10,000 times to  
643 generate a distribution and their 95% CI. Observed and randomly subsampled variants were  
644 annotated with whole-genome histone modifications data for H3k27ac, H3k27me3, H3k4me1,  
645 and H3k4me3 from ENCODE v3 downloaded from the UCSC genome browser  
646 (<http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/>)—specifically for the overlap with  
647 peaks called from the H1 human embryonic cell line (H1), as well as peaks merged from 10  
648 different cell lines (Mrg; Gm12878, H1, Hmec, Hsmm, Huvec, K562, Nha, Nhek, and Nhlf).  
649 Gene region, intronic, and exonic regions from NCBI RefSeqGene  
650 (<http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz>); 10 Topoisomerase  
651 2A/2B (Top2a/b) sensitive regions from ChIP-seq data<sup>47</sup> (Samples: GSM2635602,  
652 GSM2635603, GSM2635606, and GSM2635607); CpG islands: data from the UCSC genome  
653 browser (<http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/>); genomic regions with  
654 annotated early and late replication timing<sup>48</sup>; nucleosome occupancy tendency (high/>0.7 or  
655 low/0.0-0.7 as defined in the source) from GM12878, for which all non-zero values were  
656 extracted and merged<sup>49</sup>; enhancer genomic regions from the VISTA Enhancer Browser  
657 (<https://enhancer.lbl.gov/>); and DNase I hypersensitive regions and transcription factor binding  
658 sites from Encode v3 tracks from the UCSC genome browser  
659 (wgEncodeRegDnaseClusteredV3 and wgEncodeRegTfbsClusteredV3, respectively).

660

661

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

662 **Prediction of loss-of-function.** Variants were annotated as loss-of-function if both the SVM-  
663 based iFish<sup>50</sup> probability equaled 1 and the DeepLearning-based Define<sup>51</sup> was >0.7, or if it was  
664 annotated as frameshift with a gnomAD allele frequency <0.0001.

665  
666 **Burden Estimation.** Using the observed fraction of variants that are classified as C-LoF, we  
667 calculated a 95% estimation interval of the true fraction using SciPy (v1.3.1) stats's t-interval  
668 and multiplied by the chosen number of men (n=100). This fraction was further modified by  
669 taking into account the subset of genic regions that are annotated to belong to a haploinsufficient  
670 gene (HI) by the definition of ClinGen (<https://dosage.clinicalgenome.org/help.shtml>) level 3  
671 "Sufficient evidence for dosage pathogenicity" or that belong to an HI gene which is annotated  
672 as a likely autism spectrum disorder gene by SFARI (Level 1,2,3, and S, with PLI higher than  
673 0.9). Genomic regions of those genes were extracted from  
674 [http://www.openbioinformatics.org/annovar/download/hg19\\_refGene.txt.gz](http://www.openbioinformatics.org/annovar/download/hg19_refGene.txt.gz).

675  
676 **Estimation of disease impact conveyed by Type III mosaicism.** For transmission risk we  
677 assume that 1] expression of the disrupted gene does not impact a sperm cell's fertility; 2] AFs  
678 estimated in purified sperm directly reflect the percentage of sperm cells carrying the mutation  
679 and determine the average transmission risk  $\theta$ . For any disease with incident rate  $I$  and a  
680 fraction  $P$ , which are caused by *de novo* HI-C-LoF SNV/INDELs within a set of genes  $HI - C -$   
681  $LoF \cap Disease\ gene\ set$  (monogenetic, autosomal dominant contribution), we can calculate the  
682 percentage of the relevant genome by comparing  $\frac{genome\ length_{HI-C-LoF \cap Disease\ gene\ set}}{genome\ length_{all\ genes}}$ . Taking  $\mu$  into  
683 account, which is the fraction of men predicted to carry a C-LoF mutation, we can estimate the  
684 explained risk for a specific disease/phenotype with

$$E = \frac{\theta \cdot \mu \cdot \frac{genome\ length_{HI-C-LoF \cap Disease\ gene\ set}}{genome\ length_{all\ genes}}}{I \cdot P}$$

685 Taking ASD as an example, exonic *de novo* C-LoF SNV/INDELs contribute to  $P = 21\%$  of ASD  
686 diagnose<sup>3</sup>. According to the CDC, in 2020, approximately  $I = 1/54$  children in the US is  
687 diagnosed with ASD (<https://www.cdc.gov/ncbddd/autism/data.html>). Roughly  $I \cdot P = 3.89/1000$   
688 children are born with ASD caused by *de novo* C-LoF SNV/INDELs. Our data determines an  
689 average  $\theta = 0.047$  and a  $\mu = 0.27$ , and thus  $\theta \cdot \mu \cdot \frac{genome\ length_{HI-C-LoF \cap Disease\ gene\ set}}{genome\ length_{all\ genes}} = 0.61/1000$ ,  
690 assuming that ASD HI-C-LoF mutations do not increase miscarriage rates. Therefore, Type III  
691 mosaicism described in this manuscript contributes an estimated  $E \approx 1/6$  of *de novo*  
692 SNV/INDELs underlying ASD diagnose. As those mutations are of early embryonic origin, prior  
693 to sex divergence, this contribution should be similar in both parents<sup>52</sup>, suggesting that overall,  
694 parental gonadal mosaicism contributes 1/3 of *de novo* ASD SNV/INDELs. This approach can  
695 be easily extended to other diseases or phenotypes with known monogenetic architecture, such  
696 as epilepsy, intellectual disabilities, or congenital heart disease<sup>53,54</sup>. Note that the HI-C-LoF  
697 themselves, based on the data and considerations outlined above, will be transmitted to ~1 in  
698 300 concepti, likely leading to miscarriage or congenital disease.

699  
700 **Data processing.** Data analysis and plotting were performed using R (v3.5.1) with ggplot2  
701 (v3.3.1) and Rcpp (v1.0.3) packages; or with Python (v3.6.8) with pandas (v0.24.2), matplotlib  
702 (v3.1.1), numpy (v1.16.2) SciPy (v1.3.1) and seaborn (v0.9.0) packages.

703  
704 **Statistical analyses.** Statistical analyses were performed with R (Spearman, exact binomial  
705 confidence intervals, quantile analysis, and Kolmogorov-Smirnov test), GraphPad Prism (Mann-  
706 Whitney Test), and Python with pandas (95% confidence interval determination).

