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Abstract

An accurate and reliable whole-brain segmentation is a key aspect of longitudinal neuroimaging
studies. The ability to measure structural changes reliably is fundamental to detect confidently
biological effects, especially when these affects are small. In this work, we undertake a thorough
comparative analysis of reliability, bias, sensitivity to detect longitudinal change and diagnostic
sensitivity to Alzheimer’s disease of two subcortical segmentation methods, Automatic
Segmentation (ASEG) and Sequence Adaptive Multimodal Segmentation (SAMSEG). These are
provided by the recently released version 7.1 of the open-source neuroimaging package FreeSurfer,
with ASEG being the default segmentation method. First, we use a large sample of participants (n =
1629) distributed across the lifespan (age range = 4-93 years) to assess the within-session test-retest
reliability in eight bilateral subcortical structures: amygdala, caudate, hippocampus, lateral
ventricles, nucleus accumbens, pallidum, putamen and thalamus. We performed the analyses
separately for a sub-sample scanned on a 1.5T Siemens Avanto (n = 774) and a sub-sample scanned
on a 3T Siemens Skyra (n = 855). The absolute symmetrized percent differences across the lifespan
indicated relatively constant reliability trajectories across age except for the younger children in the
Avanto dataset for ASEG. Although both methods showed high reliability (ICC > 0.95), SAMSEG
yielded significantly lower volumetric differences between repeated measures for all subcortical
segmentations (p < 0.05) and higher spatial overlap in all structures except putamen, which had
significantly higher spatial overlap for ASEG. Second, we tested how well each method was able to
detect neuroanatomic volumetric change using longitudinal follow up scans (n = 491 for Avanto and
n = 245 for Skyra; interscan interval = 1-10 years). Both methods showed excellent ability to detect
longitudinal change, but yielded age-trajectories with notable differences for most structures,
including the hippocampus and the amygdala. For instance, ASEG hippocampal volumes showed a
steady age-decline from subjects in their twenties, while SAMSEG hippocampal volumes were stable
until their sixties. Finally, we tested sensitivity of each method to clinically relevant change. We
compared annual rate of hippocampal atrophy in a group of cognitively normal older adults (n = 20),
patients with mild cognitive impairment (n = 20) and patients with Alzheimer’s disease (n = 20).
SAMSEG was more sensitive to detect differences in atrophy between the groups, demonstrating
ability to detect clinically relevant longitudinal changes. Both ASEG and SAMSEG were reliable and
led to detection of within-person longitudinal change. However, SAMSEG yielded more consistent

measurements between repeated scans without a lack of sensitivity to changes.
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1. Introduction

Automated techniques for whole-brain segmentation have become extremely useful in the study of
a range of brain diseases and conditions, such as Alzheimer’s disease (AD) (Chételat, 2018), and also
normal conditions such as development (Ostby et al., 2009) and aging (Wonderlick et al., 2009).
Automated techniques enable processing of large numbers of magnetic resonance imaging (MRI)
scans with limited operator investments, enabling detailed segmentations of brains from large-scale
brain imaging initiatives. One of the most extensively used whole-brain segmentation approach is
Automatic Segmentation (ASEG) (Fischl et al., 2002), distributed as part of FreeSurfer

(http://freesurfer.net/) (Fischl, 2012). FreeSurfer ASEG is a core tool in large-scale neuroimaging

projects such as UK Biobank (= 40.000 scans to date) (Alfaro-Almagro et al., 2018), ABCD (= 10.000
scans to date) (Hagler et al., 2019), ADNI (> 20.000 scans) (Jack et al., 2008), ENIGMA (> 50.000
scans) (Thompson et al., 2020), and Lifebrain (= 10.000 scans) (Walhovd et al., 2018). Although the
accuracy of automated segmentation techniques such as ASEG is generally high and lead to accurate
detection of longitudinal changes (Mulder et al., 2014; Worker et al., 2018), reports have suggested
that segmentation accuracy may vary as a function of variables such as age (Wenger et al., 2014) and
brain size (Herten et al., 2019; Schoemaker et al., 2016). Hence, continued efforts are undertaken to

improve accuracy and reduce bias in the segmentations.

