

1 Auxin guides germ cell specification in *Arabidopsis* anthers

2
3 Yafeng Zheng^{1, 2†}, Donghui Wang^{1, 2, 4†}, Sida Ye^{1, 2}, Wenqian Chen^{1, 5}, Guilan Li², Zhihong
4 Xu^{1, 2}, Shunong Bai^{1, 2, 3*}, Feng Zhao^{1, 2, 5*}

5
6 1. State Key Laboratory of Protein and Plant Gene Research, Beijing 100871, China

7 2. College of Life Sciences, Peking University, Beijing 100871, China

8 3. Center of Quantitative Biology, Peking University, Beijing 100871, China

9 4. National Teaching Center for Experimental Biology, Peking University, Beijing 100871, China

10

11 † These authors contributed equally

12 * Correspondence to: feng.zhao@ens-lyon.fr (F.Z), shunongb@pku.edu.cn (S.N., B.)

13 5. Current address : Laboratoire Reproduction et Développement des Plantes, Université de Lyon 1,
14 ENS-Lyon, INRAE, CNRS, UCBL, 46 Allée d'Italie, 69364 Lyon, France

15

16 Summary

17 Germ cells (GCs) transmit genetic information from one generation to the next. Unlike animal
18 GCs, plant GCs are induced post-embryonically, forming locally from somatic cells. This
19 induction is coordinated with organogenesis and might be guided by positional cues. In
20 angiosperms, male GCs initiate from the internal layers at the four corners of the anther
21 primordia and are gradually enclosed by parietal cell (PC) layers, leading to a concentric GC-
22 PC pattern.^{1, 2} However, the underlying mechanism of GC initiation and GC-PC pattern
23 formation is unclear. Auxin affects pattern formation³ and anther development.⁴⁻¹¹ However,
24 whether GC formation involves auxin remains unknown. We report that the auxin distribution
25 in pre-meiotic anthers parallels GC initiation, forming a centripetal gradient between the outer
26 primordial cells and the inner GCs. The auxin biosynthesis genes *TRYPTOPHAN*
27 *AMINOTRANSFERASE OF ARABIDOPSIS 1* (*TAA1*) and *TRYPTOPHAN*
28 *AMINOTRANSFERASE RELATED 2* (*TAR2*)^{5, 12} are responsible for this patterning and
29 essential for GC specification. *SPOROCYTELESS/NOZZLE* (*SPL/NZZ*, a determinant for GC
30 specification)¹³⁻¹⁵ mediates the effect of auxin on GC specification, modulates auxin

31 homeostasis, and maintains centripetal auxin patterning. Our results reveal that auxin is a key
32 factor guiding GC specification in *Arabidopsis* anthers.

33

34 **Main**

35 Germ cells (GCs) are initiated early in development in animals (during embryogenesis in
36 ecdysozoa and chordata)¹⁶ and later in plants where they arise from somatic cells in the adult
37 (after flowering in angiosperms).^{1,17} The mechanism for GC specification in plants is not well
38 understood.¹⁷⁻²⁰ In *Arabidopsis* and most other angiosperms, male GCs are derived from L2
39 cells at the four corners of the anther primordia. The primordial cells at the corners divide
40 further to form outer parietal cells (PCs) and inner GCs (also termed archesporial cells, or ARs).
41 GCs can be identified by their large cell size and big nuclei. Early pre-meiotic anther
42 development occurs in five stages, as seen by changes to anther shape and cellular morphology
43 (Fig. 1a).^{2,21} By stage 5, a concentric GC-PC pattern is fully established, germ cells (also termed
44 pollen mother cells/PMC at this stage) are prepared for meiosis, and the anther exhibits a four-
45 lobed butterfly-like shape (Fig. 1a). Many genes influence early anther development and form
46 a complex gene regulatory network.^{1,22,23} In this network, the important upstream gene
47 *SPOROCYTELESS/NOZZLE* (*SPL/NZZ*) is necessary and sufficient for GC initiation.¹³⁻¹⁵
48 However, the information about the positional signals guiding GC initiation pattern is very
49 limited.

50

51 Auxin is a morphogen-like compound that plays a pivotal role in pattern formation in plant
52 morphogenesis,³ including anther development.⁶⁻⁹ Auxin is essential for anther initiation,⁴
53 pollen development, anther dehiscence, and other aspects of post-meiotic anther
54 development,^{7-9,24} but its function in microsporogenesis, i.e. germ cell initiation and
55 specification during pre-meiotic anther development, is unknown. Therefore, we investigated
56 the role of auxin in guiding GC specification.

57

58 We first studied auxin distribution during early anther development using immunostaining and
59 auxin bio-sensors. Using antibodies specific to the major form of auxin, indole 3-acetic acid
60 (IAA), we labeled native auxin in early anthers from stage 1 to stage 5 (Fig. 1b, Fig. S1). In
61 stage 1 anthers, auxin was homogeneously distributed in all cells. In stage 2, auxin spread into
62 lateral domains. Starting from stage 3, auxin gradually congregated in central GC domains,
63 accompanying the differentiation of the cell layers; stage 5 anthers displayed a clear difference
64 in auxin levels between GCs and PCs (Fig. 1b, Fig. S1).

65

66 R2D2 is a ratiometric auxin bio-sensor that is used to indicate the relative *in vivo* auxin
67 concentration at the cellular level.^{25,26} We mapped R2D2 signals in abaxial anther lobes (Fig.
68 1c-f). The longitudinal view of anther lobes yielded a fine map of auxin distribution patterns
69 from stage 3 to stage 5: in stage 3, the auxin gradient was steep, with a minimum in the outer
70 cells and a maximum in the inner cells; from stage 4 to stage 5, auxin was concentrated in the
71 cells of the GC domains (Fig. 1d-e), which are characterized by their large nuclei (Fig. 1f).

72

73 The auxin signals detected through immunolocalization and bio-sensors are the combined
74 output of auxin transport,²⁷ metabolism (including biosynthesis,²⁸ modification,²⁹ and
75 degradation³⁰), and complex signaling pathways that stimulate downstream events.³¹ To
76 pinpoint the particular components responsible for the centripetal auxin distribution and its
77 potential effects on GC specification, we conducted RNA-seq and genetic manipulation
78 experiments. RNA-seq analysis revealed a variable expression pattern for auxin-related genes
79 in stage 3 and stage 4 anthers, but no clear hints to pinpoint whether auxin polar transport,
80 metabolism, or signaling pathways potentially play a key role in early anther development (Fig.
81 S2). We then created transgenic plants that interfered with a range of auxin-related functions
82 in early anther development (Fig. S3) and used Alexander staining to evaluate GC
83 formation.^{20,32} Phenotyping of these plants showed that altered auxin synthesis caused severe
84 pollen defects (Fig. S3). These genetic data suggested that the regulations in auxin biosynthesis
85 pathway may be important for microsporogenesis. Therefore, we examined the role of auxin
86 biosynthesis in GC formation.

87

88 The L-Trp-dependent indole-3-pyruvate biosynthesis pathway is the main route for IAA
89 production.²⁸ This pathway includes enzymes encoded by genes in the *TRYPTOPHAN*
90 *AMINOTRANSFERASE OF ARABIDOPSIS 1* (*TAA1*) and *YUCCA* (*YUC*) families. Because
91 the *TAA1* family works upstream of the *YUC* family,³³ and *TAA1* and *TRYPTOPHAN*
92 *AMINOTRANSFERASE RELATED 2* (*TAR2*) are expressed in early anthers in our RNA-seq
93 data, we focused only on *TAA1* and its close homolog, *TAR2* in our investigation of the role of
94 auxin biosynthesis in GC formation. *TAA1* and *TAR2* were initially expressed throughout
95 anther primordia, but became concentrated in GC domains by stage 5 (Fig. S4). In *wei8-1 tar2-*
96 2 (a weak allele of the *taa1 tar2* mutant⁵), around 40% of anthers formed pollen in two locules,
97 ~20% harbored pollen in only one locule, and the remaining 40% were completely sterile (Fig.

98 S5a). By contrast, the anthers of *wei8-1 tar2-1* (a strong allele of *taa1 tar2*⁵) were completely
99 devoid of pollen (Fig. S5a). Thus, TAA1 and TAR2 affect GC formation.

100
101 To investigate the role of auxin biosynthesis in centripetal auxin patterning and GC
102 differentiation, we crossed R2D2 with *wei8-1/+ tar2*. In the F₃ generation, as expected, auxin
103 production was significantly reduced in *wei8-1 tar2-2* and *wei8-1 tar2-1* anthers (Fig. 2a-b),
104 and auxin-responsive genes were broadly downregulated (Fig. S5b). Even though a weak
105 centripetal auxin gradient persisted in *wei8-1 tar2-2* abaxial anther lobes, this gradient was lost
106 in *wei8-1 tar2-1* (Fig. 2a-b). Consistent with the perturbation of the auxin distribution pattern,
107 the nucleus size also changed in *taa1 tar2* mutants. In wild-type stage 3/4 anthers, the nuclei
108 of GCs located in L4 were bigger than those of somatic cells (Fig. 1f), similar to those in *wei8-*
109 *1/+ tar2-2* (Fig. 2c, Fig. S5a). However, in *wei8-1 tar2-2*, the L4 nuclei were significantly
110 smaller (Fig. 2c) and *wei8-1 tar2-1* anthers had smaller nuclei in L4 and L3 cells (Fig. 2c).

111
112 In examination of the differentiation status of GC cells using histological analysis in stage 5
113 *wei8-1 tar2-2* anthers (Fig. 2d-g), we found in some of the abaxial locules, GC-like cells were
114 visible, but the cell number and size were reduced (Fig. 2e). In other abaxial locules, cells were
115 mostly vacuolated, which complicated the observation of GCs or well-differentiated PCs (Fig.
116 2f). All cells in the adaxial locules were vacuolated, so we were unable to identify GCs or well-
117 organized PC layers (Fig. 2g). We quantified these phenotypes: 48.8% of *wei8-1 tar2-2* anthers
118 failed to form GCs or well-differentiated PCs and 51.2% of the anthers only showed GCs at
119 abaxial locules (Fig. 2h, Fig. S5c). The strong allele *wei8 tar2-1* contains only locules with
120 vacuolated cells, which caused sterility (Fig. 2h, Fig. S5c). Thus, we concluded that *TAA1* and
121 *TAR2* are required for dynamic auxin distribution during early anther development, and
122 indispensable for GC specification.

123
124 How is auxin involved in GC specification? In *Arabidopsis*, SPL/NZZ is the determinant for
125 GC differentiation,¹³⁻¹⁵ and the *SPL/NZZ* expression pattern overlaps with the distribution of
126 auxin (Fig. S6a).²⁰ In *spl/nzz* anthers, ARs (early stage of GCs) and their adjacent cells stop
127 differentiating at stage 3.^{14,15} In stage 4, cells become vacuolated, hindering the formation of
128 GCs and well-organized PCs. To test if auxin affects GC specification by regulating *SPL/NZZ*
129 expression, we probed *SPL/NZZ* for transcripts in *wei8-1 tar2-2* anthers by *in situ* hybridization.
130 In 50% of anthers, *SPL/NZZ* transcripts were diminished or absent in the adaxial lobes, and

131 completely absent in the rest (Fig 3a, Fig. S6a). We quantified *SPL/NZZ* transcripts using
132 quantitative polymerase chain reaction (qPCR) in *taa1 tar2* flowers. *wei8-1 tar2-2* contained
133 70% fewer *SPL/NZZ* transcripts and *wei8-1 tar2-1* contained almost no *SPL/NZZ* transcripts
134 when compared with wild type (Fig. 3b). To test whether auxin mediates *SPL/NZZ* expression
135 at the transcriptional or at the post-transcriptional level, we examined *SPL/NZZ* promoter
136 activity in *taa1 tar2* by crossing *pSPL:GUS* with *taa1/+ tar2*. In the F₃ progeny, GUS signals
137 became weaker in *wei8-1 tar2-2* and were absent in *wei8-1 tar2-1* anthers (Fig. 3C, Fig. S6b).
138 Thus, auxin regulates *SPL/NZZ* expression at the transcriptional level.

