

1 **Pseudomonas aeruginosa secreted protein PA3611 promotes bronchial epithelial**
2 **cells epithelial-mesenchymal transition through TGF- β 1 inducing**
3 **p38/miRNA/NF- κ B pathway**

4 Lei Shu^{1,2#}, Sixia Chen^{1#}, Xiaolin Chen^{2#}, Shaoqing Lin^{1#}, Xingran Du³, Kaili Deng²,
5 Jing Wei², Yang Cao², Jiaxin Yan², Ziyan Shen², Ganzhu Feng^{1*}

6 **Author Affiliations:**

7 ¹ Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital
8 of Nanjing Medical University, Nanjing, Jiangsu 210011, China

9 ²Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical
10 University, Nanjing, Jiangsu 211166, China

11 ³Department of Critical Care Medicine, the Second Affiliated Hospital of Nanjing
12 Medical University, Nanjing, Jiangsu 210011, China

13 ³ Department of Infectious Diseases, the Second Affiliated Hospital of Nanjing Medical
14 University, Nanjing, Jiangsu 210011, China

15 [#] These authors contributed equally to the study.

16 *Corresponding author: Ganzhu Feng (fenggz@njmu.edu.cn) ;

17 Tel: +86-25-87115769; Fax: +86-25-87115769;

18 Address: No.121 Jiangjiayuan Rd, Gulou district, Nanjing, 210011, Jiangsu, China

19

20

21

22

23 **Pseudomonas aeruginosa secreted protein PA3611 promotes bronchial epithelial**
24 **cells epithelial-mesenchymal transition through TGF- β 1 inducing**
25 **p38/miRNA/NF- κ B pathway**

26 **Abstract**

27 Pseudomonas aeruginosa (PA) is one of the important pathogens, which has been
28 proven to colonize and cause infection in the respiratory tract of patients with structural
29 lung diseases, and further lead to bronchial fibrosis. Epithelial-Mesenchymal Transition
30 (EMT) of bronchial epithelial cells plays a vital role in the process of bronchial fibrosis.
31 Up to the present, the research on bronchial epithelial cells EMT caused by secreted
32 virulence factors of PA has not been reported. In our present study, we found that
33 PA3611 protein stimulation induced the bronchial epithelial cells EMT with up-
34 regulation of mesenchymal cell markers and down-regulation of epithelial cell markers.
35 Meantime, TGF- β 1 secretion was markedly increased, $I\kappa B\alpha$ expression was
36 significantly decreased, and NF- κ B p65 subunit phosphorylation was markedly
37 enhanced, in addition, the levels of miR-3065-3p and miR-6802-3p expression and p38
38 MAPK phosphorylation were obviously increased in bronchial epithelial cells after
39 PA3611 stimulation, further research revealed that PA3611 promoted EMT occur
40 through TGF- β 1 induced p38/miRNA/NF- κ B pathway. The function of PA3611 was
41 also verified in PA-infected rats and results showed that Δ PA3611 could reduce lung
42 inflammation and EMT. Overall, our results revealed that PA3611 promotes EMT via
43 simulating the production of TGF- β 1 induced p38/miRNA/NF- κ B pathway-dependent
44 manner, suggesting that PA3611 acts as a crucial virulence factor in bronchial epithelial

45 cells EMT process and has potential use as a target for clinical treatment of bronchial
46 EMT and fibrosis caused by chronic PA infection.

47 **Author summary**

48 Structural lung disease can increase the chance of chronic infection, including infected
49 by *Pseudomonas aeruginosa*, which can cause lung structure damages and affect lung
50 functions in further, and forming a vicious circle of intertwining, ultimately, it leads to
51 pulmonary fibrosis. EMT of bronchial epithelial cells plays a vital role in the process
52 of bronchial fibrosis. However, the relationship and mechanism of PA infection leads
53 to the destruction of lung structure and bronchial epithelial cells EMT are still not very
54 clear. We found *pseudomonas aeruginosa* secreted protein PA3611 can stimulate
55 bronchial epithelial cells EMT through up-regulation of mesenchymal cell markers a-
56 SMA and Vimentin expression and down-regulation of epithelial cell markers E-
57 cadherin and Zonula Occludens-1. Meantime, TGF- β 1 secretion was markedly
58 increased, I κ B α expression was significantly decreased, and NF- κ B p65 subunit
59 phosphorylation was markedly enhanced, in addition, the levels of miR-3065-3p and
60 miR-6802-3p expression and p38 MAPK phosphorylation were obviously increased in
61 bronchial epithelial cells after PA3611 stimulation, further studies suggested that
62 PA3611 was shown to promote EMT occur through TGF- β 1 induced p38/miRNA/NF-
63 κ B pathway. Our results revealed that PA3611 promotes EMT via simulating the
64 production of TGF- β 1 induced p38/miRNA/NF- κ B pathway-dependent manner,
65 suggesting that PA3611 acts as a crucial virulence factor in bronchial epithelial cells
66 EMT process and as a potential target for the treatment of chronic structural lung

67 diseases.

68 **Introduction**

69 Pseudomonas aeruginosa (PA) is a kind of non-fermented gram-negative bacteria
70 that can cause various acute and chronic infections, including infections of the blood
71 system, urinary system, central nervous system, bone and joints, etc. It is also one of
72 the most common pathogens that cause hospital-acquired infections including
73 pneumonia[1], meanwhile, an opportunistic pathogen and the main cause of morbidity
74 and death in cystic fibrosis patients and immunocompromised individuals[2]. In recent
75 years, with the continuous increasing clinical isolation rates of multi-drug-resistant and
76 pan-drug-resistant PA, the mortality of patients with PA infection has continued to be
77 at a high level[3], which brings great challenges to clinical treatment and poses a serious
78 threat to human health[4]. Therefore, it has been an urgent and important task to
79 actively seek effective countermeasures against PA infection. PA is widespread in
80 nature, and is prone to translocation and infection of the respiratory tract, especially in
81 patients with structural lung diseases such as Chronic Obstructive Pulmonary Disease
82 (COPD), bronchiectasis, and cystic fibrosis[5,6]. PA infection may promote the
83 formation of bronchial fibrosis such as thickening of the airway wall and lumen stenosis
84 in patients with COPD, bronchiectasis and cystic fibrosis, thereby aggravating the
85 irreversible airflow limitation of patients. Studies have shown that the pathological
86 manifestations of bronchial fibrosis are mainly airway smooth muscle thickening,
87 extracellular matrix deposition, myofibroblast proliferation and airway epithelial cell-
88 mesenchymal transition (Epithelial-Mesenchymal Transition, EMT)[7]. Among them,

89 EMT plays a key role in the process of bronchial fibrosis[8]. As is known to all, EMT
90 is cells lose the original polarity, into mesenchymal cells form and characteristics of
91 pathological process, the expression of original epithelial cell markers, such as E-
92 cadherin (E-cad) and tight junction protein 1 (Zonula Occludens-1, ZO-1) reduced, and
93 mesenchymal cells markers, such as α -Smooth Muscle Actin (α -SMA), N-cadherin (N-
94 cad) and Vimentin increased, and some Matrix Metalloproteinases (MMPs) activities
95 were also increased. Among them, α - SMA, Vimentin and MMP-9 high expression can
96 be used as important signs of cell EMT[9].

97 In recent years, although EMT studies on airway epithelial cells in patients with
98 COPD have been reported, but most of them were cigarette smoke-induced COPD
99 model as the main research object or only take the total lytic substance of PA bacteria
100 as the cell irritant[10,11,12], however, studies on the EMT of bronchial epithelial cells
101 caused by the secretion of virulence factors under PA infection have not been reported.

102 PA3611 is a toxic protein secreted under PA infection (UniProt ID: Q9HY15). Its
103 encoding gene is 411 base pairs in length (including signal peptide) and its molecular
104 weight is 14KDa. Proteomic analysis showed that PA3611 may be a virulence factor
105 regulated by the quorum sensing system[13]. Some preliminarily studied have shown
106 that the spatial structure of PA3611 is composed of five -chains (B1-B5) and five -helix
107 (H1-H5) domains[14], however, its specific biological functions, especially its related
108 effects on infected host cells, have not been reported.

109 In this study, we used in vivo and in vitro experiments to clarify the PA3611 protein
110 secreted by PA after infection of bronchial epithelial cells to induce EMT and the

111 relative mechanism, in order to provide new clinical treatment for chronic PA infection
112 leading to bronchial EMT and fibrosis.

113 **Results:**

114 **Heterologous expression and purification of recombinant PA3611**

115 The PA3611 protein was synthesized and purified for further investigation. The
116 PA3611-encoding gene was amplified by PCR, and cloned into the plasmid pET-28a(+),
117 then transformed into *Escherichia coli* BL21 (DE3). The positive clones were
118 confirmed by sequencing, the results of which were shown in Supplemental fig 1(A,
119 B). The recombinant protein PA3611 was expressed in *E. coli* BL21(DE3) and was
120 subsequently purified with Ni-IDA resin.

121 **PA3611 inhibits the proliferation of bronchial epithelial cells and promotes the**
122 **transformation of epithelial cells into mesenchymal cells**

123 To explore the function of PA3611 in bronchial epithelial cells, a cell counting kit-8
124 (CCK-8) assay was used to estimate its effect on bronchial epithelial cells proliferation.
125 The results demonstrated that PA3611 infection significantly inhibited 16HBE and RTE
126 cells proliferation, and this effect increased with higher concentration of PA3611 and
127 longer incubation times (Fig. 1A, B), which indicated PA3611 inhibited cell
128 proliferation was in a time and dose-dependent manner.

129 In order to further understand the internal ultrastructure changes of the above two
130 bronchial epithelial cells stimulated by PA3611 protein, transmission electron
131 microscopy was used to observe the ultrastructure of the above cells treated with
132 PA3611 (30 μ g/ml) for 72 hours. The results showed that: the intercellular gaps were

133 widened, intercellular connection disappeared, and filamentous pseudopodia appeared,
134 while the nucleus were heteromorphic and the perinuclear gaps were widened,
135 Mitochondria were swollen, distorted and intracellular glycogen were increased, as
136 shown in Fig. 1C. These results indicated that PA3611 protein could promote the
137 transformation of bronchial epithelial cells into mesenchymal cells under the action of
138 certain concentration and time.

139 **PA3611 stimulation of TGF- β 1 production is accompanied by promotes bronchial
140 epithelial cells epithelial-mesenchymal transition and p65 phosphorylation**

141 TGF- β 1 is a key cytokine and participates in the EMT process[15,16], to determine
142 whether PA3611 promoted bronchial epithelial cells EMT by stimulated TGF- β 1
143 production, the TGF- β 1 levels in 16HBE and RTE cells culture supernatants were
144 evaluated by enzyme-linked immunosorbent assay at 24hs, 48hs and 72hs times-points
145 (ELISA). The results showed that TGF- β 1 levels in supernatants were increased after
146 PA3611 stimulation both in 16HBE and RTE cells at all three time-points (Fig. 1D,
147 1E). We further examined the effect of PA3611 on the expression of EMT-related
148 marker proteins in above cells, compared with control group (PBS), TGF- β 1(2 ng/ml,
149 positive control) and PA3611 (30 μ g/ml) treated groups both increased α -SMA and
150 Vimentin expression meanwhile decreased E-cadherin ZO-1 proteins expression at
151 24hs, 48hs and 72hs times-points (Fig. 1F, G), similar results were seen from mRNA
152 levels (Fig. 2A).

153 A lot of studies have revealed that NF- κ B and p65 phosphorylation play a key role
154 in the EMT process[17,18,19,20]. In order to clarify the effect of PA3611 on the

155 expression of p65、p-p65 and EMT process, 16HBE and RTE cells were treated with
156 PBS (negative control), TGF- β 1 (2ng/ mL, positive control), PA3611 (30ug/mL), and
157 PA3611 (30ug/mL) + TGF- β 1 neutralizing antibody (10 μ g/mL) for 24 hs, the results
158 indicated that: TGF- β 1 and PA3611 increased the expression of p-p65, α -SMA and
159 Vimentin and decreased the expression of E-cadherin and Zo-1 obviously compared
160 with PBS group, while PA3611+ TGF- β 1 neutralizing antibody significantly decreased
161 the expression of p-p65, α -SMA and Vimentin, and promoted the expression of E-
162 cadherin and Zo-1, of which the change trend was similar to that in PBS group (Fig 2
163 B-H). This results indicated that PA3611 promoted EMT via stimulating TGF- β 1
164 production induced phosphorylation of p65.

165 **PA3611 upregulates miR-3065-5p and miR-6802-3p in PA3611 infected bronchial
166 epithelial cells**

167 Recent studies have found that miRNAs play a specific and important role in
168 regulating related cells EMT[21,22], in order to identify miRNAs associated with the
169 process of PA3611 infected bronchial epithelial cells EMT, a microarray analysis was
170 conducted to miRNAs that were differentially expressed between control and PA3611
171 infected groups. Differentially expressed miRNAs were identified using a screening
172 criterion of | Fold change| \geq 2 and identified miRNAs are shown in Supplemental fig 1C.
173 Among these, miR-3065-5p and miR-6802-3p were significantly upregulated in
174 PA3611-treated and evaluated by qRT-PCR. (Suppl Fig.3A-B).

175 **p65 upregulates the levels of α -SMA and Vimentin expression without affecting
176 TGF- β 1, p38 phosphorylation, I κ B α and miRNA expression**

177 To verify the effect of p65 on EMT process and related pathway factors expression,
178 p65 was overexpressed in 16HBE via transfection with pcDNA3.1/p65 cDNA or
179 knocked down through transfection with a specific small interfering RNA (siRNA)
180 directed against p65. The results showed that both p65 overexpression and PA3611
181 upregulated the expression of α -SMA and Vimentin, and decreased the levels of E-
182 cadherin and Zo-1 from gene and protein levels, moreover, the expression levels
183 changed more significantly after treated with PA3611 plus p65 overexpression (Fig 3
184 E-I; Suppl Fig.2D-G). However, the TGF- β 1, p38, I κ B α and miRNAs expression were
185 not affected by either overexpression or knocked down of p65 (Fig 3 A-D, J; Suppl
186 Fig.2A-C, H-I), after plus PA3611, the expression of TGF- β 1, p38 and miRNAs were
187 significantly up-regulated and I κ B α down-regulated regardless of p65 overexpression
188 or knocked down (Fig 3 A-D, J; Suppl Fig.2A-C, H-I). These results indicated that
189 PA3611, not p65 has a regulatory effect on secretion of TGF- β 1, phosphorylation of
190 p38 and expression of I κ B α , miR-3065-5p and miR-6802-3p.

191 **miR-3065-5p and miR-6802-3p downregulate the expression of I κ B α and
192 upregulate p65 phosphorylation without affecting TGF- β 1 expression and p38
193 phosphorylation**

194 As miR-3065-5p and miR-6802-3p were observed to be upregulated in PA3611
195 infected bronchial epithelial cells, we hypothesized that they participated in regulating
196 of NF- κ B activation or p38 phosphorylation. Therefore, 16HBE cells were transfected
197 with miR-3065-5p or miR-6802-3p mimics or with miR-3065-5p or miR-6802-3p
198 inhibitors to evaluate their potential regulatory activities (Suppl Fig.3-6). The results

199 showed that both miR-3065-5p and miR-6802-3p downregulated the expression of
200 I κ B α and upregulate p65 phosphorylation, and this effect was enhanced by their
201 combined activity or plus with PA3611(Fig. 4C-E). When miR-3065-5p and miR-6802-
202 3p were knocked down, the level of I κ B α was upregulated and p65 phosphorylation
203 was decreased, however, pulsed with PA3611, the expression of the above indicators
204 reversed (Fig. 5C-E). Both miR-3065-5p and miR-6802-3p upregulated the expression
205 of α -SMA and Vimentin, and decreased the levels of E-cadherin and Zo-1from gene
206 and protein levels, moreover, the expression levels changed more significantly after
207 treated with PA3611 plus miR-3065-5p and miR-6802-3p (Suppl Fig.3F-I, Suppl
208 Fig.4A-E, Suppl Fig.5F-I, Suppl Fig.6A-E). Neither miR-3065-5p nor miR-6802-3p
209 had an effect on TGF- β 1expression and p38 phosphorylation, but when added PA3611,
210 TGF- β 1 and p38 both increased (Fig. 4A-B, Fig. 5A-B). This finding suggested that
211 miR-3065-5p and miR-6802-3p function as negative regulators upstream of I κ B α but
212 act downstream of p38 or had no obvious relationship with p38. To verify the
213 hypothesis, the relationship between miRNAs (miR-3065-5p and miR-6802-3p) and
214 I κ B α were analyzed using Miranda. The I κ B α -UTR sequence was observed to contain
215 a binding site for miR-3065-5p and miR-6802-3p (Fig. 4F-G). A dual-luciferase
216 reporter assay was subsequently performed to verify the interaction between miRNAs
217 (miR-3065-5p and miR-6802-3p) and I κ B α . The results showed that both miR-3065-
218 5p and miR-6802-3p suppress luciferase expression, once the putative binding sites
219 were mutated, miR-3065-5p or miR-6802-3p failed to significantly downregulate the
220 expression of luciferase (Fig. 4H-I). These findings indicated that miR-3065-5p and

221 miR-6802-3p binding sites were present in the $\text{IkB}\alpha$ -UTR, and that miR-3065-5p and
222 miR-6802-3p directly downregulated the expression of $\text{IkB}\alpha$. The binding was specific,
223 because the luciferase expression was not affected by the control miRNA.

224 **p38 regulates miRNAs expression, $\text{IkB}\alpha$ and p65 levels and EMT markers**
225 **expression without affecting TGF- β 1**

226 In order to identify the function of p38 in PA3611 induced bronchial epithelial cells
227 epithelial-mesenchymal transition, 16HBE cells were transfected with pcDNA3.1/p38
228 cDNA or a specific siRNA directed against p38. The results showed that overexpression
229 of p38 resulted in upregulation of miR-3065-5p, miR-6802-3p and p65 phosphorylation,
230 and decreased the level of $\text{IkB}\alpha$, meanwhile, p38 overexpression upregulated the
231 expression of α -SMA and Vimentin, and decreased the levels of E-cadherin and Zo-
232 1from gene and protein levels (Fig. 6C-J, Suppl Fig.7A-I), moreover, the expression
233 levels changed more significantly after treated with PA3611 plus p38 overexpression
234 (Fig. 6C-J, Suppl Fig.7A-I). In addition, knockdown of p38 caused the downregulation
235 of miR-3065-5p, miR-6802-3p and p65 phosphorylation, and increased that of $\text{IkB}\alpha$
236 (Fig. 6C-J, Suppl Fig.7A-I). However, neither overexpression nor knockdown of p38
237 had not affect the secretion of TGF- β , in contrast, TGF- β expression significantly
238 increased after treated with PA3611 plus overexpression or knockdown of p38 (Fig.
239 6A). These data indicated that PA3611 promotes bronchial epithelial cells epithelial-
240 mesenchymal transition through TGF- β 1 inducing p38/miRNA/NF- κ B pathway.

241 **PA3611 promotes bronchial epithelial cells epithelial-mesenchymal transition in**
242 **vivo**

243 To verify the function of PA3611 in PA infection and epithelial-mesenchymal
244 transition in vivo, 6-8 weeks old male rats were intratracheally infected with PBS,
245 agarose, agarose coated PAO1 or agarose coated Δ PA3611. Lung morphology results
246 showed mild hyperemia were observed locally in agarose coated PAO1 group 2 weeks
247 post infection, at 4 weeks post infection, scattered nodules on the lung surface with
248 local bleeding points were seen in agarose coated PAO1 or agarose coated
249 Δ PA3611 group, and these phenomena were more pronounced at 6 weeks post infection
250 (Fig 6 A). HE staining revealed alveolar cavity collapse, intra-alveolar hemorrhage,
251 partial pulmonary septum rupture, alveolar septum widening, bronchial lumen stenosis
252 and deformation, smooth muscle proliferation and fibrosis around the trachea, and
253 inflammatory cells infiltration in the lung interstitium from agarose coated PAO1 and
254 agarose coated Δ PA3611 groups started from 4 weeks post infection, and more
255 obviously at 6 weeks post infection (Fig 6 B). Epithelial-mesenchymal transition
256 immunohistochemistry analyses confirmed that rats treated with agarose coated PAO1
257 and agarose coated Δ PA3611 both increased α -SMA and Vimentin proteins expression
258 and decreased the expression of E-cadherin and ZO-1 (Fig 6 C, D), these were in
259 accordance with the in vitro results and indicating that PA3611 has a role on causing
260 lung infection and promoting bronchial epithelial cells epithelial-mesenchymal
261 transition.

262 **Discussion**

263 PA is one of the main pathogens of chronic airway structural diseases such as cystic
264 fibrosis, COPD, bronchiectasis, and bronchiolitis obliterans [23]. Among these patients

265 with chronic lung diseases, COPD has a huge consumption of medical resources, and
266 its cause of death ranks fourth in the world, and is expected to become the third leading
267 cause of death by 2020[24,25]. Studies have found that the colonization of PA in the
268 airway can cause chronic airway damage in COPD patients, leading to a significant
269 declined in the forced expiratory volume in one second (FEV1) of COPD patients,
270 suggesting that PA infection can promote COPD, bronchiectasis and cystic fibrosis
271 patients with airway wall thickening, luminal narrowing and other fibrotic symptoms,
272 which aggravate the irreversible airflow limitation of the patients' airway[26,27,28,29].
273 Although the specific mechanism of PA infection causing related airway remodeling is
274 still unclear, it is clear that EMT plays a key role in the process of bronchial fibrosis[30].
275 In this study, we demonstrated that PA3611 could play a crucial role in PA-associated
276 airway remodeling by stimulating TGF- β production.

277 The virulence factors produced by PA have the functions of maintaining the growth
278 and metabolism of PA itself, promoting the colonization and growth of bacteria in the
279 host, and helping bacteria to adhere to infection or destroy host cells. PA3611 is a
280 virulence factor secreted under PA infection, and is expressed in multiple subgroups of
281 PA. Studies have shown that the lysate of inactivated PA can induce EMT in A549
282 cells[31], however, so far no studies have been focused on bronchial epithelial cells
283 EMT caused by virulence factors secreted by PA infection.

284 In this study, a recombinant protein PA3611 was constructed through prokaryotic
285 expression, which has a tendency to induce EMT in bronchial epithelial cells. We first
286 studied its effect on the proliferation of 16HBE and RTE cell lines, and results showed

287 that PA3611 could inhibit cell proliferation, and the inhibition effect was time and dose
288 dependent.

289 Transmission electron microscopy results showed that after PA3611 stimulated
290 above cells for 72hs, in addition to the enlargement of intercellular space and the
291 disappearance of intercellular connections, filamentous pseudopodia appeared, and the
292 ultrastructural manifestation of nuclear abnormality, peri-nuclear space broadening,
293 mitochondria swelling and distortion, and intracellular glycogen increasing, which was
294 consistent with the previously reported changes in the ultrastructure of EMT[32,33,34].

295 EMT is a pathological process in which cells lose their original cell polarity and
296 transform into mesenchymal cell morphology and characteristics. Original epithelial
297 cell markers, such as E-cad and ZO-1 expressions decreased, and mesenchymal cell
298 markers, such as α -SMA, N-cad and Vimentin expressions increased, and the activity
299 of some matrix metalloproteinases (MMPs) also increased. In this study, by detecting
300 the expression of 16HBE and RTE-related markers at the time points of PA3611 protein
301 stimulation for 24, 48 and 72 hs, the expression of epithelial cell markers E-cad and ZO-
302 1 decreased, while mesenchymal cell markers Vimentin and α -SMA were increased,
303 which indicated that the cells had been undergone EMT changes.

304 TGF- β 1 has been considered as a key inducer of EMT and has a central role in
305 regulating fibrosis process through several different mechanisms[35,36,37]. Studies
306 also have found that the nuclear transcription factor NF- κ B can regulate the process of
307 EMT by controlling the Smad-independent gene network[38], reducing the activation
308 of NF- κ B can alleviate alveolar epithelial cells EMT induced by bleomycin, and

309 inhibiting NF- κ B can prevent bronchial epithelial cells EMT occurrence induced by
310 tumor necrosis factor ligand superfamily member 14 (TNFSF14)[39,40]. NF- κ B binds
311 with I κ B α in a resting state to form an inactive complex, which makes it stay in the
312 cytoplasm, when the cell is stimulated by certain external signals, the complex is
313 decomposed, and NF- κ B p65 is phosphorylated[41]. In this study, intracellular NF- κ B
314 p65 phosphorylation levels were significant higher than that in control group at the time
315 of PA3611 stimulation for 24 hs, when added TGF- β 1 neutralizing antibody, compared
316 with PA3611 and TGF- β 1 stimulated groups, the expression of E-cadherin and ZO-1
317 increased, while Vimentin and α -SMA decreased, and consistent with the expression
318 levels in control group, meanwhile, and the phosphorylation level of NF- κ B p65 was
319 reduced. These results indicated that blocking TGF- β 1 could inhibit the occurrence of
320 PA3611-induced EMT, which suggesting that PA3611-induced EMT changes in
321 epithelial cells were achieved by stimulating of TGF- β 1 secretion.