Similar to many other current whole-brain segmentation techniques, ASEG is based on supervised
models of T1-weighted scans. As signal intensities alone are not sufficient to distinguish between
different neuroanatomical structures from a T1-weighted MRI, an atlas containing probabilistic
information about the location of structures is used to determine the relationship between
intensities and neuroanatomical labels in particular regions of the brain. The probabilistic atlas is
generated from a set of manually labeled training scans. The segmentation problem is then solved in
a Bayesian framework in which local shape, position and appearance all contribute to the probability
of a given label. Recently, an alternative approach was suggested - Sequence Adaptive Multimodal
Segmentation (SAMSEG) — which uses generative parametric models (Puonti et al., 2013, 2016).
SAMSEG uses a mesh-based computational atlas combined with a Gaussian appearance model,
which is an intensity clustering algorithm that achieves independence of specific image contrast by
grouping together voxels with similar intensities (Van Leemput, 2009). SAMSEG is less
computationally demanding than other iterative segmentation methods since no preprocessing is
needed and only a single, efficient non-linear registration of the atlas to the target image is required.
Moreover, bias field estimation and correction is done simultaneous with segmentation and non-

linear registration. Nevertheless, SAMSEG resulted in accuracy comparable to ASEG and three other
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state-of-the-art methods in segmenting T1-weighted MRIs (Puonti et al., 2016). Since SAMSEG does
not rely on the specific intensity profiles of a separate training data set, it yields consistent
segmentations across scanner platforms and pulse sequences. SAMSEG is included as part of the
recent FreeSurfer 7.1 release (released May 11t, 2020), which enables its general use in the
neuroimaging community. Therefore, a thorough analysis is necessary to direct many researchers
who have the choice between these two utilities provided in the same widely used package of

FreeSurfer.

In the present study we undertake a thorough comparative analysis of SAMSEG and ASEG in terms of
reliability, bias, sensitivity to longitudinal change, and clinical sensitivity. First, in a large sample of
participants (n = 1629) distributed across the lifespan (age range = 4-93 years), we assessed within-
session test-retest reliability, including whether this varied with age and structure size. We
performed analysis separately for a sub-sample scanned on a 1.5T Siemens Avanto (n = 774) and a
sub-sample scanned on a 3T Siemens Skyra (n = 855). Further, since high test-retest reliability could
come at the cost of lower sensitivity to biologically meaningful change, we tested how well ASEG and
SAMSEG were able to detect neuroanatomic volumetric change in longitudinal follow up scans (n =
491 for Avanto and n = 245 for Skyra; interval between scans = 1-10 years). Finally, we tested how
sensitive each method is to clinically relevant change. We compared the annual rate of hippocampal
atrophy in a group of cognitively normal older adults (CN) (n = 20), patients with mild cognitive
impairment (MCI) (n = 20) and patients with AD (n = 20), and tested the power of each method to

detect differences in rates of hippocampal atrophy between the groups.

2. Materials and Methods

2.1 Datasets

2.1.1. Lifespan scan-rescan dataset

We use scan-rescan data selected from several ongoing projects at the Center for Lifespan Changes
in Brain and Cognition (LCBC), University of Oslo, approved by the Regional Committees for Medical
and Health Research Ethics South of Norway. Participants were cognitively healthy, and all
participants or their guardian provided informed consent (for details, see e.g. (Walhovd et al.,
2016)). The images were acquired using two models of Siemens MRI scanners (Siemens Medical
Solutions, Erlangen, Germany) - 1.5T Avanto and 3T Skyra, at Rikshospitalet, Oslo University Hospital.
A total of 890 participants (1643 sessions) and 887 participants (1739 sessions) were included in the
initial within-session scan-rescan datasets for Avanto and Skyra scanners respectively. After

discarding scans with insufficient image quality (detailed in section 2.2), the samples were reduced
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to 774 participants (427 females; 1362 sessions; age range = 4-93 years) for Avanto and 855
participants (563 females; 1646 sessions; age range = 14-84 years) for Skyra. Fig 1 summarizes age

distributions for each scanner dataset.
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Fig 1. Age distributions of Avanto and Skyra datasets for scan-rescan analysis.