139

140 To test if auxin affects GC specification by regulating *SPL/NZZ* transcription, we ectopically
141 expressed *SPL/NZZ* under another AR-active promoter, *pREM22*.³⁴ If this transgene
142 complemented the *taa1 tar2* phenotype, that would indicate *SPL/NZZ* is downstream of auxin
143 in mediating GC specification. As expected, *pREM22:SPL-Myc* partially restored the fertility
144 of *wei8-1 tar2-2* (Fig 3d-e).³⁴ In a *wei8-1 tar2-2 pREM22:SPL-Myc* plant, GCs appeared in
145 adaxial locules of 18.2% of the anthers, which were fully sterile in *wei8-1 tar2-2* (Fig. 3f, Fig.
146 2h). The proportion of abaxial locules with GCs increased from 51.2% in *wei8-1 tar2-2* (Fig.
147 2h) to 81.8% in *wei8-1 tar2-2 pREM22:SPL-Myc* (Fig. 3f). These data demonstrated that
148 *SPL/NZZ* functioned downstream of auxin to mediate GC specification. On the other hand, as
149 we found abolishment of a centripetal auxin gradient in *spl* mutant anthers (Fig. 4a-c), together
150 with the reported suppression of *YUC* genes by ectopic expression of *SPL/NZZ*³⁵, we conclude
151 that *SPL/NZZ* also has a feedback regulatory effect on the auxin biosynthesis pathway to
152 maintain auxin homeostasis and distribution.

153

154 Auxin deficiency results in a defect in GC specification; excess auxin also affects GC formation
155 (Fig. S3, Fig. S7a-b). We quantified the abnormality of anther development in four independent
156 T₂ lines of *pSPL:iaaM* and three independent T₁ lines of *pREM22:iaaM* (Fig. S7a). Around
157 20–60% of anthers in these transgenics were completely sterile and only 3.65% of the anthers
158 were normal (Fig. S7a). Cells that normally differentiate into GCs in wild type did not
159 differentiate, but became vacuolated (Fig. 4d). This deficiency occurred in 62.6% of abaxial
160 anther lobes and the remaining 37.4% of anthers were completely sterile (Fig. 4d-e, Fig. S7c).
161 In *pSPL:iaaM* transgenic lines, *SPL/NZZ* gene expression increased (Fig. 4f), consistent with
162 upregulation by auxin (Fig. 3a-c). However, the centripetal auxin distribution pattern was
163 severely disrupted (Fig. 4g-h). This abnormal auxin distribution pattern is similar to what we

164 observed in the *spl* mutant (Fig. 4a-b). Given that *SPL/NZZ* negatively regulates auxin
165 biosynthesis to maintain auxin homeostasis and patterning (Fig. 4),³⁵ our observations in
166 *pSPL:iaaM* anthers underline the importance of auxin control in GC specification.

167

168 In most higher animals, the GCs differentiate in early embryogenesis to form a germline carried
169 by the soma. In contrast, in most land plants, GCs that are committed into meiosis are
170 segregated from somatic cells during late development. In many angiosperms, such as
171 *Arabidopsis*, male GCs are initiated at the four corners of anther primordia, but little was known
172 about the positional information that induces GC initiation. Our data demonstrates that auxin
173 plays a key role; in particular, auxin biosynthesis is indispensable. Through spatiotemporal
174 interactions with the GC-determining *SPL/NZZ*, a centripetal auxin gradient forms and GCs
175 are specified in the inner layers of anther lobes. When the auxin gradient is abolished, GC
176 specification halts. The dynamic interactions between auxin and *SPL/NZZ* provide a new
177 context for the spatiotemporal model of GC initiation and specification. This leads to several
178 intriguing questions, such as how the homogenous auxin distribution is disrupted during anther
179 development (possibly via polar auxin transport)?⁶ What is the detailed mechanism of
180 auxin/SPL feedback? How do GCs differentiate and induce the centripetal auxin distribution?
181 Answering these questions will shed further light on how GCs are induced and specified from
182 somatic cells during plant development. In addition, this knowledge may improve our
183 understanding of how plants and animals evolved such dramatically different routes for GC
184 induction and differentiation.

185

186 **Methods**

187 **Plant material and growth conditions**

188 The *Arabidopsis* reporter lines (R2D2,²⁵ *pSPL::GUS*,²⁰ and *pSPL:SPL-myc*²⁰) and mutants
189 (*spl*,¹⁴ *wei8-1 tar2-1*⁵, and *wei8-1 tar2-2*⁵) have been described previously. The seeds were
190 sterilized, placed on Murashige and Skoog (MS) medium for germination, and cultured *in vitro*.
191 After two weeks, the seedlings were transplanted to soil and grown under long-day conditions
192 (16-h light/8-h dark; light bulb, Philips 28 W 840 neon, 4000 K, 103 lm/W) at 22°C.

193

194 **Plasmid construction and plant transformation**

195 To overexpress auxin-related genes in anthers, the full-length cDNA was cloned and fused into
196 an *SPL* promoter cassette.²⁰ For generating RNAi lines, amiRNAs were designed following the
197 instructions on the website (<http://wmd3.weigelworld.org/cgi-bin/webapp.cgi>); these were

198 cloned into the *SPL* promoter cassette.²⁰ These constructs were transformed into Col-0 using
199 the floral dip method.³⁶ T₁ plants were screened on Murashige and Skoog (MS) medium
200 containing glufosinate-ammonium; resistant plants were selected for further analysis.

201

202 The *REM22* promoter was chosen based on its activity in GC precursors (ARs).³⁴ A 1022-bp
203 region upstream of the start codon was cloned into the pEGAD and pCambia1305.1 target
204 vectors to get *REM22* promoter cassettes; these were named pEGAD-REM22 and
205 pCambia1305.1-REM22, respectively. To obtain the *pREM22:iaaM* construct, the *iaaM*
206 coding sequence was cloned into pEGAD-REM22. It was then transformed into Col plants and
207 transgenics were screened using glufosinate-ammonium *in vitro*.

208

209 The *pREM22:SPL-Myc* construct was generated by fusing the *SPL-Myc* coding sequence,
210 which was cloned from the *pSPL:SPL-Myc* construct,²⁰ into the pCambia1305.1-REM22
211 vector. *pREM22:SPL-Myc* was then transformed into *wei8-1/+ tar2-2* plants. *pREM22:SPL-*
212 *Myc* transgenics were screened using hygromycin B and identified by PCR in T₂ progeny. The
213 primers used for cloning are listed in Table S1.

214

215 **Immunofluorescence localization assay**

216 To detect IAA distribution, inflorescences were soaked in 3% (w/v) 1-ethyl-3-(3-
217 dimethylaminopropyl) carbodiimide (Sigma Chemical, St. Louis, MO, USA, E6383) with 0.05%
218 (v/v) Triton X-100, vacuum infiltrated for 1 h, and incubated in darkness at 4°C for 1 h. The
219 inflorescences were rinsed three times in phosphate buffer (0.2 M, pH 7.4) for 10 min each,
220 transferred to fixative (4% (w/v) paraformaldehyde in 0.2 M phosphate buffer and 0.1% (v/v)
221 Triton X-100), vacuum infiltrated for 1 h, and incubated overnight at 4°C. Paraffin sectioning
222 was performed as described previously,³⁷ with a minor modification. The 7-μm sections were
223 spread on poly-Lys-coated slides. After dewaxing, the slides were incubated in fixative again,
224 and washed twice with washing buffer (0.2 M phosphate buffer, 0.1% (v/v) Tween 20) for 10
225 min each. For blocking, the sections were soaked in 10 mM phosphate buffer containing 3%
226 (w/v) BSA blocking solution for 1 h (at room temperature) or overnight (at 4°C). The anti-IAA
227 antibodies (Phytodetek, catalog no. PDM 09346/0096; diluted 1:150 in blocking solution) were
228 added and the sections incubated for 3–4 h (at room temperature, 25°C) or overnight (at 4°C).
229 After incubation, the samples were washed twice in 10 mM phosphate buffer containing 2.9%
230 (w/v) NaCl, 0.1% (v/v) Tween 20, and 0.1% (v/v) BSA for 10 min at a time, and then washed

231 with 10 mM PBS, 0.88% (w/v) NaCl, 0.1% (v/v) Tween 20, and 0.8% (w/v) BSA for 10 min.
232 Anti-rabbit Alexa Fluor 594 (affinity anti-Myc antibody) and anti-mouse Fluor 488 (affinity
233 anti-IAA antibody) secondary antibodies were diluted 1:500 in blocking solution and incubated
234 for 4 h at room temperature. Two washes (15 min each) with 10 mM PBS, 0.88% (w/v) NaCl,
235 0.1% (v/v) Tween 20, and 0.8% (w/v) BSA were followed by a 1 min rinse in 10 mM PBS.
236 Images were photographed using a Zeiss microscope (Axio Imager D2), processed by ZEN lite
237 2011 (blue edition; Carl Zeiss), and edited with Photoshop CS6 (Adobe Systems). At least
238 three biological replicates were performed and similar results were obtained in all experiments.
239

240 **Confocal microscopy**

241 Flowers between stages 7 and 9 were dissected and the sepals were removed. The anthers (at
242 stages 3–5) were excised from the meristem, and quickly placed on a slide with double-sided
243 tape (3M) to hold the abaxial locules upward. A drop of water was placed on the anthers and
244 they were imaged using an LSM 710 confocal microscope (Carl Zeiss, Oberkochen, Germany)
245 equipped with a water immersion objective (W Plan-Apochromat 20x/1.0 DIC VIS-IR).
246 Fluorescence images were analyzed using ZEN LITE 2011 software (black edition, Carl Zeiss).
247 *wei8-1 tar2-2* and *spl* were sterile and in different genetic backgrounds than R2D2. To compare
248 the R2D2 signal in different genetic backgrounds, we chose *wei8/+ tar2-2* and *spl/+* (which
249 are as fertile as wild type; see supplemental data) as the controls for *wei8 tar2* and *spl*,
250 respectively.

251 To quantify the R2D2 signals, contours of nuclei were manually selected in the mDII
252 channel using the elliptical selection tool in Fiji freeware, and regions of interest (ROIs) were
253 added to the ROI manager. The area of the nuclei and the mean gray values of different ROIs
254 in mDII and DII channels were measured. The mDII/DII ratio was calculated in Microsoft
255 Excel. The results were plotted using the PlotsOfData web tool.³⁸

256 To generate ratiometric images of R2D2, ratios between signal intensities of each pixel
257 from the mDII and DII channel were calculated using Fiji; signal intensities in both channels
258 below 10–60 (based on the average signal intensities between the nuclei in the mDII channel)
259 were set to 0 in ratio images to subtract the background.

260

261 **RNA-sequencing**

262 Stage 3 and stage 4 stamens were dissected and pooled separately for each replicate. RNA was
263 extracted using RNeasy Plant Mini Kit (Qiagen, Cat NO. 74904) according to the
264 manufacturer's instructions. Libraries were constructed using the TruSeq Stranded Total RNA

265 Sample Prep Kit (Illumina). The RNA-seq libraries were sequenced using a HiSeq2000 Pair
266 End 2x100bp at the Peking University BIOPIC High-throughput Sequencing Center. The
267 original image data generated by the sequencing machine were converted into sequence data
268 via base calling (Illumina pipeline CASAVA v1.8.2). Then subjected to standard quality
269 control (QC) criteria to remove all of the reads that fit any of the following parameters: (1)
270 reads that aligned to adaptors or primers with no more than two mismatches, (2) reads with >10%
271 unknown bases (N bases), and (3) reads with >50% of low-quality bases (quality value #5) in
272 one read. Finally, 1308.3 Gb (94.4%) of filtered reads were left for further analysis after QC,
273 and reads mapped to rRNA were discarded. After that, the remaining reads were mapped to the
274 TIR9 reference genome using Bowtie 2 and TopHap. The RNA-seq data are deposited at
275 Beijing Institute of Genomics Data Center (<https://bigd.big.ac.cn/?lang=en>) (BioProject:
276 PRJCA003607).