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

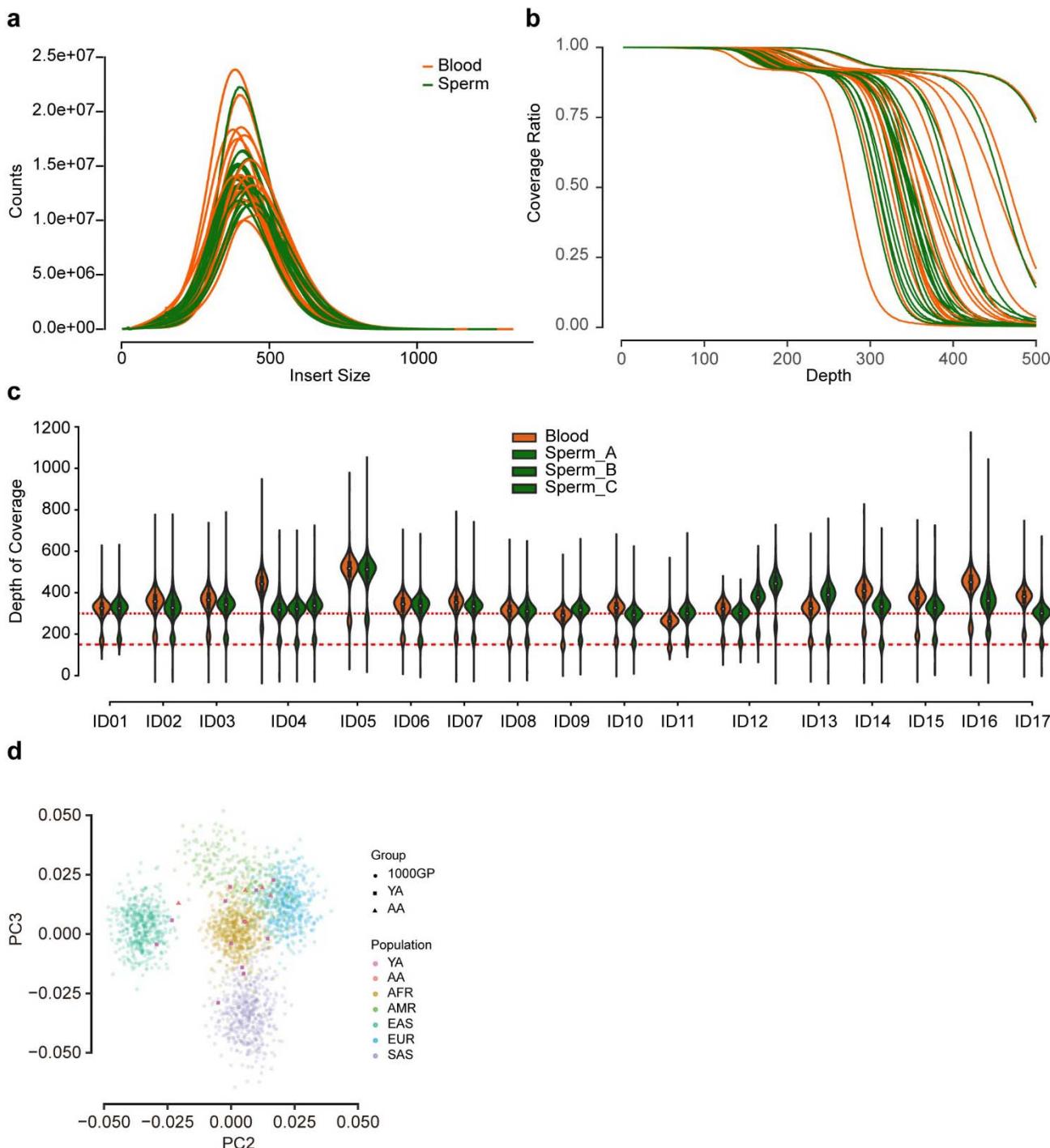
708 **Data availability statement**

709 Aligned BAM files generated for this study through deep WGS or TAS are available on SRA  
710 (accession number: PRJNA660493 and PRJNA588332). Data are also available through the  
711 corresponding authors on reasonable request. Additionally, summary tables of the data are  
712 included as supplementary information.

713

714 **Code availability statement**

715 Codes for data analysis pipelines as well as codes to generate the figures are freely available  
716 on github at [https://github.com/shishenyxx/Sperm\\_control\\_cohort\\_mosaicism](https://github.com/shishenyxx/Sperm_control_cohort_mosaicism).

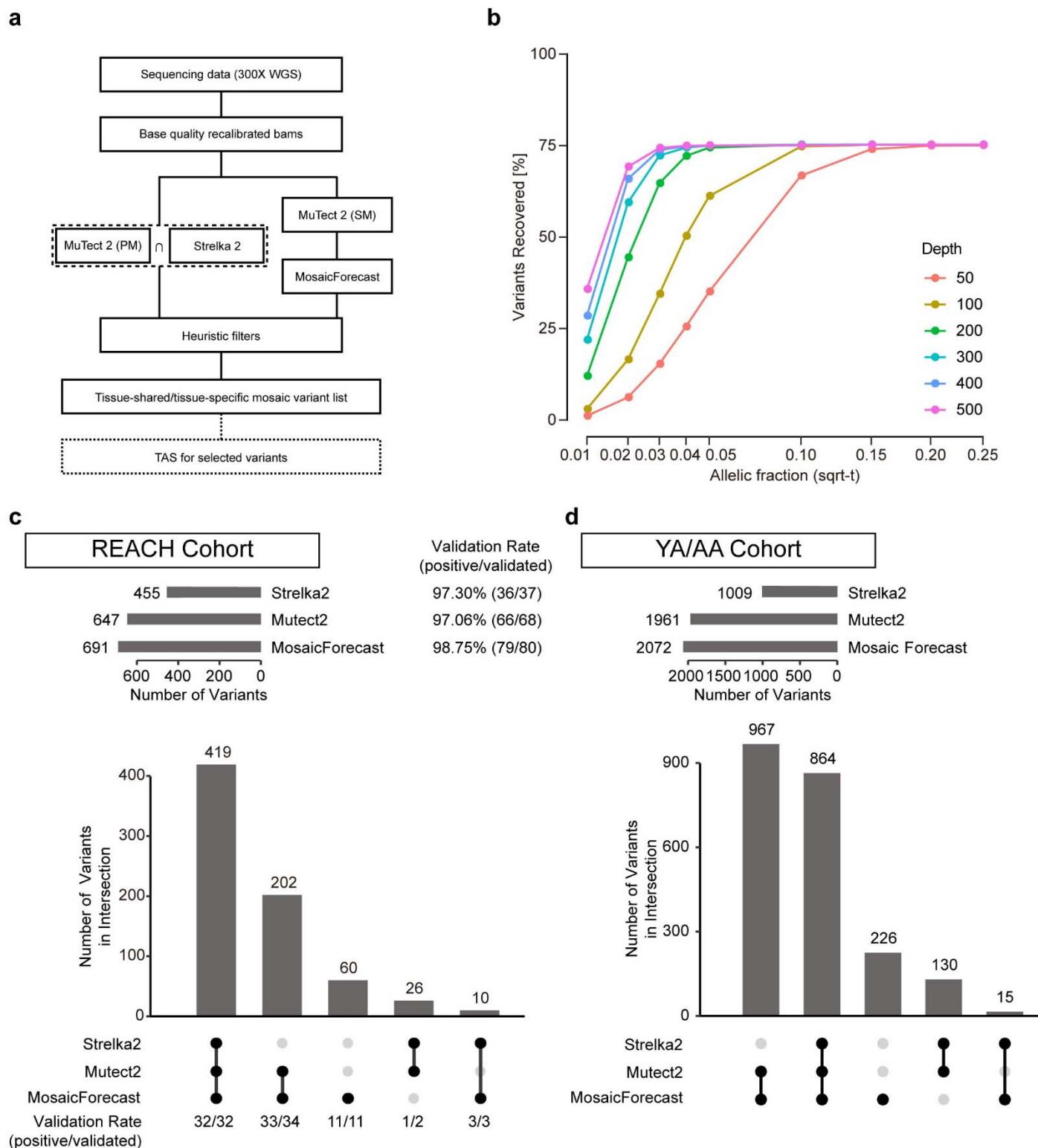

717

718

719

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

720 **Extended Data Figures**  
721




722  
723 **Extended Data Figure 1. Quality control for WGS data.** **a**, Library DNA insert size for each  
724 whole-genome sequencing (WGS) sample. All the samples had a consistent single peak at  
725 ~400 base pairs. Colors were used to distinguish different sample types. **b**, Cumulative  
726 proportion of coverage depth of each WGS sample. The majority of samples reached 300 $\times$ , two  
727 samples from one individual reached 500 $\times$ . **c**, Distribution of depth of 1600 SNVs (randomly

