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Abstract

Recurrent neural networks (RNNs) with memory (e.g. LSTMs) and attention
mechanisms are widely used in natural language processing because they can capture
short and long term sequential information for diverse tasks. We propose an integrated
deep learning model for microbial DNA sequence data, which exploits convolutional
networks, recurrent neural networks, and attention mechanisms to perform
sample-associated attribute prediction—phenotype prediction—and extract interesting
features, such as informative taxa and predictive k-mer context. In this paper, we
develop this novel deep learning approach and evaluate its application to amplicon
sequences. We focus on typically short DNA reads of 16s ribosomal RNA (rRNA)
marker genes, which identify the heterogeneity of a microbial community sample. Our
deep learning approach enables sample-level attribute and taxonomic prediction, with
the aim of aiding biological research and supporting medical diagnosis. We demonstrate
that our implementation of a novel attention-based deep network architecture,
Read2Pheno, achieves read-level phenotypic prediction and, in turn, that aggregating
read-level information can robustly predict microbial community properties, host
phenotype, and taxonomic classification, with performance comparable to conventional
approaches. Most importantly, as a further result of the training process, the network
architecture will encode sequences (reads) into dense, meaningful representations:
learned embedded vectors output on the intermediate layer of the network model, which
can provide biological insight when visualized. Finally, we demonstrate that a model
with an attention layer can automatically identify informative regions in
sequences/reads which are particularly informative for classification tasks. An
implementation of the attention-based deep learning network is available at
https://github.com/EESI/sequence_attention.

Introduction 1

Advances in DNA sequencing are rapidly producing complex microbiome datasets in 2

fields ranging from human health to environmental studies [1]. Large-scale microbial 3

projects provide rich information, enabling the prediction of sample-level traits (i.e., 4
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phenotypes), aiding in biological discovery, and supporting medical diagnosis. A typical 5

microbiome study may contain hundreds to thousands of samples. In turn, each sample 6

contains thousands of reads depending on the sequence depth. These reads are 7

fragments of DNA/RNA material extracted from microbes residing in the environment 8

where the sample was collected. Hence, by way of example, an environmental sample can 9

be sequenced via 16S ribosomal RNA amplicon technology, to provide a comprehensive 10

taxonomic survey of an environment’s or subject’s microbial community [2, 3]. Recently, 11

the decrease in cost of next-generation high throughput sequencing technology has 12

further allowed the use of metagenomic approaches, such as shotgot sequencing to 13

generate a dataset that reflects both taxonomy and gene sequences [3–5]. 14

A major focus of microbiome research has been, and continues to be, the use of 16s 15

rRNA amplicon sequencing surveys to determine “Who is there?” in a host or 16

environmental sample. The answer to ”Who is there?” may, in turn, be used to predict 17

host phenotype for clinical diagnoses or infer taxa-phenotype association for basic 18

biology research [6–10]. In the context of our work, we define “phenoytpe” as an overall 19

trait at the environmental level or habitat that the microbiome sample is isolated 20

from [11,12], thereby incorporating the emergent function of the microbiome (a.k.a. 21

microbiome phenotypes) [13–18]. For example, the expansive definition of “phenotype” 22

in the microbiome context can include the preference of a certain microbial community 23

for a particular environmental niche or body site [19]. Thus, the microbiome may be 24

shaped by the environment. 25

16S rRNA marker gene-based phenotype prediction 26

Analyzing ”Who is there?” through 16s rRNA amplicon sequencing is relatively 27

affordable and easy to implement in the field—but phenotype prediction from rRNA 28

sequence is a major challenge. Ribosomal sequence does not itself contain functional 29

information, unlike, e.g., more costly and complex metagenomic shotgun sequencing 30

data [9, 20]). Building machine learning phenotype classifiers usually starts with 31

constructing a microbial abundance table, such as an Operational Taxonomic Unit 32

(OTU) table, an Amplicon Sequence Variant (ASV) table, or a k-mer frequency table 33

(i.e., table of the frequencies of k-length nucleotide strings within the collection of reads 34

in a sample) [8, 9]. Researchers then train a classifier to distinguish phenotypes by 35

learning from the taxon abundance of sequenced samples in a training data set. For 36

example, a classifier may be constructed to identify a sample as being from the gut from 37

a patient diagnosed with a disease. In this example, if a certain combination of some 38

taxa in a novel sample are more abundant than a threshold previously determined based 39

on a training data set of gut samples, the novel sample will be identified as 40

disease-positive. 41

By analyzing the OTU/ASV abundance table, therefore, researchers can discover 42

underlying associations between certain taxa or groups of taxa and phenotype. For 43

example, in Gevers et al. [7], samples were collected from a) patients with Crohn’s 44

disease and b) control groups. Gevers et al. discovered some bacterial taxa which were 45

solely abundant in disease groups, along with some taxa which were eliminated by 46

infection of the disease. These findings are helpful in disease diagnoses and treatment. 47

A systematic survey of 18 classification methods and 5 feature selection methods were 48

assessed to classify phenotypes [21]. To do so, the authors transformed the 16S rRNA 49

sequences to OTU tables, which in turn served as the input to the algorithms under 50

evaluation. The authors showed that feature selection can improve phenotype prediction 51

performance for many classification algorithms, and that Random Forests with 52

optimized parameters are nominally the best performing classifier. Another phenotype 53

prediction method that has been proposed and evaluated is the RoDEO normalization 54

(Robust Differential Expression Operator) based classifier [8]. In [8], the authors 55
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compared various normalization methods for OTU data and showed that RoDEO 56

processed count data with linear kernel support vector machines produced the best 57

performance on multiple experimental datasets. The authors further showed that using 58

a small subset of OTUs sometimes gave better accuracy than using all OTUs. 59

The construction of OTU/ASV tables, however, often involves denoising, sequence 60

alignment, and taxonomic classification, and thus can lead to information loss from the 61

true information contained in the raw nucleotide reads. By grouping sequences to 62

limited taxonomic labels, it becomes difficult to quantify the genotype-to-phenotype 63

relationship. Of particular concern is the omission of nucleotide structural information 64

from OTU mapping, where the 97% identity threshold conventionally used for OTU 65

mapping smooths over valuable nucleotide variation. This is better addressed through 66

the more exact ASV identification—but rarely is the nucleotide level information 67

examined past the mapping step. Alternatively, a k-mer representation of amplicon 68

sequences has been proposed to predict phenotype, which is shown can outperform 69

traditional OTU representation [9]. Since a k-mer-based method is alignment free and 70

reference free, it would cost less computationally than OTU-based methods. Because 71

k-mer representations cut reads into smaller pieces, methods based on k-mers will lose 72

sequential information. As such, k-mer analysis is subject to the length of the k-mers 73

and does not preserve the nucleotide context/sequential-order. Some local nucleotide 74

variation may be able to be identified; however, the long-range nucleotide sequential 75

information is completely lost. In sum, currently available methods are unable to easily 76

and robustly connect nucleotide changes on the read level back to the phenotype 77

prediction and thereby reveal which nucleotide features are specifically relevant to the 78

classification. 79

Deep neural networks and their application in bioinformatics 80

Recent advances in supervised deep learning are further able to leverage a huge volume 81

of different kinds of data. Convolutional neural networks (CNNs), which may be 82

interpreted by saliency maps [22], have been vital to image recognition. Model 83

interpretability, in general, has been a research direction of particular interest in the 84

deep learning field [23–25]. Successes in these other areas have inspired applications of 85

deep learning to bioinformatics as well [26]. In addition, deep learning approaches can 86

learn hierarchical representations of metagenomic data that standard classification 87

methods do not allow [27]. Both CNNs and RNNs have been applied to areas such as 88

transcription factor binding site classification [28,29], SNP calling [30,31], microbial 89

taxonomic classification [32] and DNA sequence function prediction and gene 90

inference [33,34]. The authors explore deep learning approaches for predicting 91

environments and host phenotype using k-mer-based representation of shallow 92

subsamples in [9]. Lo et al. proposed deep learning approaches to learn microbial count 93

data (e.g., OTU table) for host phenotypes prediction [35]. The microbial count data 94

can be formatted into an “image” format to be processed by a CNN model [36]. The 95

CNN model has also been used to learn phylogenetic structure of a metagenomic sample 96

to predict the host phenotype [37]. In this work, a 2D matrix is used to represent the 97

phylogenetic tree of microbial taxa (with relative abundance) in a sample, and a CNN 98

model is designed to learn from such data. Woloszynek et al. proposed an unsupervised 99

method to embed 16S rRNA sequences to meaningful numerical vectors to facilitate the 100

down-stream analysis and visualization [38]. Many models rely on extracting “features” 101

(for instance, taxonomic composition or functional profiles) from the sequence data [39]. 102
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Exploring connections between genetic features and biological 103

classes 104

In addition to making predictions, machine learning models can reveal knowledge about 105

domain relationships contained in data, often referred to as interpretations [40]. In the 106

context of sequence classification tasks, i.e., microbial survey data based phenotype 107

prediction, once a predictive model is built, the researchers can further identify sequence 108

features relevant to classifications, i.e., occurring taxa and gnomic content related to a 109

certain disease. There are substantial research attempts to identify label associated 110

genetic content. A complementary approach is supervised computational method, as a 111

means of associating genetic content with known labels, i.e., taxa. “Oligotyping” has 112

been proposed as a way to identify subtypes of 16S rRNA sequence variation, based on 113

distinguishing sequence variants by subsets of several nucleotides within the sequence, 114

i.e., oligomers. Specifically, Oligotyping is a supervised computational method that 115

identifies those nucleotide positions that represent information-rich variation [41]. 116

