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Abstract 

An accurate and reliable whole-brain segmentation is a key aspect of longitudinal neuroimaging 

studies. The ability to measure structural changes reliably is fundamental to detect confidently 

biological effects, especially when these affects are small. In this work, we undertake a thorough 

comparative analysis of reliability, bias, sensitivity to detect longitudinal change and diagnostic 

sensitivity to Alzheimer’s disease of two subcortical segmentation methods, Automatic 

Segmentation (ASEG) and Sequence Adaptive Multimodal Segmentation (SAMSEG). These are 

provided by the recently released version 7.1 of the open-source neuroimaging package FreeSurfer, 

with ASEG being the default segmentation method. First, we use a large sample of participants (n = 

1629) distributed across the lifespan (age range = 4-93 years) to assess the within-session test-retest 

reliability in eight bilateral subcortical structures: amygdala, caudate, hippocampus, lateral 

ventricles, nucleus accumbens, pallidum, putamen and thalamus. We performed the analyses 

separately for a sub-sample scanned on a 1.5T Siemens Avanto (n = 774) and a sub-sample scanned 

on a 3T Siemens Skyra (n = 855). The absolute symmetrized percent differences across the lifespan 

indicated relatively constant reliability trajectories across age except for the younger children in the 

Avanto dataset for ASEG. Although both methods showed high reliability (ICC > 0.95), SAMSEG 

yielded significantly lower volumetric differences between repeated measures for all subcortical 

segmentations (p < 0.05) and higher spatial overlap in all structures except putamen, which had 

significantly higher spatial overlap for ASEG. Second, we tested how well each method was able to 

detect neuroanatomic volumetric change using longitudinal follow up scans (n = 491 for Avanto and 

n = 245 for Skyra; interscan interval = 1-10 years). Both methods showed excellent ability to detect 

longitudinal change, but yielded age-trajectories with notable differences for most structures, 

including the hippocampus and the amygdala. For instance, ASEG hippocampal volumes showed a 

steady age-decline from subjects in their twenties, while SAMSEG hippocampal volumes were stable 

until their sixties. Finally, we tested sensitivity of each method to clinically relevant change. We 

compared annual rate of hippocampal atrophy in a group of cognitively normal older adults (n = 20), 

patients with mild cognitive impairment (n = 20) and patients with Alzheimer’s disease (n = 20). 

SAMSEG was more sensitive to detect differences in atrophy between the groups, demonstrating 

ability to detect clinically relevant longitudinal changes. Both ASEG and SAMSEG were reliable and 

led to detection of within-person longitudinal change. However, SAMSEG yielded more consistent 

measurements between repeated scans without a lack of sensitivity to changes.   
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1. Introduction 

Automated techniques for whole-brain segmentation have become extremely useful in the study of 

a range of brain diseases and conditions, such as Alzheimer’s disease (AD) (Chételat, 2018), and also 

normal conditions such as development (Ostby et al., 2009) and aging (Wonderlick et al., 2009). 

Automated techniques enable processing of large numbers of magnetic resonance imaging (MRI) 

scans with limited operator investments, enabling detailed segmentations of brains from large-scale 

brain imaging initiatives. One of the most extensively used whole-brain segmentation approach is 

Automatic Segmentation (ASEG) (Fischl et al., 2002), distributed as part of FreeSurfer 

(http://freesurfer.net/) (Fischl, 2012). FreeSurfer ASEG is a core tool in large-scale neuroimaging 

projects such as UK Biobank (≈ 40.000 scans to date) (Alfaro-Almagro et al., 2018), ABCD (≈ 10.000 

scans to date) (Hagler et al., 2019), ADNI (> 20.000 scans) (Jack et al., 2008), ENIGMA (> 50.000 

scans) (Thompson et al., 2020), and Lifebrain (≈ 10.000 scans) (Walhovd et al., 2018). Although the 

accuracy of automated segmentation techniques such as ASEG is generally high and lead to accurate 

detection of longitudinal changes (Mulder et al., 2014; Worker et al., 2018), reports have suggested 

that segmentation accuracy may vary as a function of variables such as age (Wenger et al., 2014) and 

brain size (Herten et al., 2019; Schoemaker et al., 2016). Hence, continued efforts are undertaken to 

improve accuracy and reduce bias in the segmentations. 

