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Abstract

Recurrent neural networks (RNNs) with memory (e.g. LSTMs) and attention
mechanisms are widely used in natural language processing because they can capture
short and long term sequential information for diverse tasks. We propose an integrated
deep learning model for microbial DNA sequence data, which exploits convolutional
networks, recurrent neural networks, and attention mechanisms to perform
sample-associated attribute prediction—phenotype prediction—and extract interesting
features, such as informative taxa and predictive k-mer context. In this paper, we
develop this novel deep learning approach and evaluate its application to amplicon
sequences. We focus on typically short DNA reads of 16s ribosomal RNA (rRNA)
marker genes, which identify the heterogeneity of a microbial community sample. Our
deep learning approach enables sample-level attribute and taxonomic prediction, with
the aim of aiding biological research and supporting medical diagnosis. We demonstrate
that our implementation of a novel attention-based deep network architecture,
Read2Pheno, achieves read-level phenotypic prediction and, in turn, that aggregating
read-level information can robustly predict microbial community properties, host
phenotype, and taxonomic classification, with performance comparable to conventional
approaches. Most importantly, as a further result of the training process, the network
architecture will encode sequences (reads) into dense, meaningful representations:
learned embedded vectors output on the intermediate layer of the network model, which
can provide biological insight when visualized. Finally, we demonstrate that a model
with an attention layer can automatically identify informative regions in
sequences/reads which are particularly informative for classification tasks. An
implementation of the attention-based deep learning network is available at
https://github.com/EESI/sequence_attention.

Introduction
Advances in DNA sequencing are rapidly producing complex microbiome datasets in

fields ranging from human health to environmental studies [1]. Large-scale microbial
projects provide rich information, enabling the prediction of sample-level traits (i.e.,
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phenotypes), aiding in biological discovery, and supporting medical diagnosis. A typical
microbiome study may contain hundreds to thousands of samples. In turn, each sample
contains thousands of reads depending on the sequence depth. These reads are
fragments of DNA/RNA material extracted from microbes residing in the environment
where the sample was collected. Hence, by way of example, an environmental sample can
be sequenced via 16S ribosomal RNA amplicon technology, to provide a comprehensive
taxonomic survey of an environment’s or subject’s microbial community [2,3]. Recently,
the decrease in cost of next-generation high throughput sequencing technology has
further allowed the use of metagenomic approaches, such as shotgot sequencing to
generate a dataset that reflects both taxonomy and gene sequences [3-5].

A major focus of microbiome research has been, and continues to be, the use of 16s
rRNA amplicon sequencing surveys to determine “Who is there?” in a host or
environmental sample. The answer to ”Who is there?” may, in turn, be used to predict
host phenotype for clinical diagnoses or infer taxa-phenotype association for basic
biology research [6—10]. In the context of our work, we define “phenoytpe” as an overall
trait at the environmental level or habitat that the microbiome sample is isolated
from [11,12], thereby incorporating the emergent function of the microbiome (a.k.a.

microbiome phenotypes) [13-18]. For example, the expansive definition of “phenotype”

in the microbiome context can include the preference of a certain microbial community
for a particular environmental niche or body site [19]. Thus, the microbiome may be
shaped by the environment.

16S rRNA marker gene-based phenotype prediction

Analyzing ”Who is there?” through 16s rRNA amplicon sequencing is relatively
affordable and easy to implement in the field—but phenotype prediction from rRNA
sequence is a major challenge. Ribosomal sequence does not itself contain functional
information, unlike, e.g., more costly and complex metagenomic shotgun sequencing
data [9,20]). Building machine learning phenotype classifiers usually starts with
constructing a microbial abundance table, such as an Operational Taxonomic Unit
(OTU) table, an Amplicon Sequence Variant (ASV) table, or a k-mer frequency table
(i.e., table of the frequencies of k-length nucleotide strings within the collection of reads
in a sample) [8,9]. Researchers then train a classifier to distinguish phenotypes by
learning from the taxon abundance of sequenced samples in a training data set. For
example, a classifier may be constructed to identify a sample as being from the gut from
a patient diagnosed with a disease. In this example, if a certain combination of some
taxa in a novel sample are more abundant than a threshold previously determined based
on a training data set of gut samples, the novel sample will be identified as
disease-positive.

By analyzing the OTU/ASV abundance table, therefore, researchers can discover
underlying associations between certain taxa or groups of taxa and phenotype. For
example, in Gevers et al. [7], samples were collected from a) patients with Crohn’s
disease and b) control groups. Gevers et al. discovered some bacterial taxa which were
solely abundant in disease groups, along with some taxa which were eliminated by
infection of the disease. These findings are helpful in disease diagnoses and treatment.
A systematic survey of 18 classification methods and 5 feature selection methods were
assessed to classify phenotypes [21]. To do so, the authors transformed the 16S rRNA
sequences to OTU tables, which in turn served as the input to the algorithms under
evaluation. The authors showed that feature selection can improve phenotype prediction
performance for many classification algorithms, and that Random Forests with
optimized parameters are nominally the best performing classifier. Another phenotype
prediction method that has been proposed and evaluated is the RoDEO normalization
(Robust Differential Expression Operator) based classifier [8]. In [8], the authors
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compared various normalization methods for OTU data and showed that RoDEO 56
processed count data with linear kernel support vector machines produced the best 57
performance on multiple experimental datasets. The authors further showed that using  ss
a small subset of OTUs sometimes gave better accuracy than using all OTUs. 59

The construction of OTU/ASV tables, however, often involves denoising, sequence 60
alignment, and taxonomic classification, and thus can lead to information loss from the «

true information contained in the raw nucleotide reads. By grouping sequences to 6
limited taxonomic labels, it becomes difficult to quantify the genotype-to-phenotype 63
relationship. Of particular concern is the omission of nucleotide structural information e
from OTU mapping, where the 97% identity threshold conventionally used for OTU 65
mapping smooths over valuable nucleotide variation. This is better addressed through e
the more exact ASV identification—but rarely is the nucleotide level information o7
examined past the mapping step. Alternatively, a k-mer representation of amplicon 68
sequences has been proposed to predict phenotype, which is shown can outperform 69
traditional OTU representation [9]. Since a k-mer-based method is alignment free and 7
reference free, it would cost less computationally than OTU-based methods. Because 7
k-mer representations cut reads into smaller pieces, methods based on k-mers will lose 7
sequential information. As such, k-mer analysis is subject to the length of the k-mers 73
and does not preserve the nucleotide context/sequential-order. Some local nucleotide 74
variation may be able to be identified; however, the long-range nucleotide sequential 7
information is completely lost. In sum, currently available methods are unable to easily 7
and robustly connect nucleotide changes on the read level back to the phenotype 7
prediction and thereby reveal which nucleotide features are specifically relevant to the 7
classification. 70
Deep neural networks and their application in bioinformatics 0
Recent advances in supervised deep learning are further able to leverage a huge volume &
of different kinds of data. Convolutional neural networks (CNNs), which may be 82
interpreted by saliency maps [22], have been vital to image recognition. Model 8
interpretability, in general, has been a research direction of particular interest in the 8
deep learning field [23—-25]. Successes in these other areas have inspired applications of &
deep learning to bioinformatics as well [26]. In addition, deep learning approaches can
learn hierarchical representations of metagenomic data that standard classification 87
methods do not allow [27]. Both CNNs and RNNs have been applied to areas such as 8
transcription factor binding site classification [28,29], SNP calling [30,31], microbial 8
taxonomic classification [32] and DNA sequence function prediction and gene 90
inference [33,34]. The authors explore deep learning approaches for predicting o1
environments and host phenotype using k-mer-based representation of shallow o
subsamples in [9]. Lo et al. proposed deep learning approaches to learn microbial count e
data (e.g., OTU table) for host phenotypes prediction [35]. The microbial count data o4
can be formatted into an “image” format to be processed by a CNN model [36]. The o
CNN model has also been used to learn phylogenetic structure of a metagenomic sample o
to predict the host phenotype [37]. In this work, a 2D matrix is used to represent the o

phylogenetic tree of microbial taxa (with relative abundance) in a sample, and a CNN o
model is designed to learn from such data. Woloszynek et al. proposed an unsupervised o
method to embed 16S rRNA sequences to meaningful numerical vectors to facilitate the 100
down-stream analysis and visualization [38]. Many models rely on extracting “features” 1o

(for instance, taxonomic composition or functional profiles) from the sequence data [39]. 1
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Exploring connections between genetic features and biological 103
classes 104

In addition to making predictions, machine learning models can reveal knowledge about 10
domain relationships contained in data, often referred to as interpretations [10]. In the 10
context of sequence classification tasks, i.e., microbial survey data based phenotype 107
prediction, once a predictive model is built, the researchers can further identify sequence 10
features relevant to classifications, i.e., occurring taxa and gnomic content related to a 109

certain disease. There are substantial research attempts to identify label associated 110
genetic content. A complementary approach is supervised computational method, as a
means of associating genetic content with known labels, i.e., taxa. “Oligotyping” has 112

been proposed as a way to identify subtypes of 16S rRNA sequence variation, based on 113
distinguishing sequence variants by subsets of several nucleotides within the sequence, 1

i.e., oligomers. Specifically, Oligotyping is a supervised computational method that 115
identifies those nucleotide positions that represent information-rich variation [41]. 116
Oligotyping requires information about the taxonomic classification of the sequence via 7
OTU clustering or supervised methods. Then, the method is applied to 118
taxonomical/OTU groups of interest. Oligotyping can be an efficient way to identify 119
meaningful subpopulations of a single species and informative nucleotides. However, 120
preprocessing steps are still needed (e.g., OTU clustering or multiple sequence 121
alignment) to find closely related sequences. 122