2.1.2. Lifespan longitudinal datasets

For longitudinal LCBC datasets, we selected participants from the scan-rescan dataset who also had
a follow-up visit: 491 participants of the Avanto scanner and 245 participants of the Skyra scanner.
Each participant had two visits with the follow-up ranging from 1 to 10 years for the Avanto dataset

and 1 to 5 years for the Skyra dataset.

2.1.3. Clinical sensitivity dataset
In addition to longitudinal LCBC datasets, we also included scans from the Alzheimer’s disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of
ANDI has been to test whether serial MRI, positron emission tomography, other biological makers,

and clinical and neuropsychological assessment can be combined to measure the progression of MCl

and early AD. For up-to-date information, see www.adni-info.org. For our study we randomly
selected three groups of participants with similar age distributions: CN, MCl and AD. Each group

consisted of 20 participants.
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2.2 MRI acquisition

MRI acquisition parameters for LCBC samples differed between the scanners but were identical for
each session on the same scanner, except for the Skyra dataset where one scan was acquired using
parallel acquisition factor GRAPPA = 1 and rescanned with GRAPPA = 2. Avanto data was acquired
using Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence with parameters: TR = 2400
ms, TE = 3.61 ms, Tl = 1000 ms, flip angle = 8°, voxel size = 1.25x 1.25 x 1.2 mm?3, 192 x 192
acquisition matrix, 160 slices, 180 Hz pixel bandwidth, GRAPPA =1, 12 channels head coil. Skyra data
was also acquired using MPRAGE sequence with parameters: TR = 2300 ms, TE = 2.98 ms, Tl = 850
ms, flip angle = 8°, voxel size = 1.0 x 1.0 x 1.0 mm?3, 256 x 256 acquisition matrix, 176 slices, 240 Hz
pixel bandwidth, GRAPPA =1 and 2, 20 channels head coil. Subjects were not repositioned between
scan and rescan acquisitions, to acquire data with optimal comparability within each scanner. All
images were visually inspected for motion and other artefacts, and sessions that had two scans of

acceptable image quality were included in further analysis.

The selected sample of ADNI data was acquired at different sites using a Siemens Avanto 1.5T MRI

scanner and MPRAGE sequence: TR = 2400 ms, TE = 3.54 ms, Tl = 1000 ms, flip angle = 8°, voxel size
=1.25x1.25x 1.2 mm?3, 192 x 192 acquisition matrix, 160 slices, 180 Hz pixel bandwidth, GRAPPA =
1, 8 channel matrix coil. Each participant had two visits with a follow-up ranging from 6 months to 2

years for each group.

2.3 MRI processing

Due to the non-linearity of the magnetic fields from the imaging gradient coils, images from each
scanner were first preprocessed to reduce geometrical variability of the same subject’s brains
between different sessions. This was achieved by obtaining scanner-specific spherical harmonics

expansions that represent the gradient coils (Jovicich et al., 2006).

Two fully automated subcortical segmentation methods FreeSurfer v7.1 ASEG and SAMSEG were
used to process MRI data and measure volumes of eight bilateral brain structures of interest:
amygdala, caudate, hippocampus, lateral ventricles, nucleus accumbens, pallidum, putamen and
thalamus. Briefly, the FreeSurfer ASEG pipeline includes Talairach transformation, intensity
correction, the removal of nonbrain tissues and volumetric brain segmentation based upon the
existence of an atlas containing information on the location of structures, whereas SAMSEG utilizes a
mesh-based atlas and a Bayesian modelling framework to obtain volumetric segmentations without

the need for skull-stripping as it includes segments for extra cerebral cerebrospinal fluid, skull and
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soft tissue outside of the skull. Both methods are fully automated and model-based that use a pre-
built probabilistic atlas prior from 39 and 20 subjects, respectively. The 20 subjects used for SAMSEG
are a subset of the 39 used for ASEG.

