

1 **A novel and conserved cell wall enzyme that can substitute for the Lipid II
2 synthase MurG**

3

4 L. Zhang*, K. Ramijan*, V.J. Carrión, L.T van der Aart, J. Willemse, G.P. van Wezel[†], and
5 D. Claessen[†].

6

7 Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA
8 Leiden, The Netherlands

9

10 * These authors contributed equally

11 † For correspondence: g.wezel@biology.leidenuniv.nl or
12 d.claessen@biology.leidenuniv.nl

13

14

15 Key words: Peptidoglycan, MurG, L-form, morphology switch, cell wall biosynthesis

16

17 **ABSTRACT**

18 The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception,
19 synthesis of the cell wall involves formation of the precursor molecule Lipid II by the activity
20 of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall
21 synthesis (*dcw*) gene cluster. Here we present the discovery of a novel cell wall enzyme that
22 can substitute for MurG. A mutant of *Kitasatospora viridifaciens* lacking a significant part of
23 the *dcw* cluster including *murG* surprisingly produced Lipid II and wild-type peptidoglycan.
24 Genomic analysis identified a distant *murG* parologue, which encodes a putative enzyme
25 that shares only around 31% aa sequence identity with MurG. We show that this enzyme
26 can replace the canonical MurG, and we therefore designated it MurG2. Orthologues of
27 *murG2* are present in 38% of all genomes of *Kitasatosporae* and members of the sister
28 genus *Streptomyces*. CRISPRi experiments showed that *K. viridifaciens* *murG2* can also
29 functionally replace *murG* in *Streptomyces coelicolor*, thus validating its bioactivity and
30 demonstrating that it is active in multiple genera. Altogether, these results identify MurG2 as
31 a *bona fide* Lipid II synthase, thus demonstrating plasticity in cell wall synthesis.

32

33

34 INTRODUCTION

35 Bacteria are surrounded by a cell wall, which is a highly dynamic structure that provides
36 cellular protection and dictates cell shape. A major component of the cell wall is
37 peptidoglycan (PG), which is widely conserved in the bacterial domain. Its biosynthesis has
38 been studied for many decades, reinforced by the notion that many successful antibiotics
39 target important steps in this pathway. The first steps of the PG synthesis pathway occur in
40 the cytoplasm, where the peptidoglycan precursor UDP-MurNAc-pentapeptide is
41 synthesized by the consecutive activity of a number of so-called Mur enzymes (MurA-F)¹.
42 Next, this pentapeptide precursor is linked to undecaprenyl phosphate (or bactoprenol)
43 residing in the plasma membrane by MurX (or MraY), yielding Lipid I. UDP-N-
44 acetylglucosamine--N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-
45 acetylglucosamine transferase (MurG) then adds the sugar nucleotide UDP-GlcNAc to
46 Lipid I to form Lipid II, which is the complete PG subunit that is flipped to the external side
47 of the membrane. Among the candidates to mediate this flipping, FtsW, MurJ and AmJ have
48 been proposed²⁻⁴. Following flipping to the exterior of the cell, the PG subunit is then used
49 to synthesize glycan strands by the activity of transglycosylases, after which these strands
50 are cross-linked using transpeptidases⁵⁻⁸. Many of the genes required for the biosynthesis
51 of PG and for cell division are located in the so-called *dcw* gene cluster (for division and cell
52 wall synthesis^{9,10} (see Fig. S1). The content and organization of the *dcw* cluster are
53 generally conserved among species with similar morphologies, indicating a putative role in
54 bacterial cell shape¹¹.

55 Members of the *Streptomycetaceae* within the Actinobacteria are filamentous Gram-
56 positive soil bacteria that have a complex multicellular life cycle^{12,13}. The best-studied genus
57 is *Streptomyces*, which is industrially highly relevant as it produces over half of all known
58 antibiotics used in the clinic, and many other bioactive compound with clinical or agricultural
59 application^{14,15}. The life cycle of streptomycetes starts with the germination of a spore, and

60 the arising vegetative hyphae grow out via tip extension and branching to form a dense
61 network called the vegetative mycelium. The vegetative mycelium consists of long
62 multinucleated syncytial cells separated by widely spaced crosswalls^{16,17}. The reproductive
63 phase is initiated by the formation of an aerial mycelium, whereby the vegetative hyphae are
64 cannibalized as a substrate^{18,19}. The aerial hyphae then differentiate into chains of
65 unigenomic spores. During sporulation, the conserved cell division protein FtsZ initially
66 assembles in long filaments in the aerial hyphae, then as regular foci, to finally form a ladder
67 of Z-rings²⁰. Eventually, cytokinesis results in spore formation, following a complex process
68 of coordinated cell division and DNA segregation^{21,22}.

69 Comparison between *Bacillus* and *Streptomyces* shows that some cell division-
70 related proteins have evolved different functionalities between Firmicutes and
71 Actinobacteria. An example of such a divergent function is exemplified by DivIVA: in *Bacillus*
72 *subtilis* this protein is involved in selection of the division site by preventing polar
73 accumulation of FtsZ²³, while DivIVA in Actinobacteria plays an essential role in polar growth
74²⁴. Thus, *divIVA* cannot be deleted in Actinobacteria while it is dispensable in *B. subtilis*.
75 Conversely, many cell division genes, including *ftsZ*, can be deleted in Actinobacteria while
76 being essential for unicellular microbes. This makes Actinobacteria intriguing model systems
77 for the study of cell division and growth^{21,25}. It is also worth noticing the Streptomycetes
78 have a complex cytoskeleton, with many intermediate filament-like proteins required for
79 hyphal integrity²⁶⁻²⁹.

80 Besides the genus *Streptomyces*, the family of *Streptomycetaceae* also
81 encompasses the genera *Kitasatospora* and *Streptacidiphilus*. While highly similar in growth
82 and development, *Kitasatospora* is distinct from *Streptomyces*^{30,31}. We recently described
83 that *Kitasatospora viridifaciens* releases cell wall-deficient cells, called S-cells, under
84 conditions of hyperosmotic stress³². These S-cells are only transiently wall-deficient and
85 can switch to the mycelial mode-of-growth. In some cases, however, prolonged exposure to

86 high levels of osmolytes can lead to the emergence of mutants that are able to proliferate in
87 the wall-deficient state as so-called L-forms ^{32,33}. Like S-cells, these L-forms retain the ability
88 to construct functional peptidoglycan based on the observation that removal of the
89 osmolytes from the medium led to the formation of mycelial colonies. L-forms can also be
90 generated in most other bacteria by exposing cells to compounds that target the process of
91 cell wall synthesis ³³⁻³⁵. Strikingly, such wall-deficient cells that are able to propagate without
92 the FtsZ-based cell division machinery ³⁵⁻³⁷. Even though the procedures used to generate
93 L-forms can markedly differ, their mode-of-proliferation is conserved across species and
94 largely based on biophysical principles. An imbalance in the cell surface area to volume ratio
95 in cells that increase in size causes strong deformations of the cell membrane, followed by
96 the release of progeny cells by blebbing, tubulation and vesiculation ^{32,38}. Given that lipid
97 vesicles without any content are able to proliferate in a similar manner to that observed for
98 L-forms led to the hypothesis that this mode of proliferation may be comparable to that used
99 by early life forms that existed before the cell wall had evolved ^{39,40}.

100 Here, we exploited the unique properties of a *K. viridifaciens* L-form strain that readily
101 switches between a wall-deficient and filamentous mode-of-growth to discover a novel
102 MurG-like enzyme that is important for building the PG-based cell wall. Our data surprisingly
103 show that *K. viridifaciens* produces wild-type peptidoglycan in the absence of *murG*, which
104 was so far considered essential for Lipid II biosynthesis in all bacteria. The MurG activity is
105 taken over by a novel parologue called MurG2, which occurs widespread in filamentous
106 actinobacteria, and able to substitute for the absence of MurG across different genera.

107

108 **RESULTS**

109 **Morphological transitions of the shape-shifting strain *alpha***

110 We recently generated a *K. viridifaciens* L-form lineage by exposing the parental wild-type
111 strain to high levels of penicillin and lysozyme. This strain, designated *alpha*, proliferates

112 indefinitely in the cell wall-deficient state in media containing high levels of osmolytes ³²
113 (Table S1). On solid LPMA medium, *alpha* forms green-pigmented viscous colonies, which
114 exclusively contain L-form cells (Fig. 1A). In contrast, the parental strain forms compact and
115 yellowish colonies composed of mycelia and S-cells on LPMA medium (Fig. 1B). Likewise,
116 in liquid LPB medium *alpha* exclusively proliferates in the wall-deficient state, in a manner
117 that is morphologically similar to that described for other L-forms ^{35,41,42}; (Extended Data
118 Video S1; Fig. 1C). Following strong deformations of the mother cell membrane (see panels
119 of 56, 150, and 200 min in Fig. 1C), small progeny cells are released after approximately
120 300 min. The mother cell, from which the progeny was released (indicated with an asterisk)
121 lysed after 580 min. Characterization using transmission electron microscopy (TEM)
122 confirmed that *alpha* possessed no PG-based cell wall when grown on media containing
123 high levels of osmolytes (Fig. 1D). Notably, when *alpha* is plated on MYM medium (lacking
124 high levels of osmolytes) the strain can switch to the mycelial mode-of-growth (Fig. 1E).
125 However, unlike the wild-type strain (Fig. 1F), the mycelial colonies of *alpha* fail to develop
126 aerial hyphae and spores. Subsequent transfer of mycelia to LPMA plates stopped
127 filamentous growth and reinitiated wall-deficient growth, during which L-form cells are
128 extruded from stalled hyphal tips (Extended Data Video S2; Fig. 1G). Given the ability of
129 these wall-deficient cells to proliferate, they eventually dominated the culture (not shown).
130 Taken together, these results demonstrate that *alpha* can switch between a walled and wall-
131 deficient state.

132

133 **Deletion of *divIVA* abolishes switching of *alpha* from the wall-deficient to the**
134 **filamentous mode-of-growth**

135 The ability of *alpha* to efficiently switch between the walled and wall-deficient state provides
136 an ideal platform to delete genes essential for cell wall biosynthesis. As a proof-of-concept,
137 we focused on *divIVA*, which is essential for polar growth in filamentous actinomycetes ²⁴.

138 In Actinobacteria, *div/VA* is located adjacent to the conserved *dcw* gene cluster (Fig. S1).
139 *div/VA* is present in Gram-positive rod-shaped (*Mycobacterium*, *Corynebacterium*, *Bacillus*),
140 filamentous (*Streptomyces* and *Kitasatospora*) and coccoid (*Staphylococcus* and
141 *Streptococcus*) bacteria, but absent in Gram-negatives such as *Escherichia coli*. In *B.*
142 *subtilis* and *Staphylococcus aureus*, the DivIVA proteins share only 29% (BSU15420) and
143 26% (SAOUHSC_01158) aa identity to the *S. coelicolor* orthologue. To localize DivIVA,
144 plasmid pKR2 was created, allowing constitutive expression of DivIVA-eGFP (Table S2).
145 Fluorescence microscopy revealed that the fusion protein localized to hyphal tips (Fig. S2A),
146 similarly as in streptomycetes ²⁴. When *alpha* was grown in the wall-deficient state in LPB
147 medium, typically one or two foci of DivIVA-eGFP were detected per cell, which invariably
148 were localized to the membrane. In contrast, no foci were detected in L-form cells containing
149 the empty plasmid (pKR1) or those expressing cytosolic eGFP (pGreen ⁴³). We then
150 constructed the plasmids pKR3 to delete *div/VA* and pKR4 to delete a large part of the *dcw*
151 gene cluster, including *div/VA* (Table S2). Introduction of these plasmids into *alpha* by PEG-
152 mediated transformation and a subsequent screening yielded the desired *div/VA* and *dcw*
153 mutants (Fig. S3). Analysis of growth in LPB medium or on solid LPMA plates indicated that
154 the L-form cells proliferated normally in the absence of *div/VA* or part of the *dcw* gene cluster
155 (Fig. 2). However, when L-form cells were plated on MYM medium (lacking
156 osmoprotectants), only the *alpha* strain was able to switch to the mycelial mode-of-growth
157 (Fig. 2B). Introduction of plasmid pKR6, which expresses *div/VA* from the constitutive *gap1*
158 promoter, complemented growth of the *div/VA* mutant on MYM medium (Fig. 2B). In
159 agreement, Western blot analysis using antibodies against DivIVA of *Corynebacterium*
160 *glutamicum* confirmed the absence of DivIVA in both the *div/VA* and the *dcw* mutant, and
161 also showed the expression was restored in the *div/VA* mutant complemented with pKR6
162 (Fig. 2C).
163 To analyse if the switch from the wall-deficient to the walled state in the absence of

164 DivIVA was blocked due to the failure to produce the cytosolic precursors required for
165 peptidoglycan synthesis in the L-form state, we performed a comparative LC-MS analysis
166 (Fig. 2D). We noticed that the LC-MS profiles of the *div/VA* and *dcw* mutant strains were
167 similar to that of *alpha* with respect to the cytosolic PG building blocks (Fig. 2D). Importantly,
168 MS-MS analysis identified the last cytosolic precursor in the PG biosynthesis pathway, UDP-
169 MurNAc-pentapeptide (Mw = 1194.35) in all strains (Fig. 2E). Taken together, these results
170 demonstrate that DivIVA is essential for filamentous growth but not required for synthesis of
171 the cytosolic PG precursors.