277

278 **Alexander staining assay**

279 To stain pollen, flowers were dissected from the inflorescence, opened using tweezers, and
280 soaked in Alexander staining solution³² for at least 10 h. The stamens were dissected from the
281 flowers, placed on slides, and sealed with chloral hydrate solution (4 g chloral hydrate, 1 mL
282 glycerol, and 2 mL deionized water). To compare the different genotypes, flowers were
283 dissected at the same developmental stage.

284

285 ***In situ* hybridization**

286 *In situ* hybridization was performed according to a previously described protocol.³⁹ Images
287 were taken using a Zeiss microscope (Axio Imager D2). Primers used for preparing the probes
288 targeting *TAA1*, *TAR2*, and *SPL* transcripts are listed in table S1.

289

290 **Histological analysis**

291 Cross-sections of anthers were obtained by paraffin sectioning. The procedures were conducted
292 according to Wang et al., 2010.³⁷ Inflorescences were collected at the same developmental
293 stage in order to compare the phenotypes between different lines. Anthers at stages 4–11 were
294 chosen to quantify locule sterility. Quantitative analysis was carried out using Microsoft Excel.

295

296 For electron microscopy, flowers from stages 7–9 were selected from the inflorescences and
297 soaked in 4% (w/v) paraformaldehyde and 2.5% (w/v) glutaraldehyde (Sigma, G5882). After

298 vacuum infiltration for 1 h, the samples were incubated at 4°C overnight. They were post-fixed
299 in 2% (w/v) OsO₄ (Ted Pella, 18451) in phosphate buffer (0.1 M, pH 7.4) at room temperature
300 for 90 min. The staining buffer was replaced with 2.5% (w/v) ferrocyanide (Sigma, 234125) in
301 phosphate buffer (0.1 M, pH 7.4) at room temperature for 90 min. After being washed three
302 times in 0.1 M phosphate buffer, the samples were incubated with filtered thiocarbohydrazide
303 (Sigma, 223220) at 40°C for 45 min. Then the samples were fixed in unbuffered 2% OsO₄ for
304 90 min, followed by incubation in 1% (w/v) uranyl acetate (Zhongjingkeyi, China) aqueous
305 solution at 4°C overnight. Then, they were incubated in a lead aspartate solution (0.033 g lead
306 nitrate (Sigma, 228621) in 5 mL 0.03 M aspartic acid (Sigma, 11189, pH 5.0)) at 50°C for 120
307 min, and dehydrated through a graded ethanol series (50%, 70%, 80%, 90%, and 100% ethanol,
308 10 min each) and pure acetone. The samples were embedded in Epon-812 resin (SPI, 02660-
309 AB). Ultrathin sections (50 nm) were cut with a diamond knife (Diatome, MC16425) and
310 imaged using a scanning electron microscope (Zeiss Gemini 300) with a resolution of 3
311 nm/pixel and dwell time of 2–5 µs.

312

313 **Quantitative Real-Time PCR**

314 Total RNA was extracted from *Arabidopsis* inflorescences using E.Z.N.A Plant RNA kit
315 (OMEGA, R6827-01). RNA samples were digested using RQ1 RNase-free DNase (Promega,
316 M6101). For first-strand cDNA synthesis, 1 µg of RNA was used with ReverTra Ace qPCR
317 RT Kit (TOYOBO, Code No.FSQ-101). The SYBR Premix Ex Taq (TaKaRa, RR420A) was
318 used to carry out quantitative real-time PCR using the Applied Biosystems 7500 real-time PCR
319 system. *GAPDH* was used as internal reference. The sequences of primers used are listed in
320 Supplemental Table S1.

321

322 **β-Glucuronidase (GUS) staining assay**

323 For GUS staining, whole *pSPL:GUS* inflorescences were soaked in X-Gluc solution (100 mM sodium
324 phosphate buffer, 10 mM EDTA, 0.5 mM K₃Fe(CN)₆, 3 mM K₄Fe(CN)₆, 0.1% (v/v) Triton X-100)
325 containing 1 mg/mL of β-glucuronidase substrate X-gluc (5-bromo-4-chloro-3-indolylglucuronide)),
326 and vacuum infiltrated for 1 h in darkness. The inflorescences were incubated at 37°C in darkness for
327 16 h. After staining, the samples were dehydrated in a graded ethanol series [70%, 85%, 95%, and
328 100% twice (v/v)] until the chlorophyll was completely removed. Flowers were then dissected and
329 placed on the slide, sealed with chloral hydrate solution, and photographed using a Zeiss microscope
330 (Axio Imager D2). Images were processed using ZEN lite 2011 (blue edition; Carl Zeiss).

331

332 **References**

- 333 1. Walbot, V. & Egger, R. L. Pre-Meiotic Anther Development: Cell Fate Specification and
334 Differentiation. *Annual Review of Plant Biology* **67**, 365–395 (2016).
- 335 2. Ma, H. Molecular genetic analyses of microsporogenesis and microgametogenesis in
336 flowering plants. *Annu. Rev. Plant Biol.* **56**, 393–434 (2005).
- 337 3. Benková, E. *et al.* Local, Efflux-Dependent Auxin Gradients as a Common Module for
338 Plant Organ Formation. *Cell* **115**, 591–602 (2003).
- 339 4. Cheng, Y., Dai, X. & Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases
340 controls the formation of floral organs and vascular tissues in *Arabidopsis*. *Genes Dev.* **20**,
341 1790–1799 (2006).
- 342 5. Stepanova, A. N. *et al.* TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone
343 Crosstalk and Plant Development. *Cell* **133**, 177–191 (2008).
- 344 6. Cardarelli, M. & Cecchetti, V. Auxin polar transport in stamen formation and
345 development: how many actors? *Front. Plant Sci.* **5**, (2014).
- 346 7. Cecchetti, V., Altamura, M. M., Falasca, G., Costantino, P. & Cardarelli, M. Auxin
347 Regulates *Arabidopsis* Anther Dehiscence, Pollen Maturation, and Filament Elongation.
348 *Plant Cell* **20**, 1760–1774 (2008).
- 349 8. Sakata, T. *et al.* Auxins reverse plant male sterility caused by high temperatures. *PNAS*
350 **107**, 8569–8574 (2010).
- 351 9. Song, S. *et al.* OsFTIP7 determines auxin-mediated anther dehiscence in rice. *Nature*
352 *Plants* **4**, 495 (2018).
- 353 10. Estornell, L. H., Landberg, K., Cierlik, I. & Sundberg, E. SHI/STY Genes Affect Pre-
354 and Post-meiotic Anther Processes in Auxin Sensing Domains in *Arabidopsis*. *Front.*
355 *Plant Sci.* **9**, (2018).

356 11. Yang, J. *et al.* Dynamic Regulation of Auxin Response during Rice Development
357 Revealed by Newly Established Hormone Biosensor Markers. *Front. Plant Sci.* **8**, (2017).

358 12. Tao, Y. *et al.* Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is
359 Required for Shade Avoidance in Plants. *Cell* **133**, 164–176 (2008).

360 13. Ito, T. *et al.* The homeotic protein AGAMOUS controls microsporogenesis by regulation
361 of SPOROCYTELESS. *Nature* **430**, 356–360 (2004).

362 14. Yang, W. C., Ye, D., Xu, J. & Sundaresan, V. The SPOROCYTELESS gene of
363 Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein.
364 *Genes Dev.* **13**, 2108–2117 (1999).

365 15. Schieffthaler, U. *et al.* Molecular analysis of NOZZLE, a gene involved in pattern
366 formation and early sporogenesis during sex organ development in *Arabidopsis thaliana*.
367 *Proc. Natl. Acad. Sci. U.S.A.* **96**, 11664–11669 (1999).

368 16. Juliano, C. & Wessel, G. Versatile Germline Genes. *Science* **329**, 640–641 (2010).

369 17. Bai, S.-N. Two types of germ cells, the sexual reproduction cycle, and the double-ring
370 mode of plant developmental program. *Plant Signal Behav* **12**, (2017).

371 18. Kelliher, T. & Walbot, V. Hypoxia triggers meiotic fate acquisition in maize. *Science*
372 **337**, 345–348 (2012).

373 19. van der Linde, K. & Walbot, V. Pre-meiotic anther development. in *Current Topics in*
374 *Developmental Biology* vol. 131 239–256 (Elsevier, 2019).

375 20. Zhao, F. *et al.* Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 Kinase
376 Is Required for Anther Development. *Plant Physiology* **173**, 2265–2277 (2017).

377 21. Sanders, P. M. *et al.* Anther developmental defects in *Arabidopsis thaliana* male-sterile
378 mutants. *Sex Plant Reprod* **11**, 297–322 (1999).

379 22. Ge, X., Chang, F. & Ma, H. Signaling and Transcriptional Control of Reproductive
380 Development in *Arabidopsis*. *Current Biology* **20**, R988–R997 (2010).

381 23. Feng, X. & Dickinson, H. G. Cell–cell interactions during patterning of the Arabidopsis
382 anther. *Biochemical Society Transactions* **38**, 571–576 (2010).

383 24. Salinas-Grenet, H. *et al.* Modulation of Auxin Levels in Pollen Grains Affects Stamen
384 Development and Anther Dehiscence in Arabidopsis. *IJMS* **19**, 2480 (2018).

385 25. Liao, C.-Y. *et al.* Reporters for sensitive and quantitative measurement of auxin response.
386 *Nature Methods* **12**, 207–210 (2015).

387 26. Brunoud, G. *et al.* A novel sensor to map auxin response and distribution at high spatio-
388 temporal resolution. *Nature* **482**, 103–106 (2012).

389 27. Adamowski, M. & Friml, J. PIN-Dependent Auxin Transport: Action, Regulation, and
390 Evolution. *The Plant Cell* **27**, 20–32 (2015).

391 28. Zhao, Y. Essential Roles of Local Auxin Biosynthesis in Plant Development and in
392 Adaptation to Environmental Changes. *Annu. Rev. Plant Biol.* **69**, 417–435 (2018).

393 29. Ludwig-Müller, J. Auxin conjugates: their role for plant development and in the
394 evolution of land plants. *J. Exp. Bot.* **62**, 1757–1773 (2011).

395 30. Woodward, A. W. & Bartel, B. Auxin: Regulation, Action, and Interaction. *Ann Bot* **95**,
396 707–735 (2005).

397 31. Lavy, M. & Estelle, M. Mechanisms of auxin signaling. *Development* **143**, 3226–3229
398 (2016).

399 32. Alexander, M. P. Differential staining of aborted and nonaborted pollen. *Stain Technol*
400 **44**, 117–122 (1969).

401 33. Zhao, Y. Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to
402 Indole-3-Acetic Acid in Plants. *Mol Plant* **5**, 334–338 (2012).

403 34. Romanel, E. *et al.* Reproductive Meristem22 is a unique marker for the early stages of
404 stamen development. *Int. J. Dev. Biol.* **55**, 657–664 (2011).

405 35. Li, L.-C. *et al.* SPOROCYTELESS modulates YUCCA expression to regulate the
406 development of lateral organs in *Arabidopsis*. *New Phytol.* **179**, 751–764 (2008).

407 36. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for *Agrobacterium* -mediated
408 transformation of *Arabidopsis thaliana*. *The Plant Journal* **16**, 735–743 (1998).

409 37. Wang, D.-H. *et al.* Ethylene perception is involved in female cucumber flower
410 development. *The Plant Journal* **61**, 862–872 (2010).

411 38. Postma, M. & Goedhart, J. PlotsOfData—A web app for visualizing data together with
412 their summaries. *PLOS Biology* **17**, e3000202 (2019).

413 39. Chen, R. *et al.* A Gene Expression Profiling of Early Rice Stamen Development that
414 Reveals Inhibition of Photosynthetic Genes by OsMADS58. *Molecular Plant* **8**, 1069–
415 1089 (2015).