322 It is well known that NF- κ B is an important intersection for a variety of signaling
323 pathways, and many factors play roles in NF- κ B activation, in recent years, the
324 activating effect of microRNA (miRNA) has attracted much attention[42,43]. miRNA
325 is a kind of single-stranded small molecule RNA with a length of about 21~25
326 nucleotides that widely exists in eukaryotes. It does not encode proteins, but mature
327 miRNA can specifically degrade or hinder the translation of target mRNA by binding
328 to its target gene in the 3' untranslated region (3'UTR)[44]. Studies have shown that
329 miR-424 can negatively regulate myofibroblast differentiation and achieve an
330 inhibitory effect on EMT[45], and miR-135a can mediate EMT by targeting specific

331 cytokines[46]. These findings indicate that miRNAs play a specific and important role
332 in regulating the EMT in related cells. Feng et al. [47] found that miRNA-126 can
333 promote the activation of NF-κB by targeting the 3'-untranslated region (3'-UTR) of
334 IκB α , leading to hepatic stellate cell fibrosis, and Yao et al.[48] found that miRNA-
335 891a-5p can directly target and inhibit IκB α and promote NF-κBp65 phosphorylation
336 in relevant studies on abnormal angiogenesis. These studies suggest that miRNA s can
337 promote NF-κB p65 activation by targeted inhibition of IκB α . In our study, the levels
338 of miR-3065-5p and miR-6802-3p were significantly higher in PA3611 treated with
339 16HBE cells compared with untreated cells. Further investigation suggested that 3065-
340 5p and miR-6802-3p inhibited the expression of IκB α and the binding sites are present
341 in the IκB α -UTR, indicating that 3065-5p and miR-6802-3p are negative regulators of
342 IκB α .

343 According to our results, we conclude that PA bacteria infect bronchial epithelial
344 cells by secreting PA3611 protein which activates p38 MAPK signaling molecules
345 through the secretion of TGF-β1, then stimulating the up-expression of 3065-5p and
346 miR-6802-3p, the later targeting on the IκB α gene and inhibiting its expression and
347 promoting the activation of NF-κB p65, finally induce EMT occur in bronchial
348 epithelial cells. Therefore, in our study, we elucidate PA3611 can promote bronchial
349 epithelial cells epithelial-mesenchymal transition through TGF-β1 inducing
350 p38/miRNA/NF-κB pathway, and expect to provide a new potential target for the
351 clinical treatment of bronchial EMT and fibrosis caused by chronic PA infection.

352 **Materials and methods**

353 **Recombinant PA3611 protein *in vitro***

354 A DNA fragment encoding PA3611 was obtained from Qiangyao Biological
355 Company (Suzhou, China) and the oligonucleotide primers were designed with Primer
356 5.0 (Premier, Canada) (Table S1). The DNA template and primers were synthesized by
357 Qiangyao and PCR was performed with the template described above. The condition
358 of PCR amplification used was as follows: 94°C for 5min, followed by 30 cycles of 96°C
359 for 25s, 58°C for 25s, and 72°C for 1min. The PCR product was cut and purified via
360 DNA gel extraction kit (AXYGEN, NY, USA). The purified PCR product and pET-
361 28a(+) (Novagen, Germany) were digested with BamH I and Xho I (NEB) (Thermo
362 Scientific, DE, USA) and ligated together with T4 DNA ligase (Thermo Scientific). The
363 pET-28a(+) vector containing the PA3611 encoding gene was transformed into *E. coli*
364 strain BL21(DE3) (Novagen) and subsequently grown on Luria-Bertani (LB) agar
365 plates containing 50µg/ml kanamycin at 37°C overnight. Positive clones were selected
366 for enzyme digestion and sequencing identification. The sequence-corrected plasmids
367 were transformed into *E. coli* BL21(DE3) and plated onto solid medium, containing
368 kanamycin, and incubated overnight at 37°C at 250r/min. 1% of overnight bacteria were
369 transferred to LB medium containing kanamycin at 37°C at 250 r/min for 3 h, and then
370 add 0.5 mmol/L IPTG at 20°C for 12 h. Next, the culture was centrifuged and cells were
371 resuspended and lysed by sonication. The sonicated sample was centrifuged and the
372 supernatant of the cell lysate was applied to a Ni-IDA resin (Qiangyao). The protein
373 was subsequently eluted and collected for SDS-polyacrylamide gel electrophoresis
374 analysis. A protein with the predicted mass of PA3611 was concentrated through

375 ultrafiltration (molecular weight cutoff 16kDa). The concentration of the protein was
376 determined by the Bradford method. Subsequently, a western blotting was performed
377 to examine the purified recombinant PA3611 protein via the N-His Tag (His Tag
378 antibody; Qiangyao). then filtered and sterilized with a 0.22μm sterile membrane, and
379 the protein was stored at -80°C.

380 **Cells and Bacterial culture**

381 Human bronchial epithelial ceAll line 16HBE and rat bronchial epithelial cell line
382 RTE were both preserved in our laboratory. Cells were cultured in RPMI-1640 medium
383 (Gibco BRL, Grand Island, NY, USA) containing 10% fetal bovine serum (FBS, Gibco
384 BRL), penicillin (100U/ml), streptomycin (100μg/ml), and L-glutamine (2mM), and
385 placed in cell incubator with constant temperature of 37°C and 5% CO₂ under a
386 humidified atmosphere, the medium was changed every other day, and passage was
387 carried out in two to three days according to cells growth situation, logarithmic growth
388 phase cells were used for experiments.

389 *Pseudomonas aeruginosa* standard strain PAO1 (ATCC15692) was kindly donated
390 by Professor Jinfu Xu from Shanghai Chest Hospital. *Pseudomonas aeruginosa*
391 knockout strain ΔPA3611 was purchased from Guangzhou Nuojing Biotechnology
392 Company, both strains were cultivated on Cetrimide-agar (Merck, Darmstadt, Germany)
393 plates. For the experiments single colonies of bacteria were inoculated in Luria-Bertani
394 broth (Merck) and incubated over night at 37°C and 140 rpm and stored at -80°C. Before
395 infecting animals, stock solutions of PA were thawed, washed, and diluted in sterile
396 distilled water to a specific concentration.

397 **Cells transfection test**

398 The fragments encoding the P65 and P38 alleles genes were obtained from
399 GenScript and cloned into pcDNA3.1 (Invitrogen, Carlsbad, CA, USA). 16HBE and
400 RTE cells were transiently transfected with pcDNA3.1/p65 cDNA, pcDNA3.1/p38
401 cDNA, control pcDNA3.1, miR-155 mimic (GenePharma, Shanghai, China), miR-99b
402 mimic (GenePharma), or a negative control (NC) miRNA (GenePharma) using
403 Lipofectamine 3000 (Invitrogen) according to the manufacturer's instructions. Cells
404 were incubated for 24h at 37°C before being used for further analysis.

405 siRNAs targeting NF-κB p65 subunit mRNA or p38 mRNA, a random non-coding
406 siRNA, a miR-3605-5p inhibitor, a miR-6082-3p inhibitor and an NC mRNA were
407 synthesized by Gene Pharma. 16HBE cells were transfected with the above siRNAs or
408 miRNAs using Lipofectamine 3000 according to the manufacturer's instructions. A
409 non-coding siRNA or an NC miRNA was used as a NC. The cells were transfected with
410 above RNAs for 24 hs, then infected with PBS (negative control) or PA3611(30μg/ml)
411 for another 24 hs and carried out further experiments. The corresponding sequences of
412 these RNAs are shown in Table S2.

413 **Proliferation assay**

414 16HBE and RTE cells were seeded in a 96-well cell culture plate at 6000 cells per
415 well and cultured overnight, then added PA3611 with a protein concentration of 0 μg/ml,
416 5 μg/ml, 15 μg/ml, 30 μg/ml, 45 μg/ml, and use 10% FBS RPMI-1640 medium to adjust
417 the total volume of each well to 100 μl (changed the culture solution every 24h and
418 made the PA3611 protein concentration consistent with the first time). After incubating

419 for 24, 48 or 72hs, the proliferation assay was performed using a CCK-8 kit (Dojindo
420 Laboratories, Kumamoto, Japan) according to the manufacturer's protocol.

421 **ELISA assay**

422 In order to determine the secretion of active TGF- β 1, cell-free supernatants were
423 collected and used to evaluate the concentrations of TGF- β 1 with human and rat TGF-
424 β 1 ELISA kit (R&D Systems, Minneapolis, MN, USA) according to the manufacturer's
425 instructions.

426 **Western blotting analyses**

427 16HBE and RTE Cells incubating for different time-points were collected and lysed.
428 The lysates were centrifuged, denatured, applied to an SDS polyacrylamide gel for
429 electrophoresis and transferred to a polyvinylidene fluoride membrane. Then the
430 membranes were blocked with 5% skimmed milk at room temperature for 1h, and
431 immunoblotting was carried out using antibodies to NF- κ B p65 (Abcam, MA, USA),
432 NF- κ B p-p65 (phospho S536, Abcam), p38 (Abcam), p-p38 (phospho Y182, Abcam),
433 α -SMA (Abcam), Vimentin (Abcam), E-cadherin (Abcam), ZO-1 (Abcam) and
434 glyceraldehyde-phosphate dehydrogenase (GAPDH, Abcam). After washing, the
435 membranes were incubated with the appropriate horseradish peroxidase-conjugated
436 secondary antibody at room temperature for 1h. The bands were visualized via
437 chemiluminescence using an ECL kit (Thermo scientific) and photographed with a
438 Tanon Multi-Imager. The density of the immunoreactive bands was measured using
439 ImageJ (Scion Corporation, Frederick, MD, USA).

440 **Quantitative reverse transcriptase-PCR**

441 Total RNA was extracted from the cells using a Total RNA Extraction Kit (Generay
442 Biotech, Shanghai, China), then RNA was reverse-transcribed into cDNA using a
443 RevertAid First Strand cDNA synthesis Kit (Thermo Scientific Fisher, Waltham, MA,
444 UK) and the thermocycling program used was as follows: 37°C for 60 mins and 85°C
445 for 5mins. Amplifications were performed in an iCycler using iQ SYBR Green
446 supermix (Bio-Rad). Gapdh was amplified on the same plates and used to normalize
447 the data. Each sample was prepared in triplicate and each experiment was repeated at
448 least three times. The relative abundance of each gene was quantified using the $2^{-\Delta\Delta Ct}$
449 method. The PCR primers used are listed in Table S1. Total RNA for miR-3605-5p,
450 miR-6082-3p, and U6 detection was extracted with a Total RNA Extraction Kit.
451 Reverse transcription and PCR was performed using a BulgeLoop™ miRNA qRT-
452 PCR Starter Kit, a Bulge-Loop™ miRNA qRT-PCR Primer Set, and a U6 snRNA
453 qPCR Primer Set (RiboBio, Guangzhou, China) according to the manufacturer's
454 instructions. miRNA expression was quantified using the $2^{-\Delta\Delta Ct}$ method and U6 was
455 used as an internal control.

456 **Dual-luciferase reporter assay**

457 The wild-type (WT) and mutant (MUT) 3'-untranslated region (3'-UTR) fragment of
458 I κ B α (**human/rat**) was inserted into the pGL3-basic vector (firefly luciferase; Promega,
459 Madison, WI, USA), which was obtained from General Biosystems (Anhui, China).
460 16HBE or RTE cells were co-transfected with I κ B α -UTR-WT or I κ B α -UTR-MUT
461 plasmids along with miR-3605-5p or miR-6082-3p, mimics or scramble
462 oligonucleotides using Lipofectamine 3000. A reporter vector carrying the WT or MUT

463 sequences of IkBa-UTR was assayed for luciferase expression using the Dual-
464 Luciferase® Reporter Assay System (Promega) following the manufacturer's
465 instructions. For data analysis, firefly luciferase activity was normalized to the
466 corresponding Renilla luciferase activity.

467 **Preparation of Agarose-coated bacteria**

468 A 2% agarose solution (with PBS) of 100 ml was prepared. 3.0g of tryptic soy broth
469 (TSB) was added with 100 ml distilled water, and autoclaved at 121°C for 15 min.
470 Pseudomonas aeruginosa strains (PAO1 and Δ PA3611) were inoculated into solid
471 medium for overnight at 37°C. Then selected colonies were inoculated into 5 ml TSB
472 and cultured overnight, 1 ml of the overnight culture was put into a flask containing 10
473 mL TSB, and incubated at 37°C and 250 RPM until the logarithmic phase, then the
474 bacterial culture was added to 10 mL preheated (48°C) agarose solution. Mixed quickly
475 by vortexing and poured the agarose bacteria solution into the preheated paraffin oil
476 and stirred at 500 rpm for 5 minutes, then cooled and removed the excess paraffin oil
477 with vacuum pump and stored at 4°C for use.

478 **Infection of rats *in vivo***

479 6 to 8 weeks old male Wistar rats (Cavens Lab Animal Company, Changzhou, China)
480 were housed in a bio-safety level III animal facility under specific pathogen-free
481 conditions. All animal experimental procedures were approved by the Institutional
482 Animal Ethics Committee of the Second Affiliated Hospital of Nanjing Medical
483 University (No.2014KY050) and were carried out in strict accordance with the Nanjing
484 Medical University's guidelines for the use of laboratory animals. All rats were divided

485 into four groups: control group (PBS group), agarose group, agarose coated PAO1
486 group (PAO1 group) and agarose coated Δ PA3611 group (Δ PA3611 group). The lung
487 tissues were collected for histological and immunohistochemical staining at week 2,
488 week 4, and week 6 respectively after intratracheal injection of agarose-coated
489 suspension or PBS 120ul every two weeks for a total of 3 infections.

490 **Histology and Immunohistochemical staining**

491 Lung lobes were collected and fixed with 4% paraformaldehyde overnight, and
492 embedded in paraffin. H&E-stained tissues were assessed via a pathology analysis.
493 Lung injury was estimated by the percentage of the lesion area in the total lung area
494 using an ImagePro macro. Immunohistochemical staining of α -SMA, Vimentin, E-
495 cadherin, ZO-1 were performed using tissue sections that were dewaxed and rehydrated.
496 Antigen retrieval was performed using a proteinase K and hot citric acid buffer
497 treatment as needed. The restored sections were incubated with primary antibodies
498 overnight at 4°C, after rinsing with Tris-buffered saline for 15minutes, sections were
499 incubated with secondary antibody (biotinylated goat anti-rabbit IgG, Sigma). Sections
500 then were washed and incubated with the Vect astain Elite ABC reagent (Vector
501 Laboratories, Burlington, Ontario, Canada) for 45minutes. Staining was developed
502 using 3,3-diaminobenzidine (2.5mg/mL) followed by counterstaining with Mayer's
503 hematoxylin. Images were taken with a Leica Microsystems Ltd microscope and were
504 analyzed using ImagePro Plus 6.

505 **Transmission electron microscopy (TEM) examination**

506 The 16HBE and RTE cells were rinsed with ice-cold 0.1 M PBS (pH of 7.4) and

507 centrifuged at 500 × g for 5 min at room temperature, after which the clear supernatants
508 were removed. Cell pellets were fixed with 2.5% glutaraldehyde at least 30 min at 4 °C.
509 After fixation, the treated cells were thoroughly washed in PBS and then post-fixed
510 with 1% OsO₄ for 1 h at room temperature. Then the specimens were embedded in
511 Epon for 12 h at 35°C. Finally, 50-70 nm sections were stained with uranyl acetate (30
512 mins) and lead citrate (10 mins) at room temperature. Images were observed using a
513 JEM-2000EX transmission electron microscope at 60 kV.

514 **Statistical analysis**

515 All the presented results were expressed as mean ± SD, and confirmed in three
516 independent experiments. The Student's t-test was used to compare two groups and
517 multiple groups were analyzed by performing one-way ANOVA. Statistical analyses
518 were performed using SPSS 20.0 (IBM SPSS, Armonk, NY, USA). P<0.05 was
519 considered to be significantly different.

520 **Acknowledgements**

521 Not applicable.

522 **Authors' contributions**

523 The authors' contributions are as follows: L. S., S.C. and G. F. conceived and designed
524 the study; L. S., S. L., and G. F. conducted the research; X. C., K. D., Y. C., J. Y., Z.
525 S., and X.D., analyzed and interpreted the data; and L. S., J.W., and G.F. wrote the
526 manuscript; L.S., S.C., and G. F. revised the manuscript. All authors read and approved
527 the final version of the manuscript.

528 **Funding:** This work was supported by grant of National Natural Science Foundation
529 of China (**81670013 and 81870009**)

530 **Availability of data and materials**

531 The data and materials were as the contents we submitted, the other data and materials
532 will be made available upon request.

533 **Ethics approval and consent to participate**

534 All experimental procedures were approved by the Institutional Animal Ethics
535 Committee of the Second Affiliated Hospital of Nanjing Medical University
536 (No.2014KY050) and were carried out in strict accordance with the Nanjing Medical
537 University's guidelines for the use of laboratory animals.

538 **Consent for publication**

539 Not applicable

540 **Competing interests**

541 The authors declare that there is no conflict of interest regarding the publication of
542 this paper.

543 **References:**

- 544 1. Li Y, Wang Z, Liu X, Tang J, Peng B, et al. (2016) X-ray Irradiated Vaccine Confers protection
545 against Pneumonia caused by *Pseudomonas aeruginosa*. *Sci Rep* 6: 18823.
- 546 2. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019) Antibiotic resistance in *Pseudomonas*
547 *aeruginosa*: mechanisms and alternative therapeutic strategies. *Biotechnol Adv* 37: 177-192.
- 548 3. Ramirez-Estrada S, Borgatta B, Rello J (2016) *Pseudomonas aeruginosa* ventilator-associated
549 pneumonia management. *Infect Drug Resist* 9: 7-18.

550 4. Mapara N, Sharma M, Shriram V, Bharadwaj R, Mohite KC, et al. (2015) Antimicrobial
551 potentials of *Helicteres isora* silver nanoparticles against extensively drug-resistant (XDR) clinical
552 isolates of *Pseudomonas aeruginosa*. *Appl Microbiol Biotechnol* 99: 10655-10667.

553 5. Boixeda R, Almagro P, Diez-Manglano J, Cabrera FJ, Recio J, et al. (2015) Bacterial flora in
554 the sputum and comorbidity in patients with acute exacerbations of COPD. *Int J Chron Obstruct
555 Pulmon Dis* 10: 2581-2591.

556 6. Gomez-Junyent J, Garcia-Vidal C, Viasus D, Millat-Martinez P, Simonetti A, et al. (2014)
557 Clinical features, etiology and outcomes of community-acquired pneumonia in patients with chronic
558 obstructive pulmonary disease. *PLoS One* 9: e105854.

559 7. Grzela K, Litwiniuk M, Zagorska W, Grzela T (2016) Airway Remodeling in Chronic
560 Obstructive Pulmonary Disease and Asthma: the Role of Matrix Metalloproteinase-9. *Arch
561 Immunol Ther Exp (Warsz)* 64: 47-55.

562 8. Nowrin K, Sohal SS, Peterson G, Patel R, Walters EH (2014) Epithelial-mesenchymal transition
563 as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and
564 cancer. *Expert Rev Respir Med* 8: 547-559.

565 9. Meng Q, Ren C, Wang L, Zhao Y, Wang S (2015) Knockdown of ST6Gal-I inhibits the growth
566 and invasion of osteosarcoma MG-63 cells. *Biomed Pharmacother* 72: 172-178.

567 10. Milara J, Peiro T, Serrano A, Cortijo J (2013) Epithelial to mesenchymal transition is increased
568 in patients with COPD and induced by cigarette smoke. *Thorax* 68: 410-420.

569 11. Wang Q, Wang Y, Zhang Y, Zhang Y, Xiao W (2013) The role of uPAR in epithelial-
570 mesenchymal transition in small airway epithelium of patients with chronic obstructive
571 pulmonary disease. *Respir Res* 14: 67.

572 12. Borthwick LA, Sunny SS, Oliphant V, Perry J, Brodlie M, et al. (2011) *Pseudomonas aeruginosa*

573 accentuates epithelial-to-mesenchymal transition in the airway. *Eur Respir J* 37: 1237-1247.

574 13. Nouwens AS, Beatson SA, Whitchurch CB, Walsh BJ, Schweizer HP, et al. (2003) Proteome

575 analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in

576 *Pseudomonas aeruginosa* PAO1. *Microbiology* 149: 1311-1322.

577 14. Das D, Chiu HJ, Farr CL, Grant JC, Jaroszewski L, et al. (2014) Crystal structure of a putative

578 quorum sensing-regulated protein (PA3611) from the *Pseudomonas*-specific DUF4146 family.

579 Proteins 82: 1086-1092.

580 15. Qian W, Cai X, Qian Q, Zhang W, Wang D (2018) Astragaloside IV modulates TGF-beta1-

581 dependent epithelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. *J Cell*

582 *Mol Med* 22: 4354-4365.

583 16. Sun Z, Ma Y, Chen F, Wang S, Chen B, et al. (2018) miR-133b and miR-199b knockdown

584 attenuate TGF-beta1-induced epithelial to mesenchymal transition and renal fibrosis by targeting

585 SIRT1 in diabetic nephropathy. *Eur J Pharmacol* 837: 96-104.

586 17. Zhang C, Zhu X, Hua Y, Zhao Q, Wang K, et al. (2019) YY1 mediates TGF-beta1-induced

587 EMT and pro-fibrogenesis in alveolar epithelial cells. *Respir Res* 20: 249.

588 18. Liu J, Wu Z, Han D, Wei C, Liang Y, et al. (2020) Mesencephalic Astrocyte-Derived

589 Neurotrophic Factor Inhibits Liver Cancer Through Small Ubiquitin-Related Modifier

590 (SUMO)ylation-Related Suppression of NF-kappaB/Snail Signaling Pathway and Epithelial-

591 Mesenchymal Transition. *Hepatology* 71: 1262-1278.

592 19. Huang N, Liu K, Liu J, Gao X, Zeng Z, et al. (2018) Interleukin-37 alleviates airway

593 inflammation and remodeling in asthma via inhibiting the activation of NF-kappaB and STAT3

594 signalings. *Int Immunopharmacol* 55: 198-204.

595 20. Ma M, He M, Jiang Q, Yan Y, Guan S, et al. (2016) MiR-487a Promotes TGF-beta1-induced

596 EMT, the Migration and Invasion of Breast Cancer Cells by Directly Targeting MAGI2. *Int J Biol*

597 *Sci* 12: 397-408.

598 21. Liu H, Zhao X, Xiang J, Zhang J, Meng C, et al. (2017) Interaction network of coexpressed

599 mRNA, miRNA, and lncRNA activated by TGFbeta1 regulates EMT in human pulmonary

600 epithelial cell. *Mol Med Rep* 16: 8045-8054.

601 22. Nguyen P, Choo KB, Huang CJ, Sugii S, Cheong SK, et al. (2017) miR-524-5p of the primate-

602 specific C19MC miRNA cluster targets TP53IPN1- and EMT-associated genes to regulate cellular

603 reprogramming. *Stem Cell Res Ther* 8: 214.

604 23. Moore JE, Mastoridis P (2017) Clinical implications of *Pseudomonas aeruginosa* location in the

605 lungs of patients with cystic fibrosis. *J Clin Pharm Ther* 42: 259-267.

606 24. Brassington K, Selemidis S, Bozinovski S, Vlahos R (2019) New frontiers in the treatment of

607 comorbid cardiovascular disease in chronic obstructive pulmonary disease. *Clin Sci (Lond)* 133:

608 885-904.

609 25. Wang S, Gong W, Tian Y (2016) Voluntary pulmonary function screening identifies high rates

610 of undiagnosed asymptomatic chronic obstructive pulmonary disease. *Chron Respir Dis* 13: 137-

611 143.

612 26. Wilson R, Sethi S, Anzueto A, Miravitles M (2013) Antibiotics for treatment and prevention of

613 exacerbations of chronic obstructive pulmonary disease. *J Infect* 67: 497-515.

614 27. Martinez-Garcia MA, Soler-Cataluna JJ, Perpina-Tordera M, Roman-Sanchez P, Soriano J

615 (2007) Factors associated with lung function decline in adult patients with stable non-cystic fibrosis

616 bronchiectasis. *Chest* 132: 1565-1572.

617 28. Dassios TG, Katelari A, Doudounakis S, Dimitriou G (2014) Chronic *Pseudomonas aeruginosa*

618 infection and respiratory muscle impairment in cystic fibrosis. *Respir Care* 59: 363-370.

619 29. Reid DW, Latham R, Lamont IL, Camara M, Roddam LF (2013) Molecular analysis of changes

620 in *Pseudomonas aeruginosa* load during treatment of a pulmonary exacerbation in cystic fibrosis.

621 *J Cyst Fibros* 12: 688-699.

622 30. Nowrin K, Sohal SS, Peterson G, Patel R, Walters EH (2014) Epithelial-mesenchymal transition

623 as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and

624 cancer. *Expert Rev Respir Med* 8: 547-559.