 

Similar to many other current whole-brain segmentation techniques, ASEG is based on supervised 

models of T1-weighted scans. As signal intensities alone are not sufficient to distinguish between 

different neuroanatomical structures from a T1-weighted MRI, an atlas containing probabilistic 

information about the location of structures is used to determine the relationship between 

intensities and neuroanatomical labels in particular regions of the brain. The probabilistic atlas is 

generated from a set of manually labeled training scans. The segmentation problem is then solved in 

a Bayesian framework in which local shape, position and appearance all contribute to the probability 

of a given label. Recently, an alternative approach was suggested - Sequence Adaptive Multimodal 

Segmentation (SAMSEG) – which uses generative parametric models (Puonti et al., 2013, 2016). 

SAMSEG uses a mesh-based computational atlas combined with a Gaussian appearance model, 

which is an intensity clustering algorithm that achieves independence of specific image contrast by 

grouping together voxels with similar intensities (Van Leemput, 2009). SAMSEG is less 

computationally demanding than other iterative segmentation methods since no preprocessing is 

needed and only a single, efficient non-linear registration of the atlas to the target image is required. 

Moreover, bias field estimation and correction is done simultaneous with segmentation and non-

linear registration. Nevertheless, SAMSEG resulted in accuracy comparable to ASEG and three other 
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state-of-the-art methods in segmenting T1-weighted MRIs (Puonti et al., 2016). Since SAMSEG does 

not rely on the specific intensity profiles of a separate training data set, it yields consistent 

segmentations across scanner platforms and pulse sequences. SAMSEG is included as part of the 

recent FreeSurfer 7.1 release (released May 11th, 2020), which enables its general use in the 

neuroimaging community. Therefore, a thorough analysis is necessary to direct many researchers 

who have the choice between these two utilities provided in the same widely used package of 

FreeSurfer. 

  

In the present study we undertake a thorough comparative analysis of SAMSEG and ASEG in terms of 

reliability, bias, sensitivity to longitudinal change, and clinical sensitivity. First, in a large sample of 

participants (n = 1629) distributed across the lifespan (age range = 4-93 years), we assessed within-

session test-retest reliability, including whether this varied with age and structure size. We 

performed analysis separately for a sub-sample scanned on a 1.5T Siemens Avanto (n = 774) and a 

sub-sample scanned on a 3T Siemens Skyra (n = 855). Further, since high test-retest reliability could 

come at the cost of lower sensitivity to biologically meaningful change, we tested how well ASEG and 

SAMSEG were able to detect neuroanatomic volumetric change in longitudinal follow up scans (n = 

491 for Avanto and n = 245 for Skyra; interval between scans = 1-10 years). Finally, we tested how 

sensitive each method is to clinically relevant change. We compared the annual rate of hippocampal 

atrophy in a group of cognitively normal older adults (CN) (n = 20), patients with mild cognitive 

impairment (MCI) (n = 20) and patients with AD (n = 20), and tested the power of each method to 

detect differences in rates of hippocampal atrophy between the groups. 

 

2. Materials and Methods 

2.1 Datasets 

2.1.1. Lifespan scan-rescan dataset 

We use scan-rescan data selected from several ongoing projects at the Center for Lifespan Changes 

in Brain and Cognition (LCBC), University of Oslo, approved by the Regional Committees for Medical 

and Health Research Ethics South of Norway. Participants were cognitively healthy, and all 

participants or their guardian provided informed consent (for details, see e.g. (Walhovd et al., 

2016)). The images were acquired using two models of Siemens MRI scanners (Siemens Medical 

Solutions, Erlangen, Germany) - 1.5T Avanto and 3T Skyra, at Rikshospitalet, Oslo University Hospital. 

A total of 890 participants (1643 sessions) and 887 participants (1739 sessions) were included in the 

initial within-session scan-rescan datasets for Avanto and Skyra scanners respectively. After 

discarding scans with insufficient image quality (detailed in section 2.2), the samples were reduced 
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to 774 participants (427 females; 1362 sessions; age range = 4-93 years) for Avanto and 855 

participants (563 females; 1646 sessions; age range = 14-84 years) for Skyra. Fig 1 summarizes age 

distributions for each scanner dataset. 

 

Fig 1. Age distributions of Avanto and Skyra datasets for scan-rescan analysis. 