172

173 **Identification of a distant MurG parologue as a novel Lipid II synthase**

174 Having a mutant lacking many genes of the *dcw* cluster offers many opportunities for the
175 study of individual genes. The constructed *dcw* mutant lacks *ftsW*, *murG*, *ftsQ*, *ftsZ*, *ylmD*,
176 *ylmE*, *sepF*, *sepG*, and *div/VA*. Surprisingly, introduction of only *div/VA* (expressed from the
177 constitutive *gap1* promoter) restored the ability of the *dcw* mutant to switch to the walled
178 mode-of-growth on solid media lacking osmoprotectants (Fig. 3). The colonies that were
179 formed, were small and heterogeneous as compared to the mycelial colonies formed by
180 *alpha* (Fig. 3A). Furthermore, expression of *div/VA* in the *dcw* mutant was not able to restore
181 filamentous growth in liquid cultures (data not shown). To verify that the *dcw* mutant
182 expressing *div/VA* produced normal PG on solid medium, we performed a peptidoglycan
183 architecture analysis using LC-MS (Fig. 3B). This surprisingly revealed that all expected
184 muropeptides were formed at levels comparable to those formed by *alpha* and the wild-type
185 strain, despite the absence of a functional *murG* (Fig. 3B; Table 1).

186 The ability of the *dcw* mutant expressing *div/VA* to grow filamentous inevitably means
187 that another protein had functionally replaced the activity of MurG. Blast analysis of the
188 amino acid sequence of MurG_{SCO} (SCO2084) against the genome sequence of *K.*
189 *viridifaciens* revealed that this actinomycete contains two putative, but distant MurG

190 homologs (Supplementary Table 4). The two additional homologs (BOQ63_RS12640 and
191 BOQ63_RS05415) showed 31.2% and 16.5% sequence identity, respectively, to MurG
192 (BOQ63_RS32465). Further investigation revealed that MurG proteins possess two
193 characteristic domains: an N-terminal domain that contains the Lipid I binding site (PF03033)
194 ⁴⁴, and a C-terminal domain that contains the UDP-GlcNAc binding site (PF04101; Fig. S4),
195 both of which are required for the UDP-N-acetyl-glucosamine transferase activity. Of the two
196 distant MurG homologues, only BOQ63_RS12640 contained both domains (Fig. S4). A
197 broader search of MurG-like proteins in other *Streptomyces* and *Kitasatospora* spp. revealed
198 that 38% of the strains possess one, two and sometimes even three genes for MurG-like
199 proteins containing both the necessary N-terminal (PF03033) and C-terminal (PF04101)
200 domains (Fig. 4), in addition to the canonical MurG, which is present in all strains and
201 encoded in the *dcw* gene cluster. A sequence similarity network was produced by pairwise
202 comparing the 1553 MurG and MurG-like proteins extracted from all translated
203 *Streptomyces* and *Kitasatospora* genomes, which showed that nearly all MurG proteins
204 encoded by the orthologue of *murG* in the *dcw* gene cluster grouped together. However, the
205 MurG-like proteins clustered in many different groups (Fig. S5).

206 To corroborate that *murG* is not required for filamentous growth, we decided to delete
207 *murG* in *alpha* using knock-out construct pKR8 (Table S2). The genotype of the mutant was
208 verified by PCR (Fig. S6) and showed that the absence of *murG* had no effect on L-form or
209 filamentous growth (Fig. 5). Likewise, inactivation of *murG2* in *alpha* using construct pKR9
210 had no effect on L-form growth and did not prevent switching to mycelial growth (Fig. 5). We
211 then attempted to create a double mutant by deleting *murG2* in the *murG* mutant. PCR
212 analysis on a putative double mutant strain with the highly sensitive Q5 DNA polymerase
213 indicated, however, that a small proportion of the multinucleated L-forms had retained a
214 copy of *murG2* (Fig. S6). Also, further subculturing of this merodiploid strain in the presence
215 of antibiotics that counter-selected for maintenance of *murG2* did not lead to a complete loss

216 of this gene, suggesting that the ability to produce Lipid II is essential in these L-forms (see
217 Discussion). Nevertheless, plating this merodiploid strain on MYM medium essentially
218 blocked mycelial growth, and only at very high cell densities infrequent shifters were found
219 (see encircled colony in Fig. 5A).

220 Having demonstrated that *murG* is not required for filamentous growth of *alpha*, we
221 then wondered whether *murG* would also be dispensable for filamentous growth of the wild-
222 type strain. Notably, *murG* deletion mutants could not be obtained if transformants were
223 selected on MYM medium, unlike a *murG2* deletion mutant that was readily found. However,
224 when transformants were selected on LPMA medium containing high levels of sucrose, a
225 *murG* mutant could be created in *K. viridifaciens* (see Fig. S7). As shown in Figure 5B, the
226 generated *murG* and *murG2* mutants were able to develop and sporulate normally on MYM,
227 when compared to the parental wild type. However, exposing the strains to low levels of
228 penicillin and ampicillin revealed that the *murG* mutant was more susceptible to these cell
229 wall-targeting antibiotics when compared to the wild-type and its *murG2* mutant. By contrast,
230 no difference effect was observed when tetracycline was added to the plates (Fig. 5C).
231 Altogether, these results demonstrate that MurG and MurG2 have overlapping activities,
232 whereby MurG2 is able to functionally replace the canonical Lipid II synthase MurG.

233

234 **MurG2 from *K. viridifaciens* can functionally replace MurG in *S. coelicolor***

235 The observations that *murG2* can functionally replace *murG* in *K. viridifaciens* and that
236 strains expressing only MurG2 produce wild-type peptidoglycan, strongly suggest that the
237 *murG2* gene product synthesizes Lipid II. To further substantiate this, we investigated
238 whether *murG2* could also functionally complement *murG* (SCO2084) in another
239 Actinobacterium, namely the model organism *Streptomyces coelicolor* M145, which itself
240 does not harbour an orthologue of *murG2*. For this, we created construct pGWS1379
241 expressing *murG2* from the constitutive *ermE* promoter in the integrative vector pMS82 and

242 introduced it into *S. coelicolor*. As a control we used the empty vector pMS82. We then
243 applied CRISPRi⁴⁵ to knock-down the native *murG* to assess viability. CRISPRi only works
244 when the spacer of the dCas9/sgRNA complex targets the non-template strand of *murG*_{co},
245 and not the template strand, or when the spacer is absent^{45,46}. The functionality of the
246 CRISPRi constructs was evident in control cells without *murG*₂; colonies expressing the
247 dCas9/sgRNA complex targeting the non-template strand of *murG*_{co} in M145 could hardly
248 grow, due to the essential function of *murG*. Conversely, control transformants harboring
249 CRISPRi constructs targeting the template strand or without spacer (empty plasmid) grew
250 normally (Fig. 6). Excitingly, *S. coelicolor* transformants expressing *murG*₂ grew apparently
251 normally under all conditions, even when *murG* expression was knocked down by the
252 CRISPRi system. This validates the concept that *murG*₂ can functionally replace the
253 canonical *murG* (Fig. 6). Taken together, our experiments show that the MurG2 enzyme can
254 functionally replace the Lipid II-biosynthetic enzyme MurG, both in *Kitasatospora* and in
255 *Streptomyces*.

256

257 **DISCUSSION**

258 The cell wall is a hallmark feature of bacterial cells, and the steps involved in its biosynthesis
259 are widely conserved across the bacterial domain. In all bacteria, the final cytosolic step in
260 precursor biosynthesis is the conversion of Lipid I to Lipid II by MurG encoded in the *dcw*
261 gene cluster. We here show for the first time that the novel enzyme MurG2 can replace the
262 activity of MurG and demonstrate that *murG* is dispensable in the filamentous actinomycete
263 *K. viridifaciens* in the presence of *murG*₂. MurG2 alone is sufficient to produce wild-type
264 peptidoglycan. MurG2 is in fact widespread among the *Streptomycetaceae* and was
265 identified in the genomes of 38% of all *Streptomyces* and *Kitasatospora* strains.
266 Furthermore, introduction of *K. viridifaciens murG*₂ into *S. coelicolor* M145 - which itself
267 lacks an orthologue of *murG*₂ - allowed the knock-down of the canonical *murG* using

268 CRISPRi, showing that the gene is a *bona fide* cell wall biosynthetic gene that is functional
269 in different Actinobacteria.

270 Filamentous actinomycetes are multicellular bacteria that form networks of
271 interconnected hyphae, whereby sporulating aerial hyphae are established after a period of
272 vegetative growth. *Streptomyces* is a wonderful model system for the study of cell division,
273 among others because cell division is not required for normal growth of this bacterium^{21,25,47}.
274 Most of the cell division proteins are encoded by genes located in the conserved *dcw* gene
275 cluster. In streptomycetes, many cell division genes such as *ftsI*, *ftsL*, *ftsW* and *divIC* are
276 only required for sporulation and do not affect normal growth⁴⁸⁻⁵⁰. Our data surprisingly show
277 that many genes within the *dcw* cluster can be deleted simultaneously in *K. viridifaciens*,
278 including *divIVA* that is essential for polar growth in Actinobacteria, by using a strain (*alpha*)
279 with the ability to readily switch between a wall-deficient and filamentous mode-of-growth.
280 The *alpha* strain thus provides a unique system for the identification of proteins that are
281 required for polar growth. As a proof-of-concept for this principle, *divIVA* that is required for
282 polar growth, was successfully deleted. Consistent with its role in driving apical growth, the
283 absence of *divIVA* arrested growth in the wall-deficient state but had no effect on synthesis
284 of the PG building blocks. This indicates that the block in PG formation occurred in a later
285 step of the PG biosynthesis pathway. Introduction of only *divIVA* in the *dcw* mutant restored
286 polar growth, which was a rather surprising discovery given the absence of a whole string
287 of genes involved in cell division and cell wall synthesis, and in particular *murG*. *MurG*
288 catalyzes the coupling of GlcNAc to Lipid I, yielding the PG precursor Lipid II and this
289 enzymatic activity is therefore essential for cell wall synthesis. The ability of *alpha* to produce
290 a cell wall with an apparently normal architecture, as shown by the analysis of the
291 peptidoglycan, indicated that *K. viridifaciens* possesses other enzymes capable of
292 synthesizing Lipid II in the absence of *murG*. An in-silico search in the genome of *K.*
293 *viridifaciens* identified *murG2* (BOQ63_RS12640), which is a distant relative of *MurG* with

294 the likely ability to replace the activity of the canonical MurG. This is based among others
295 on the presence of the two domains that are known to be required for the transfer of GlcNAc
296 to Lipid I. Many Actinobacteria possess proteins carrying these two domains, suggesting
297 that MurG2 proteins are common in these bacteria. In fact, some species even contain three
298 genes for MurG-like proteins, in addition to the canonical MurG encoded in the *dcw* gene
299 cluster. Interestingly, *murG* and *murG2* could both be individually deleted in the wild-type
300 strain, whereby the resulting mutants showed normal growth and development when strains
301 were grown in non-stressed environments. However, the *murG* mutant was more
302 susceptible to cell wall-targeting antibiotics than the wild-type strain or its *murG2* mutant.
303 Considering that MurG2 alone suffices to produce normal peptidoglycan, this suggests that
304 MurG is required to build a more robust cell wall. Deletion of *murG* was only possible after
305 exposing transformants to hyperosmotic growth conditions. We hypothesize that the
306 hyperosmotic conditions activated the transcription of *murG2*, thus allowing deletion of *murG*
307 specifically under these growth conditions. This implies that the function of *murG2* is to
308 synthesize Lipid II under specific growth conditions, e.g. during hyperosmotic stress.