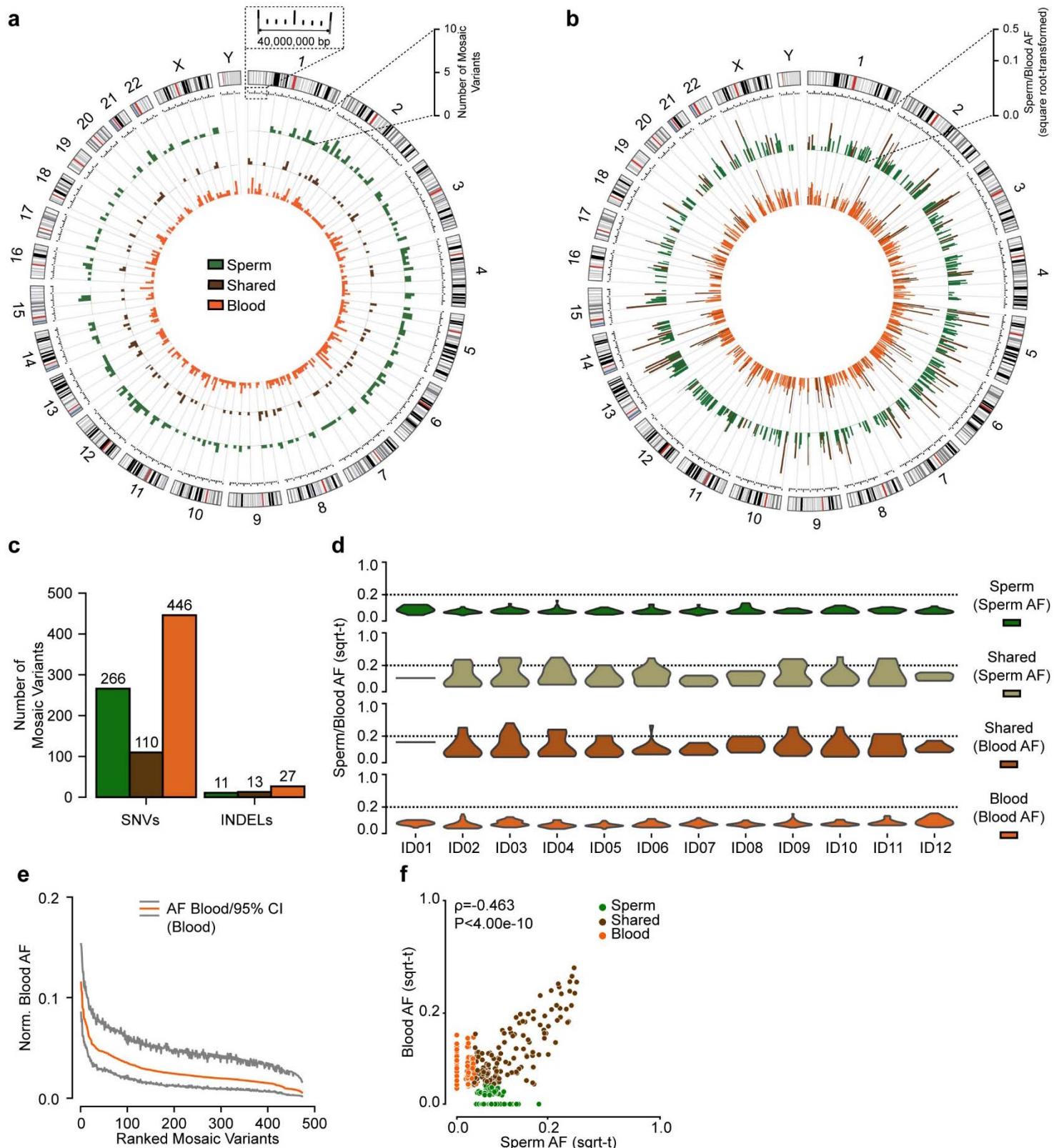
Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

728 selected from dbSNP v137) detected in each WGS sample. Almost all variants from the  
729 autosomes reached 300 $\times$  and variants from sex chromosome reached 150 $\times$ , 95% confidence of  
730 the depth of autosome and sex chromosome were calculated to exclude extreme depth from  
731 copy number (CNVs) or structural variants (SVs). **d**, Principal component analysis revealing  
732 ancestry of the donors for the study; compared with the data from the 1000 Genome project  
733 phase3 release, the individuals from the YA and AA cohorts showed a variety of ancestries.  
734 1000GP: individuals from the 1000 Genome phase3 collection; AFR: African; AMR: Admixed  
735 American; EAS: East Asian; EUR: European; SAS: South Asian  
736