 

2.1.2. Lifespan longitudinal datasets 

For longitudinal LCBC datasets, we selected participants from the scan-rescan dataset who also had 

a follow-up visit: 491 participants of the Avanto scanner and 245 participants of the Skyra scanner. 

Each participant had two visits with the follow-up ranging from 1 to 10 years for the Avanto dataset 

and 1 to 5 years for the Skyra dataset. 

 

2.1.3. Clinical sensitivity dataset 

In addition to longitudinal LCBC datasets, we also included scans from the Alzheimer’s disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a 

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ANDI has been to test whether serial MRI, positron emission tomography, other biological makers, 

and clinical and neuropsychological assessment can be combined to measure the progression of MCI 

and early AD. For up-to-date information, see www.adni-info.org. For our study we randomly 

selected three groups of participants with similar age distributions: CN, MCI and AD. Each group 

consisted of 20 participants. 
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2.2 MRI acquisition 

MRI acquisition parameters for LCBC samples differed between the scanners but were identical for 

each session on the same scanner, except for the Skyra dataset where one scan was acquired using 

parallel acquisition factor GRAPPA = 1 and rescanned with GRAPPA = 2. Avanto data was acquired 

using Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence with parameters: TR = 2400 

ms, TE = 3.61 ms, TI = 1000 ms, flip angle = 8°, voxel size = 1.25 x 1.25 x 1.2 mm3, 192 x 192 

acquisition matrix, 160 slices, 180 Hz pixel bandwidth, GRAPPA = 1, 12 channels head coil. Skyra data 

was also acquired using MPRAGE sequence with parameters: TR = 2300 ms, TE = 2.98 ms, TI = 850 

ms, flip angle = 8°, voxel size = 1.0 x 1.0 x 1.0 mm3, 256 x 256 acquisition matrix, 176 slices, 240 Hz 

pixel bandwidth, GRAPPA = 1 and 2, 20 channels head coil. Subjects were not repositioned between 

scan and rescan acquisitions, to acquire data with optimal comparability within each scanner. All 

images were visually inspected for motion and other artefacts, and sessions that had two scans of 

acceptable image quality were included in further analysis.  

 

The selected sample of ADNI data was acquired at different sites using a Siemens Avanto 1.5T MRI 

scanner and MPRAGE sequence: TR = 2400 ms, TE = 3.54 ms, TI = 1000 ms, flip angle = 8°, voxel size 

= 1.25 x 1.25 x 1.2 mm3, 192 x 192 acquisition matrix, 160 slices, 180 Hz pixel bandwidth, GRAPPA = 

1, 8 channel matrix coil. Each participant had two visits with a follow-up ranging from 6 months to 2 

years for each group. 

 

2.3 MRI processing 

Due to the non-linearity of the magnetic fields from the imaging gradient coils, images from each 

scanner were first preprocessed to reduce geometrical variability of the same subject’s brains 

between different sessions. This was achieved by obtaining scanner-specific spherical harmonics 

expansions that represent the gradient coils (Jovicich et al., 2006). 

 

Two fully automated subcortical segmentation methods FreeSurfer v7.1 ASEG and SAMSEG were 

used to process MRI data and measure volumes of eight bilateral brain structures of interest: 

amygdala, caudate, hippocampus, lateral ventricles, nucleus accumbens, pallidum, putamen and 

thalamus. Briefly, the FreeSurfer ASEG pipeline includes Talairach transformation, intensity 

correction, the removal of nonbrain tissues and volumetric brain segmentation based upon the 

existence of an atlas containing information on the location of structures, whereas SAMSEG utilizes a 

mesh-based atlas and a Bayesian modelling framework to obtain volumetric segmentations without 

the need for skull-stripping as it includes segments for extra cerebral cerebrospinal fluid, skull and 
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soft tissue outside of the skull. Both methods are fully automated and model-based that use a pre-

built probabilistic atlas prior from 39 and 20 subjects, respectively. The 20 subjects used for SAMSEG 

are a subset of the 39 used for ASEG. 

