

1 **Application of DNA barcodes and spatial analysis in conservation genetics**
2 **and modeling of Iranian *Salicornia* genetic resources**

3 Mehrshad Zeinalabedini^{1*}, Nayer Azam Khoshkholgh Sima^{2**}, Mohammad Reza
4 Ghaffari¹, Ali Ebadi², Maryam Farsi¹

5

6 ¹Department of Systems and Synthetic biology, Agricultural Biotechnology Research
7 Institute of Iran, Agricultural Research, Education and Extension Organization
8 (AREEO), Karaj, Iran

9 ²Department of Molecular Plant Physiology, Agricultural Biotechnology Research
10 Institute of Iran, Agricultural Research, Education and Extension Organization
11 (AREEO), Karaj, Iran

12

13 ***Corresponding author(s)**

14 *Email: mzeinolabedini@abrii.ac.ir

15 **Email: ksima@abrii.ac.ir

17 **Abstract**

18 Iran is one of the origins of some *Salicornia* species. Nevertheless, so far,
19 comprehensive research has not been conducted on genetic potential, distribution,
20 selection of populations, and the economic utilization of *Salicornia* in Iran. In the
21 current study, *Salicornia* was collected based on the previous research locations
22 available on 26 different geographical locations of provinces in Iran. Subsequently,
23 an accurate model was provided for identifying of *Salicornia* species biodiversity by
24 performing spatial analysis and modeling of distributed areas. The results provided
25 valuable information on the diversity of specific geographical regions, conservation
26 status of existing species, prioritization of conservation areas, and selection of areas
27 for Agro-Ecological, leading to the development of industrial agriculture. Further, we
28 validated genes in the field of DNA barcoding in *Salicornia* plants using *matK*, *rbcL*,
29 *trnH-psbA*, *ycf* and *ITS2* identifying species groups. Together, integrating our results
30 will provide useful information for the management and utilization of *Salicornia*
31 genetic resources in Iran.

32 **Keywords:** biodiversity, DNA barcoding, *Salicornia*, spatial analysis

33 **Introduction**

34 The world's population is 7 billion in 2018, is expected to rise by 35%, and reaches to
35 9 billion in 2050. Food and Agriculture Organization of United Nations (FAO)
36 estimates crop production must increase by at least 60% in the future [1] to provide
37 the food and energy demand for the growing population. However, the use of
38 genotypes with high-yield and resistance to biotic and abiotic stress has gradually
39 replaced indigenous varieties and local genotypes endangering access and
40 exploitation of resource and food production for the future [2]. Thus, low genetic
41 diversity may reduce the opportunity to identify and use new sources responding to
42 future challenges, including new pests and pathogens, as well as climate changes
43 [3]. Today, soil salinity has increased due to the unconventional cultivation and
44 irrigation. Moreover, the level of arable land increased dramatically from 8 million to
45 more than 220 million hectares, of which about 45 million hectares are salt-affected
46 to varying degrees [4,5]. The highest saline soils in Asia are in China, India,
47 Pakistan, and Iran [6]. In Iran, salinity is a limiting factor of sustainable agricultural
48 production, covering 34 percent of arid and semi-arid regions of the country,
49 especially in the central, south, and plain of Khuzestan in varying degrees of salinity
50 [7]. Furthermore, about 20%-50% of the arable land is also affected by salinity [8,9].
51 Therefore, the improvement of agricultural and horticultural crops to increase salinity
52 tolerance and the use of salt-tolerant plants are needed to increase food production,
53 raise employment, and support sustainable development [10]. Halophytes, which
54 include more than 600 taxa of the various genus and species [11] complete their life
55 cycle under high salt concentration (at least 200 mM NaCl) [12,13] making them a
56 rich resource of new crops for the future. Among the common halophytes, *Salicornia*
57 sp. is relatively important due to the high potential for domestication and cultivation

58 [14]. *Salicornia* is a succulent halophyte, which grows naturally on mangrove
59 swamps as well as seashores. It has also evaluated as a vegetable, forage, and
60 oilseed crop in the agronomic field trials [15]. *Salicornia* sp. is widespread across
61 Iran, mainly in central, western, and northern parts. There is a morphological
62 variation across the genus distribution range of *Salicornia* sp. Some economically
63 feasible applications have been suggested for *Salicornia* species. They also have
64 suitable biomass for human and domestic consumption [16,17]. Furthermore,
65 *Salicornia* seed contains 26%–33% oil, of similar composition to safflower oil, along
66 with 30%–33% protein [18]. Therefore, identification and selection of native
67 *Salicornia* species might be a viable strategy for agricultural development against
68 Iran's climate change. The number of *Salicornia* species is between 25 to 30 species
69 worldwide [19]. Hence, the taxonomy classification of *Salicornia* is very complicated
70 as there is not any general published morphological descriptor for all accepted
71 species. Thus, it often makes it impossible for a non-expert. Previously, some
72 morphological characteristics like growth form, inflorescence, branching of main and
73 lateral stems, lateral flowers and their conditions relative to the main flowers, fruit
74 formation, flowering, and fruiting characteristics as well as dry biomass were used to
75 identify some species of *Salicornia* with high seed and biomass yield [20–22].
76 However, a low number of morphological characteristics, phenotypic flexibility,
77 breeding, and hybridization systems are amongst the factors that make *Salicornia*
78 difficult to distinguish precisely in an area [23]. Currently, few studies were
79 conducted on taxonomic and phylogenetic analysis of the *Salicornia* genus. The
80 commercial importance and lack of description makes *Salicornia* a priority for the
81 circumscription of species, subtypes, ecotypes, and natural hybridization in order to
82 develop it as new crop [8]. Teege et al. [8] studied the genetic relationships of intra

83 and inter variation of the two taxa of *Salicornia prompumbens* and *Salicornia stricta*
84 species using AFLP markers [20]. Further, the phylogenetic relationships between
85 eight taxa belonging to the *Salicornia* genus were examined using the ITS markers
86 [8]. Likewise, the phylogenetic and geographic relationship in different germplasms
87 of *Salicornia* was evaluated using 6 EST markers [8]. Moreover, genetic diversity of
88 some populations of *Salicornia* was investigated using RAPD markers [24]. All
89 obtained results showed that these molecular markers have some
90 limitations/disadvantages in accurate taxonomic classifications. Recently, DNA
91 sequencing technology has facilitated the identification of identical genotype with
92 different morphotypes or different genotypes with the same morphotypes [25]. DNA
93 barcoding, which is a new and efficient tool based on the conserved DNA regions of
94 organisms, has provided an efficient and precise method for species-level
95 identifications [26]. DNA barcodes were developed by Consortium for the Barcode of
96 Life (CBOL) as a global standard for the identification of biological species. To date,
97 no comprehensive research has been done on the utility of universal DNA barcodes
98 for all proposed gene regions (either alone or in combination) in *Salicornia*. The
99 overall aim of our study was to employ three coding plastid regions (*rbcL*, *matK* and
100 *ycf*), one non-coding plastid intergenic spacer regions (*trnH-psbA*), and the internal
101 transcribed spacer of nuclear encoded ribosomal DNA (ITS2) to examine species
102 and population diversity of Iranian *Salicornia* germplasms. Then, an integrated model
103 was developed to assess *Salicornia* distribution and best habitat based on climate
104 factors, estimate critical parameters in land management and biodiversity
105 conservation. We assume that our results will open up a new window for the future
106 development of *Salicornia* farms.

108 **Materials and Methods**

109 ***samples collection***

110 The previously collected records by the Agricultural Biotechnology Research Institute
111 of Iran (ABRII) were used to identify distribution localities for sampling [27]. Then
112 field surveys were done to collect samples from populations throughout the natural
113 distribution of *Salicornia* sp. Twenty-six, different geographical locations were
114 included in this research (Fig 1). The number of plants per each location ranged
115 from, 2 to 5 (Table 1).

116 **Fig 1. Distribution map of *Salicornia* germplasms in Iran. Maps were generated**
117 **through tools in Google Earth program version 7.1.7.2606**
118 **(www.google.com/earth), based on the recorded GPS coordinates on the**
119 **collection sites.**

120 **Table 1. Geographic information of *Salicornia* populations that were collected**
121 **in this study.**

No.	Province	Collection Site	Longitude	Latitude
1	Alborz	Jafar Abad	50° 49' 26.511"	35° 42' 38.401 "
2	Alborz	Eshtehard	50° 30' 20.195"	35° 44' 45.052 "
3	Markazi	Meyghan	49° 48' 56.527"	34° 10' 12.262 "
4	Markazi	Delijan	50° 49' 58.401"	33° 48' 38.401 "
5	Isfahan	Varzaneh	52° 39' 53.002"	32° 25' 22.763 "
6	Mazandaran	Chapak roud	52° 51' 48.51"	36° 43' 9.602 "
7	West-Azerbaijan	Gulmanxana	45° 16' 17.644"	37° 35' 13.912 "
8	West-Azerbaijan	Talatappe	45° 13' 27.699"	37° 44' 54.563 "
9	Qom	Qom highway	51° 10' 43.625"	35° 19' 18.318 "
10	Sistan & Baluchestan	Chabahar	60° 40' 20.423"	25° 17' 21.001 "

11	Sistan & Blaochestan	Gwadr	62° 22' 29.560"	25° 20' 6.936 "
12	Tehran	Robat Karim	50° 57' 44.412"	35° 26' 37.730 "
13	Tehran	Varamin	51° 17' 40.124"	34° 56' 53.952 "
14	Golestan	Bandar Torkamen	54° 3' 0.072"	36° 53' 18.160 "
15	Golestan	Aq Qala	54° 22' 46.480"	37° 5' 58.844 "
16	Boshehr	Dayyer	51° 58' 31.501"	27° 50' 31.642 "
17	Boshehr	Helleh	50° 49' 52.812"	29° 11' 22.106 "
18	East-Azerbayjan	Nazarkahrizi	46° 54' 52.339"	37° 21' 34.416 "
19	East-Azerbayjan	Qushchi	45° 4' 39.946"	37° 59' 40.941 "
20	East-Azerbayjan	Sharafkhaneh	45° 28' 33.041"	38° 10' 2.236 "
21	East-Azerbayjan	SarayDeh	45° 38' 48.551"	37° 52' 47.262 "
22	East-Azerbayjan	Qareh Qeshlaq	45° 58' 6.110"	37° 13' 46.699 "
23	Fars	Tashk	53° 35' 41.686"	29° 49' 15.232 "
24	Fars	Maharlu	53° 45' 50.043"	29° 31' 45.922 "
25	Kerman	Nogh	56° 0' 0219"	30° 39' 17.028 "
26	Kerman	Shahrbabak	54° 39' 56.807"	30° 6' 8.463 "