625 31. Shinagawa M, Kobayashi D, Goto M, Tanaka M, Kuribayashi K, et al. (2014) Identification of

626 a bacteriolysis-associated virulence factor against lung epithelial cells in *Pseudomonas aeruginosa*

627 PAO-1 cell lysate. *Microb Pathog* 75: 35-40.

628 32. Wang H, Tao L, Jin F, Gu H, Dai X, et al. (2017) Cofilin 1 induces the epithelial-mesenchymal

629 transition of gastric cancer cells by promoting cytoskeletal rearrangement. *Oncotarget* 8: 39131-

630 39142.

631 33. Ranchoux B, Antigny F, Rucker-Martin C, Hautefort A, Pechoux C, et al. (2015) Endothelial-

632 to-mesenchymal transition in pulmonary hypertension. *Circulation* 131: 1006-1018.

633 34. Gagliano N, Celesti G, Tacchini L, Pluchino S, Sforza C, et al. (2016) Epithelial-to-

634 mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture

635 model. *World J Gastroenterol* 22: 4466-4483.

636 35. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis.

637 *J Clin Invest* 112: 1776-1784.

638 36. O'Connor JW, Gomez EW (2014) Biomechanics of TGFbeta-induced epithelial-mesenchymal
639 transition: implications for fibrosis and cancer. *Clin Transl Med* 3: 23.

640 37. Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal
641 transition and implications for cancer. *Nat Rev Mol Cell Biol* 20: 69-84.

642 38. Tian B, Li X, Kalita M, Widen SG, Yang J, et al. (2015) Analysis of the TGFbeta-induced
643 program in primary airway epithelial cells shows essential role of NF-kappaB/RelA signaling
644 network in type II epithelial mesenchymal transition. *BMC Genomics* 16: 529.

645 39. Zhao H, Qin HY, Cao LF, Chen YH, Tan ZX, et al. (2015) Phenylbutyric acid inhibits epithelial-
646 mesenchymal transition during bleomycin-induced lung fibrosis. *Toxicol Lett* 232: 213-220.

647 40. Hung JY, Chiang SR, Tsai MJ, Tsai YM, Chong IW, et al. (2015) LIGHT is a crucial mediator
648 of airway remodeling. *J Cell Physiol* 230: 1042-1053.

649 41. Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, et al. (2010) MicroRNAs modulate the
650 noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase
651 IKKalpha during macrophage differentiation. *Nat Immunol* 11: 799-805.

652 42. Zou F, Mao R, Yang L, Lin S, Lei K, et al. (2016) Targeted deletion of miR-139-5p activates
653 MAPK, NF-kappaB and STAT3 signaling and promotes intestinal inflammation and colorectal
654 cancer. *FEBS J* 283: 1438-1452.

655 43. Yu S, Geng Q, Pan Q, Liu Z, Ding S, et al. (2016) MiR-690, a Runx2-targeted miRNA, regulates
656 osteogenic differentiation of C2C12 myogenic progenitor cells by targeting NF-kappaB p65. *Cell
657 Biosci* 6: 10.

658 44. Yuan Y, Tong L, Wu S (2015) microRNA and NF-kappa B. *Adv Exp Med Biol* 887: 157-170.

659 45. Xiao X, Huang C, Zhao C, Gou X, Senavirathna LK, et al. (2015) Regulation of myofibroblast

660 differentiation by miR-424 during epithelial-to-mesenchymal transition. *Arch Biochem Biophys*

661 566: 49-57.

662 46. Shi H, Ji Y, Zhang D, Liu Y, Fang P (2015) MiR-135a inhibits migration and invasion and

663 regulates EMT-related marker genes by targeting KLF8 in lung cancer cells. *Biochem Biophys Res*

664 *Commun* 465: 125-130.

665 47. Feng X, Tan W, Cheng S, Wang H, Ye S, et al. (2015) Upregulation of microRNA-126 in hepatic

666 stellate cells may affect pathogenesis of liver fibrosis through the NF-kappaB pathway. *DNA Cell*

667 *Biol* 34: 470-480.

668 48. Yao S, Hu M, Hao T, Li W, Xue X, et al. (2015) MiRNA-891a-5p mediates HIV-1 Tat and

669 KSHV Orf-K1 synergistic induction of angiogenesis by activating NF-kappaB signaling. *Nucleic*

670 *Acids Res* 43: 9362-9378.

671

672

673

674

675

676

677

678

679

680

681

682 **Figure legends**

683 **Figure 1: Effects of PA3611 on the proliferation of bronchial epithelial cells and**
684 **epithelial mesenchymal transition (EMT).** 16HBE and RTE cells were treated with
685 PA3611 at the different concentration (5 μ g, 15 μ g ,30 μ g and 45 μ g) for 24, 48 or 72hs.
686 A CCK-8 assay was performed to estimate cell proliferation (A, B). Transmission
687 electron microscopy was used to observe the ultrastructure of the above cells treated
688 with PA3611 (30 μ g/ml) for 72 hs (C). TGF- β 1 levels in 16HBE and RTE cells culture
689 supernatants were evaluated by enzyme-linked immunosorbent assay treated with
690 PA3611 (30 μ g/ml) for 24hs, 48hs or 72hs (D, E). EMT-related proteins (α -SMA,
691 Vimentin, E-cadherin and ZO-1) were tested with Western-blot in 16HBE and RTE
692 cells at 24, 48 or 72hs time-points (F and G, PBS as control group, TGF- β 1(2 ng/ml),
693 as positive control). All the presented graphs are representative of three independent
694 experiments. Data are presented as the means \pm SD. *, P <0.05, **, P <0.01, ***, P
695 <0.001, vs. control group.

696 **Figure 2: Effects of PA3611 and TGF- β 1 on the expression of p65 phosphorylation**
697 **and EMT relative markers.** 16HBE and RTE cells were treated with PA3611(30 μ g)
698 and TGF- β 1(2ng/ml) for 24, 48 or 72hs. EMT-related genes (α -SMA, Vimentin, E-
699 cadherin and ZO-1) were tested with qRT-PCR in 16HBE and RTE cells at 24, 48 or
700 72hs time-points (A, PBS as control group, TGF- β 1(2ng/ml), as positive control).
701 16HBE and RTE cells were treated with PA3611(30 μ g), TGF- β 1(2ng/ml) or
702 PA3611(30 μ g) plus TGF- β 1 neutralizing antibody(10 μ g/ml) for 24hs, p65
703 phosphorylation (B, C) and EMT relative markers (α -SMA, Vimentin, E-cadherin and

704 ZO-1) were tested with Western-blot(D-H). All the presented graphs are representative
705 of three independent experiments. Data are presented as the means \pm SD. *, P <0.05, **,
706 P <0.01, ***, P <0.001, vs. control group.

707 **Figure 3: Effects of p65 overexpression or knockdown on the expression of TGF-
708 β 1, p38 phosphorylation, I κ B and EMT relative markers.** 16HBE cells were
709 transfected with a control vector (indicated with Blank), a p65 overexpression vector
710 (indicated with p65), or a specific siRNA directed against p65 (indicated with sh-p65).
711 After 24h post transfection, cells were infected with PBS (negative control) or
712 PA3611(30 μ g/ml) for another 24 hs, then cells culture supernatants were collected for
713 TGF- β 1 levels evaluated by enzyme-linked immunosorbent assay (Fig. 3A) and cells
714 were collected for the protein expression of p38, I κ B α , p65 and EMT relative markers
715 (Fig. 3B-J). The results were representative of three independent experiments. Data
716 were presented as the means \pm SD. *, P<0.05, **, P<0.01, ***, P<0.001, vs. the control
717 vector or the nonspecific siRNA interference group of the same treatment.

718 **Figure 4: Effect of miR-3065-5p and miR-6802-3p intervention on the expression
719 of TGF- β 1, p38, I κ B α and p65.** 116HBE cells were transfected with a negative control
720 miRNA mimic (indicated with Blank), miR-3065-5p, miR-6802-3p mimics, or both
721 miR-3065-5p and miR-6802-3p mimics. After 24h post transfection, cells were infected
722 with PBS (negative control) or PA3611(30 μ g/ml) for another 24 hs, then cells culture
723 supernatants were collected for TGF- β 1 levels evaluated by enzyme-linked
724 immunosorbent assay (Fig. 4A) and cells were collected for the protein expression of
725 p38, I κ B α and p65(Fig. 4B-E). Sequence alignment of miR-3065-5p and miR-6802-3p

726 and their conserved target sites in the $\text{I}\kappa\text{B}\alpha$ -UTR were shown (Fig. 4F-G). Luciferase
727 activity was measured in 16HBE cells with a dual-luciferase reporter assay. The cells
728 were cotransfected with a plasmid expressing miR-3065-5p or miR-6802-3p mimic or
729 a control miRNA (indicated with NC) and a vector expressing $\text{I}\kappa\text{B}\alpha$ -UTR WT or $\text{I}\kappa\text{B}\alpha$ -
730 UTR MUT. Firefly luciferase activity was normalized to Renilla luciferase activity (Fig.
731 4H-I). The results were representative of three independent experiments. Data were
732 presented as the means \pm SD. *, P<0.05, **, P<0.01, ***, P<0.001, vs. the control vector
733 or the nonspecific siRNA interference group of the same treatment.

734 **Figure 5: Effect of miR-3065-5p and miR-6802-3p knockdown on the expression**
735 **of TGF- β 1, p38, $\text{I}\kappa\text{B}\alpha$ and p65.** 16HBE cells were transfected with a negative control
736 miRNA inhibitor (indicated with Blank), a miR-3065-5p inhibitor (indicated with sh-
737 miR-3065-5p), a miR-6802-3p inhibitor (indicated with sh-miR-6802-3p), or both the
738 miR-3065-5p and miR-6802-3p inhibitors (sh-miR-miR-3065-5p +sh-miR-6802-3p).
739 After 24h post transfection, cells were infected with PBS (negative control) or
740 PA3611(30 μ g/ml) for another 24 hs, then cells culture supernatants were collected for
741 TGF- β 1 levels evaluated by enzyme-linked immunosorbent assay (Fig. 5A) and cells
742 were collected for the protein expression of p38, $\text{I}\kappa\text{B}\alpha$ and p65(Fig. 5B-E). The results
743 were representative of three independent experiments. Data were presented as the
744 means \pm SD. *, P<0.05, **, P<0.01, ***, P<0.001, vs. the control vector or the
745 nonspecific siRNA interference group of the same treatment.

746 **Figure 6: Effects of p38 overexpression or knockdown on the expression of TGF-**
747 **β 1, p38 phosphorylation, $\text{I}\kappa\text{B}$, p65 and EMT relative markers.** 16HBE cells were

748 transfected with a control vector (indicated with Blank), a p38 overexpression vector
749 (indicated with p38), or a specific siRNA directed against p38 (indicated with sh-p38).
750 After 24h post transfection, cells were infected with PBS (negative control) or
751 PA3611(30 μ g/ml) for another 24 hs, then cells culture supernatants were collected for
752 TGF- β 1 levels evaluated by enzyme-linked immunosorbent assay (Fig. 6A) and cells
753 were collected for the protein expression of p38, I κ B α , p65 and EMT relative markers
754 (Fig. 6B-J). The results were representative of three independent experiments. Data
755 were presented as the means \pm SD. *, P<0.05, **, P<0.01, ***, P<0.001, vs. the control
756 vector or the nonspecific siRNA interference group of the same treatment.

757 **Figure 7: Effects of PA3611 on lung infection and epithelial mesenchymal
758 transition (EMT) in vivo.** 6-8 weeks old male Wistar rat were intratracheally infected
759 with PAO1 or Δ PA3611bacterial strain. (The strain was coated with Agarose, Agarose
760 and PBS as for control), lungs were collected at 2 weeks, 4 weeks or 6 weeks post
761 infection. Overall gross view of lung tissues from four groups at 2 weeks, 4 weeks and
762 6 weeks post infection (A). HE staining (B) and Immunohistochemical staining of E-
763 cadherin, ZO-1, α -SMA and Vimentin (C) Scale bar represents 100 μ m. Morphometric
764 analysis of EMT relative proteins positive area were performed on
765 immunohistochemical staining sections of lung tissues (D). The lung injury results are
766 representative of three independent experiments. Data are presented as the means \pm SD,
767 *, P <0.05, **, P <0.01, ***, P <0.001, vs. control group.

768 **Figure 8: Schematic diagram of PA3611 induced EMT relative pathway.**

769

770 **Supplemental Figure legends**

771 **Supplemental figure 1: Heterologous expression and purification of recombinant**

772 **PA3611 and miRNA array in PA3611 induced 16HBE cells.** Sequencing results of

773 recombinant plasmid PET-28a-PA3611 (Suppl Fig.1A). Expression, purification and

774 identification of PA3611 protein (M: Molecular weight marker of protein;1. Total

775 protein of bacteria without induction;2: The total protein of the induced bacteria. Suppl

776 Fig.1B). miRNA array expression in PA3611 induced 16HBE cells (Suppl Fig.1C) .

777 **Supplemental figure 2: Effect of p65 intervention on the mRNAs expression of p38,**

778 **IkBa, p65 and EMT relative markers.** 16HBE cells were transfected with a control

779 vector (indicated with Blank), a p65 overexpression vector (indicated with p65), or a

780 specific siRNA directed against p65 (indicated with sh-p65). After 24h post transfection,

781 cells were infected with PBS (negative control) or PA3611(30 μ g/ml) for another 24 hs,

782 then cells were collected and detected for the mRNAs expression of p38, IkBa, p65 and

783 EMT relative markers (Suppl Fig.2A-G). The results were representative of three

784 independent experiments. Data were presented as the means \pm SD. *, P<0.05, **, P<0.01,

785 ***, P<0.001, vs. the control vector or the nonspecific siRNA interference group of the

786 same treatment.

787 **Supplemental figure 3: Effect of miR-3065-5p and miR-6802-3p intervention on**

788 **the mRNAs expression of p38, IkBa, p65 and EMT relative markers.** 16HBE cells

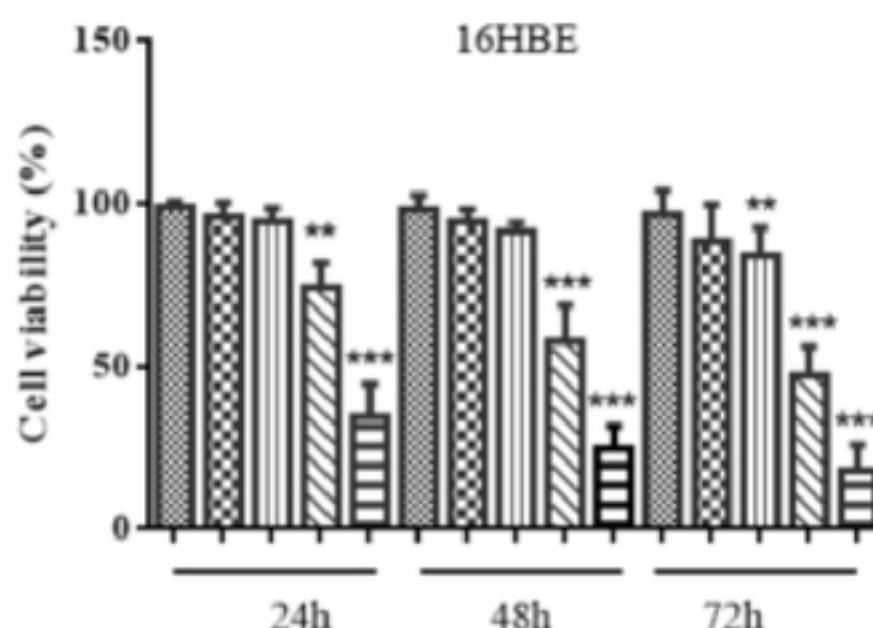
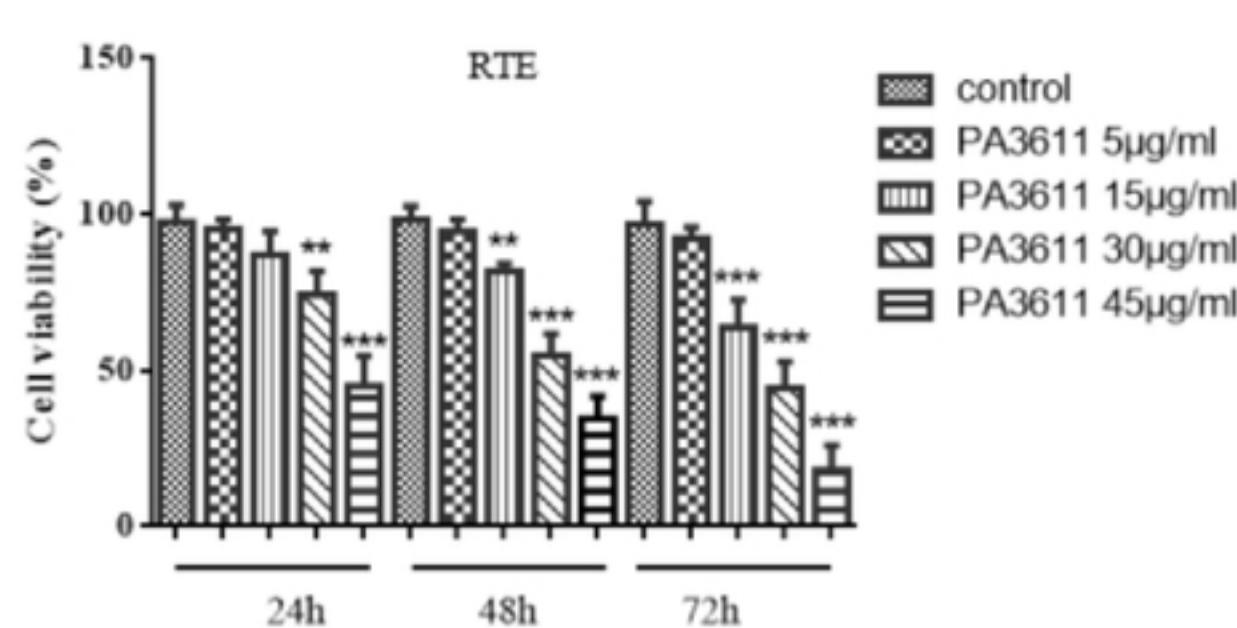
789 were transfected with a negative control miRNA mimic (indicated with Blank), miR-

790 3065-5p, miR-6802-3p mimics, or both miR-3065-5p and miR-6802-3p mimics. After