 

To extract reliable volume estimates between scan-rescan acquisitions, we processed images with 

the longitudinal stream in FreeSurfer ASEG and SAMSEG. For FreeSurfer ASEG, an unbiased within-

subject template space and image (Reuter and Fischl, 2011) is created using robust, inverse 

consistent registration (Reuter et al., 2010). Several processing steps, such as skull stripping, 

Talairach transforms, atlas registration, and spherical surface maps and parcellations are then 

initialized with common information from the within-subject template, significantly increasing 

reliability and statistical power (Reuter et al., 2012). Longitudinal SAMSEG is based on a generative 

model of longitudinal data (Iglesias et al., 2016). In the forward model, a subject-specific atlas is 

obtained by generating a random warp from the usual population atlas, and subsequently each time 

point is again randomly warped from this subject-specific atlas. Bayesian inference is used to obtain 

the most likely segmentations, with the intermediate subject-specific atlas playing the role of latent 

variable in the model, whose function is to ensure that various time points have atlas warps that are 

similar between themselves, without having to define a priori what these warps should be similar to. 

 

2.4 Statistical Analysis 

2.4.1 Scan-rescan differences 

Several statistical approaches were used to describe and evaluate the magnitude of within-session 

scan-rescan variability between volume measurements. The absolute symmetrized percent 

difference (ASPD) was calculated:  

 

𝐴𝑆𝑃𝐷(𝐿1, 𝐿2) =
2|𝑉(𝐿1) −  𝑉(𝐿2)|

𝑉(𝐿1) +  𝑉(𝐿2)
× 100%, 

 

where 𝑉(𝐿) is the volume of the segmented label of structure 𝐿. ASPD value of 0 indicates a perfect 

replicability, with increasing values indicating less reliable repeated measurements. Generalized 

additive models (GAM) (Wood, 2017) were used to characterize volume estimation variability trends 

of subcortical structures across the lifespan. GAMs are generalized linear models in which the 

predictors depend linearly or non-linearly on some smooth non-linear functions (Hastie and 

Tibshirani, 1990). The smooth functions are estimated from the data and enable a flexible smooth 

curve fitting across the lifespan. 
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ASPD captures how much the structure differs in terms of its size estimates between repeated 

measures but does not provide specific insight on the spatial variability. Therefore, a fractional 

volume overlap or Dice’s coefficient (Dice, 1945) was also computed: 

 

𝐷(𝐿1, 𝐿2) =
2 ∙ 𝑉(𝐿1 ∩  𝐿2) 

𝑉(𝐿1) +  𝑉(𝐿2)
, 

 

where 𝑉(𝐿1 ∩  𝐿2) is the volume of the structure representing the intersection of two labels. In 

case of two perfectly overlapping structures, Dice coefficient is 1, with decreasing values indicating 

worse spatial overlap.   

 

Intraclass correlation coefficient (ICC) is a widely used reliability measure for inter-rater, intra-rater 

and test-retest analyses. It defines the extent to which measurements can be replicated and reflects 

not only degree of correlation but also agreement between measurements. A value close to 1 

indicates a high reliability, with decreasing values indicating lower reliability. ICC estimates and their 

95% confidence intervals were calculated using a 2-way mixed-effects model, single measurement 

and absolute agreement ICC form (McGraw and Wong, 1996; Koo and Li, 2016). 

 

In addition to ICC we used Bland-Altman plots to analyze agreement between two repeated 

measurements (Bland and Altman, 1986). For each pair of repeated measurements, the x-axis is the 

mean of both values and y-axis is the percent difference between the two values. Bland-Altman 

plots facilitate identification of any systematic differences between the measurements regarding the 

size of the structure.  

 

2.4.2 Sensitivity to longitudinal change 

First, to assess whether the estimated lifespan trajectories of the subcortical volumes differed 

depending on segmentation method, we used General Additive Mixed Models (GAMM) (Wood, 

2017). In contrast to GAMs which treat each observation as independent, GAMMs take longitudinal 

information into account by explicitly modeling the correlation between repeated measurements of 

the same subject, yielding a model which captures cross-sectional and longitudinal information. 

Second, to assess longitudinal changes, we used the annualized percentage change (APC) values 

between the baseline and the follow-up visits for all participants with two scans separated by one 

year or more. We compared APC values for each segmentation method with paired samples t-tests. 