122

123 **Molecular analysis**

124 **DNA extraction and barcoding**

125 DNA extraction was carried out using DNA extraction kit (Core Bio, South Korea).

126 The quality and quantity of DNA was determined using 0.8% agarose gel and

127 NanoDrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE,

128 USA), respectively. DNA barcoding was carried out using core-barcode consisting of

129 two plastid coding regions, (*rbcL+matK*) and supplemented with one non-coding

130 intergenic spacer (*trnH-psbA*) from the chloroplast genome, one internal transcribed

131 spacer (ITS2) from the nuclear genome and one plastid coding region (*ycf*) [26,28]

132 (see S1 Table). For all markers, 50 µl polymerase chain reactions (PCRs) were

133 carried out in a Veriti ABI thermal cycler (ABI Inc, USA) using 1 U Taq polymerase
134 (Invitrogen or Promega), 2.5 μ l 10 Taq buffer, 1.5 μ l MgCl₂ (25 mM), 0.5 μ l dNTPs
135 (10 mM), 0.35 μ l primers (20 pmol), 1.0 μ l template DNA and 18.85 μ l dH₂O. Then,
136 the PCR products were purified and directly sequenced in both directions to
137 minimize PCR artifacts, ambiguities, and base-calling errors on an automated ABI
138 Prism 3730 XL Genetic Analyzer machine using ABI BigDye v3.1 Terminator
139 Sequencing chemistry (Macrogen Inc, South Korea). However, the samples with
140 high GC content were cloned and then sequenced. The sequencing results were
141 then sorted and trimmed using FinchTV software and analyzed by BLASTP,
142 BLASTN, and LALIGN software. Finally, DNA barcode data compared to GenBank
143 or otherwise publicly available in the BOLD database based on different integration
144 strategies (coding, non-coding, plastid, and total combination) using a similarity-
145 based method. Briefly, the sequence similarity-based method was utilized for
146 species identification, using simple and optimized BLAST, for different marker
147 integration strategies (single, coding, non-coding, plastid, and total combination).
148 First, sequences were queried using megablast at Geneious software and NCBI
149 BLASTn against the nucleotide database. Then, a simple method was considered
150 the top 10 hit, and the top 100 records were used to put extra weight on the identity
151 value using "max score*(query cover/identity)" formula on an optimized method.
152 Finally, taxonomic identifications were allocated based on the combination of the
153 identity score (High identity: $X \geq 95\%$; Medium identity: $90\% \leq X \leq 95\%$; Low identity:
154 $X \leq 90\%$) and the number of species within 1% deviation of the calculated similarity
155 score (S1 Fig). Plant Sequences database (BOLD systems) and ITS2 database (V5)
156 were also used as a validation tool for the core barcodes (matK, rbcL) and ITS2
157 [29,30].

158

159 **Analysis of genetic diversity**

160 Analysis of molecular variance (AMOVA) was carried out using Arlequin version 3.5
161 [31]. The significance level of F_{st} statistics was also performed using the software by
162 a nonparametric permutation procedure with 1023 randomizations. Statistical
163 calculations and graphics for F_{st} were conducted using Arlequin and R version 3.6.1
164 (cran.r-project.org) [32]. Further, the online version of Automatic Barcode Gap
165 Discovery (ABGD) was used to generate the genetic distance histograms and
166 ranked distance based on K2P distance
167 (<https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html>) [33].

168

169 **Species distribution modeling**

170 The modeling program MAXENT was used to model Iranian *Salicornia* sp. potential
171 distribution based on an algorithm of maximum entropy to calculate the ecological
172 niche of species and to find out the potential natural distribution of areas and to limit
173 climatic factors [34]. The web-based platform, WorldClim database (<http://www.diva-gis.org/Data>) version 1.3, October 2004 [35], which includes major climate
174 databases from different sources, was used to provide nineteen environmental
175 variables (BIOCLIM). Then, environmental data were added from the FAO Map on
176 Global Ecological Zones [36], to build up the potential natural distribution model. The
177 Maximum threshold sensitivity plus specificity was=0.180 for predicting species
178 geographic distribution (for details see Liu et al. [37]).
180 Further, the geographic observations used for modeling of the potential distribution
181 of *Salicornia* sp. were first filtered, and outliers were then detected in DIVA-GIS
182 (www.diva-gis.org) [38]. Then, all occurrence records and extreme values (minimum

183 of 3 out of 19 bioclimatic variables examined) were rechecked for the inconsistency
184 of their coordinates with administrative area level 1 and their climatic parameters
185 based on the Reverse Jackknife method [39]. Finally, the constructed model
186 assessed with the area under the receiver operating characteristic (ROC) curve [40];
187 the area under the curve (AUC) statistics as an independent threshold, measures the
188 model performance, ranging from 0.5 to 1.0 [41].

190 **Results and Discussion**

191 The success rates of PCR amplification and sequencing of the five barcode markers
192 along with their phylogenetic tree using signle barcodes are shown in Fig 2 and S1
193 File. The three genomic and plastid DNA regions, including ITS2, *trnH-psbA* spacers
194 and *ycf* genes and a combination of *matK-rbcL* were used as acceptable standard
195 barcodes. Among the markers tested, *rbcL* had the highest amplification and
196 recovery rates (98.90%), followed by *trnH-psbA* (82.42%), *matK* (80.21%), *ycf*
197 (69.23%) and the rate for ITS2 was the lowest (65.93%). A low percentage
198 amplification rate and recovery for ITS2 were due to the lack of suitable public
199 primer, the incongruence of multiple copies, and or technical problems. In total, the
200 sequence alignment method comprised of 60 ITS2 sequences, 73 *matK* sequences,
201 90 sequences of *rbcL*, 75 sequences of *trnH-psbA*, and 63 sequences of *ycf*.

202 **Fig 2. The success rates of PCR amplification and sequencing of the five-
203 barcode fragment and 26 different geographical locations.**

204 Simple and optimized BLAST was carried for each of these sequences based on
205 NCBI and ITS database. The efficiency of every single marker, as well as their
206 combination for taxonomic identification, is presented in Fig 3. The highest level of
207 identification using the single marker and simple BLAST at the species level, species
208 group, genus, and family groups were obtained for ITS2 (74.55%), *rbcL* (98.78%),
209 *matK* (62.19%) and *ycf* (83.08%) respectively while the discrimination efficiency
210 using optimized BLAST was 70% (*matK* and *trnH-psbA*), 29.63% (ITS2), 94.44%
211 (*rbcL*) and 53.96% (*ycf*) respectively (Fig 3). Likewise, data integration showed a
212 higher identification at the level of the species group [42]. This group included *S.*
213 *persica*, *S. europea*, *S. patula*, *S. brachiate*, *S. herbacea* and *S. maritime* suggesting
214 species such as *S. europea*, *S. patula* and *S. herbacea* are similar or synonymous

215 (The Plant List (2013). Version 1.1. Published on the Internet;
216 <http://www.theplantlist.org/> (accessed 1st January)). Automatic barcode gap
217 discovery (ABGD) analysis detected a barcoding gap between the intraspecific and
218 interspecific distance of barcode markers. Two distinct groups were classified by
219 ABGD analysis for all barcode markers. In the ABGD system, specimens identified
220 as one group could be considered as one species [33].

221 **Fig 3. Comparison of the efficiency of DNA barcoding using selected regions;**
222 **a) simple and b) optimized BLAST based on NCBI and ITS database.**

223 It should be noted that the ABGD algorithm yielded the same results when applied in
224 the three implemented models (JC, K2P, and Simple Distance). Histograms of
225 sequence divergence values and ranked distances among barcode sequences in
226 *Salicornia* complex are shown in S2 Fig. A combination of barcode markers in
227 noncoding, coding, core, and cpDNA group did not increase discrimination success.
228 However, it confirmed that the ABGD results suggest the existence of two *Salicornia*
229 species. The highest discrimination success in all combinations obtained for the *S.*
230 *europea* species followed by *S. brachiata* (Fig 4). Further, the low success rate of
231 markers might be related to the spreading and distribution of *Salicornia* germplasm
232 species in Iran. This index is inverted with the amount of intra and inter-species gene
233 flow. According to this theory, populations with a low distribution index are
234 geographically or physiologically related to each other. The low distribution index
235 may cause the variants of neutral mutations to spread slowly throughout the entire
236 population. Thus the required time for lineage sorting for each gene locus increase
237 by the natural genetic flow. In this case, the identification of specific barcodes is
238 difficult for each species [43].