309 In further support of the function of MurG2 as an alternative Lipid II synthase, we
310 tested if it could also take over the function of *murG* in another bacterium. For this, we chose
311 the model streptomycete *S. coelicolor* M145, which is a distinct genus within the
312 *Streptomycetaceae*^{31,51}, but lacking a copy of *murG2*. Importantly, *murG* could be readily
313 depleted using CRISPRi in strains expressing *murG2* from a constitutive promoter, while
314 knock-down of *murG* in colonies of *S. coelicolor* harboring control plasmids led to very
315 severe growth defects. This not only validates our data that *murG2* encodes a Lipid II
316 synthase, but also that this is a more universal phenomenon that does not only occur in
317 specific strains of *Kitasatospora* or connect to strains that have the capacity to produce
318 natural wall-less cells. Furthermore, it shows that no additional *Kitasatospora* genes are
319 required to allow *murG2* to functionally complement *murG* in *Streptomyces*.

320 We also attempted to delete *murG* and *murG2* simultaneously in *alpha*. While the
321 single mutants were readily obtained, we never obtained strains that completely devoid of
322 both *murG* and *murG2*, despite many attempts. Like mycelia, L-forms are multinucleated
323 cells, and some cells of the population retained *murG2*, most likely to ensure minimal levels
324 of Lipid II. Consistent with this idea is the finding that antibiotics that target Lipid II, such as
325 vancomycin, are lethal to *alpha* (our unpublished data). We hypothesize that this lethality is
326 caused by depletion of the lipid carrier undecaprenyl diphosphate, which is also used in
327 other pathways and which may be essential for these L-forms. Removing *murG2* in strains
328 lacking *murG* strain virtually blocked the ability to switch to the filamentous mode-of-growth,
329 whereas each of the single mutants switched as efficiently as the parental *alpha* strain. Thus,
330 we show that MurG2 is a novel enzyme involved in cell wall metabolism, which appears to
331 facilitate switching between a wall-deficient and a walled lifestyle.

332

333 MATERIALS AND METHODS

334 Strains and media

335 Bacterial strains used in this study are shown in Table S1. To obtain sporulating cultures of
336 *K. viridifaciens* and *S. coelicolor*, strains were grown at 30°C for 4 days on MYM medium⁵².
337 For general cloning purposes, *E. coli* strains DH5α and JM109 were used, while *E. coli*
338 ET12567 and SCS110 were used to obtain unmethylated DNA. *E. coli* strains were grown
339 at 37 °C in LB medium, supplemented with chloramphenicol (25 µg ml⁻¹), ampicillin (100 µg
340 ml⁻¹), apramycin (50 µg ml⁻¹), kanamycin (50 µg ml⁻¹), or viomycin (30 µg ml⁻¹), where
341 necessary.

342 To support growth of wall-deficient cells, strains were grown in liquid LPB medium
343 while shaking at 100 rpm, or on solid LPMA medium at 30°C³². To switch from the wall-
344 deficient to the filamentous mode-of-growth, L-form colonies grown on LPMA for seven days
345 were streaked on MYM medium. If needed, mycelial colonies of switched strains were

346 transferred after 4 days to liquid TSBS medium and grown for two days at 30°C, while
347 shaking at 200 rpm.

348

349 **Construction of plasmids**

350 All plasmids and primers used in this work are shown in Tables S2 and S3, respectively.

351

352 *Construction of the DivIVA localization construct pKR2*

353 To localize DivIVA, we first created plasmid pKR1 containing a viomycin resistance
354 cassette cloned into the unique Nhel site of pIJ8630⁵³. To this end, the viomycin resistance
355 cassette was amplified from pIJ780⁵⁴ with the primers *vph*-FW-Nhel and *vph*-RV-Nhel.
356 Next, we amplified the constitutive *gap1* promoter as a 450 bp fragment from the genome
357 of *S. coelicolor* with the primers Pgap1-FW-BgIII and Pgap1-RV-XbaI. We also amplified the
358 *divIVA* coding sequence (the +1 to +1335 region relative to the start codon of *divIVA*
359 (BOQ63_RS32500) from the chromosome of *K. viridifaciens* using primers *divIVA*-FW-XbaI
360 and *divIVA*-Nostop-RV-NdeI⁵⁵. Finally, the promoter and *divIVA* coding sequence were
361 cloned into pKR1 as a BgIII/XbaI and XbaI/NdeI fragment respectively, yielding plasmid
362 pKR2.

363

364 *Construction of the deletion constructs pKR3, pKR4, pKR8, pKR9 and pKR10*

365 The *divIVA* mutant was created in *K. viridifaciens* using pKR3, which is a derivative of the
366 unstable plasmid pWHM3⁵⁶. In the *divIVA* mutant, nucleotides +205 to +349 relative to the
367 start codon of *divIVA* were replaced with the *loxP-apra* resistance cassette as described⁵⁷.

368 A similar strategy was used for the deletion of the partial *dcw* cluster (plasmid pKR4), and
369 for the deletion of *murG* (plasmid pKR8) and *murG2* (plasmid pKR9). For the deletion of the
370 partial *dcw* cluster, the chromosomal region from +487 bp relative to the start of the *ftsW*
371 gene (BOQ63_RS32460) until +349 relative to the start of the *divIVA* gene were replaced

372 with the apramycin resistance marker. For the deletion of *murG* (BOQ63_RS32465, located
373 in the *dcw* cluster), the nucleotides +10 to +1077 bp relative to the start codon of *murG* were
374 replaced with the *loxP-apra* resistance cassette, while for the *murG2* (BOQ63_RS12640)
375 deletion the chromosomal region from +18 to +1105 bp relative to the start of *murG2* were
376 replaced with the apramycin resistance marker. To construct the *murG/murG2* double
377 mutant, pKR10 was created, replacing the apramycin resistance cassette in pKR8 by a
378 viomycin resistance cassette. To this end, the viomycin resistance cassette was amplified
379 from pIJ780⁵⁴ with the primers *vph*-Fw-EcoRI-HindIII-XbaI and *vph*-Rv-EcoRI-HindIII-XbaI.
380 The viomycin resistance cassette contained on the PCR fragment was then cloned into
381 pKR8 using XbaI, thereby replacing the apramycin cassette and yielding pKR10.

382

383 *Construction of the complementation constructs pKR6 and pKR7*

384 For complementation of *divIVA* under control of the strong *gap1* promoter⁴³, the constructs
385 pKR6 was made. First, we created plasmid pKR5 with the strong *gap1* promoter. The
386 promoter region of *gap1* (SCO1947) was amplified with the primers Pgap1-FW-BgIII and
387 Pgap1-RV-XbaI using *S. coelicolor* genomic DNA as the template. Next, the *gap1* promoter
388 was cloned as BgIII/XbaI fragment into the integrative vector pIJ8600⁵³ to generate the
389 plasmid pKR5. Afterwards, the *divIVA* coding sequence was amplified from the genome of
390 *K. viridifaciens* with the primers *divIVA*-XbaI-FW and *divIVA*-NdeI-RV. Finally, to create the
391 plasmid pKR6 the XbaI/NdeI fragment containing the *divIVA* coding sequence was cloned
392 in pKR5.

393

394 *Construction of the murG2 expression construct pGWS1379*

395 A DNA fragment containing the *ermE** promoter was obtained as an EcoRI-NdeI fragment
396 from pHM10a⁵⁸, while *murG2* was amplified by PCR from *K. viridifaciens* chromosomal DNA
397 using primer pair murG2_F+4_ENdel and murG2_R+1146_HX. The *ermEp** fragment and

398 NdeI-XbaI-digested *murG2* were simultaneously cloned into EcoRI-XbaI digested pSET152
399 to generate construct pGWS1378. The insert of pGWS1378 was then introduced as a PvuII
400 fragment into EcoRV-digested pMS82⁵⁹ to generate construct pGWS1379. This construct
401 was then introduced into *S. coelicolor* M145 via protoplast transformation as described⁶⁰.

402

403 **Transformation of L-forms**

404 Transformation of *alpha* essentially followed the protocol for the rapid small-scale
405 transformation of *Streptomyces* protoplasts⁶⁰, with the difference that 50 µl cells from a mid-
406 exponential growing L-form culture were used instead of protoplasts. Typically, 1 µg DNA
407 was used for each transformation. Transformants were selected by applying an overlay
408 containing the required antibiotics in P-buffer after 20 hours. Further selection of
409 transformants was done on LPMA medium supplemented with apramycin (50 µg ml⁻¹),
410 thiostrepton (5 µg ml⁻¹), or viomycin (30 µg ml⁻¹), when necessary. Transformants were
411 verified by PCR (Table S3).

412

413 ***murGSCO* (SCO2084) knockdown via CRISPRi**

414 The Ncol restriction site within the integrase gene of phage φC31 in pSET152 was removed
415 by introducing a silent GCC to GCG change in codon A360 via site-directed mutagenesis by
416 PCR using primer pairs 152DNcol_F and 152DNcol_R, to generate construct pGWS1369.
417 Subsequently, a DNA fragment containing the sgRNA scaffold (no spacer) and Pgapdh-
418 dcas9 of constructs pGWS1049⁴⁶ was cloned as an EcoRI-XbaI fragment into pGWS1369
419 to generate construct pGWS1370. The 20 nt spacer sequence was introduced into sgRNA
420 scaffold by PCR using forward primers SCO2084_T_F or SCO2084_NT5_F together with
421 the reverse primer SgTermi_R_B. The PCR products were cloned as Ncol-BamHI fragments
422 into pGWS1370 to generate constructs pGWS1371 (targeting the template strand of
423 SCO2084) and pGWS1376 (targeting the non-template strand of SCO2084). Constructs

424 pGWS1370 (no spacer), pGWS1371 (targeting the template strand) and pGWS1376
425 (targeting the non-template strand) were introduced into *S. coelicolor* M145+pMS82 (empty
426 plasmid) and M145+pGWS1379 (expressing *murG2*) via protoplast transformation as
427 described previously⁶⁰.

428

429 **Microscopy**

430 Strains grown in LPB or LPMA were imaged using a Zeiss Axio Lab A1 upright microscope
431 equipped with an Axiocam Mrc. A thin layer of LPMA (without horse serum) was applied to
432 the glass slides to immobilize the cells prior to the microscopic analysis.

433

434 *Fluorescence microscopy*

435 Fluorescence microscopy pictures were obtained with a Zeiss Axioscope A1 upright
436 fluorescence microscope equipped with an Axiocam Mrc5 camera. Aliquots of 10 µl of live
437 cells were immobilized on top of a thin layer of LPMA (without horse serum) prior to analysis.
438 Fluorescent images were obtained using a 470/40 nm band pass excitation and a 505/560
439 band pass detection, using an 100x N.A. 1.3 objective. To obtain a sufficiently dark
440 background, the background of the images was set to black. These corrections were made
441 using Adobe Photoshop CS5.

442

443 *Time-lapse microscopy*

444 To visualize the proliferation of *alpha*, cells were collected and resuspended in 300 µl LPB
445 (containing 4-22% sucrose) and placed in the wells of a chambered 8-well µ-slide (ibidi®).
446 Cells were imaged on a Nikon Eclipse Ti-E inverted microscope equipped with a confocal
447 spinning disk unit (CSU-X1) operated at 10,000 rpm (Yokogawa), using a 40x Plan Fluor
448 Lens (Nikon) and illuminated in bright-field. Images were captured every 2 minutes for 10-
449 15 hours by an Andor iXon Ultra 897 High Speed EM-CCD camera (Andor Technology). Z-

450 stacks were acquired at 0.2-0.5 μ m intervals using a NI-DAQ controlled Piezo element.
451 During imaging wall-less cells were kept at 30 °C using an INUG2E-TIZ stage top incubator
452 (Tokai Hit).

453

454 *Electron microscopy*

455 For transmission electron microscopy, L-forms obtained from a 7-day-old liquid-grown *alpha*
456 culture were trapped in agarose blocks prior to fixation with 1.5% glutaraldehyde and a post-
457 fixation step with 1% OsO₄. Samples were embedded in Epon and sectioned into 70 nm
458 slices. Samples were stained using uranyl-acetate (2%) and lead-citrate (0.4%), if
459 necessary, before being imaged using a Jeol 1010 or a Fei 12 BioTwin transmission electron
460 microscope.