To extract reliable volume estimates between scan-rescan acquisitions, we processed images with
the longitudinal stream in FreeSurfer ASEG and SAMSEG. For FreeSurfer ASEG, an unbiased within-
subject template space and image (Reuter and Fischl, 2011) is created using robust, inverse
consistent registration (Reuter et al., 2010). Several processing steps, such as skull stripping,
Talairach transforms, atlas registration, and spherical surface maps and parcellations are then
initialized with common information from the within-subject template, significantly increasing
reliability and statistical power (Reuter et al., 2012). Longitudinal SAMSEG is based on a generative
model of longitudinal data (Iglesias et al., 2016). In the forward model, a subject-specific atlas is
obtained by generating a random warp from the usual population atlas, and subsequently each time
point is again randomly warped from this subject-specific atlas. Bayesian inference is used to obtain
the most likely segmentations, with the intermediate subject-specific atlas playing the role of latent
variable in the model, whose function is to ensure that various time points have atlas warps that are

similar between themselves, without having to define a priori what these warps should be similar to.

2.4 Statistical Analysis

2.4.1 Scan-rescan differences

Several statistical approaches were used to describe and evaluate the magnitude of within-session
scan-rescan variability between volume measurements. The absolute symmetrized percent

difference (ASPD) was calculated:

2|1V(Ly) — V(L)
V(L) + V(L)

ASPD(Ll,Lz) = X 100%'

where V(L) is the volume of the segmented label of structure L. ASPD value of 0 indicates a perfect
replicability, with increasing values indicating less reliable repeated measurements. Generalized
additive models (GAM) (Wood, 2017) were used to characterize volume estimation variability trends
of subcortical structures across the lifespan. GAMs are generalized linear models in which the
predictors depend linearly or non-linearly on some smooth non-linear functions (Hastie and
Tibshirani, 1990). The smooth functions are estimated from the data and enable a flexible smooth

curve fitting across the lifespan.
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ASPD captures how much the structure differs in terms of its size estimates between repeated
measures but does not provide specific insight on the spatial variability. Therefore, a fractional

volume overlap or Dice’s coefficient (Dice, 1945) was also computed:

2-V(L1 n L2)

Dlula) =y v vy

where V(L1 N L2) is the volume of the structure representing the intersection of two labels. In
case of two perfectly overlapping structures, Dice coefficient is 1, with decreasing values indicating

worse spatial overlap.

Intraclass correlation coefficient (ICC) is a widely used reliability measure for inter-rater, intra-rater
and test-retest analyses. It defines the extent to which measurements can be replicated and reflects
not only degree of correlation but also agreement between measurements. A value close to 1
indicates a high reliability, with decreasing values indicating lower reliability. ICC estimates and their
95% confidence intervals were calculated using a 2-way mixed-effects model, single measurement

and absolute agreement ICC form (McGraw and Wong, 1996; Koo and Li, 2016).

In addition to ICC we used Bland-Altman plots to analyze agreement between two repeated
measurements (Bland and Altman, 1986). For each pair of repeated measurements, the x-axis is the
mean of both values and y-axis is the percent difference between the two values. Bland-Altman
plots facilitate identification of any systematic differences between the measurements regarding the

size of the structure.

2.4.2 Sensitivity to longitudinal change

First, to assess whether the estimated lifespan trajectories of the subcortical volumes differed
depending on segmentation method, we used General Additive Mixed Models (GAMM) (Wood,
2017). In contrast to GAMs which treat each observation as independent, GAMMs take longitudinal
information into account by explicitly modeling the correlation between repeated measurements of
the same subject, yielding a model which captures cross-sectional and longitudinal information.
Second, to assess longitudinal changes, we used the annualized percentage change (APC) values
between the baseline and the follow-up visits for all participants with two scans separated by one
year or more. We compared APC values for each segmentation method with paired samples t-tests.
We also divided the sample into development (< 20 years), adulthood (between 20 and 60 years)

and aging (> 60 years), and compared APCs between each age-group using t-tests and Cohen’s D.
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Cohen’s D is an effect size used to indicate the standardized difference between two means. Third,
to address the clinical sensitivity of each segmentation method, we computed APC for the
hippocampus for ADNI subjects, and assessed differences in APC between groups (NC vs. MCl vs. AD)
using Cohen’s D. Finally, we used Receiver Operating Characteristic (ROC) curves and Area Under the
Curve (AUC) to address the classification sensitivity based on the APC values of the longitudinal

hippocampus estimates in different groups.