239 **Fig 4. Performances of *matK*, *rbcL*, *trnH-psbA*, *ITS2* and *ycf* in resolving**
240 **Salicornia species as different noncoding, coding, core and cpDNA**
241 **combinations.**

242 Another consequence is that an increase in the penetration coefficient of a species in
243 the adjacent species is caused by genetic flow, affecting the efficiency rate of the
244 DNA barcoding method. In this study, the barriers and geographic distances, self-
245 pollination, and cleistogamy reduced the gene flow rate among the plausible species
246 of *Salicornia* populations. Later, the Iranian *Salicornia* germplasm has been studied
247 with respect to the different nuclear and plastid sites with different heritability
248 patterns in each group. As previously reported, the inheritance of plastid DNA is
249 maternal in most angiosperms. Thus plastid haplotypes disperse through seeds [44].
250 In contrast, nuclear variants are distributed by seed and pollen and exhibited by
251 biparental inheritance. The expected distribution range of pollen is higher relative to
252 seed. Thus the genetic differentiation of the populations should be higher through
253 plastid markers [45–47]. Here, molecular variance analysis (AMOVA) and F_{st} index
254 for core-barcode plastid (*matK*, *rbcL*) and nuclear marker (*ITS2*) showed that
255 molecular variance within populations of the same species is greater than between
256 populations indicating a higher genetic diversity (Fig 5). The largest difference
257 between and within populations was observed in Dayer and Shahrabbak genotypes
258 based on *ITS2* and *matK* markers, respectively. However, the *rbcL* fragment was not
259 suitable for differentiation between populations. The highest Nei's distance was
260 obtained in Golmanxana and Qaregheshlaq genotypes based on *ITS2* and *rbcL*
261 markers. Moreover, the highest F_{st} index was observed in the Golmanxana
262 genotype for the *ITS2* marker, suggesting a low genetic flow rate compared to other
263 genotypes. A higher F_{st} index conserves the allelic diversity needed for the

264 conservation and exploitation of genetic resources. Further, the distribution of seed
265 and pollen varies among populations, and in most cases, the genetic differentiation
266 between populations depends on the geographical barriers and distance [48].

267 **Fig 5. Inter and intra molecular variance analysis and F_{st} index in *Salicornia***
268 **germplasm in Iran, based on plastid and nuclear markers.**

269 The spatial analysis helps in better understanding and more accurate identification of
270 biodiversity and developing strategies for identifying, managing and exploiting
271 genetic resources [49]. Outputs then provide vital information for prioritizing of
272 protection and the Agro-Ecological Areas [50] finding. This finding may suggest that
273 the new species can be grown in an environment outside its endemic region if
274 additional resources such as water or soil nutrients are available. It should be noted
275 that combining spatial results with other data is very useful in the management and
276 exploitation of genetic reserves more efficiently [51]. The basis of spatial analysis in
277 biodiversity is observed data from the sampled collection areas. In our study the
278 geographical data included identification codes, taxonomic names, geographic
279 characteristics, and sampling locations (Fig 6). This information is commonly used
280 for spatial diversity and distribution analysis. Biodiversity of plants is studied at three
281 levels comprising of species-level and genetic level in a population (ecosystem).
282 Here, *Salicornia* was studied at the species level or alpha diversity. In this case, the
283 species level was observed in species diversity and evaluated in being absent or
284 present conditions in each specific area.

285 **Fig 6. Distribution of the *Salicornia* populations in Iran based on the sampling**
286 **areas. The regions with the highest and the lowest number of samples are**
287 **depicted in red and dark green, respectively. The map was created using**
288 **Google Earth program version 7.1.7.2606 (www.google.com/earth).**

289 Further, the determination of diversity (including species, genotype, or ecotype) in
290 different subunits was one of the most crucial aims in this study. The sub-units were
291 areas that *Salicornia* species were found in a previous study. Consequently, diversity
292 was studied at the alpha level, and the sampling areas were mapped using the
293 observed number for each sample and their distributions (Fig 7). The regions were
294 then classified into five groups based on their distributions. The area with the highest
295 and the lowest number of samples is depicted in red and dark green, respectively, in
296 Fig 7. For example, if a plant protection program is considered, the areas with the
297 highest alpha diversity (red) are in the top priority. In the current study, primary data
298 in specific formats were prepared for DIVA and MAXENT software; then, the climate
299 data information was converted into a particular format for the software, and 19
300 different climate variables affecting the distribution of species were evaluated [52]
301 (Fig 8 and S2 File). As shown in Fig 8, isothermality (diurnal range mean
302 /temperature annual range) *100, mean temperature of driest quarter, precipitation of
303 warmest quarter, the maximum temperature of the warmest month, altitude,
304 temperature seasonality, mean temperature of coldest quarter, minimum
305 temperature of the coldest month, and annual mean temperature were the most
306 critical variables to the *Salicornia* MAXENT model, based on jackknife test AUC. The
307 average test AUC for each replicate runs were 0.994. Likewise, the standard
308 deviation was 0.002.

309 **Fig 7. Geographical distribution of *Salicornia* in Iran generated by MAXENT**
310 **software (a); the probability of presence increase from blue to red, (b) the**
311 **effect of climates parameters on *Salicornia* distribution in Iran. The map was**
312 **created using free open source MAXENT software version 3.4.1**
313 **(https://biodiversityinformatics.amnh.org/open_source/maxent/).**

314

315 **Fig 8. Prediction model of *Salicornia* distribution (a) and limiting factors (b),**
316 **based on geographical data and cluster analysis of sampled material. Different**
317 **niches for protection and cultivation of *Salicornia* was shown with red to green**
318 **color. The most competence areas for natural identification or cultivation of**
319 ***Salicornia* when optimum water and soil parameter conditions are available**
320 **shown in red colors while dark green colors show the least potential areas.**
321 **The map was created using free software DIVA-GIS Version 7.5 (www.diva-gis.org).**

323 We also studied ecological niches on the conservation and utilization of genetic
324 resources. This concept has been used to determine the priority of areas suitable for
325 the conservation of wild species or the banking of natural genetic resources.
326 Ecological niches are occupied area by a species in natural environmental
327 conditions. Initial niches were also identified in this study. These areas have
328 favorable climatic conditions for *Salicornia* growth and can be used to found these
329 species.

330 Further, in the field trial condition, the coverage of the primary and ecological niches
331 was confirmed. However, in some primary niches, *Salicornia* samples were not
332 found that may be due to the negative effect of climates or ecological parameters.
333 Further, Geographic Information Systems (GIS) was used to model ecosystem nets
334 based on available environmental data of each collected samples [6]. This model
335 was drawn using DIVA and MAXENT software (Figure 8). The map showed different
336 niches for the protection and cultivation of *Salicornia*. The most competence areas
337 for natural identification or cultivation of *Salicornia* shown are red colors when
338 optimum water and soil parameters condition are available. However, the dark green

339 colors show the least potential regions. Together, the model exhibited saline soil,
340 and inefficient land might be used for industrial cultivation of *Salicornia* in Iran.
341 Murray-smith et al. (2009), previously applied MAXENT modeling and DIVA-GIS
342 analysis to identify priority areas for the conservation of Myrtaceae. Their model
343 showed observed species occurrences and predicted species occurrences and
344 indicated of complementarity analysis congruent in identifying areas with the most
345 endemic species.

346

347 **Conclusion**

348 We validated genes in the field of DNA barcoding in *Salicornia* plants using *matK*,
349 *rbcL*, *trnH-psbA*, *ycf* and *ITS2*, identifying species groups and the possible model of
350 gene flow within and among *Salicornia* population. Among the genetic markers
351 tested, *rbcL* had the highest amplification and recoverability rates (98.90%), followed
352 by *trnH-psbA* (82.42%), *matK* (80.21%), *ycf* (69.23%) and the rate for *ITS2* was the
353 lowest (65.93%). Data integration showed identification at the level of the species
354 group was higher. This group included *S. persica*, *S. europea*, *S. patula*, *S.*
355 *brachiate*, *S. herbacea*, and *S. maritime*. Molecular variance analysis and F_{st} index
356 for plastid and nuclear markers showed genetic differences within the population of
357 the same species is greater than between the populations indicating a high genetic
358 diversity among the genotypes of each population. We also studied ecological niches
359 on conservation and utilization of genetic resources, to determine the priority of
360 areas suitable for conservation of wild species or banking of natural genetic
361 resources. Our results provided valuable information on the diversity of specific
362 geographical regions, conservation status of existing species, prioritization of

363 conservation areas, and selection of regions for Agro-Ecological, which might be led
364 to the development of industrial agriculture.

365

366 **References**

- 367 1. Bartels D, Sunkar R. Drought and Salt Tolerance in Plants. *CRC Crit Rev Plant*
368 *Sci.* 2005;24: 23–58. doi:10.1080/07352680590910410
- 369 2. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al.
370 Food security: the challenge of feeding 9 billion people. *Science* (80-).
371 2010;327: 812–8. doi:10.1126/science.1185383
- 372 3. Flowers TJ, Hajibagheri MA, Clipson NJW. Halophytes. *Q Rev Biol.* 1986;61:
373 313–337. doi:10.1086/415032
- 374 4. Flowers TJ. Improving crop salt tolerance. *J Exp Bot.* 2004;55: 307–319.
375 doi:10.1093/jxb/erh003
- 376 5. Hadi MR, Khiyam-Nekoie SM, Khavarinejad R, Khoshkholgh Sima NA, Yavari
377 P. Accumulation and role of ions (Ca²⁺, Mg²⁺, SO₄²⁻) on salt tolerance in
378 *Triticum turgidum* L. . *J Biol Sci.* 2008;8: 143–148. Available:
379 <https://scholar.google.com/scholar?cluster=16416560739638406201&hl=en&oi=scholarr>
- 380 6. Kadereit G, Ball P, Beer S, Mucina L, Sokoloff D, Teege P, et al. A taxonomic
382 nightmare comes true: phylogeny and biogeography of glassworts (*Salicornia*
383 L., *Chenopodiaceae*). *Taxon.* 2007;56: 1143–1170. Available:
384 <https://www.ingentaconnect.com/contentone/iapt/tax/2007/00000056/00000004/art00013?crawler=true>
- 386 7. Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012
387 revision. *ESA Working Paper No. 12-03.* Rome: Food and Agriculture