We also divided the sample into development (< 20 years), adulthood (between 20 and 60 years) 

and aging (> 60 years), and compared APCs between each age-group using t-tests and Cohen’s D. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.13.335737doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.13.335737
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Cohen’s D is an effect size used to indicate the standardized difference between two means. Third, 

to address the clinical sensitivity of each segmentation method, we computed APC for the 

hippocampus for ADNI subjects, and assessed differences in APC between groups (NC vs. MCI vs. AD) 

using Cohen’s D. Finally, we used Receiver Operating Characteristic (ROC) curves and Area Under the 

Curve (AUC) to address the classification sensitivity based on the APC values of the longitudinal 

hippocampus estimates in different groups. 

 

All statistical analyses described above were done using R statistical software package v3.6.3 (R Core 

Team, 2020) and its related packages: mgcv (Wood, 2017), ggplot2 (Wickham, 2016), ggpubr 

(Kassambara, 2020), cowplot (Wilke, 2019), irr (Gamer et al., 2019), effsize (Torchiano, 2020) and 

dplyr (Wickham et al., 2020). 

 

3. Results 

3.1. Scan-rescan reliability 

Fig 2 shows volume estimation differences between repeated acquisitions across the lifespan for the 

Avanto dataset. Although most of the subcortical structures indicated relatively flat lifespan trends, 

small deviations were observed for ASEG for the young children group which also demonstrated 

larger variance between the repeated measurements. Fig 3 shows comparable results for the Skyra 

dataset. However, the Skyra dataset did not include young children and the age-related trends did 

not show larger differences in the younger sample. Interestingly, the lateral ventricles indicated 

linearly higher scan-rescan reliability with aging for both scanners and methods. Fig 4 summarizes 

the overall performance of each segmentation method on both scanner datasets across the lifespan. 

SAMSEG volume estimates resulted in significantly lower (paired samples t-test, p < 0.05) scan-

rescan differences than ASEG for all structures. In addition, the standard deviations were also lower 

for SAMSEG. 
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Fig 2. ASPC values across the lifespan for the Avanto dataset. Age-related trends for each method are 

shown by the GAM curves. 

 

 

Fig 3. ASPC values across the lifespan for the Skyra dataset. Age-related trends for each method are 

shown by the GAM curves. 
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Fig 4. Mean ASPC values (dots) and standard deviations (vertical bars) for each scanner dataset and 

segmentation method for the subcortical structures: L-Put (left putamen), R-Put (right putamen), L-

Pal (left pallidum), R-Pal (right pallidum), L-Cau (left caudate), R-Cau (right caudate), L-Tha (left 

thalamus), R-Tha (right thalamus), L-Hip (left hippocampus), R-Hip (right hippocampus), L-Amy (left 

amygdala), R-Amy (right amygdala), L-Ven (left lateral ventricle), R-Ven (right lateral ventricle), L-Acc 

(left nucleus accumbens), R-Acc (right nucleus accumbens). X-axis indicates Avanto (A) and Skyra (S) 

scanners. 

 

Fig 5 shows the lifespan test-retest Dice scores for the Avanto dataset. Most of the structures 

indicated inverted u-shape trajectories except the lateral ventricles which demonstrated almost 

linearly increasing reliability with aging. Fig 6 illustrates similar Dice scores and age-related trends for 

the Skyra dataset. However, we found linearly worse spatial overlap with aging because it did not 

include young children. Fig 7 summarizes the Dice scores across the lifespan. ASEG yielded 

significantly higher spatial agreement for putamen (both hemispheres and scanners, paired samples 

t-test, p < 0.01) whereas the rest of the spatial overlaps were significantly better for SAMSEG. The 

largest improvements were demonstrated for amygdala, pallidum and nucleus accumbens.  
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Fig 5. Dice coefficients across the lifespan for the Avanto dataset. Age-related trajectories are shown 

by the GAM curves. The y-axis scale varies across plots to enable easier evaluation of age-trends.   

 

 

Fig 6. Dice coefficients across the lifespan for the Skyra dataset. Age-related trajectories are shown 

by the GAM curves. The y-axis scale varies across plots to facilitate easier evaluation of age-trends.   
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Fig 7. Mean Dice coefficients (dots) and standard deviations (vertical bars) for each scanner dataset 

and segmentation method for the subcortical structures: L-Put (left putamen), R-Put (right putamen), 

L-Pal (left pallidum), R-Pal (right pallidum), L-Cau (left caudate), R-Cau (right caudate), L-Tha (left 

thalamus), R-Tha (right thalamus), L-Hip (left hippocampus), R-Hip (right hippocampus), L-Amy (left 

amygdala), R-Amy (right amygdala), L-Ven (left lateral ventricle), R-Ven (right lateral ventricle), L-Acc 

(left nucleus accumbens), R-Acc (right nucleus accumbens). X-axis indicates Avanto (A) and Skyra (S) 

scanners. 