Another proposed method, “PhenotypeSeeker” [412], is a statistics-based framework 12
to find genotype-phenotype associations. Predictive k-mers are identified by a 124
regression model, and the statistical test further quantifies their relative importance. 125
However, the authors only built species-specific models trained for a closely related 126

group of bacterial isolates and their associated phenotypes. Visualization methods are 17
developed for DNA/RNA binding sites prediction models as mentioned in Section Deep s

neural networks and their application in bioinformatics [28,29,43,44] to reveal 129
predictive genomic content. Alipanahi et al. propose to interpret the model and 130
visualize informative single nucleotide polymorphisms (SNPs) by manually altering 131
nucleotides in the input reads and comparing the resulting new prediction with the 132
original prediction of the unaltered input [43]. In Deep Motif, the authors use Saliency 13
Maps [22,25] to interpret the model and visualize informative genomic content [28]. 134
Better interpretability: Attention mechanisms 135
Attention mechanisms have become more widely applied in the natural language 136
processing (NLP) and image recognition fields to improve the interpretability of deep 137
learning models [415—48]. For example, it has been shown that an attention-based 138

Bi-LSTM (Bi-directional long short term memory) RNN model can successfully capture 13
the most important semantic information in a sentence and outperform most existing 10

competing approaches [47]. A hierarchical attention network can also improve document 1a
level classification [416] by selecting qualitatively informative words and sentences. 142
Informative content may be visualized by looking at the output of the attention layers 13
of the network model. The use of deep learning with attention mechanisms has also 144
been suggested for the field of bioinformatics. Deming et al. [29] proposed a method for s

simultaneously learning general genomic patterns and identifies the sequence motifs that 1
contribute most to predicting functional genomic outcomes. While they found a marked 1
gain in performance over previous architectures, their model was not used for phenotype 1

prediction. 149

In this paper, we exploit CNNs, RNNs, and attention mechanisms for 150
phenotype/taxonomic prediction and propose a Read2Pheno classifier to predict 151
phenotype from 16S rRNA reads and, thereby, explore and visualize informative 152
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nucleotide structure and taxa. The sample-to-phenotype prediction can then be inferred
by a sample-level predictor which aggregates the abstraction of all reads from the

Read2Pheno model!. We show that the model trained with read level information can
achieve similar sample-to-phenotype predictions compared with conventional methods.
We further provide a visualization of the embedded vectors, which is a representation of
the information that the network is learning. We use attention weights to identify and
visualize the nucleotides associated with phenotype and/or taxonomy, and compare the

highlighted informative regions against a base-line entropy method and Oligotyping [11].

We show the efficacy of our model with the American Gut microbiome dataset [49]
(http://americangut.org/), Gevers et al.’s Crohn’s disease dataset [7] and SILVA 16S
rRNA dataset [50,51] and explore interesting visualizations and features generated by
the model. The experimental results show that the performance of our model is
comparable to current methods and our models can provide further interpretation and
visualization.

Methods

Our proposed model consists of two parts: the Read2Pheno read-level classifier and the
sample-level predictor. We first train a read-level classifier using an attention-based
deep neural network to predict DNA/RNA reads to the sample level labels the reads
associated with. For example, if the samples are labeled with collected body sites, the

model will be trained to learn the original body site that the reads were collected from.

Then, a sample-level prediction can be made by three different ways: 1) tally a majority
vote of all the read prediction scores in the sample of interest to obtain a final
prediction; 2) use the output of the intermediate layer to obtain a read embedding (see
Figure 1 for details) and average read embeddings from a sample to gain an overall
sample-level embedding that a classifier can train on to predict a sample-level label; 3)
apply clustering on read embeddings of training data and assign reads per sample to
those clusters to form a “pseudo” OTU table [38]. Then a classifier can be trained for
phenotype prediction. In sum, our Read2Pheno read-level classifier can capture read
level model and provide biological insights by read embedding ordination and attention
weights visualization and the sample-level predictor can aggregate information learned
in read-level and make sample-level classifications to validate our overall framework.

Read2Pheno Classifier

The Read2Pheno classifier is a hybrid convolutional and recurrent deep neural network
with attention. Figure 1 shows a diagram of the classifier. Sequencing data are one-hot
coded according to the map shown in Appendix One-hot coding map. Then the array
representation of a read is fed into several initial layers of convolutional blocks (inspired
by the scheme in [29]). The result is a embedding of the read, a N, x T' dimensional
matrix, by learning local k-mer patterns, where N, is the number of output channels in
convolutional blocks and T is the length of input DNA reads. A Bi-directional Long
Short Term Memory (Bi-LSTM) model is then applied to the data to learn the
longitude dependency of nucleotides. The returned sequence is then processed and
normalized by an attention layer to get an attention vector using the soft attention
mechanism, as described in [47,52]. The output of Bi-LSTM layer in our model is a
Np, x T dimensional matrix where Ny is the number of hidden nodes in Bi-LSTM layer
and T is the length of input DNA reads. Each base position (time-step) in the input
corresponds to a N, dimensional vector (hidden states at this position). The dense

1A python implementation of the proposed model is available at https://github.com/EESI/
sequence_attention.
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Figure 1. Read2Pheno classifier architecture: The input is a one-hot coded 16S rRNA
sequence with length T. The input is fed to a few 1-dimentional convolutional blocks
with window size of W and the number of output channels of N.. The resultant output
is a N, x T dimensional matrix which is then fed to a Bidirectional LSTM layer with
the number of hidden nodes of Nj. N, is the number of hidden nodes used to compute
attention weights and N, is the total number of phenotypes (number of classes) to be
predicted. There are two informative intermediate layer outputs (attention weights and
read embedding vectors) which are labeled by blue tags. They are used in the analysis
described in this paper.

attention layer applies to the hidden states of every base position (time-step). The
dense layer thereby learns the importance of hidden states at each position and return a
small value if the hidden states of this position do not make an important contribution
to the model’s final prediction, and, conversely, a large value if the model relies on the
hidden states at this position in making the final prediction. The output of the dense
layer is a vector of length T'. Then, the output is normalized by a softmax function to
produce the attention vector [52]. The output of this layer naturally indicates the
regions in the sequence that the model pays attention to. While the attention weights
are not learned from specific nucleotides but from high level features from 9-mers and
their sequential information, as shown in Figure 1, the attention interpretation may be

considered to be an approximation of the informative nucleotides of the 16S rRNA gene.

The final embedding of the read is a weighted sum of all the embeddings across the
sequence, where the weights are the elements of the attention vector. The goal of this
layer is to suppress the regions that are less relevant to prediction and focus on
informative regions. Finally, a dense layer with softmax activation function is applied
to the read embedding vector to classify it into one of N, labels. The hyperparameter
selection process is described in Section Model selection on American Gut dataset.

Sample-level predictor

In this paper, we propose three different ways to perform sample-level prediction. The
most intuitive way is performing a majority vote. The sample-level predictor counts all
the votes, i.e., the resulting Read2Pheno classifications, from all the reads in a query
sample and labeling the sample with the overall majority vote. The majority vote is a
baseline method intended to illustrate that the Read2Pheno model is learning the
sample-associated phenotypic labels for each read. We compare the majority vote
baseline to proposed embedding-based approaches further described below.

The intermediate layer of our model provides a concise numerical representation of
the input reads, which we can exploit in sample-level prediction. We propose to use two
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embedding based approaches: sample-level embedding method and “Pseudo OTU”
method [38]. The sample-level embedding method forms a sample-level vector
representation by averaging all read-level embeddings in a query sample. Then, a
classifier, such as Random Forest, can be trained to learn the sample-phenotype
association. For the “pseudo OTU” method as described by Woloszynek et al. [38], first
read-level embedding vectors are clustered via an unsupervised algorithm such as
k-means to form k clusters that are “pseudo OTUs” (groupings of related reads). Then,
we can assign each query sample’s reads to those “pseudo OTUs” based on distance. A
classifier, such as Random Forest, can then be trained to make sample-level predictions
on a “pseudo OTU” table made up of the “pseudo OTU” abundance, as defined above,
in all samples. Both embedding-based methods learn the sample phenotype by training
on each individual read (“read-level”) and on all reads (“sample-level”) rather than
read-level-only learning, as for baseline majority vote.

Majority vote

The Read2Pheno classifier produces a vector of likelihood scores which, given a read,
sum to one across all phenotype classes. To get the sample-level prediction, all reads
from a sample of interest are classified by Read2Pheno model, and the resultant scores
are then aggregated by the sample-level predictor. Using body site prediction as an
example, there are 5 different body site classes: feces, tongue, skin of hand, skin of head
and nostril. We show the diagram of our sample-level predictor in Appendix
Sample-level predictor: Majority vote method. Given a sample of interest, the reads
associated with this sample are first predicted by Read2Pheno classifier. Notice that
some species can be found in multiple body sites. Therefore, performing a hard call on
which body sites a read originates from can be misleading. To alleviate this problem, if
needed, the sample-level predictor contains a read caller function that can assign one
read to multiple body sites by applying a threshold to the output of Read2Pheno for the
read. In our implementation, if the likelihood score of the read from a body site is
greater than chance (%, where N is the number of body sites in the training data), the
vote count of that particular body site will increment by 1 (see the “Read Abundance”
block in Appendix Sample-level predictor: Majority vote method). For example,
suppose there are three target body sites: skin (i.e., dermal samples), gut (i.e., fecal
samples), and tongue (i.e., oral samples). If a read were predicted to be from gut, skin
and oral samples with scores of 0.51, 0.43 and 0.06 respectively, both the vote counts of
feces class and skin class would increment by 1 (since the likelihood of these two body
sites are greater than %) Finally, once all reads have been counted, the argmax of vote
count vector is taken to predict the sample-level body site.

Sample-level embedding

The attention layer of the Read2Pheno classifier produces a Np-dimensional embedded
vector (see Figure 1) that is a meaningful numerical representation of each 16S rRNA
read. For sample-level classification, we first use the trained Read2Pheno model to
encode all reads per sample into the Nj-dimensional vectors. Then, we average the read
vectors to form a sample-level embedding. We can then train a classifier (e.g. Random
Forest) on the sample-level embeddings to predict phenotype. We show the training and
testing process of such method in Appendix Sample-level predictor: Sample-level
embedding.
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“Pseudo OTU” table

While both embedding based sample prediction methods begin with read-level
embeddings of the training data, they differ in sample-level training. Instead of taking
the average of the trained read embeddings, we use a k-means algorithm to cluster the
read embeddings of training data into 1000 clusters [38]. Then, all reads in each query
sample can be assigned to those clusters. Effectively, the clusters represent related
sequences, which are called “Pseudo OTUs”. We compute the number of reads assigned
to each pseudo OTU for each sample to create a “Pseudo OTU” table: a matrix of
pseudo OTUs vs. samples. Like regular OTU tables, the Pseudo OTU table can train a
classifier, such as Random Forest, for sample-level phenotype prediction. A diagram of
this process is available in Appendix Sample-level predictor: Pseudo-OTU.