- 388 Organization, Agricultural Development, Economics Division; 2012. Available:
389 <https://ageconsearch.umn.edu/record/288998/>
- 390 8. Teege P, Kadereit JW, Kadereit G. Tetraploid European *Salicornia* species are
391 best interpreted as ecotypes of multiple origin. *Flora - Morphol Distrib Funct*
392 *Ecol Plants.* 2011;206: 910–920. doi:10.1016/J.FLORA.2011.05.009
- 393 9. Flowers TJ, Colmer TD. Salinity Tolerance in Halophytes. *New Phytol.*
394 2008;179: 945–963. doi:10.2307/25150520
- 395 10. Khosh Kholgh Sima NA, Tale Ahmad S, Pessarakli M. Comparative study of
396 different salts (sodium chloride, sodium sulfate, potassium chloride, and
397 potassium sulfate) on growth of forage species. *J Plant Nutr.* 2013;36: 214–
398 230. doi:10.1080/01904167.2012.739242
- 399 11. Öztürk M, Güvensen A, Sakçalı S, Görk G. Halophyte plant diversity in the
400 Irano-Turanian phytogeographical region of Turkey. *Biosaline Agriculture and*
401 *High Salinity Tolerance.* Basel: Birkhäuser Basel; 2008. pp. 141–155.
402 doi:10.1007/978-3-7643-8554-5_14
- 403 12. Flowers TJ, Galal HK, Bromham L. Evolution of halophytes: multiple origins of
404 salt tolerance in land plants. *Funct Plant Biol.* 2010;37: 604.
405 doi:10.1071/FP09269
- 406 13. Hammer K, Khoshbakht K. Towards a ‘red list’ for crop plant species. *Genet*
407 *Resour Crop Evol.* 2005;52: 249–265. doi:10.1007/s10722-004-7550-6
- 408 14. Eganathan P, SR Subramanian HM, Latha R, Rao CS. Oil analysis in seeds of
409 *Salicornia brachiata.* *Ind Crops Prod.* 2006;23: 177–179.
410 doi:10.1016/J.INDCROP.2005.05.007
- 411 15. Ventura Y, Wuddineh WA, Shpigel M, Samocha TM, Klim BC, Cohen S, et al.
412 Effects of day length on flowering and yield production of *Salicornia* and

- 413 Sarcocornia species. *Sci Hortic* (Amsterdam). 2011;130: 510–516.
- 414 doi:10.1016/J.SCIENTA.2011.08.008
- 415 16. Katschnig D, Broekman R, Experimental JR-E and, 2013 undefined. Salt
416 tolerance in the halophyte *Salicornia dolichostachya* Moss: Growth,
417 morphology and physiology. *Environ Exp Bot*. 2013;92: 32–42. Available:
418 <http://www.sciencedirect.com/science/article/pii/S0098847212000895>
- 419 17. Glenn EP, Anday T, Chaturvedi R, Martinez-Garcia R, Pearlstein S, Soliz D, et
420 al. Three halophytes for saline-water agriculture: An oilseed, a forage and a
421 grain crop. *Environ Exp Bot*. 2013;92: 110–121.
422 doi:10.1016/J.ENVEXPBOT.2012.05.002
- 423 18. Liu X, Xia Y, Wang F, Sun M, Jin Z, Science GW-F, et al. Analysis of Fatty
424 Acid Compositions of *Salicornia Europaea* L. Seed Oil. *Food Sci*. 2005;2.
425 Available: http://en.cnki.com.cn/Article_en/CJFDTOTAL-SPKX200502042.htm
- 426 19. Muscolo A, Panuccio MR, Piernik A. Ecology, Distribution and Ecophysiology
427 of *Salicornia Europaea* L. Springer, Dordrecht; 2014. pp. 233–240.
428 doi:10.1007/978-94-007-7411-7_16
- 429 20. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG. INVITED
430 REVIEW: Comparative organization of chloroplast, mitochondrial and nuclear
431 diversity in plant populations. *Molecular Ecology*. John Wiley & Sons, Ltd
432 (10.1111); 2004. pp. 689–701. doi:10.1111/j.1365-294X.2004.02410.x
- 433 21. Kadereit G, Piirainen M, Lambinon J, Vanderpoorten A. Cryptic taxa should
434 have names: Reflections in the glasswort genus *Salicornia* (Amaranthaceae).
435 *Taxon*. 2012;61: 1227–1239. Available:
436 <https://www.ingentaconnect.com/contentone/iapt/tax/2012/00000061/000000006/art00005?crawler=true>

- 438 22. Kaur G, Kumar S, Nayyar H, Upadhyaya HD. Cold Stress Injury during the
439 Pod-Filling Phase in Chickpea (*Cicer arietinum* L.): Effects on Quantitative
440 and Qualitative Components of Seeds. *J Agron Crop Sci.* 2008;194: 457–464.
441 doi:10.1111/j.1439-037X.2008.00336.x
- 442 23. Vorasoot N, Songsri P, Akkasaeng C, Jogloy S, Patanothai A. Effect of water
443 stress on yield and agronomic characters of peanut (*Arachis hypogaea* L.). *J
444 Sci Technol.* 2003;25: 283–288. Available:
445 https://www.researchgate.net/profile/Chutipong_Akkasaeng/publication/26483170_Effect_of_water_stress_on_yield_and_agronomic_characters_of_peanut_Arachis_hypogaea_L/links/0c96051526ae30ecd8000000/Effect-of-water-stress-on-yield-and-agronomic-characters-of-peanut-Arachis-hypogaea-L.pdf
- 446 24. Ingrouille MJ, Pearson J. The pattern of morphological variation in the
447 *Salicornia europaea* L. aggregate (Chenopodiaceae). *Watsonia.* 1987;16:
448 269–281. Available: <http://archive.bsbi.org.uk/Wats16p269.pdf>
- 449 25. Neves SS, Forrest LL. Plant DNA Sequencing for Phylogenetic Analyses:
450 From Plants to Sequences. Humana Press; 2011. pp. 183–235.
451 doi:10.1007/978-1-61779-276-2_10
- 452 26. Hollingsworth PM, Graham SW, Little DP. Choosing and Using a Plant DNA
453 Barcode. Steinke D, editor. *PLoS One.* 2011;6: e19254.
454 doi:10.1371/journal.pone.0019254
- 455 27. Reahisamani N, Esmaeili M, Khoshkholgh Sima NA, Zaefarian F,
456 Zeinalabedini M. Assessment of the oil content of the seed produced by
457 *Salicornia* L., along with its ability to produce forage in saline soils. *Genet
458 Resour Crop Evol.* 2018;65: 1879–1891. doi:10.1007/s10722-018-0661-2
- 459 28. Dong W, Liu J, Yu J, Wang L, Zhou S. Highly Variable Chloroplast Markers for

- 463 Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding.
464 Moustafa A, editor. PLoS One. 2012;7: e35071.
465 doi:10.1371/journal.pone.0035071

466 29. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al.
467 Geneious Basic: An integrated and extendable desktop software platform for
468 the organization and analysis of sequence data. Bioinformatics. 2012;28:
469 1647–1649. doi:10.1093/bioinformatics/bts199

470 30. Ghorbani A, Saeedi Y, de Boer HJ. Unidentifiable by morphology: DNA
471 barcoding of plant material in local markets in Iran. Bussmann R, editor. PLoS
472 One. 2017;12: e0175722. doi:10.1371/journal.pone.0175722

473 31. Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to
474 perform population genetics analyses under Linux and Windows. Mol Ecol
475 Resour. 2010;10: 564–567. doi:10.1111/j.1755-0998.2010.02847.x

476 32. Weir BS, Cockerham CC. Estimating F -statistics for the analysis of population
477 structure. Evolution (N Y). 1984;38: 1358–1370. doi:10.1111/j.1558-
478 5646.1984.tb05657.x

479 33. Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap
480 Discovery for primary species delimitation. Mol Ecol. 2012. doi:10.1111/j.1365-
481 294X.2011.05239.x

482 34. Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance
483 of model complexity and the performance of model selection criteria. Ecol
484 Appl. 2011;21: 335–342. doi:10.1890/10-1171.1

485 35. Escudero A, Iriondo JM, Torres ME. Spatial analysis of genetic diversity as a
486 tool for plant conservation. Biol Conserv. 2003;113: 351–365.
487 doi:10.1016/S0006-3207(03)00122-8

- 488 36. MacDicken K, Jonsson Ö, Piña L, Maulo S, Contessa V. Global forest
489 resources assessment 2015: how are the world's forests changing? 2016
490 [cited 30 Jul 2019]. Available: <http://agris.fao.org/agris-search/search.do?recordID=XF2017001127>
- 491 37. Liu C, Berry PM, Dawson TP, Pearson RG. Selecting thresholds of occurrence
492 in the prediction of species distributions. *Ecography (Cop)*. 2005;28: 385–393.
493 doi:10.1111/j.0906-7590.2005.03957.x
- 494 38. Hijmans RJ, Guarino L, Cruz M, Rojas E. Computer tools for spatial analysis of
495 plant genetic resources data: 1. DIVA-GIS. *Plant Genetic Resources
496 Newsletter*. 2001. Available:
497 <https://books.google.com/books?hl=en&lr=&id=6QdBUMOtx0YC&oi=fnd&pg=PA15&dq=Computer+tools+for+spatial+analysis+of+plant+genetic+resources+data:+1.+DIVA-GIS.+Plant+Genetic+Resources+Newsletter&ots=pTiot0bO9v&sig=uK8ZvGhL84JF125O2r0-meCbNE>
- 500 39. Chapman A. Principles and methods of data cleaning. GBIF; 2005. Available:
501 [https://books.google.com/books?hl=en&lr=&id=44gDJTEJoVIC&oi=fnd&pg=PA1&dq=Reverse+Jackknife+method+\(Chapman+2005&ots=vSIT4ce3mp&sig=o8vwrA8B135r3bRtzzNwspnn05s](https://books.google.com/books?hl=en&lr=&id=44gDJTEJoVIC&oi=fnd&pg=PA1&dq=Reverse+Jackknife+method+(Chapman+2005&ots=vSIT4ce3mp&sig=o8vwrA8B135r3bRtzzNwspnn05s)
- 502 40. Nyfløt LT, Sandven I, Stray-Pedersen B, Pettersen S, Al-Zirqi I, Rosenberg M,
503 et al. Risk factors for severe postpartum hemorrhage: A case-control study.
504 *BMC Pregnancy Childbirth*. 2017;17: 1–9. doi:10.1186/s12884-016-1217-0
- 505 41. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species
506 geographic distributions. *Ecol Model*. 2006;190: 231–259.
507 doi:10.1016/J.ECOLMODEL.2005.03.026