461

462 **DivIVA detection using Western analysis**

463 To detect DivIVA using Western analysis, the biomass of L-form strains was harvested after
464 7 days of growth in LPB medium, while biomass of mycelial strains was obtained from liquid-
465 grown TSBS cultures after 17 hours. Cell pellets were washed twice with 10% PBS, after
466 which they were resuspended in 50 mM HEPES pH 7.4, 50 mM NaCl, 0.5% Triton X-100, 1
467 mM PFMS and P8465 protease inhibitor cocktail (Sigma). The cells and mycelia were
468 disrupted with a Bioruptor Plus Sonication Device (Diagenode). Complete lysis was verified
469 by microscopy, after which the soluble cell lysate was separated from the insoluble debris
470 by centrifugation at 13,000 rpm for 10 min at 4°C. The total protein concentration in the cell
471 lysates was quantified by a BCA assay (Sigma-Aldrich). Equal amounts of total proteins
472 were separated with SDS-PAGE using 12,5% gels. Proteins were transferred to
473 polyvinylidene difluoride (PVDF) membranes (GE Healthcare) with the Mini Trans-Blot® Cell
474 (Bio-Rad Laboratories) according to the manufacturer's instructions. DivIVA was detected
475 using a 1:5,000 dilution of polyclonal antibodies raised against *Corynebacterium glutamicum*

476 DivIVA (kindly provided by Professor Marc Bramkamp). The secondary antibody, anti-rabbit
477 IgG conjugated to alkaline phosphatase (Sigma), was visualized with the BCIP/NBT Color
478 Development Substrate (Promega).

479

480 **Isolation of cytoplasmic peptidoglycan precursors**

481 For the cytoplasmic PG precursor isolation and identification, we used a modification of the
482 method previously described ⁶¹. The *alpha* strain and the *divIVA* and *dcw* mutants were
483 grown in LPB for seven days, while the wild-type *K. viridifaciens* strain was grown for three
484 days in a modified version of LPB lacking sucrose. The cells were harvested by
485 centrifugation at 4°C and washed in 0,9% NaCl. Cells were extracted with 5% cold trichloric
486 acid (TCA) for 30 minutes at 4°C. The extracts were centrifuged at 13,000 rpm for 5 minutes
487 at 4°C, after which the supernatants were desalted on a Sephadex G-25 column (Illustra
488 NAP-10 Columns, GE Healthcare, Pittsburgh) and concentrated by rotary evaporation. The
489 concentrated precursors were dissolved in 200 µl HPLC-grade water.

490

491 **Peptidoglycan extraction**

492 The peptidoglycan architecture was analyzed as described ⁶². Mycelia of the wild-type strain,
493 *alpha* and the *dcw* mutant complemented with *divIVA* were grown on top of cellophane discs
494 on modified LPMA medium lacking sucrose and horse serum. Following growth, the mycelial
495 mass was removed from the cellophane, washed in 0.1M Tris-HCl pH 7.5 and lyophilized.
496 10 mg of the lyophilized biomass was used for PG isolation. Therefore, the biomass was
497 boiled in 0.25% SDS in 0.1 M Tris/HCl pH 6.8, thoroughly washed, sonicated, and treated
498 with DNase, RNase and trypsin. Inactivation of these enzymes was performed by boiling the
499 samples followed by washing with water. Wall teichoic acids were removed with 1 M HCl ⁶³.
500 PG was digested with mutanolysin and lysozyme. Muropeptides were reduced with sodium
501 borohydride and the pH was adjusted to 3.5-4.5 with phosphoric acid.

502 **LC-MS analysis of PG precursors and muropeptides**

503 The LC-MS setup consisted of a Waters Acquity UPLC system (Waters, Milford, MA, USA)
504 and an LTQ Orbitrap XL Hybrid Ion Trap-Orbitrap Mass Spectrometer (Thermo Fisher
505 Scientific, Waltham, MA, USA) equipped with an Ion Max electrospray source.
506 Chromatographic separation of muropeptides and precursors was performed on an Acquity
507 UPLC HSS T3 C18 column (1.8 µm, 100 Å, 2.1 × 100 mm). Mobile phase A consisted of
508 99.9% H₂O and 0.1% formic acid, while mobile phase B consisted of 95% acetonitrile, 4.9%
509 H₂O and 0.1% formic acid. All solvents used were of LC-MS grade or better. The flow rate
510 was set to 0.5 ml min⁻¹. The binary gradient program consisted of 1 min 98% A, 12 min from
511 98% A to 85% A, and 2 min from 85% A to 0% A. The column was then flushed for 3 min
512 with 100% B, after which the gradient was set to 98% and the column was equilibrated for
513 8 min. The column temperature was set to 30°C and the injection volume used was 5 µL.
514 The temperature of the autosampler tray was set to 8°C. Data was collected in the positive
515 ESI mode with a scan range of m/z 500–2500 in high range mode. The resolution was set
516 to 15.000 (at m/z 400).

517

518 **Sequence homology analysis of *dcw* gene clusters**

519 The homology search of the different *dcw* clusters was done using MultiGeneBlast⁶⁴. The
520 query used for the search was the *dcw* cluster from *Streptomyces coelicolor* A3(2), for which
521 the required sequences were obtained from the *Streptomyces* Annotation Server (StrepDB).
522 The homology search included the loci from SCO2077 (*divIVA*) until SCO2091 (*ftsL*). A
523 database was constructed with genome assemblies obtained from NCBI. The analyzed
524 species have the following accession numbers: NC_003888 (*S. coelicolor* A3(2),
525 NZ_MPLE00000000.1 (*Kitasatospora viridifaciens* DSM40239), CP000480 (*Mycobacterium*
526 *smegmatis* MC2 155), AL123456 (*Mycobacterium tuberculosis* H37Rv), CP014279
527 (*Corynebacterium stationis* ATCC 6872), BX927147 (*Corynebacterium glutamicum*

528 ATCC13032), AL009126 (*Bacillus subtilis* subsp.168), U00096 (*Escherichia coli* K-12),
529 CP000253.1 (*Staphylococcus aureus* NTC8325), and AE007317 (*Streptococcus*
530 *pneumoniae* R6). In the homology search, the Blast parameters were set to a minimal
531 sequence coverage of 25% and a minimal identity of 30%. The first 11 hits of the
532 MultiGeneBlast output are shown in Fig. S1, where homologs genes are represented by
533 arrows with the same colors.

534

535 **Phylogeny analysis of *Streptomyces* and *Kitasatospora* species**

536 A set of 1050 *Streptomyces* and *Kitasatospora* genomes was downloaded from NCBI by
537 querying the fasta files in combination with the taxonomic identifier. To this set, 116
538 unpublished draft genome sequences of an in-house collection of actinomycetes were
539 added ⁶⁵. Complete protein sets encoded within the genomes of *Streptomyces* and
540 *Kitasatospora* spp. were extracted. The Pfam domains of four housekeeping proteins, AtpD
541 (ATP synthase subunit beta), RecA (recombinase A), TrpB (tryptophan synthase beta chain)
542 and GyrB (DNA gyrase subunit B), were retrieved from <https://pfam.xfam.org/> and are
543 annotated as PF00213, PF00154, PF06233 and PF00204, respectively. Using the selected
544 Pfam domains, the HMMsearch program of the HMMER v3.0 package ⁶⁶ was employed to
545 identify analogous proteins within the chosen species. MAFFT was used to perform a
546 multiple sequence alignment ⁶⁷. Aligned sequences were concatenated using SeqKit ⁶⁸ and
547 maximum likelihood phylogenetic trees were calculated with RAxML ⁶⁹. iTOL ⁷⁰ was used for
548 the visualization of the phylogenetic tree.

549

550 **Detection of *murG* genes in *Streptomyces* and *Kitasatospora* species**

551 MurG domains were predicted using the Pfam database ⁴⁴. Proteins with the predicted MurG
552 domains were used to search in the complete protein sets encoded within the extracted
553 genomes using HMMsearch. Instead of a multiple sequence alignment each protein domain

554 sequence was aligned to its profile Hidden Markov model from Pfam using the HMMalign
555 tool ⁷¹. For each protein a pairwise distance was calculated for all detected MurG proteins
556 and the threshold was set at 0.9. Network visualizations were constructed using Cytoscape
557 (v. 3.7.1) ⁷².

558

559 **ACKNOWLEDGEMENTS**

560 We are grateful to Marc Bramkamp for providing us with DivIVA antibodies, and to Eveline
561 Ultee, Joeri Wondergem and Doris Heinrich for help with microscopy. This work was
562 supported by a VIDI grant (12957) from the Dutch Applied Research Council to D.C. and by
563 grant 15812 from NWO-TTW to G.P.v.W. and D.C.

564 **Table 1.** Muropeptides identified in *K. viridifaciens* strains grown as mycelium. Monomers

565 and dimers are treated as separate sets. Masses are indicated in Da.

Peak	Muropeptide	Retention time (min)	Observed Mass [M+H]	Calculated Mass	WT	alpha	$\Delta dcw + div/VA$
1	Tri (-Gly)	3.46	870.39	869.38	0.69%	1.95%	0.48%
2	Di [deAc]	3.54	656.30	655.29	0.48%	0.10%	0.59%
3	Di	4.07	698.31	697.30	9.39%	10.74%	6.55%
4	Tri	4.07	927.41	926.41	15.76%	22.06%	17.34%
5	Tetra [Gly4]	4.13	984.44	983.43	3.03%	5.16%	5.45%
6	TriTri (-GM)	4.23	1355.61	1354.60	1.16%	1.67%	0.47%
7	Tetra (-Gly)	4.27	941.43	940.42	1.00%	1.71%	0.67%
8	Tri [Glu]	4.34	928.40	927.39	1.59%	0.42%	1.57%
9	Penta [Gly5]	4.38	1055.47	1054.47	21.87%	4.02%	2.98%
10	TetraTetra (-GM) [Gly4]	4.52	1483.67	1462.66	1.32%	2.47%	3.45%
11	Tetra	4.58	998.45	997.44	26.66%	27.63%	25.82%
12	TetraTri (-GM)	4.66	1426.65	1425.64	14.12%	18.68%	19.13%
13	Unidentified peptide	4.75	1055.50	1054.47	0.00%	0.00%	5.76%
14	Penta	4.81	1069.49	1068.48	17.49%	21.81%	29.76%
15	TetraTri (-GM) [deAc/Gly4]	5.01	1369.63	1368.62	6.09%	5.96%	5.99%
16	TetraTetra (-GM)	5.06	1497.39	1496.38	6.41%	6.35%	9.82%
17	Penta [Glu]	5.17	1070.47	1069.47	2.05%	4.40%	3.03%
18	TriTri	5.52	1835.81	1834.81	5.12%	5.59%	3.75%
19	TetraTri [Glu]	6.11	1906.84	1905.84	4.60%	7.42%	2.59%
20	TetraTri	6.34	1907.83	1906.83	24.69%	20.24%	17.17%
21	TetraTetra [Glu]	6.45	1977.87	1976.88	3.97%	5.19%	7.51%
22	TetraTetra	6.67	1978.88	1977.86	20.50%	15.85%	15.20%
23	PentaTetra [Glu]	6.94	2049.91	2048.90	12.03%	10.57%	14.93%

566

567 **FIGURE LEGENDS**

568

569 **Figure 1. Morphological transitions of the shape-shifting strain *alpha*.** (A) Growth of
570 the *K. viridifaciens* *alpha* strain on LPMA medium yields green, mucoid colonies exclusively
571 consisting of L-form cells, unlike the wild-type strain that forms yellowish colonies consisting
572 of mycelia and S-cells (B). (C) Time-lapse microscopy stills of *alpha* proliferating in the wall-
573 deficient state in liquid LPB medium. The arrowhead shows the mother cell, which generates
574 progeny and lyses after 580 min (marked with an asterisk). Stills were taken from
575 Supplementary Movie 1. (D) Transmission electron microscopy of a wall-deficient cell of
576 *alpha*. (E) Growth of *alpha* on solid MYM medium yields compact, non-sporulating colonies
577 unlike the wild-type strain that forms grey-pigmented sporulating colonies (F). (G) Time-
578 lapse microscopy stills of mycelium of *alpha* transferred to LPMA medium, which show the
579 extrusion of L-forms by filaments (see arrowheads). Stills were taken from Supplementary
580 Movie 2. Scale bars represents 20 μ m (A, B), 10 μ m (C, E, F) and 500 nm (D).

581

582 **Figure 2. The absence of DivIVA abolishes switching of *alpha* from the wall-deficient**
583 **to the filamentous mode-of-growth.** (A) Growth curves of *alpha* (black spheres), the
584 *divIVA* mutant (grey squares) and the *dcw* mutant (grey triangles) in liquid LPB medium. (B)
585 While all strains grow on LPMA medium, those lacking *divIVA* are unable to switch to the
586 mycelial mode-of-growth on MYM medium lacking osmoprotectants. (C) Western Blot
587 analysis using antibodies against the *C. glutamicum* DivIVA protein confirm the absence of
588 DivIVA in the constructed Δ *divIVA* and *dcw* mutants. Reintroduction of *divIVA* under control
589 of the *gap1* promoter restores the expression of DivIVA in the *divIVA* mutant and the ability
590 to form mycelial colonies (see panel B). (D) Comparative LC-MS analysis of peptidoglycan
591 precursors in *alpha* and its *divIVA* and *dcw* mutants. Like the wild-type, all strains produce
592 peptidoglycan precursors including UDP-MurNAc-pentapeptide, which is the last cytosolic

593 precursor in the PG biosynthesis pathway. (E) MS-MS analysis demonstrating that the
594 product with a mass of 1194.35 is the precursor UDP-MurNAc-pentapeptide.