Data Preparation for Model Evaluation
American Gut Project (AGP) dataset

The AGP dataset used for model evaluation in this paper is a subset of data from the
American Gut Project [19]. As of May 2017, the AGP included microbial sequence data
from in total 15,096 samples from 11,336 human participants and that number
continues to grow as the project is ongoing [19]. We focus on samples from five major
body sites (N, = 5): feces, tongue, skin of hand, skin of head and nostril. As mentioned
in American Gut Project’s documentation, some bloomed organisms were contained in
samples analyzed early in the American Gut Project because of increased shipping time
and delay between when samples were collected and when they were put on ice. As a
result, bloom sequences should be removed in preprocessing process by American Gut
Project. In this paper, we use the latest filtered sequences and OTU table deposited in
ftp://ftp.microbio.me/AmericanGut/latest as of 2018/12. All reads have been
trimmed to 100 base pairs, so that 1" = 100 in Figure 1.

Gevers dataset

The Gevers dataset used for model evaluation in this paper is a subset of an
inflammatory bowel disease (IBD) dataset [7] (NCBI SRA index: PRIJNA237362 in
NBCI). Sample metadata label them as being IBD or Non-IBD (N,, = 2). Here, we refer
to IBD samples as “CD” (Crohn’s Disease), and the Non-IBD ones as “Not IBD”
(disease-negative). We merge paired reads using QIIME [53] and trim them to 160 base
pairs (i.e., with the first 10 removed, the following 160 base pairs kept and the rest
discarded), so that T' = 160 in Figure 1.

Experimental setup for American Gut Project dataset and Gevers dataset

First, we filter out samples with less than 10,000 reads. Then, we randomly select 161
samples from American Gut Project dataset and 221 samples for Gevers dataset per
class as our experimental dataset to balance the class distribution (resulting in total 805
samples in AGP experimental dataset and 442 samples in the Gevers experimental
dataset). The number of samples are selected based on the least number of sample per
class after filtering for each dataset. Next, we randomly select a certain number of
samples per class for training and leave out the rest for testing. For the AGP dataset,
10, 80 and 150 samples per class are randomly selected for training (resulting in 50, 400
and 750 samples total respectively). For the Gevers dataset, 20, 80 and 200 samples per
class are randomly selected as training data (resulting in 40, 160 and 400 samples total
respectively).
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For the AGP dataset-based experiment used for attention interpretation, we 316
randomly select 10 samples per class for training, resulting, in total, 50 samples and 317
1,503,639 reads for training. The rest of the samples form the testing dataset. We 318
randomly select 10 samples per class as the candidate visualization set. For the Gevers s
dataset-based experiment used for attention interpretation, we select 40 samples (20 320

from the IBD class and 20 from non-IBD) by random and collect 1,678,464 reads for 21
training (around 42,000 reads per sample). The remaining samples (442 - # _of_training) s

are used for testing. We again randomly select 10 samples per class from the testing 23
dataset as the candidate visualization set. After we select the candidate visualization s
set for both attention interpretation experiments, we use the QIIME [53] 35
implementation of the Ribosomal Database Project (RDP) [54] taxonomic classification s
to assign the genus-level labels to reads in the candidate visualization set. Then, reads s
with less than a 80% RDP confidence score on genus level are removed from the 28
visualization set. Finally, in order to efficiently extract intermediate layer outputs and s
generate visualizations, an arbitrary subset, 100,000 reads from the qualified 33
visualization set, are randomly sampled for the final visualization and interpretation. 331
All reads in the final visualization set have a genus-level label and phenotype (i.e., body s
site or disease diagnosis) label. For the AGP visualization set, we further merge the 333

skin-associated label, namely, skin of head, skin of hand and nostril into one single skin 334
class to simplify the visualization. As a result, the visualization set reflects 3 body site 13
classifications instead of 5. We use the experimental setup for American Gut dataset as s

an example to show the overall training and testing experiment in Appendix Overall 337
training and testing experiment. 338
SILVA dataset and experimental setup 339
The SILVA 16S taxonomic QIIME-compatible dataset is used to construct our 340
experimental dataset [50,51]. There are 369,953 sequences total in the original dataset. sa
Among those sequences, there are 268,225 which have a genus-level label, and those 32
sequences come from 6,618 genera. We select the genera that have over 100 343
representative sequences and collected all sequences from these genera to form our 344

experimental dataset. We thereby include in total 204,789 sequences from N, = 495 15
genera in our experimental dataset. Our dataset covers around 76.35% sequences and s
7.48% of the genera in original dataset. Sequences are first one-hot coded according to s
the map shown in Appendix One-hot coding map. Then, we right pad the sequences 348
with zero vectors to the nearest hundred and grouped sequences based on the padded 34
length (resulting 11 groups that have 100bp increment size in the range of 350
T = 900 — 1900). For example, a sequence of length 1001 will be padded with 99 zero 3
vectors to a total length of 1100bp. Then, those sequences are stored in the same matrix s
per length group. In this way, model can be trained by sequences with similar length at s
a time to improve the training efficiency. We then randomly split the dataset into 80%  ss4

sequences as training and 20% as testing. 355
The Read2Pheno Training Process 356
We train the Read2Pheno model with reads from training dataset, preprocessed and 357

selected as described above, labeling reads by sample phenotype. Since the Read2Pheno s
model should be trained and optimized for read level prediction, sample-level predictors — sso
are trained separately after the Read2Pheno model training is completed. For each 360
testing sample, all reads are classified by the Read2Pheno model. We then aggregate the sa
read level information encoded by the Read2Pheno model using methods described in s
Section Sample-level predictor to make sample-level predictions. We show a schematic e
of the training process in Appendix Read2Pheno training process. 364
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We randomly sample an equal number of samples from each class to form the
training set. Then, we label all reads associated with those samples by their
sample-level label and shuffled. All reads are one-hot coded according to the coding
map in Appendix One-hot coding map. Then, the data is fed to the Read2Pheno model
for training. The reason we train our neural network in read level instead of sample
level is two-fold: 1) our read level model can highlight informative regions in each input
sequence; 2) there are relative less number of examples to train a complex neural
network model in sample level than in read level. As discussed in Section Model
selection on American Gut dataset, we further show that the read level model trained
with a dozen of samples performs comparably to read level model trained with hundreds
of samples.

Our deep learning model is implemented in Keras (version 2.2.2) with Tensorflow
(version 1.9.0) backend. If the number of classes is greater than 2, then categorical
cross-entropy can be used as the loss function. Otherwise, binary cross-entropy is the
recommended loss function. Adam optimization with default setting and a learning rate
of 0.001 is used to train the model. The model was trained and evaluated on the

Extreme Science and Engineering Discovery Environment (XSEDE) [55] for 10 epochs.

We also made a python module of the Read2Pheno model in Github
https://github.com/EESI/sequence_attention.

Model Interpretation and Read Visualization

The Read2Pheno model has an LSTM layer; consequently, sequential information are
encoded and circulated in hidden states. The intermediate output, labeled as “Read
embedding” in Figure 1 is a Nj-dimensional vector. This read embedding vector is an
average of hidden states across all bases weighted by the attention weights, labeled as
“Attention Weights” in Figure 1. The Nj-dimensional embedding vector can be
considered as a numerical representation of the input DNA/RNA read. Therefore,
similar reads should be embedded to vectors that are close to each other in
Np-dimensional space, whereas differing reads should be embedded far away from each
other. This type of relationship may be shown by plotting the Np-dimensional vector
representations of the reads in a 2-dimensional space. Accordingly, we use Principle
Component Analysis (PCA) to reduce the dimensionality of all reads in visualization set
to 2-dimension by projecting them onto the top 2 principle components that explain the
most variation.

Inspired by “WebLogo” [56,57], we also use a “sequence logo” to visualize significant
features contained by the sequence. The reads from same genus are similar to each
other, with mutations at certain positions. We thus group the visualization reads from
the same genus together for further exploratory visualization. In this study, we use
QIIME [53] implementation of RDP [54] taxonomic classification method to predict the
genus level label for our visualization reads.

We calculate the overall Shannon Entropy of a group of reads (reads from a genus)
by:

H(l) = =Xyp(b,1) - loga(p(b, 1)) (1)

where b is the nucleotide base, b € {A, T, G, C}, [ is the position of the sequence,

1 € (0,length(seq)]. p(b,1) can be estimated by f(b,1), the normalized nucleotide
frequency of base b at position [. The sequence logo for a given phenotype class can be
calculated by Equation 2 where ¢ is the phenotype label and f.(b,1) is the normalized
nucleotide frequency of base b at position [ among reads from phenotype c.

Sc(ba l) = fc(b7 l) ’ H(l) (2)
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Positions with high nucleotide variance will have high entropy and therefore the
sequence logo is a good measure of “importance” (variation) of nucleotides, which we
use as our baseline importance measure.

As presented in Figure 1, a dense attention layer learns to predict the importance of
bases by hidden states output from Bi-LSTM layer. The output of the attention layer,
“Attention Weights”, is a vector of input read length, T, wherein each value represents
the importance of the hidden state corresponding to said position. This vector will
indicate what region of the input sequence the model has been found to be most
informative. Therefore, we use the attention weights for the input reads as the model’s
predicted importance measure. Among reads from the same genus, the attention
weights for reads from the same phenotype are averaged. The mean attention weight
vector highlights the informative sequence regions for a phenotype for this genus. The
attention measure is thus defined by Equation 3.

Ale,l) = attmean(c,) (3)

where attneqn(c, 1) is the mean attention weight of reads from a phenotype ¢ at position
l.

