

1

2 **Evidence of antigenic imprinting in sequential Sarbecovirus immunization**

3

4

5 Huibin Lv^{1,*}, Ray T. Y. So^{1,*}, Meng Yuan², Hejun Liu², Chang-Chun D. Lee², Garrick K.

6 Yip¹, Wilson W. Ng¹, Ian A. Wilson^{2,3}, Malik Peiris¹, Nicholas C. Wu^{4,5,§}, Chris K. P.

7 Mok^{1,§}

8

9 ¹ HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine,
10 The University of Hong Kong, Hong Kong SAR, China

11 ² Department of Integrative Structural and Computational Biology, The Scripps Research
12 Institute, La Jolla, CA 92037, USA

13 ³ The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA,
14 92037, USA

15 ⁴ Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
16 61801, USA

17 ⁵ Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL,
18 61801, USA

19

20 * These authors contributed equally: Huibin Lv, Ray T. Y. So

21 § Correspondence: Nicholas C. Wu (nicwu@illinois.edu) or Chris K. P. Mok
22 (ch02mkp@hku.hk)

23

24

25

26

27 **SUMMARY (150 words max.)**

28 Antigenic imprinting, which describes the bias of antibody response due to previous
29 immune history, can influence vaccine effectiveness and has been reported in different
30 viruses. Given that COVID-19 vaccine development is currently a major focus of the world,
31 there is a lack of understanding of how background immunity influence antibody
32 response to SARS-CoV-2. This study provides evidence for antigenic imprinting in
33 *Sarbecovirus*, which is the subgenus that SARS-CoV-2 belongs to. Specifically, we
34 sequentially immunized mice with two antigenically distinct *Sarbecovirus* strains, namely
35 SARS-CoV and SARS-CoV-2. We found that the neutralizing antibodies triggered by the
36 sequentially immunization are dominantly against the one that is used for priming. Given
37 that the impact of the background immunity on COVID-19 is still unclear, our results will
38 provide important insights into the pathogenesis of this disease as well as COVID-19
39 vaccination strategy.

40 **INTRODUCTION**

41 Coronavirus disease 2019 (COVID-2019) pandemic is an ongoing global public health
42 crisis and has imposed a huge burden on the world economy. The causative agent of
43 COVID-2019, SARS-CoV-2, belongs to the subgenus *Sarbecovirus* of the genus
44 *Betacoronavirus* and has nearly 80% sequence identity with another *Sarbecovirus*,
45 SARS-CoV, which caused a global epidemic in 2003 (Peiris et al., 2003). While many
46 SARS-CoV-2 vaccine candidates are being actively developed (Funk et al., 2020), the
47 influence of immune history on vaccine effectiveness remains elusive. In fact, it is now
48 well recognized that the effectiveness of a given influenza vaccine varies among people
49 with different influenza immunization or infection histories (Henry et al., 2018). Such
50 phenomenon is known as antigenic imprinting, which describes immunological memory
51 induced by primary innate and adaptive immune responses to the first encounter with a
52 microbial pathogen or vaccination that can be retained over a person's life time.
53 Antigenic imprinting has also been reported in dengue virus (Mongkolsapaya et al.,
54 2003), HIV (Klenerman and Zinkernagel, 1998) and influenza virus (Gouma et al., 2020).
55 Since SARS-CoV-2 may become a seasonal human coronavirus (Kellam and Barclay,
56 2020) and other zoonotic *Sarbecovirus* strains continue to post a pandemic threat
57 (Menachery et al., 2015), it is important to understand how antigenic imprinting may
58 affect the antibody response to *Sarbecovirus*. In this study, we explored the antigenic
59 imprinting effect of *Sarbecovirus* by characterizing the antibody response from mice that
60 were sequentially immunized two antigenically distinct *Sarbecovirus* strains, namely
61 SARS-CoV and SARS-CoV-2.