595

596 **Figure 3. Reintroduction of *divIVA* alone is sufficient to restore filamentous growth of**
597 **the *dcw* mutant.** (A) Morphological comparison between *alpha* (left) and the *dcw* mutant
598 transformed with P_{gap1} -*divIVA* (right) grown on MYM medium. Unlike *alpha*, the *dcw* mutant
599 expressing DivIVA forms colonies with a heterogenous appearance. (B) Peptidoglycan
600 architecture analysis of mycelium of the wild-type strain (top), *alpha* (middle) and the *dcw*
601 mutant expressing DivIVA (bottom). The abundance of muropeptides is similar in all strains
602 despite the lack of *murG* in the *dcw* mutant (see also Table 1). Scale bar, 40 μ m.

603

604 **Figure 4. Overview of MurG and MurG-like proteins present in *Streptomyces* and**
605 ***Kitasatospora* species.** The phylogenetic tree was constructed on the basis of four 4
606 conserved housekeeping proteins (AtpD, RecA, TrpB and GyrB). Yellow and purple colors
607 in the inner circle represent *Streptomyces* and *Kitasatospora* species, respectively. Strains
608 present in the NCBI database are indicated in grey in the middle circle, while those from an
609 in-house collection are indicated in red. The pink triangles represent MurG proteins encoded
610 in the *dcw* gene cluster. The green dots represent distant MurG proteins, whose genes are
611 located elsewhere in the genomes. Phylogenetic trees were constructed using iTOL⁷⁰.

612

613 **Figure 5. MurG2 can functionally replace MurG in peptidoglycan synthesis.** (A) Plates
614 of *alpha* and the $\Delta murG$, $\Delta murG2$ and the merodiploid $\Delta murG\Delta murG2$ strains on LPMA
615 medium (top). With the exception of the $\Delta murG\Delta murG2$ merodiploid, all strains efficiently
616 switched to filamentous growth on MYM medium lacking osmolytes (bottom). (B) Plates of
617 *K. viridifaciens* and its $\Delta murG$ and $\Delta murG2$ mutants grown on MYM medium for 7 days. (C)
618 Plates of *K. viridifaciens* and the $\Delta murG$ and $\Delta murG2$ mutant strains grown on MYM medium

619 for 2 (left) or 5 (right) days in the presence of ampicillin (top), penicillin (middle) and
620 tetracycline (bottom). The antibiotic concentrations (in $\mu\text{g ml}^{-1}$) are indicated above the
621 plates.

622

623 **Figure 6. Ectopic expression of *murG2* allows silencing of *murGsc* via CRISPRi.**

624 CRISPRi constructs were introduced into *S. coelicolor* M145 or with control plasmid pMS82
625 and a recombinant strain with pGWS1372 integrated in its genome, thus expressing *K.*
626 *viridifaciens* MurG2. Expectedly, no effect was seen when CRISPRi constructs were
627 introduced that either had no spacer or that contained a spacer targeting the template strand
628 (T) of *murGsc*. However, constructs targeting the non-template strand (NT) resulted in
629 severe phenotypic defects and sick colonies of *S. coelicolor* that lacked *murG2*, but not in
630 pGWS1379 transformants that expressed *murG2*. Images were taken after 5 days
631 incubation at 30°C. Bar, 2 mm.

632

633 **Supplementary Figure 1. Comparative analysis of *dcw* gene clusters from different**
634 **bacteria.** (A) Organization and content of the *dcw* gene cluster from *Streptomyces coelicolor*
635 A3(2). (B) MultiGeneBlast output showing homologous *dcw* gene clusters with a minimal
636 identity of 30% and minimal sequence coverage of 25% to the *S. coelicolor* cluster.

637

638 **Supplementary Figure 2. Localization of DivIVA-eGFP in *alpha*.** (A) Fluorescence
639 microscopy analysis of *alpha* grown in TSBS medium as a mycelium and carrying pKR1 (left
640 panels), pGreen (middle panels) or pKR2 (right panels). In mycelium containing pKR2,
641 localization of DivIVA-eGFP is found at the hyphal tips (see arrowheads in right panels). No
642 fluorescence is observed in mycelium containing the control plasmid pKR1 (left panels),
643 while a cytosolic signal is observed in *alpha* transformed with pGreen (middle panels). (B)
644 Fluorescence microscopy analysis of *alpha* grown in LPB medium in the wall-deficient state

645 and carrying pKR1 (left panels), pGreen (middle panels) and pKR2 (right panels). Cells
646 expressing the DivIVA-eGFP fusion protein show distinct foci localized to the membrane
647 (right panels). Like in mycelia, no fluorescence is observed in cells containing the control
648 plasmid pKR1 (left panels), while a cytosolic signal is evident in cells containing pGreen
649 (middle panels). Scale bars represent 10 μ m.

650

651 **Supplementary Figure 3. PCR verification demonstrating the deletions of *divIVA* and**

652 **the partial *dcw* gene cluster in *alpha*.** (A) Schematic illustration of the *dcw* clusters in

653 *alpha* (top) and the derivative strains lacking *divIVA* (middle) or part of the *dcw* cluster

654 (bottom). To verify the deletions, PCR analyses were performed using primers *divIVA-Fw*

655 and *divIVA-Rv* (B) and *dcw-Fw* and *dcw-Rv* (C). (B) PCR analysis using primers *divIVA-Fw*

656 and *divIVA-Rv* yielded PCR products of 1.8 Kb when chromosomal DNA of the wild-type

657 strain (DSM40239) or *alpha* were used, while a 2.7 Kb fragment was obtained in the Δ *divIVA*

658 mutant. As expected, no product was obtained with these primers using chromosomal DNA

659 of the *dcw* mutant as the template. (C) PCR analysis using primers *dcw-Fw* and *dcw-Rv* only

660 yielded a PCR product of 1.7 Kb when chromosomal DNA of the *dcw* mutant was used as

661 the template. Please note that the sizes of the fragments expected for the wild-type strain

662 and *alpha* (8.2 Kb) and the Δ *divIVA* mutant (9.2 Kb) are too large for efficient amplification.

663

664 **Supplementary Figure 4. Domain structure of MurG and MurG2 proteins.** MurG

665 proteins contain an N-terminal domain (PF03033) that binds Lipid I and is involved in

666 membrane association. The C-terminal domain (PF04101) contains the UDP-GlcNAc

667 binding site. These domains are found in MurG proteins of *E. coli* (AAC73201.1), *B. subtilis*

668 (CAB13395.2), *S. coelicolor* (NP_626343.1) and *K. viridis* (BOQ63_RS32465).

669 Notably, MurG2 of *K. viridis* (BOQ63_RS12640) also contains both domains. Please

670 note that the protein encoded by the *BOQ63_RS05415* gene only contains the N-terminal
671 domain (PF03033), but not the C-terminal (PF04101) domain.

672

673 **Supplementary Figure 5. Sequence similarity network of the MurG and MurG2**
674 **proteins encoded in the genomes of *Streptomyces* and *Kitasatospora* species.** Nodes
675 represent MurG proteins and edges highlight similarity (with a threshold set at 0.9). Node
676 colors indicate if the MurG(-like) proteins are encoded in the *dcw* gene cluster (red) or
677 elsewhere in the genome (green). Circular node shapes are proteins from *Streptomyces*
678 spp., while those from *Kitasatospora* spp. are shown as diamonds. Please note that almost
679 all MurG proteins encoded in the *dcw* cluster group together.

680

681 **Supplementary Figure 6. PCR analysis demonstrating the *murG* and *murG2* deletions**
682 **in *alpha*.** The deletion of *murG* and *murG2* in *alpha* was verified by PCR. In strains carrying
683 a wild-type *murG* gene (DSM40239, *alpha* and Δ *murG2*) a fragment of 1.3 Kb is amplified.
684 In contrast, a fragment of 1.4 Kb is found in *murG* mutants (Δ *murG* and Δ *murG*/ Δ *murG2*;
685 left gel). Likewise, the expected PCR product for strains carrying the *murG2* wild-type gene
686 (DSM40239, *alpha*, Δ *murG*) was 1.2 Kb, while replacement of *murG2* by apramycin or
687 viomycin yielded PCR products of 1.3 Kb and 1.5 Kb, respectively (right gel). Please note
688 that the *murG2* gene is still detectable in the Δ *murG*/ Δ *murG2* merodiploid.

689

690 **Supplementary Figure 7. PCR analysis demonstrating the *murG* and *murG2* deletions**
691 **in *Kitasatospora viridifaciens*.** The deletion of *murG* and *murG2* in *K. viridifaciens* was
692 verified by PCR. In the wild-type strain (DSM40239) a fragment of 1365 bp is amplified,
693 while a fragment of 1436 bp is found in three independent *murG* mutants (Δ *murG*; left gel).
694 Likewise, the expected size of the PCR product for the wild-type strain carrying the *murG2*

695 gene (DSM40239) was 1279 bp, while replacement of *murG2* yielded a PCR product of
696 1311 bp (Δ *murG2*; right gel).

697

698 **Supplementary Movie 1. L-form proliferation of *alpha*.** Time-lapse microscopy showing
699 proliferation of *alpha* in LPB medium containing high levels of sucrose. The times are
700 indicated in min. The scale bar indicates 5 μ m.

701

702 **Supplementary Movie 2. Extrusion of L-forms from hyphal tips.** Cell wall-deficient L-
703 forms are extruded from hyphal tips when mycelium of *alpha* is transferred to LPMA agar
704 containing high levels of sucrose. The times are indicated in min. The scale bar indicates 5
705 μ m.

706

707 REFERENCES

- 708 1 Liu, Y. & Breukink, E. The membrane steps of bacterial cell wall synthesis as
709 antibiotic targets. *Antibiotics (Basel)* **5**, doi:10.3390/antibiotics5030028 (2016).
- 710 2 Mohammadi, T. *et al.* Identification of FtsW as a transporter of lipid-linked cell wall
711 precursors across the membrane. *EMBO J*, doi:10.1038/emboj.2011.61 (2011).
- 712 3 Sham, L. T. *et al.* MurJ is the flippase of lipid-linked precursors for peptidoglycan
713 biogenesis. *Science* **345**, 220-222, doi:10.1126/science.1254522 (2014).
- 714 4 Meeske, A. J. *et al.* MurJ and a novel lipid II flippase are required for cell wall
715 biogenesis in *Bacillus subtilis*. *Proc Natl Acad Sci U S A* **112**, 6437-6442,
716 doi:10.1073/pnas.1504967112 (2015).
- 717 5 Scheffers, D. J. & Pinho, M. G. Bacterial cell wall synthesis: new insights from
718 localization studies. *Microbiol Mol Biol Rev* **69**, 585-607 (2005).
- 719 6 Meeske, A. J. *et al.* SEDS proteins are a widespread family of bacterial cell wall
720 polymerases. *Nature* **537**, 634-638, doi:10.1038/nature19331 (2016).
- 721 7 Cho, H. *et al.* Bacterial cell wall biogenesis is mediated by SEDS and PBP
722 polymerase families functioning semi-autonomously. *Nat Microbiol* **1**, 16172,
723 doi:10.1038/nmicrobiol.2016.172 (2016).
- 724 8 Pazos, M., Peters, K. & Vollmer, W. Robust peptidoglycan growth by dynamic and
725 variable multi-protein complexes. *Curr Opin Microbiol* **36**, 55-61,
726 doi:10.1016/j.mib.2017.01.006 (2017).
- 727 9 Vicente, M. & Errington, J. Structure, function and controls in microbial division. *Mol
728 Microbiol* **20**, 1-7 (1996).
- 729 10 Tamames, J., González-Moreno, M., Mingorance, J., Valencia, A. & Vicente, M.
730 Bringing gene order into bacterial shape. *Trends Genet* **17**, 124-126 (2001).
- 731 11 Mingorance, J., Tamames, J. & Vicente, M. Genomic channeling in bacterial cell
732 division. *J Mol Recognit* **17**, 481-487, doi:10.1002/jmr.718 (2004).

733 12 Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. & van Wezel, G.
734 P. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting
735 bodies. *Nat Rev Microbiol* **12**, 115-124, doi:10.1038/nrmicro3178 (2014).

736 13 Flärdh, K. & Buttner, M. J. *Streptomyces* morphogenetics: dissecting differentiation
737 in a filamentous bacterium. *Nat Rev Microbiol* **7**, 36-49, doi:10.1038/nrmicro1968
738 (2009).