Results

As described in detail below, we analyzed three distinct 16s rRNA amplicon sequence
data sets: 1) data provided by the American Gut Project (AGP), in which samples are
labeled by body site origin and thereby reflect microbiome phenotype (i.e., properties of
a microbial community); 2) data published by Gevers et al. (Gevers), which is labeled
by disease diagnosis, i.e., host phenotype; and 3) the SILVA rRNA database, large
corpus of comprehensive and quality checked 16s rRNA sequence dataset with
taxonomic labels. Our goals for each type of data set were to evaluate 1) the
performance of attention-based deep learning models at predicting phenotype and
taxonomy as compared to existing baseline methods, and 2) interpretability gains
afforded by intermediate layer outputs of attention-based deep neural networks through
visualizing the ordination of sequence embedding vectors and informative regions of
sequences highlighted by attention weights.

Microbiome Phenotype (Body Site) Prediction based on
American Gut Project (AGP) Data

We evaluated our proposed Read2Pheno attention model on a subset of the American
Gut Project (AGP) dataset. The AGP dataset contains sequencing data from the
largest crowd-sourced citizen science project to date [19]. Our experimental dataset
contains 805 samples obtained from five body sites: feces, tongue, skin of hand, skin of
head, and nostril.

Model selection on American Gut dataset

We use the training data of 50 samples to perform a 5-fold cross validation to fine tune
the hyperparameters of our model. The hyperparameter search space can be found in
Appendix Hyperparameter search space table. The 5-fold cross validation yielded

N, = 256 filters in CNN layers, N, = 64 units in LSTM layer, dropout rate of 0, and
learning rate of 0.001 as the hyperparameters as producing the best read level
classification accuracy on the training dataset. Accordingly, we incorporated these
hyperparameters in our model. We also performed the same hyperparameter sweep
process on other models with related architectures: the Bi-LSTM model,
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Attention-based Bi-LSTM model, CNN model, Attention-based CNN model,
CNN-Bi-LSTM model and Attention-based CNN-Bi-LSTM model. We use the same
architecture for CNN and Bi-LSTM layers in the models described in Figure 1. Table 1
shows the best set of hyperparameters for all 6 models. In Table 1, the CNN column
shows the optimal number of convolutional filters, V.. The RNN column shows the
optimal number of hidden nodes in Bi-LSTM, N},. DP refers to the dropout rate
(probability of training to a particular hidden node in the layer) and LR is the learning
rate (amount weights are updated in each step) used in Adam optimizer. From the
table, classifiers constructed with only a Bi-LSTM layer or a CNN layer have
suboptimal accuracy compared to more complex models. With the help of an attention
mechanism, the CNN model achieves better accuracy, but the Bi-LSTM model doesn’t
benefit from the attention layer. The classifier which combines CNN layers, a Bi-LSTM
layer and an attention layer results in the best accuracy classification following 5-fold
cross-validation. Although the model without an attention layer achieves a similar
accuracy, the interpretability of the attention-based model is superior, as shown in the
following section discussing sample-level prediction. To evaluate the effect of using small

Table 1. Training Accuracy Comparison Results of 5-fold cross validation for
model /hyperparameter selection

Model CNN (N.) RNN (N,) DP LR Acc (+ Std)

Bi-LSTM - 128 0.25 0.005 0.734 (£0.002)
Bi-LSTM+ATT - 128 0.25 0.005 0.732 (£0.003)
CNN 128 - 0.25 0.001 0.738 (£0.001)
CNN+ATT 256 - 0.25 0.001 0.740 (£0.001)
CNN+Bi-LSTM 256 128 0.25 0.001 0.742 (£0.001)
CNN+Bi-LSTM+ATT 256 64 0  0.001 0.742 (£0.001)

number of training samples for Read2Pheno classifier training. We design an
independent experiment: we first hold out 55 samples as testing, then we train the
Read2Pheno model with reads from 5, 25, 50, 100, 500 and 750 samples from the rest of
samples and evaluate the sample level performance of those models by the 55 held-out
testing set (here we use the sample-level embedding method for sample prediction). For
sample-level phenotype prediction, there are two types of ways to train the Random
Forest (RF) model: 1) we use the exactly same training set to train RF as used to train
Read2Pheno classifier and then test on the test set; 2) despite of the number of samples
used to train Read2Pheno classifier, we use all 750 samples in training set train the RF
and test on the test set. We show the performance (The blue line shows the training
type 1 and the orange line shows the training type 2) in Appendix Training data size
effect of Read2Pheno classifier. The blue curve shows that as more samples used for
training, the sample-level accuracy increases. The orange curve shows that although
Read2Pheno classifiers are trained with different samples, as long as the sample-level
prediction model is trained with more samples, the performance is pretty stable. This
indicates that the Read2Pheno classifier can learn a meaningful embedding with only a
small number of samples. In fact, there are usually a great number of reads in a few
samples. For example, in AGP dataset, there are over 1 million reads in 50 samples).
Therefore, for further downstreaming analysis including embedding visualization and
attention weights visualization, we use the model train by 50 samples.

Sample-level phenotype prediction

Sample-level phenotypes are predicted by sample-level predictors as described in the
Methods section (in Section Sample-level predictor). Table 2 compares the accuracy of
our deep learning approaches (a Read2Pheno model trained for 10 epochs with various
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sample-level classification strategies) against Random Forest (RF) baseline approaches,
which are trained on three different types of features: k-mer counts, OTU tables and
ASV tables generated by Dada2 [58]. In Table 2, we compare the training dataset size’s
effect on the models’ accuracies (all Read2Pheno models are trained for 10 epochs and
followed by various sample-level classification strategies for sample level predictions).
For example, for the training set of size of 50 samples, our method was trained for 10
epochs with 50 samples and tested by 755 samples, whereas a RF classifier with 100
estimators was trained by the same 50 training samples and tested by 755 samples using
the 9-mer frequency feature table, OTU table and ASV table respectively. We use a
9-mer frequency feature table because the filter window size of our convolutional block
is 9. As expected, adding more training data increases performance. While training an
RF model on raw 9-mers performs very well for all training sizes, our sample embedding
and pseudo-OTU methods outperform the 97% identity OTU tables. Moreover,
prediction accuracies using the pseudo-OTU approach are competitive with using 9-mer
raw features. But accuracy is not the ultimate objective of these phenotype prediction
experiments. Our read-level and sample-level embeddings can be interpreted to visualize
read-phenotype and read-taxa relationships, a task that 9-mer features cannot
accomplish alone. We hypothesize that our embedding approach is able to perform well
at clustering sequences from similar taxa together. The target classes in this comparison
are 5 body sites: feces, tongue, skin of hand, skin of head and nostril. Unlike the
pseudo-OTU method, an OTU table-based method can only identify informative OTUs,
rather than informative sequence context (like Figure 3). Moreover, k-mer based
methods can highlight useful local k-mer information, but cannot easily interpret
informative taxa (like Figure 2) and sequential order information. By contrast, our
attention-based model can provide deeper feature visualizations (Figure 2, 3 and
Appendix 2D Visualization of Prevotella reads) and interpretation.

Table 2. American Gut Data Testing Accuracy Comparison. Unlike sample-
level classification methods that use OTU/ASV tables and /k-mers (e.g. 9-mers) as
features, our proposed model is trained on reads. Then, the read-level results are fused by
the sample-level predictor using three methods as described in this paper. By increasing
the number of samples in the training data, we compare the read-level classifier’s ability
to learn sample-level predictive taxa/information from limited data sizes. Accuracies
are averaged and standard deviation is measured over 5 randomly selected data with
replacement experiments. We show sample-level prediction for the proposed methods are
competitive with prediction from OTU tables and will allow interpretable representations
shown in subsequent sections.

Training Set Size
Category Method 50 400 750
9-mer table 0.808 0.887 0.903
Traditional (£ 0.039) | (£ 0.009) | (+ 0.024)
OTU table 0.731 0.816 0.831
(£ 0.021) | (£ 0.010) | (£ 0.030)
ASV table 0.769 0.840 0.866
(+ 0.034) | (£ 0.014) | (£ 0.024)
Majority vote 0.730 0.794 0.795
Proposed (£ 0.040) | (£ 0.012) | (£ 0.030)
Sample embedding | 0.751 0.816 0.821
(+ 0.012) | (£ 0.010) | (£ 0.025)
Pseudo OTU 0.784 0.858 0.881
(£ 0.039) | (£ 0.013) | (£ 0.026)
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Read embedding visualization

To illustrate how the model can learn taxonomic classes despite only having phenotype
labels, we visualize the embedded vectors for reads from 6 selected genera.

A. Overall B Gut

4

o~
w
20
<
-1
-2
in feces e Prevotella e Propionibacterium
-3 in skin e Neisseria Bacteroides -
Ta.
in tongue e Corynebacterium e Faecalibacterium o
4y -2 0 2 4
Axis 1

Figure 2. 2-D projection of embedded read vectors from all body sites (A), gut (B),
tongue (C) and skin (D). ‘0’s are reads from the skin, ‘A’s are reads from the tongue
and ‘o’s are reads from the gut/stool. The neural network is learning the 16S rRNA
gene association to taxonomy and body site without the access to taxonomy label of the
reads.