62

63 **RESULTS**

64 Balb/c mice (6-8 weeks of age) were intraperitoneally (i.p.) immunized twice, with viruses
65 plus adjuvant Addavax (Wu et al., 2019). Four immunization schemes were explored: 1)

66 two rounds of SARS-CoV (SARS-CoV homologous prime-boost); 2) first round with
67 SARS-CoV and second round with SARS-CoV-2 (heterologous SARS-CoV-prime,
68 SARS-CoV-2-boost); 3) two rounds of SARS-CoV-2 (SARS-CoV-2 homologous prime-
69 boost); and 4) first round with SARS-CoV-2 and second round with SARS-CoV
70 (heterologous SARS-CoV-2-prime, SARS-CoV-boost). Plasma samples were collected
71 and antibody immune responses were measured at day 14 after the second round of
72 immunization. Compared to round one of immunization (Lv et al., 2020), the second
73 round homologous boost induced higher homologous binding and neutralizing antibody
74 titers ($p < 0.05$, two tailed t test; Figure S1a-d). These results suggest that SARS-CoV or
75 SARS-CoV-2 specific memory B cells can be recalled and produce neutralizing
76 antibodies during the second round of immunization.

77

78 While all our four prime-boost vaccination schemes resulted in cross-reactive RBD-
79 binding antibodies (Figure 1a-d), the virus that was used for priming seemed to dictate
80 the neutralizing antibody response after boosting, regardless of the virus that was used
81 for the boost (Figure 1e-h). For example, no matter whether SARS-CoV or SARS-CoV-2
82 was used for boosting, the neutralizing antibody response was much stronger against
83 SARS-CoV if SARS-CoV was used for priming (Figure 1e-f), and stronger against
84 SARS-CoV-2 if SARS-CoV-2 was used for priming (Figure 1g-h). Interestingly, while one
85 round of SARS-CoV immunization was sufficient to elicit a detectable SARS-CoV
86 neutralization response (Figure S1c), a SARS-CoV neutralization response was
87 undetectable when SARS-CoV was used as a heterologous boost after priming with
88 SARS-CoV-2 (Figure 1h). A similar observation was made for SARS-CoV-2 (Figure 1f
89 and S1d).

90

91 Angiotensin-converting enzyme 2 (ACE2) is the host receptor for SARS-CoV and SARS-
92 CoV-2 entry. Previous study has shown that neutralizing activity of sera correlates with
93 the ACE2-competition activity (Tan et al., 2020). ACE2-competition assay was then
94 performed for four groups of plasma samples. Briefly, the binding of plasma samples
95 were tested against RBD and RBD/ACE2 complex. Plasma samples with a stronger
96 ACE2-competition activity should show a greater reduction in binding to RBD/ACE2
97 complex compared to RBD alone. When binding to SARS-CoV RBD was tested, plasma
98 samples from mice that were primed with SARS-CoV had stronger ACE2-competition
99 activity than did plasma samples from mice that were primed with SARS-CoV-2 (Figure
100 2a). Similarly, when binding to SARS-CoV-2 RBD was tested, plasma samples from
101 mice that were primed with SARS-CoV-2 had stronger ACE2-competition activity than
102 did plasma samples from mice that were primed with SARS-CoV (Figure 2b). These
103 results indicate that the heterologous boost predominantly induces antibodies to
104 conserved regions outside of the ACE2-binding site that have minimum neutralizing
105 activity. One such example is CR3022, which has strong cross-reactive binding activity
106 to a conserved epitope on RBD, but has weak neutralization activity to SARS-CoV and
107 undetectable neutralization activity to SARS-CoV-2 (Yuan et al., 2020b).

108

109 Overall, our results suggest that antigenic imprinting can impact the antibody response
110 against *Sarbecovirus*. Specifically, the antibody response to a *Sarbecovirus* strain can
111 be suboptimal if there exists a prior immune history against an antigenically distinct or
112 drifted *Sarbecovirus* strain. This study has important implications for vaccine
113 development against the ongoing COVID-19 pandemic as well as for *Sarbecovirus* and
114 other coronaviruses in general.

115

116 **ACKNOWLEDGEMENTS**

117 This work was supported by Calmette and Yersin scholarship from the Pasteur
118 International Network Association (H.L.), International Cooperation and Exchange of the
119 National Natural Science Foundation of China (8181101118), Research Grants Council
120 of the Hong Kong Special Administrative Region, China (Project no. T11-712/19-N) (to
121 J.S.M.P), NIH K99/R00 AI139445 (N.C.W.), and the Bill and Melinda Gates Foundation
122 OPP1170236 (I.A.W.).