All statistical analyses described above were done using R statistical software package v3.6.3 (R Core
Team, 2020) and its related packages: mgcv (Wood, 2017), ggplot2 (Wickham, 2016), ggpubr
(Kassambara, 2020), cowplot (Wilke, 2019), irr (Gamer et al., 2019), effsize (Torchiano, 2020) and
dplyr (Wickham et al., 2020).

3. Results

3.1. Scan-rescan reliability

Fig 2 shows volume estimation differences between repeated acquisitions across the lifespan for the
Avanto dataset. Although most of the subcortical structures indicated relatively flat lifespan trends,
small deviations were observed for ASEG for the young children group which also demonstrated
larger variance between the repeated measurements. Fig 3 shows comparable results for the Skyra
dataset. However, the Skyra dataset did not include young children and the age-related trends did
not show larger differences in the younger sample. Interestingly, the lateral ventricles indicated
linearly higher scan-rescan reliability with aging for both scanners and methods. Fig 4 summarizes
the overall performance of each segmentation method on both scanner datasets across the lifespan.
SAMSEG volume estimates resulted in significantly lower (paired samples t-test, p < 0.05) scan-
rescan differences than ASEG for all structures. In addition, the standard deviations were also lower

for SAMSEG.
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Fig 2. ASPC values across the lifespan for the Avanto dataset. Age-related trends for each method are

shown by the GAM curves.
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Fig 3. ASPC values across the lifespan for the Skyra dataset. Age-related trends for each method are

shown by the GAM curves.
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Fig 4. Mean ASPC values (dots) and standard deviations (vertical bars) for each scanner dataset and
segmentation method for the subcortical structures: L-Put (left putamen), R-Put (right putamen), L-
Pal (left pallidum), R-Pal (right pallidum), L-Cau (left caudate), R-Cau (right caudate), L-Tha (left
thalamus), R-Tha (right thalamus), L-Hip (left hippocampus), R-Hip (right hippocampus), L-Amy (left
amygdala), R-Amy (right amygdala), L-Ven (left lateral ventricle), R-Ven (right lateral ventricle), L-Acc
(left nucleus accumbens), R-Acc (right nucleus accumbens). X-axis indicates Avanto (A) and Skyra (S)

scanners.

Fig 5 shows the lifespan test-retest Dice scores for the Avanto dataset. Most of the structures
indicated inverted u-shape trajectories except the lateral ventricles which demonstrated almost
linearly increasing reliability with aging. Fig 6 illustrates similar Dice scores and age-related trends for
the Skyra dataset. However, we found linearly worse spatial overlap with aging because it did not
include young children. Fig 7 summarizes the Dice scores across the lifespan. ASEG yielded
significantly higher spatial agreement for putamen (both hemispheres and scanners, paired samples
t-test, p < 0.01) whereas the rest of the spatial overlaps were significantly better for SAMSEG. The

largest improvements were demonstrated for amygdala, pallidum and nucleus accumbens.
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Fig 5. Dice coefficients across the lifespan for the Avanto dataset. Age-related trajectories are shown

by the GAM curves. The y-axis scale varies across plots to enable easier evaluation of age-trends.
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Fig 6. Dice coefficients across the lifespan for the Skyra dataset. Age-related trajectories are shown

by the GAM curves. The y-axis scale varies across plots to facilitate easier evaluation of age-trends.
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Fig 7. Mean Dice coefficients (dots) and standard deviations (vertical bars) for each scanner dataset
and segmentation method for the subcortical structures: L-Put (left putamen), R-Put (right putamen),
L-Pal (left pallidum), R-Pal (right pallidum), L-Cau (left caudate), R-Cau (right caudate), L-Tha (left
thalamus), R-Tha (right thalamus), L-Hip (left hippocampus), R-Hip (right hippocampus), L-Amy (left
amygdala), R-Amy (right amygdala), L-Ven (left lateral ventricle), R-Ven (right lateral ventricle), L-Acc
(left nucleus accumbens), R-Acc (right nucleus accumbens). X-axis indicates Avanto (A) and Skyra (S)

scanners.