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals



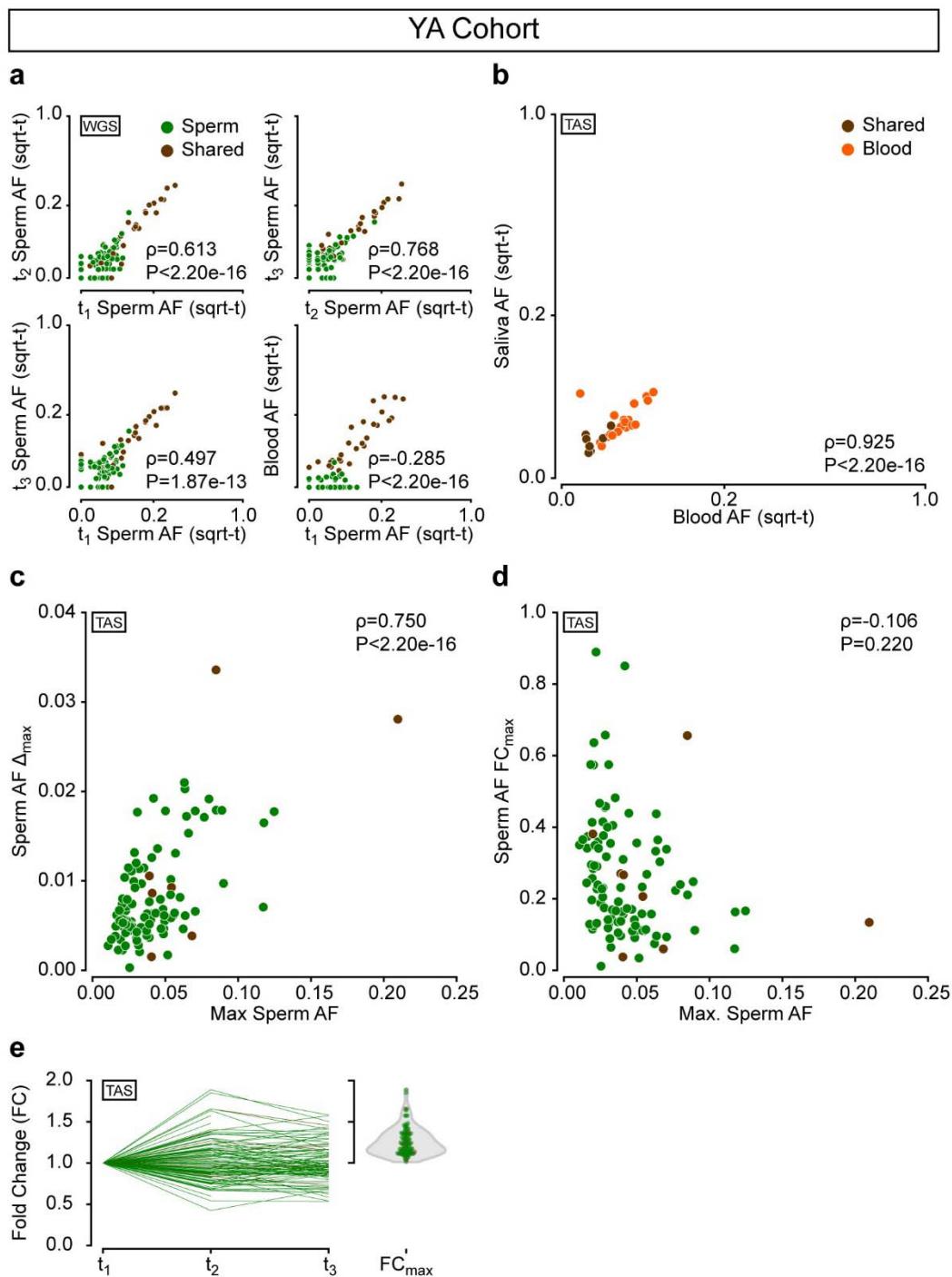
737


738 **Extended Data Figure 2. Computational and experimental benchmarks of the analytical**  
 739 **workflow showed high validation rates. a, Workflow for sequencing data processing, mosaic**  
 740 **variant calling, and variant quantification. Details are described in the Methods section. The**  
 741 **300xMSMF pipeline is a combination of MuTect2, Strelka2, and the state-of-the-art**

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

742 MosaicForecast classifier. PM: paired mode, SM: single mode. TAS: targeted amplicon  
743 sequencing. **b**, Computational benchmark for the detection sensitivity of the workflow. The x-  
744 axis shows the expected AFs and y-axis the sensitivity; colors distinguish different simulated  
745 read depths. Among the 10,000 simulated variants, 75% fall in non-repetitive regions. The 25%  
746 repetitive regions were hard-filtered at the 'heuristic filters' step in our pipeline. For low-AF  
747 variants at 1-2%, 300-500 $\times$  sequencing showed similar detection sensitivity, but significantly  
748 improved compared with 200 $\times$ , 100 $\times$ , and 50 $\times$ . For high-AF variants >20%, all depths showed  
749 maximal sensitivity. **c**, UpSet plot showing reanalysis of data from the previously described  
750 REACH cohort<sup>7</sup> using the described workflow. Plot shows the yield and TAS validation rate for  
751 each individual variant caller within the mosaicism detection workflow. Overall, the workflow has  
752 a 97.6 (80/82) validation rate. **d**, UpSet plot for the YA and AA cohort showed similar relative  
753 numbers of mosaic variants detected by each method, although MosaicForecast had a higher  
754 relative yield.  
755

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals


YA Cohort



Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

757 **Extended Data Figure 3. Genomic distribution and allelic fraction (AF) properties of**  
758 **variants detected in the YA cohort. a**, Circos histograms for the number of mSNV/INDELS  
759 detected from the YA cohort, colors distinguish classes of the variants: green, sperm-specific  
760 (*Sperm*); brown: tissue-shared (*Shared*); orange: blood-specific (*Blood*); circles from inner to  
761 outer are number of mosaic variants detected only in blood (*Blood*), detected in both blood and  
762 sperm (*Shared*) and detected only in sperm (*Sperm*). Variants were evenly distributed across  
763 the genome. **b**, Mosaic SNV/INDELS and the corresponding allelic fractions (AFs) detected from  
764 the YA cohort, colors are the same as (a); Inner circle: AFs in the blood; outer circle: AFs in the  
765 sperm. **c**, Number of mosaic SNVs and INDELS detected from the YA cohort. Two-thirds of the  
766 transmissible variants were only detectable in sperm. **d**, AF distribution (square root-  
767 transformed; sqrt-t; for orientation 0.2 AF is highlighted with a dotted line) of *Sperm*, *Shared*,  
768 and *Blood* variants within each individual. *Shared* variants show higher peak and overall AF  
769 compared to *Sperm* and *Blood*. **e**, Ranked plot of the estimated blood AF with 95% confidence  
770 intervals of *Blood* variants. **f**, Correlation between the square root-transformed (sqrt-t) AFs from  
771 WGS in blood and sperm of the YA cohort for all detected variants.  
772

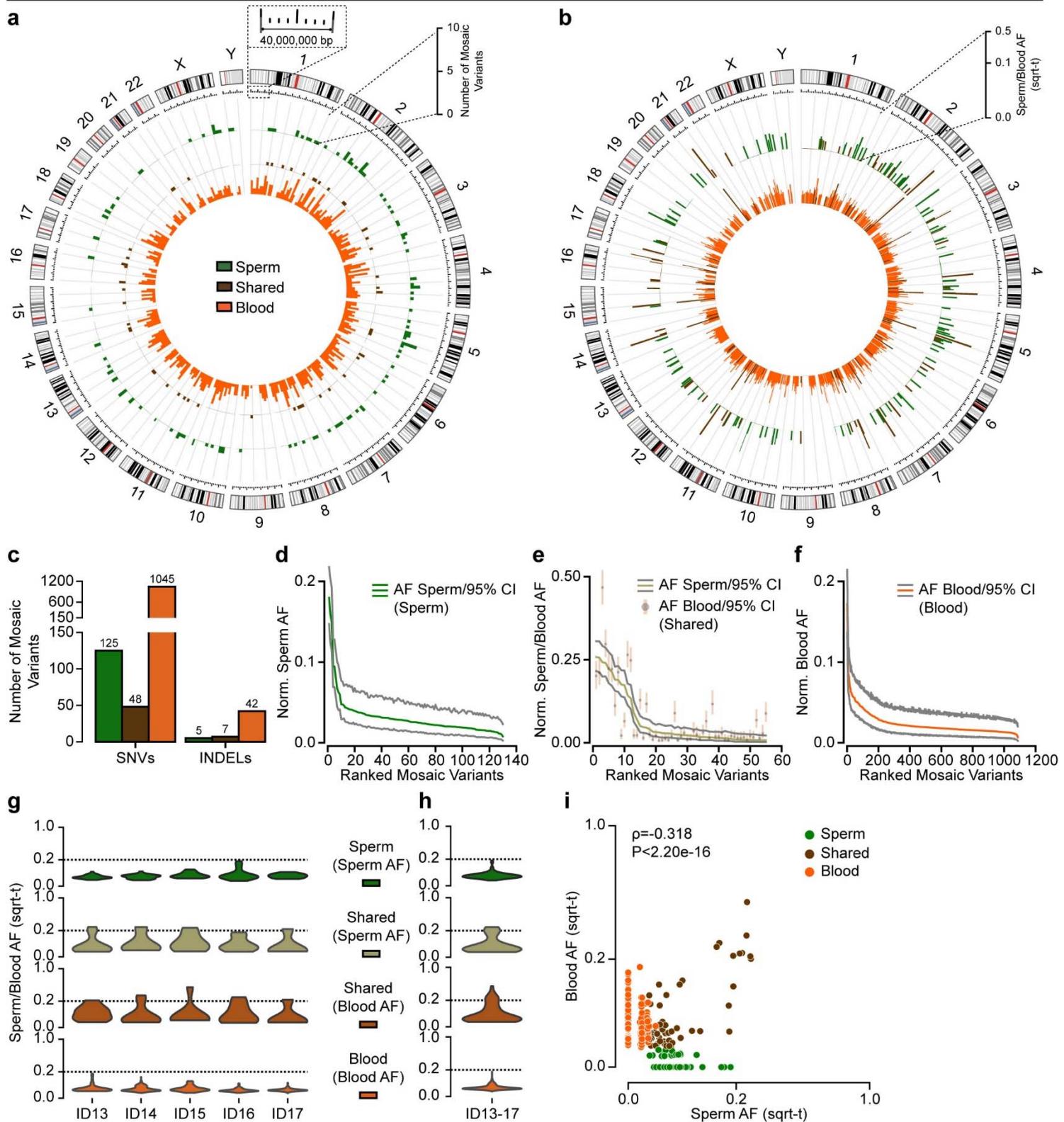
Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals



773

774 **Extended Data Figure 4. Correlation plots of AFs in different samples from the YA cohort.**

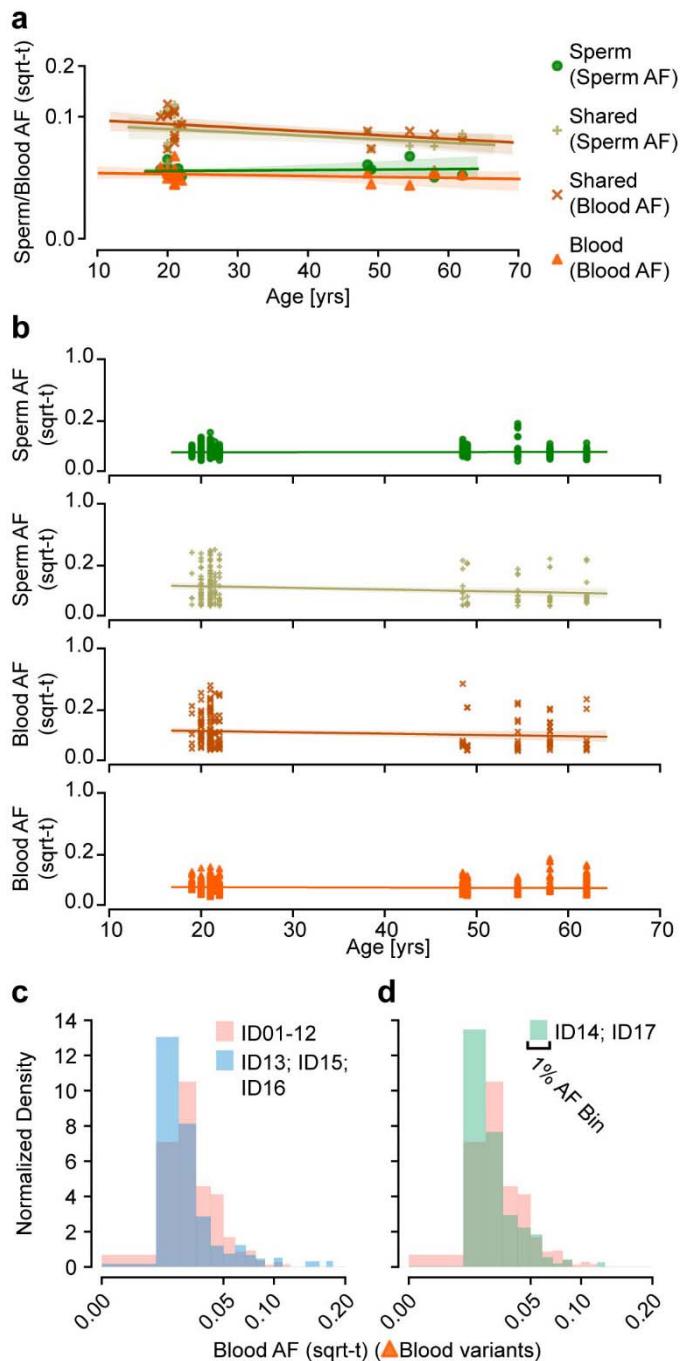
775 **a**, Pair-wise AF comparisons of sperm mosaic variants from ID04 and ID12 analyzed by WGS.  
 776 Sperm samples showed high correlation, but some variants were only detectable in one sperm  
 777 sample. **b**, Correlation between sqrt-t AFs from TAS in blood and saliva in YA. **c**, Correlation of  
 778 maximum AF in any of the 3 sperm samples and the maximum differences between the 3 sperm  
 779 AFs from TAS. The positive correlation suggests increased variation of absolute differences with  
 780 increased AF. However, this correlation is imperfect. **d**, Correlation of maximum AF in any of the  
 781 3 sperm samples and the maximal fold change between the 3 sperm AFs from TAS. No


Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

782 significant correlation is observed. This suggests that smaller AF variants may experience  
783 outsized, relative variability. All panels show Spearman's  $\rho$  and P-value across all variants. **e**,  
784 Fold change for each tested variant. Variation can reach up to 1.5-2-fold.  
785

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

786


AA Cohort



Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

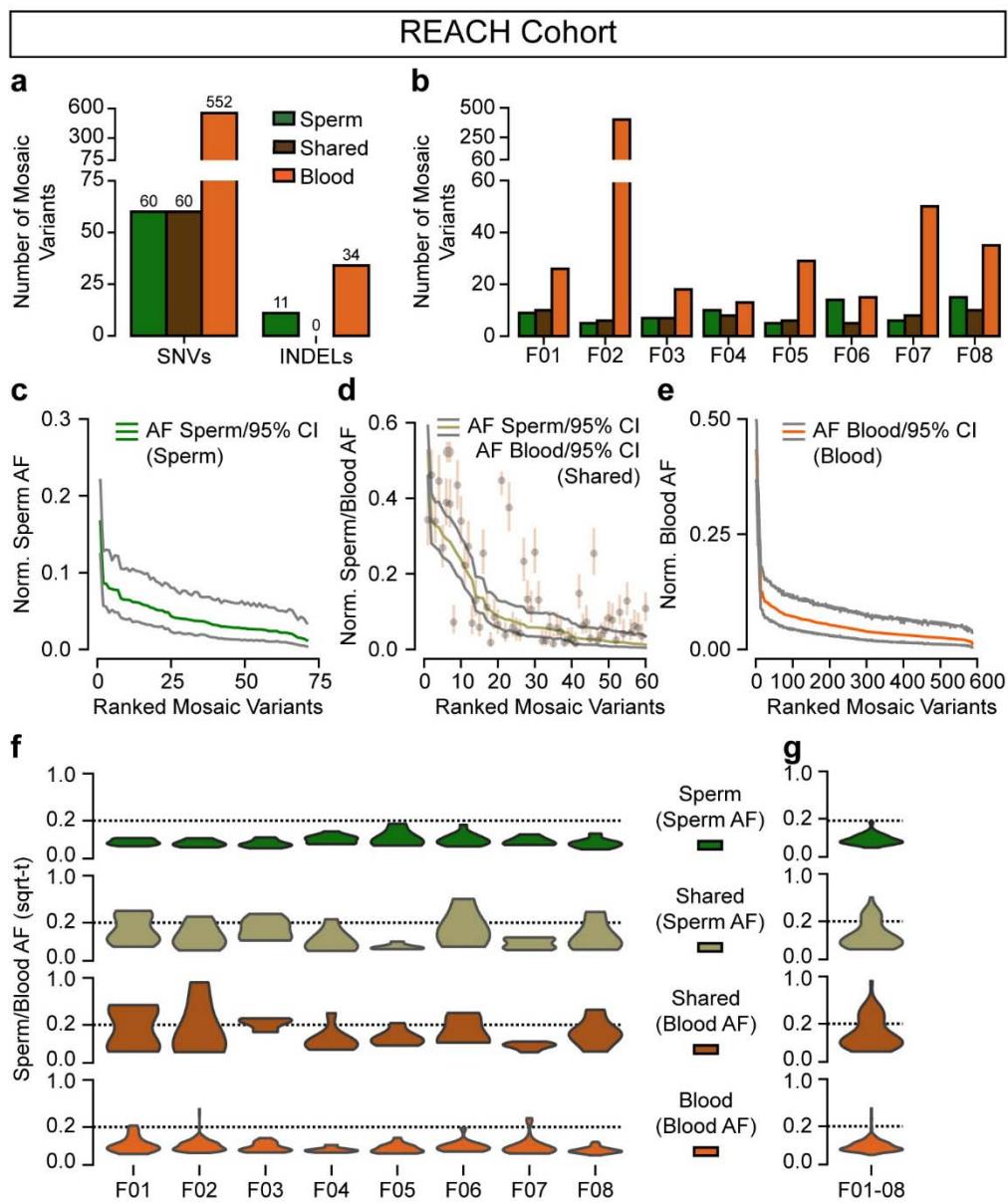
787 **Extended Data Figure 5. Genomic landscape and AF distributions of mSNV/INDELs**  
788 **detected in the AA cohort.** **a**, Circos histograms showing the number of mSNV/INDELs  
789 detected from the AA cohort. Color schemes are the same as Fig. 1b. Circles from inner to outer  
790 show *Blood*, *Shared*, and *Sperm* variants. **b**, Circos bar plots of the AFs of mSNV/INDELs and  
791 their allelic fractions (sqrt-t on radial axis); the inner circle shows the AFs detected in the WGS  
792 of AA blood and the outer circle showed the AFs detected in the WGS of AA sperm. **c**, Number  
793 of mosaic SNVs and INDELs detected from the AA cohort. Compared with the YA cohort the  
794 number of *Blood* mSNV/INDELs was elevated, in line with the clonal hematopoiesis model. **d-f**,  
795 Ranked plot of the estimated sperm and blood AF with 95% confidence intervals (exact binomial  
796 CIs) from the AA cohort. Other than the number of *Blood* variants, results replicate insights from  
797 the YA cohort. **g-h**, AF distribution of *Sperm*, *Shared*, and *Blood* variants within each individual  
798 (g) and the entire AA cohort (h). Consistent with the YA cohort, *Shared* variants show higher  
799 peak and overall AF compared to both *Sperm* and *Blood*. **i**, Correlation between sqrt-t AFs from  
800 WGS in blood and sperm of the AA cohort. A significant correlation is observed, similar to  
801 Extended Data Fig. 3f. Panel shows Spearman's  $\rho$  and P-value across all variants.  
802