739 14 Barka, E. A. *et al.* Taxonomy, physiology, and natural products of *Actinobacteria*.
740 *Microbiol Mol Biol Rev* **80**, 1-43, doi:10.1128/MMBR.00019-15 (2016).

741 15 Bérdy, J. Thoughts and facts about antibiotics: where we are now and where we are
742 heading. *J Antibiot (Tokyo)* **65**, 385-395, doi:10.1038/ja.2012.27 (2012).

743 16 Celler, K., Koning, R. I., Willemse, J., Koster, A. J. & van Wezel, G. P. Cross-
744 membranes orchestrate compartmentalization and morphogenesis in *Streptomyces*.
745 *Nat Commun* **7**, ncomms11836, doi:10.1038/ncomms11836 (2016).

746 17 Wildermuth, H. & Hopwood, D. A. Septation during sporulation in *Streptomyces*
747 *coelicolor*. *J Gen Microbiol* **60**, 51-59 (1970).

748 18 Manteca, A., Fernandez, M. & Sanchez, J. A death round affecting a young
749 compartmentalized mycelium precedes aerial mycelium dismantling in confluent
750 surface cultures of *Streptomyces antibioticus*. *Microbiology* **151**, 3689-3697,
751 doi:10.1099/mic.0.28045-0 (2005).

752 19 Tenconi, E., Traxler, M. F., Hoebreck, C., van Wezel, G. P. & Rigali, S. Production
753 of prodiginines is part of a programmed cell death process in *Streptomyces*
754 *coelicolor*. *Front Microbiol* **9**, 1742, doi:10.3389/fmicb.2018.01742 (2018).

755 20 Schwedock, J., McCormick, J. R., Angert, E. R., Nodwell, J. R. & Losick, R. Assembly
756 of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of
757 *Streptomyces coelicolor*. *Mol Microbiol* **25**, 847-858 (1997).

758 21 Jakimowicz, D. & van Wezel, G. P. Cell division and DNA segregation in
759 *Streptomyces*: how to build a septum in the middle of nowhere? *Mol Microbiol* **85**,
760 393-404, doi:10.1111/j.1365-2958.2012.08107.x (2012).

761 22 McCormick, J. R. & Losick, R. Cell division gene *ftsQ* is required for efficient
762 sporulation but not growth and viability in *Streptomyces coelicolor* A3(2). *J Bacteriol*
763 **178**, 5295-5301 (1996).

764 23 Edwards, D. H. & Errington, J. The *Bacillus subtilis* DivIVA protein targets to the
765 division septum and controls the site specificity of cell division. *Mol Microbiol* **24**, 905-
766 915 (1997).

767 24 Flärdh, K. Essential role of DivIVA in polar growth and morphogenesis in
768 *Streptomyces coelicolor* A3(2). *Mol Microbiol* **49**, 1523-1536 (2003).

769 25 McCormick, J. R. Cell division is dispensable but not irrelevant in *Streptomyces*. *Curr*
770 *Opin Microbiol* **12**, 689-698, doi:10.1016/j.mib.2009.10.004 (2009).

771 26 Bagchi, S., Tomenius, H., Belova, L. M. & Ausmees, N. Intermediate filament-like
772 proteins in bacteria and a cytoskeletal function in *Streptomyces*. *Mol Microbiol* **70**,
773 1037-1050, doi:10.1111/j.1365-2958.2008.06473.x (2008).

774 27 Celler, K., Koning, R. I., Koster, A. J. & van Wezel, G. P. Multidimensional view of
775 the bacterial cytoskeleton. *J Bacteriol* **195**, 1627-1636, doi:10.1128/JB.02194-12
776 (2013).

777 28 Holmes, N. A. *et al.* Coiled-coil protein Scy is a key component of a multiprotein
778 assembly controlling polarized growth in *Streptomyces*. *Proc Natl Acad Sci U S A*
779 **110**, E397-406, doi:10.1073/pnas.1210657110 (2013).

780 29 Fuchino, K. *et al.* Dynamic gradients of an intermediate filament-like cytoskeleton
781 are recruited by a polarity landmark during apical growth. *Proc Natl Acad Sci U S A*
782 **110**, E1889-1897, doi:10.1073/pnas.1305358110 (2013).

783 30 Girard, G. *et al.* A novel taxonomic marker that discriminates between
784 morphologically complex actinomycetes. *Open Biol* **3**, 130073,
785 doi:10.1098/rsob.130073 (2013).

786 31 Girard, G. *et al.* Analysis of novel *kitasatosporae* reveals significant evolutionary
787 changes in conserved developmental genes between *Kitasatospora* and
788 *Streptomyces*. *Antonie Van Leeuwenhoek* **106**, 365-380, doi:10.1007/s10482-014-
789 0209-1 (2014).

790 32 Ramijan, K. *et al.* Stress-induced formation of cell wall-deficient cells in filamentous
791 actinomycetes. *Nat Commun* **9**, 5164, doi:<https://doi.org/10.1101/094037> (2018).

792 33 Claessen, D. & Errington, J. Cell wall-deficiency as a coping strategy for stress.
793 *Trends in Microbiology* (2019).

794 34 Errington, J., Mickiewicz, K., Kawai, Y. & Wu, L. J. L-form bacteria, chronic diseases
795 and the origins of life. *Phil Trans R Soc B* **371**, 20150494,
796 doi:10.1098/rstb.2015.0494 (2016).

797 35 Leaver, M., Dominguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life
798 without a wall or division machine in *Bacillus subtilis*. *Nature* **457**, 849-853,
799 doi:10.1038/nature07742 (2009).

800 36 Mercier, R., Kawai, Y. & Errington, J. Wall proficient *E. coli* capable of sustained
801 growth in the absence of the Z-ring division machine. *Nature Microbiology* **1**, 16091,
802 doi:10.1038/nmicrobiol.2016.91 (2016).

803 37 Studer, P. *et al.* Proliferation of *Listeria monocytogenes* L-form cells by formation of
804 internal and external vesicles. *Nat Commun* **7**, 13631, doi:10.1038/ncomms13631
805 (2016).

806 38 Mercier, R., Kawai, Y. & Errington, J. Excess membrane synthesis drives a primitive
807 mode of cell proliferation. *Cell* **152**, 997-1007, doi:10.1016/j.cell.2013.01.043 (2013).

808 39 Errington, J. L-form bacteria, cell walls and the origins of life. *Open Biol* **3**, 120143,
809 doi:10.1098/rsob.120143 (2013).

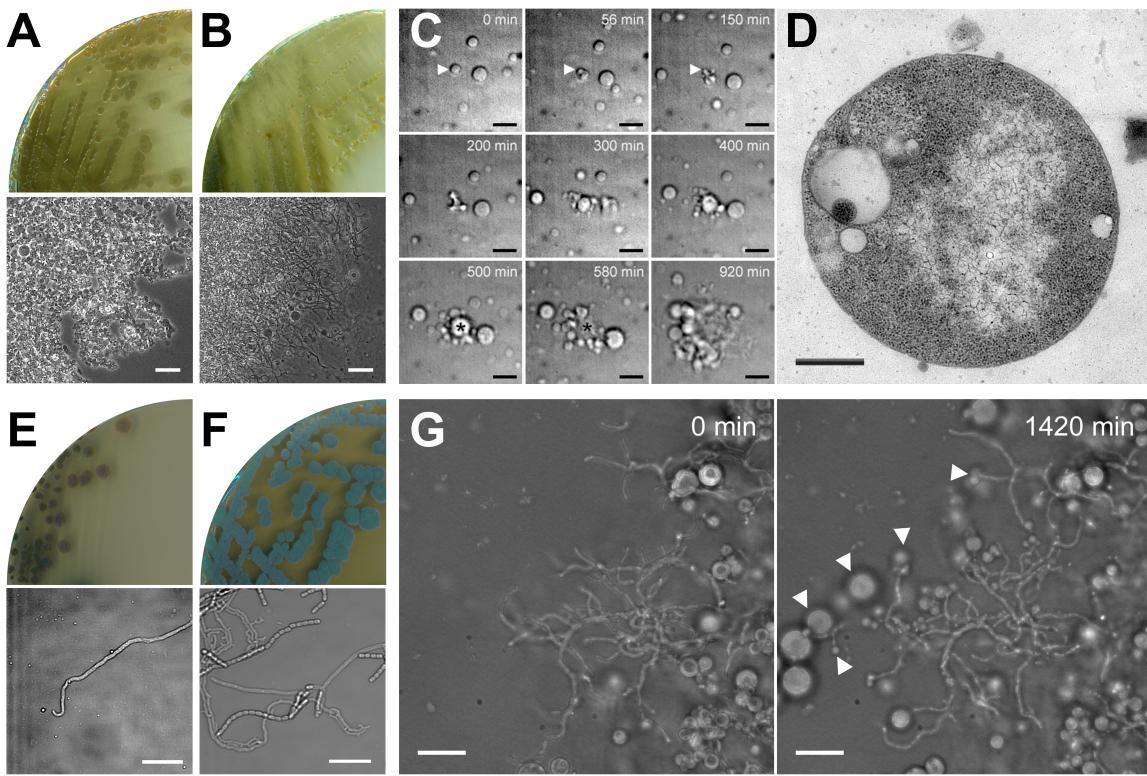
810 40 Briers, Y., Walde, P., Schuppler, M. & Loessner, M. J. How did bacterial ancestors
811 reproduce? Lessons from L-form cells and giant lipid vesicles: multiplication
812 similarities between lipid vesicles and L-form bacteria. *Bioessays* **34**, 1078-1084,
813 doi:10.1002/bies.201200080 (2012).

814 41 Cambré, A. *et al.* Metabolite profiling and peptidoglycan analysis of transient cell
815 wall-deficient bacteria in a new *Escherichia coli* model system. *Environ Microbiol*,
816 doi:10.1111/1462-2920.12594 (2014).

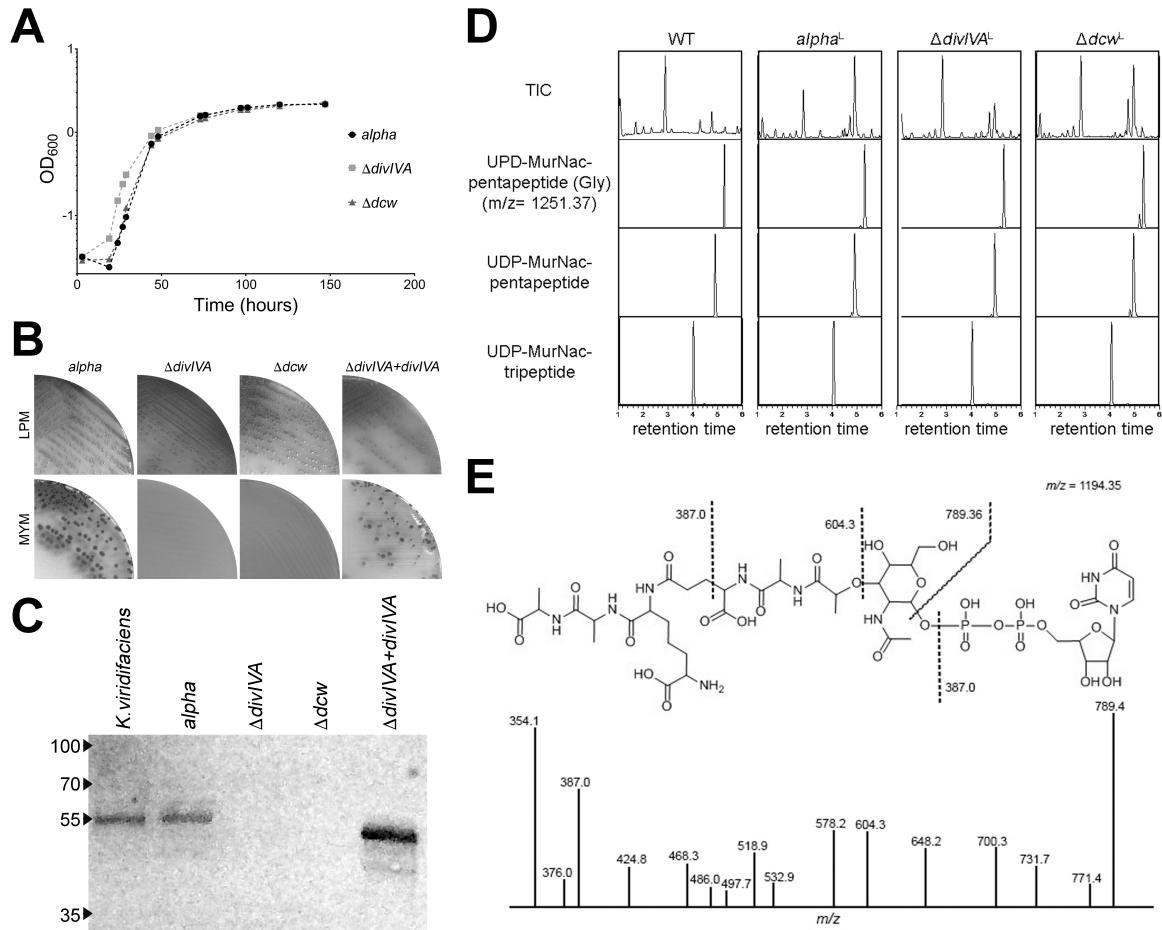
817 42 Mercier, R., Kawai, Y. & Errington, J. General principles for the formation and
818 proliferation of a wall-free (L-form) state in bacteria. *eLife* **3**, 04629,
819 doi:10.7554/eLife.04629 (2014).