The ICC was computed to assess the agreement between the repeated measurements for each
scanner dataset and segmentation method. Although the reliability of the repeated measurements
was very high (ICC > 0.95) for both methods, SAMSEG resulted in significantly higher (p < 0.01) ICC

values than ASEG for all subcortical structures.

Fig 8 and Fig 9 show Bland-Altman plots for the Avanto dataset. Despite consistent volumetric
estimations regardless of the structure size, the limits of agreement (average difference + 1.96
standard deviation of the difference) were in favor of SAMSEG. Smaller lateral ventricles yielded

higher variance for both methods. Similar results were observed for the Skyra dataset.
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Fig 8. Bland-Altman plots for the Avanto dataset and ASEG segmentation method. Limits of
agreement (average difference + 1.96 standard deviation of the difference) are shown by the red
lines.
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Fig 9. Bland-Altman plots for the Avanto dataset and SAMSEG segmentation method. Limits of
agreement (average difference + 1.96 standard deviation of the difference) are shown by the red

lines.
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3.2 Longitudinal changes

Higher intra-scanner reliability could be a result of lower sensitivity to detect relevant change in
brain volumes. We therefore tested the sensitivity of ASEG and SAMSEG to detect changes over time
using longitudinal scans and previously documented effects. First, to test whether ASEG and
SAMSEG yielded different estimated lifespan trajectories for the volume of each structure when
both cross-sectional and longitudinal information was taken into account, we ran GAMMs. For this,
we used the part of the LCBC sample where two observations separated by at least one year were
available for each participant. Each volume was modelled as a function of age, which would vary
within each participant with more than one test occasion. The resulting curves thus take into
account both observed within-participant change and between participant differences in age. Fig 10
shows the lifespan trajectories for each method for the Avanto dataset. Although there were
similarities in estimated age-trajectories between methods, there were also marked differences.
Especially, ASEG estimated more prominent age-effects for the hippocampus, amygdala and
thalamus structures, with apparent volumetric reductions starting at a much earlier age compared

to the SAMSEG results. Similar observations held for the Skyra dataset.
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Fig 10. Lifespan trajectories estimated from the combined cross-sectional and longitudinal data for
the Avanto scanner and both segmentation methods. Lifespan trajectories are estimated by GAMM,

and represent a combination of cross-sectional and longitudinal information.
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Next, we analyzed change as indexed by the APC between time-points. The sample was divided into
3 age groups: development, adulthood and aging as described in the Section 2.3. Fig 11 shows the
summary of APC values between age groups and segmentation methods for the left and right
hippocampus of the Avanto dataset. Hippocampus was chosen because of its known vulnerability
both in normal aging and in degenerative diseases such as AD. All estimated mean APC values were
significantly different from zero (t-test, p < 0.01) showing that both methods were sensitive to
change in all three groups. The standard deviations were also smaller for SAMSEG. Based on paired
samples t-tests, the mean differences in the APC values between the segmentation methods for
each age group were all significant (p < 0.01) indicating that SAMSEG tended to estimate smaller
longitudinal changes than ASEG. Similar results were observed for the Skyra dataset in adulthood

and aging groups.
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Fig 11. A summary of the mean APC values (dots) and its standard deviations (vertical bars) between

age groups for the Avanto dataset.

Fig 12 summarizes the effect sizes (Cohen’s D) based on the APC values between development and
adulthood, and between adulthood and aging for the Avanto dataset. SAMSEG yielded larger
numeric effect sizes between development and adulthood, and ASEG between adulthood and aging.
However, none these differences were significant. Similar results were observed for the Skyra

dataset.
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Fig 12. Cohen’s D effect sizes (dots) and their 95% confidence intervals (vertical bars) for

development vs. adulthood, and adulthood vs. aging groups for the Avanto dataset.