Figure 2 shows the 2-D principal component analysis (PCA) projection of embedded
vectors of 16S rRNA reads (the intermediate output vectors of the Multiplication Layer
in Figure 1) of 6 genera from the American Gut data. Each point represents a read, in
which the color represents the genus label (determined by RDP [54]) and marker shape
represents the original body site (as determined from the body site label). As mentioned
in Section Experimental setup for American Gut Project dataset and Gevers dataset, to
produce a clear visualization, we merge skin of hand, skin of head and nostril to one
single skin class. In Figure 2, reads from one body site are clustered closer together
than to other body sites in the embedding space. For example, as shown in Figure 2B,
reads from gut are embedded together. In addition, , most of the reads from particular
genera are closely embedded together. This illustrates that even though the model is
not optimized for taxonomic classification, the neural network is still learning the 16s
rRNA variable V4 region—which contains mutations that indicate different taxa—of the
input reads in the embedding space. Notably, for Prevotella, most fecal-associated reads
separate from the oral-associated ones, demonstrating that the model can discern
sub-genera. It is most likely that within these sub-genera, different species have
preference for different body sites. This kind of intra-genus separation does not appear
for all genera, however. This is to be expected, since the same 16S rRNA read may exist
within multiple body sites, which would make it hard for the model to predict such a
read correctly. Nevertheless, some skin-associated Corynebacterium strains separate out,
revealing which intra-genus 16s rRNA variants can and cannot be learned.
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Prevotella Case Study 545
To understand which features facilitate class separation, we again inspected the read 546
embedded vectors for genera which separated well for the body site isolation source. 547
Notice in Figure 2, reads from Prevotella formed two major clusters corresponding to 548
two body sites, namely, tongue and feces. Therefore, we analyze Prevotella as an 549
exemplary demonstration of the interpretability of the attention learning mechanism. 550

As shown in Appendix 2D Visualization of Prevotella reads, a 2-D PCA projection of  ss
embedded vectors from Prevotella test reads forms two well-separated clusters, which 552
correspond to tongue and feces. The Prevotella test reads were classified to the correct — sss
body site source with 91.31% accuracy. To visualize the regions that are most 554
informative to this classification, Figure 3 shows which high entropy positions also have sss
high attention using the method described in sample-level predictors section. Panel D of  ss6
Fig 3 shows that the middle and end portions of the 100 bp trimmed reads are most 557
important for phenotype classification, with the former playing a more important role in  sss
distinguishing fecal reads (panel B) while the latter is more important for oral and skin  sso

reads (panels A and C). For visualization, the attention weights are smoothed by a 560
moving average of window size of 9 (i.e., the size used in the convolutional filter of the se&
model). 562

A: Prevotella oral reads
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Figure 3. Comparison between average Prevotella reads attention and nucleotide
frequency entropy in form of nucleotide sequence logo. A: oral reads; B: fecal reads; C:
skin reads; D: overall attention. In each body site, nucleotide frequencies are scaled by
the overall entropy for all Prevotella testing reads and plotted as a sequence logo, with
average attention weights represented by a color map where lighter background shading
represents larger values for attention weights, in contrast with darker background shading
for smaller attention weights.
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Inspecting the output of the attention layer for Prevotella, we can see which areas of
the 16s rRNA V4 region that the network is paying attention to (by the brightness of
the highlight) to make this classification, shown in Figure 3. We can see that the end of
ths 16S V4 region is the most important for identifying oral and skin reads, while the
middle region is the most important for gut/fecal reads. However, there are slight
differences — for example, an area at the beginning of the V4 region has some
importance to also help identify the gut, and to some extent oral, reads—as opposed to
getting no attention weighting for skin reads. When comparing oral and skin reads, the
middle region is the second most important to identify skin reads. This region may help
resolve oral/skin body sites that have similar nucleotides at the end of the reads.

For comparison, the entropy of the sequences within the Prevotella body site
combinations are shown (with the whole general attention shown in Figure 3D). We can
see that the attention model is generally learning areas of the variable region that have
high entropy. However, it is also learning slight differences between the signatures of
these regions. For example, both gut/skin reads tend to have C’s located at positions 54
and 65 while gut/oral reads tend to have GAGA at 56 — 59. Thus, the particular
combination of C-GAGA----- C is unique to gut reads and therefore, a high attention
weight is placed on this region to distinguish gut reads from other body sites. In sum,
the attention weights shown in Figure 3 will reflect nucleotide variation found in
training sequence data, which, in turn, helps the model predict body site labels from the
input reads.

Host Phenotype (Clinical Diagnosis) Prediction based on
Gevers Inflammatory Bowel Disease Data

We further evaluate Read2Pheno performance on a distinct set of sequence data, the
Gevers dataset, which as described in Section Data Preparation for Model Evaluation, is
a subset of data from an inflammatory bowel disease (IBD) study in which samples were
identified as being from patients who were diagnosed with inflammatory bowel disease
(IBD) and not [7].

Sample-level phenotype prediction

Sample-level phenotype prediction is accomplished by 1) the sample-level predictors
discussed in Appendix Sample-level predictor: Majority vote method with Read Caller
threshold of 0.5 (&, where N = 2 for two classes); 2) sample-level embedding based
Random Forest; 3) “Pseudo OTU” table based on a Random Forest trained on 1000
Pseudo OTUs. Table 3 compares the accuracy of our model against three baseline
methods: Random Forests trained on (1) k-mers, (2) OTU tables, and (3) amplicon
sequence variants (via Dada2). We show the testing accuracy for different training data
sizes in Table 3. For example, for the training set size of 40 samples, we trained our
method for 10 epochs, and compared that to training a Random Forest classifier with
100 estimators using the various baseline methods. We compare against a Random
Forest trained on the 9-mer frequency feature table. K = 9 seems like a reasonable
choice because the filter window size of our convolutional block is 9. The target classes
in this comparison are 2 states: IBD and Non-IBD. From the table, we can see the
performance of our “Pseudo OTU” based method is the comparable to competing
methods. When trained with 40 samples and tested on the rest, 9-mer table based
model works the best and our Pseudo OTU model is comparable to the OTU table
based method. As more samples are used for training, the performances of all models
are improved. In general, among our proposed models, the Pseudo OTU model
consistently works the best. The Pseudo OTU model is often comparable to OTU and
ASV based model but slightly underperforms 9-mer table based model.
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Table 3. Gevers Dataset Testing Accuracy Comparison. Unlike OTU/k-mer
based classifiers, which are trained at sample-level, our proposed model is trained at
the read level before read level results are then fused by sample-level predictor. This
comparison, over 40, 160, and 400 samples in the training data shows that the read
level classifier learns predictive taxa/information and the sample-level prediction for
the proposed methods are competitive with prediction from OTU tables and will allow
interpretable representations shown in the subsequent sections. The obtained accuracy
values are averaged, and the standard deviation is computed, over 5 experiments in
which we randomly selected training-testing data splits with replacement.

Training Set Size
Category Method 40 160 400
9-mer table 0.715 0.787 0.848
Traditional (£ 0.029) | (£ 0.030) | (+ 0.055)
OTU table 0.684 0.768 0.843
(£ 0.016) | (£ 0.018) | (=
0.0548)
ASV table 0.669 0.765 0.819
(£ 0.019) | (£ 0.022) | (£ 0.078)
Majority vote 0.653 0.690 0.729
Proposed (£ 0.043) | (£ 0.023) | (£ 0.062)
Sample embedding | 0.650 0.726 0.762
(£ 0.016) | (£ 0.029) | (+ 0.069)
Pseudo OTU 0.689 0.779 0.833
(£ 0.031) | (£ 0.014) | (£ 0.058)

Read embedding visualization 612
To inspect how the read embeddings identified by Read2Pheno perform, here we 613
visualize the embedded vectors for reads from 4 selected genera (Blautia, Roseburia, 614
Ruminococcus, and Pseudomonas). Appendix 2-D projection of embedded read vectors e
for Gevers dataset shows the 2-D PCA projection of embedded vectors (the 616
intermediate output vectors of the multiplication layer in Figure 1) of a selection of 4 617
genera from 16S rRNA reads from the Gevers Crohn’s disease dataset [7]. Each point e
represents a read, in which the color represents the genus label (determined by 619
RDP [54]) and marker shape represents the disease state (CD: Crohn’s disease; Not 620
IBD: No inflammatory bowel disease diagnosis). In Appendix 2-D projection of 621
embedded read vectors for Gevers dataset, most of the time, reads from one genus are 62
closely embedded together. However, the Not IBD samples for the Roseburia and 623
Ruminococcus genera have the widest spread in PCA. In fact, we can see multiple 624
clusters in most of the genera, suggesting that different sub-genera cluster together and o2
can be associated with different phenotypes. In addition, reads identified as 626

disease-positive (“CD”) are generally clustered in lower right of the figure, while reads
labeled as disease-negative (“Not IBD”) are clustered in upper left of the figure. Even

though the model has not been trained to do taxonomic classification—only disease 629
phenotype—it can still reflect what it has learned from the sequence structure of the 630
input reads in the embedding space to reveal taxonomic structure. 631

Indeed, within Blautia and Ruminococcus genera, there are at least one cluster 632

corresponding to disease (“CD”) and another cluster corresponding to non-disease (“Not 633
IBD”). This further demonstrates that the Read2Pheno model can discern sub-genera ¢
that have associations with different phenotypes. Finally, most Pseudomonas reads are o3
disease-positive (labeled as “CD”), and they are also embedded in lower right corner in 63
the figure, which shows that the Read2Pheno model has predicted that those reads are o
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disease-positive. This is consistent with the association between Pseudomonas species
and IBD, which has been described extensively in the literature [59-61]. We further
show the interpretability of our model in Section Case studies of Gevers dataset.

Taxonomy Prediction based on SILVA Full Length 16S rRNA
Sequence Data

We further evaluate the capability of our proposed Read2Pheno model to analyze and
learn which regions of the full-length 16S ribosomal RNA sequence are useful for
predicting the genus level taxonomic label. The experimental dataset in this section is
constructed from the SILVA 16S ribosomal RNA gene database [50] and their manually
curated taxonomy [51] (i.e., Release 132 16S sequences with 99% identity criterion to
remove highly identical sequences).

Full length 16S rRNA taxonomic classification

Unlike the other results presented above, here, we train our proposed Read2Pheno
model on tazxonomic classification specifically. In particular, we train the model on the
SILVA training dataset for 40 epochs. We adopt the same set of parameters and NN
model architecture used in the previous experiments (256 filters in CNN layers, 64 units
in LSTM layer, 0 dropout rate and 0.001 learning rate), except for the number of
neurons in output node, N,, which must be set to 495 to accommodate all the genera
classes. The same training data is used to train the QIIME [53] implementation of
RDP [54] taxonomic classifier. Then, both the RDP classifier and our Read2Pheno
model are tested by the testing dataset. Table 4 shows the results of both models.

Table 4. Accuracy Comparison on the SILVA dataset over 5-fold cross-validation. The
proposed model’s performance is slightly below but still competitive to RDP’s accuracy.