123

124 **AUTHOR CONTRIBUTION**

125 H.L., N.C.W., and C.K.P.M. conceived and designed the study. N.C.W., M.Y., H.L. and
126 D.C.L. expressed and purified the proteins. H.L., R.T.Y.S., G.K.Y., W.W.N., and C.R.W.,
127 performed the experiments. H.L., R.T.Y.S., N.C.W., and C.K.P.M. analyzed the data.
128 H.L., R.T.Y.S., N.C.W., J.S.M.P., I.A.W., and C.K.P.M. wrote the paper, and all authors
129 reviewed and edited the paper.

130

131 **DECLARATION OF INTERESTS**

132 The authors declare no competing interests.

133

134 **FIGURE LEGENDS**

135 **Figure. 1. ELISA binding and neutralizing titers of homologous and heterologous**
136 **sequential immunization with SARS-CoV and SARS-CoV-2.**

137 **a-d** RBD (receptor binding domain) proteins from SARS-CoV and SARS-CoV-2 were
138 used as the antigen coating on the ELISA plates. Binding of RBD to 1:100 diluted
139 plasma sample was analyzed from 5 mice immunized using **(a)** SARS-CoV homologous
140 prime-boost, **(b)** heterologous SARS-CoV-prime, SARS-CoV-2-boost, **(c)** SARS-CoV-2
141 homologous prime-boost, and **(d)** heterologous SARS-CoV-2-prime, SARS-CoV-boost.
142 The mean OD₄₅₀ value of two replicates are shown. **e-h** Neutralizing titers of plasma

143 samples from mice immunized with **(e)** SARS-CoV homologous prime-boost, **(f)**
144 heterologous SARS-CoV-prime, SARS-CoV-2-boost, **(g)** SARS-CoV-2 homologous
145 prime-boost, and **(h)** heterologous SARS-CoV-2-prime, SARS-CoV-boost, were
146 analyzed by a PRNT (plaque reduction neutralization test) assay. Each data point in the
147 figure represents the mean of two replicates. Error bars represent standard deviation.

148

149 **Figure. 2. Epitope mapping of the neutralizing and non-neutralizing group**

150 SARS-CoV RBD **(a)** or SARS-CoV-2 RBD **(b)** protein was used as antigen to coat on the
151 96 well ELISA plate. Four groups of mice plasma samples were added into the plate as
152 primary antibody after with or without 100 ng hACE2 protein blocking. The ΔOD_{450}
153 values were calculated as WT OD_{450} value minus hACE2 blocking OD_{450} value. Each
154 data point in the figure represents the mean of two replicates. P-values were calculated
155 using two-tailed t-test ($^*P<0.05$, $^{**}P<0.005$, $^{***}P<0.001$, $^{****}P<0.0001$). Error bars
156 represent standard deviation. Of note, while SARS-CoV-2-SARS-CoV has a stronger
157 ACE2-competition activity to SARS-CoV-2 RBD than SARS-CoV-SARS-CoV, the large
158 standard deviation in SARS-CoV-SARS-CoV makes the difference statistically
159 insigifncant.

160

161 **Figure. S1. Neutralization titers of one or two rounds of homologous SARS-CoV or**
162 **SARS-CoV-2 immunization**

163 **a-b** Neutralizing titers of plasma samples from mice immunized by one or two rounds of
164 homologous virus against **(a)** SARS-CoV or **(b)** SARS-CoV-2 were measured by a
165 PRNT assay. Each data point in the figure represents the mean of two replicates. P-
166 values were calculated using two-tailed t-test ($^*P<0.05$, $^{***}P<0.001$, $^{****}P<0.0001$). Error
167 bars represent standard deviation

168

169

170 **STAR METHODS**

171 **RESOURCE AVAILABILITY**

172 **Lead Contact**

173 Information and requests for resources and reagents should be directed to and will be
174 fulfilled by the Lead Contact, Chris K. P. Mok (ch02mfp@hku.hk).