3.3 Clinical sensitivity

The results of the longitudinal changes indicate that SAMSEG vyields lower APC estimates than ASEG,
but also smaller standard deviations. However, there is no ground truth whether less or more
estimated changes is more accurate. Therefore, we addressed the clinical sensitivity using a
subsample of ADNI data. For the purpose of this analysis we only considered a hippocampus since it

is the most sensitive structure for detecting AD.

Fig 14 shows longitudinal left hippocampus volume changes. The observed differences were very
similar between the methods but SAMSEG yielded larger changes for some of the participants in the
AD group. In addition, SAMSEG tended to estimate larger volumes compared to ASEG but this was

consistent between the groups.
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Fig 13. Longitudinal left hippocampus volume changes between the segmentation methods for CN,

MCI and AD groups.

Fig 14 presents the group comparisons based on the estimated hippocampus APC values from the
longitudinal ASEG and SAMSEG segmentations. SAMSEG led to detection of significant differences in
atrophy rates between all clinical groups except for the left hippocampus MCI vs. AD comparison.
For ASEG, significant differences were seen for the right hippocampus CN vs. MCl contrast.

Generally, ASEG demonstrated larger APC variability within each group than SAMSEG.

Fig 15 summarizes the effect sizes (Cohen’s D) and their 95% confidence intervals between the group
comparisons. The effects were generally larger for SAMSEG than ASEG but none of these were

significantly different between the segmentation methods.
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Figure 14. Group comparisons of the estimated a) left and b) right hippocampus APC values from the
longitudinal ASEG and SAMSEG segmentations. Group means and standard deviations are shown by
the black vertical point range markers. The p-values of the t-tests between the group means are

indicated above the horizontal bars.
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Fig 15. Cohen’s D effect sizes (dots) and their 95% confidence intervals (vertical bars) for the group

comparisons between ASEG and SAMSEG for the left and right hippocampus.

Fig 16 plots ROC-AUC curves for classification of patients into different groups based on the APC
values of hippocampus. SAMSEG vyielded a larger number of correct classifications at the same or
lower rate of false positives than ASEG. A very similar scenario was observed for the right

hippocampus.
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Fig 16. The ROC-AUC curves for classifying participants based on the APC values of the longitudinal
hippocampus estimates: (a) AD from CN, (b) AD from MCI and (c) MCI from CN.
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4. Discussion

The results of the scan-rescan reliability indicated reliable volume estimation across the lifespan,
scanners and segmentation methods. Slight deviations were observed for younger participants,
presumably due to subtle head motion artifacts. It has previously been shown that younger age
groups typically evidence increased motion artifacts, which can hinder the identification of the tissue
boundaries (Blumenthal et al., 2002). Importantly, subtle motion artifacts can lead to systematic
biases in automatic measurement of structural brain properties (Yendiki et al., 2014). Although
different parallel imaging factors (GRAPPA) were used for the Skyra scan-rescan dataset (GRAPPA = 2
vs. GRAPPA = 1), it did not indicate sensitivity to lower signal-to-noise ratio and was comparable to
the Avanto dataset. Similar effects of parallel imaging acceleration were shown by (Wonderlick et al.,

2009).

The observed average volumetric differences across the lifespan for ASEG were similar to previous
reports (Jovicich et al., 2009; Morey et al., 2010). Nevertheless, SAMSEG led to significantly higher
scan-rescan volume estimation reliability for all subcortical structures and higher spatial overlap in
all structures except putamen, which had significantly higher spatial overlap for ASEG. This is likely a

result of SAMSEG’s probabilistic atlas, which currently does not include claustrum structure.

High within-session reliability could come at the cost of |less sensitivity to detect meaningful
biological change, i.e. that SAMSEG over-regularizes. However, the present analyses of within-
person longitudinal change suggest that SAMSEG does not achieve improved reliability by sacrificing
sensitive to change. Both with SAMSEG and with ASEG, longitudinal changes in hippocampal volume
were detected, and the APC values were comparable. In the absence of the ground truth
longitudinal changes, the present findings suggest that both methods are sensitive to changes in

hippocampal volume over time.