Method Avg. Accuracy (std)
RDP implemented in QIIME 0.976 (£ 0.001)
Proposed model 0.959 (+ 0.006)

Full length 16S rRINA sequence visualization

We visualize the embedded vectors for full-length 16S rRNA sequences from 7 selected
genera in the Bacillaceae family in Figure 4. A 2-D principal component analysis (PCA)
projects the embedded vectors (the intermediate output vectors of the Multiplication
Layer in Figure 1) of the sequences from the selected 7 genera. Each point represents a
sequence, in which the color represents the genus label. In Figure 4, most of the
sequences from one genus are closely embedded together and sequences from different
genera are embedded apart from each other. This illustrates that the model is learning
the taxonomic information from the labels, whereas in the American Gut section,
taxonomic information was being learned indirectly from phenotype labels. We can also
see (although distorted from the 2-D projection) that some Bacilli have 16S TRNAs that
may be similar to other types of Bacilli genera like Virgi- and Oceano-bacillus but be
more distinct from Geobacillus. This could indicate misclassifications of these sequences
in the standard taxonomy (e.g. Bergey’s Manual of Systematic Bacteriology) or simply
evolutionary relatedness between taxa.
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Figure 4. 2-D projection of embedded sequence vectors. The model can separate
sequences with respect to their genus level label based on their genomic content.

Variable Regions discovered by Attention Weights: Pseudomonas and
Enterobacter examples

In Figure 5 and Appendix Average attention weights of Enterobacter testing sequences,
we visualize the average attention weights of testing sequences from two select genera.
For Pseudomonas in Figure 5, the top figure shows the averaged attention weights per
all testing reads without alignment. The variable regions are labeled according to [62].
Here, different colors correspond to different variable region (from V1 to V9 as shown in
the colorbar). As we can see, the attention weights pay attention to nucleotides
concentrated on V2 and V3 regions. There are insertion and deletions in different
Pseudomonas sequences. As a result, the location of a certain context that gain high
attention weights can be shifted in different sequences. We applied multiple sequence
alignment to align the testing sequences for Pseudomonas using the MAFFT on
XSEDE [63]. The attention weights are then aligned by the sequence alignment results.
Then, the average attention are computed based on these aligned attention vectors.
From the bottom figure in Figure 5, we observe that the attention sites narrow down to
a few select nucleotide positions despite insertions and deletions in the 16S rRNA
evolution. This is evidence that our model is learning specific 16S rRNA nucleotide
contexts that are important to the distinction of taxa and decides where to pay the
attention based on the context. We further visualize the attention weights of a real
Pseudomonas aeruginosa sequence provided by [64] in Appendix Secondary structure
and attention weights of a Pseudomonas aeruginosa sequence. The positions that have
an attention weight greater than the mean attention weight cross the whole sequence is
highlighted on the secondary structure figure. The attention-highlighted regions
coincide with sub-regions of V2, V3, and V4 variable regions determined by [64].
Moreover, we notice that attentions are paid in the junctions in the secondary structure
by the model. We conjecture that those junctions are related to molecular interaction
and the nucleotides at those positions can contribute to the angle/structure of the arms
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Figure 5. Top: Average attention weights for all strains of Pseudomonas without
alignment; Bottom: Average of attention weights for all strains with alignment. This
figure shows that our model can implicitly learn the multiple sequence alignment since
there are very few sites with attention — meaning that despite insertions/deletions, the
attention is consistently paid to the most informative bases.
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associated with the junction.

We also applied the same analysis on Enterobacter as a comparison (result shown in
Appendix Average attention weights of Enterobacter testing sequences). For
Enterobacter, the attention weights are concentrated on V2 and V4. After multiple
sequence alignment, we observe concentration of attention weights into mainly two sites
(similar narrowing trend as in Pseudomonas), which implies that the model can learn
contextual information and is robust to insertions/deletions/mutations. We offer the
readers our multiple sequence alignment results in FASTA format and the mean
attention weights per position after alignment in Appendix Mean attention weights and
multiple sequence alignment results aligned for Pseudomonas and Enterobacter. To offer
insight into what the neural network is learning as the most important variable regions
for each genus, we calculated the sum of attention weights of testing sequences per
variable region (with variable region locations defined by [62]) for each genus and can be
found in Appendix Attention weights on variable regions per genus. There are previous
works that aimed to find important/predictive variable regions that can inform
taxonomic classification and V2, V3, V4 are considered as “informative” [65-68]. Our
model, in most cases, pays most attention to the V3 and V4 regions, which many
studies now use as common targets. Genera such as Buchnera, Erwinia, and Gemmata
have higher attention weights on the V2 region.

Discussion

In this paper, we propose an attention-based deep neural network for read level
classification that can reveal informative regions that are relevant to the phenotypic
classification (classification of 16S rRNA reads from microbiome to phenotype). We
have shown that attention-based deep learning, and specifically our proposed
Read2Pheno models are capable of comparable accuracy prediction performance while
offering automated model interpretation on three distinct kinds of tasks: (1) prediction
of microbiome phenotype (i.e., the emergent property of a microbial community), (2)
prediction of host phenotype (i.e., clinical disease diagnosis), and (3) taxonomic
classification of full length 16S rRNA sequences. The implications of our
attention-based deep learning methodology, as implemented and evaluated on these
tasks as proof-of-concept, are discussed in further detail below.

As proof-of-concept for microbiome and phenotype prediction, we have focused on
two large-scale microbiome datasets. First, we have analyzed data from the American
Gut Project, which provides a comprehensive open-source and open-access set of human
microbiome 16S rRNA samples for scientific use [19,69]. The recent studies of
microbiomes inhabiting sites on the human body (particularly the large intestine) have
revealed the complex nature of microbial community interactions [69]. 16S ribosomal
RNA is not only useful for identifying organisms using the phylogenetic tree of life, but
the phylogenetic branch distance shared between samples serves as a comparative
distance metric [70]. Utilizing the AGP’s large collection of samples, where we can
identify organisms via 16S rRNA, allows us to begin to understand microbial
community dynamics in hosts and the environment [71]. The AGP dataset thus
provides real-world data to develop and validate phenotype prediction algorithms.
Second, to analyze host phenotype, we have further looked to gut data with clinical
significance as well. Crohn’s disease (CD), a chronic relapsing inflammatory bowel
disease (IBD), is increasing in prevalence worldwide [72]. Researchers have been
exploring different methods to predict Crohn’s disease based using microbiome data, for
example to identify the microbial taxa that associated with the disease using 16S rRNA
survey data [7,9,73]. We have further evaluated Read2Pheno and sample-level
classification using a dataset based on clinical evaluation provided by Gevers et al.
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Developing a better understanding of the IBD microbial signature will present a critical
step towards improved clinical diagnosis and discovery of a cure.

Our results with these data sets show that we can keep both local information
(k-mers) and contextual information (sequential order of k-mers) of 16S rRNA regions
without the need of abundance table such as OTU or ASV for phenotype prediction and
achieve comparable performance to phenotype classification based on OTUs/ASVs. The
number of samples is relative small to train a complex deep neural network for sample
level prediction and can lead to overfitting (especially when the variation in the dataset
is low) [74,75]. For example, there are over 1 million parameters in the proposed deep
neural network model for AGP experimental data, we have only 805 samples (perfectly
balanced), however, for training. And the number of data points, n, should be no less
than some multiple (say 5 or 10) of the number of adaptive parameters number of
parameters in the model [74,75]. Even when we consider all 15,096 the samples in AGP
as of May 2017 which mostly are collected from feces, the number of training samples is
still less than 1% of the total number of trainable parameters, m. As an alternative, we
instead propose to train a read level model, Read2Pheno which can leverage millions of
reads as training examples from only dozens of samples, and then aggregate the learned
information for a sample level prediction. One of the limitations of our model is that
the model is not optimized for sample level prediction. However, through our
experiments described here, we show that our proposed training strategy can pick up
informative pattern to find 16S rRNA read and phenotype association as well as
highlight informative regions.

In addition, unlike conventional OTU based methods, no preprocessing steps such as
alignment /OTU grouping are required. Furthermore, intermediate layers outputs can be
used for ordination and highlight informative regions in the sequences. Although
Oligotyping can be used to resolve closely related 16S rRNA reads and explore the
informative positions and label association, human supervision and alignment process
are required to identify the cutoff entropy threshold in closely related reads of interest.
Our model can be considered as an end-to-end model which takes raw 16S rRNA reads
as input, learns informative genetic content and label association and outputs
classification results. The learned knowledge can be extracted by intermediate layer
outputs especially the attention weights. And the model is robust to deletions and
insertions (as shown in Figure 5, our attention model can implicitly identify relevant
genetic content across different unaligned sequences from the same genus). This work
revealed the potential of deep learning models in phenotype prediction and
interpretation. In the future, when a deep neural network model is better tuned for
sample level prediction and when more training samples are made available, the method
has the potential to outperform the existing OTU/ASV based methods.