175

176 **Materials Availability**

177 This study did not generate new unique reagents.

178

179 **Data and Code Availability**

180 NA.

181

182 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

183 **METHOD DETAILS**

184 **RBD protein expression and purification**

185 The receptor-binding domain (RBD) (residues 319-541) of the SARS-CoV-2 spike (S)
186 protein (GenBank: QHD43416.1) and RBD (residues: 306-527) of the SARS-CoV spike
187 (S) protein (GenBank: ABF65836.1) were cloned into a customized pFastBac vector
188 (Ekiert et al., 2011) and fused with an N-terminal gp67 signal peptide and C-terminal
189 6xHis-tag(Yuan et al., 2020b). A recombinant bacmid DNA was generated using the
190 Bac-to-Bac system (Life Technologies). Baculovirus was generated by transfecting
191 purified bacmid DNA into Sf9 cells using FuGENE HD (Promega), and subsequently
192 used to infect suspension cultures of High Five cells (Life Technologies) at an MOI of 5
193 to 10. For protein expression, the infected High Five cells were incubated at 28°C for
194 72h with shaking at 110r.p.m. The supernatant was then concentrated using a 10

195 kDa MW cutoff Centramate cassette (Pall Corporation). The RBD protein was purified by
196 Ni-NTA, followed by size exclusion chromatography, and buffer exchanged into 20 mM
197 Tris-HCl pH 7.4 and 150 mM NaCl.

198

199 **ACE2 protein expression and purification**

200 The expression of human ACE2 was as previously reported (Yuan et al., 2020a). Briefly,
201 the human ACE2 (residues 19 to 615, GenBank: BAB40370.1) was codon optimized
202 and cloned into phCMV3 vector (Yuan et al., 2020a). The construct was fused with a C-
203 terminal 6xHis tag. The plasmid was transiently transfected into Expi293F cells using
204 ExpiFectamine 293 Reagent (Thermo Fisher Scientific) according to the manufacturer's
205 manual. At 6 days post-transfection, the supernatant was harvested and then was then
206 washed and eluted with 10 mM and 300 mM Imidazole containing PBS, respectively.
207 The ACE2 eluent was purified by size exclusion chromatography.

208

209 **Mouse immunization**

210 6-8 weeks Balb/c mice were immunized with two rounds 10^5 pfu of viruses in 150 μ L
211 PBS mixing with 50 μ L Addavax, including: 1) two rounds of homologous SARS-CoV
212 immunization, 2) two rounds of heterologous immunization with SARS-CoV-prime and
213 SARS-CoV-2-boost, 3) two rounds of homologous SARS-CoV-2 immunization, and 4)
214 two rounds of heterologous immunization with SARS-CoV-2-prime and SARS-CoV-
215 boost, via intraperitoneal (i.p.) route. The plasma samples were collected using heparin
216 tubes on day 35 after the second round of immunization. The experiments were
217 conducted in The University of Hong Kong Biosafety Level 3 (BSL3) facility. This study
218 protocol was carried out in strict accordance with the recommendations and was
219 approved by the Committee on the Use of Live Animals in Teaching and Research of the
220 University of Hong Kong (CULATR 4533-17).

221

222 **ELISA binding assay**

223 ELISA plates (96-well, Nunc MaxiSorp, Thermo Fisher Scientific) were coated overnight
224 with 100 μ l of purified recombinant protein in PBS buffer at 1 ng/ μ l. The plates were then
225 blocked with 100 μ l Chonblock buffer (Chondrex Inc, Redmon, US) at room temperature
226 for 1 hours. Each mouse plasma sample was 1:100 diluted in Chonblock buffer, added
227 to the coated ELISA plates, and incubated for 2 hours at 37°C. After three extensive
228 washes with PBS containing 0.1% Tween 20, each well was incubated with the HRP
229 goat anti-mouse secondary antibody (1:5000, Beyotime Biotechnology) for 1 hour at
230 37°C. The ELISA plates were then washed five times with PBS containing 0.1% Tween
231 20. Subsequently, 100 μ l of TMB buffer (Ncm TMB One; New Cell & Molecular Biotech
232 Co., Ltd) was added into each well. After 15 minutes incubation, 50 μ l of 2 M H₂SO₄
233 solution was added to stop the reaction and the plates were analyzed on a Sunrise
234 absorbance microplate reader (Tecan, Ma□nnedorf, Switzerland) at 450 nm wavelength.