We also mapped the lifespan trajectory of each of the structures of interest using GAMMs, taking
both cross-sectional and longitudinal information into account. The segmentation differences
between ASEG and SAMSEG had substantial effect on lifespan trajectories of all of the tested brain
structures, except for the lateral ventricles. In general, developmental trajectories were similar
regardless of segmentation method, replicating previous findings (Ostby et al., 2009), although
effect sizes for the hippocampus were larger for SAMSEG than ASEG when comparing development
to adulthood. For adulthood and aging, however, marked differences were seen for most structures.

For the hippocampus and amygdala, the ASEG results replicated earlier studies showing slight
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volumetric decline from young adulthood (Fjell et al., 2013), with acceleration of volume loss from
the sixties, especially marked for the hippocampus. This was not seen for SAMSEG, where very little
volume loss was seen before the accelerated decline in aging. For thalamus and pallidum, there
were large offset effects, where the estimated volumes for the young children were much higher for
ASEG, followed by a steady decline after development ends, extending throughout the rest of the
lifespan. This pattern, which is in agreement with previous literature (Fjell et al., 2013), was not seen
with SAMSEG. For these structures, as well as nucleus accumbens, SAMSEG yielded modest decline
across adulthood, with only some acceleration of volume loss towards the end of life for thalamus.
Interestingly, while the previously reported U-shaped trajectory for caudate (Fjell et al., 2013) was
seen with ASEG, this was less evident with SAMSEG, which showed a more linear volume decline
also in higher age. The implications of these findings await further explorations, but the present
results show that the two segmentation methods have substantial effects on the estimated lifespan

trajectories of most subcortical structures.

The longitudinal changes analyzed in the clinical setting suggest that SAMSEG tended to be more
sensitive to differences in hippocampal atrophy between CN, MCl and AD. This is especially
important for detecting the early accelerated hippocampal atrophy which is known to be one of the
most sensitive biomarkers of Alzheimer’s disease (Teipel et al., 2013). Expected group differences
were more consistently observed for SAMSEG than ASEG. This is likely the result of larger variability
between change estimates for ASEG which in turn reduces the power to detect significant
differences between the groups. Therefore, based on the current study there is evidence that ASEG
might need more samples per group in order to observe the expected group differences, whereas
SAMSEG already showed greater sensitivity to detect relevant changes with the relatively modest
number of 20 patients in each group that we used for assessment. This is well reflected in the
Cohen’s D effect sizes and ROC-AUC curves, which indicate the excellence of classifications based on

SAMSEG’s segmentations.

Despite SAMSEG’s high test-retest reliability, it did not indicate reduced sensitivity for biologically
meaningful differences. On the contrary, it demonstrated higher sensitivity to detect longitudinal

changes than ASEG between development and adulthood, and in the clinical setting.

We analyzed scan-rescan reliability of participants that were not repositioned before acquiring a
repeated scan. This scenario is unlikely in the clinical setting where the participants are usually taken

out of the scanner before acquiring another repeated scan. This, in turn, might lead to an increased
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measurement variability and less reliable volumetric estimates compared to what was observed in
the present work. Finally, we performed a comprehensive evaluation of longitudinal changes and
sensitivity for the hippocampus structure. The remaining subcortical structures should be addressed

in addition as it is not evident that similar longitudinal trends would be present.

5. Conclusions

Both whole-brain segmentation methods ASEG and SAMSEG demonstrated high test-retest
reliability and did not indicate bias towards age (except young children) or structure size.
Nevertheless, the reliability measures of SAMSEG were significantly higher for all subcortical
structures. Although SAMSEG yielded more consistent measurements between repeated scans, this
did not indicate a lack of sensitivity to detect changes. On the contrary, both ASEG and SAMSEG led
to detection of within-person longitudinal change, while we found greater sensitivity to detect
longitudinal and clinically relevant changes with SAMSEG compared to ASEG. Therefore, the method
demonstrates a potential widespread application of the new whole-brain segmentation in the
neuroimaging research community. The present findings will also direct many researchers who have
the choice between these two utilities, leading to a downstream impact in clinical studies and laying

the foundation for further studies that can build on this.
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