 

The ICC was computed to assess the agreement between the repeated measurements for each 

scanner dataset and segmentation method. Although the reliability of the repeated measurements 

was very high (ICC > 0.95) for both methods, SAMSEG resulted in significantly higher (p < 0.01) ICC 

values than ASEG for all subcortical structures. 

 

Fig 8 and Fig 9 show Bland-Altman plots for the Avanto dataset. Despite consistent volumetric 

estimations regardless of the structure size, the limits of agreement (average difference ± 1.96 

standard deviation of the difference) were in favor of SAMSEG. Smaller lateral ventricles yielded 

higher variance for both methods. Similar results were observed for the Skyra dataset. 
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Fig 8. Bland-Altman plots for the Avanto dataset and ASEG segmentation method. Limits of 

agreement (average difference ± 1.96 standard deviation of the difference) are shown by the red 

lines. 

 

Fig 9. Bland-Altman plots for the Avanto dataset and SAMSEG segmentation method. Limits of 

agreement (average difference ± 1.96 standard deviation of the difference) are shown by the red 

lines. 
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3.2 Longitudinal changes 

Higher intra-scanner reliability could be a result of lower sensitivity to detect relevant change in 

brain volumes. We therefore tested the sensitivity of ASEG and SAMSEG to detect changes over time 

using longitudinal scans and previously documented effects. First, to test whether ASEG and 

SAMSEG yielded different estimated lifespan trajectories for the volume of each structure when 

both cross-sectional and longitudinal information was taken into account, we ran GAMMs. For this, 

we used the part of the LCBC sample where two observations separated by at least one year were 

available for each participant. Each volume was modelled as a function of age, which would vary 

within each participant with more than one test occasion. The resulting curves thus take into 

account both observed within-participant change and between participant differences in age. Fig 10 

shows the lifespan trajectories for each method for the Avanto dataset. Although there were 

similarities in estimated age-trajectories between methods, there were also marked differences. 

Especially, ASEG estimated more prominent age-effects for the hippocampus, amygdala and 

thalamus structures, with apparent volumetric reductions starting at a much earlier age compared 

to the SAMSEG results. Similar observations held for the Skyra dataset. 

 

 

Fig 10. Lifespan trajectories estimated from the combined cross-sectional and longitudinal data for 

the Avanto scanner and both segmentation methods. Lifespan trajectories are estimated by GAMM, 

and represent a combination of cross-sectional and longitudinal information. 
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Next, we analyzed change as indexed by the APC between time-points. The sample was divided into 

3 age groups: development, adulthood and aging as described in the Section 2.3. Fig 11 shows the 

summary of APC values between age groups and segmentation methods for the left and right 

hippocampus of the Avanto dataset. Hippocampus was chosen because of its known vulnerability 

both in normal aging and in degenerative diseases such as AD.  All estimated mean APC values were 

significantly different from zero (t-test, p < 0.01) showing that both methods were sensitive to 

change in all three groups. The standard deviations were also smaller for SAMSEG. Based on paired 

samples t-tests, the mean differences in the APC values between the segmentation methods for 

each age group were all significant (p < 0.01) indicating that SAMSEG tended to estimate smaller 

longitudinal changes than ASEG. Similar results were observed for the Skyra dataset in adulthood 

and aging groups. 

 

Fig 11. A summary of the mean APC values (dots) and its standard deviations (vertical bars) between 

age groups for the Avanto dataset. 

 

Fig 12 summarizes the effect sizes (Cohen’s D) based on the APC values between development and 

adulthood, and between adulthood and aging for the Avanto dataset. SAMSEG yielded larger 

numeric effect sizes between development and adulthood, and ASEG between adulthood and aging. 

However, none these differences were significant. Similar results were observed for the Skyra 

dataset. 
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Fig 12. Cohen’s D effect sizes (dots) and their 95% confidence intervals (vertical bars) for 

development vs. adulthood, and adulthood vs. aging groups for the Avanto dataset. 