Oligotyping requires information about the taxonomic classification of the sequence via 117

OTU clustering or supervised methods. Then, the method is applied to 118

taxonomical/OTU groups of interest. Oligotyping can be an efficient way to identify 119

meaningful subpopulations of a single species and informative nucleotides. However, 120

preprocessing steps are still needed (e.g., OTU clustering or multiple sequence 121

alignment) to find closely related sequences. 122

Another proposed method, “PhenotypeSeeker” [42], is a statistics-based framework 123

to find genotype-phenotype associations. Predictive k-mers are identified by a 124

regression model, and the statistical test further quantifies their relative importance. 125

However, the authors only built species-specific models trained for a closely related 126

group of bacterial isolates and their associated phenotypes. Visualization methods are 127

developed for DNA/RNA binding sites prediction models as mentioned in Section Deep 128

neural networks and their application in bioinformatics [28,29,43,44] to reveal 129

predictive genomic content. Alipanahi et al. propose to interpret the model and 130

visualize informative single nucleotide polymorphisms (SNPs) by manually altering 131

nucleotides in the input reads and comparing the resulting new prediction with the 132

original prediction of the unaltered input [43]. In Deep Motif, the authors use Saliency 133

Maps [22,25] to interpret the model and visualize informative genomic content [28]. 134

Better interpretability: Attention mechanisms 135

Attention mechanisms have become more widely applied in the natural language 136

processing (NLP) and image recognition fields to improve the interpretability of deep 137

learning models [45–48]. For example, it has been shown that an attention-based 138

Bi-LSTM (Bi-directional long short term memory) RNN model can successfully capture 139

the most important semantic information in a sentence and outperform most existing 140

competing approaches [47]. A hierarchical attention network can also improve document 141

level classification [46] by selecting qualitatively informative words and sentences. 142

Informative content may be visualized by looking at the output of the attention layers 143

of the network model. The use of deep learning with attention mechanisms has also 144

been suggested for the field of bioinformatics. Deming et al. [29] proposed a method for 145

simultaneously learning general genomic patterns and identifies the sequence motifs that 146

contribute most to predicting functional genomic outcomes. While they found a marked 147

gain in performance over previous architectures, their model was not used for phenotype 148

prediction. 149

In this paper, we exploit CNNs, RNNs, and attention mechanisms for 150

phenotype/taxonomic prediction and propose a Read2Pheno classifier to predict 151

phenotype from 16S rRNA reads and, thereby, explore and visualize informative 152
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nucleotide structure and taxa. The sample-to-phenotype prediction can then be inferred 153

by a sample-level predictor which aggregates the abstraction of all reads from the 154

Read2Pheno model1. We show that the model trained with read level information can 155

achieve similar sample-to-phenotype predictions compared with conventional methods. 156

We further provide a visualization of the embedded vectors, which is a representation of 157

the information that the network is learning. We use attention weights to identify and 158

visualize the nucleotides associated with phenotype and/or taxonomy, and compare the 159

highlighted informative regions against a base-line entropy method and Oligotyping [41]. 160

We show the efficacy of our model with the American Gut microbiome dataset [49] 161

(http://americangut.org/), Gevers et al.’s Crohn’s disease dataset [7] and SILVA 16S 162

rRNA dataset [50,51] and explore interesting visualizations and features generated by 163

the model. The experimental results show that the performance of our model is 164

comparable to current methods and our models can provide further interpretation and 165

visualization. 166

Methods 167

Our proposed model consists of two parts: the Read2Pheno read-level classifier and the 168

sample-level predictor. We first train a read-level classifier using an attention-based 169

deep neural network to predict DNA/RNA reads to the sample level labels the reads 170

associated with. For example, if the samples are labeled with collected body sites, the 171

model will be trained to learn the original body site that the reads were collected from. 172

Then, a sample-level prediction can be made by three different ways: 1) tally a majority 173

vote of all the read prediction scores in the sample of interest to obtain a final 174

prediction; 2) use the output of the intermediate layer to obtain a read embedding (see 175

Figure 1 for details) and average read embeddings from a sample to gain an overall 176

sample-level embedding that a classifier can train on to predict a sample-level label; 3) 177

apply clustering on read embeddings of training data and assign reads per sample to 178

those clusters to form a “pseudo” OTU table [38]. Then a classifier can be trained for 179

phenotype prediction. In sum, our Read2Pheno read-level classifier can capture read 180

level model and provide biological insights by read embedding ordination and attention 181

weights visualization and the sample-level predictor can aggregate information learned 182

in read-level and make sample-level classifications to validate our overall framework. 183

Read2Pheno Classifier 184

The Read2Pheno classifier is a hybrid convolutional and recurrent deep neural network 185

with attention. Figure 1 shows a diagram of the classifier. Sequencing data are one-hot 186

coded according to the map shown in Appendix One-hot coding map. Then the array 187

representation of a read is fed into several initial layers of convolutional blocks (inspired 188

by the scheme in [29]). The result is a embedding of the read, a Nc ˆ T dimensional 189

matrix, by learning local k-mer patterns, where Nc is the number of output channels in 190

convolutional blocks and T is the length of input DNA reads. A Bi-directional Long 191

Short Term Memory (Bi-LSTM) model is then applied to the data to learn the 192

longitude dependency of nucleotides. The returned sequence is then processed and 193

normalized by an attention layer to get an attention vector using the soft attention 194

mechanism, as described in [47,52]. The output of Bi-LSTM layer in our model is a 195

Nh ˆ T dimensional matrix where Nh is the number of hidden nodes in Bi-LSTM layer 196

and T is the length of input DNA reads. Each base position (time-step) in the input 197

corresponds to a Nh dimensional vector (hidden states at this position). The dense 198

1A python implementation of the proposed model is available at https://github.com/EESI/

sequence_attention.

5/40

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.12.336271doi: bioRxiv preprint 

http://americangut.org/
https://github.com/EESI/sequence_attention
https://github.com/EESI/sequence_attention
https://doi.org/10.1101/2020.10.12.336271
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1. Read2Pheno classifier architecture: The input is a one-hot coded 16S rRNA
sequence with length T . The input is fed to a few 1-dimentional convolutional blocks
with window size of W and the number of output channels of Nc. The resultant output
is a Nc ˆ T dimensional matrix which is then fed to a Bidirectional LSTM layer with
the number of hidden nodes of Nh. Na is the number of hidden nodes used to compute
attention weights and Ny is the total number of phenotypes (number of classes) to be
predicted. There are two informative intermediate layer outputs (attention weights and
read embedding vectors) which are labeled by blue tags. They are used in the analysis
described in this paper.

attention layer applies to the hidden states of every base position (time-step). The 199

dense layer thereby learns the importance of hidden states at each position and return a 200

small value if the hidden states of this position do not make an important contribution 201

to the model’s final prediction, and, conversely, a large value if the model relies on the 202

hidden states at this position in making the final prediction. The output of the dense 203

layer is a vector of length T . Then, the output is normalized by a softmax function to 204

produce the attention vector [52]. The output of this layer naturally indicates the 205

regions in the sequence that the model pays attention to. While the attention weights 206

are not learned from specific nucleotides but from high level features from 9-mers and 207

their sequential information, as shown in Figure 1, the attention interpretation may be 208

considered to be an approximation of the informative nucleotides of the 16S rRNA gene. 209

The final embedding of the read is a weighted sum of all the embeddings across the 210

sequence, where the weights are the elements of the attention vector. The goal of this 211

layer is to suppress the regions that are less relevant to prediction and focus on 212

informative regions. Finally, a dense layer with softmax activation function is applied 213

to the read embedding vector to classify it into one of Ny labels. The hyperparameter 214

selection process is described in Section Model selection on American Gut dataset. 215

Sample-level predictor 216

In this paper, we propose three different ways to perform sample-level prediction. The 217

most intuitive way is performing a majority vote. The sample-level predictor counts all 218

the votes, i.e., the resulting Read2Pheno classifications, from all the reads in a query 219

sample and labeling the sample with the overall majority vote. The majority vote is a 220

baseline method intended to illustrate that the Read2Pheno model is learning the 221

sample-associated phenotypic labels for each read. We compare the majority vote 222

baseline to proposed embedding-based approaches further described below. 223

The intermediate layer of our model provides a concise numerical representation of 224

the input reads, which we can exploit in sample-level prediction. We propose to use two 225
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embedding based approaches: sample-level embedding method and “Pseudo OTU” 226

method [38]. The sample-level embedding method forms a sample-level vector 227

representation by averaging all read-level embeddings in a query sample. Then, a 228

classifier, such as Random Forest, can be trained to learn the sample-phenotype 229

association. For the “pseudo OTU” method as described by Woloszynek et al. [38], first 230

read-level embedding vectors are clustered via an unsupervised algorithm such as 231

k-means to form k clusters that are “pseudo OTUs” (groupings of related reads). Then, 232

we can assign each query sample’s reads to those “pseudo OTUs” based on distance. A 233

classifier, such as Random Forest, can then be trained to make sample-level predictions 234

on a “pseudo OTU” table made up of the “pseudo OTU” abundance, as defined above, 235

in all samples. Both embedding-based methods learn the sample phenotype by training 236

on each individual read (“read-level”) and on all reads (“sample-level”) rather than 237

read-level-only learning, as for baseline majority vote. 238

Majority vote 239

The Read2Pheno classifier produces a vector of likelihood scores which, given a read, 240

sum to one across all phenotype classes. To get the sample-level prediction, all reads 241

from a sample of interest are classified by Read2Pheno model, and the resultant scores 242

are then aggregated by the sample-level predictor. Using body site prediction as an 243

example, there are 5 different body site classes: feces, tongue, skin of hand, skin of head 244