- 513 42. Moritz C, Cicero C. DNA Barcoding: Promise and Pitfalls. Charles Godfray,
514 editor. PLoS Biol. 2004;2: e354. doi:10.1371/journal.pbio.0020354
- 515 43. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical
516 explanation of MaxEnt for ecologists. Divers Distrib. 2011;17: 43–57.
517 Available: <https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1472-4642.2010.00725.x>
518 4642.2010.00725.x%4010.1111%28ISSN%291472-4642.species-distribution-
519 models-in-conservation-biogeography
- 520 44. Xu ZL, Ali Z, Yi JX, He XL, Zhang DY, Yu GH, et al. Expressed sequence tag-
521 simple sequence repeat-based molecular variance in two *Salicornia*
522 (Amaranthaceae) populations. Genet Mol Res. 2011;10: 1262–1276.
523 Available:
524 <https://www.geneticsmr.com/sites/default/files/articles/year2011/vol10-2/pdf/gmr1321.pdf>
- 526 45. Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H. Cold stress effects on
527 reproductive development in grain crops: An overview. Environ Exp Bot.
528 2010;67: 429–443. doi:10.1016/j.envexpbot.2009.09.004
- 529 46. Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends
530 Ecol Evol. 2009;24: 110–117. doi:10.1016/j.tree.2008.09.011
- 531 47. Ennos RA. Estimating the relative rates of pollen and seed migration among
532 plant populations. Heredity (Edinb). 1994;72: 250–259.
533 doi:10.1038/hdy.1994.35
- 534 48. Slatkin M. Gene flow and the geographic structure of natural populations.
535 Science (80-). 1987;236: 787–792.
- 536 49. Riccioli F, Fratini R, Boncinelli F, El Asmar T, El Asmar J-P, Casini L. Spatial
537 analysis of selected biodiversity features in protected areas: a case study in

538 Tuscany region. Land use policy. 2016;57: 540–554.

539 doi:10.1016/J.LANDUSEPOL.2016.06.023

540 50. Vermeulen SJ, Campbell BM, Ingram JSI. Climate Change and Food Systems.

541 Annu Rev Environ Resour. 2012;37: 195–222. doi:10.1146/annurev-environ-

542 020411-130608

543 51. Kearney M, Porter W. Mechanistic niche modelling: combining physiological

544 and spatial data to predict species' ranges. Ecol Lett. 2009;12: 334–350.

545 doi:10.1111/j.1461-0248.2008.01277.x

546 52. Esquinas-Alcázar J. Protecting crop genetic diversity for food security:

547 Political, ethical and technical challenges. Nat Rev Genet. 2005;6: 946–953.

548 doi:10.1038/nrg1729

549

550 **Supporting information**

551 **Fig S1. Taxonomic identifications based on the combination of the identity**

552 **score value. (High identity: $X \geq 95\%$; Medium identity: $90\% \leq X \leq 95\%$; Low**

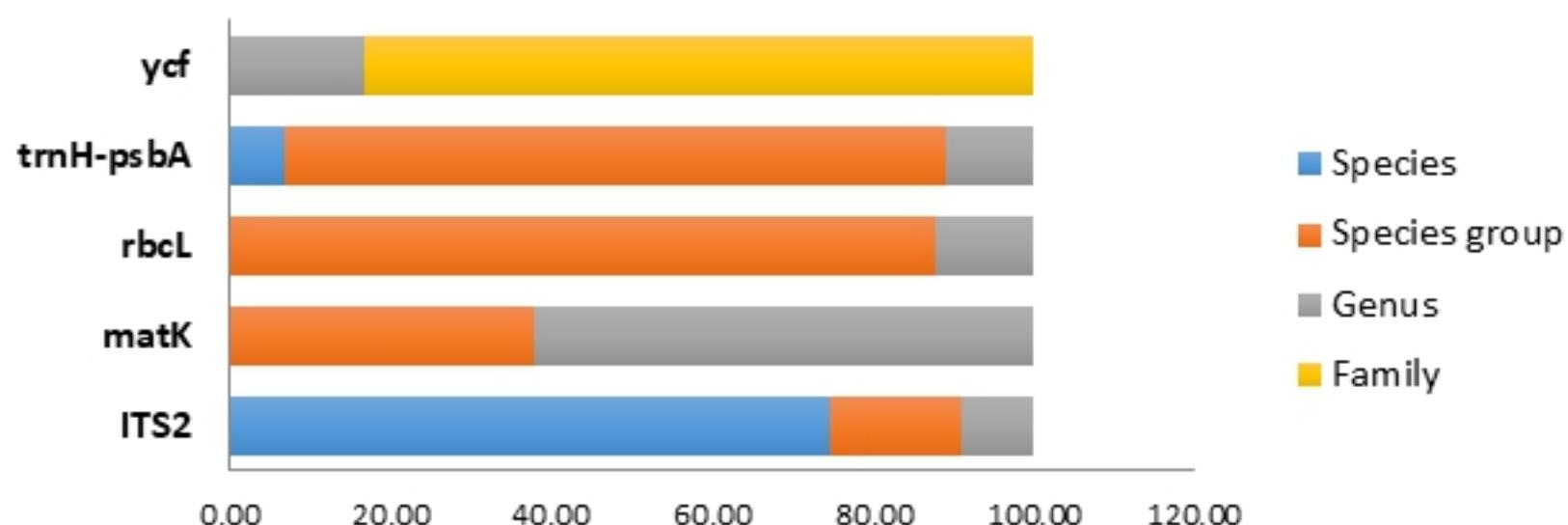
553 **identity: $X \leq 90\%$).**

554 **Fig S2. Automatic Barcode Gap Discovery (ABGD) analysis of barcoding**

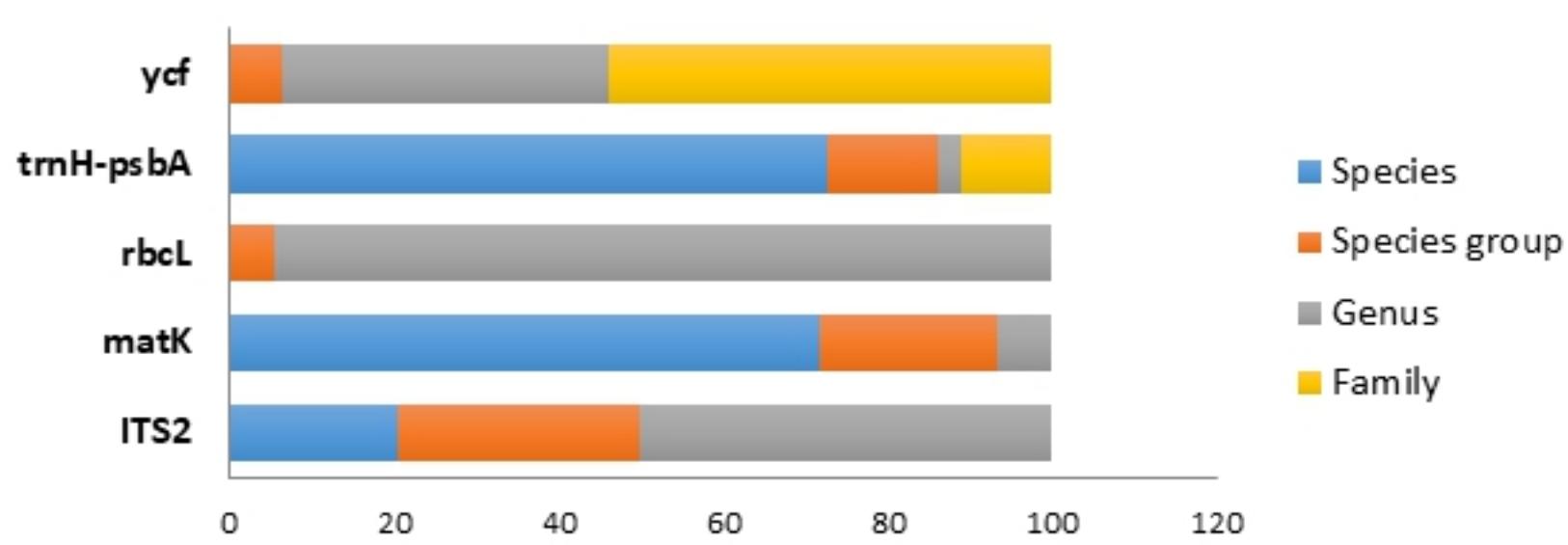
555 **markers, (a) Histogram of distances, (b) graph of ranked distances, (c)**