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals



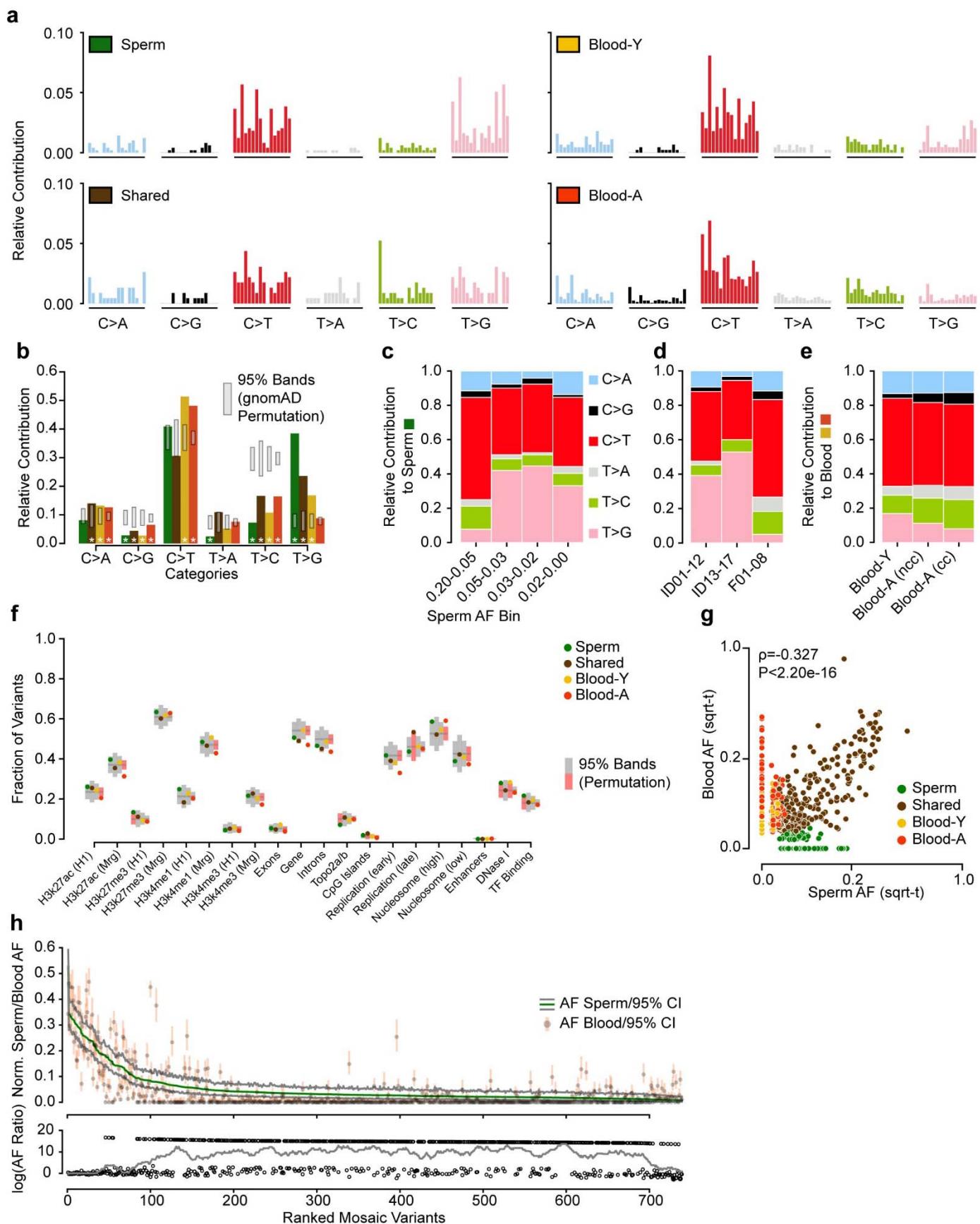
803

804 **Extended Data Figure 6. Temporal stability of sperm AFs measured in each individual**  
 805 **across YA and AA groups, and age-related clonal- and preclonal- differences between YA**  
 806 **and AA blood.** **a**, Combined analysis of the average AF of YA and AA mosaic variants relative  
 807 to the age of individuals. **b**, Each data point represents one variant. y-axis: sqrt-t AFs; x-axis:  
 808 age at (initial) sample collection. Variants are grouped based on the tissues they were detected  
 809 from the 300x WGS: AFs of Sperm variants detected in sperm samples, AFs of Shared variants  
 810 detected in sperm samples, AFs of Shared variants detected in blood samples, and AFs of  
 811 Blood variants detected in blood samples. Regression lines with 95% prediction intervals are  
 812 shown for each panel. Results show that the AFs of mosaic variants detected in this study were  
 813 stable within and between cohorts across a time span of several decades. **c** and **d**, Histogram


Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

814 of the AF distribution of individuals without significant blood clonal collapse (e; ID13, ID15, and  
815 ID16) and with clonal collapse (f; ID14 and ID17) compared to YA (ID01-12) individuals. Both  
816 sub-groups of the AA cohort exhibited similar differences to the YA cohort despite the difference  
817 in *Blood* variant numbers. Panels b and c show the data points, a regression line, and its 95%  
818 CI.