820 43 Zacchetti, B. *et al.* Aggregation of germlings is a major contributing factor towards
821 mycelial heterogeneity of *Streptomyces*. *Sci Rep* **6**, 27045, doi:10.1038/srep27045
822 (2016).

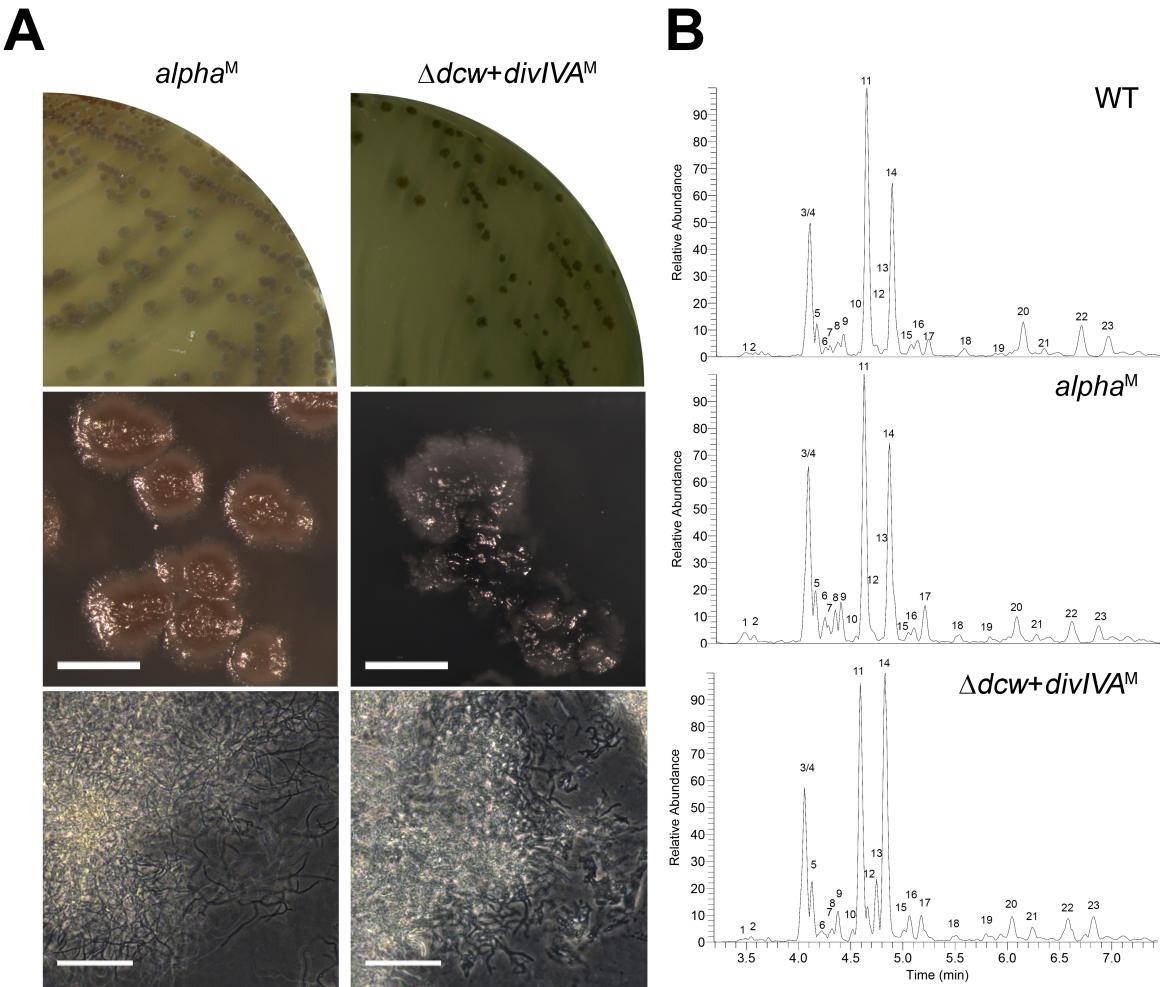
823 44 El-Gebali, S. *et al.* The Pfam protein families database in 2019. *Nucleic Acids Res*
824 **47**, D427-D432, doi:10.1093/nar/gky995 (2019).

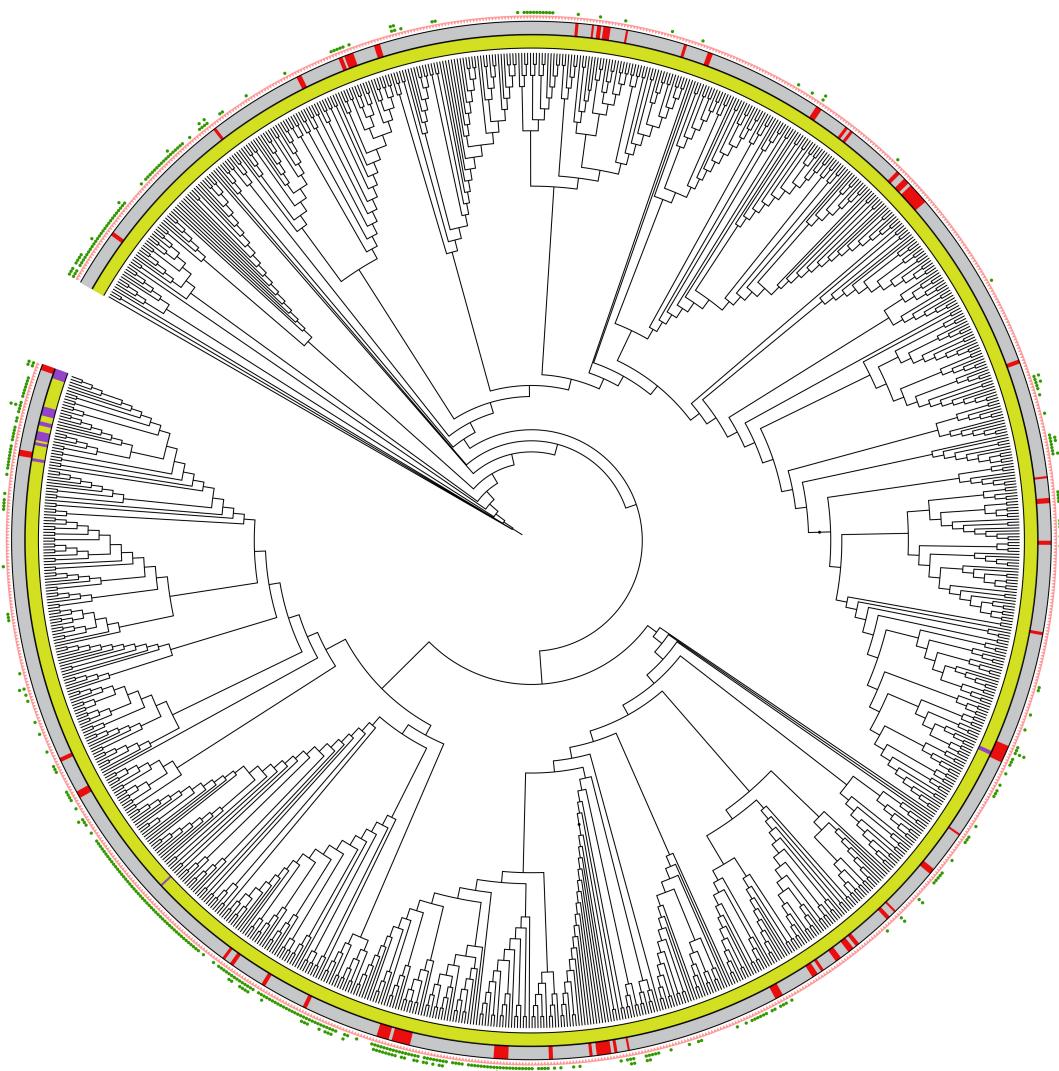

825 45 Qi, L. S. *et al.* Repurposing CRISPR as an RNA-guided platform for sequence-
826 specific control of gene expression. *Cell* **152**, 1173-1183,
827 doi:10.1016/j.cell.2013.02.022 (2013).

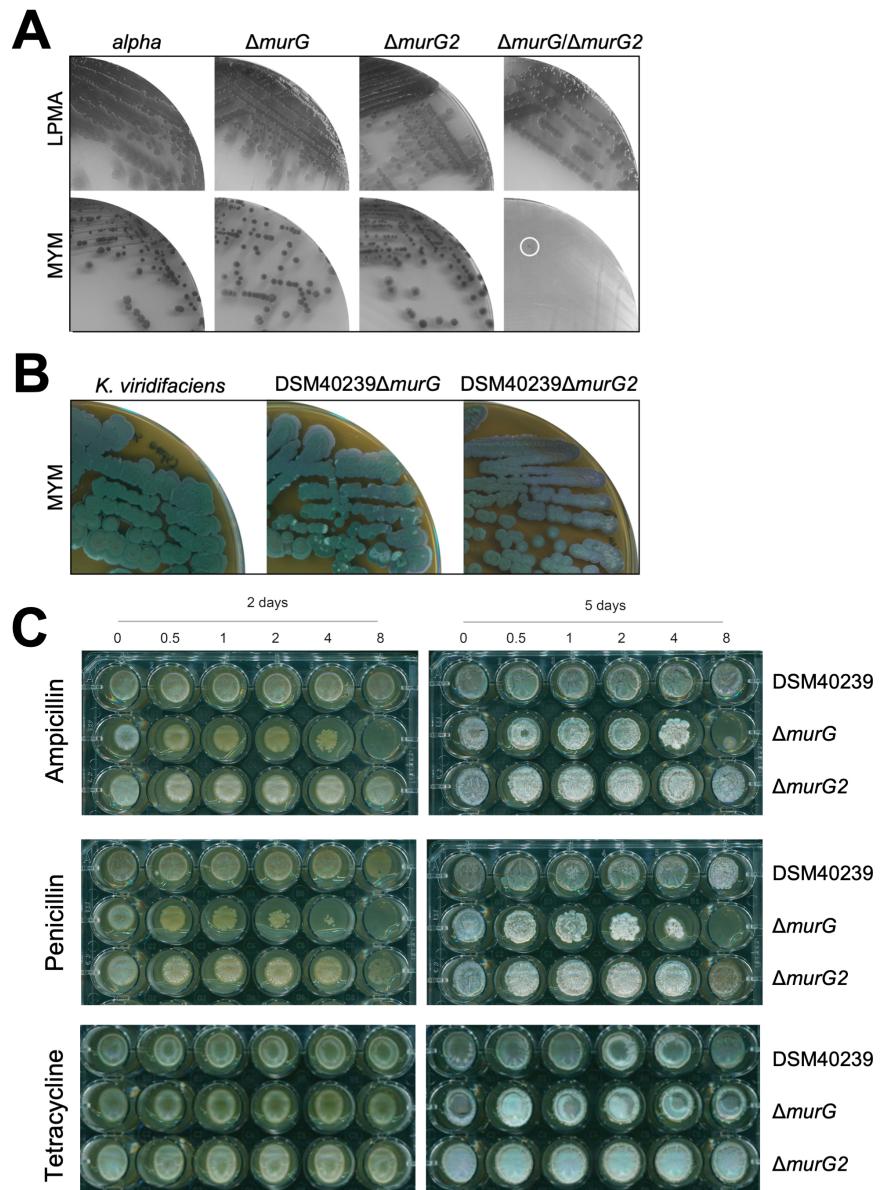
828 46 Ultee, E. *et al.* Teichoic acids anchor distinct cell wall lamellae in an apically growing
829 bacterium. *Commun Biol* **3**, 314, doi:10.1101/714758 (2020).


830 47 McCormick, J. R., Su, E. P., Driks, A. & Losick, R. Growth and viability of
831 *Streptomyces coelicolor* mutant for the cell division gene *ftsZ*. *Mol Microbiol* **14**, 243-
832 254 (1994).