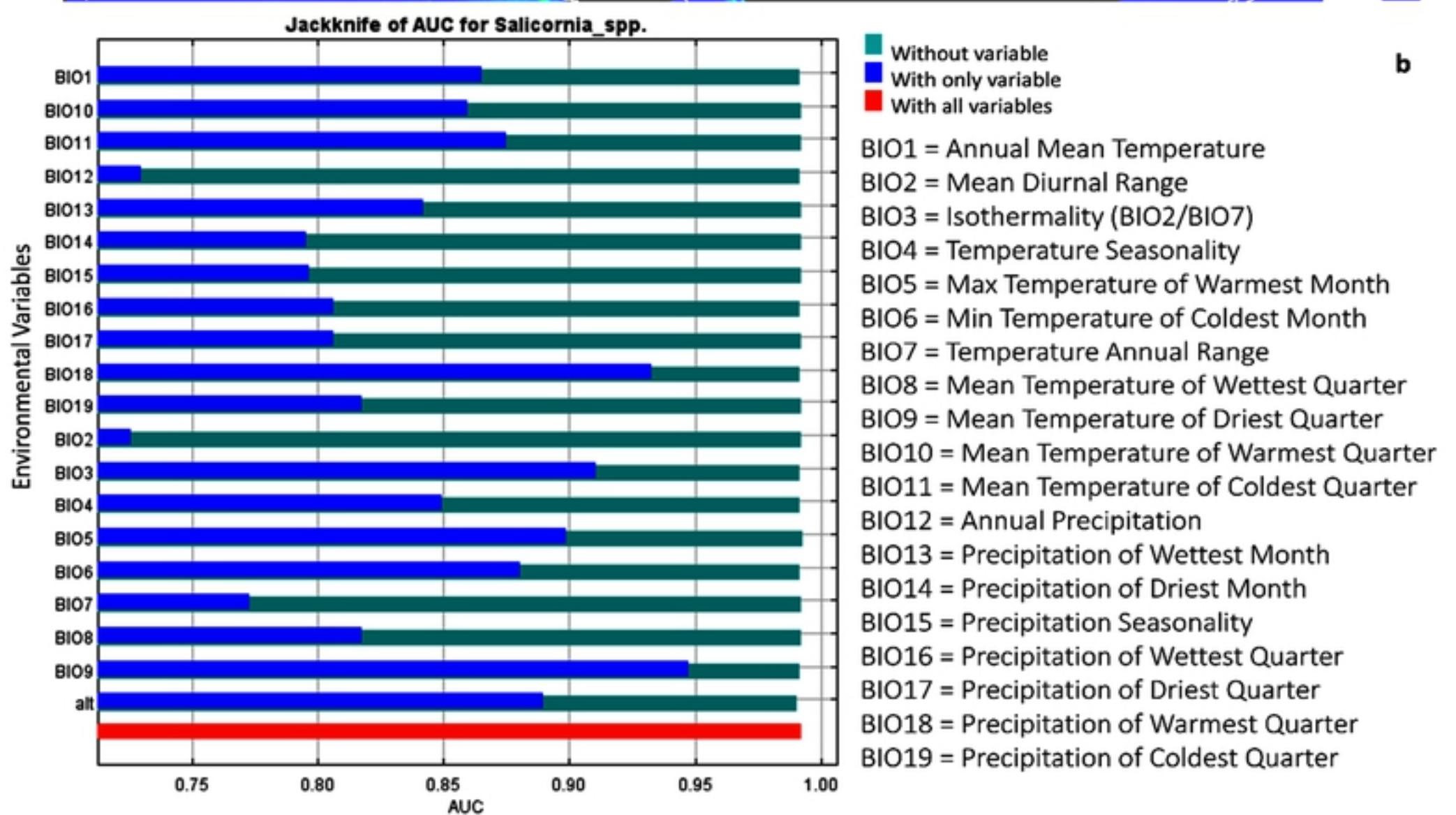
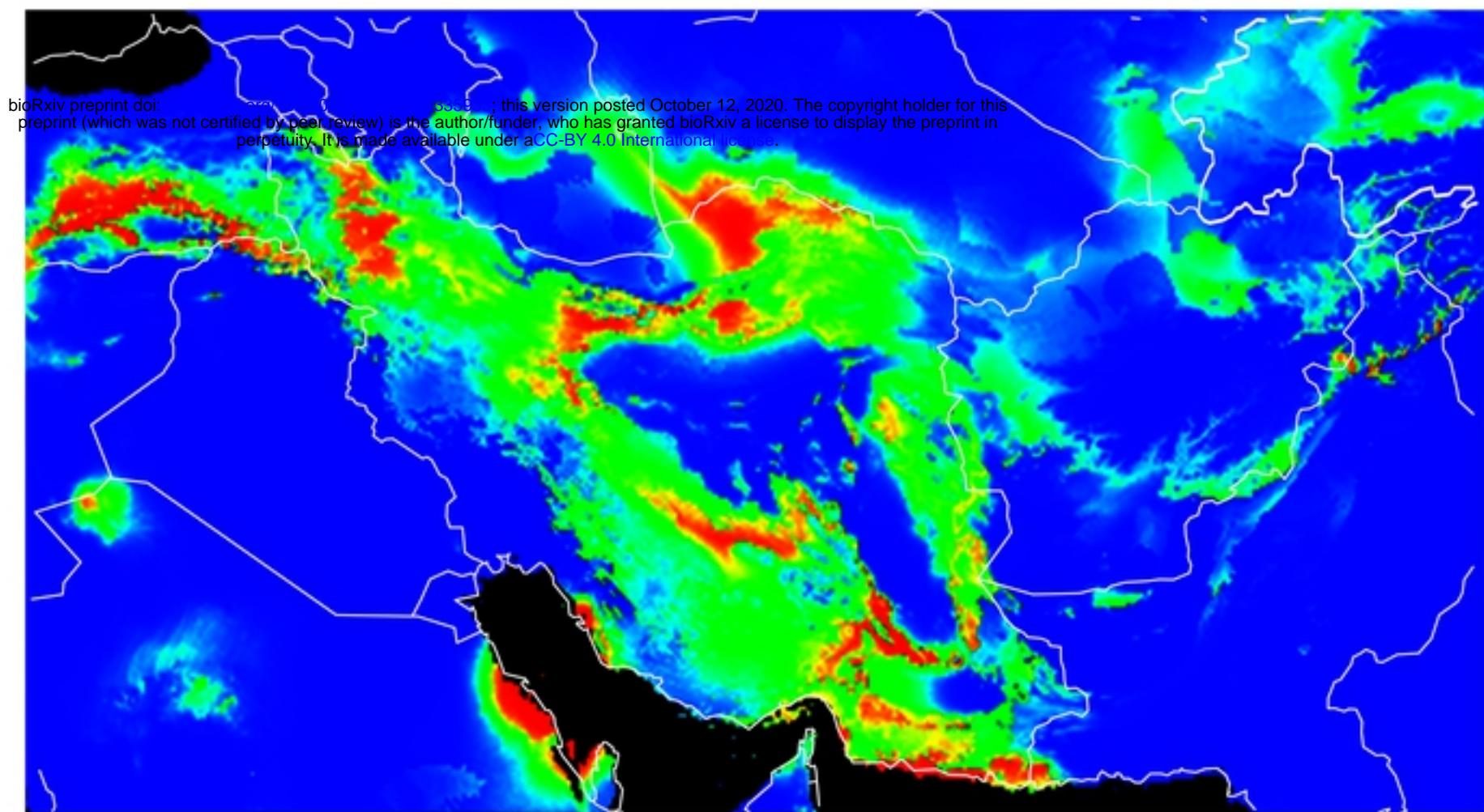
556 **Automatic partition.**

557 **Table S1. DNA barcode primers sequences used in this study.**


558 **S1 File. The phylogenetic tree using a single fragment of ITS2, matK, rbcl, trn**