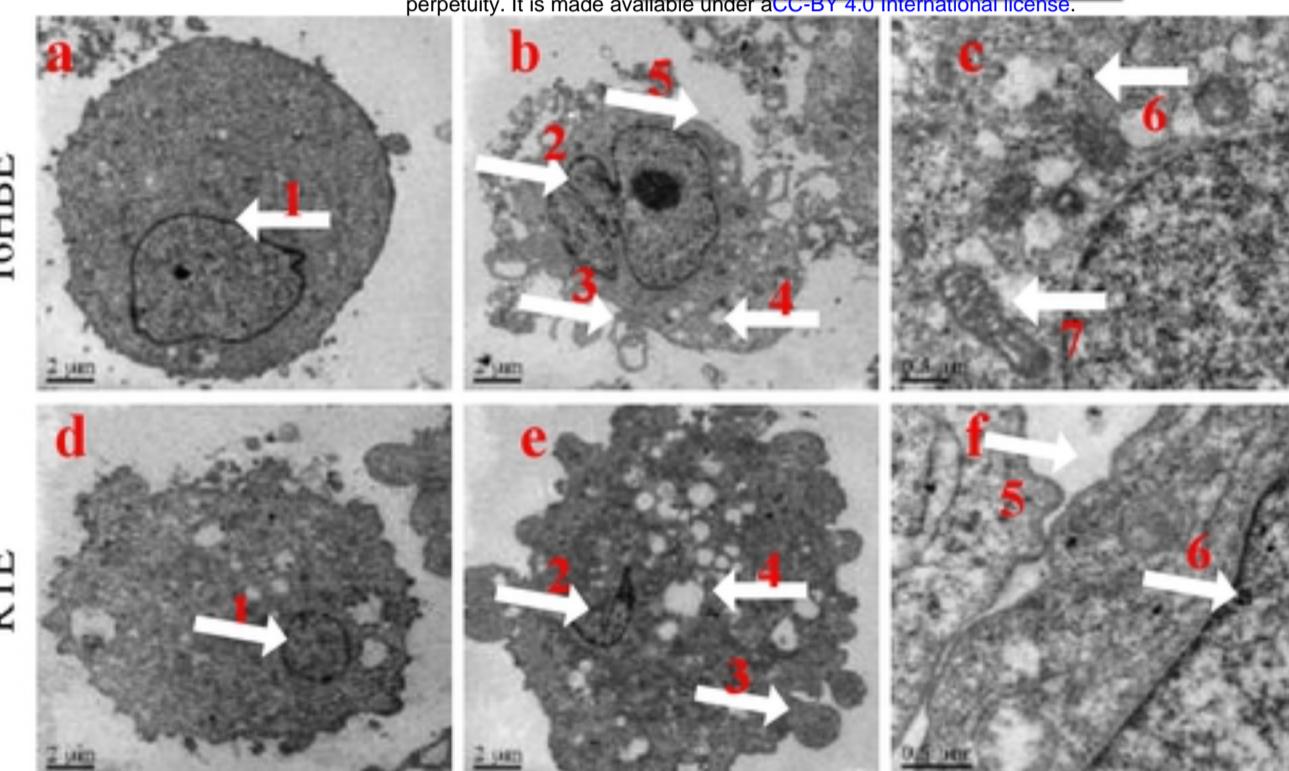
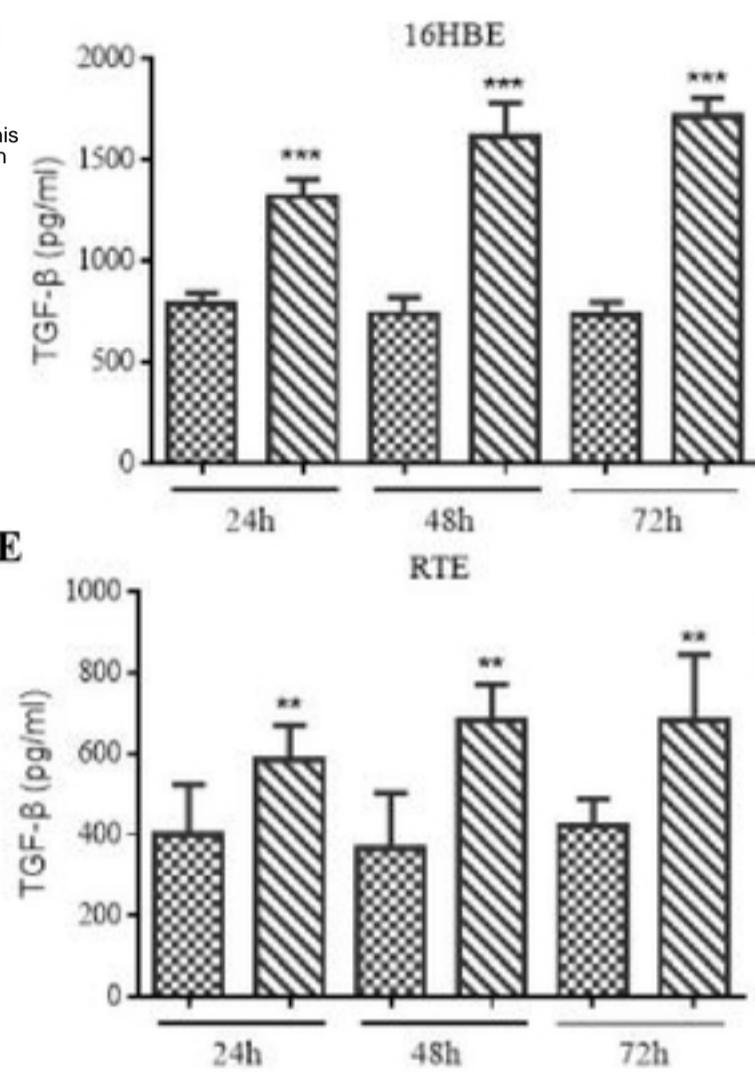
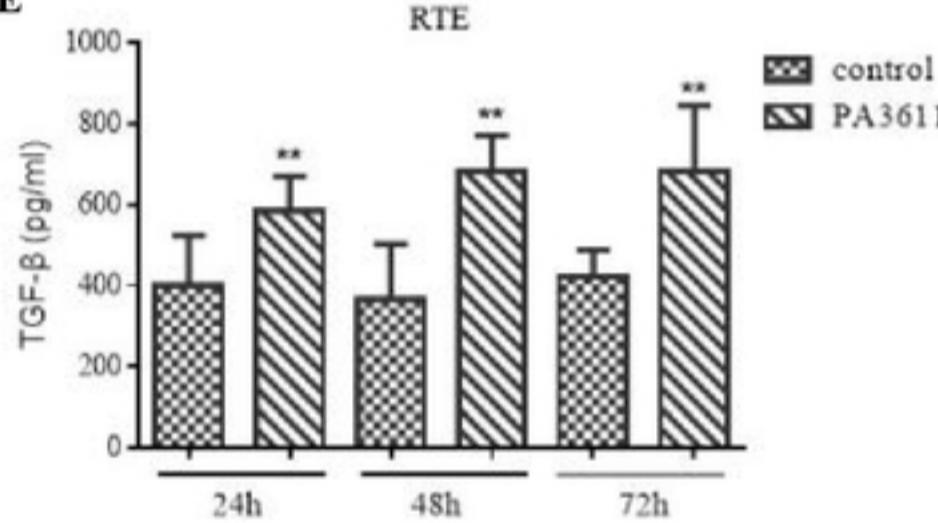
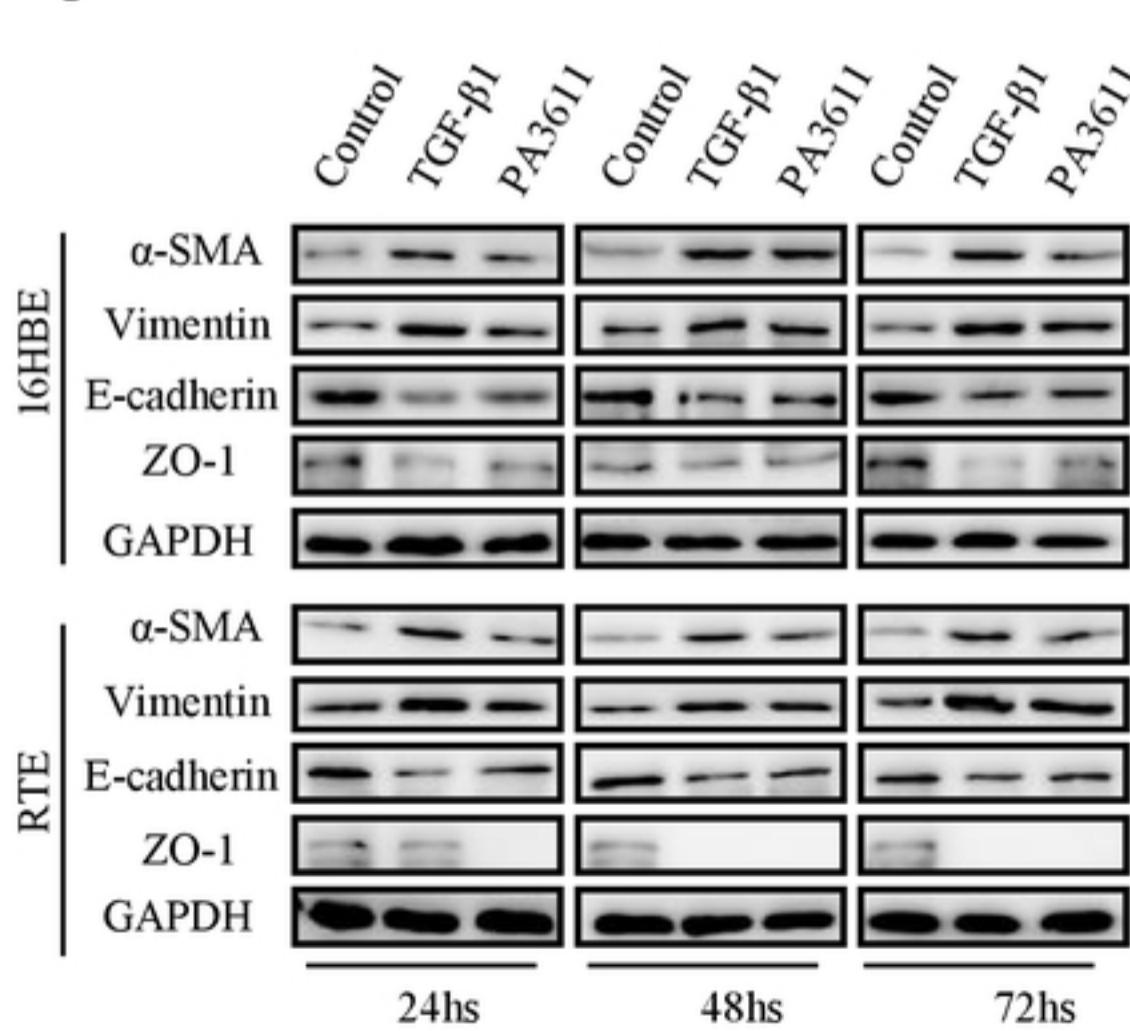
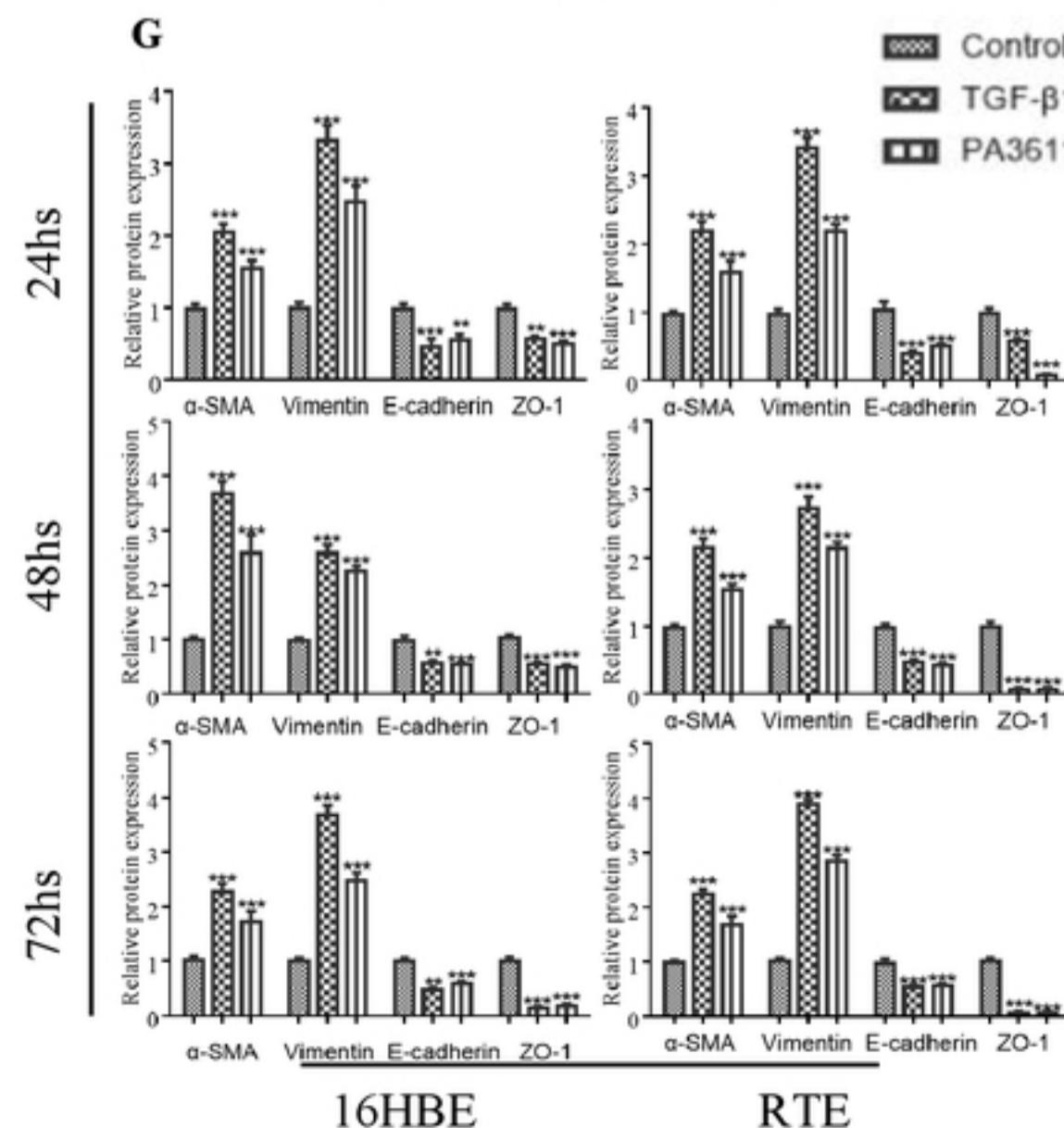
791 24h post transfection, cells were infected with PBS (negative control) or

792 PA3611(30 μ g/ml) for another 24 hs, then cells were collected and detected for the
793 mRNAs expression of p38, I κ B α , p65 and EMT relative markers (Suppl Fig.3A-I). The
794 results were representative of three independent experiments. Data were presented as
795 the means \pm SD. *, P<0.05, **, P<0.01, ***, P<0.001, vs. the control vector or the
796 nonspecific siRNA interference group of the same treatment.

797 **Supplemental figure 4: Effect of miR-3065-5p and miR-6802-3p intervention on**
798 **the proteins expression of EMT relative markers.** 16HBE cells were transfected with
799 a negative control miRNA mimic (indicated with Blank), miR-3065-5p, miR-6802-3p
800 mimics, or both miR-3065-5p and miR-6802-3p mimics. After 24h post transfection,
801 cells were infected with PBS (negative control) or PA3611(30 μ g/ml) for another 24 hs,
802 then cells were collected and detected for the proteins expression of EMT relative
803 markers (Suppl Fig.4A-E). The results were representative of three independent
804 experiments. Data were presented as the means \pm SD. *, P<0.05, **, P<0.01, ***,
805 P<0.001, vs. the control vector or the nonspecific siRNA interference group of the same
806 treatment.

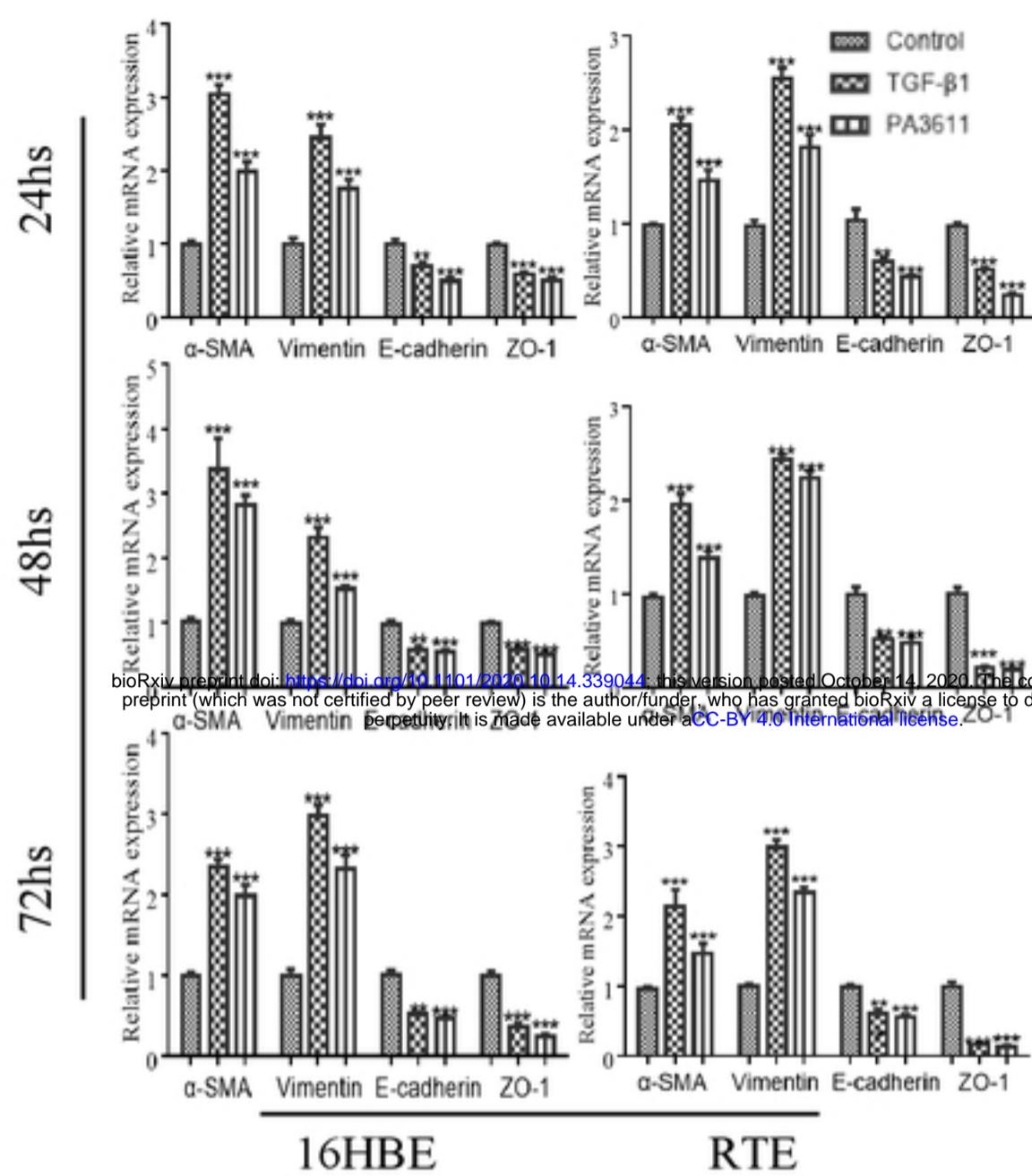


807 **Supplemental figure 5: Effect of miR-3065-5p and miR-6802-3p knock down on**
808 **the mRNAs expression of p38, I κ B α , p65 and EMT relative markers.** 16HBE cells
809 were transfected with a negative control miRNA inhibitor (indicated with Blank), a
810 miR-3065-5p inhibitor (indicated with sh-miR-3065-5p), a miR-6802-3p inhibitor
811 (indicated with sh-miR-6802-3p), or both the miR-3065-5p and miR-6802-3p inhibitors
812 (sh-miR-3065-5p+sh-miR-6802-3p). After 24h post transfection, cells were infected
813 with PBS (negative control) or PA3611(30 μ g/ml) for another 24 hs, then cells were

814 collected and detected for the mRNAs expression of p38, I κ B α , p65 and EMT relative
815 markers (Suppl Fig.4A-I). The results were representative of three independent
816 experiments. Data were presented as the means \pm SD. *, P<0.05, **, P<0.01, ***,
817 P<0.001, vs. the control vector or the nonspecific siRNA interference group of the same
818 treatment.






819 **Supplemental figure 6: Effect of miR-3065-5p and miR-6802-3p knock down on**
820 **the proteins expression of EMT relative markers.** 16HBE cells were transfected with
821 a negative control miRNA inhibitor (indicated with Blank), a miR-3065-5p inhibitor
822 (indicated with sh-miR-3065-5p), a miR-6802-3p inhibitor (indicated with sh-miR-
823 6802-3p), or both the miR-3065-5p and miR-6802-3p inhibitors (sh-miR-3065-5p+sh-
824 miR-6802-3p). After 24h post transfection, cells were infected with PBS (negative
825 control) or PA3611(30 μ g/ml) for another 24 hs, then cells were collected and detected
826 for the proteins expression of EMT relative markers (Suppl Fig.6A-E). The results were
827 representative of three independent experiments. Data were presented as the means \pm SD.
828 *, P<0.05, **, P<0.01, ***, P<0.001, vs. the control vector or the nonspecific siRNA
829 interference group of the same treatment.

830 **Supplemental figure 7: Effect of p38 intervention on the mRNAs expression of p38,**
831 **I κ B α , p65 and EMT relative markers.** 16HBE cells were transfected with a control
832 vector (indicated with Blank), a p38 overexpression vector (indicated with p38), or a
833 specific siRNA directed against p38 (indicated with sh-p38). After 24h post transfection,
834 cells were infected with PBS (negative control) or PA3611(30 μ g/ml) for another 24 hs,
835 then cells were collected and detected for the mRNAs expression of p38, I κ B α , p65 and

836 EMT relative markers (Suppl Fig.7A-I). The results were representative of three
837 independent experiments. Data were presented as the means \pm SD. *, P<0.05, **, P<0.01,
838 ***, P<0.001, vs. the control vector or the nonspecific siRNA interference group of the
839 same treatment.


Figure 1**A****B****C**

bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.14.339044>; this version posted October 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

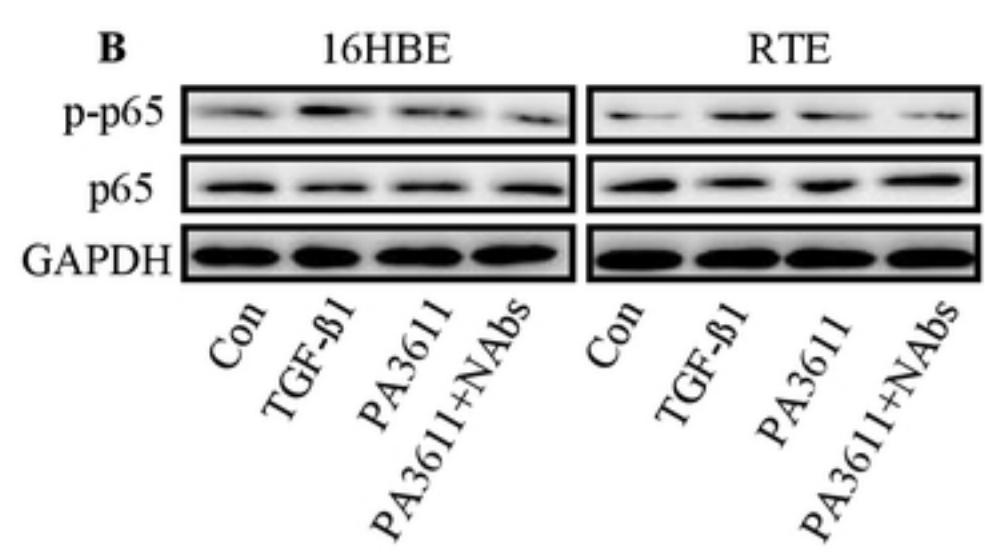
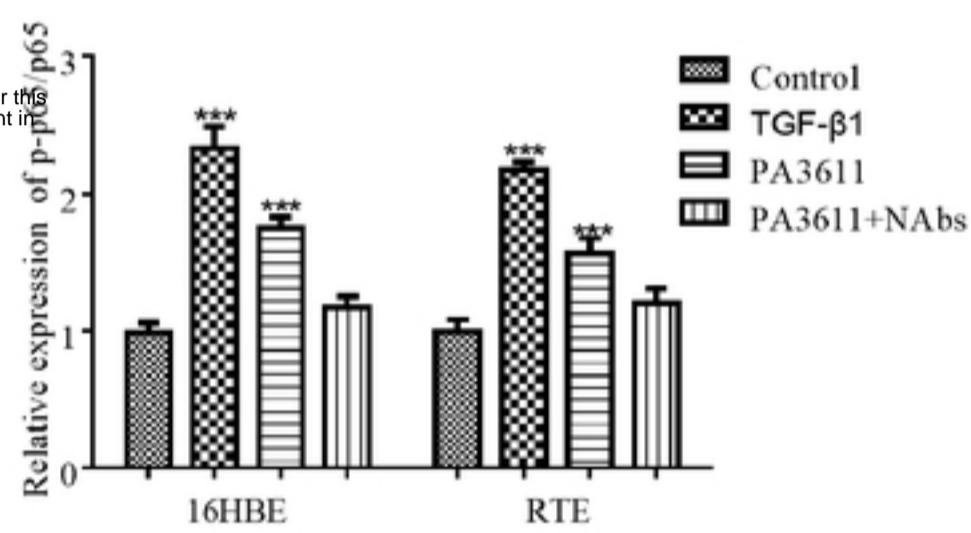
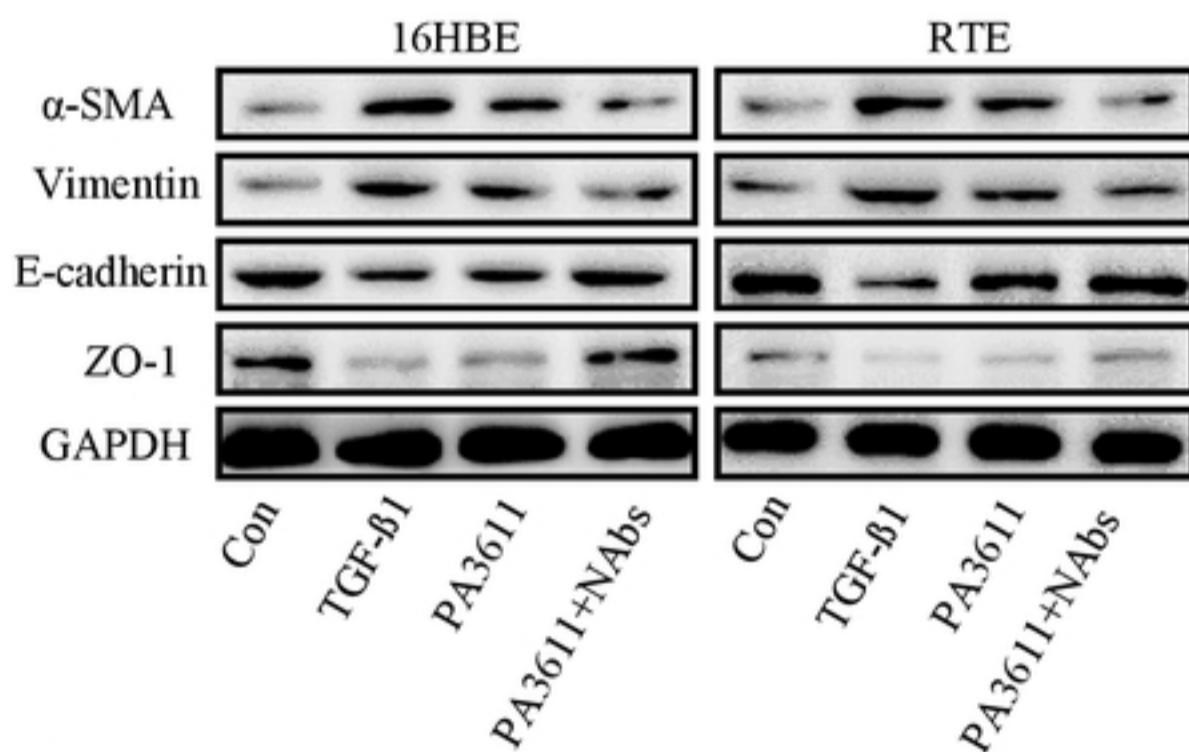
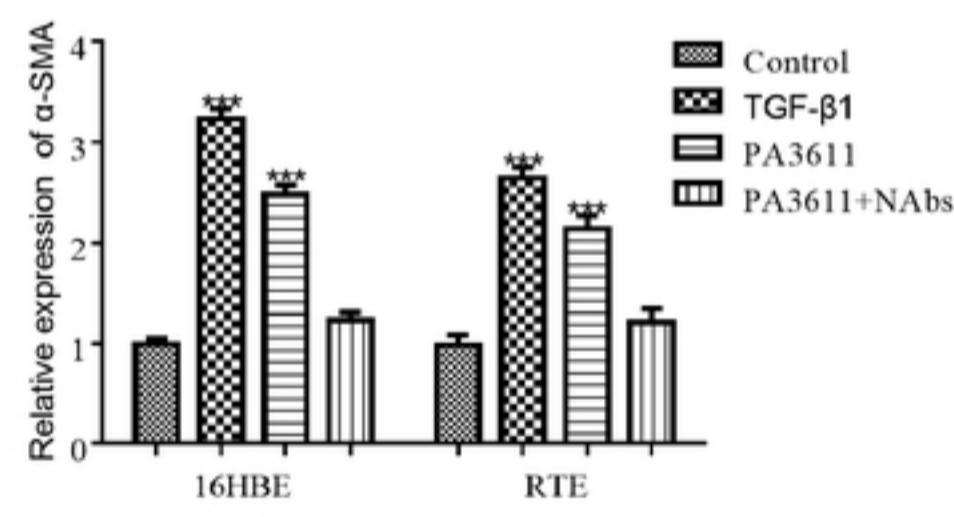
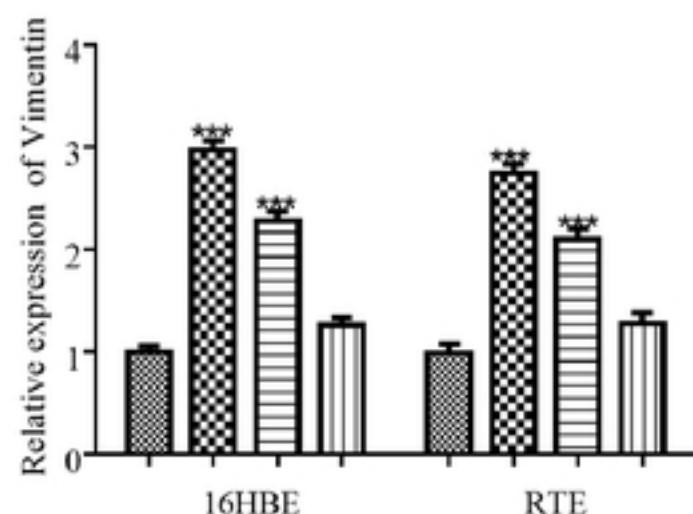