833 48 Bennett, J. A., Aimino, R. M. & McCormick, J. R. *Streptomyces coelicolor* genes *ftsL*
834 and *divIC* play a role in cell division but are dispensable for colony formation. *J*
835 *Bacteriol* **189**, 8982-8992, doi:10.1128/JB.01303-07 (2007).
836 49 Bennett, J. A. *et al.* Medium-dependent phenotypes of *Streptomyces coelicolor* with
837 mutations in *ftsL* or *ftsW*. *J Bacteriol* **191**, 661-664, doi:10.1128/JB.01048-08 (2009).
838 50 Mistry, B. V., Del Sol, R., Wright, C., Findlay, K. & Dyson, P. *FtsW* is a dispensable
839 cell division protein required for Z-ring stabilization during sporulation septation in
840 *Streptomyces coelicolor*. *J Bacteriol* **190**, 5555-5566, doi:10.1128/JB.00398-08
841 (2008).
842 51 Labeda, D. P. *et al.* Phylogenetic study of the species within the family
843 *Streptomycetaceae*. *Antonie van Leeuwenhoek* **101**, 73-104, doi:10.1007/s10482-
844 011-9656-0 (2012).
845 52 Stuttard, C. Temperate phages of *Streptomyces venezuelae*: lysogeny and host
846 specificity shown by phages SV1 and SV2. *J Gen Microbiol* **128**, 115-121 (1982).
847 53 Sun, J., Kelemen, G. H., Fernández-Abalos, J. M. & Bibb, M. J. Green fluorescent
848 protein as a reporter for spatial and temporal gene expression in *Streptomyces*
849 *coelicolor* A3(2). *Microbiology* **145**, 2221-2227 (1999).
850 54 Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. PCR-targeted
851 *Streptomyces* gene replacement identifies a protein domain needed for biosynthesis
852 of the sesquiterpene soil odor geosmin. *Proc Natl Acad Sci U S A* **100**, 1541-1546,
853 doi:10.1073/pnas.0337542100 (2003).
854 55 Ramijan, K., van Wezel, G. P. & Claessen, D. Genome sequence of the filamentous
855 actinomycete *Kitasatospora viridifaciens*. *Genome Announc* **5**, e01560-01516,
856 doi:10.1128/genomeA.01560-16 (2017).
857 56 Vara, J., Lewandowska-Skarbek, M., Wang, Y. G., Donadio, S. & Hutchinson, C. R.
858 Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis
859 pathway in *Saccharopolyspora erythraea* (*Streptomyces erythreus*). *J Bacteriol* **171**,
860 5872-5881 (1989).
861 57 Świątek, M. A., Tenconi, E., Rigali, S. & van Wezel, G. P. Functional analysis of the
862 N-acetylglucosamine metabolic genes of *Streptomyces coelicolor* and role in control
863 of development and antibiotic production. *J Bacteriol* **194**, 1136-1144,
864 doi:10.1128/JB.06370-11 (2012).
865 58 Motamedi, H., Shafiee, A. & Cai, S.-J. Integrative vectors for heterologous gene
866 expression in *Streptomyces* spp. *Gene* **160**, 25-31 (1995).
867 59 Gregory, M. A., Till, R. & Smith, M. C. M. Integration site for *Streptomyces* phage
868 phiBT1 and development of site-specific integrating vectors. *J Bacteriol* **185**, 5320-
869 5323 (2003).
870 60 Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. *Practical*
871 *Streptomyces genetics*. (The John Innes Foundation, 2000).
872 61 van der Aart, L. T., Lemmens, N., van Wamel, W. J. & van Wezel, G. P. Substrate
873 inhibition of VanA by d-alanine reduces vancomycin resistance in a VanX-dependent
874 manner. *Antimicrob Agents Chemother* **60**, 4930-4939, doi:10.1128/AAC.00276-16
875 (2016).
876 62 van der Aart, L. T. *et al.* High-resolution analysis of the peptidoglycan composition in
877 *Streptomyces coelicolor*. *J Bacteriol* **200**, doi:10.1128/JB.00290-18 (2018).
878 63 Kühner, D., Stahl, M., Demircioglu, D. D. & Bertsche, U. From cells to muropeptide
879 structures in 24 h: peptidoglycan mapping by UPLC-MS. *Sci Rep* **4**, 7494,
880 doi:10.1038/srep07494 (2014).
881 64 Medema, M. H., Takano, E. & Breitling, R. Detecting sequence homology at the gene
882 cluster level with MultiGeneBlast. *Mol Biol Evol* **30**, 1218-1223,
883 doi:10.1093/molbev/mst025 (2013).


884 65 Zhu, H. *et al.* Eliciting antibiotics active against the ESKAPE pathogens in a collection
885 of actinomycetes isolated from mountain soils. *Microbiology* **160**, 1714-1725,
886 doi:10.1099/mic.0.078295-0 (2014).
887 66 Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence
888 similarity searching. *Nucleic Acids Res* **39**, W29-37, doi:10.1093/nar/gkr367 (2011).
889 67 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version
890 7: improvements in performance and usability. *Mol Biol Evol* **30**, 772-780,
891 doi:10.1093/molbev/mst010 (2013).
892 68 Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for
893 FASTA/Q file manipulation. *PLoS One* **11**, e0163962,
894 doi:10.1371/journal.pone.0163962 (2016).
895 69 Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis
896 of large phylogenies. *Bioinformatics* **30**, 1312-1313,
897 doi:10.1093/bioinformatics/btu033 (2014).
898 70 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new
899 developments. *Nucleic Acids Res*, doi:10.1093/nar/gkz239 (2019).
900 71 Eddy, S. R. Accelerated profile HMM searches. *PLoS Comput Biol* **7**, e1002195,
901 doi:10.1371/journal.pcbi.1002195 (2011).
902 72 Shannon, P. *et al.* Cytoscape: a software environment for integrated models of
903 biomolecular interaction networks. *Genome Res* **13**, 2498-2504,
904 doi:10.1101/gr.1239303 (2003).
905


Figure 1. Morphological transitions of the shape-shifting strain *alpha*. (A) Growth of the *K. viridifaciens* *alpha* strain on LPMA medium yields green, mucoid colonies exclusively consisting of L-form cells, unlike the wild-type strain that forms yellowish colonies consisting of mycelia and S-cells (B). (C) Time-lapse microscopy stills of *alpha* proliferating in the wall-deficient state in liquid LPB medium. The arrowhead shows the mother cell, which generates progeny and lyses after 580 min (marked with an asterisk). Stills were taken from Supplementary Movie 1. (D) Transmission electron microscopy of a wall-deficient cell of *alpha*. (E) Growth of *alpha* on solid MYM medium yields compact, non-sporulating colonies unlike the wild-type strain that forms grey-pigmented sporulating colonies (F). (G) Time-lapse microscopy stills of mycelium of *alpha* transferred to LPMA medium, which show the extrusion of L-forms by filaments (see arrowheads). Stills were taken from Supplementary Movie 2. Scale bars represents 20 μ m (A, B), 10 μ m (C, E, F) and 500 nm (D).


Figure 2. The absence of DivIVA abolishes switching of *alpha* from the wall-deficient to the filamentous mode-of-growth. (A) Growth curves of *alpha* (black spheres), the *divIVA* mutant (grey squares) and the *dcw* mutant (grey triangles) in liquid LPB medium. (B) While all strains grow on LPMA medium, those lacking *divIVA* are unable to switch to the mycelial mode-of-growth on MYM medium lacking osmoprotectants. (C) Western Blot analysis using antibodies against the *C. glutamicum* DivIVA protein confirm the absence of DivIVA in the constructed Δ *divIVA* and *dcw* mutants. Reintroduction of *divIVA* under control of the *gap1* promoter restores the expression of DivIVA in the *divIVA* mutant and the ability to form mycelial colonies (see panel B). (D) Comparative LC-MS analysis of peptidoglycan precursors in *alpha* and its *divIVA* and *dcw* mutants. Like the wild-type, all strains produce peptidoglycan precursors including UDP-MurNAc-pentapeptide, which is the last cytosolic precursor in the PG biosynthesis pathway. (E) MS-MS analysis demonstrating that the product with a mass of 1194.35 is the precursor UDP-MurNAc-pentapeptide.

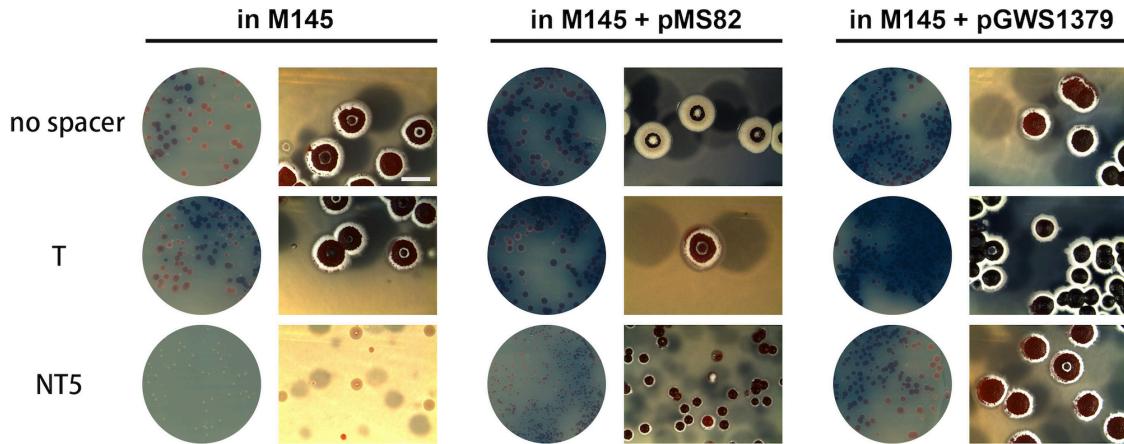

Figure 3. Reintroduction of *divIVA* alone is sufficient to restore filamentous growth of the *dcw* mutant. (A) Morphological comparison between *alpha* (left) and the *dcw* mutant transformed with P_{gap1} -*divIVA* (right) grown on MYM medium. Unlike *alpha*, the *dcw* mutant expressing DivIVA forms colonies with a heterogeneous appearance. (B) Peptidoglycan architecture analysis of mycelium of the wild-type strain (top), *alpha* (middle) and the *dcw* mutant expressing DivIVA (bottom). The abundance of muropeptides is similar in all strains despite the lack of *murG* in the *dcw* mutant (see also Table 1). Scale bar, 40 μ m.

Figure 4. Overview of MurG and MurG-like proteins present in *Streptomyces* and *Kitasatospora* species. The phylogenetic tree was constructed on the basis of four conserved housekeeping proteins (AtpD, RecA, TrpB and GyrB). Yellow and purple colors in the inner circle represent *Streptomyces* and *Kitasatospora* species, respectively. Strains present in the NCBI database are indicated in grey in the middle circle, while those from an in-house collection are indicated in red. The pink triangles represent MurG proteins encoded in the *dcw* gene cluster. The green dots represent distant MurG proteins, whose genes are located elsewhere in the genomes. Phylogenetic trees were constructed using iTOL⁷⁰.

Figure 5. MurG2 can functionally replace MurG in peptidoglycan synthesis. (A) Plates of *alpha* and the $\Delta murG$, $\Delta murG2$ and the merodiploid $\Delta murG/\Delta murG2$ strains on LPMA medium (top). With the exception of the $\Delta murG/\Delta murG2$ merodiploid, all strains efficiently switched to filamentous growth on MYM medium lacking osmolytes (bottom). (B) Plates of *K. viridifaciens* and its $\Delta murG$ and $\Delta murG2$ mutants grown on MYM medium for 7 days. (C) Plates of *K. viridifaciens* and the $\Delta murG$ and $\Delta murG2$ mutant strains grown on MYM medium for 2 (left) or 5 (right) days in the presence of ampicillin (top), penicillin (middle) and tetracycline (bottom). The antibiotic concentrations (in $\mu\text{g ml}^{-1}$) are indicated above the plates.

Figure 6. Ectopic expression of *murG2* allows silencing of *murGsc* via CRISPRi. CRISPRi constructs were introduced into *S. coelicolor* M145 or with control plasmid pMS82 and a recombinant strain with pGWS1372 integrated in its genome, thus expressing *K. viridisfaciens* MurG2. Expectedly, no effect was seen when CRISPRi constructs were introduced that either had no spacer or that contained a spacer targeting the template strand (T) of *murGsc*. However, constructs targeting the non-template strand (NT) resulted in severe phenotypic defects and sick colonies of *S. coelicolor* that lacked *murG2*, but not in pGWS1379 transformants that expressed *murG2*. Images were taken after 5 days incubation at 30°C. Bar, 2 mm.