235

236 **ACE2-competition ELISA assay**

237 ELISA plates (96-well, Nunc MaxiSorp, Thermo Fisher Scientific) were coated overnight
238 with 100 ng of SARS-CoV or SARS-CoV-2 RBD protein in PBS buffer. The plates were
239 then blocked with 100 μ l Chonblock buffer (Chondrex Inc, Redmon, US) at room
240 temperature for 1 hours. After washing, 100 ng of ACE2 protein was added into plate
241 and incubated at 37°C for 2 hours, followed by another 2 hours of 1:200 diluted mouse
242 plasma samples incubation. After three extensive washes with PBS containing 0.1%
243 Tween 20, each well was incubated with the HRP goat anti-mouse secondary antibody
244 (1:5000, Beyotime Biotechnology) for 1 hour at 37°C. The ELISA plates were then
245 washed five times with PBS containing 0.1% Tween 20. Subsequently, 100 μ L of TMB
246 buffer (Ncm TMB One; New Cell & Molecular Biotech Co., Ltd) was added into each well.

247 After 15 minutes incubation, 50 μ L of 2 M H_2SO_4 solution was added to stop the reaction
248 and the plates were analyzed on a Sunrise absorbance microplate reader (Tecan,
249 Ma□nnedorf, Switzerland) at 450 nm wavelength.

250

251 **Plaque reduction neutralization test (PRNT)**

252 Plasma samples were two-fold diluted starting from a 1:10 dilution and mixed with equal
253 volumes of 120 plaque-forming units (pfu) of SARS-CoV-2 as determined by Vero E6
254 cells. After 1 hour incubation at 37°C, the plasma-virus mixture were added onto Vero
255 E6 monolayers seated in a 24-well cell culture plate and incubated for 1 hour at 37°C
256 with 5% CO_2 . The plasma-virus mixtures were then discarded and infected Vero E6 cells
257 were immediately covered with 1% agarose gel in DMEM medium. After incubation for 3
258 days at 37°C with 5% CO_2 , the plates were formalin fixed and stained by 0.5% crystal
259 violet solution. Neutralization titers were determined by the highest plasma dilution that
260 resulted in >90% reduction in the number of pfus. The test was performed in a BSL3
261 facility in the University of Hong Kong.

262
263

264

265 **REFERENCES**

266 Ekiert, D.C., Friesen, R.H., Bhabha, G., Kwaks, T., Jongeneelen, M., Yu, W., Ophorst,
267 C., Cox, F., Korse, H.J., Brandenburg, B., *et al.* (2011). A highly conserved neutralizing
268 epitope on group 2 influenza A viruses. *Science* 333, 843-850.

269 Funk, C.D., Laferriere, C., and Ardakani, A. (2020). A Snapshot of the Global Race for
270 Vaccines Targeting SARS-CoV-2 and the COVID-19 Pandemic. *Front Pharmacol* 11,
271 937.

272 Gouma, S., Kim, K., Weirick, M.E., Gumina, M.E., Branche, A., Topham, D.J., Martin,
273 E.T., Monto, A.S., Cobey, S., and Hensley, S.E. (2020). Middle-aged individuals may be
274 in a perpetual state of H3N2 influenza virus susceptibility. *Nat Commun* 11, 4566.

275 Henry, C., Palm, A.E., Krammer, F., and Wilson, P.C. (2018). From Original Antigenic
276 Sin to the Universal Influenza Virus Vaccine. *Trends Immunol* 39, 70-79.

277 Kellam, P., and Barclay, W. (2020). The dynamics of humoral immune responses
278 following SARS-CoV-2 infection and the potential for reinfection. *J Gen Virol*.

279 Klennerman, P., and Zinkernagel, R.M. (1998). Original antigenic sin impairs cytotoxic T
280 lymphocyte responses to viruses bearing variant epitopes. *Nature* 394, 482-485.

281 Lv, H., Wu, N.C., Tak-Yin Tsang, O., Yuan, M., Perera, R., Leung, W.S., So, R.T.Y.,
282 Chun Chan, J.M., Yip, G.K., Hong Chik, T.S., *et al.* (2020). Cross-reactive antibody
283 response between SARS-CoV-2 and SARS-CoV infections. *Cell Rep*, 107725.

284 Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihotram, S., Gralinski, L.E., Plante,
285 J.A., Graham, R.L., Scobey, T., Ge, X.Y., Donaldson, E.F., *et al.* (2015). A SARS-like
286 cluster of circulating bat coronaviruses shows potential for human emergence. *Nat Med*
287 21, 1508-1513.