To further show how the attention weights based model interpretation compares to
other related method, We run the Oligotyping [11] software package on our Prevotella
visualization set used in Section Prevotella Case Study. Oligotyping uses Shannon
entropy to analyze closely related 16S rRNA sequences and find mutations that best
explain sample variables (e.g. phenotypes). However, Oligotyping needs more human
interaction and supervision for this task. For example, a user needs to determine how
many oligotypes to find. Appendix Oligotypes for Prevotella reads shows the oligotypes
(highlighted in black) found by their software for our American Gut derived Prevotella
example. As shown in Appendix Oligotypes for Prevotella reads, Oligotyping for 7
positions picks 13, 54, 65, 83, 91, 96, and 98. In our model, shown in Figure 3,
nucleotide positions 13, 54, 91, 96, 98 within the 16s rRNA V4 region are in highlighted
region, which represent greater attention. Notably, position 13 is in a dim but still
highlighted regions, 65 and 83 are near highlighted regions, and in fact, 83 is near two
more. Thus, there is an apparent relationship between the attention that the neural
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network learns and the highest entropy positions that are learned. For each body site, s
there are multiple oligotypes per body site; therefore, it is hard to discern which high s

entropy position is most important to identifying which body site. 805
Several factors contribute to the discrepancy between our model’s high attention 806
nucleotide positions and the highest entropy positions used for oligotyping. First, we 807

smooth the attention weights with a 9-mer moving average. As a result, the attention s
weights are a regional approximation, i.e. not at precise positions, and the weights taper sow
off at the ends of the read, due to edge convolutional effects. Second, Oligotyping only s
calculates the entropy of each position in Prevotella reads, while the attention weights su

learn the weighting of attention of positions that are specifically important to the 812
classification task—in this case, body site prediction. A practical drawback of the 813
Oligotyping approach is that, a user must plot the distribution of different oligotypes for s
each phenotype to see if there is a common oligotype for that phenotype, e.g., as in 815
Appendix Oligotypes and body site association for Prevotella. From Appendix 816
Oligotypes and body site association for Prevotella, the gut (fecal) oligotypes are 817
evidently distinct from the other body sites, while the oral and skin oligotype 818

distributions are relatively similar. Therefore, gut vs. other sites could be distinguished s
with oligotypes but more nucleotides would be needed to discern oral/skin. By contrast, sx
the attention model does not require manual adjustment to find important regions. As sx
the neural network classifies different phenotypes, the network learns the regions that &2
are most important for this task. Attention modeling is thus the converse of oligotyping: e

attention weights recognize the informative reads/regions through body site 824
classification and therefore can highlight the regions that distinguish body sites. 825
Post-processing is required in the user’s end to extract the attention weights of 826
sequences of interest for visualization. Conversely, preprocessing is required for 827
Oligotyping users to identify reads of interest from a certain taxon and align them to 828

learn oligotypes. Moreover, the attention weights for any combination of phenotype or s
taxa-phenotype can be visualized (see Figure 3), and it is immediately clear from the 830
visualization what are the most informative sequence regions—as well as their relative  sa
nucleotide variability—for the classification being learned. Notably, with the attention s
model, the highlighted attention regions are slightly offset or in between high-entropy s
positions. Regions at or near high-density high-entropy positions (i.e., regions that have s

many high-entropy positions) are weighted with higher attention. We can see that 835
highlighted attention maps to 4 sequence regions: nucleotide position ranges 12-18, 836
53-62, 74-81, and 90-98. Whereas region 4 (nt 90-98) helps identify oral reads and skin s
reads as opposed to gut, regions 1, 2, and 3 are helpful in distinguishing gut samples 838
from other samples. Each body site may be identified by a combination of regions. For s
example, regions 2, 3, and 4 are useful to identify that a sample was taken from skin, 840
while regions 1 and 4 are most useful for identifying samples from the oral cavity, and 1 sa
and 3 are most useful for identifying gut samples. 842

Accordingly, the efficiency of attention model interpretability contrasts favorably 843
compared to Oligotyping studies. As noted above, with Oligotyping, one must choose 844
the number of nucleotides to examine. We chose 7 nucleotides, for example, since those s
represented nucleotide positions from all 4 regions in which we found attention. 846

Moreover, there is no guarantee that Oligotyping will be able to succeed at all desired s«
classification/discrimination tasks. For example, as Appendix Oligotypes and body site s
association for Prevotella shows, while the gut has a more distinct pattern of oligotypes s
as opposed to oral and skin samples, oral and skin samples show very little difference in s
oligotype patterns. As such, it is practically difficult to perform the classification task s
using only learned oligotypes. However, we do know, and have been able to quantify and s
show, the accuracy achieved by the attention model and its associated region discovery. ss3

In addition to training and evaluating attention-based models on phenotype data, we s
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have further considered a comprehensive data set for taxonomic classification, the 855
SILVA rRNA database. SILVA data allowed us to evaluate how our attention model can s
be used to explore the structure of full length 16S sequences by training the model for a s
taxonomic classification task. (We can think of this as as read2taxa, but we are still s

using the same Read2Pheno model that we have developed.). Our model achieves 859
comparable performance to the superior k-mer based method and pays attention to 860
different regions for genus classification. This indicates that parts of the 16S rRNA 861

gene, for a given 16S rRNA sequence from a genus, are important for distinguishing one s
genus from other genera. Notably, Salmonella has higher weights on V2 and V4. This  ss
can inform future 16S rRNA study designs. Because the V2 region is informative (i.e., s
has higher attention weights), investigators should design and use primers to target the sss
V2 region to augment more commonly used V3/V4 primers. Some genera such as 866
Pirellula have attention within some regions (V2 and V4) but also have higher than 867
normal attentions at other sites, showing that more regions can be used to discern this sss
genus. These predictions are consistent with evidence in the experimental literature. In  se
particular, previous studies have shown that V1-V3 region are better at distinguishing sn
FEscherichia/ Shigella [76], and we show a high attentions within the V2 and V3 for this s

group. The model also predicts that Methanobacterium, Thermococcus, and other 872
Archaea have attention weighting at V4-V5. And, indeed, the V4-V5 regions have 873
already been shown to have superior recognition of Archaea [77]. Accordingly, the a74
Read2Pheno model’s predictions can serve as a starting point for identifying which 875
primers may be optimally used to target various genera. 876

Going forward, we intend to adapt this model to explore metagenomic data, going e
beyond amplicon sequencing of specific marker genes to include the whole genome or 878

sub-genomic multiple-gene regions from organisms in microbiome samples. To do so will s
require overcoming challenges such as memory limitations and the potential inability of  ss

neural networks to capture long distance dependencies due to gradient vanishing [78].  se
We are thus exploring the use of smaller batch size or more efficient data structure and s
better optimization strategy need to be applied to train the model for full length 883
bacteria sequences. We are working to also achieve superior accuracy through 884
approaches such as self-supervised pretraining and transfer learning, which have proven s
to be successful in the NLP literature [79,80]. 886
Conclusion se7

In conclusion, we propose an integrated deep learning model that exploits CNNs, RNNs, sss
and attention mechanisms to perform read and sample-level environmental prediction s
and extract interesting features. We show that such an alignment-free model can easily s
encode sequences/reads into dense and meaningful representations, and it can extract  su
important sequence features while being robust to insertions and deletions. The 802
Read2Pheno model we develop herein thus provides an exploratory way to understand s
microbial data which is helpful for future microbial study. In particular, we have shown e

in computational experiments that the deep, attention-based neural network 895
Read2Pheno model can accomplish diverse tasks, learning informative nucleotides to (i) s
predict the body sites from which human microbiomic samples are extracted, (ii) 807
discriminate between samples from individuals with positive and negative diagnoses for s
IBD, and (iii) identify the taxonomic labels of whole sequence 16s rRNA data. 899

Moreover, we have shown that our attention-based DNN can not only predict, but can o
also be readily interpreted to obtain further insight. In addition, we have shown that we o
can interpret the intermediate outputs in the neural network model and generate 002
visualization of the read embedding vectors, and, thereby discover important taxa and s
regions of sequences which are highly associated with the sample phenotype/taxonomic o
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label. We show that our deep learning model can be used to explore the 16S rRNA a0s
nucleotide structure and its association with phenotype and taxonomy by learning the s
high-level features from k-mers and their sequential order. Our paper further provides oo

an alternative way to train deep neural networks when the number of samples are a08
relatively small, by training a read-level classifier instead of a sample-level 909
classifier—while still producing comparable classification results. And, even in cases 010

where our proposed attention-based neural network modeling framework fails to provide ou
superior classification performance, we demonstrate that the results are nonetheless easy o2

to interpret, such that we may extract important biologically and clinically relevant 013
information from complex sequence data. o14
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A Appendix

A.1 One-hot coding map

The map is adapted from Nomenclature for Incompletely Specified Bases in Nucleic
Acid Sequences (http://www.sbcs.gmul.ac.uk/iubmb/misc/naseq.html)

Symbol coding
A 1 0 0 0
C 0 1 0 0
G 0 0 1 0
T 0 0 0 1
U 0 0 0 1
W 0.5 0 0 0.5
S 0 0.5 | 0.5 0
M 0.5 | 0.5 0 0
K 0 0 0.5 | 0.5
R 0.5 0 0.5 0
Y 0 0.5 0 0.5
B 0 | 5[ 5 [ 3
D 3 [ 0[5 [ 3
1 T i
—
3 3 3
N 0.25 | 0.25 | 0.25 | 0.25

A.2 Sample-level predictor: Majority vote method

The read caller threshold is % where N is the number of classes.

g g g g g g » » Read Caller
threshold: 1/N
Sample reads '
Read Abundance

class 1: 13352
Sample Level « « class 2: 677

Prediction

Read2Phenotype
Classifier

Sample Caller
argmax

class N: 9340

A.3 Sample-level predictor: Sample-level embedding

Sample level embedding is calculated by averaging all the read level embedding vectors
per sample. Then a random forest classifier is trained based on the sample embedding
matrix (a N by Nj, matrix where N is the total number of samples in training set and
N}, is the number of hidden nodes in Bi-LSTM layer). Once the sample level random
forest classifier is trained, this model can be used to perform sample level classification
by taking the sample embedding vectors as input. The training and testing process are
labeled by red and blue arrows correspondingly.
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A.4 Sample-level predictor: Pseudo-OTU

Training reads are clustered into Nejysters = 1000 clusters (“Pseudo OTUs”) by Read
level embedding clustering module using a k —means algorithm. Then all training
reads per sample are mapped to the closest “Pseudo OTUs” to form “Pseudo OTUs”
abundance table. Similar to sample-level embedding method, a random forest classifier
can be trained to perform sample level prediction using such “Pseudo OTUs” table
(The training and testing process are labeled by red and blue arrows correspondingly).

Training Sample

:

I

ggmg

Testing Sample reads

XOOX

:

OO

» Read2Phenotype Read level embedding
Classifier clustering module

4

Testing
“Pseudo OTU”

matrix

Training
“Pseudo OTU”
matrix

Random Forest
Sample level
Classifier

Sample Level
Prediction

A.5 Overall training and testing experiment

Samples are split into train and test set. Training set is used to train a Read2Pheno
classifier and a sample-level predictor. The testing set is used to evaluate the

performance.
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A.6 Read2Pheno training process

All reads in the training set are labeled by the sample level label (the body site the
original sample was collected from). Then the reads are grouped together and shuffled
for training the Read2Pheno classifier.