and nostril. We show the diagram of our sample-level predictor in Appendix 245

Sample-level predictor: Majority vote method. Given a sample of interest, the reads 246

associated with this sample are first predicted by Read2Pheno classifier. Notice that 247

some species can be found in multiple body sites. Therefore, performing a hard call on 248

which body sites a read originates from can be misleading. To alleviate this problem, if 249

needed, the sample-level predictor contains a read caller function that can assign one 250

read to multiple body sites by applying a threshold to the output of Read2Pheno for the 251

read. In our implementation, if the likelihood score of the read from a body site is 252

greater than chance ( 1
N , where N is the number of body sites in the training data), the 253

vote count of that particular body site will increment by 1 (see the “Read Abundance” 254

block in Appendix Sample-level predictor: Majority vote method). For example, 255

suppose there are three target body sites: skin (i.e., dermal samples), gut (i.e., fecal 256

samples), and tongue (i.e., oral samples). If a read were predicted to be from gut, skin 257

and oral samples with scores of 0.51, 0.43 and 0.06 respectively, both the vote counts of 258

feces class and skin class would increment by 1 (since the likelihood of these two body 259

sites are greater than 1
3 ). Finally, once all reads have been counted, the argmax of vote 260

count vector is taken to predict the sample-level body site. 261

Sample-level embedding 262

The attention layer of the Read2Pheno classifier produces a Nh-dimensional embedded 263

vector (see Figure 1) that is a meaningful numerical representation of each 16S rRNA 264

read. For sample-level classification, we first use the trained Read2Pheno model to 265

encode all reads per sample into the Nh-dimensional vectors. Then, we average the read 266

vectors to form a sample-level embedding. We can then train a classifier (e.g. Random 267

Forest) on the sample-level embeddings to predict phenotype. We show the training and 268

testing process of such method in Appendix Sample-level predictor: Sample-level 269

embedding. 270
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“Pseudo OTU” table 271

While both embedding based sample prediction methods begin with read-level 272

embeddings of the training data, they differ in sample-level training. Instead of taking 273

the average of the trained read embeddings, we use a k-means algorithm to cluster the 274

read embeddings of training data into 1000 clusters [38]. Then, all reads in each query 275

sample can be assigned to those clusters. Effectively, the clusters represent related 276

sequences, which are called “Pseudo OTUs”. We compute the number of reads assigned 277

to each pseudo OTU for each sample to create a “Pseudo OTU” table: a matrix of 278

pseudo OTUs vs. samples. Like regular OTU tables, the Pseudo OTU table can train a 279

classifier, such as Random Forest, for sample-level phenotype prediction. A diagram of 280

this process is available in Appendix Sample-level predictor: Pseudo-OTU. 281

Data Preparation for Model Evaluation 282

American Gut Project (AGP) dataset 283

The AGP dataset used for model evaluation in this paper is a subset of data from the 284

American Gut Project [49]. As of May 2017, the AGP included microbial sequence data 285

from in total 15,096 samples from 11,336 human participants and that number 286

continues to grow as the project is ongoing [49]. We focus on samples from five major 287

body sites (Ny “ 5): feces, tongue, skin of hand, skin of head and nostril. As mentioned 288

in American Gut Project’s documentation, some bloomed organisms were contained in 289

samples analyzed early in the American Gut Project because of increased shipping time 290

and delay between when samples were collected and when they were put on ice. As a 291

result, bloom sequences should be removed in preprocessing process by American Gut 292

Project. In this paper, we use the latest filtered sequences and OTU table deposited in 293

ftp://ftp.microbio.me/AmericanGut/latest as of 2018/12. All reads have been 294

trimmed to 100 base pairs, so that T “ 100 in Figure 1. 295

Gevers dataset 296

The Gevers dataset used for model evaluation in this paper is a subset of an 297

inflammatory bowel disease (IBD) dataset [7] (NCBI SRA index: PRJNA237362 in 298

NBCI). Sample metadata label them as being IBD or Non-IBD (Ny “ 2). Here, we refer 299

to IBD samples as “CD” (Crohn’s Disease), and the Non-IBD ones as “Not IBD” 300

(disease-negative). We merge paired reads using QIIME [53] and trim them to 160 base 301

pairs (i.e., with the first 10 removed, the following 160 base pairs kept and the rest 302

discarded), so that T “ 160 in Figure 1. 303

Experimental setup for American Gut Project dataset and Gevers dataset 304

First, we filter out samples with less than 10,000 reads. Then, we randomly select 161 305

samples from American Gut Project dataset and 221 samples for Gevers dataset per 306

class as our experimental dataset to balance the class distribution (resulting in total 805 307

samples in AGP experimental dataset and 442 samples in the Gevers experimental 308

dataset). The number of samples are selected based on the least number of sample per 309

class after filtering for each dataset. Next, we randomly select a certain number of 310

samples per class for training and leave out the rest for testing. For the AGP dataset, 311

10, 80 and 150 samples per class are randomly selected for training (resulting in 50, 400 312

and 750 samples total respectively). For the Gevers dataset, 20, 80 and 200 samples per 313

class are randomly selected as training data (resulting in 40, 160 and 400 samples total 314

respectively). 315
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For the AGP dataset-based experiment used for attention interpretation, we 316

randomly select 10 samples per class for training, resulting, in total, 50 samples and 317

1,503,639 reads for training. The rest of the samples form the testing dataset. We 318

randomly select 10 samples per class as the candidate visualization set. For the Gevers 319

dataset-based experiment used for attention interpretation, we select 40 samples (20 320

from the IBD class and 20 from non-IBD) by random and collect 1,678,464 reads for 321

training (around 42,000 reads per sample). The remaining samples (442 - # of training) 322

are used for testing. We again randomly select 10 samples per class from the testing 323

dataset as the candidate visualization set. After we select the candidate visualization 324

set for both attention interpretation experiments, we use the QIIME [53] 325

implementation of the Ribosomal Database Project (RDP) [54] taxonomic classification 326

to assign the genus-level labels to reads in the candidate visualization set. Then, reads 327

with less than a 80% RDP confidence score on genus level are removed from the 328

visualization set. Finally, in order to efficiently extract intermediate layer outputs and 329

generate visualizations, an arbitrary subset, 100,000 reads from the qualified 330

visualization set, are randomly sampled for the final visualization and interpretation. 331

All reads in the final visualization set have a genus-level label and phenotype (i.e., body 332

site or disease diagnosis) label. For the AGP visualization set, we further merge the 333

skin-associated label, namely, skin of head, skin of hand and nostril into one single skin 334

class to simplify the visualization. As a result, the visualization set reflects 3 body site 335

classifications instead of 5. We use the experimental setup for American Gut dataset as 336

an example to show the overall training and testing experiment in Appendix Overall 337

training and testing experiment. 338

SILVA dataset and experimental setup 339

The SILVA 16S taxonomic QIIME-compatible dataset is used to construct our 340

experimental dataset [50,51]. There are 369,953 sequences total in the original dataset. 341

Among those sequences, there are 268,225 which have a genus-level label, and those 342

sequences come from 6,618 genera. We select the genera that have over 100 343

representative sequences and collected all sequences from these genera to form our 344

experimental dataset. We thereby include in total 204,789 sequences from Ny “ 495 345

genera in our experimental dataset. Our dataset covers around 76.35% sequences and 346

7.48% of the genera in original dataset. Sequences are first one-hot coded according to 347

the map shown in Appendix One-hot coding map. Then, we right pad the sequences 348

with zero vectors to the nearest hundred and grouped sequences based on the padded 349

length (resulting 11 groups that have 100bp increment size in the range of 350

T “ 900 Ñ 1900). For example, a sequence of length 1001 will be padded with 99 zero 351

vectors to a total length of 1100bp. Then, those sequences are stored in the same matrix 352

per length group. In this way, model can be trained by sequences with similar length at 353

a time to improve the training efficiency. We then randomly split the dataset into 80% 354

sequences as training and 20% as testing. 355

The Read2Pheno Training Process 356

We train the Read2Pheno model with reads from training dataset, preprocessed and 357

selected as described above, labeling reads by sample phenotype. Since the Read2Pheno 358

model should be trained and optimized for read level prediction, sample-level predictors 359

are trained separately after the Read2Pheno model training is completed. For each 360

testing sample, all reads are classified by the Read2Pheno model. We then aggregate the 361

read level information encoded by the Read2Pheno model using methods described in 362

Section Sample-level predictor to make sample-level predictions. We show a schematic 363

of the training process in Appendix Read2Pheno training process. 364
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We randomly sample an equal number of samples from each class to form the 365

training set. Then, we label all reads associated with those samples by their 366

sample-level label and shuffled. All reads are one-hot coded according to the coding 367

map in Appendix One-hot coding map. Then, the data is fed to the Read2Pheno model 368

for training. The reason we train our neural network in read level instead of sample 369

level is two-fold: 1) our read level model can highlight informative regions in each input 370

sequence; 2) there are relative less number of examples to train a complex neural 371

network model in sample level than in read level. As discussed in Section Model 372

selection on American Gut dataset, we further show that the read level model trained 373

with a dozen of samples performs comparably to read level model trained with hundreds 374

of samples. 375

Our deep learning model is implemented in Keras (version 2.2.2) with Tensorflow 376

(version 1.9.0) backend. If the number of classes is greater than 2, then categorical 377

cross-entropy can be used as the loss function. Otherwise, binary cross-entropy is the 378

recommended loss function. Adam optimization with default setting and a learning rate 379

of 0.001 is used to train the model. The model was trained and evaluated on the 380

Extreme Science and Engineering Discovery Environment (XSEDE) [55] for 10 epochs. 381