416

417 **Acknowledgements**

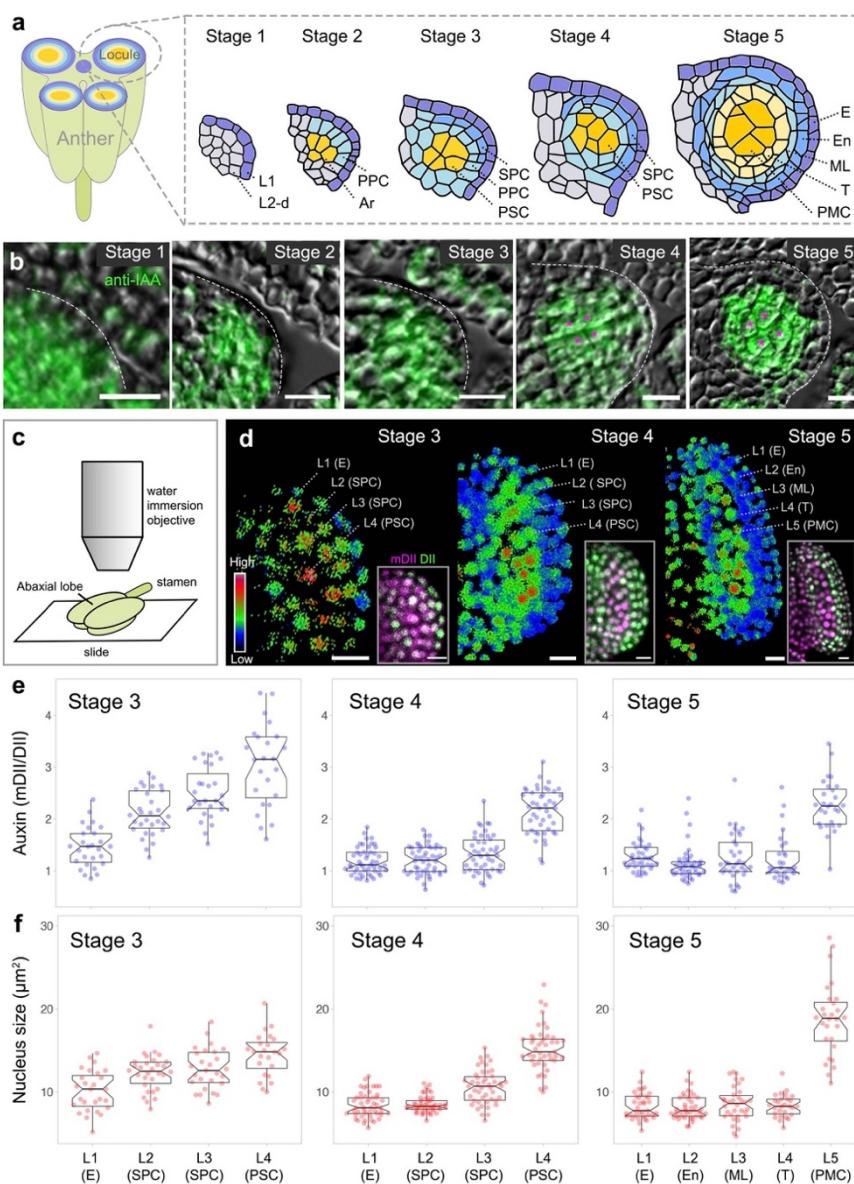
418 We would like to thank Jan Traas for critical reading of the manuscript, Weicai Yang, Dolf
419 Weijers, Jose M. Alonso, and ABRC for providing the seeds. We also thank Yang Xu, Yun
420 Zhang, and Fuchou Tang for the supporting on RNA-sequencing. We thank Rui Chen for
421 advice about RNA-seq data analysis. We also thank Fanbo Meng for helping with plant
422 breeding and sectioning of anthers. We thank the Core Facilities of Life Sciences and National
423 Center for Protein Sciences at Peking University in Beijing, China, for assistance with confocal
424 microscopy and TEM. We would be grateful to Yiqun Liu and Hongmei Zhang for their help
425 of making EM sample and taking images. We also thank Linlin Li and colleagues (Institute of
426 Automation, Chinese Academy of Sciences) for the assistance with electron microscopy (Zeiss
427 Gemini 300) and their technical support. This work was supported by grants from the Ministry
428 of Agriculture of the People's Republic of China (Grant No. 2016ZX08009003-003, CARS-
429 01-06, and 2016ZX08010001) and the National Natural Science Foundation of China (Grant
430 No. 31630006) to S.N., B.

431 **Author contributions**

432 F.Z. and S.N.B. conceived the project. Y.F.Z, F.Z., and S.N.B. designed experiments, and
433 wrote the manuscript. Y.F.Z, F.Z., and D.H.W. performed the experiment and analyzed the

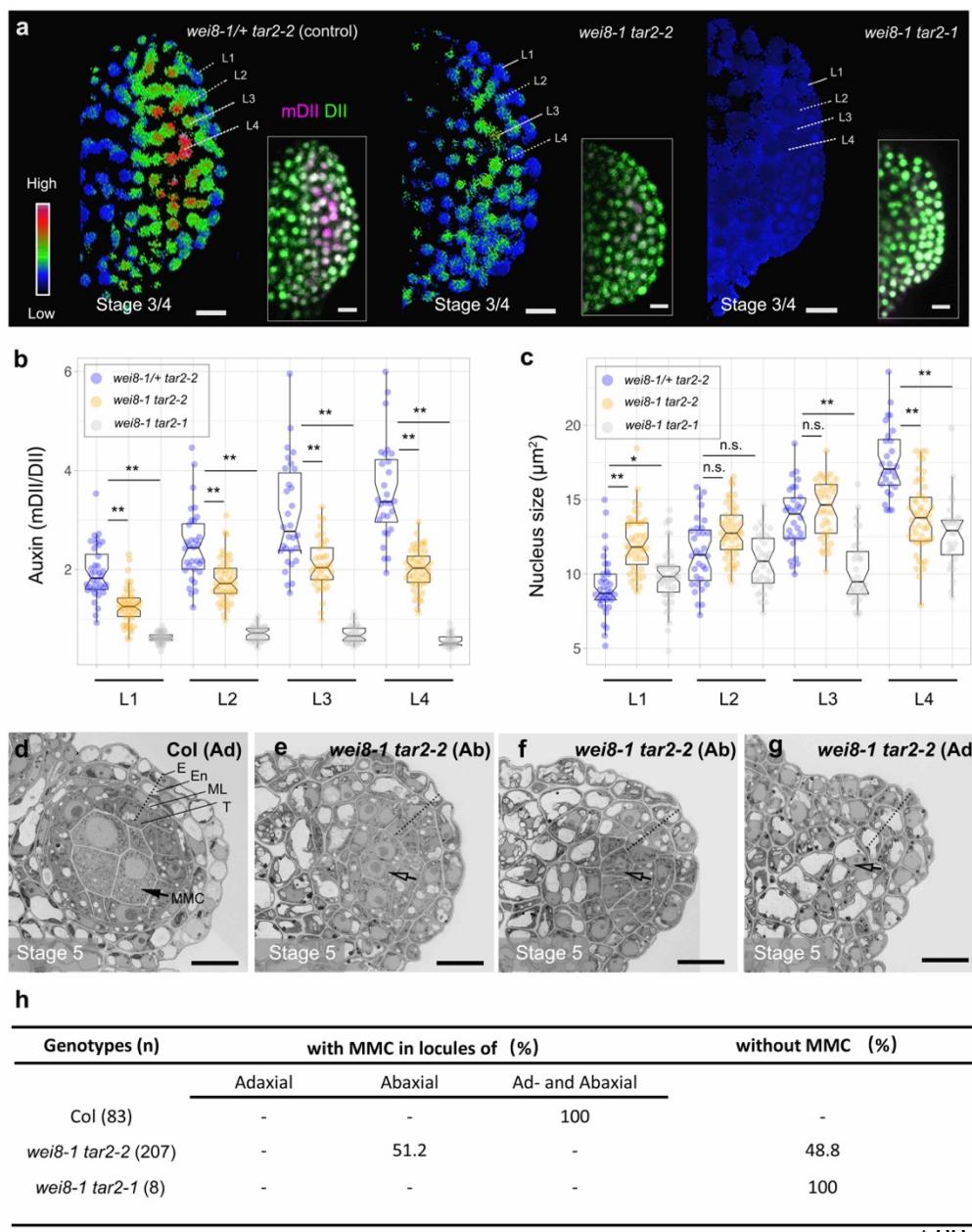
434 data. S.D.Y. contributed to the IAA immunolocalization assay. G.L.L performed RNA-seq
435 analysis. W.Q.C and Z.H.X contributed to the experimental design and edited the manuscript.
436 All authors read and approved the final manuscript.