D**E****F****G**

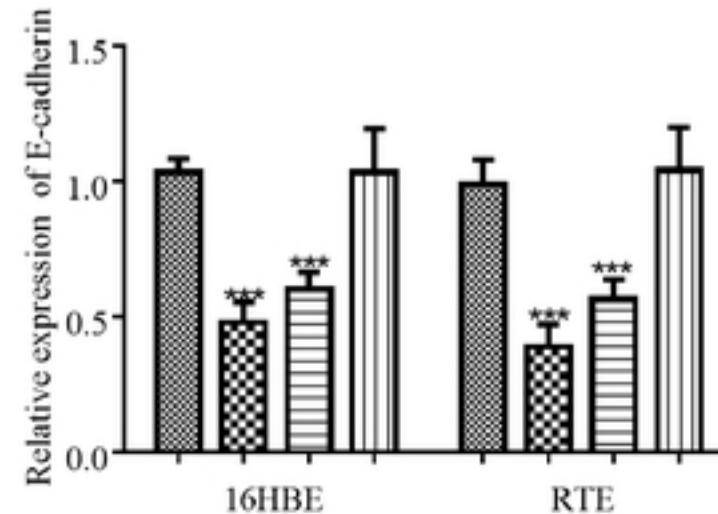
Figure 2

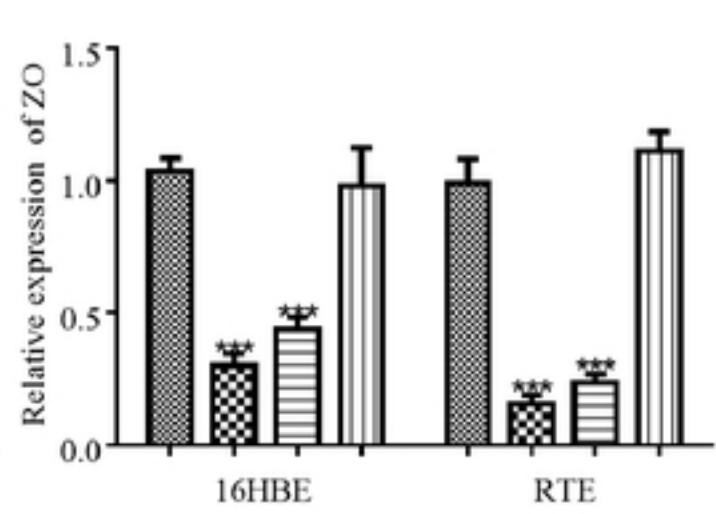

A


B


C

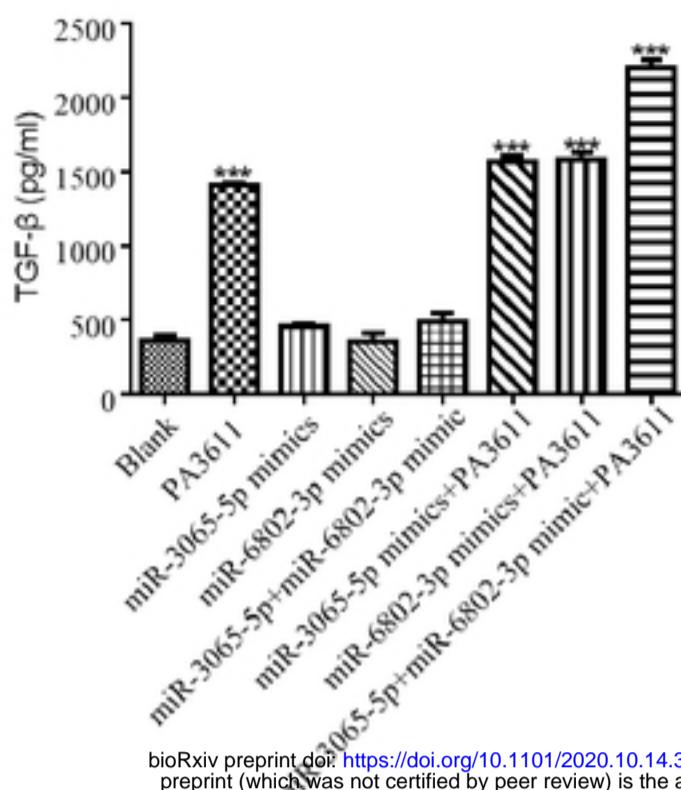

D


E


F



G


H

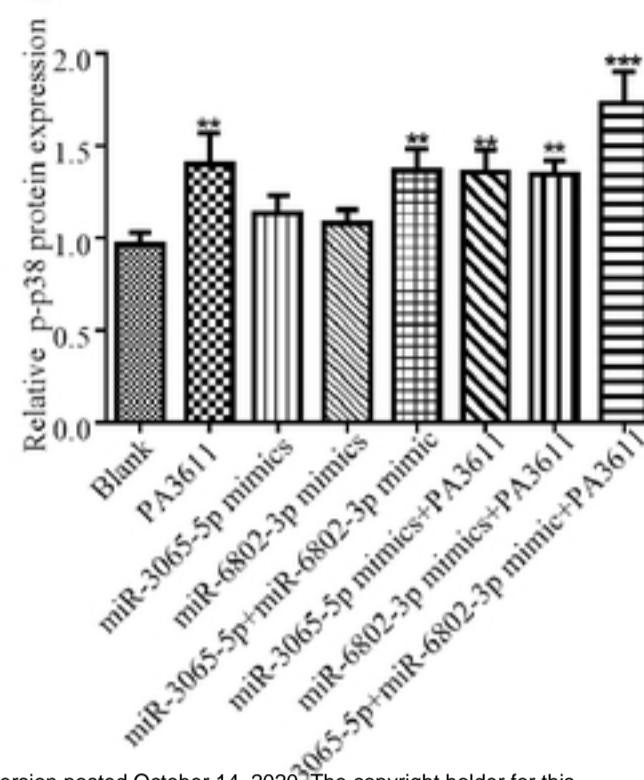
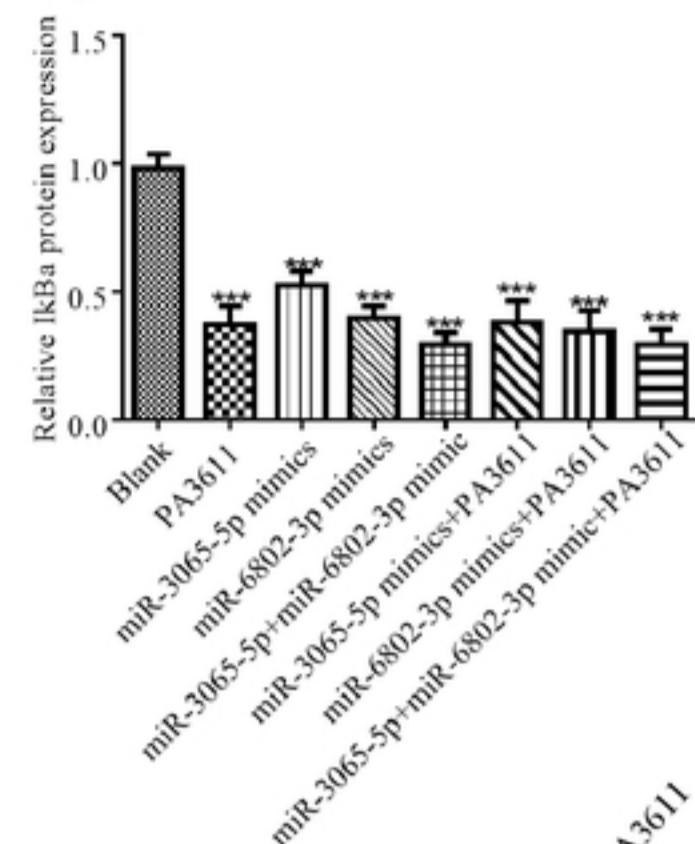
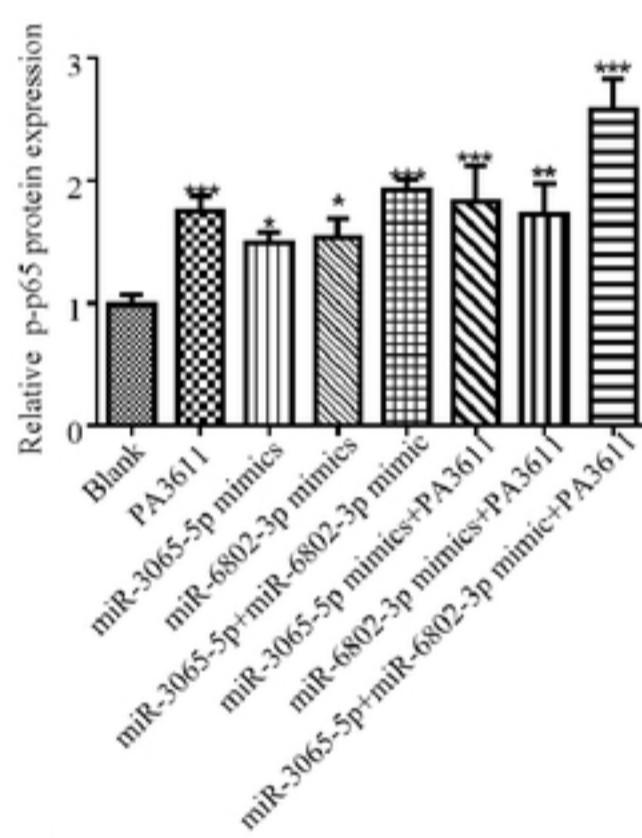
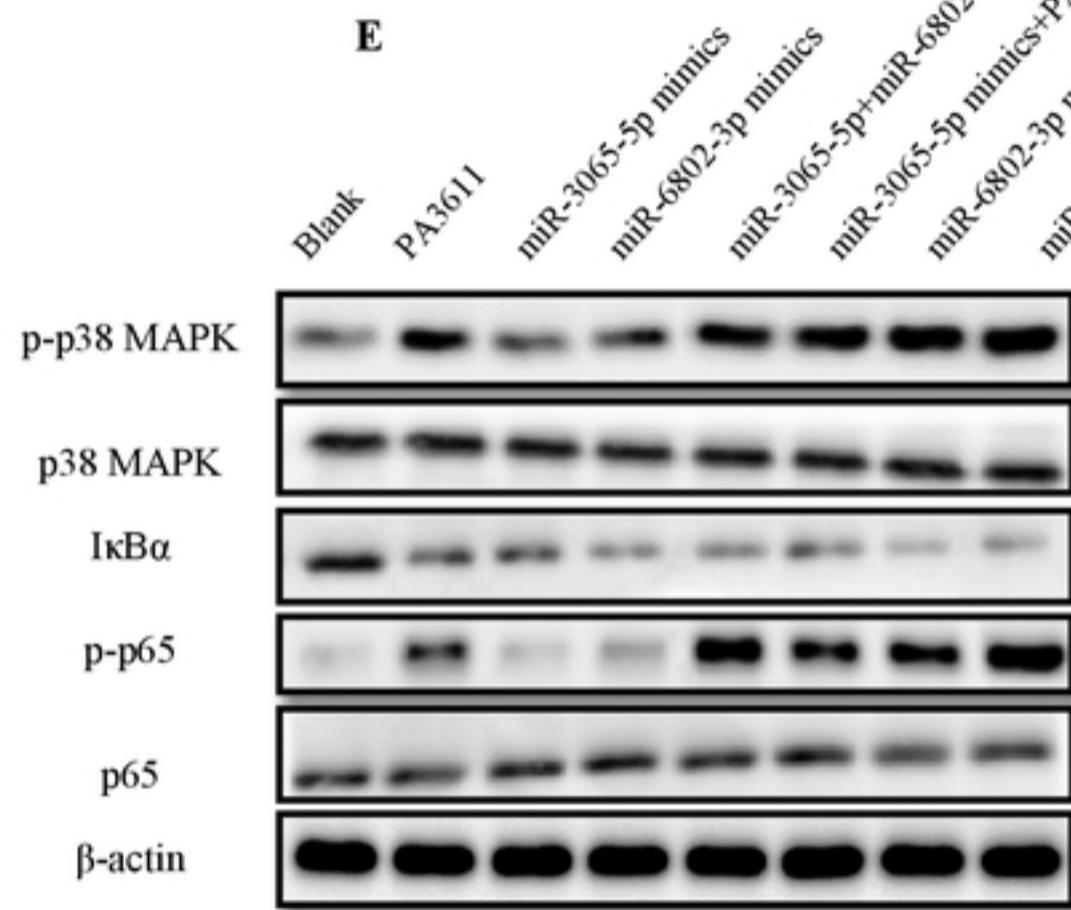
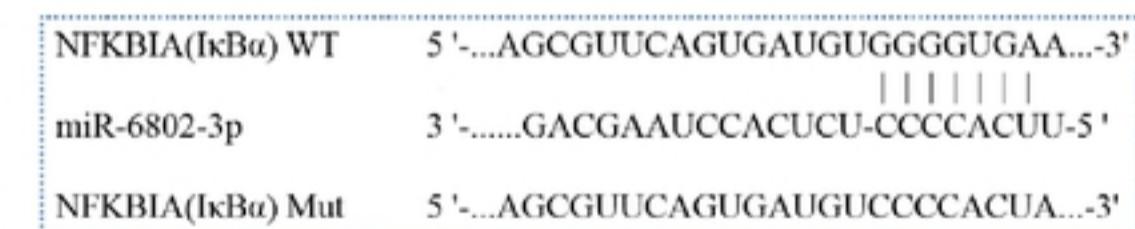
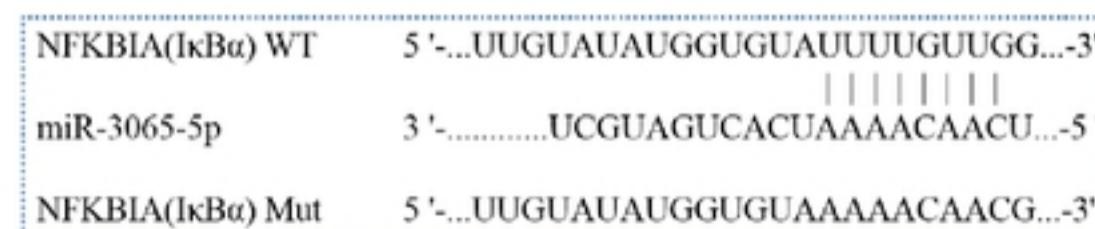

Figure 3

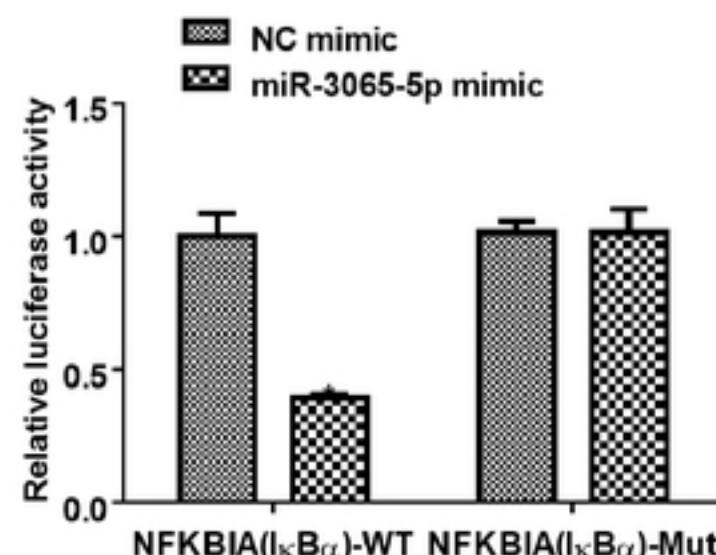
Figure 4

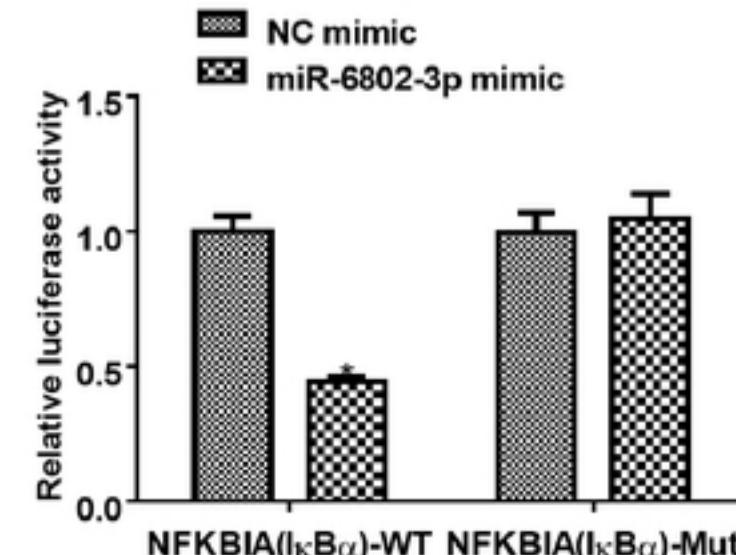

A

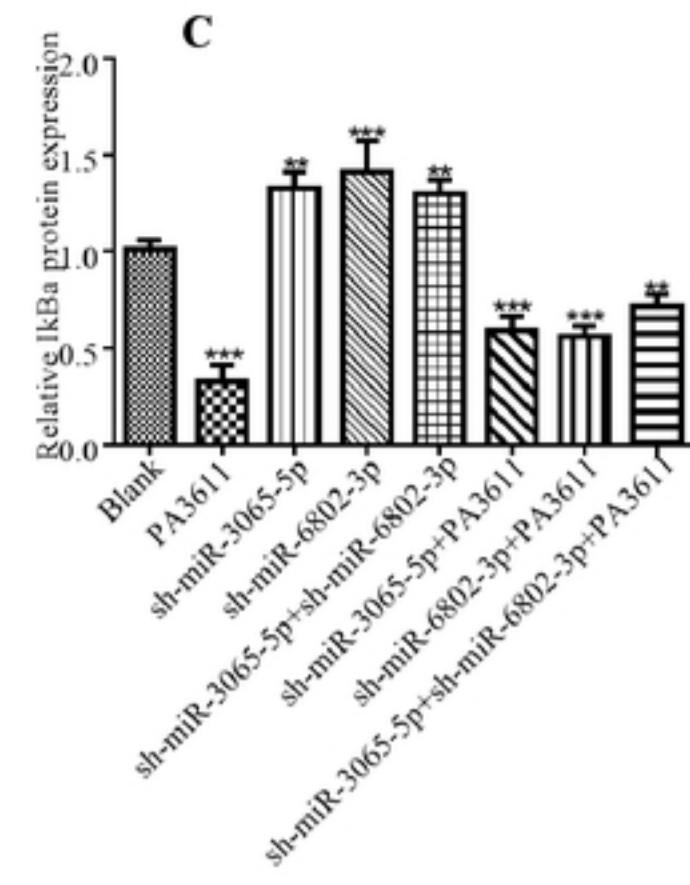
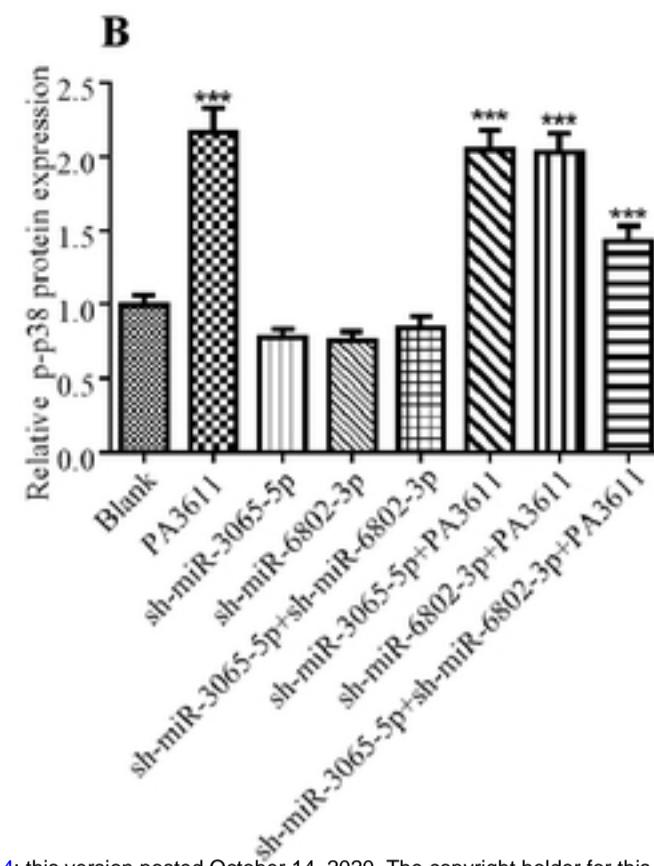
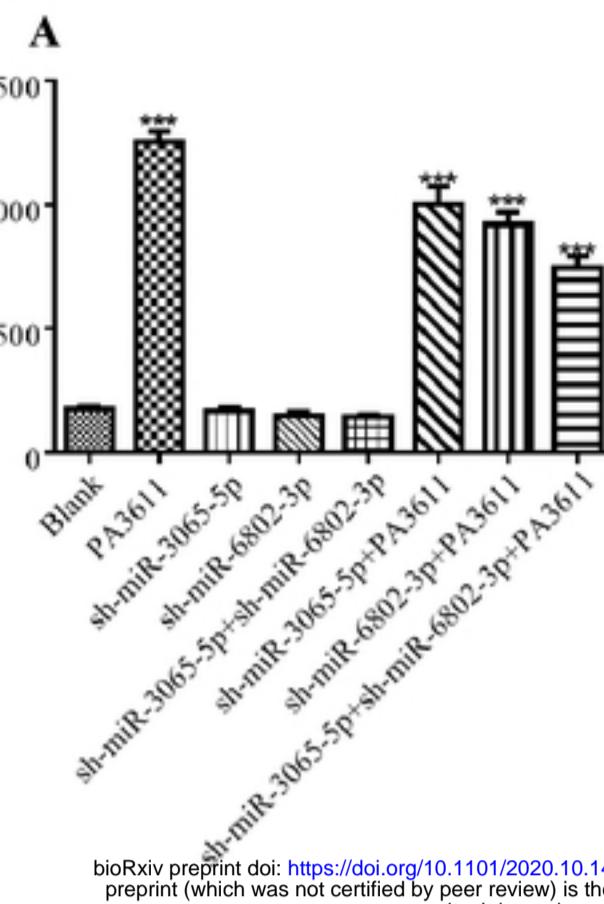
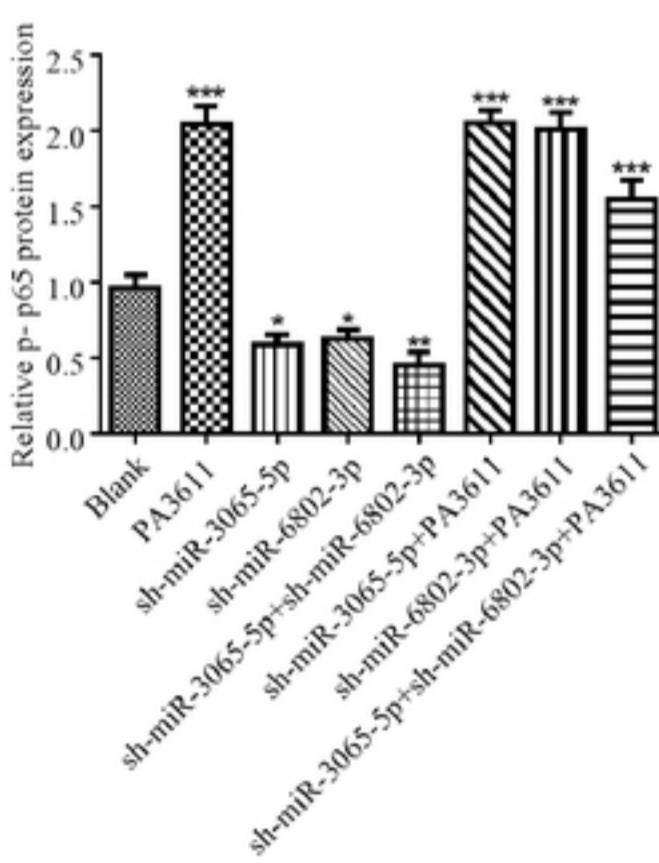
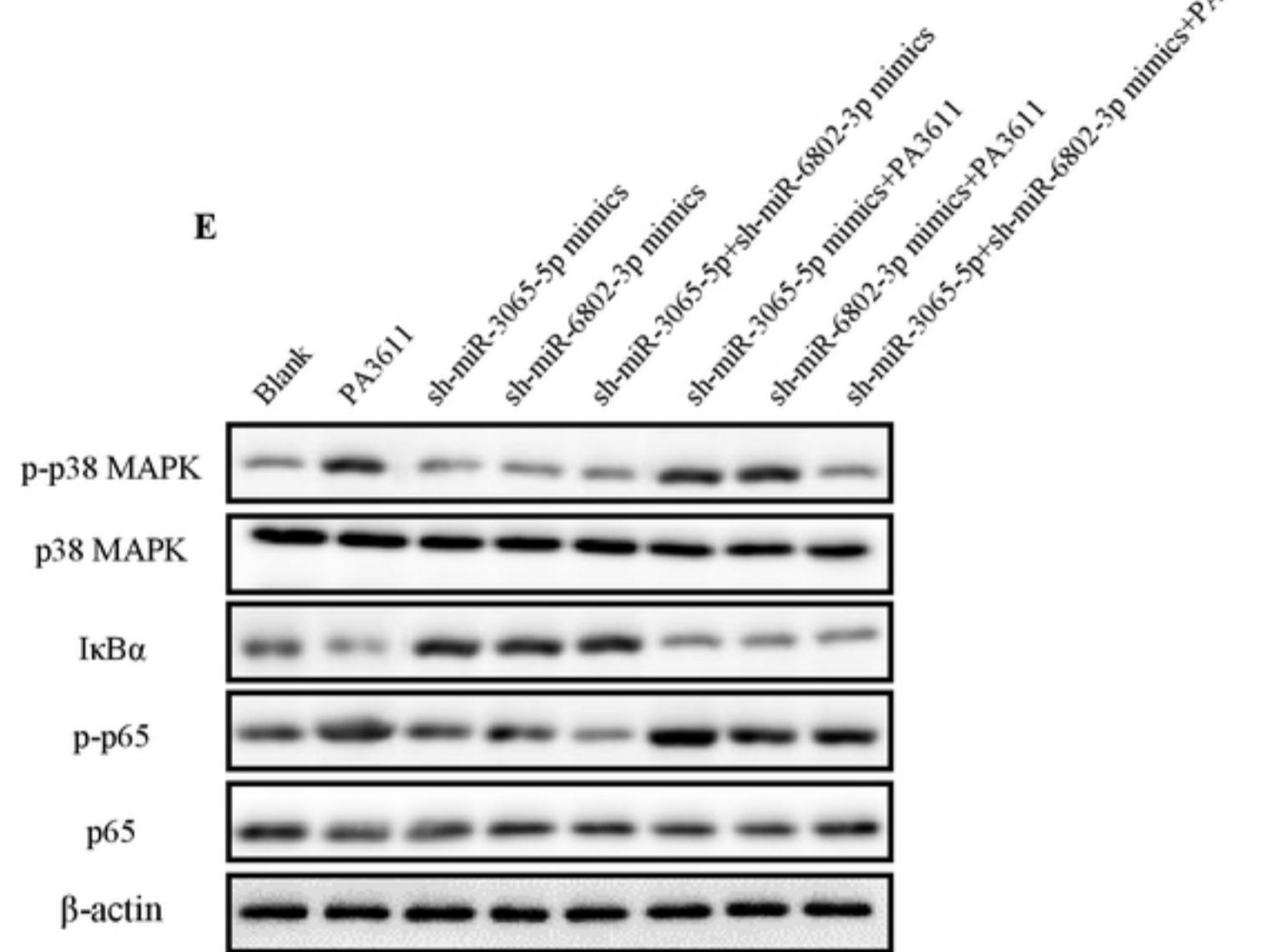