We also made a python module of the Read2Pheno model in Github 382

https://github.com/EESI/sequence_attention. 383

Model Interpretation and Read Visualization 384

The Read2Pheno model has an LSTM layer; consequently, sequential information are 385

encoded and circulated in hidden states. The intermediate output, labeled as “Read 386

embedding” in Figure 1 is a Nh-dimensional vector. This read embedding vector is an 387

average of hidden states across all bases weighted by the attention weights, labeled as 388

“Attention Weights” in Figure 1. The Nh-dimensional embedding vector can be 389

considered as a numerical representation of the input DNA/RNA read. Therefore, 390

similar reads should be embedded to vectors that are close to each other in 391

Nh-dimensional space, whereas differing reads should be embedded far away from each 392

other. This type of relationship may be shown by plotting the Nh-dimensional vector 393

representations of the reads in a 2-dimensional space. Accordingly, we use Principle 394

Component Analysis (PCA) to reduce the dimensionality of all reads in visualization set 395

to 2-dimension by projecting them onto the top 2 principle components that explain the 396

most variation. 397

Inspired by “WebLogo” [56, 57], we also use a “sequence logo” to visualize significant 398

features contained by the sequence. The reads from same genus are similar to each 399

other, with mutations at certain positions. We thus group the visualization reads from 400

the same genus together for further exploratory visualization. In this study, we use 401

QIIME [53] implementation of RDP [54] taxonomic classification method to predict the 402

genus level label for our visualization reads. 403

We calculate the overall Shannon Entropy of a group of reads (reads from a genus) 404

by: 405

Hplq “ ´Σbppb, lq ¨ log2pppb, lqq (1)

where b is the nucleotide base, b P tA, T,G,Cu, l is the position of the sequence, 406

l P p0, length(seq)s. ppb, lq can be estimated by fpb, lq, the normalized nucleotide 407

frequency of base b at position l. The sequence logo for a given phenotype class can be 408

calculated by Equation 2 where c is the phenotype label and fcpb, lq is the normalized 409

nucleotide frequency of base b at position l among reads from phenotype c. 410

Scpb, lq “ fcpb, lq ¨Hplq (2)
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Positions with high nucleotide variance will have high entropy and therefore the 411

sequence logo is a good measure of “importance” (variation) of nucleotides, which we 412

use as our baseline importance measure. 413

As presented in Figure 1, a dense attention layer learns to predict the importance of 414

bases by hidden states output from Bi-LSTM layer. The output of the attention layer, 415

“Attention Weights”, is a vector of input read length, T , wherein each value represents 416

the importance of the hidden state corresponding to said position. This vector will 417

indicate what region of the input sequence the model has been found to be most 418

informative. Therefore, we use the attention weights for the input reads as the model’s 419

predicted importance measure. Among reads from the same genus, the attention 420

weights for reads from the same phenotype are averaged. The mean attention weight 421

vector highlights the informative sequence regions for a phenotype for this genus. The 422

attention measure is thus defined by Equation 3. 423

Apc, lq “ attmeanpc, lq (3)

where attmeanpc, lq is the mean attention weight of reads from a phenotype c at position 424

l. 425

Results 426

As described in detail below, we analyzed three distinct 16s rRNA amplicon sequence 427

data sets: 1) data provided by the American Gut Project (AGP), in which samples are 428

labeled by body site origin and thereby reflect microbiome phenotype (i.e., properties of 429

a microbial community); 2) data published by Gevers et al. (Gevers), which is labeled 430

by disease diagnosis, i.e., host phenotype; and 3) the SILVA rRNA database, large 431

corpus of comprehensive and quality checked 16s rRNA sequence dataset with 432

taxonomic labels. Our goals for each type of data set were to evaluate 1) the 433

performance of attention-based deep learning models at predicting phenotype and 434

taxonomy as compared to existing baseline methods, and 2) interpretability gains 435

afforded by intermediate layer outputs of attention-based deep neural networks through 436

visualizing the ordination of sequence embedding vectors and informative regions of 437

sequences highlighted by attention weights. 438

Microbiome Phenotype (Body Site) Prediction based on 439

American Gut Project (AGP) Data 440

We evaluated our proposed Read2Pheno attention model on a subset of the American 441

Gut Project (AGP) dataset. The AGP dataset contains sequencing data from the 442

largest crowd-sourced citizen science project to date [49]. Our experimental dataset 443

contains 805 samples obtained from five body sites: feces, tongue, skin of hand, skin of 444

head, and nostril. 445

Model selection on American Gut dataset 446

We use the training data of 50 samples to perform a 5-fold cross validation to fine tune 447

the hyperparameters of our model. The hyperparameter search space can be found in 448

Appendix Hyperparameter search space table. The 5-fold cross validation yielded 449

Nc “ 256 filters in CNN layers, Nh “ 64 units in LSTM layer, dropout rate of 0, and 450

learning rate of 0.001 as the hyperparameters as producing the best read level 451

classification accuracy on the training dataset. Accordingly, we incorporated these 452

hyperparameters in our model. We also performed the same hyperparameter sweep 453

process on other models with related architectures: the Bi-LSTM model, 454
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Attention-based Bi-LSTM model, CNN model, Attention-based CNN model, 455

CNN-Bi-LSTM model and Attention-based CNN-Bi-LSTM model. We use the same 456

architecture for CNN and Bi-LSTM layers in the models described in Figure 1. Table 1 457

shows the best set of hyperparameters for all 6 models. In Table 1, the CNN column 458

shows the optimal number of convolutional filters, Nc. The RNN column shows the 459

optimal number of hidden nodes in Bi-LSTM, Nh. DP refers to the dropout rate 460

(probability of training to a particular hidden node in the layer) and LR is the learning 461

rate (amount weights are updated in each step) used in Adam optimizer. From the 462

table, classifiers constructed with only a Bi-LSTM layer or a CNN layer have 463

suboptimal accuracy compared to more complex models. With the help of an attention 464

mechanism, the CNN model achieves better accuracy, but the Bi-LSTM model doesn’t 465

benefit from the attention layer. The classifier which combines CNN layers, a Bi-LSTM 466

layer and an attention layer results in the best accuracy classification following 5-fold 467

cross-validation. Although the model without an attention layer achieves a similar 468

accuracy, the interpretability of the attention-based model is superior, as shown in the 469

following section discussing sample-level prediction. To evaluate the effect of using small

Table 1. Training Accuracy Comparison Results of 5-fold cross validation for
model/hyperparameter selection

Model CNN (Nc) RNN (Nh) DP LR Acc (˘ Std)
Bi-LSTM - 128 0.25 0.005 0.734 p˘0.002q
Bi-LSTM+ATT - 128 0.25 0.005 0.732 p˘0.003q
CNN 128 - 0.25 0.001 0.738 p˘0.001q
CNN+ATT 256 - 0.25 0.001 0.740 p˘0.001q
CNN+Bi-LSTM 256 128 0.25 0.001 0.742 p˘0.001q
CNN+Bi-LSTM+ATT 256 64 0 0.001 0.742 p˘0.001q

470

number of training samples for Read2Pheno classifier training. We design an 471

independent experiment: we first hold out 55 samples as testing, then we train the 472

Read2Pheno model with reads from 5, 25, 50, 100, 500 and 750 samples from the rest of 473

samples and evaluate the sample level performance of those models by the 55 held-out 474

testing set (here we use the sample-level embedding method for sample prediction). For 475

sample-level phenotype prediction, there are two types of ways to train the Random 476

Forest (RF) model: 1) we use the exactly same training set to train RF as used to train 477

Read2Pheno classifier and then test on the test set; 2) despite of the number of samples 478

used to train Read2Pheno classifier, we use all 750 samples in training set train the RF 479

and test on the test set. We show the performance (The blue line shows the training 480

type 1 and the orange line shows the training type 2) in Appendix Training data size 481

effect of Read2Pheno classifier. The blue curve shows that as more samples used for 482

training, the sample-level accuracy increases. The orange curve shows that although 483

Read2Pheno classifiers are trained with different samples, as long as the sample-level 484

prediction model is trained with more samples, the performance is pretty stable. This 485

indicates that the Read2Pheno classifier can learn a meaningful embedding with only a 486

small number of samples. In fact, there are usually a great number of reads in a few 487

samples. For example, in AGP dataset, there are over 1 million reads in 50 samples). 488

Therefore, for further downstreaming analysis including embedding visualization and 489

attention weights visualization, we use the model train by 50 samples. 490

Sample-level phenotype prediction 491

Sample-level phenotypes are predicted by sample-level predictors as described in the 492

Methods section (in Section Sample-level predictor). Table 2 compares the accuracy of 493

our deep learning approaches (a Read2Pheno model trained for 10 epochs with various 494
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sample-level classification strategies) against Random Forest (RF) baseline approaches, 495

which are trained on three different types of features: k-mer counts, OTU tables and 496

ASV tables generated by Dada2 [58]. In Table 2, we compare the training dataset size’s 497

effect on the models’ accuracies (all Read2Pheno models are trained for 10 epochs and 498

followed by various sample-level classification strategies for sample level predictions). 499

For example, for the training set of size of 50 samples, our method was trained for 10 500

epochs with 50 samples and tested by 755 samples, whereas a RF classifier with 100 501

estimators was trained by the same 50 training samples and tested by 755 samples using 502

the 9-mer frequency feature table, OTU table and ASV table respectively. We use a 503

9-mer frequency feature table because the filter window size of our convolutional block 504

is 9. As expected, adding more training data increases performance. While training an 505