 

3.3 Clinical sensitivity 

The results of the longitudinal changes indicate that SAMSEG yields lower APC estimates than ASEG, 

but also smaller standard deviations. However, there is no ground truth whether less or more 

estimated changes is more accurate. Therefore, we addressed the clinical sensitivity using a 

subsample of ADNI data. For the purpose of this analysis we only considered a hippocampus since it 

is the most sensitive structure for detecting AD.  

 

Fig 14 shows longitudinal left hippocampus volume changes. The observed differences were very 

similar between the methods but SAMSEG yielded larger changes for some of the participants in the 

AD group. In addition, SAMSEG tended to estimate larger volumes compared to ASEG but this was 

consistent between the groups.  
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Fig 13. Longitudinal left hippocampus volume changes between the segmentation methods for CN, 

MCI and AD groups. 

 

Fig 14 presents the group comparisons based on the estimated hippocampus APC values from the 

longitudinal ASEG and SAMSEG segmentations. SAMSEG led to detection of significant differences in 

atrophy rates between all clinical groups except for the left hippocampus MCI vs. AD comparison. 

For ASEG, significant differences were seen for the right hippocampus CN vs. MCI contrast. 

Generally, ASEG demonstrated larger APC variability within each group than SAMSEG. 

 

Fig 15 summarizes the effect sizes (Cohen’s D) and their 95% confidence intervals between the group 

comparisons. The effects were generally larger for SAMSEG than ASEG but none of these were 

significantly different between the segmentation methods. 
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Figure 14. Group comparisons of the estimated a) left and b) right hippocampus APC values from the 

longitudinal ASEG and SAMSEG segmentations. Group means and standard deviations are shown by 

the black vertical point range markers. The p-values of the t-tests between the group means are 

indicated above the horizontal bars.  
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Fig 15. Cohen’s D effect sizes (dots) and their 95% confidence intervals (vertical bars) for the group 

comparisons between ASEG and SAMSEG for the left and right hippocampus. 

 

Fig 16 plots ROC-AUC curves for classification of patients into different groups based on the APC 

values of hippocampus. SAMSEG yielded a larger number of correct classifications at the same or 

lower rate of false positives than ASEG. A very similar scenario was observed for the right 

hippocampus. 

 

 

Fig 16. The ROC-AUC curves for classifying participants based on the APC values of the longitudinal 

hippocampus estimates: (a) AD from CN, (b) AD from MCI and (c) MCI from CN. 
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4. Discussion 

The results of the scan-rescan reliability indicated reliable volume estimation across the lifespan, 

scanners and segmentation methods. Slight deviations were observed for younger participants, 

presumably due to subtle head motion artifacts. It has previously been shown that younger age 

groups typically evidence increased motion artifacts, which can hinder the identification of the tissue 

boundaries (Blumenthal et al., 2002). Importantly, subtle motion artifacts can lead to systematic 

biases in automatic measurement of structural brain properties (Yendiki et al., 2014). Although 

different parallel imaging factors (GRAPPA) were used for the Skyra scan-rescan dataset (GRAPPA = 2 

vs. GRAPPA = 1), it did not indicate sensitivity to lower signal-to-noise ratio and was comparable to 

the Avanto dataset. Similar effects of parallel imaging acceleration were shown by (Wonderlick et al., 

2009). 

 

The observed average volumetric differences across the lifespan for ASEG were similar to previous 

reports (Jovicich et al., 2009; Morey et al., 2010). Nevertheless, SAMSEG led to significantly higher 

scan-rescan volume estimation reliability for all subcortical structures and higher spatial overlap in 

all structures except putamen, which had significantly higher spatial overlap for ASEG. This is likely a 

result of SAMSEG’s probabilistic atlas, which currently does not include claustrum structure.  

 

High within-session reliability could come at the cost of less sensitivity to detect meaningful 

biological change, i.e. that SAMSEG over-regularizes. However, the present analyses of within-

person longitudinal change suggest that SAMSEG does not achieve improved reliability by sacrificing 

sensitive to change. Both with SAMSEG and with ASEG, longitudinal changes in hippocampal volume 

were detected, and the APC values were comparable. In the absence of the ground truth 

longitudinal changes, the present findings suggest that both methods are sensitive to changes in 

hippocampal volume over time. 