437 **Additional information**

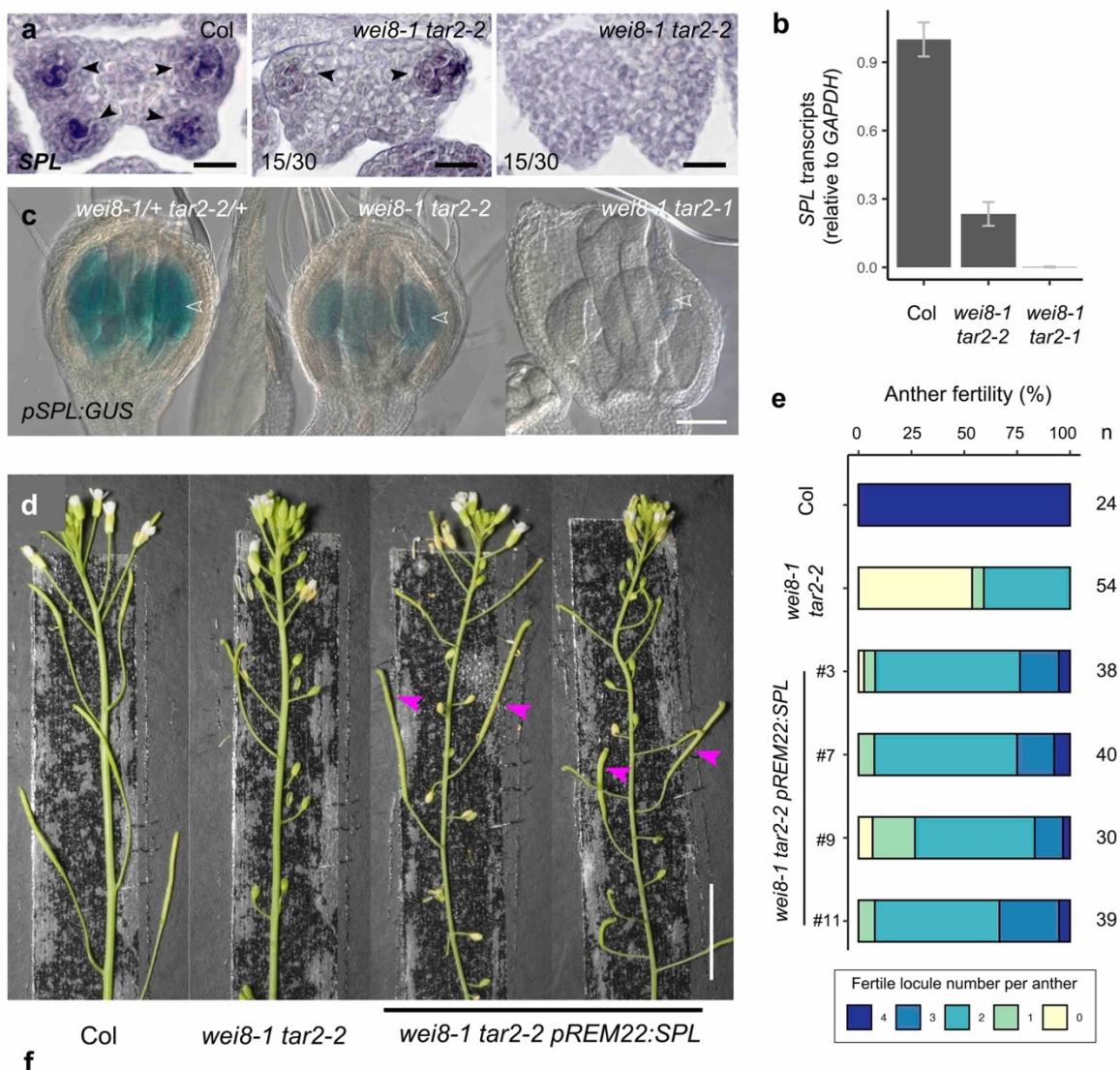

438 Correspondence and requests for materials should be addressed to F.Z. or S.N.B.

439 **Competing interests**

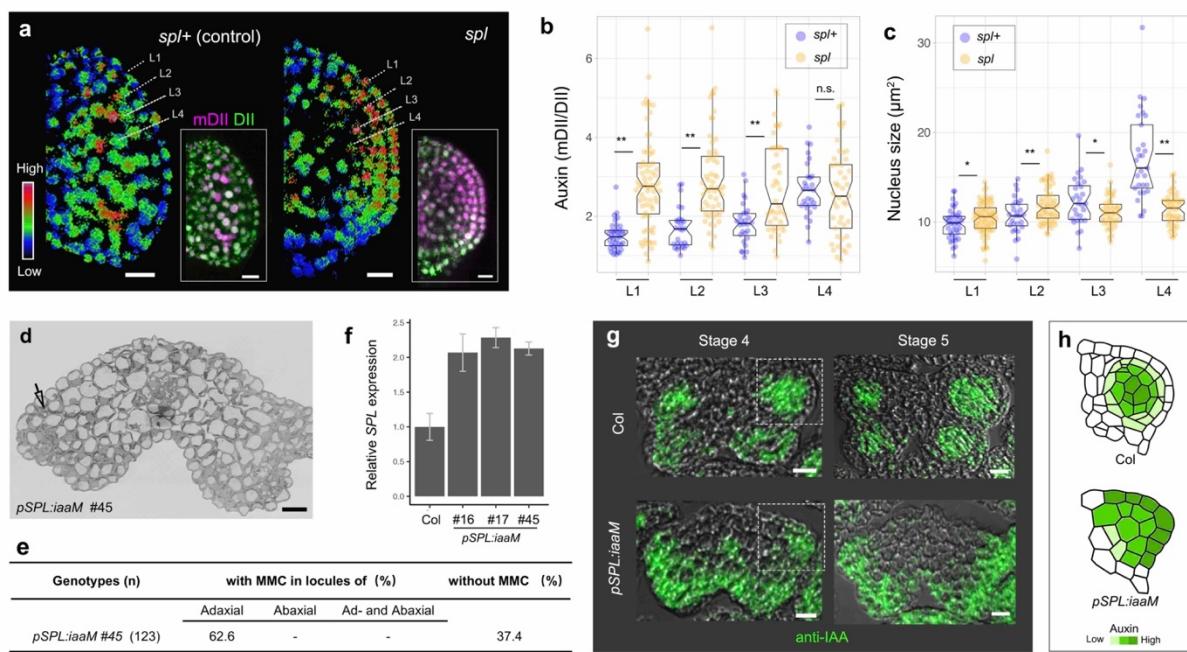
440 The authors declare no competing interests.


441

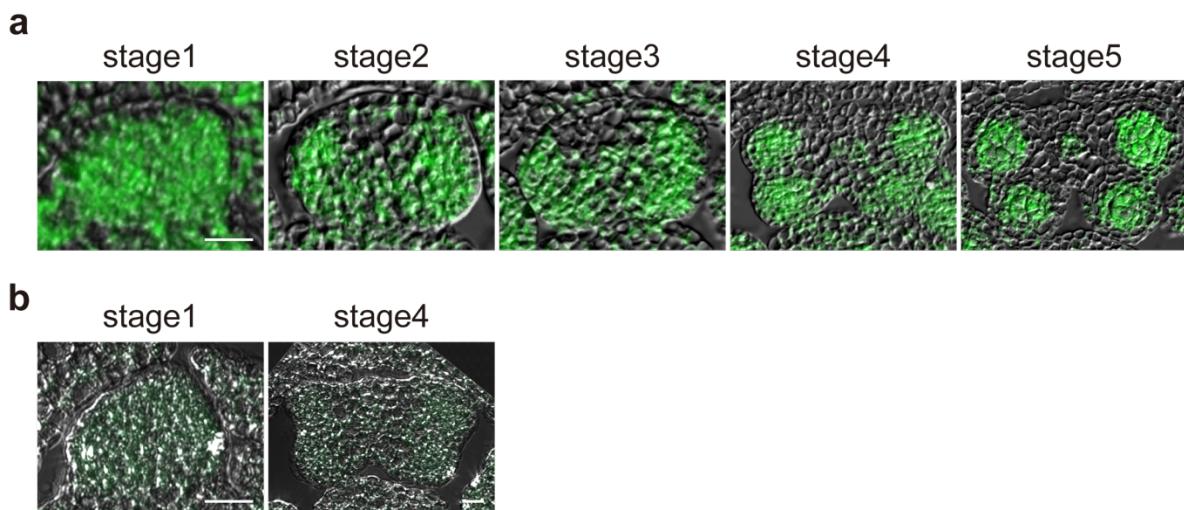
442 **Figures and legends**


Figure 1. Dynamic auxin distribution patterns in wild-type pre-meiotic anthers in *Arabidopsis*. **a**, Schematic representation of microsporogenesis in early anther lobes. Left: Cross-section of a four-lobed anther. Right: The developmental stages of an anther lobe. Each cell lineage is marked by a specific color. L1, the outermost cell layer; L2-d, cells derived from the second layer; PPC, primary parietal cell; Ar, archesporial cell; SPC, secondary parietal cell; PSC, primary sporogenous cell; E, epidermis; En, endothecium; ML, middle layer; T, tapetum; PMC, pollen mother cell. **b**, Immunolocalization of IAA in cross-sections of anthers at different stages. **c**, Schematic of the imaging setup. **d**, Auxin signaling in anther lobes from stage 3–5, showing higher auxin levels (red) in germ cells. The signal intensity calculated from mDII/DII is displayed as a false color scale. The original images are shown in the insets. L1–L4 indicate the cell layers from outside to inside. The corresponding names of the cell layers are referenced in brackets. **e–f**, Quantification of auxin signaling input (mDII/DII) (e) and nucleus size (f) in different cell layers of stage 3–5 anther lobes. Note the association between auxin levels and germ cell specification (characterized by large nucleus size). The number of samples per layer are: L1=27, L2=30, L3=27, and L4=24 from four different stage-3 locules; L1=49, L2=48, L3=46, and L4=45 from six different stage-4 locules; L1=37, L2=41, L3=34, L4=28, and L5=28 from four different stage-5 locules. The individual data points are colored and plotted on the boxplot. The box indicates the interquartile range (IQR), the whiskers show the range of values that are within 1.5*IQR and a horizontal line indicates the median. The notches represent the 95% confidence interval for each median. Scale bars represent 10 μ m.

469 anther lobes from stage 1 to stage 5. IAA gradually forms a centripetal gradient. The germ cells are marked with
470 magenta stars. **c**, The method used for imaging R2D2 signals in abaxial anther lobes. **d**, Auxin signaling in anther
471 lobes from stage 3–5, showing higher auxin levels (red) in germ cells. The signal intensity calculated from
472 mDII/DII is displayed as a false color scale. The original images are shown in the insets. L1–L4 indicate the cell
473 layers from outside to inside. The corresponding names of the cell layers are referenced in brackets. **e–f**,
474 Quantification of auxin signaling input (mDII/DII) (e) and nucleus size (f) in different cell layers of stage 3–5
475 anther lobes. Note the association between auxin levels and germ cell specification (characterized by large nucleus
476 size). The number of samples per layer are: L1=27, L2=30, L3=27, and L4=24 from four different stage-3 locules;
477 L1=49, L2=48, L3=46, and L4=45 from six different stage-4 locules; L1=37, L2=41, L3=34, L4=28, and L5=28
478 from four different stage-5 locules. The individual data points are colored and plotted on the boxplot. The box
479 indicates the interquartile range (IQR), the whiskers show the range of values that are within 1.5*IQR and a
480 horizontal line indicates the median. The notches represent the 95% confidence interval for each median. Scale
481 bars represent 10 μ m.

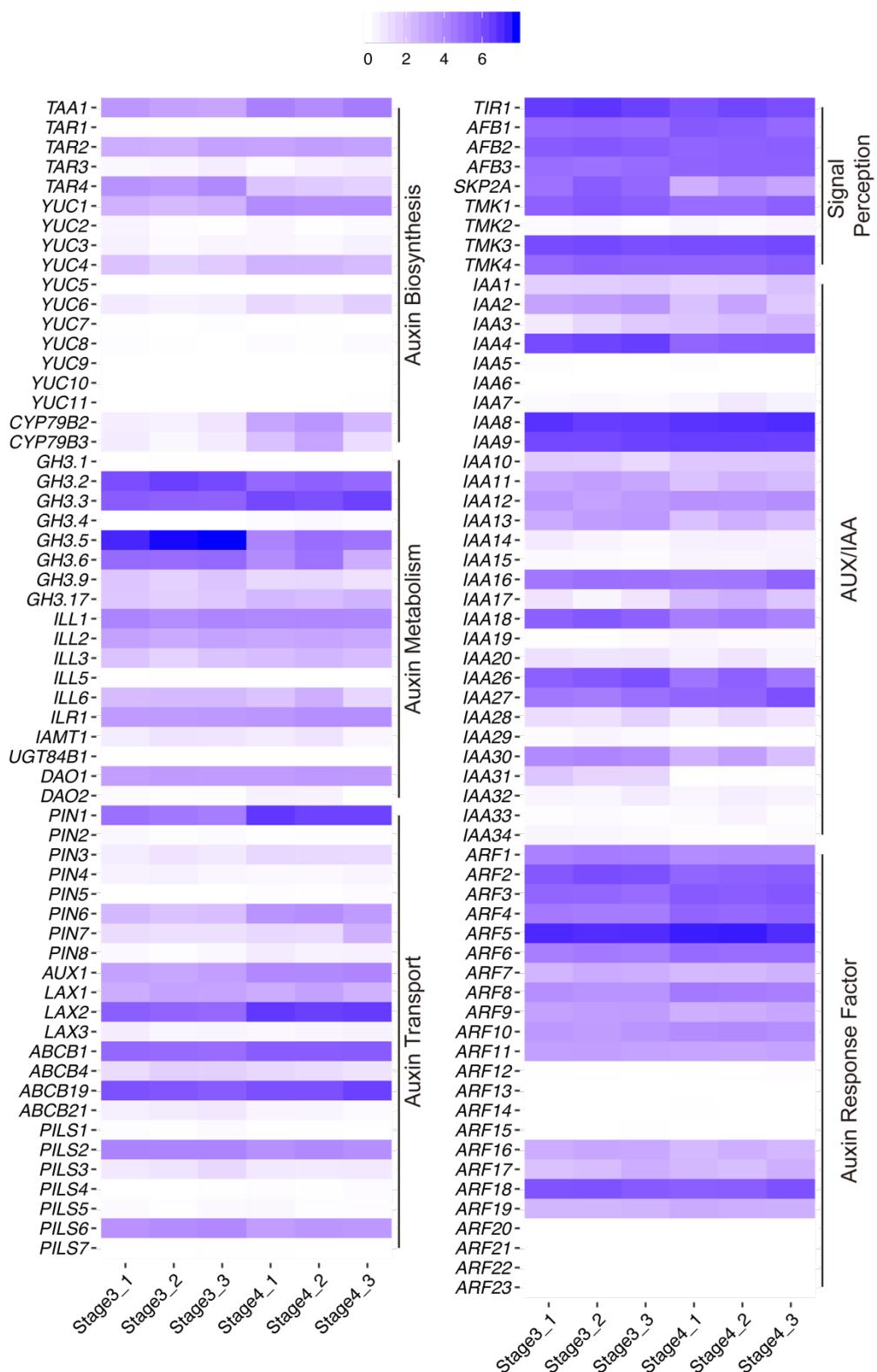

510 **b-c**, Quantification of auxin signaling input (b) and nucleus size (c) in stage 3/4 *taa1 tar2* anther lobes. As
 511 the auxin level decreases in the *taa1 tar2* mutants, the nucleus becomes smaller in the inner cells (L3 and L4),
 512 implying the loss of germinal cell fate. The number of samples per layer was: L1=36, L2=32, L3=30, and L4=28
 513 from four control (*wei8-1/+ tar2-2*) anther lobes; L1=46, L2=47, L3=37, and L4=49 from five *wei8-1 tar2-2*
 514 anther lobes; L1=47, L2=35, L3=30, and L4=28 from four *wei8-1 tar2-1* anther lobes. n.s., no significant
 515 difference; * $p < 0.05$; ** $p < 0.001$ by Student's *t*-test. **d-g**, Electron microscope images showing the transverse
 516 sections of wild-type (Col) adaxial (Ad) (d), *wei8-1 tar2-2* abaxial (Ab) (e-f), and *wei8-1 tar2-2* Ad locules (g).
 517 In (d), the normal MMC is marked with a black arrow, and different somatic cell layers are indicated along the
 518 dashed line. The impaired MMC (hollow arrow) and somatic cell layer (dashed lines) are marked in (e-g). Note
 519 that most cells in the *wei8-2 tar2-2* adaxial locules are vacuolated (g). **h**, Quantification of MMC formation in
 520 cross-sections of *taa1 tar2* anthers. Scale bars represent 10 μ m.