R TETEE
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A.7 Hyperparameter search space table

The best set of parameters is {number of conv filters, N.: 256, number of units in
LSTM Nj: 64, dropout probability for Dropout Layer: 0, learning rate: 0.001} for read
level prediction on 5-fold cross validation of training data. The window size of
convolutional layers, W, is set to 9 and the number of hidden nodes in attention layer,
N, is set to 16 in the default setting.

Hyperparameter Value
number of conv filters, N, 128, 256
number of units in LSTM, N}, 64, 128
dropout probability for Dropout Layer | 0, 0.25
learning rate 0.001, 0.005

A.8 Training data size effect of Read2Pheno classifier

Sample-level testing accuracy for different training data size of Read2Pheno classifier.
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A.9 2D Visualization of Prevotella reads

2-D projection of embedded Prevotella read vectors. Red markers represent fecal reads,
green markers represent oral reads and black markers represent skin reads. The color of
a ‘x’ represents the predicted body site. If the predicted body site is the same as the
true body site, then ‘x’s are not visible. The body site prediction accuracy for
Prevotella visualization reads is 0.9131
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A.10 Oligotypes for Prevotella reads

Top 7 Oligotypes found in Prevotella reads. The number on the left hand side of the
figure shows the number of reads having a certain type of Oligotyping patterns (the
nucleotide combination in black positions)

RN NN NN RN RN NN NN RN RN RN RN NN RN RN RN RN RN RN NN R RN AR RRNRRRNNRRAAAE
,018 [l ATTCGAT b TACGGAAGGTCCHGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCIIGGAGATTAAGIIGTGTTGTGAAATGTAGAGC TCAACETCTGRARTG

©

,664 [] GCCCGCC b TACGGAAGGTCCEGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCEGGAGATTAAGEGTGTTGTGAAATGTAGABGC TCAACETCTGEARTG
3,328 [[] GCCTAAC b TACGGAAGGTCCBGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCEGGAGATTAAGEGTGTTGTGAAATGTAGATIGC TCAACRTCTGRARTG

o000
»~

2,934 [] GCCTACC b TACGGAAGGTCCBGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCEGGAGATTAAGEGTGTTGTGAAATGTAGATIGC TCAACRITCTGRBARTG
2,082 [l GTTCGAT b TACGGAAGGTCCBGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCIIGGAGATTAAGIIGTGTTGTGAAATGTAGARGC TCAACETCTGRCHTG

-

,027 [[] ACCGCTG b TACGGAAGGTCCHGGCGTTATCCGGATTTATTGGGT TTAAAGGGTGCGTAGGCEGTTTGATAAGEGTGCTGTGAAATATAGTEGC TCAACRTCTATICETG
464 [[] AGCTAAT b TACGGAAGGTCCRGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGTGTAGGCEGTTTGTTAAGEGTGTTGTGAAATTTAGATIGCTCAACTTTARCHTG
433 [l GCCGCCT b TACGGAAGGTCCBGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCHGTCTTATAAGEGTGTTGTGAAATGTCGGEGCTCAACRTGGGEARTG

413 [] 6CCTGCC b TACGGAAGGTCCBGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCHGGAGATTAAGEGTGTTGTGAAATGTAGATIGC TCAACBTCTGEARTG
290 [] GCTCGAT b TACGGAAGGTCCIBGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCEGGAGATTAAGIIGTGTTGTGAAATGTAGAGC TCAACETCTGRCHTG
[[] ACCTAAC b TACGGAAGGTCCIGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCEGGAGATTAAGEGTGTTGTGAAATGTAGATIGC TCAACTCTGARTG
110 [ ] ACCTAAT b TACGGAAGGTCCIGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCEGCCTCTTAAGEGTGTTGTGAAATGCGGGIGC TCAACRITCCGRCTITG
94 [ ACCGCCT b TACGGAAGGTCCRGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCEGTTTGGTAAGEGTGTTGTGAAATGTCGGEGC TCAACETGGGEATITG

000000
"
2
a

66 . GCCGCCC b TACGGAAGGTCCIGGCGTTATCCGGATTTATTGGGT TTAAAGGGAGCGTAGGCGCAGGTTAAGGTGTTGTGAAATGTAGGEGCTCAACTCTGEARTG

A.11 Oligotypes and body site association for Prevotella

Oligotypes and body site association [11] of Prevotella reads. Different 7-oligotypes
configurations can be found in different body sites. Fecal samples have a distinctive
configuration vs. oral and skin samples.

@ ATTCGAT GCCCGCC . @ ATTCGAT

Oral ® GTTCGAT Fecal GCCTAAC Skin GCTCGAT
ACCGCTG GCCTACC @ GTTCGAT

AGCTAAT ® GCCGCCT ACCGCTG

GCTCGAT GCCTGCC GCCCGCC

ACCTAAT ACCTAAC AGCTAAT

GCCTAAC = ® AccGeCT GCCTGCC

= @ Geegece GCCTACC

GCCTAAC

| ACCTAAT

A.12 2-D projection of embedded read vectors for Gevers
dataset

2-D projection of embedded read vectors from all visualization samples (A),
disease-positive samples (B), and disease-negative samples. ‘/AA’s are reads from the
control (health) samples and ‘o’s are reads from the Crohn’s disease samples. The
neural network is learning the 16S rRNA gene association to taxonomy and phenotype
without the access to taxonomy label of the reads.
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A.13 Case studies of Gevers dataset

To understand which features facilitate class separation, we inspect the read embedded
vectors for Ruminococcus and Blautia that separated well for phenotype. We also
demonstrate interpretability of the attention mechanism by inspecting their attention
weights.

A.14 Average attention weights of Enterobacter testing
sequences

Top: Average attention weights for all strains of Enterobacter without alignment;
Bottom: Attention weights with alignment. This figure shows that our model can
implicitly perform alignment to the sequence so that the attention was paid to similar
position after alignment.
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A.15 Secondary structure and attention weights of a
Pseudomonas aeruginosa sequence

The attention weights (top) on a real Pseudomonas aeruginosa sequence provided

by [64]. The positions that have an attention weight greater than the mean attention
weight cross the whole sequence is highlighted on the secondary structure figure
(bottom).

Attention weights for a Pseudomenas aeruginosa sequence

0.07

0.06

0.05

0.04

0.03

attention weights

0.02

0.01

0 200 400 00 800 1000 1200 1400 1600
position

Secondary Structure: small subunit ribosomal RNA

Ao
o= ¢
8¢
8z¢
uASs Ut Gy O o
JA A ua v Reaaad %cuvamuccuuactUrcd acey
Auac AUAGGAAGSAAC! 6 6co, 6 1 1. e i c
A AT ST y-qUOCUCE  4GGGGU AGGAAUC,_ 66 GUG,C
6600, | UGUCCUUUAAG0, _, 8 COd Az 2 g & e e
8¢ i §_a R u
8¢ 0y b8 A
§2k 828 a-c
gzt Ao i=1 i
876 y u-ar G-¢
8.0 %2 e [ .=
533 - Wl §78 ¢
accd £79
§-f 1= Sox R S
€-5y 7% convuaal—A Ca-y A
szX s » 21918 428
3= &g aaccuuucanal/,Saga u8ZC
.:‘ s qe-u oy %, 928
o - o’ o
Ac A A a=¢ N
A ccuaaas*Cuacauccas ol acoewes ¢ 8% Y X
STEURITe VOO SIS £ 4zt cuy &of ve - o
Ucosacceg guoeuAcauy dllSaACUUG, % $Z8co Cn >
§ 5 : A v A0 §z¢
s SNV cuy U=
] uS. e Locuu st
& N Iy 65
A . 3 ¢
v &N
aeancursing N 0ot
£ TN ANean s AN
) AgaNdeacevs, S\ ot e se GRS
Eol™ W A\ £ a=¢ el u
§z¢ “AEL/,/C@ \ Acaat $7¢ GG, cOaC
az¢ \ y-e AN, U
e e N\ 8d £ \ocCunh
\ % \ §z¢ A &
%a Gacca, \ £5§ o8
Lot g \ 828ka, GUENcAR AR
cue, uuaan RN
Mrchan o o
You % G0 A AGCON gk S
e /'$AAuya accaacccfifAcA A\ uA °
cucasuad, T UITATEITITIGATT e 3
MeAQha - Y acueuuccacag] v v, © a
O prevtuet Wt R e, o
Ny g X 4, % Cug-cg
ot thee A c—l , A A S
H ) ¢ I N |
00004 8 an oy Ay H
K ¢ e=c" g bt Sel
o H &%, 0 8t%
QU] A c e € c
Aaccua uce Ao\ YA 22 uaoccaunas, oA R
ATIee aiin 6 L O NN 67 ¢y
ateest Aedma 5 % & oucascavccd S8 AT,
3 - g et &7
H ¢zg ¢ can
8-c $s8 4
] g8 &
e atc ¢
88, §7% ¢
c e H §
%%, c=g sy &
U/ /S gache=c P |
/e A 275k
co o 8y
o1 N u sy
Yo, AAGayd 25 con <y IR 525
£Sensh, A \ ¢zt
A R ]
N ATE PTA & Pseudomonas aeruginosa
00~ Cve e A ¢©
A ) 'a-c (AE004501)
o 4 yss
g ot 478 1.cellular organisms 2.Bacteria 3.Proteobacteria
Ay N, - -6 T
RO
. tﬁu R 4.gamma subdivision
G gk asc
RN 1 = 5.Pseudomonaceae/Moraxellaceae group
Al 8-a R
XY 6o P -F 7.P
e A-yr ¢ -
A0 sy 1] April 2001
acSa gV v [y o A
\QGG An-c‘
s 228
A £z
g7
§zX
4 Auy
6Ga coucacS  Yooac® Acauccae,
RIRIR IR
UGy GeecUs  £acc  G6COAGCH
haeees 9% ¥
200 AR
%-f
8zt
§=¢
b
A

Citation and related information available at http:/www.rna.icmb.utexas.edu

39/40


https://doi.org/10.1101/2020.10.12.336271
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.12.336271; this version posted October 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A.16 Mean attention weights and multiple sequence alignment
results aligned for Pseudomonas and Enterobacter

A.17 Attention weights on variable regions per genus
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