 

We also mapped the lifespan trajectory of each of the structures of interest using GAMMs, taking 

both cross-sectional and longitudinal information into account. The segmentation differences 

between ASEG and SAMSEG had substantial effect on lifespan trajectories of all of the tested brain 

structures, except for the lateral ventricles. In general, developmental trajectories were similar 

regardless of segmentation method, replicating previous findings (Ostby et al., 2009), although 

effect sizes for the hippocampus were larger for SAMSEG than ASEG when comparing development 

to adulthood. For adulthood and aging, however, marked differences were seen for most structures. 

For the hippocampus and amygdala, the ASEG results replicated earlier studies showing slight 
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volumetric decline from young adulthood (Fjell et al., 2013), with acceleration of volume loss from 

the sixties, especially marked for the hippocampus. This was not seen for SAMSEG, where very little 

volume loss was seen before the accelerated decline in aging. For thalamus and pallidum, there 

were large offset effects, where the estimated volumes for the young children were much higher for 

ASEG, followed by a steady decline after development ends, extending throughout the rest of the 

lifespan. This pattern, which is in agreement with previous literature (Fjell et al., 2013), was not seen 

with SAMSEG. For these structures, as well as nucleus accumbens, SAMSEG yielded modest decline 

across adulthood, with only some acceleration of volume loss towards the end of life for thalamus. 

Interestingly, while the previously reported U-shaped trajectory for caudate (Fjell et al., 2013) was 

seen with ASEG, this was less evident with SAMSEG, which showed a more linear volume decline 

also in higher age. The implications of these findings await further explorations, but the present 

results show that the two segmentation methods have substantial effects on the estimated lifespan 

trajectories of most subcortical structures.  

 

The longitudinal changes analyzed in the clinical setting suggest that SAMSEG tended to be more 

sensitive to differences in hippocampal atrophy between CN, MCI and AD. This is especially 

important for detecting the early accelerated hippocampal atrophy which is known to be one of the 

most sensitive biomarkers of Alzheimer’s disease (Teipel et al., 2013). Expected group differences 

were more consistently observed for SAMSEG than ASEG. This is likely the result of larger variability 

between change estimates for ASEG which in turn reduces the power to detect significant 

differences between the groups. Therefore, based on the current study there is evidence that ASEG 

might need more samples per group in order to observe the expected group differences, whereas 

SAMSEG already showed greater sensitivity to detect relevant changes with the relatively modest 

number of 20 patients in each group that we used for assessment. This is well reflected in the 

Cohen’s D effect sizes and ROC-AUC curves, which indicate the excellence of classifications based on 

SAMSEG’s segmentations. 

  

Despite SAMSEG’s high test-retest reliability, it did not indicate reduced sensitivity for biologically 

meaningful differences. On the contrary, it demonstrated higher sensitivity to detect longitudinal 

changes than ASEG between development and adulthood, and in the clinical setting. 

 

We analyzed scan-rescan reliability of participants that were not repositioned before acquiring a 

repeated scan. This scenario is unlikely in the clinical setting where the participants are usually taken 

out of the scanner before acquiring another repeated scan. This, in turn, might lead to an increased 
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measurement variability and less reliable volumetric estimates compared to what was observed in 

the present work. Finally, we performed a comprehensive evaluation of longitudinal changes and 

sensitivity for the hippocampus structure. The remaining subcortical structures should be addressed 

in addition as it is not evident that similar longitudinal trends would be present. 

 

5. Conclusions 

Both whole-brain segmentation methods ASEG and SAMSEG demonstrated high test-retest 

reliability and did not indicate bias towards age (except young children) or structure size. 

Nevertheless, the reliability measures of SAMSEG were significantly higher for all subcortical 

structures. Although SAMSEG yielded more consistent measurements between repeated scans, this 

did not indicate a lack of sensitivity to detect changes. On the contrary, both ASEG and SAMSEG led 

to detection of within-person longitudinal change, while we found greater sensitivity to detect 

longitudinal and clinically relevant changes with SAMSEG compared to ASEG. Therefore, the method 

demonstrates a potential widespread application of the new whole-brain segmentation in the 

neuroimaging research community. The present findings will also direct many researchers who have 

the choice between these two utilities, leading to a downstream impact in clinical studies and laying 

the foundation for further studies that can build on this. 
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