B


C

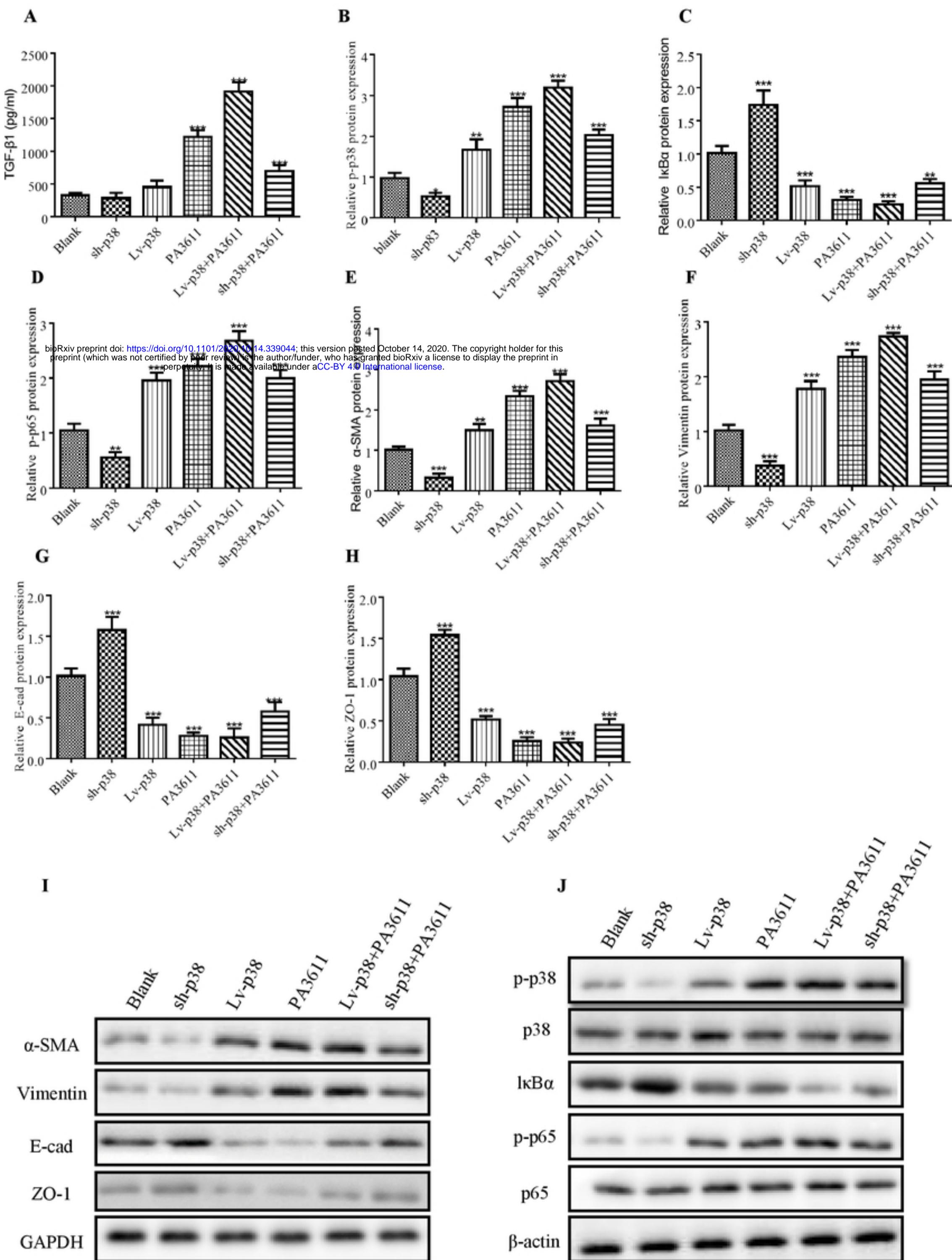


D

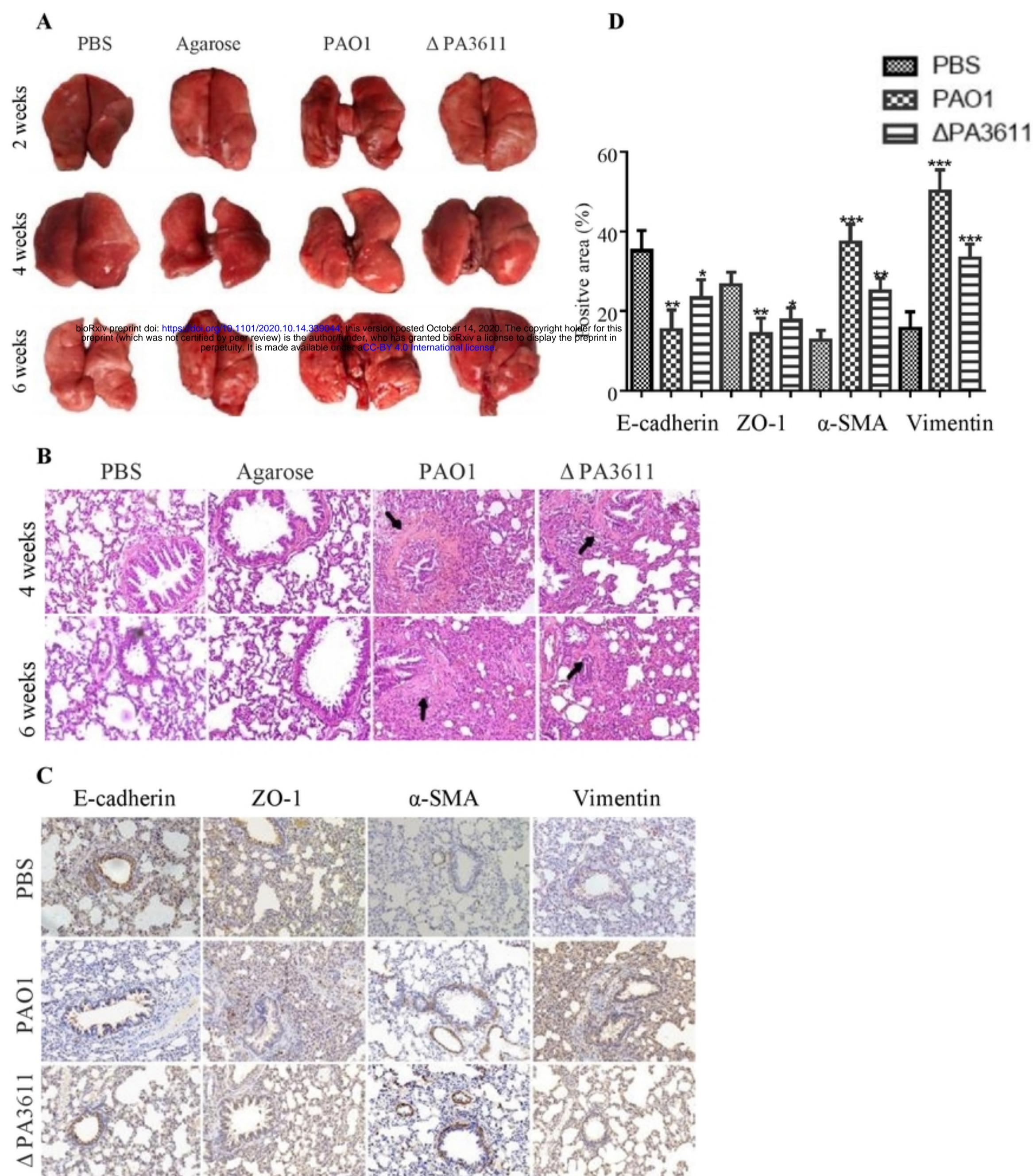

E

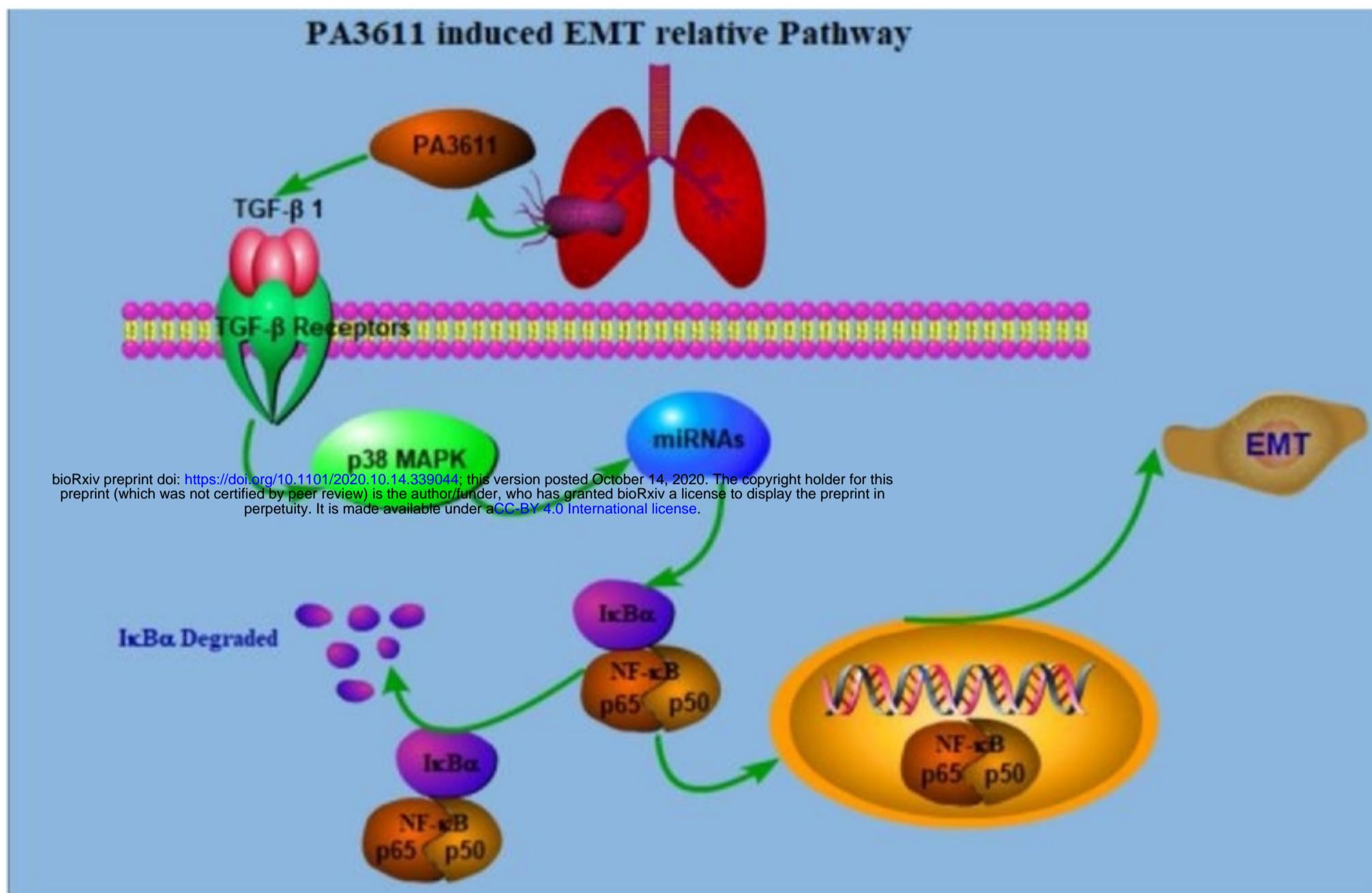

F

H




I


Figure 5**D****E**

bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.14.339044>; this version posted October 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 6

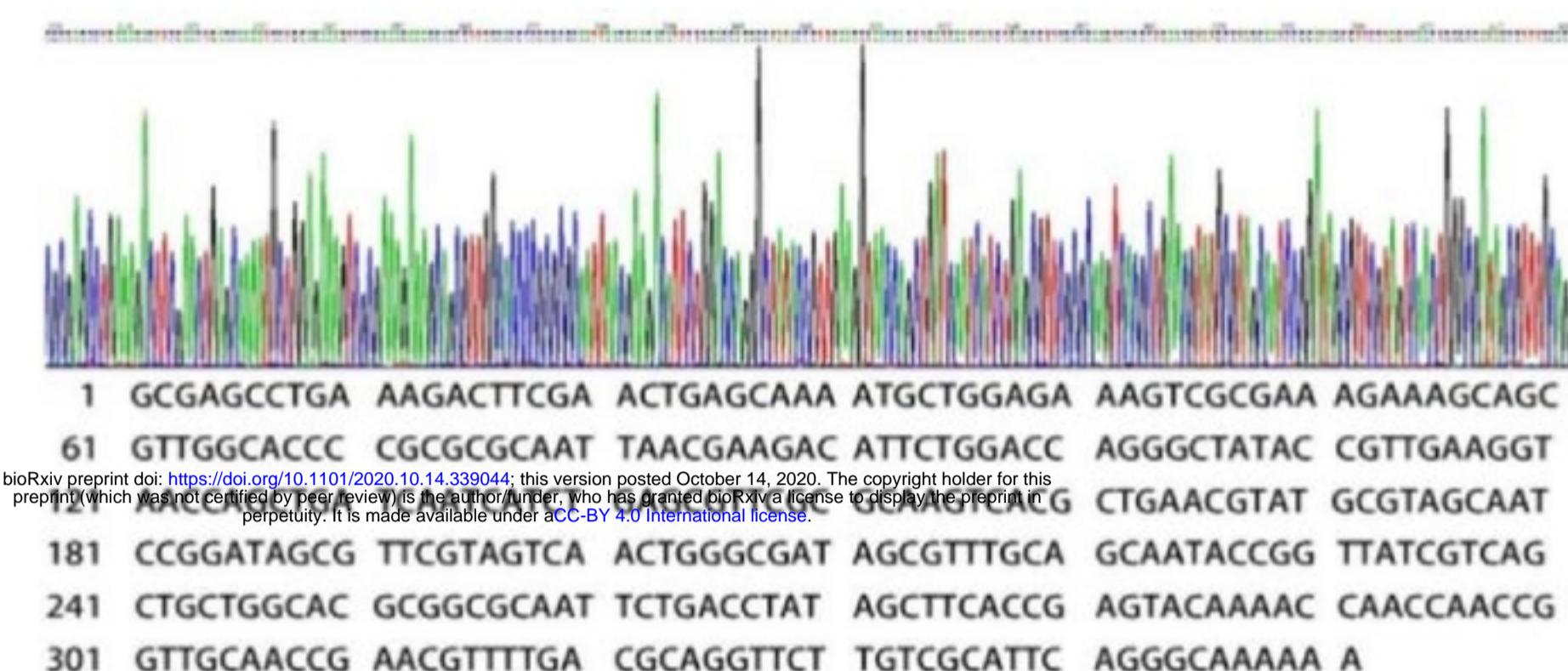
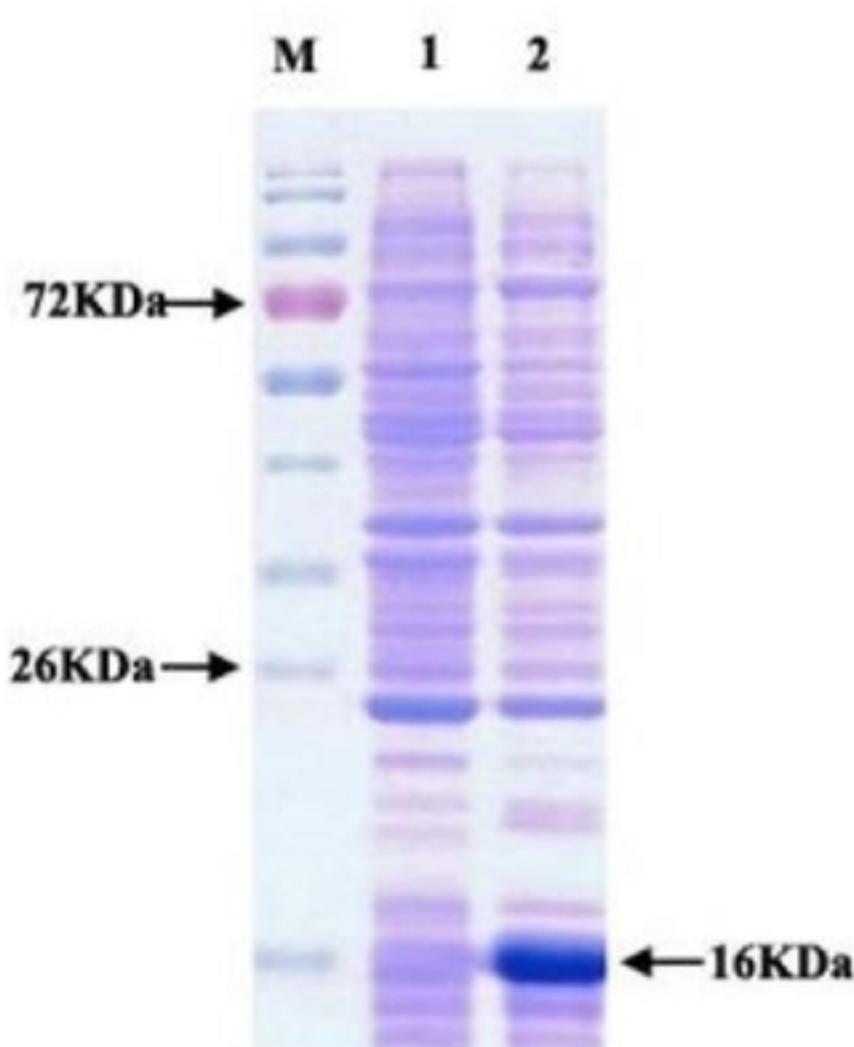
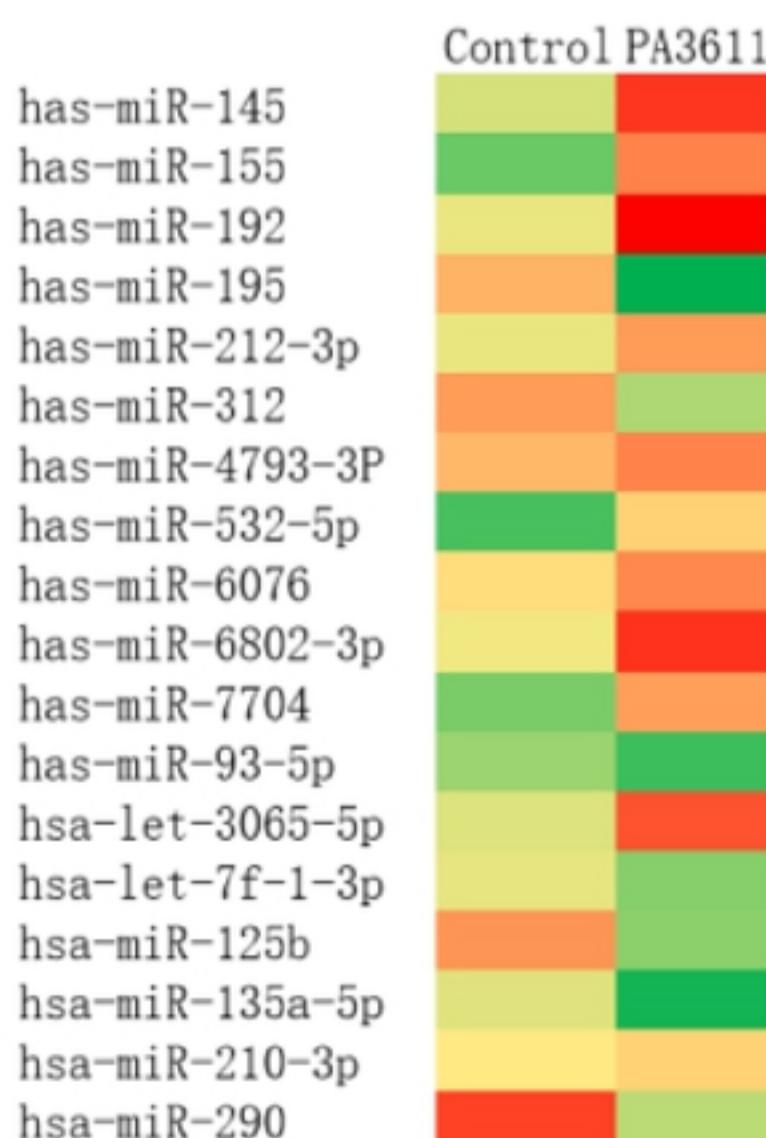
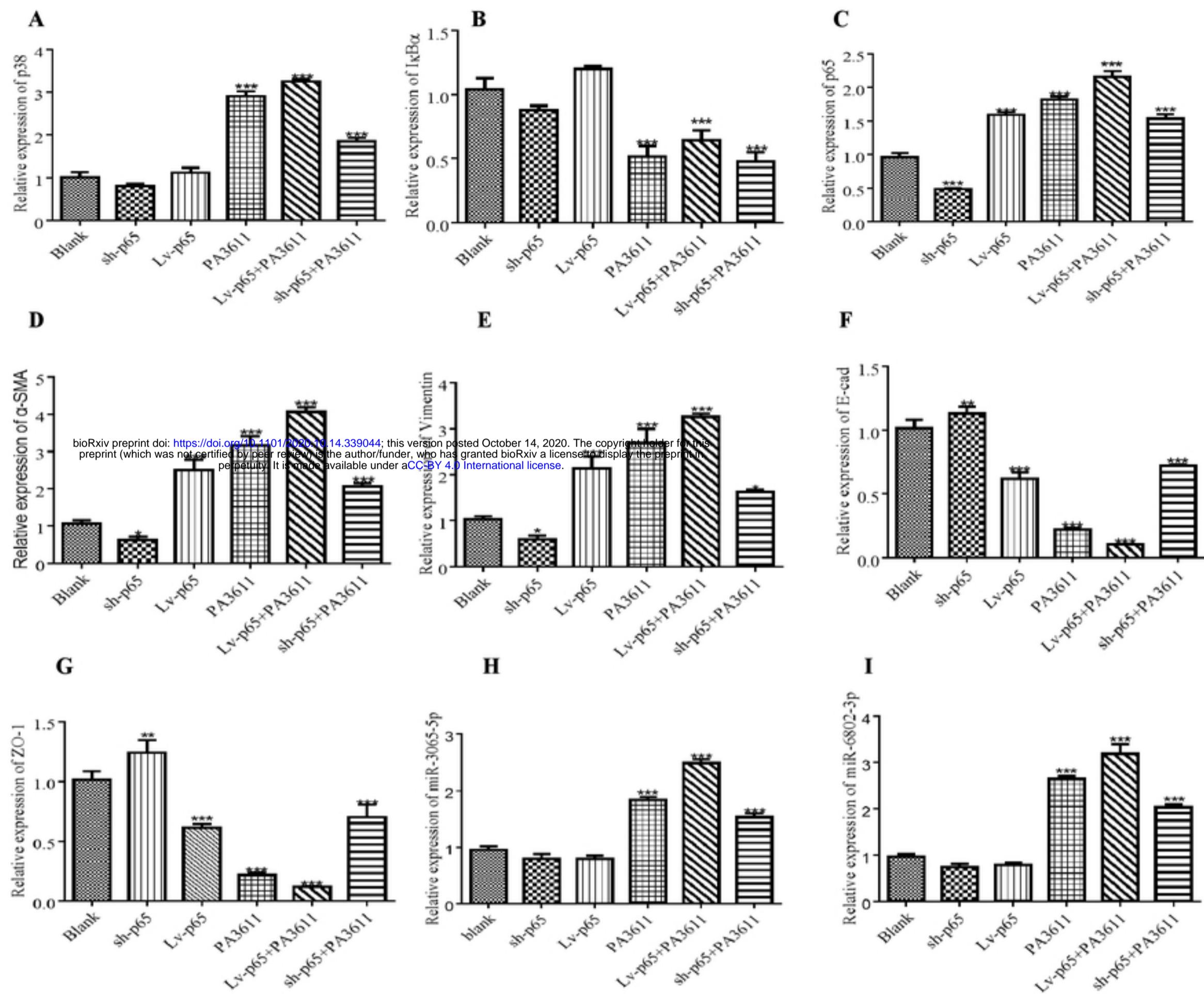