RF model on raw 9-mers performs very well for all training sizes, our sample embedding 506

and pseudo-OTU methods outperform the 97% identity OTU tables. Moreover, 507

prediction accuracies using the pseudo-OTU approach are competitive with using 9-mer 508

raw features. But accuracy is not the ultimate objective of these phenotype prediction 509

experiments. Our read-level and sample-level embeddings can be interpreted to visualize 510

read-phenotype and read-taxa relationships, a task that 9-mer features cannot 511

accomplish alone. We hypothesize that our embedding approach is able to perform well 512

at clustering sequences from similar taxa together. The target classes in this comparison 513

are 5 body sites: feces, tongue, skin of hand, skin of head and nostril. Unlike the 514

pseudo-OTU method, an OTU table-based method can only identify informative OTUs, 515

rather than informative sequence context (like Figure 3). Moreover, k-mer based 516

methods can highlight useful local k-mer information, but cannot easily interpret 517

informative taxa (like Figure 2) and sequential order information. By contrast, our 518

attention-based model can provide deeper feature visualizations (Figure 2, 3 and 519

Appendix 2D Visualization of Prevotella reads) and interpretation. 520

Table 2. American Gut Data Testing Accuracy Comparison. Unlike sample-
level classification methods that use OTU/ASV tables and /k-mers (e.g. 9-mers) as
features, our proposed model is trained on reads. Then, the read-level results are fused by
the sample-level predictor using three methods as described in this paper. By increasing
the number of samples in the training data, we compare the read-level classifier’s ability
to learn sample-level predictive taxa/information from limited data sizes. Accuracies
are averaged and standard deviation is measured over 5 randomly selected data with
replacement experiments. We show sample-level prediction for the proposed methods are
competitive with prediction from OTU tables and will allow interpretable representations
shown in subsequent sections.

Training Set Size
Category Method 50 400 750

Traditional
9-mer table 0.808

(˘ 0.039)
0.887
(˘ 0.009)

0.903
(˘ 0.024)

OTU table 0.731
(˘ 0.021)

0.816
(˘ 0.010)

0.831
(˘ 0.030)

ASV table 0.769
(˘ 0.034)

0.840
(˘ 0.014)

0.866
(˘ 0.024)

Proposed
Majority vote 0.730

(˘ 0.040)
0.794
(˘ 0.012)

0.795
(˘ 0.030)

Sample embedding 0.751
(˘ 0.012)

0.816
(˘ 0.010)

0.821
(˘ 0.025)

Pseudo OTU 0.784
(˘ 0.039)

0.858
(˘ 0.013)

0.881
(˘ 0.026)
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Read embedding visualization 521

To illustrate how the model can learn taxonomic classes despite only having phenotype 522

labels, we visualize the embedded vectors for reads from 6 selected genera. 523

A. Overall B. Gut

C. Tongue

D. Skin

Figure 2. 2-D projection of embedded read vectors from all body sites (A), gut (B),
tongue (C) and skin (D). ‘˝’s are reads from the skin, ‘4’s are reads from the tongue
and ‘˝’s are reads from the gut/stool. The neural network is learning the 16S rRNA
gene association to taxonomy and body site without the access to taxonomy label of the
reads.

Figure 2 shows the 2-D principal component analysis (PCA) projection of embedded 524

vectors of 16S rRNA reads (the intermediate output vectors of the Multiplication Layer 525

in Figure 1) of 6 genera from the American Gut data. Each point represents a read, in 526

which the color represents the genus label (determined by RDP [54]) and marker shape 527

represents the original body site (as determined from the body site label). As mentioned 528

in Section Experimental setup for American Gut Project dataset and Gevers dataset, to 529

produce a clear visualization, we merge skin of hand, skin of head and nostril to one 530

single skin class. In Figure 2, reads from one body site are clustered closer together 531

than to other body sites in the embedding space. For example, as shown in Figure 2B, 532

reads from gut are embedded together. In addition, , most of the reads from particular 533

genera are closely embedded together. This illustrates that even though the model is 534

not optimized for taxonomic classification, the neural network is still learning the 16s 535

rRNA variable V4 region—which contains mutations that indicate different taxa—of the 536

input reads in the embedding space. Notably, for Prevotella, most fecal-associated reads 537

separate from the oral-associated ones, demonstrating that the model can discern 538

sub-genera. It is most likely that within these sub-genera, different species have 539

preference for different body sites. This kind of intra-genus separation does not appear 540

for all genera, however. This is to be expected, since the same 16S rRNA read may exist 541

within multiple body sites, which would make it hard for the model to predict such a 542

read correctly. Nevertheless, some skin-associated Corynebacterium strains separate out, 543

revealing which intra-genus 16s rRNA variants can and cannot be learned. 544
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Prevotella Case Study 545

To understand which features facilitate class separation, we again inspected the read 546

embedded vectors for genera which separated well for the body site isolation source. 547

Notice in Figure 2, reads from Prevotella formed two major clusters corresponding to 548

two body sites, namely, tongue and feces. Therefore, we analyze Prevotella as an 549

exemplary demonstration of the interpretability of the attention learning mechanism. 550

As shown in Appendix 2D Visualization of Prevotella reads, a 2-D PCA projection of 551

embedded vectors from Prevotella test reads forms two well-separated clusters, which 552

correspond to tongue and feces. The Prevotella test reads were classified to the correct 553

body site source with 91.31% accuracy. To visualize the regions that are most 554

informative to this classification, Figure 3 shows which high entropy positions also have 555

high attention using the method described in sample-level predictors section. Panel D of 556

Fig 3 shows that the middle and end portions of the 100 bp trimmed reads are most 557

important for phenotype classification, with the former playing a more important role in 558

distinguishing fecal reads (panel B) while the latter is more important for oral and skin 559

reads (panels A and C). For visualization, the attention weights are smoothed by a 560

moving average of window size of 9 (i.e., the size used in the convolutional filter of the 561

model). 562

Figure 3. Comparison between average Prevotella reads attention and nucleotide
frequency entropy in form of nucleotide sequence logo. A: oral reads; B: fecal reads; C:
skin reads; D: overall attention. In each body site, nucleotide frequencies are scaled by
the overall entropy for all Prevotella testing reads and plotted as a sequence logo, with
average attention weights represented by a color map where lighter background shading
represents larger values for attention weights, in contrast with darker background shading
for smaller attention weights.
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Inspecting the output of the attention layer for Prevotella, we can see which areas of 563

the 16s rRNA V4 region that the network is paying attention to (by the brightness of 564

the highlight) to make this classification, shown in Figure 3. We can see that the end of 565

ths 16S V4 region is the most important for identifying oral and skin reads, while the 566

middle region is the most important for gut/fecal reads. However, there are slight 567

differences – for example, an area at the beginning of the V4 region has some 568

importance to also help identify the gut, and to some extent oral, reads—as opposed to 569

getting no attention weighting for skin reads. When comparing oral and skin reads, the 570

middle region is the second most important to identify skin reads. This region may help 571

resolve oral/skin body sites that have similar nucleotides at the end of the reads. 572

For comparison, the entropy of the sequences within the Prevotella body site 573

combinations are shown (with the whole general attention shown in Figure 3D). We can 574

see that the attention model is generally learning areas of the variable region that have 575

high entropy. However, it is also learning slight differences between the signatures of 576

these regions. For example, both gut/skin reads tend to have C’s located at positions 54 577

and 65 while gut/oral reads tend to have GAGA at 56 Ñ 59. Thus, the particular 578

combination of C-GAGA-----C is unique to gut reads and therefore, a high attention 579

weight is placed on this region to distinguish gut reads from other body sites. In sum, 580

the attention weights shown in Figure 3 will reflect nucleotide variation found in 581

training sequence data, which, in turn, helps the model predict body site labels from the 582

input reads. 583

Host Phenotype (Clinical Diagnosis) Prediction based on 584

Gevers Inflammatory Bowel Disease Data 585

We further evaluate Read2Pheno performance on a distinct set of sequence data, the 586

Gevers dataset, which as described in Section Data Preparation for Model Evaluation, is 587

a subset of data from an inflammatory bowel disease (IBD) study in which samples were 588

identified as being from patients who were diagnosed with inflammatory bowel disease 589

(IBD) and not [7]. 590

Sample-level phenotype prediction 591

Sample-level phenotype prediction is accomplished by 1) the sample-level predictors 592

discussed in Appendix Sample-level predictor: Majority vote method with Read Caller 593

threshold of 0.5 ( 1
N , where N “ 2 for two classes); 2) sample-level embedding based 594

Random Forest; 3) “Pseudo OTU” table based on a Random Forest trained on 1000 595

Pseudo OTUs. Table 3 compares the accuracy of our model against three baseline 596

methods: Random Forests trained on (1) k-mers, (2) OTU tables, and (3) amplicon 597

sequence variants (via Dada2). We show the testing accuracy for different training data 598

sizes in Table 3. For example, for the training set size of 40 samples, we trained our 599

method for 10 epochs, and compared that to training a Random Forest classifier with 600

100 estimators using the various baseline methods. We compare against a Random 601

Forest trained on the 9-mer frequency feature table. K “ 9 seems like a reasonable 602

choice because the filter window size of our convolutional block is 9. The target classes 603

in this comparison are 2 states: IBD and Non-IBD. From the table, we can see the 604

performance of our “Pseudo OTU” based method is the comparable to competing 605

methods. When trained with 40 samples and tested on the rest, 9-mer table based 606

model works the best and our Pseudo OTU model is comparable to the OTU table 607

based method. As more samples are used for training, the performances of all models 608

are improved. In general, among our proposed models, the Pseudo OTU model 609

consistently works the best. The Pseudo OTU model is often comparable to OTU and 610

ASV based model but slightly underperforms 9-mer table based model. 611
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Table 3. Gevers Dataset Testing Accuracy Comparison. Unlike OTU/k-mer
based classifiers, which are trained at sample-level, our proposed model is trained at
the read level before read level results are then fused by sample-level predictor. This
comparison, over 40, 160, and 400 samples in the training data shows that the read
level classifier learns predictive taxa/information and the sample-level prediction for
the proposed methods are competitive with prediction from OTU tables and will allow
interpretable representations shown in the subsequent sections. The obtained accuracy
values are averaged, and the standard deviation is computed, over 5 experiments in
which we randomly selected training-testing data splits with replacement.