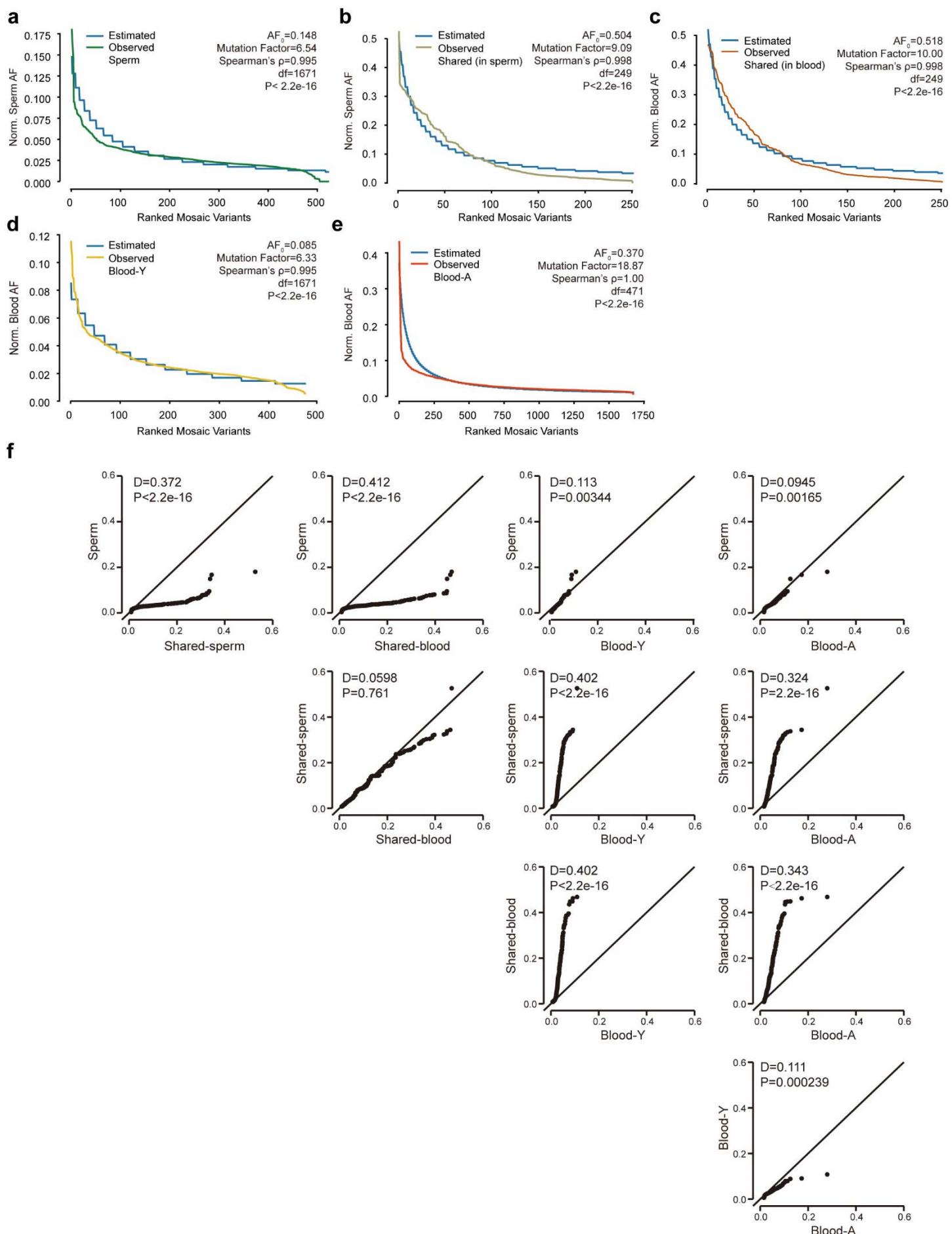
819


820

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals



821  
 822 **Extended Data Figure 7. Reanalysis of deep WGS data of sperm and blood from the**  
 823 **REACH cohort. a-b**, Combined (a) and per-individual (b) number of mosaic variants detected in  
 824 the 8 individuals from the REACH cohort. Compared with the YA and AA cohort the number of  
 825 mSNV/INDELs detected from the REACH cohort is lower due to the lower sequencing depth.  
 826 Clonal hematopoiesis was observed in one individual with advanced age (F02; 70 years old). **c-**  
 827 **e**, Ranked plot of the estimated sperm and blood AF with 95% confidence intervals (exact  
 828 binomial CIs) from the REACH cohort. Data reveals similar patterns as for the YA and AA  
 829 cohorts. **f-g**, AF distribution of Sperm, Shared, and Blood variants within each individual (f) and  
 830 the entire REACH cohort (g). Consistent with the YA and AA cohorts, Shared variants show  
 831 higher peak and overall AF compared to both Sperm and Blood.  
 832