Figure 7

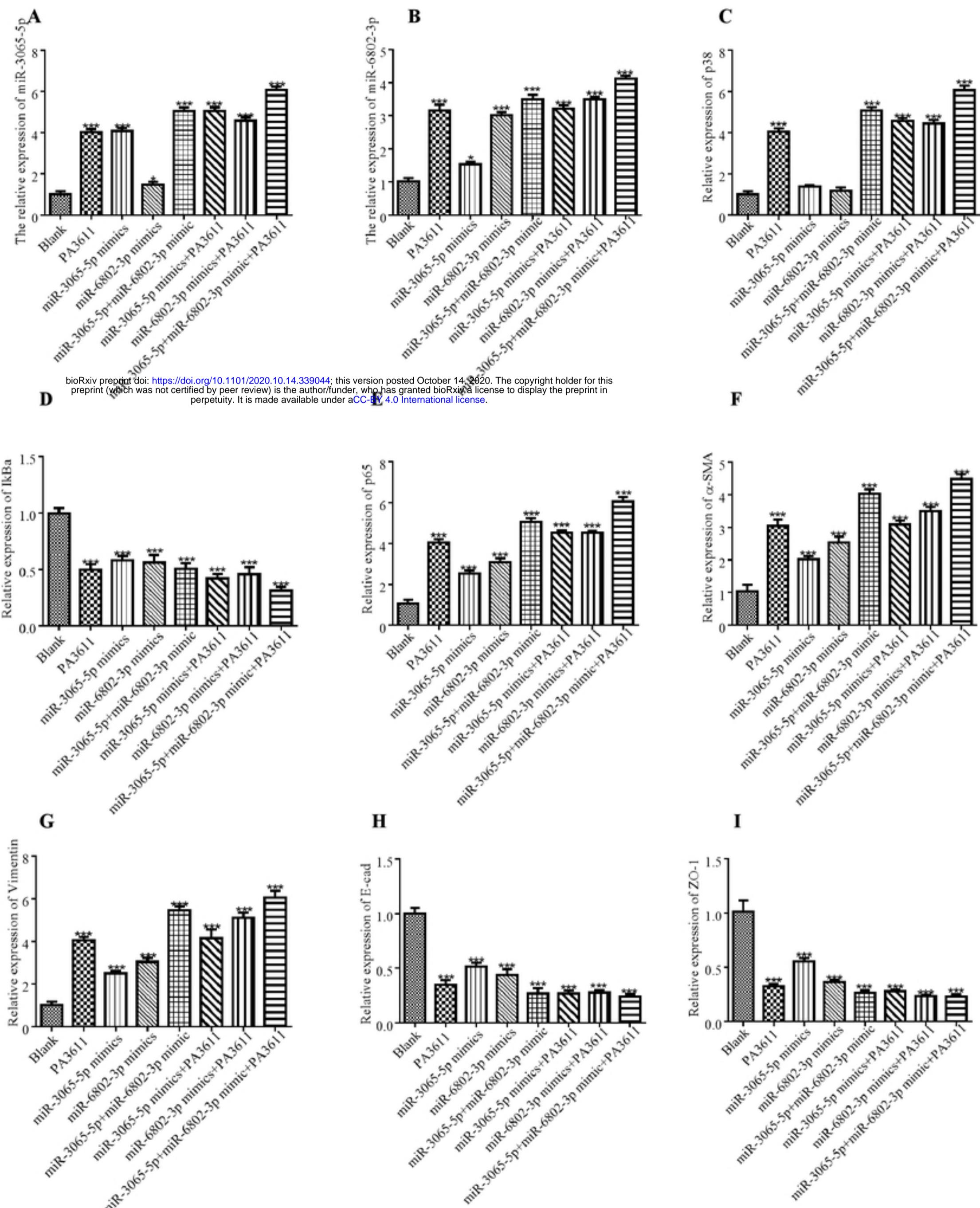
Figure 8



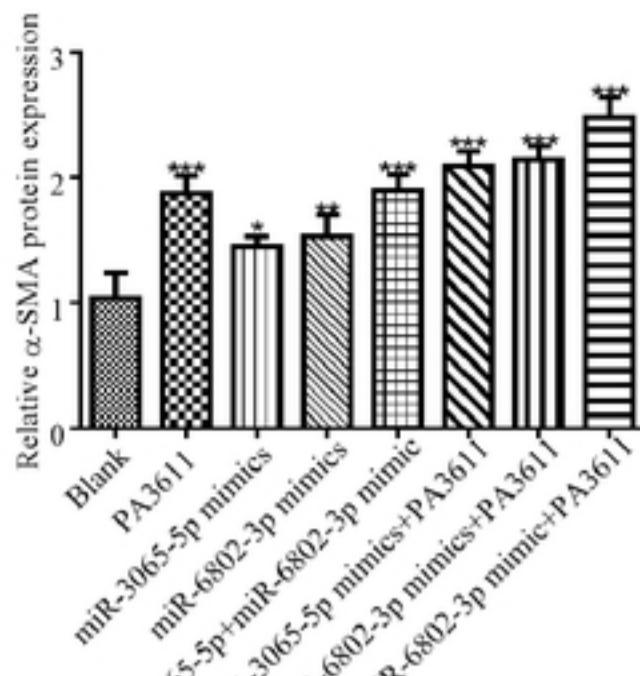
Supplemental figure 1


A

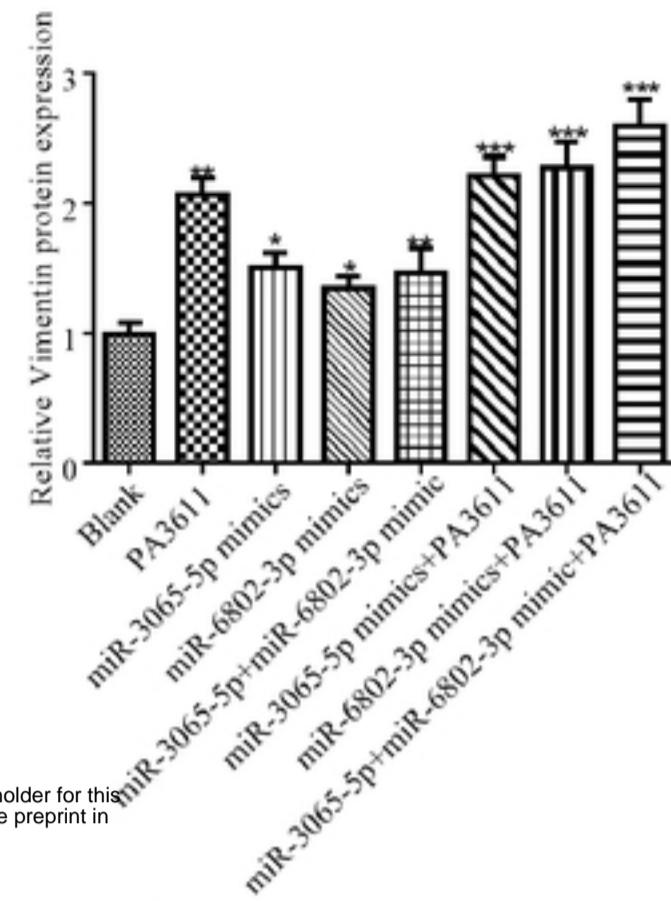

B


C

Supplemental figure 2

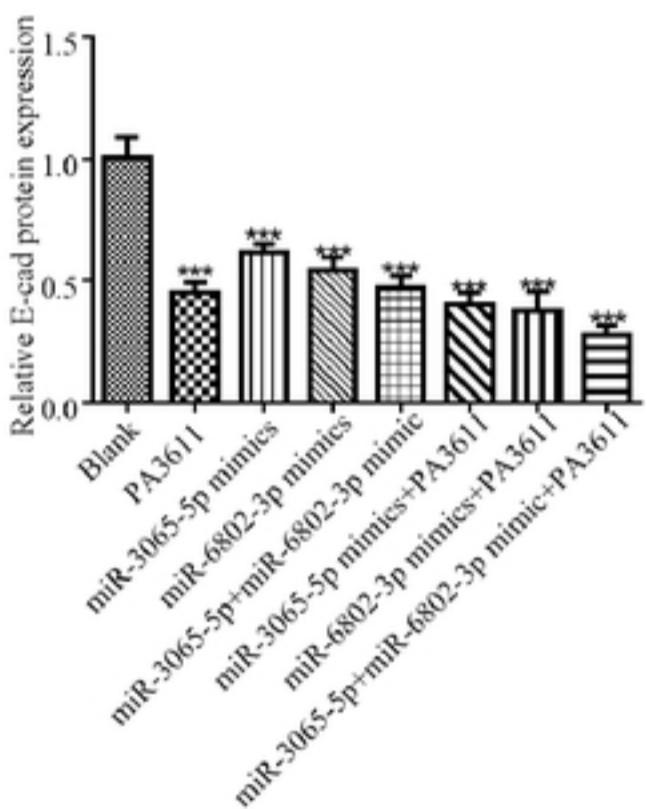


Supplemental figure 3

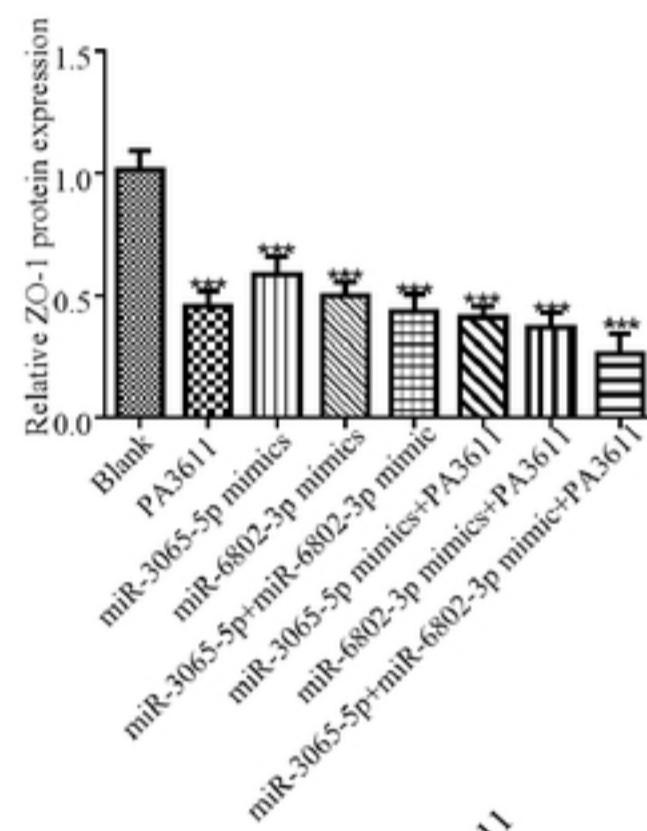


Supplemental figure 4

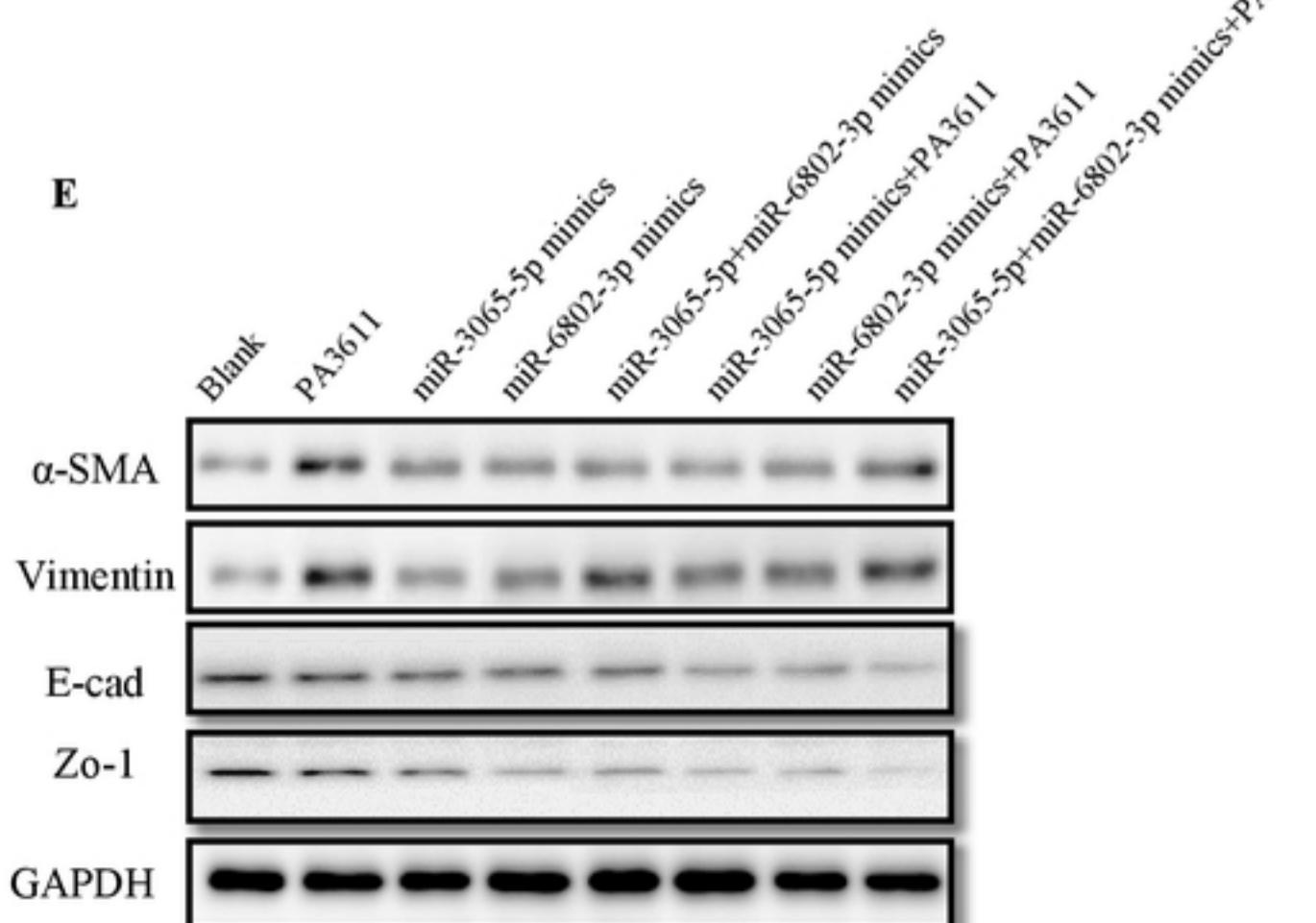
A

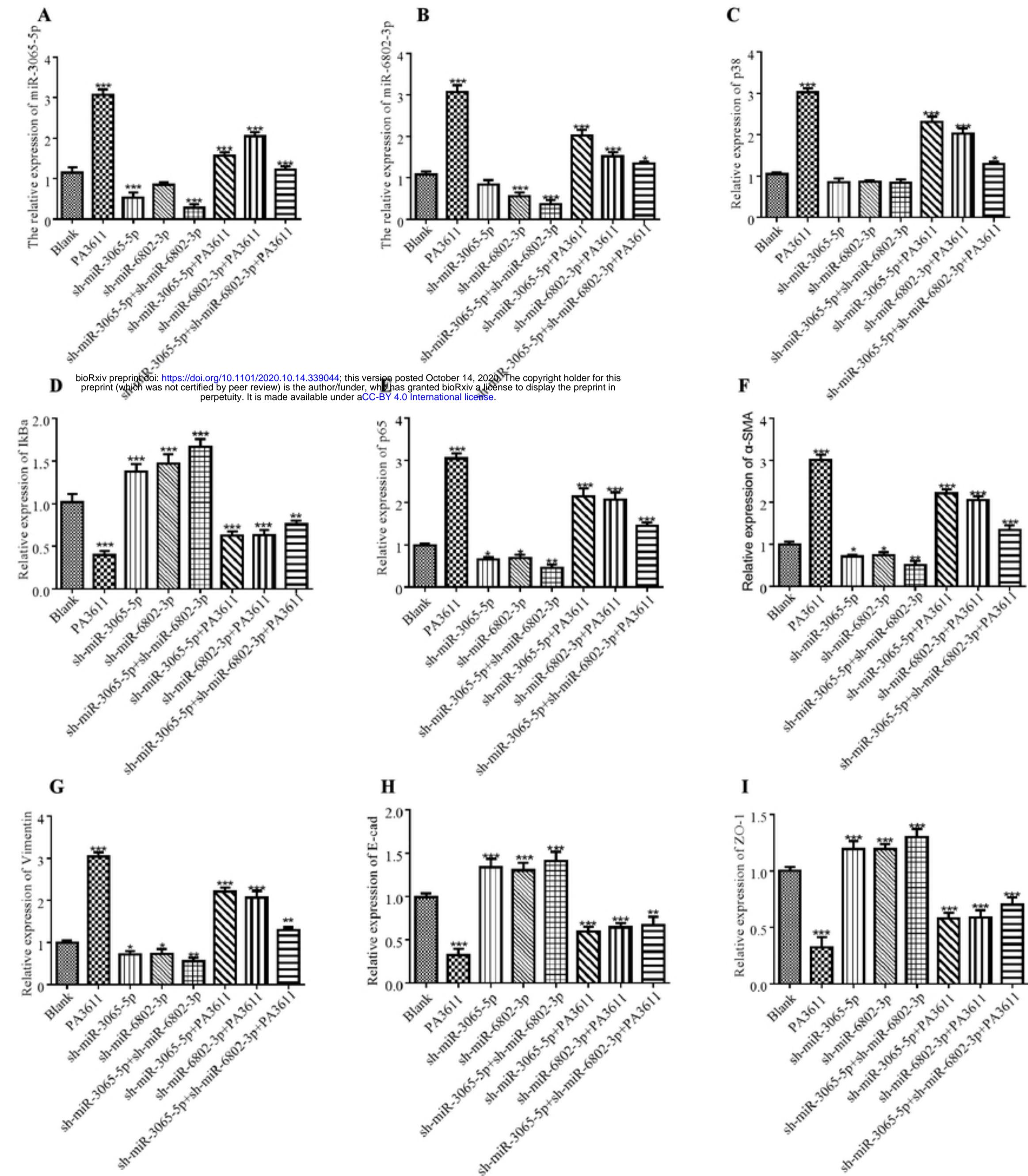


B

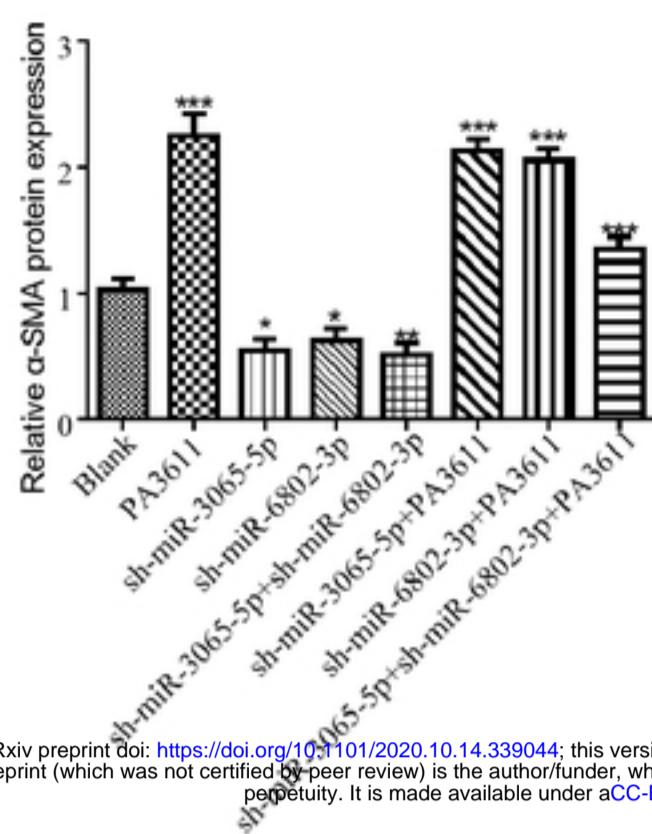


bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.14.339044>; this version posted October 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