Training Set Size
Category Method 40 160 400

Traditional
9-mer table 0.715

(˘ 0.029)
0.787
(˘ 0.030)

0.848
(˘ 0.055)

OTU table 0.684
(˘ 0.016)

0.768
(˘ 0.018)

0.843
(˘
0.0548)

ASV table 0.669
(˘ 0.019)

0.765
(˘ 0.022)

0.819
(˘ 0.078)

Proposed
Majority vote 0.653

(˘ 0.043)
0.690
(˘ 0.023)

0.729
(˘ 0.062)

Sample embedding 0.650
(˘ 0.016)

0.726
(˘ 0.029)

0.762
(˘ 0.069)

Pseudo OTU 0.689
(˘ 0.031)

0.779
(˘ 0.014)

0.833
(˘ 0.058)

Read embedding visualization 612

To inspect how the read embeddings identified by Read2Pheno perform, here we 613

visualize the embedded vectors for reads from 4 selected genera (Blautia, Roseburia, 614

Ruminococcus, and Pseudomonas). Appendix 2-D projection of embedded read vectors 615

for Gevers dataset shows the 2-D PCA projection of embedded vectors (the 616

intermediate output vectors of the multiplication layer in Figure 1) of a selection of 4 617

genera from 16S rRNA reads from the Gevers Crohn’s disease dataset [7]. Each point 618

represents a read, in which the color represents the genus label (determined by 619

RDP [54]) and marker shape represents the disease state (CD: Crohn’s disease; Not 620

IBD: No inflammatory bowel disease diagnosis). In Appendix 2-D projection of 621

embedded read vectors for Gevers dataset, most of the time, reads from one genus are 622

closely embedded together. However, the Not IBD samples for the Roseburia and 623

Ruminococcus genera have the widest spread in PCA. In fact, we can see multiple 624

clusters in most of the genera, suggesting that different sub-genera cluster together and 625

can be associated with different phenotypes. In addition, reads identified as 626

disease-positive (“CD”) are generally clustered in lower right of the figure, while reads 627

labeled as disease-negative (“Not IBD”) are clustered in upper left of the figure. Even 628

though the model has not been trained to do taxonomic classification—only disease 629

phenotype—it can still reflect what it has learned from the sequence structure of the 630

input reads in the embedding space to reveal taxonomic structure. 631

Indeed, within Blautia and Ruminococcus genera, there are at least one cluster 632

corresponding to disease (“CD”) and another cluster corresponding to non-disease (“Not 633

IBD”). This further demonstrates that the Read2Pheno model can discern sub-genera 634

that have associations with different phenotypes. Finally, most Pseudomonas reads are 635

disease-positive (labeled as “CD”), and they are also embedded in lower right corner in 636

the figure, which shows that the Read2Pheno model has predicted that those reads are 637
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disease-positive. This is consistent with the association between Pseudomonas species 638

and IBD, which has been described extensively in the literature [59–61]. We further 639

show the interpretability of our model in Section Case studies of Gevers dataset. 640

Taxonomy Prediction based on SILVA Full Length 16S rRNA 641

Sequence Data 642

We further evaluate the capability of our proposed Read2Pheno model to analyze and 643

learn which regions of the full-length 16S ribosomal RNA sequence are useful for 644

predicting the genus level taxonomic label. The experimental dataset in this section is 645

constructed from the SILVA 16S ribosomal RNA gene database [50] and their manually 646

curated taxonomy [51] (i.e., Release 132 16S sequences with 99% identity criterion to 647

remove highly identical sequences). 648

Full length 16S rRNA taxonomic classification 649

Unlike the other results presented above, here, we train our proposed Read2Pheno 650

model on taxonomic classification specifically. In particular, we train the model on the 651

SILVA training dataset for 40 epochs. We adopt the same set of parameters and NN 652

model architecture used in the previous experiments (256 filters in CNN layers, 64 units 653

in LSTM layer, 0 dropout rate and 0.001 learning rate), except for the number of 654

neurons in output node, Ny, which must be set to 495 to accommodate all the genera 655

classes. The same training data is used to train the QIIME [53] implementation of 656

RDP [54] taxonomic classifier. Then, both the RDP classifier and our Read2Pheno 657

model are tested by the testing dataset. Table 4 shows the results of both models.

Table 4. Accuracy Comparison on the SILVA dataset over 5-fold cross-validation. The
proposed model’s performance is slightly below but still competitive to RDP’s accuracy.

Method Avg. Accuracy (std)
RDP implemented in QIIME 0.976 (˘ 0.001)
Proposed model 0.959 (˘ 0.006)

658

Full length 16S rRNA sequence visualization 659

We visualize the embedded vectors for full-length 16S rRNA sequences from 7 selected 660

genera in the Bacillaceae family in Figure 4. A 2-D principal component analysis (PCA) 661

projects the embedded vectors (the intermediate output vectors of the Multiplication 662

Layer in Figure 1) of the sequences from the selected 7 genera. Each point represents a 663

sequence, in which the color represents the genus label. In Figure 4, most of the 664

sequences from one genus are closely embedded together and sequences from different 665

genera are embedded apart from each other. This illustrates that the model is learning 666

the taxonomic information from the labels, whereas in the American Gut section, 667

taxonomic information was being learned indirectly from phenotype labels. We can also 668

see (although distorted from the 2-D projection) that some Bacilli have 16S rRNAs that 669

may be similar to other types of Bacilli genera like Virgi- and Oceano-bacillus but be 670

more distinct from Geobacillus. This could indicate misclassifications of these sequences 671

in the standard taxonomy (e.g. Bergey’s Manual of Systematic Bacteriology) or simply 672

evolutionary relatedness between taxa. 673
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Figure 4. 2-D projection of embedded sequence vectors. The model can separate
sequences with respect to their genus level label based on their genomic content.

Variable Regions discovered by Attention Weights: Pseudomonas and 674

Enterobacter examples 675

In Figure 5 and Appendix Average attention weights of Enterobacter testing sequences, 676

we visualize the average attention weights of testing sequences from two select genera. 677

For Pseudomonas in Figure 5, the top figure shows the averaged attention weights per 678

all testing reads without alignment. The variable regions are labeled according to [62]. 679

Here, different colors correspond to different variable region (from V1 to V9 as shown in 680

the colorbar). As we can see, the attention weights pay attention to nucleotides 681

concentrated on V2 and V3 regions. There are insertion and deletions in different 682

Pseudomonas sequences. As a result, the location of a certain context that gain high 683

attention weights can be shifted in different sequences. We applied multiple sequence 684

alignment to align the testing sequences for Pseudomonas using the MAFFT on 685

XSEDE [63]. The attention weights are then aligned by the sequence alignment results. 686

Then, the average attention are computed based on these aligned attention vectors. 687

From the bottom figure in Figure 5, we observe that the attention sites narrow down to 688

a few select nucleotide positions despite insertions and deletions in the 16S rRNA 689

evolution. This is evidence that our model is learning specific 16S rRNA nucleotide 690

contexts that are important to the distinction of taxa and decides where to pay the 691

attention based on the context. We further visualize the attention weights of a real 692

Pseudomonas aeruginosa sequence provided by [64] in Appendix Secondary structure 693

and attention weights of a Pseudomonas aeruginosa sequence. The positions that have 694

an attention weight greater than the mean attention weight cross the whole sequence is 695

highlighted on the secondary structure figure. The attention-highlighted regions 696

coincide with sub-regions of V2, V3, and V4 variable regions determined by [64]. 697

Moreover, we notice that attentions are paid in the junctions in the secondary structure 698

by the model. We conjecture that those junctions are related to molecular interaction 699

and the nucleotides at those positions can contribute to the angle/structure of the arms 700
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Figure 5. Top: Average attention weights for all strains of Pseudomonas without
alignment; Bottom: Average of attention weights for all strains with alignment. This
figure shows that our model can implicitly learn the multiple sequence alignment since
there are very few sites with attention – meaning that despite insertions/deletions, the
attention is consistently paid to the most informative bases.
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associated with the junction. 701

We also applied the same analysis on Enterobacter as a comparison (result shown in 702

Appendix Average attention weights of Enterobacter testing sequences). For 703

Enterobacter, the attention weights are concentrated on V2 and V4. After multiple 704

sequence alignment, we observe concentration of attention weights into mainly two sites 705