521

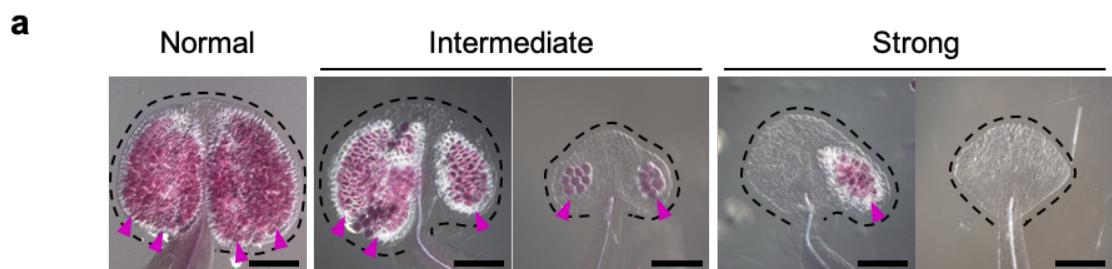


522
523
524 **Figure 3. TAA1 and TAR2 activate SPL/NZZ transcription.** **a**, *SPL/NZZ* transcripts in cross-section of stage-
525 4 Col and *wei8-1 tar2-2* anthers, revealed by *in situ* hybridization. The *SPL/NZZ* signals are indicated by
526 arrowheads. **b**, Quantification of *SPL/NZZ* transcripts in Col and *taa1 tar2* mutants by qPCR. Bars indicate the
527 mean, and the error bars indicate standard error ($n = 3$ technical repeats). Three independent experiments yielded
528 similar results. **c**, The *SPL* promoter activity shown by *pSPL:GUS* signals in Col and *taa1 tar2*. *pSPL* activity is
529 reduced in *wei8-1 tar2-2*, and absent in *wei8-1 tar2-1* anthers (arrowheads). **d**, The fertility of *wei8-1 tar2-2* is
530 partially restored by *pREM22:SPL*. Arrowheads (magenta) indicate fertile long siliques. **e**, Quantification of
531 anther fertility in Col, *wei8-1 tar2-2*, and *wei8-1 tar2-2 pREM22:SPL* by Alexander staining assay. **f**,
532 Quantification of MMC formation in cross-sections of *wei8-1 tar2-2 pREM22:SPL* anthers. Scale bars represent
533 20 μ m in (a), 1 mm in (c), and 1 cm in (d).

534


535
536
537 **Figure 4. Auxin-SPL feedback loop for GC specification.** **a**, Ratiometric image of R2D2 showing an increase
538 of auxin in the outer cell layers of *spl* stage 3/4 anther lobes. The signal intensity calculated from mDII/DII is
539 displayed as a false color scale. The original images are shown in the insets. **b-c**, Quantification of auxin signaling
540 input (**b**) and nucleus size (**c**) in stage 3/4 *spl*+(control) and *spl* anther lobes. The auxin level was significantly
541 increased in L1-L3 of *spl* anther lobes (**b**), while the nucleus size was significantly reduced in *spl* anthers,
542 corresponding to the loss of GCs (**c**). The number of samples per layer was: L1=38, L2=27, L3=28, and L4=29
543 from four control (*spl*+) anther lobes; L1=68, L2=56, L3=42, and L4=45 from six *spl* anther lobes. n.s., no
544 significant difference; * $p<0.05$; ** $p<0.001$ by Student's *t*-test. **d**, Electron microscope images showing the
545 transverse sections of a stage 5 *pSPL:iaaM* anther. All cells in the locules were vacuolated (arrowhead) and no
546 GCs or somatic layers were distinguishable. **e**, Quantification of MMC formation in *pSPL:iaaM* anthers. **f**, qPCR
547 showing *SPL* transcript levels in flowers from three different *T₅* *pSPL:iaaM* alleles and in controls. Numbers
548 indicate alleles. Bars indicates the mean, and the error bars indicates standard error ($n=3$ technical repeats). Three
549 independent experiments yielded similar results. **g**, IAA immunolocalization in *Col* and *pSPL:iaaM* anthers at
550 stage 4 and 5. IAA is distributed in the outer layers in *pSPL:iaaM*, similar to that in (a-b). **h**, Schematic
551 representation of IAA distribution shown in (g, frame zones). Scale bars represent 10 μm .
552

553


554 **Figure S1. Dynamic IAA distribution during early anther development revealed by immunolocalization. a.**
555 Representative picture of IAA immunolocalization showing the dynamic IAA distribution pattern in cross-
556 sections of Col anthers. Similar results were obtained from at least 3 replicates. **b.** Negative control of IAA
557 immunolocalization on stage1 and stage4 Col anthers, without adding anti-IAA antibodies. Scale bars represent
558 10 μ m.

559

560

561 **Figure S2. The expression profiles of auxin-related genes in Col stage 3 and 4 anthers.** Heat map of auxin-
 562 related genes expression in stage 3 and stage 4 anthers by RNA-seq analysis. The color relatively represented
 563 log₂(genes' relative expression value plus 1). Stage3(4) _1, stage3(4) _2, stage3(4) _3 represented 3 replicates
 564 of RNA-seq results of stage 3(4) anthers. Almost all auxin pathways were activated in stage 3 and stage 4 anthers.