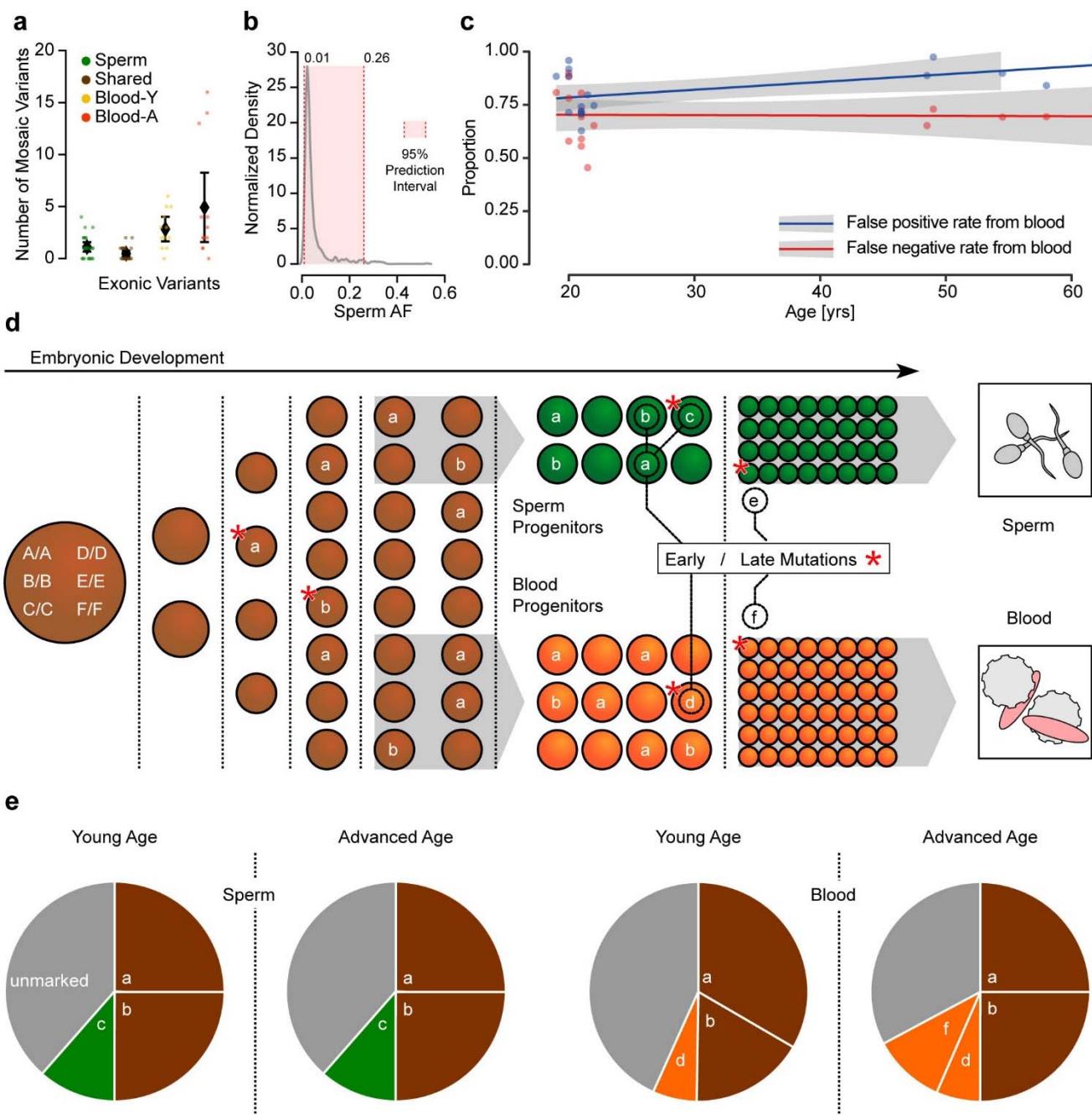

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals



834 **Extended Data Figure 8. Aggregate analysis highlights base substitution features and**  
835 **distinct mutational signatures.** **a**, Base substitution profiles of the 4 different variant groups  
836 (tri-nucleotide level). **b**, Signature of the six possible base substitutions of the 4 different variant  
837 groups (single nucleotide level). Grey bands: 95% permutation intervals calculated from 10,000  
838 random permutations of gnomAD (v2.0.1) variants using the same number of variants as found  
839 from each variant group. Mosaic variants differ from permutations and each other in several  
840 categories. Color scheme same as Fig. 4a. **c-e**, Relative contribution of the 6-category base  
841 substitution profiles for variants showing C>T predominance and an additional T>G enrichment  
842 only in samples with AF lower than 5% in sperm (c), possibly due to the high sequencing depth  
843 after break into cohorts (d); YA: ID01-12, AA: ID13-17, REACH: F01-08. C>T relative  
844 contribution increased with stronger clonal collapse in blood (e). ncc, non-clonal collapse, cc,  
845 clonal collapse. **f**, Fraction of variants located in different genomic regions for the six categories  
846 based on tissue distribution. H3k27ac/H3k27me3/H3K4me1 (H1/Mrg):  
847 H3k27ac/H3k27me3/H3K4me1 acetylation peak regions measured in human H1esc or merged  
848 from 9 different cell lines; Top2a/b: topoisomerase binding regions; Early and Late replication:  
849 measured DNA replication timing; Nucleosome (high/low): nucleosome occupancy tendency;  
850 Enhancers: annotated enhancer regions; DNase I: DNase I hypersensitive regions; TF Binding:  
851 Transcription factor binding sites. 95% permutation intervals were calculated from 10,000  
852 random permutations of the same number of variants from 10,000 random permutations from  
853 Simons Simplex Consortium *de novo* variants (if variant residing outside of the permutation  
854 interval it is colored red). *Blood-A* showed the most deviations from expectations. **g**, Correlation  
855 between sqrt-t AFs from WGS in blood and sperm in each of the four aggregated groups. Panel  
856 shows Spearman's  $\rho$  and P-value across all variants. **h**, Ranked plot of estimated sperm and  
857 blood AF with 95% confidence intervals for all 773 gonadal mosaic variants detected as mosaic  
858 in sperm. Lower plot shows the  $\log_{10}$  transformed ratio of sperm and blood AFs (0 replaced by  
859 1e-8) and the rolling average over 20 data points to display the local trend. Sperm specific  
860 mosaic variants started from an AF of 15% and showed a relatively lower AF.

861

## Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals




863 **Extended Data Figure 9. A step-wise exponential regression model to estimate**  
864 **differences in mutational accumulation and quantile analysis of variant classes. a-e,**  
865 Ranked plot of the sex-chromosome normalized AFs measured for variants from each  
866 aggregated class; observed values are colored with a color scheme as in Fig. 4a. A step-wise  
867 exponential regression model is used to model the distribution of the ranked plot with minimum  
868 L1-norm loss; the estimated values are shown in blue. The starting AF (AF0) and the Mutation  
869 Factor (MF) defining the relative mutation burden accumulation, as well as Spearman's  
870 correlation coefficients ( $\rho$ ) and P-values are shown for each variant group. All estimations with  
871 Spearman's  $\rho \geq 0.995$ . Ranked plot of variants in *Sperm* (a) was estimated with a MF=0.153,  
872 very similar to MF=0.158 from variants measured in *Blood-Y* (d), indicating similar mutation  
873 burden accumulation during tissue development. Ranked plot of variants in *Shared* measured in  
874 sperm (b) were estimated with a MF=0.110, similar to the same variants measured in blood (c,  
875 MF=0.100), indicating similar but relatively increased (compared to *Sperm* and *Blood-Y*)  
876 mutation accumulation speed during early embryonic development. Ranked plot of variants in  
877 *Blood-A* were estimated with MF=0.053, different from all other observed variant groups. f,  
878 Quantile plots (qq-plots) showing the comparison of AF distributions between different variant  
879 groups (x and y title). D statistic and P-value from a Kolmogorov–Smirnov test are shown on  
880 each comparison pair.

881

882

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals



883

884

885

886

887

888

889

890

891

892

893

**Extended Data Fig. 10: The developmental origin of mosaic mutations and the predictions from the observed temporal variation.** **a**, Detectable mosaic variants in each category for exonic variants (c). Shown are individual data points and mean with a 95% confidence interval. **b**, Kernel density estimation of the AF distribution of all sperm mosaic variants. The 95% prediction interval for AF is 1-26%. **c**, Inaccuracy of transmissible mosaicism detection from blood increases with age. Based on the number of blood detectable mosaic variants and their presence in sperm, blood-only detection produces a high false positive rate and the false positive rate is growing with age due to clonal collapse (blue). Blood-only detection produces a consistent 66% false negative rate for the prediction of transmission across different age groups. **d**, Mosaic variants occur throughout development and are typically *Shared* if they

Yang, Breuss et al., Sperm Mosaicism in Healthy Individuals

894 occur prior to the split of soma and sperm progenitors. For instance mutation *a* (resulting in  
895 genotype *A/a*) occurs during the 4 cell stage, is present in roughly 25% of all cells (i.e. ~12.5%  
896 AF), and is shared across blood and sperm. *B/b*, which occurs later, is also shared, but due to  
897 stochastic distribution unequally present in sperm and blood. Finally, *C/c*, *D/d*, *E/e*, and *F/f* are  
898 only present in tissue-specific progenitors, and the latter two happen late and are not detectable  
899 in young individuals due to their small AF. **e**, Relative contributions of different variants detected  
900 in blood and sperm and their change with age. *Shared* variants are typically present across life,  
901 but may change their abundance in blood, due to clonal expansion/collapse. Blood-specific  
902 mutations may dynamically increase or decrease with age due to the same phenomenon (e.g.  
903 *F/f*). For sperm, this stability across age results in a life-long, predictable transmission risk of  
904 variants *A/a*, *B/b*, and *C/c*.  
905