(similar narrowing trend as in Pseudomonas), which implies that the model can learn 706

contextual information and is robust to insertions/deletions/mutations. We offer the 707

readers our multiple sequence alignment results in FASTA format and the mean 708

attention weights per position after alignment in Appendix Mean attention weights and 709

multiple sequence alignment results aligned for Pseudomonas and Enterobacter. To offer 710

insight into what the neural network is learning as the most important variable regions 711

for each genus, we calculated the sum of attention weights of testing sequences per 712

variable region (with variable region locations defined by [62]) for each genus and can be 713

found in Appendix Attention weights on variable regions per genus. There are previous 714

works that aimed to find important/predictive variable regions that can inform 715

taxonomic classification and V2, V3, V4 are considered as “informative” [65–68]. Our 716

model, in most cases, pays most attention to the V3 and V4 regions, which many 717

studies now use as common targets. Genera such as Buchnera, Erwinia, and Gemmata 718

have higher attention weights on the V2 region. 719

Discussion 720

In this paper, we propose an attention-based deep neural network for read level 721

classification that can reveal informative regions that are relevant to the phenotypic 722

classification (classification of 16S rRNA reads from microbiome to phenotype). We 723

have shown that attention-based deep learning, and specifically our proposed 724

Read2Pheno models are capable of comparable accuracy prediction performance while 725

offering automated model interpretation on three distinct kinds of tasks: (1) prediction 726

of microbiome phenotype (i.e., the emergent property of a microbial community), (2) 727

prediction of host phenotype (i.e., clinical disease diagnosis), and (3) taxonomic 728

classification of full length 16S rRNA sequences. The implications of our 729

attention-based deep learning methodology, as implemented and evaluated on these 730

tasks as proof-of-concept, are discussed in further detail below. 731

As proof-of-concept for microbiome and phenotype prediction, we have focused on 732

two large-scale microbiome datasets. First, we have analyzed data from the American 733

Gut Project, which provides a comprehensive open-source and open-access set of human 734

microbiome 16S rRNA samples for scientific use [49,69]. The recent studies of 735

microbiomes inhabiting sites on the human body (particularly the large intestine) have 736

revealed the complex nature of microbial community interactions [69]. 16S ribosomal 737

RNA is not only useful for identifying organisms using the phylogenetic tree of life, but 738

the phylogenetic branch distance shared between samples serves as a comparative 739

distance metric [70]. Utilizing the AGP’s large collection of samples, where we can 740

identify organisms via 16S rRNA, allows us to begin to understand microbial 741

community dynamics in hosts and the environment [71]. The AGP dataset thus 742

provides real-world data to develop and validate phenotype prediction algorithms. 743

Second, to analyze host phenotype, we have further looked to gut data with clinical 744

significance as well. Crohn’s disease (CD), a chronic relapsing inflammatory bowel 745

disease (IBD), is increasing in prevalence worldwide [72]. Researchers have been 746

exploring different methods to predict Crohn’s disease based using microbiome data, for 747

example to identify the microbial taxa that associated with the disease using 16S rRNA 748

survey data [7, 9, 73]. We have further evaluated Read2Pheno and sample-level 749

classification using a dataset based on clinical evaluation provided by Gevers et al. 750
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Developing a better understanding of the IBD microbial signature will present a critical 751

step towards improved clinical diagnosis and discovery of a cure. 752

Our results with these data sets show that we can keep both local information 753

(k-mers) and contextual information (sequential order of k-mers) of 16S rRNA regions 754

without the need of abundance table such as OTU or ASV for phenotype prediction and 755

achieve comparable performance to phenotype classification based on OTUs/ASVs. The 756

number of samples is relative small to train a complex deep neural network for sample 757

level prediction and can lead to overfitting (especially when the variation in the dataset 758

is low) [74,75]. For example, there are over 1 million parameters in the proposed deep 759

neural network model for AGP experimental data, we have only 805 samples (perfectly 760

balanced), however, for training. And the number of data points, n, should be no less 761

than some multiple (say 5 or 10) of the number of adaptive parameters number of 762

parameters in the model [74,75]. Even when we consider all 15,096 the samples in AGP 763

as of May 2017 which mostly are collected from feces, the number of training samples is 764

still less than 1
100 of the total number of trainable parameters, m. As an alternative, we 765

instead propose to train a read level model, Read2Pheno which can leverage millions of 766

reads as training examples from only dozens of samples, and then aggregate the learned 767

information for a sample level prediction. One of the limitations of our model is that 768

the model is not optimized for sample level prediction. However, through our 769

experiments described here, we show that our proposed training strategy can pick up 770

informative pattern to find 16S rRNA read and phenotype association as well as 771

highlight informative regions. 772

In addition, unlike conventional OTU based methods, no preprocessing steps such as 773

alignment/OTU grouping are required. Furthermore, intermediate layers outputs can be 774

used for ordination and highlight informative regions in the sequences. Although 775

Oligotyping can be used to resolve closely related 16S rRNA reads and explore the 776

informative positions and label association, human supervision and alignment process 777

are required to identify the cutoff entropy threshold in closely related reads of interest. 778

Our model can be considered as an end-to-end model which takes raw 16S rRNA reads 779

as input, learns informative genetic content and label association and outputs 780

classification results. The learned knowledge can be extracted by intermediate layer 781

outputs especially the attention weights. And the model is robust to deletions and 782

insertions (as shown in Figure 5, our attention model can implicitly identify relevant 783

genetic content across different unaligned sequences from the same genus). This work 784

revealed the potential of deep learning models in phenotype prediction and 785

interpretation. In the future, when a deep neural network model is better tuned for 786

sample level prediction and when more training samples are made available, the method 787

has the potential to outperform the existing OTU/ASV based methods. 788

To further show how the attention weights based model interpretation compares to 789

other related method, We run the Oligotyping [41] software package on our Prevotella 790

visualization set used in Section Prevotella Case Study. Oligotyping uses Shannon 791

entropy to analyze closely related 16S rRNA sequences and find mutations that best 792

explain sample variables (e.g. phenotypes). However, Oligotyping needs more human 793

interaction and supervision for this task. For example, a user needs to determine how 794

many oligotypes to find. Appendix Oligotypes for Prevotella reads shows the oligotypes 795

(highlighted in black) found by their software for our American Gut derived Prevotella 796

example. As shown in Appendix Oligotypes for Prevotella reads, Oligotyping for 7 797

positions picks 13, 54, 65, 83, 91, 96, and 98. In our model, shown in Figure 3, 798

nucleotide positions 13, 54, 91, 96, 98 within the 16s rRNA V4 region are in highlighted 799

region, which represent greater attention. Notably, position 13 is in a dim but still 800

highlighted regions, 65 and 83 are near highlighted regions, and in fact, 83 is near two 801

more. Thus, there is an apparent relationship between the attention that the neural 802
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network learns and the highest entropy positions that are learned. For each body site, 803

there are multiple oligotypes per body site; therefore, it is hard to discern which high 804

entropy position is most important to identifying which body site. 805

Several factors contribute to the discrepancy between our model’s high attention 806

nucleotide positions and the highest entropy positions used for oligotyping. First, we 807

smooth the attention weights with a 9-mer moving average. As a result, the attention 808

weights are a regional approximation, i.e. not at precise positions, and the weights taper 809

off at the ends of the read, due to edge convolutional effects. Second, Oligotyping only 810

calculates the entropy of each position in Prevotella reads, while the attention weights 811

learn the weighting of attention of positions that are specifically important to the 812

classification task—in this case, body site prediction. A practical drawback of the 813

Oligotyping approach is that, a user must plot the distribution of different oligotypes for 814

each phenotype to see if there is a common oligotype for that phenotype, e.g., as in 815

Appendix Oligotypes and body site association for Prevotella. From Appendix 816

Oligotypes and body site association for Prevotella, the gut (fecal) oligotypes are 817

evidently distinct from the other body sites, while the oral and skin oligotype 818

distributions are relatively similar. Therefore, gut vs. other sites could be distinguished 819

with oligotypes but more nucleotides would be needed to discern oral/skin. By contrast, 820

the attention model does not require manual adjustment to find important regions. As 821

the neural network classifies different phenotypes, the network learns the regions that 822

are most important for this task. Attention modeling is thus the converse of oligotyping: 823

attention weights recognize the informative reads/regions through body site 824

classification and therefore can highlight the regions that distinguish body sites. 825

Post-processing is required in the user’s end to extract the attention weights of 826

sequences of interest for visualization. Conversely, preprocessing is required for 827

Oligotyping users to identify reads of interest from a certain taxon and align them to 828

learn oligotypes. Moreover, the attention weights for any combination of phenotype or 829

taxa-phenotype can be visualized (see Figure 3), and it is immediately clear from the 830

visualization what are the most informative sequence regions—as well as their relative 831

nucleotide variability—for the classification being learned. Notably, with the attention 832

model, the highlighted attention regions are slightly offset or in between high-entropy 833

positions. Regions at or near high-density high-entropy positions (i.e., regions that have 834

many high-entropy positions) are weighted with higher attention. We can see that 835

highlighted attention maps to 4 sequence regions: nucleotide position ranges 12-18, 836

53-62, 74-81, and 90-98. Whereas region 4 (nt 90-98) helps identify oral reads and skin 837

reads as opposed to gut, regions 1, 2, and 3 are helpful in distinguishing gut samples 838

from other samples. Each body site may be identified by a combination of regions. For 839

example, regions 2, 3, and 4 are useful to identify that a sample was taken from skin, 840

while regions 1 and 4 are most useful for identifying samples from the oral cavity, and 1 841

and 3 are most useful for identifying gut samples. 842

Accordingly, the efficiency of attention model interpretability contrasts favorably 843

compared to Oligotyping studies. As noted above, with Oligotyping, one must choose 844

the number of nucleotides to examine. We chose 7 nucleotides, for example, since those 845

represented nucleotide positions from all 4 regions in which we found attention. 846

Moreover, there is no guarantee that Oligotyping will be able to succeed at all desired 847

classification/discrimination tasks. For example, as Appendix Oligotypes and body site 848

association for Prevotella shows, while the gut has a more distinct pattern of oligotypes 849

as opposed to oral and skin samples, oral and skin samples show very little difference in 850

oligotype patterns. As such, it is practically difficult to perform the classification task 851

using only learned oligotypes. However, we do know, and have been able to quantify and 852

show, the accuracy achieved by the attention model and its associated region discovery. 853