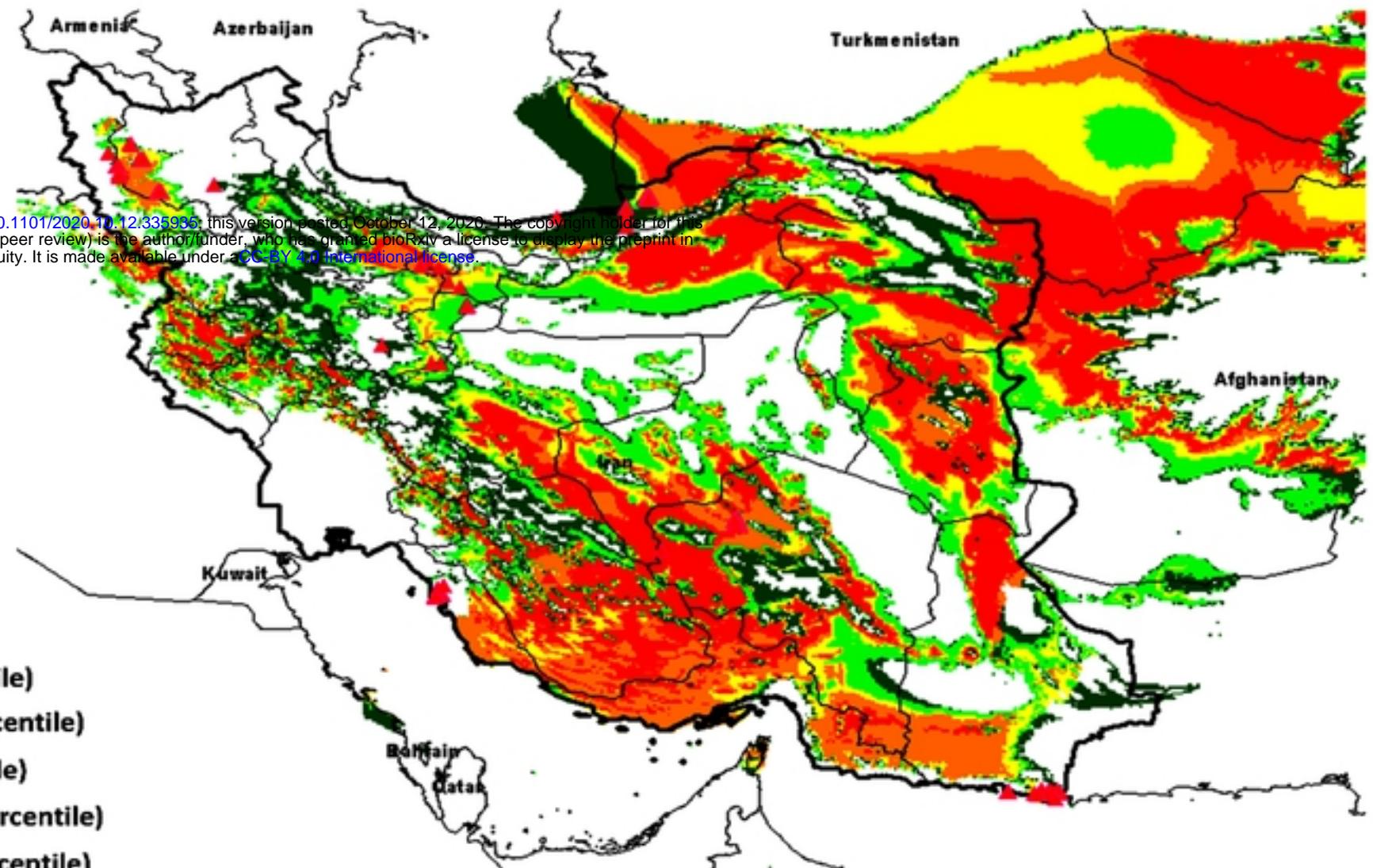
559 **and ycf.**


560 **S2 File. The primary data used in DIVA and MAXENT software.**

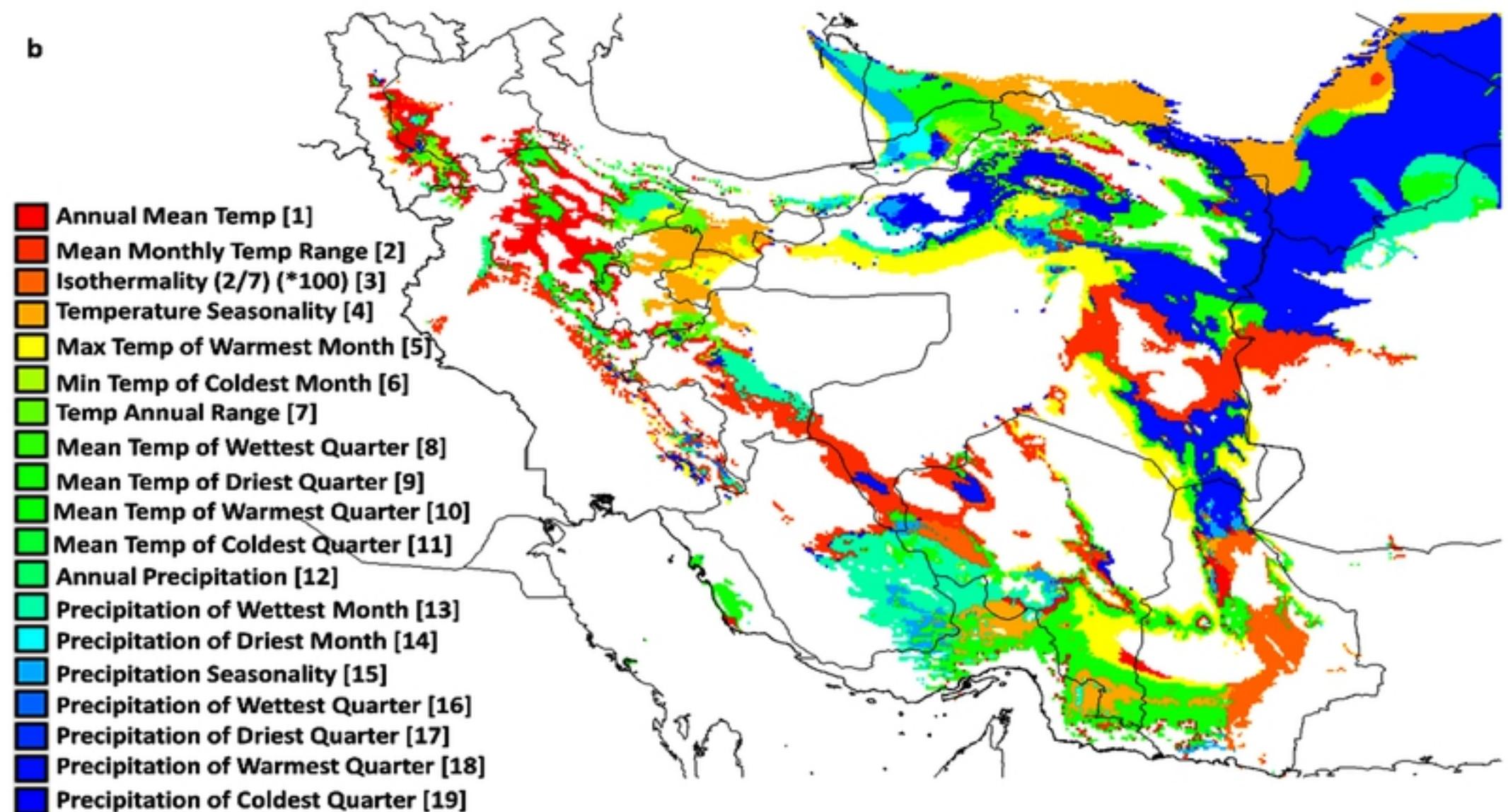


a

Simple BLAST

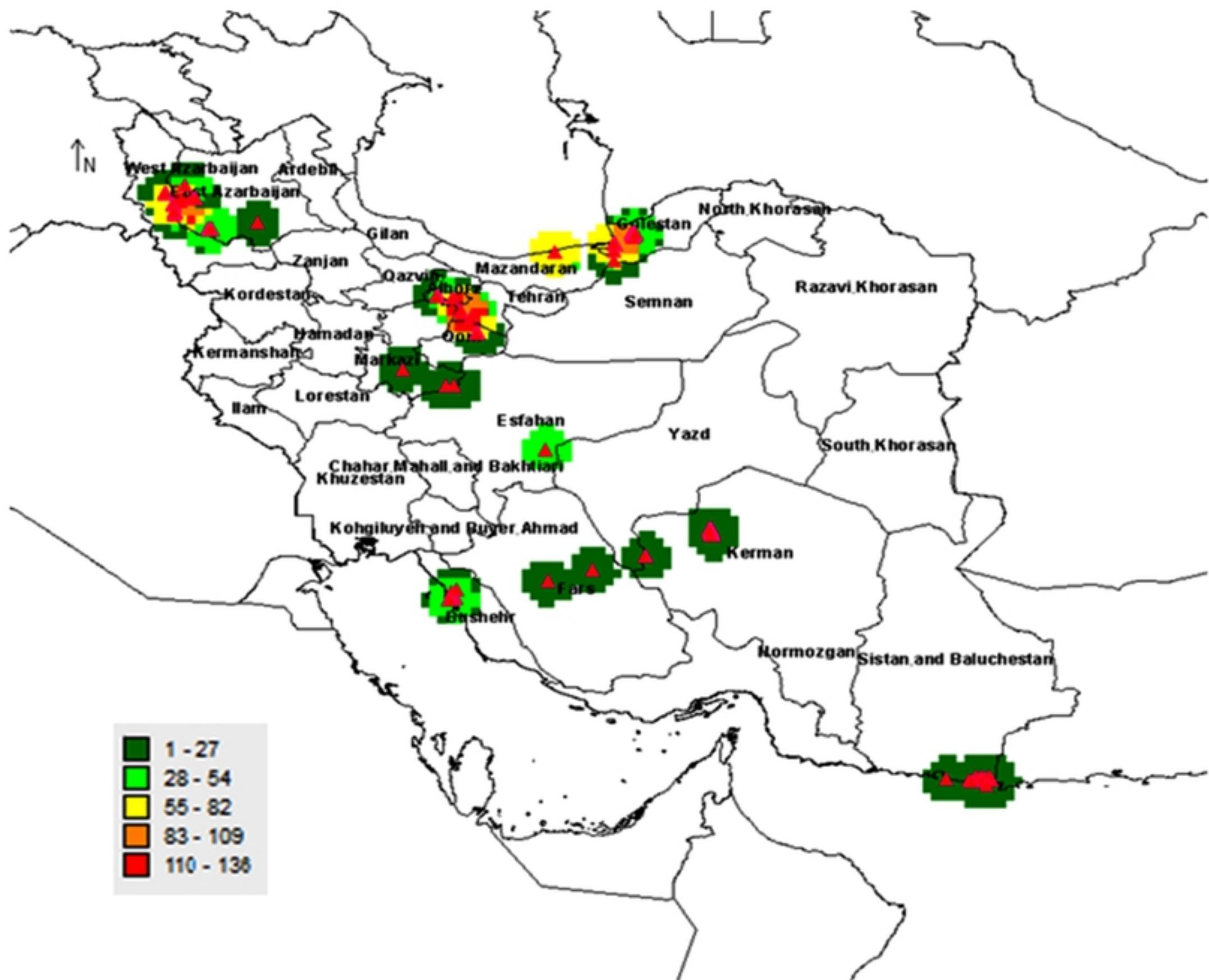
b

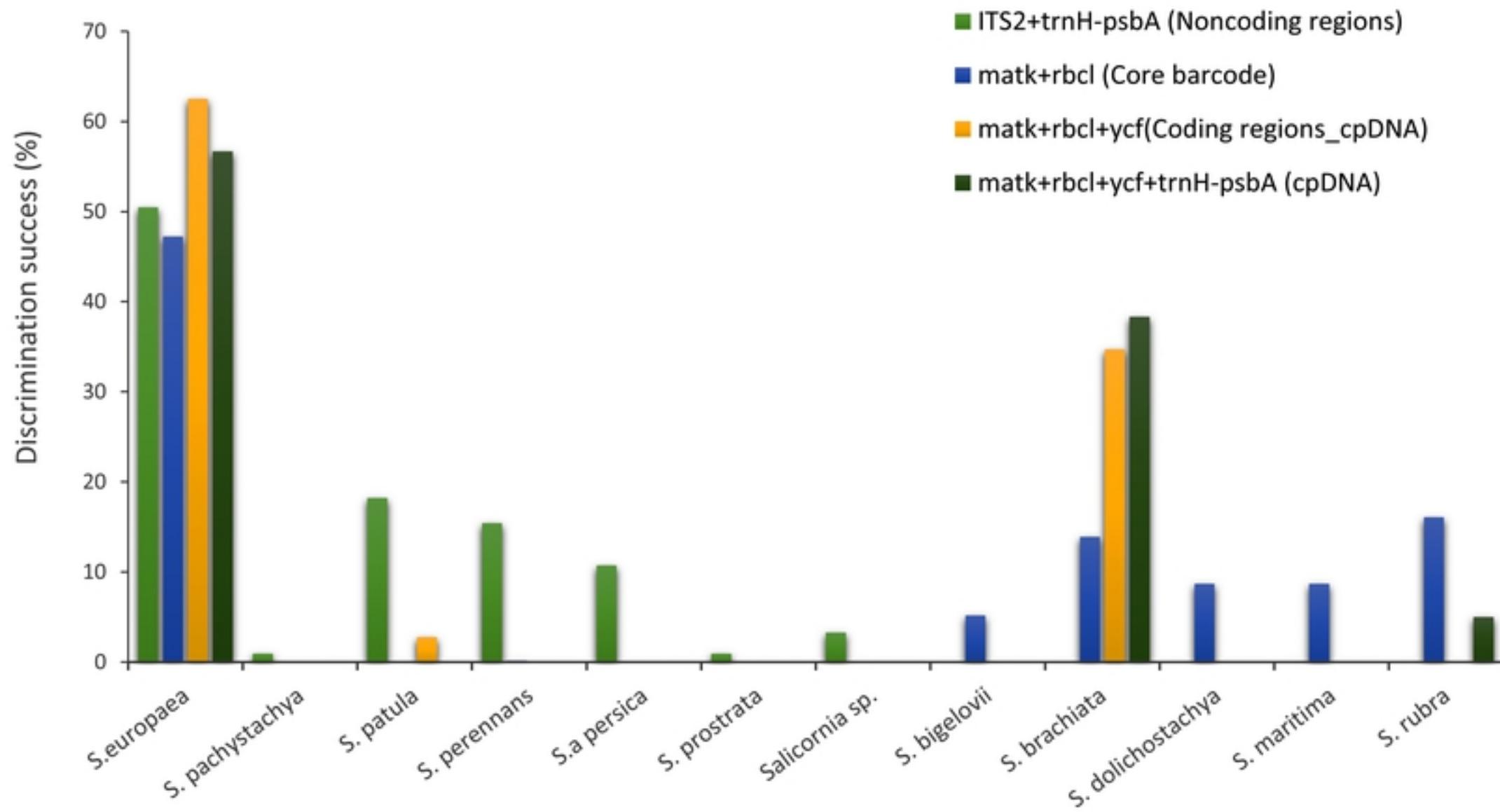

Optimized BLAST

Figure

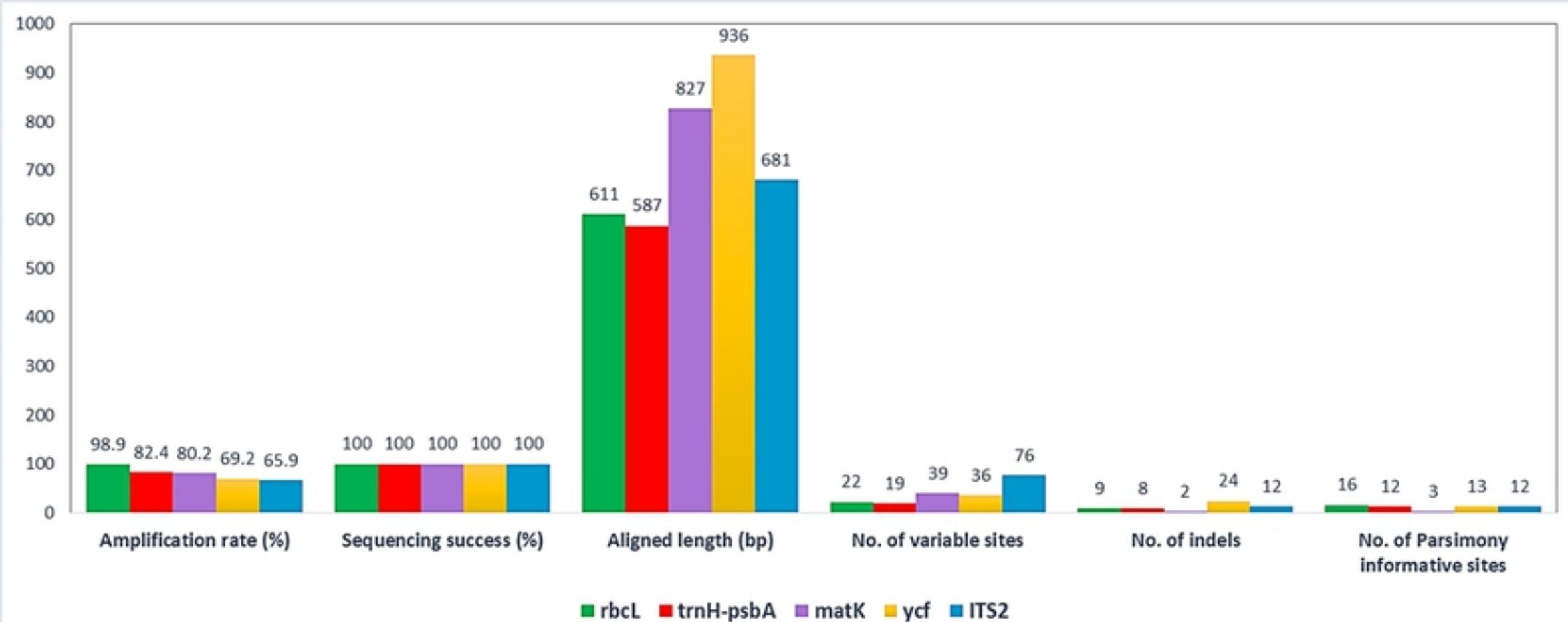


bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.12.335985>; this version posted October 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

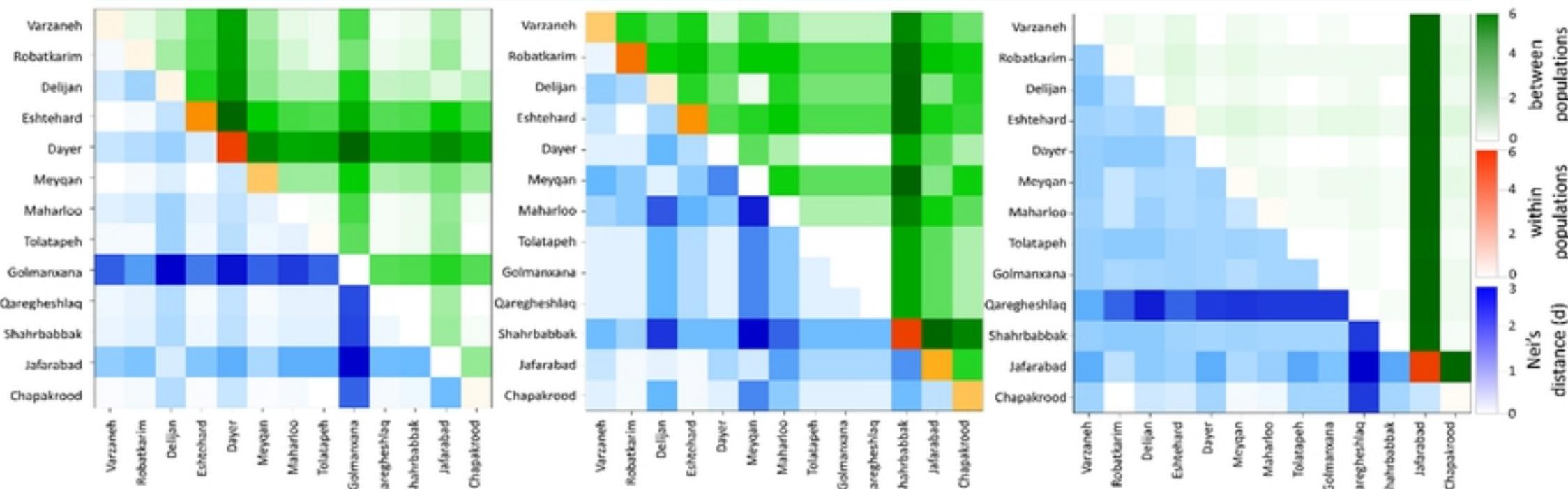

a


b

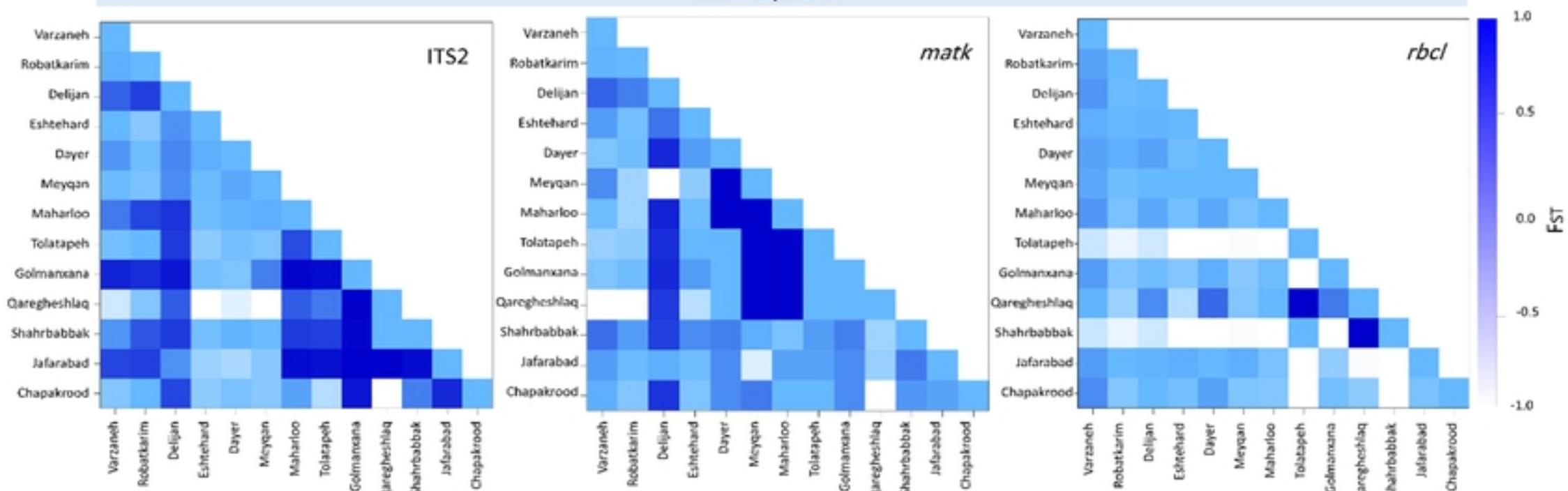
Figure


Figure

Figure



Figure



Figure

Average of pairwise differences

Matrix of pairwise FST

Figure