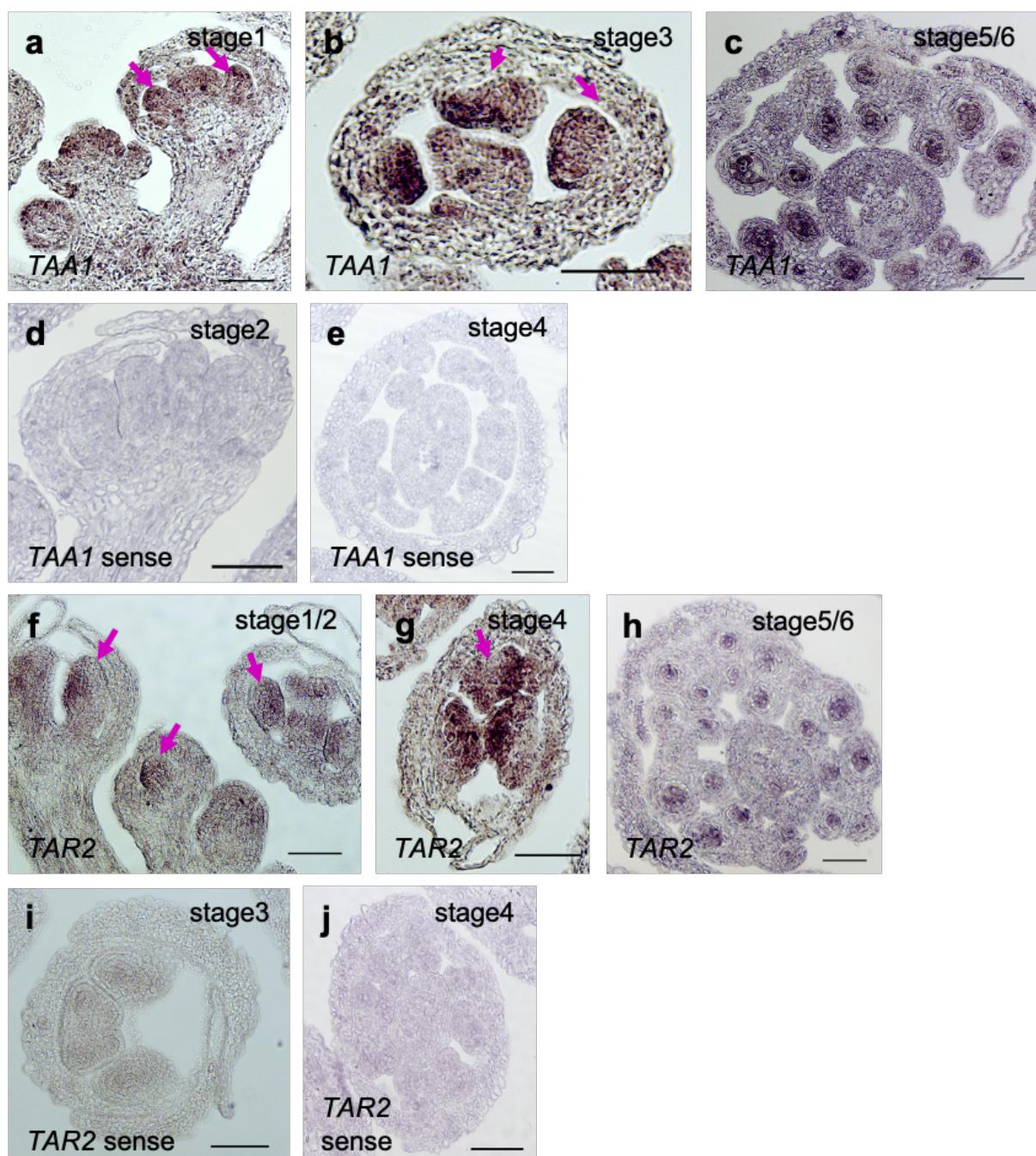
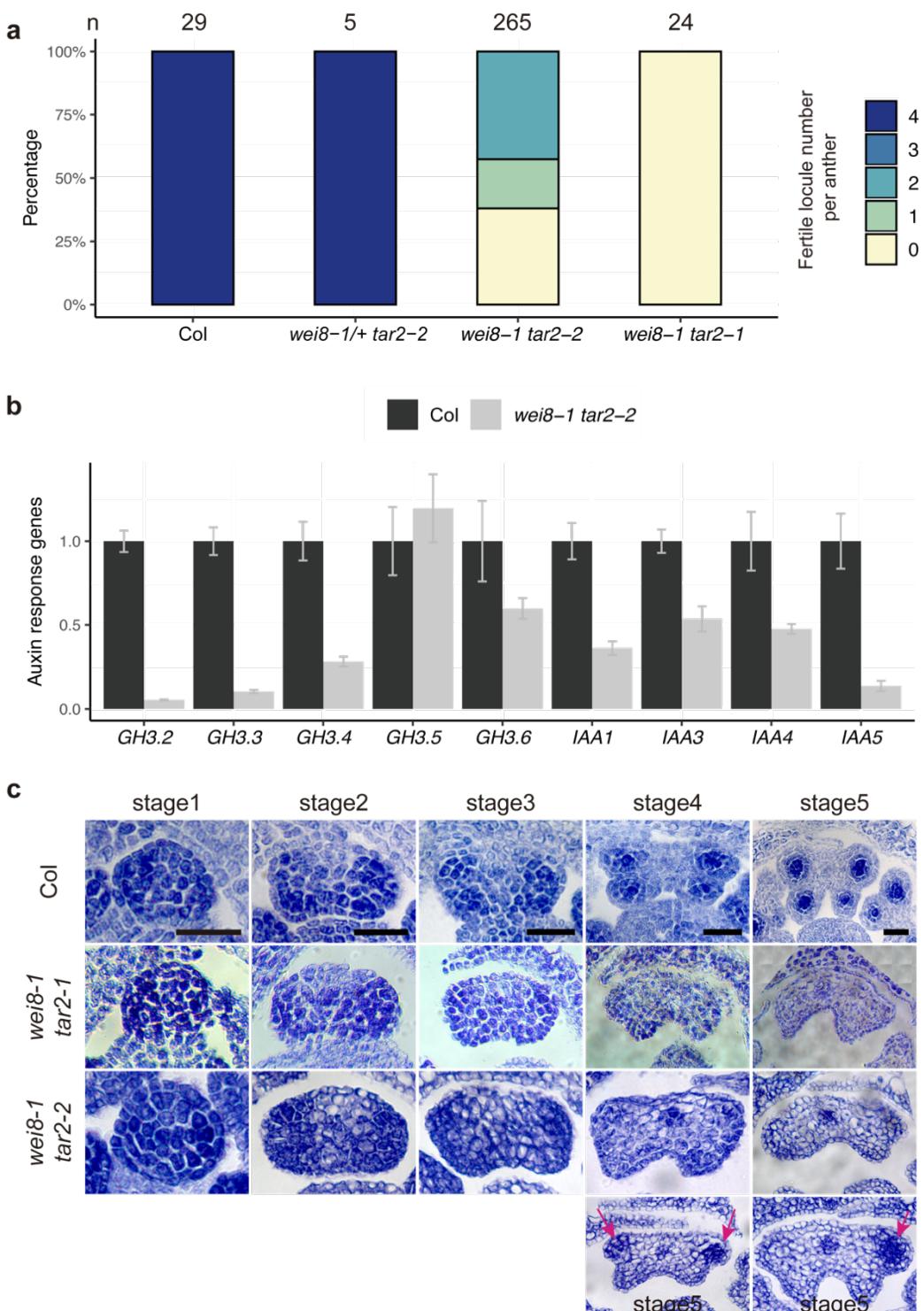
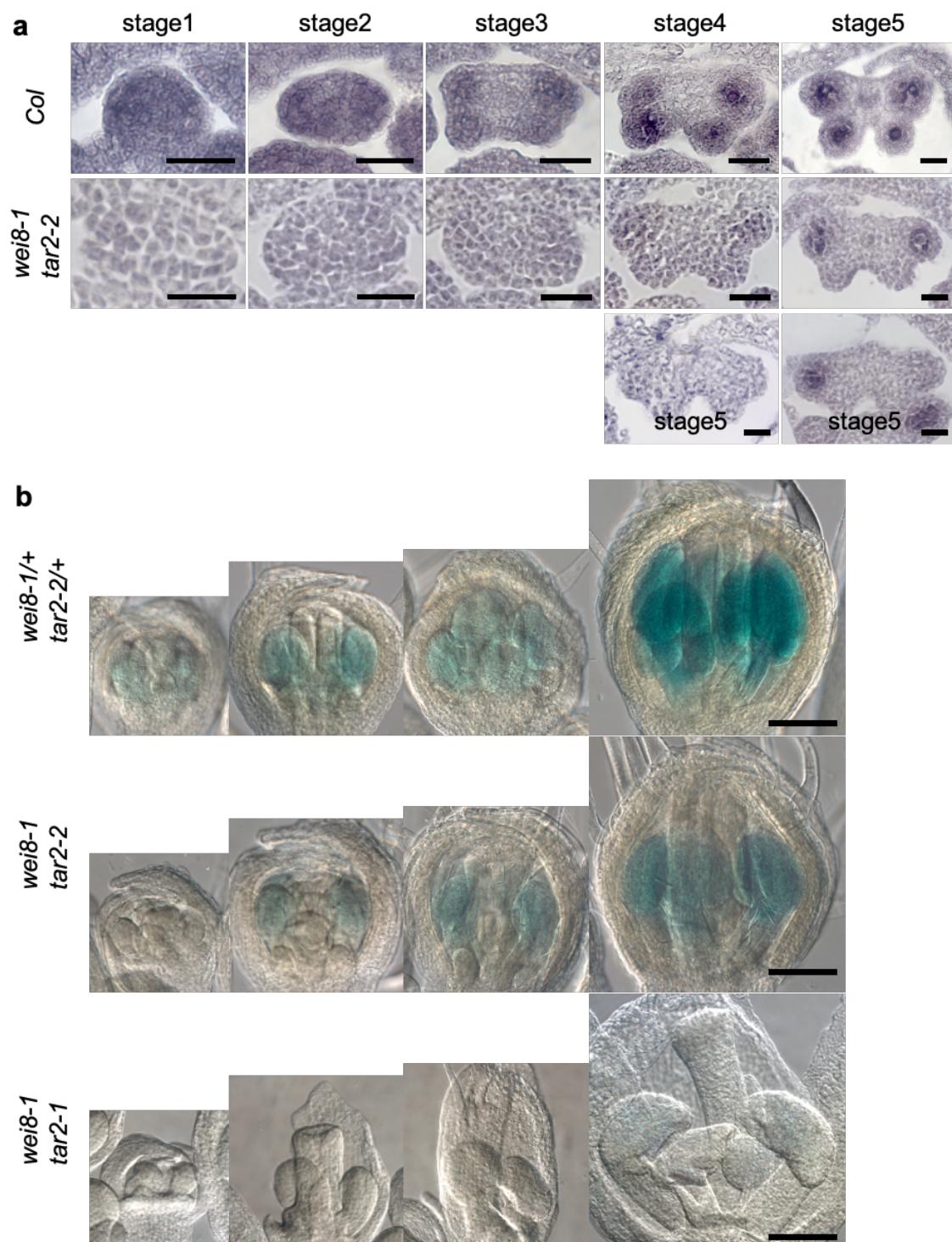

b

Table 1. Tissue specific manipulation of auxin related pathways

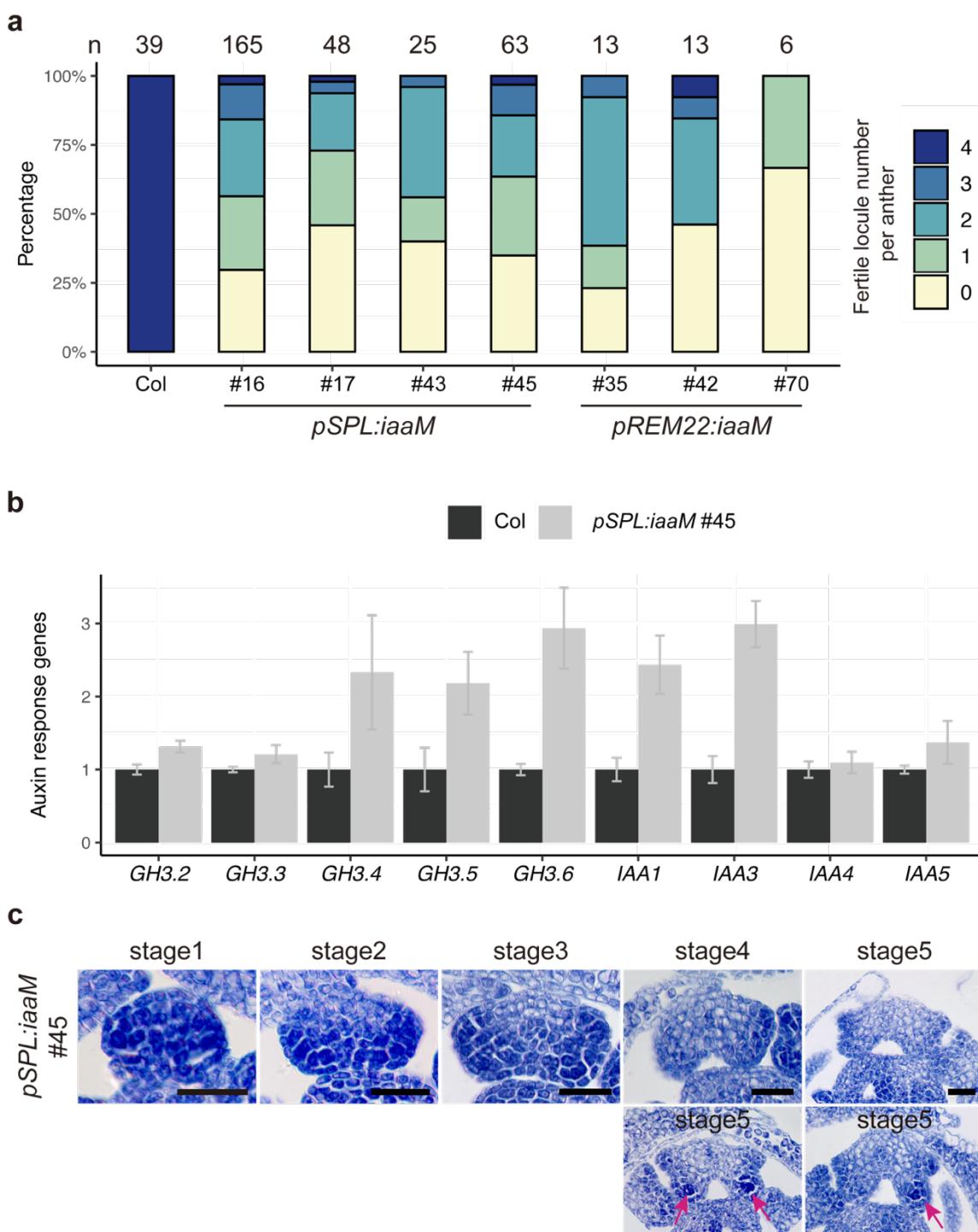
Transgenic lines	Manipulations	Number of T1 plants with phenotype			phenotypic plants (%)
		T1 Total	Strong	intermediate	
<i>pSPL:IAR3</i>		157	4	8	7.64
<i>pSPL:ILR1</i>		210	5	11	7.62
<i>pSPL:iaaM</i>	auxin metabolism (Increase IAA)	99	14	26	40.40
<i>pSPL:amiGH3-No.1</i>		120	5	1	5.00
<i>pSPL:amiGH3-No.2</i>		90	1	10	12.22
<i>pSPL:IAAL</i>	auxin metabolism (Decrease IAA)	143	8	4	8.39
<i>pSPL:amiHYD-No.1</i>		65	2	7	13.85
<i>pSPL:amiPIN1-No.1</i>		67	0	5	7.46
<i>pSPL:amiPIN1-No.2</i>		125	0	10	8.00
<i>pSPL:amiPIN1-No.3</i>	auxin transport	130	0	7	5.38
<i>pSPL:amiAUX-No.1</i>		123	1	13	11.38
<i>pSPL:amiAUX-No.2</i>		48	0	7	14.58
<i>pSPL:amiTIR-NO.1</i>	auxin signaling	196	1	3	2.04
<i>pSPL:amiTIR-NO.2</i>		90	6	9	16.67
<i>pSPL:GUS</i>	Control	98	0	5	5.10


565

566 **Figure S3. Large-scale testing the function of auxin in early anthers using transgenic strategy.**
567 **a.** Three categories of phenotype revealed by Alexander staining assay in transgenic plants. Normal anthers: 4
568 locules with pollens; intermediate phenotype: 2 or 3 locules with pollens; strong phenotype: no or only 1 locule
569 with pollens. The shape of the anther was indicated with dotted lines. Magenta arrowheads indicate the locules
570 with pollens (stained to red). **b.** Quantification of phenotypes in T1 transgenic plants according to the criteria
571 shown in (a). Increasing IAA by expressing *pSPL:iaaM* caused the most severe sterility among all different
572 perturbation conditions. Scale bars represent 100 μ m.