In addition to training and evaluating attention-based models on phenotype data, we 854
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have further considered a comprehensive data set for taxonomic classification, the 855

SILVA rRNA database. SILVA data allowed us to evaluate how our attention model can 856

be used to explore the structure of full length 16S sequences by training the model for a 857

taxonomic classification task. (We can think of this as as read2taxa, but we are still 858

using the same Read2Pheno model that we have developed.). Our model achieves 859

comparable performance to the superior k-mer based method and pays attention to 860

different regions for genus classification. This indicates that parts of the 16S rRNA 861

gene, for a given 16S rRNA sequence from a genus, are important for distinguishing one 862

genus from other genera. Notably, Salmonella has higher weights on V2 and V4. This 863

can inform future 16S rRNA study designs. Because the V2 region is informative (i.e., 864

has higher attention weights), investigators should design and use primers to target the 865

V2 region to augment more commonly used V3/V4 primers. Some genera such as 866

Pirellula have attention within some regions (V2 and V4) but also have higher than 867

normal attentions at other sites, showing that more regions can be used to discern this 868

genus. These predictions are consistent with evidence in the experimental literature. In 869

particular, previous studies have shown that V1-V3 region are better at distinguishing 870

Escherichia/Shigella [76], and we show a high attentions within the V2 and V3 for this 871

group. The model also predicts that Methanobacterium, Thermococcus, and other 872

Archaea have attention weighting at V4-V5. And, indeed, the V4-V5 regions have 873

already been shown to have superior recognition of Archaea [77]. Accordingly, the 874

Read2Pheno model’s predictions can serve as a starting point for identifying which 875

primers may be optimally used to target various genera. 876

Going forward, we intend to adapt this model to explore metagenomic data, going 877

beyond amplicon sequencing of specific marker genes to include the whole genome or 878

sub-genomic multiple-gene regions from organisms in microbiome samples. To do so will 879

require overcoming challenges such as memory limitations and the potential inability of 880

neural networks to capture long distance dependencies due to gradient vanishing [78]. 881

We are thus exploring the use of smaller batch size or more efficient data structure and 882

better optimization strategy need to be applied to train the model for full length 883

bacteria sequences. We are working to also achieve superior accuracy through 884

approaches such as self-supervised pretraining and transfer learning, which have proven 885

to be successful in the NLP literature [79,80]. 886

Conclusion 887

In conclusion, we propose an integrated deep learning model that exploits CNNs, RNNs, 888

and attention mechanisms to perform read and sample-level environmental prediction 889

and extract interesting features. We show that such an alignment-free model can easily 890

encode sequences/reads into dense and meaningful representations, and it can extract 891

important sequence features while being robust to insertions and deletions. The 892

Read2Pheno model we develop herein thus provides an exploratory way to understand 893

microbial data which is helpful for future microbial study. In particular, we have shown 894

in computational experiments that the deep, attention-based neural network 895

Read2Pheno model can accomplish diverse tasks, learning informative nucleotides to (i) 896

predict the body sites from which human microbiomic samples are extracted, (ii) 897

discriminate between samples from individuals with positive and negative diagnoses for 898

IBD, and (iii) identify the taxonomic labels of whole sequence 16s rRNA data. 899

Moreover, we have shown that our attention-based DNN can not only predict, but can 900

also be readily interpreted to obtain further insight. In addition, we have shown that we 901

can interpret the intermediate outputs in the neural network model and generate 902

visualization of the read embedding vectors, and, thereby discover important taxa and 903

regions of sequences which are highly associated with the sample phenotype/taxonomic 904
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label. We show that our deep learning model can be used to explore the 16S rRNA 905

nucleotide structure and its association with phenotype and taxonomy by learning the 906

high-level features from k-mers and their sequential order. Our paper further provides 907

an alternative way to train deep neural networks when the number of samples are 908

relatively small, by training a read-level classifier instead of a sample-level 909

classifier—while still producing comparable classification results. And, even in cases 910

where our proposed attention-based neural network modeling framework fails to provide 911

superior classification performance, we demonstrate that the results are nonetheless easy 912

to interpret, such that we may extract important biologically and clinically relevant 913

information from complex sequence data. 914
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RNA gene database project: improved data processing and web-based tools.
Nucleic Acids Research, 41(D1):D590–D596, 11 2012.

51. Pelin Yilmaz, Laura Wegener Parfrey, Pablo Yarza, Jan Gerken, Elmar Pruesse,
Christian Quast, Timmy Schweer, Jörg Peplies, Wolfgang Ludwig, and
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A Appendix

A.1 One-hot coding map

The map is adapted from Nomenclature for Incompletely Specified Bases in Nucleic
Acid Sequences (http://www.sbcs.qmul.ac.uk/iubmb/misc/naseq.html)

Symbol coding
A 1 0 0 0
C 0 1 0 0
G 0 0 1 0
T 0 0 0 1
U 0 0 0 1
W 0.5 0 0 0.5
S 0 0.5 0.5 0
M 0.5 0.5 0 0
K 0 0 0.5 0.5
R 0.5 0 0.5 0
Y 0 0.5 0 0.5
B 0 1

3
1
3

1
3

D 1
3 0 1

3
1
3

H 1
3

1
3 0 1

3

V 1
3

1
3

1
3 0

N 0.25 0.25 0.25 0.25

A.2 Sample-level predictor: Majority vote method

The read caller threshold is 1
N where N is the number of classes.

A.3 Sample-level predictor: Sample-level embedding

Sample level embedding is calculated by averaging all the read level embedding vectors
per sample. Then a random forest classifier is trained based on the sample embedding
matrix (a N by Nh matrix where N is the total number of samples in training set and
Nh is the number of hidden nodes in Bi-LSTM layer). Once the sample level random
forest classifier is trained, this model can be used to perform sample level classification
by taking the sample embedding vectors as input. The training and testing process are
labeled by red and blue arrows correspondingly.
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A.4 Sample-level predictor: Pseudo-OTU

Training reads are clustered into Nclusters “ 1000 clusters (“Pseudo OTUs”) by Read

level embedding clustering module using a k´means algorithm. Then all training
reads per sample are mapped to the closest “Pseudo OTUs” to form “Pseudo OTUs”
abundance table. Similar to sample-level embedding method, a random forest classifier
can be trained to perform sample level prediction using such “Pseudo OTUs” table
(The training and testing process are labeled by red and blue arrows correspondingly).

A.5 Overall training and testing experiment

Samples are split into train and test set. Training set is used to train a Read2Pheno

classifier and a sample-level predictor. The testing set is used to evaluate the
performance.
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A.6 Read2Pheno training process

All reads in the training set are labeled by the sample level label (the body site the
original sample was collected from). Then the reads are grouped together and shuffled
for training the Read2Pheno classifier.
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A.7 Hyperparameter search space table

The best set of parameters is {number of conv filters, Nc: 256, number of units in
LSTM Nh: 64, dropout probability for Dropout Layer: 0, learning rate: 0.001} for read
level prediction on 5-fold cross validation of training data. The window size of
convolutional layers, W , is set to 9 and the number of hidden nodes in attention layer,
Na, is set to 16 in the default setting.

Hyperparameter Value
number of conv filters, Nc 128, 256
number of units in LSTM, Nh 64, 128
dropout probability for Dropout Layer 0, 0.25
learning rate 0.001, 0.005

A.8 Training data size effect of Read2Pheno classifier

Sample-level testing accuracy for different training data size of Read2Pheno classifier.

A.9 2D Visualization of Prevotella reads

2-D projection of embedded Prevotella read vectors. Red markers represent fecal reads,
green markers represent oral reads and black markers represent skin reads. The color of
a ‘ˆ’ represents the predicted body site. If the predicted body site is the same as the
true body site, then ‘ˆ’s are not visible. The body site prediction accuracy for
Prevotella visualization reads is 0.9131
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A.10 Oligotypes for Prevotella reads

Top 7 Oligotypes found in Prevotella reads. The number on the left hand side of the
figure shows the number of reads having a certain type of Oligotyping patterns (the
nucleotide combination in black positions)

A.11 Oligotypes and body site association for Prevotella

Oligotypes and body site association [41] of Prevotella reads. Different 7-oligotypes
configurations can be found in different body sites. Fecal samples have a distinctive
configuration vs. oral and skin samples.

A.12 2-D projection of embedded read vectors for Gevers
dataset

2-D projection of embedded read vectors from all visualization samples (A),
disease-positive samples (B), and disease-negative samples. ‘4’s are reads from the
control (health) samples and ‘˝’s are reads from the Crohn’s disease samples. The
neural network is learning the 16S rRNA gene association to taxonomy and phenotype
without the access to taxonomy label of the reads.
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A. Overall

B. Not IBD C. CD

A.13 Case studies of Gevers dataset

To understand which features facilitate class separation, we inspect the read embedded
vectors for Ruminococcus and Blautia that separated well for phenotype. We also
demonstrate interpretability of the attention mechanism by inspecting their attention
weights.

A.14 Average attention weights of Enterobacter testing
sequences

Top: Average attention weights for all strains of Enterobacter without alignment;
Bottom: Attention weights with alignment. This figure shows that our model can
implicitly perform alignment to the sequence so that the attention was paid to similar
position after alignment.
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A.15 Secondary structure and attention weights of a
Pseudomonas aeruginosa sequence

The attention weights (top) on a real Pseudomonas aeruginosa sequence provided
by [64]. The positions that have an attention weight greater than the mean attention
weight cross the whole sequence is highlighted on the secondary structure figure
(bottom).
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A.16 Mean attention weights and multiple sequence alignment
results aligned for Pseudomonas and Enterobacter

A.17 Attention weights on variable regions per genus
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