288 Mongkolsapaya, J., Dejnirattisai, W., Xu, X.N., Vasanawathana, S., Tangthawornchaikul,
289 N., Chairunsri, A., Sawasdivorn, S., Duangchinda, T., Dong, T., Rowland-Jones, S., *et*
290 *al.* (2003). Original antigenic sin and apoptosis in the pathogenesis of dengue
291 hemorrhagic fever. *Nat Med* 9, 921-927.

292 Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yee, W.K.,
293 Yan, W.W., Cheung, M.T., *et al.* (2003). Coronavirus as a possible cause of severe
294 acute respiratory syndrome. *Lancet* 361, 1319-1325.

295 Tan, C.W., Chia, W.N., Qin, X., Liu, P., Chen, M.I., Tiu, C., Hu, Z., Chen, V.C., Young,
296 B.E., Sia, W.R., *et al.* (2020). A SARS-CoV-2 surrogate virus neutralization test based
297 on antibody-mediated blockage of ACE2-spike protein-protein interaction. *Nat Biotechnol*
298 38, 1073-1078.

299 Wu, N.C., Lv, H., Thompson, A.J., Wu, D.C., Ng, W.W.S., Kadam, R.U., Lin, C.W.,
300 Nycholat, C.M., McBride, R., Liang, W., *et al.* (2019). Preventing an Antigenically
301 Disruptive Mutation in Egg-Based H3N2 Seasonal Influenza Vaccines by Mutational
302 Incompatibility. *Cell Host Microbe* 25, 836-844 e835.

303 Yuan, M., Liu, H., Wu, N.C., Lee, C.D., Zhu, X., Zhao, F., Huang, D., Yu, W., Hua, Y.,
304 Tien, H., *et al.* (2020a). Structural basis of a shared antibody response to SARS-CoV-2.
305 *Science* 369, 1119-1123.

306 Yuan, M., Wu, N.C., Zhu, X., Lee, C.D., So, R.T.Y., Lv, H., Mok, C.K.P., and Wilson, I.A.
307 (2020b). A highly conserved cryptic epitope in the receptor binding domains of SARS-
308 CoV-2 and SARS-CoV. *Science* 368, 630-633.