574 **Figure S4. Expression pattern of *TAA1* and *TAR2* in Col anthers by *in situ* hybridization.** a-e, *TAA1*
575 expression patterns in early anthers revealed by *in situ* hybridization with antisense (a-c) and antisense probe (d-
576 e). f-j, *TAR2* expression in early anthers by *in situ* hybridization with antisense (f-h) and antisense probe (i-j).
577 Experiments were repeated 3 times and similar results were obtained. Arrows indicate anthers. Scale bars
578 represent 50 μ m.

579


580

581 **Figure S5. Phenotypic analysis of *wei8 tar2*.** **a.** Quantification of anther fertilities in Col, *wei8-1/+ tar2-2/+*,
 582 *wei8-1 tar2-2*, and *wei8-1 tar2-1* by Alexander staining. Number of anthers (*n*) is shown above each individual
 583 bar. **b.** Expression of auxin responsible genes in Col and *wei8-1tar2-2* flowers by qRT-PCR. Bars indicate the
 584 mean, and the error bars indicate standard error (*n* = 3 technical repeats). Three independent experiments yielded
 585 similar results. **c.** Early anther development in Col, *wei8-1 tar2-1*, *wei8-1 tar2-2* from stage1 to stage 5 by cross
 586 sections. In some of *wei8-1 tar2-2* abaxial locules, GCs could be differentiated (magenta arrows). Scale bars
 587 represent 25 μ m.

588

589 **Figure S6. *SPL* transcript level in *wei8 tar2*.** **a.** *In situ* of *SPL* in cross sections of *Col* and *wei8-1 tar2-2* anthers.
590 **b.** The *SPL* promoter activity shown by *pSPL:GUS* signals in *Col* and *taa1 tar2*. Scale bars represent 25 μ m in
591 (a), and 1 mm in (b).

592

593 **Figure S7. Increased auxin biosynthesis impairs anther development. a.** Quantification of anther fertilities in
 594 *Col*, *pSPL:iaaM*, *pREM22:iaaM* by Alexander staining assay. Numbers above each bar indicate the number of
 595 observed anthers (n). **b.** Expression of auxin-responsive genes in *Col* and *pSPL:iaaM* flowers by qRT-PCR. Bars
 596 indicates the mean, and the error bars indicates standard error (n = 3 technical repeats). Three independent
 597 experiments yielded similar results. **c.** Early anther development in *Col*, *pSPL:iaaM* by section. Arrows indicate
 598 locules that cells are differentiated. Scale bars represent 25 μ m.

599

600
601

Table S1. Primers used in this study.

name	Primer sequence (5'-3')
Real-time primers	
GAPDH-s(GAPDH-c)	CACCGAGGATGATGTTGTCT
GAPDH-a(GAPDH-c')	CCCATTGTTGTCGTACCA
YUC1-real-s1	AACGCATCTCCTCATCTTG
YUC1-real-a1	AAGTGTCAATTCCAACCTCCAA
YUC4-real-s	TTGATGTCGGTGCCA
YUC4-real-a	CCCGTTCCCTCGTTATT
IAAM-real -s	GACCATATCCTCCCGTCTT
IAAM-real -a	CGTCCTCCCATGTATAACTGA
spl-187-s	GGAATGGGTGTAGCAAAG
spl-384-a	TGGGAAGCCTTGTAGCAC
GH3.2-real-s	CAGCAGAACATCATTAGAC
GH3.2-real-a	GTGGAGCGGAATTATGGAA
GH3.3-real-s1	GCAGAGACGAAGACTATACC
GH3.3-real-a1	GTTCAACGACTCCTCCATT
GH3.4-real-s	GCAGATACGAAGACTATACCT
GH3.4-real-a	GTTCAGCGATTCCCTCCAT
GH3.5-real-s	GCTTGTGTCACCACTTAC
GH3.5-real-a	TGTCACTGCGTTCTTCAC
GH3.6-real-s	CCAATTCCCTCCCTCG
GH3.6-real-a	TATCACTGACCCCTTCCTT
IAA1-rt-s1	TGGACGGAGCTCCATATCTC
IAA1-rt-a1	ATCACCGACCAACATCCAAT
IAA3-rt-s1	CAGAGCTGAGGCTGGGATTA
IAA3-rt-a1	CTTCGAGGAGGGGATGTTT
IAA4-rt-s1	AGGCTCAGATTGTTGGATG
IAA4-rt-a1	GACCTTCAGATTCACTCTTCT
IAA5-rt-s1	AGAAAGAACAGTCGAAACGGAC
IAA5-rt-a1	AGAATTGCAAGAGCGGAAGC
Cloning primers	
IAR3-s	ATGAGTTCTCAAATGGGT
IAR3-a	ACCGGTTCAAAGTTCATCTTTTT
ILR1-s	ACCGGTACTTGCAGTTACATCG
ILR-a	TCTCCCAACACCTTCTAT
P1305-iaaM-s	CCGGAATTATGTCAGCTTCACCTCTCCT
P1305-iaaM-a	CATGCCATGGATTCTAGTGCAGTAGTTATATCTC
P1305-iaaL-s	CCGGAATTATGACTGCCTACGATATGGAAAA
P1305-iaaL-a	CATGCCATGGTTTCCGGCGGTGATGATGTAGAG
SPL-myc-Cam-s	ATGATTACGAATTGAGCTCGGTACC ATGGCGACTTCTCTCTTCT
SPL-myc-Cam-a	ACTCTAGAGGATCCCCGGGTACC CTTGATCCTGGAGC
REM22p-Cam-s	GGAAACAGCTATGACCATGATTACGAATTCACTGGTTATGGATGATCA
REM22p-Cam-a	CCGGGTACCGAGCTCGAATTCTCTCTCTCTTCTT CT
Primers for artificial miRNAs	
I miR-s (GH3-NO.1-I)	gaTACTGATTGATCGATGCGCCGtctcttttgtattcc

II miR-a (GH3-NO.1- II)	gaGGGCGCATCGATCAATCAGTAtcaaagagaatcaatga
III miR*s (GH3-NO.1- III)	gaGGACGCATCGATCTATCAGTTcacaggcgtgatatg
IV miR*a (GH3-NO.1- IV)	gaAACTGATAGATCGATGCGTCCtctacatataattcct
I miR-s (GH3-NO.2-I)	gaTCAGAGGCCAAGACAGCCCCAtctctttgtattcc
II miR-a (GH3-NO.2 - II)	gaTGGGCTGTCTTGCCTCTGAAtcaaagagaatcaatga
III miR*s (GH3-NO.2 - III)	gaTGAGGCTGTCTTCCCTCTGTtacaggcgtgatatg
IV miR*a (GH3-NO.2 - IV)	gaACAGAGGGAAAGACAGCCTCAtctacatataattcct
I miR-s (hyd-NO.1-I)	gaTTGTCCACAAGCGTGCATCTTtctctttgtattcc
II miR-a (hyd-NO.1- II)	gaAAGATGCACGCTGTGGACAAAtcaaagagaatcaatga
III miR*s (hyd-NO.1- III)	gaAAAATGCACGCTCTGGACATTcacaggcgtgatatg
IV miR*a (hyd-NO.1- IV)	gaATGTCCAGAACGCGTGCATTTTtctacatataattcct
I miR-s (PIN1-NO.1-I)	gaTACAAAAGGGCATTGTTCAAtctctttgtattcc
II miR-a (PIN1-NO.1-II)	gaATGAACAATGCCCTTTTGTAtcaaagagaatcaatga
III miR*s (PIN1-NO.1-III)	gaATAACAATGCCCTTTTGTtacaggcgtgatatg
IV miR*a (PIN1-NO.1-IV)	gaAACAAAATGGCATTGTTATtctacatataattcct
I miR-s (PIN1-NO.2-I)	gaTTATAACCGAACCATAGCGTtctctttgtattcc
II miR-a (PIN1-NO.2-II)	gaACGCCTATGGTCCGTTATAAtcaaagagaatcaatga
III miR*s (PIN1-NO.2-III)	gaACACCTATGGTCGGTTATAtcacaggcgtgatatg
IV miR*a (PIN1-NO.2-IV)	gaATATAACCGAACCATAGGTGtctacatataattcct
I miR-s (PIN1-NO.3-I)	gaTCAATACTTGCTATCGTCGTTcacaggcgtgatatg
II miR-a (PIN1-NO.3-II)	gaACGACGATAGCAAAGTATTGAAtcaaagagaatcaatga
III miR*s (PIN1-NO.3-III)	gaACAACGATAGCAATGTATTGTtacaggcgtgatatg
IV miR*a (PIN1-NO.3-IV)	gaACAATACATTGCTATCGTTGtctacatataattcct
I miR-s (AUX-NO.1-I)	gaTATATGTAAGTCCGTGCCTCtctctttgtattcc
II miR-a (AUX-NO.1-II)	gaGAGGACACGGACTTACATATAAtcaaagagaatcaatga
III miR*s (AUX-NO.1-III)	gaGAAGACACGGACTAACATATTtacaggcgtgatatg
IV miR*a (AUX-NO.1-IV)	gaAATATGTTAGTCCGTCTCTtctacatataattcct
I miR-s (AUX-NO.2-I)	gaTCAAGCAGTGTAAAGTGGTCAAtctctttgtattcc
II miR-a(AUX-NO.2-II)	gaATGACCACTTACACTGCTTGAtcaaagagaatcaatga
III miR*s(AUX-NO.2-III)	gaATAACCACTTACAGTGCTTGtacaggcgtgatatg
IV miR*a(AUX-NO.2-IV)	gaACAAGCACTGTAAGTGGTTATtctacatataattcct
I miR-s (TIR1-NO.1-I)	gaTCAAAGGGATCGCATTGTCCTTtctctttgtattcc
II miR-a (TIR1-NO.1-II)	gaAAGACAATCGATCCCTTGAtcaaagagaatcaatga
III miR*s(TIR-NO.1-III)	gaAAAACAATCGATGCCTTGTtacaggcgtgatatg
IV miR*a (TIR1-NO.1-IV)	gaACAAAGGCATCGCATTGTTTtctacatataattcct
I miR-s (TIR1-NO.2-I)	gaTGACATCCAAAGGGCTCGCGTtctctttgtattcc
II miR-a (TIR1-NO.2-II)	gaACCGAGGCCCTTGGATGTCAtcaaagagaatcaatga
III miR*s(TIR1-NO.2-III)	gaACACGAGCCCTTCGATGTCAtcacaggcgtgatatg
IV miR*a (TIR1-NO.2-IV)	gaAGACATCGAAAGGGCTCGTGTtctacatataattcct
I miR-s (TIR1-NO.3-I)	gaTAAGGGATCGCATTGTCAtctctttgtattcc
II miR-a (TIR1-NO.3-II)	gaTAGACACAATCGATCCCTTAtcaaagagaatcaatga
III miR*s (TIR1-NO.3-III)	gaTAAACACAATCGTCCCTTtacaggcgtgatatg
IV miR*a (TIR1-NO.3-IV)	gaAAAGGGAACGCATTGTTTAtctacatataattcct
Primers for genotyping	
wei8-1-F	CATCAGAGAGACGGTGGTGAAC
wei8-1-a	GCTTTAATGAGCTTCATGTTGG
wei8-1-s1	CACCGAGCGGCGAAGTAA

wei8-1-a3	CGTCCCTAGCCACGCAAACG
tar2-1-s	GCACGCAAGTGAAGCTCCAAGC
tar2-1-a	GGCAATCAGCTGTTGCCGTCTCACTGGTG
tar2-1-R	ATACTGTGCCAATAGTAAGCC
Primers for <i>in situ</i> hybridization	
TAA1-Fsp6	ATTTAGGTGACACTATAGAATAACCATCAGAGAGACGGTGGT
TAA1-Rt7	AATTAATACGACTCACTATAGGG TTCTCAGACTCGGACTCGCT
TAR2-Fsp6	ATTTAGGTGACACTATAGAATATGGGTGGAGATGCAAAGAC
TAR2-Rt7	AATTAATACGACTCACTATAGGGTTGCCGTTACATTCCCACA

602