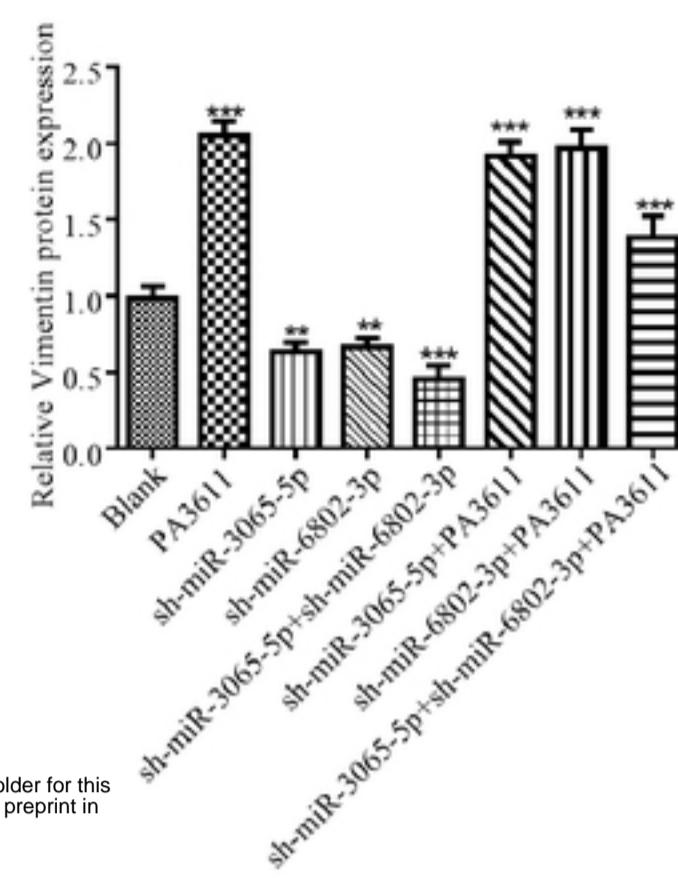

C


D

E

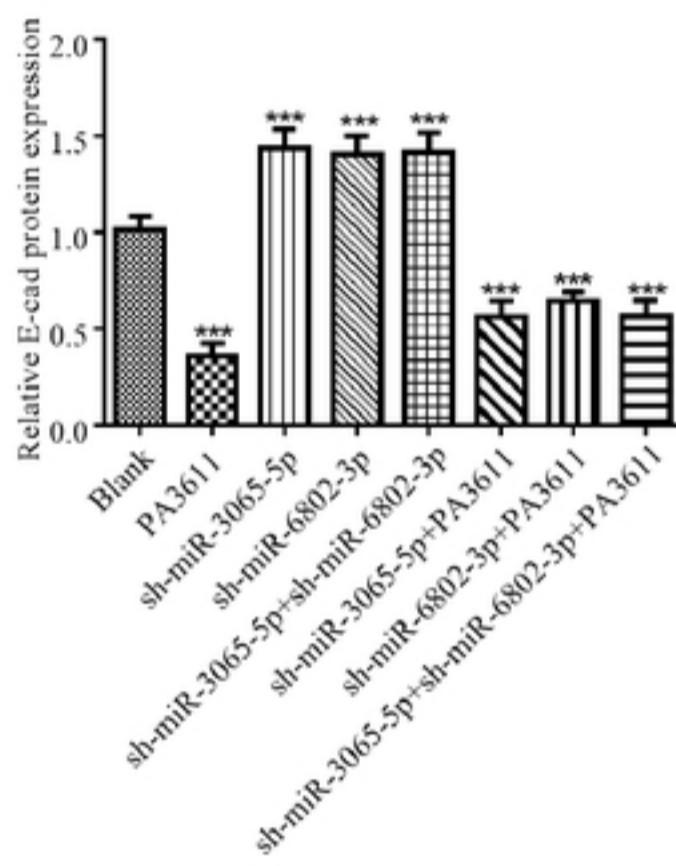


Supplemental figure 5

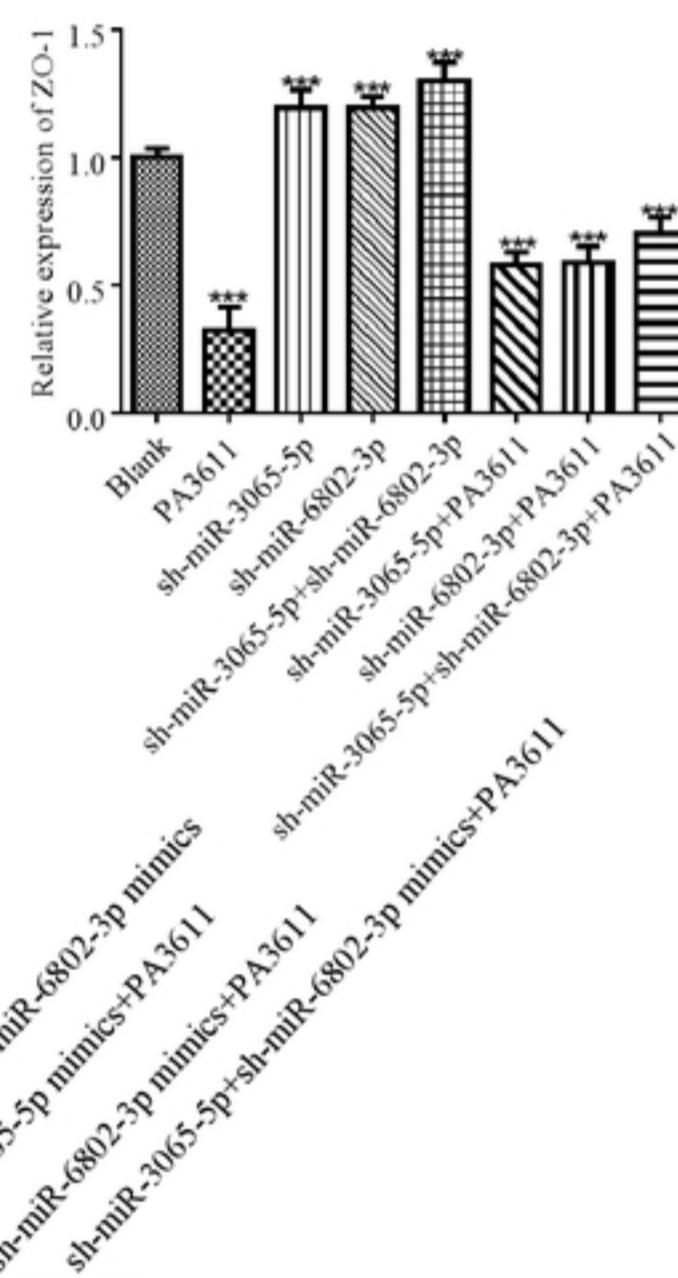


Supplemental figure 6

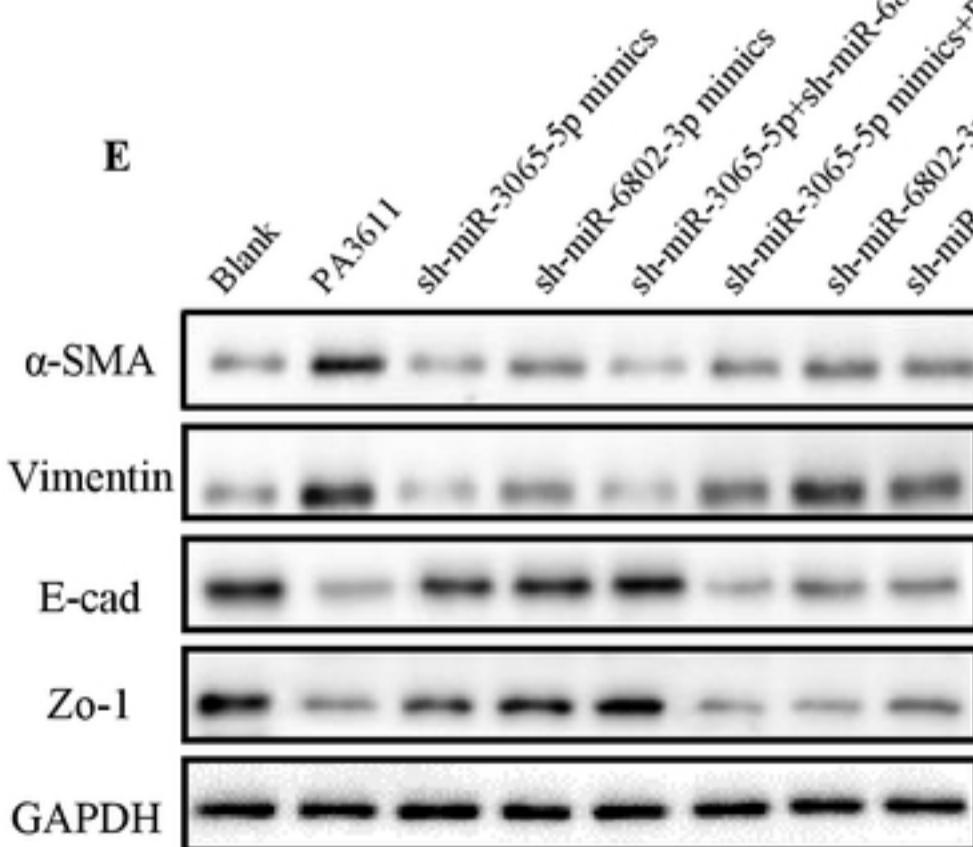
A

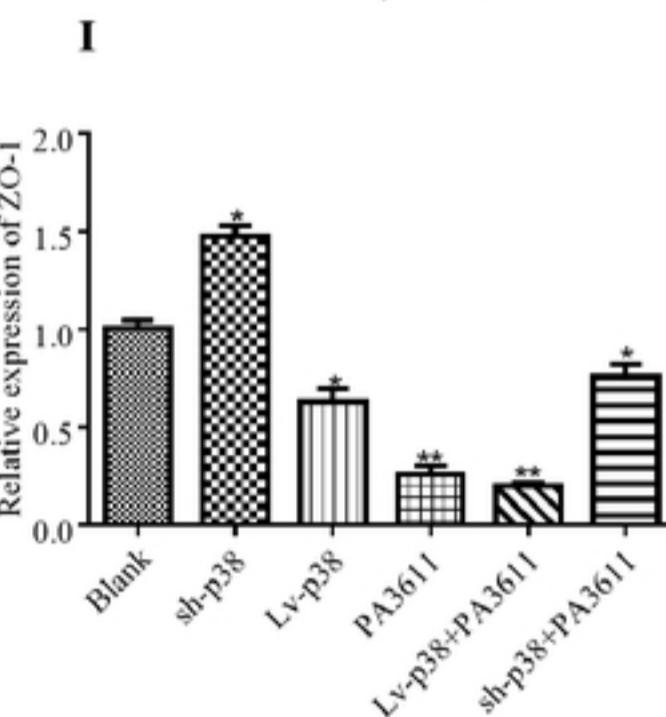
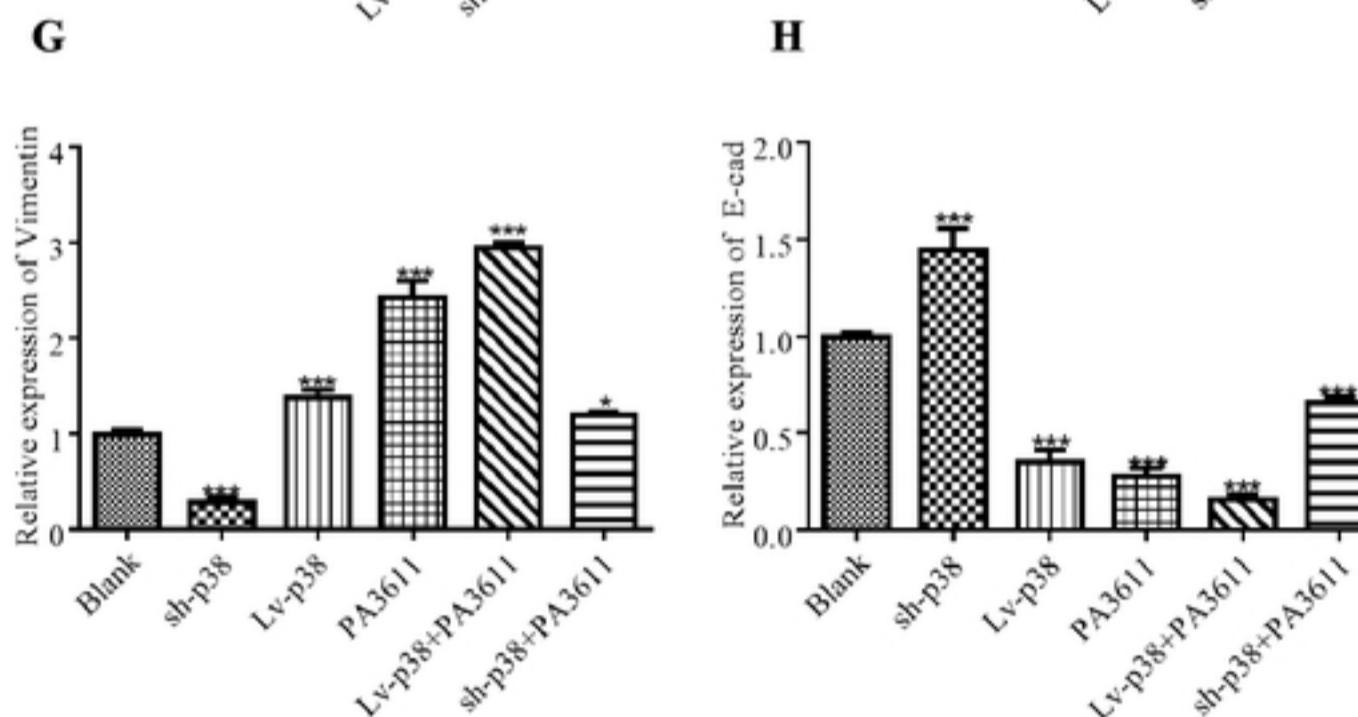
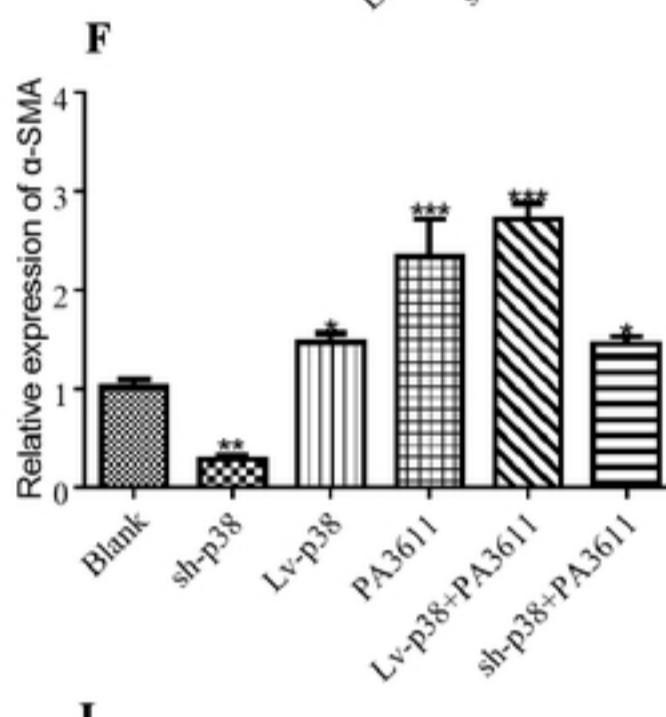
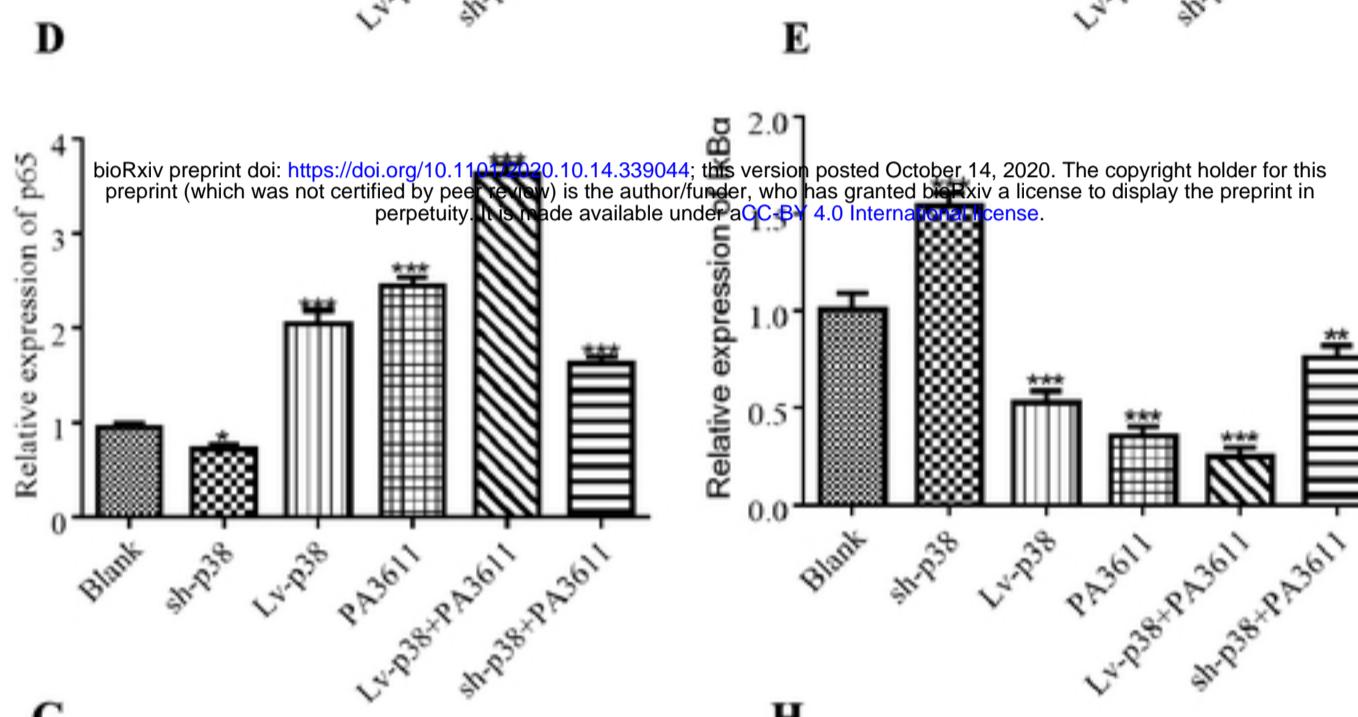
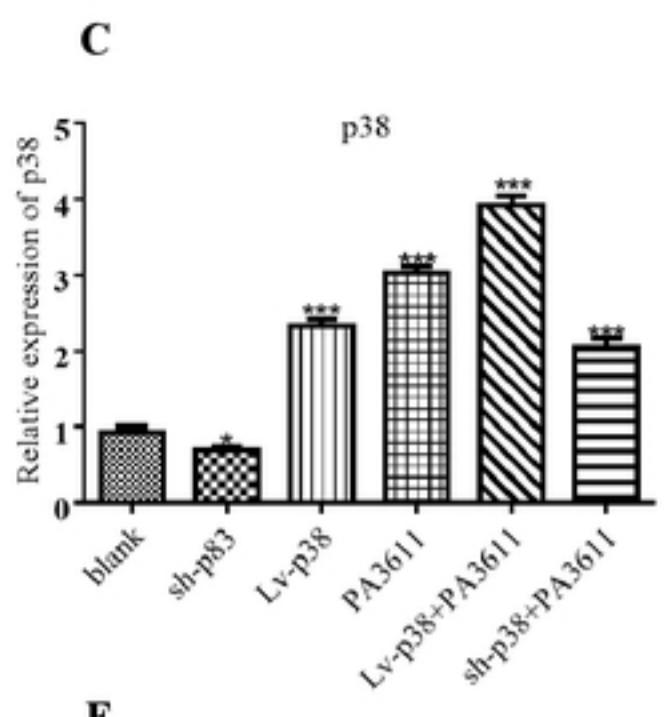
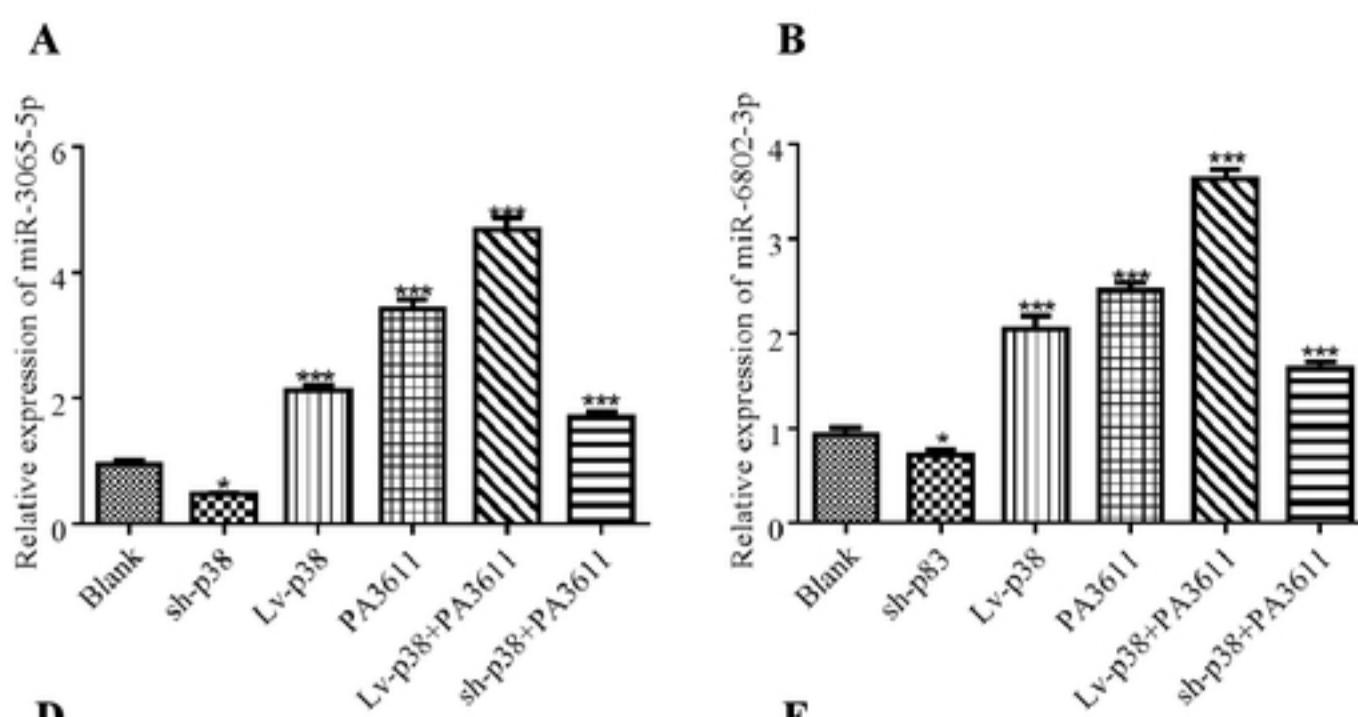


B



bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.14.339044>; this version posted October 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


C







D

E

Supplemental figure 7

Supporting information

S1 Table A list of primers used for PCR

Primer	Sequence
PA3611-Forward:	5'-GATGGATCCCGAGCCTGAAAGACTTCG3'
PA3611-Reverse:	5'-GACCTCGAGTTATTTTGCCTGAATGC-3'
Human-p65-Forward:	5'-CTGTCCTTCTCATCCCATCTT-3'
Human-p65-Reverse:	5'-TCCTCTTCTGCACCTTGTG-3'
Human-p38-Forward:	5'-CGTGTGCAGATCCAGACCA-3'
Human-p38-Reverse:	5'-GCCAGA ATGCAGCCTACAGA-3'
Human-I κ B α -Forward:	5'-CTGTCAGCAGACTCCACT-3'
Human-I κ B α -Reverse:	5'-ACACCAGGTCAAGGATTTCG-3'
Human- α -SMA-Forward:	5'-CCGACCGAATGCAGAAGGA-3'
Human- α -SMA-Reverse:	5'-ACAGAGTATTGCGCTCCGAA-3'
Human-Vimentin-Forward:	5'-GTTTCCCCTAAACCGCTAGG-3'
Human-Vimentin-Reverse:	5'-AGCGAGAGTGGCAGAGGA-3'
Human-E-cadherin-Forward:	5'-GACCGGTGCAATCTTCAAA-3'
Human-E-cadherin- Reverse:	5'-TTGACGCCGAGAGCTACAC-3'
Human-ZO-1-Forward:	5'-GTGCCAGGAAGTTACGAGCG-3'
Human-ZO-1- Reverse:	5'-CACCATACCAACCATCATTGATTG-3'
Human-GAPDH-Forward:	5'-CAGGGCTGCTTTAACTCTGGTAA-3'
Human-GAPDH-Reverse:	5'-GGGTGGAATCATATTGGAACATGT-3'
Rat-p65-Forward:	5'-AACAAACACAGACCCAGGAGT-3'
Rat-p65-Reverse:	5'-CTGTCACCAGGCGAGTTATAG-3'
Rat-p38-Forward:	5'-GTGATTGGTCTGTTGGATGTG-3'
Rat-p38-Reverse:	5'-TGGATTATGTCAGCCGAGTG-3'
Rat-I κ B α -Forward:	5'-TGACCATGGAAGTGATTGGTCAG-3'
Rat-I κ B α -Reverse:	5'-GATCACAGCCAAGTGGAGTGG-3'
Rat- α -SMA-Forward:	5'-AGAAGCCCAGCCAGTCGCCATCA-3'
Rat- α -SMA-Reverse:	5'-AGCAAAGCCCCTACAGAGCC-3'
Rat-Vimentin-Forward:	5'-CCCAGATTAGAACAGCAT-3'
Rat-Vimentin-Reverse:	5'-CACCTGTCTCCGGTATTGCGT-3'
Rat-E-cadherin-Forward:	5'-AAGACCAACGAGGGCATT-3'
Rat-E-cadherin- Reverse:	5'-GCTCTCGCGCAGTGTAAAGAT-3'
Rat-ZO-1-Forward:	5'-AGCGAAGCCACCTGAAGATA-3'
Rat-ZO-1- Reverse:	5'-GATGCCAGCAGGAATATGT-3'
Rat-GAPDH-Forward:	5'-CCTTCATTGACCTCAACTACATG-3'
Rat-GAPDH-Reverse:	5'-CCTTCTCCATGGTGGTGAAGAC-3'

bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.14.339044>; this version posted October 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

S2 Table A list of RNA for transfection

RNA	Sequence
p65-Homo-specific siRNA	5'-GCCCUAUCCUUUACGUCATT-3'
p65-Rat-specific siRNA	5'-AGUCCCUGUCUGCACCUGUTT-3'
p38-Homo-specific siRNA	5'-GCAUAAUGGCCGAGCUGUUTT-3'
p38-Rat-specific siRNA	5'-GACUGUGAGCUAAGAUUCTT-3'
A non-specific siRNA	5'-UUCUCCGAAGGUGUCACGUTT-3'
miR-3065-5p mimic (human/rat)	5'-UCAACAAAAUCACUGAUGC-3'
miR-6802-3p mimic (human/rat)	5'-UUCACCCUCUCACCUAAGCAG-3'
A NC miRNA for mimic (human/rat)	5'-UUCUCCGAACGUGUCACGUUU-3'
Human-miR-2065-5p inhibitor	5'-ACCCUAUCACGAUUAGCAUUAA-3'
Rat-miR-3065-5p inhibitor	5'-ACCCUAUCACAAUUAGCAUUAA-3'
Human-miR-6802-3p inhibitor	5'-CGCAAGGUCGGUUCUACGGGUG-3'
Rat-miR-6802-3p inhibitor	5'-CGCAAGGUCGGUUCUACGGGUG-3'
a NC miRNA for inhibitor	5'-CAGUACUUUUGUGUAGUACAA-3'

Abbreviation: NC: negative control

bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.14.330044>; this version posted October 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.