309

310

Figure 1

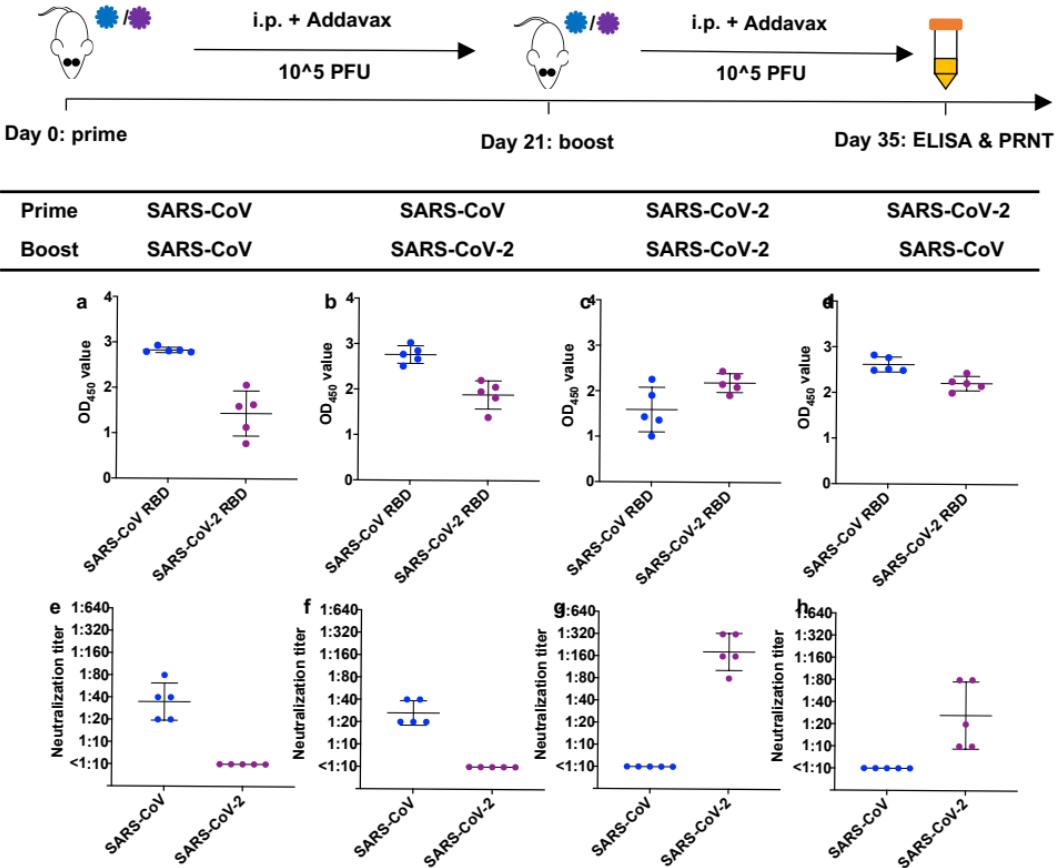


Figure 2

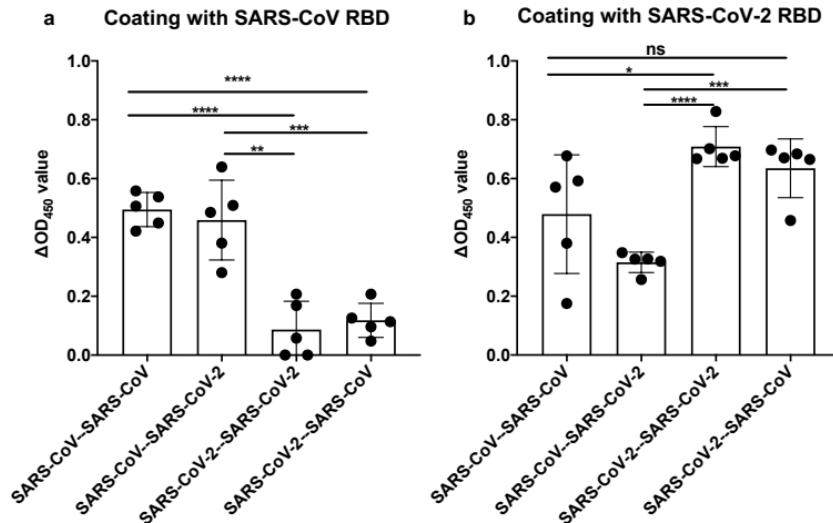
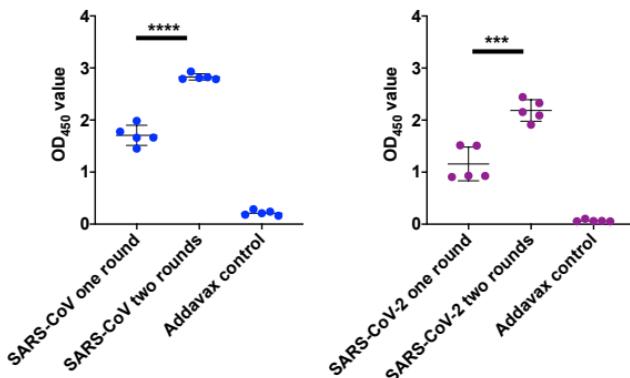
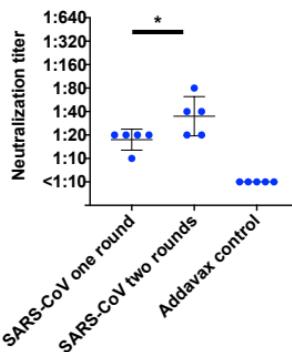
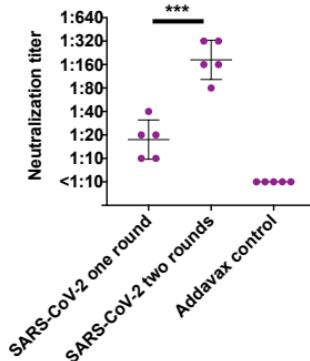




Figure S1


a Coating with SARS-CoV RBD b Coating with SARS-CoV-2 RBD

c SARS-CoV Neutralization

d SARS-CoV-2 Neutralization

